Introduction / 1: |
MEMS / 2: |
Miniaturisation and Systems / 2.1: |
Examples for MEMS / 2.2: |
Bubble Jet / 2.2.1: |
Actuators / 2.2.2: |
Micropumps / 2.2.3: |
Small and Large: Scaling / 2.3: |
Electromagnetic Forces / 2.3.1: |
Coulomb Friction / 2.3.2: |
Mechanical Strength / 2.3.3: |
Dynamic Properties / 2.3.4: |
Available Fabrication Technology / 2.4: |
Technologies Based on Lithography / 2.4.1: |
Silicon Micromachining / 2.4.1.1: |
LIGA / 2.4.1.2: |
Miniaturisation of Conventional Technologies / 2.4.2: |
Introduction into Silicon Micromachining / 3: |
Photolithography / 3.1: |
Thin Film Deposition and Doping / 3.2: |
Silicon Dioxide / 3.2.1: |
Chemical Vapour Deposition / 3.2.2: |
Evaporation / 3.2.3: |
Sputterdeposition / 3.2.4: |
Doping / 3.2.5: |
Wet Chemical Etching / 3.3: |
Isotropic Etching / 3.3.1: |
Anisotropic Etching / 3.3.2: |
Etch Stop / 3.3.3: |
Waferbonding / 3.4: |
Anodic Bonding / 3.4.1: |
Silicon Fusion Bonding / 3.4.2: |
Plasma Etching / 3.5: |
Plasma / 3.5.1: |
Anisotropic Plasma Etching Modes / 3.5.2: |
Configurations / 3.5.3: |
Black Silicon Method / 3.5.4: |
Surface Micromachining / 3.6: |
Thin Film Stress / 3.6.1: |
Sticking / 3.6.2: |
Mechanics of Membranes and Beams / 4: |
Dynamics of the Mass Spring System / 4.1: |
Strings / 4.2: |
Beams / 4.3: |
Stress and Strain / 4.3.1: |
Bending Energy / 4.3.2: |
Radius of Curvature / 4.3.3: |
Lagrange Function of a Flexible Beam / 4.3.4: |
Differential Equation for Beams / 4.3.5: |
Boundary Conditions for Beams / 4.3.6: |
Examples / 4.3.7: |
Mechanical Stability / 4.3.8: |
Transversal Vibration of Beams / 4.3.9: |
Diaphragms and Membranes / 4.4: |
Circular Diaphragms / 4.4.1: |
Square Membranes / 4.4.2: |
Buckling of Bridges / Appendix 4.1: |
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5: |
Metal Strain Gauges / 5.1: |
Semiconductor Strain Gauges / 5.2: |
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1: |
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2: |
Transduction from Deformation to Resistance / 5.2.3: |
Capacitive Transducers / 5.3: |
Electromechanics / 5.3.1: |
Diaphragm Pressure Sensors / 5.3.2: |
Force and Pressure Sensors / 6: |
Force Sensors / 6.1: |
Load Cells / 6.1.1: |
Pressure Sensors / 6.2: |
Piezoresistive Pressure Sensors / 6.2.1: |
Capacitive Pressure Sensors / 6.2.2: |
Force Compensation Pressure Sensors / 6.2.3: |
Resonant Pressure Sensors / 6.2.4: |
Miniature Microphones / 6.2.5: |
Tactile Imaging Arrays / 6.2.6: |
Acceleration and Angular Rate Sensors / 7: |
Acceleration Sensors / 7.1: |
Bulk Micromachined Accelerometers / 7.1.1: |
Surface Micromachined Accelerometers / 7.1.3: |
Force Feedback / 7.1.4: |
Angular Rate Sensors / 7.2: |
Flow sensors / 8: |
The Laminar Boundary Layer / 8.1: |
The Navier-Stokes Equations / 8.1.1: |
Heat Transport / 8.1.2: |
Hydrodynamic Boundary Layer / 8.1.3: |
Thermal Boundary Layer / 8.1.4: |
Skin Friction and Heat Transfer / 8.1.5: |
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2: |
Thermal Flow Sensors / 8.3: |
Anemometer Type Flow Sensors / 8.3.1: |
Two-Wire Anemometers / 8.3.2: |
Calorimetric Type Flow Sensors / 8.3.3: |
Sound Intensity Sensors - The Microflown / 8.3.4: |
Time of Flight Sensors / 8.3.5: |
Skin Friction Sensors / 8.4: |
"Dry Fluid Flow" Sensors / 8.5: |
"Wet Fluid Flow" Sensors / 8.6: |
Resonant Sensors / 9: |
Basic Principles and Physics / 9.1: |
The Differential Equation of a Prismatic Microbridge / 9.1.1: |
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3: |
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4: |
Response to Axial Loads / 9.1.5: |
Quality Factor / 9.1.6: |
Nonlinear Large-Amplitude Effects / 9.1.7: |
Excitation and Detection Mechanisms / 9.2: |
Electrostatic Excitation and Capacitive Detection / 9.2.1: |
Magnetic Excitation and Detection / 9.2.2: |
Piezoelectric Excitation and Detection / 9.2.3: |
Electrothermal Excitation and Piezoresistive Detection / 9.2.4: |
Optothermal Excitation and Optical Detection / 9.2.5: |
Dielectric Excitation and Detection / 9.2.6: |
Examples and Applications / 9.3: |
Electronic Interfacing / 10: |
Piezoresistive Sensors / 10.1: |
Wheatstone Bridge Configurations / 10.1.1: |
Amplification of the Bridge Output Voltage / 10.1.2: |
Noise and Offset / 10.1.3: |
Feedback Control Loops / 10.1.4: |
Interfacing with Digital Systems / 10.1.5: |
Analog-to-Digital Conversion / 10.1.5.1: |
Voltage to Frequency Converters / 10.1.5.2: |
Capacitive Sensors / 10.2: |
Impedance Bridges / 10.2.1: |
Capacitance Controlled Oscillators / 10.2.2: |
Frequency Dependent Behavior of Resonant Sensors / 10.3: |
Realizing an Oscillator / 10.3.2: |
One-Port Versus Two-Port Resonators / 10.3.3: |
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4: |
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5: |
Packaging / 11: |
Packaging Techniques / 11.1: |
Standard Packages / 11.1.1: |
Chip Mounting Methods / 11.1.2: |
Wafer Level Packaging |
Interconnection Techniques / 11.1.3: |
Multichip Modules / 11.1.4: |
Encapsulation Processes / 11.1.5: |
Stress Reduction / 11.2: |
Inertial Sensors / 11.3: |
References / 11.5: |
Index |
Introduction / 1: |
MEMS / 2: |
Miniaturisation and Systems / 2.1: |
Examples for MEMS / 2.2: |
Bubble Jet / 2.2.1: |
Actuators / 2.2.2: |