close
1.

図書

図書
Ivan Kozhevnikov
出版情報: Chichester : J. Wiley & Sons, c2002  xiv, 201 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 2
Introduction / 1:
Scope and definitions / 1.1:
Nomenclature / 1.2:
Historical background / 1.3:
Introduction to catalysis by polyoxometalates / 1.4:
References
Properties of Polyoxometalates / 2:
Structures of polyoxometalates / 2.1:
General principles / 2.1.1:
The Keggin structure / 2.1.2:
The Wells-Dawson structure / 2.1.3:
The Anderson-Evans structure / 2.1.4:
The Dexter-Silverton structure / 2.1.5:
Crystal structure of heteropoly compounds / 2.2:
Thermal stability / 2.3:
Solubility / 2.4:
Formation and state in solution / 2.5:
Stability of polyoxometalates in solution / 2.5.1:
Polyoxometalates as ligands / 2.5.2:
Isotope exchange / 2.5.3:
Kinetics and mechanism of substitution in polyoxmetalates / 2.5.4:
Acid properties / 2.6:
Proton structure / 2.6.1:
Heteropoly acids in solutions / 2.6.2:
Acidity of solid heteropoly acids / 2.6.3:
Redox properties / 2.7:
Synthesis of Polyoxometalates / 3:
General methods of synthesis / 3.1:
Keggin polyoxometalates / 3.2:
12-Molybdosilicic acid, [alpha]-H[subscript 4 SiMo[subscript 12]O[subscript 40] / 3.2.1:
12-Tungstosilicic acid, [alpha]-H[subscript 4 SiW[subscript 12]O[subscript 40] / 3.2.2:
12-Tungstophosphoric acid, [alpha]-H[subscript 3 PW[subscript 12]O[subscript 40] / 3.2.3:
12-Molybdophosphoric acid, [alpha]-H[subscript 3 PMo[subscript 12]O[subscript 40] / 3.2.4:
12-Tungstogermanic acid, [alpha]-[H[subscript 4 GeW[subscript 12]O[subscript 40] / 3.2.5:
11-Molybdo-1-vanadophosphoric acid, H[subscript 4 PMo[subscript 11] VO[subscript 40] / 3.2.6:
10-Molybdo-2-vanadophosphoric acid, H[subscript 5 PMo[subscript 10]V[subscript 2]O[subscript 40] / 3.2.7:
9-Molybdo-3-vanadophosphoric acid, H[subscript 6 PMo[subscript 9] V[subscript 3]O[subscript 40] / 3.2.8:
Transition-metal-substituted tungstophosphates, {PW[subscript 11]MO[subscript 39]} / 3.2.9:
Wells-Dawson polyoxometalates / 3.3:
18-Tungstodiphosphoric acid, H[subscript 6 P[subscript 2]W[subscript 18]O[subscript 62] / 3.3.1:
Sandwich-type polyoxometalates / 3.4:
Na[subscript 12 WZn[subscript 3](H[subscript 2]O)[subscript 2](ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.1:
Na[subscript 12 WCo[subscript 3 superscript II](H[subscript 2]O)[subscript 2] (Co[superscript II]W[subscript 9]O[subscript 34])[subscript 2] / 3.4.2:
K[subscript 11 WZnRu[subscript 2 superscript III](OH)(H[subscript 2]O) (ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.3:
K[subscript 10 WZnRh[superscript III subscript 2](H[subscript 2]O)(ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.4:
Peroxo polyoxometalates / 3.5:
Venturello complex, {PO[subscript 4 WO(O[subscript 2])[subscript 2 subscript 4]}[superscript 3-] / 3.5.1:
Polyoxometalate catalysts / 3.6:
Solid acid catalysts / 3.6.1:
Homogeneous catalysts / 3.6.2:
Acid Catalysis by Heteropoly Compounds / 4:
General overview / 4.1:
The scope of applications / 4.1.1:
Mechanistic principles / 4.1.2:
Homogeneous acid catalysis / 4.2:
Acid-catalysed reactions / 4.2.1:
Acid-catalysed reactions in biphasic liquid-liquid systems / 4.3:
Biphasic reactions / 4.3.1:
Heterogeneous acid catalysts / 4.4:
Heteropoly acid catalysts / 4.4.1:
Heterogeneous catalysis in liquid-solid systems / 4.4.2:
Heterogeneous catalysis in gas-solid systems / 4.4.3:
Deactivation and regeneration of solid heteropoly acid catalysts / 4.5:
Polyoxometalates as Catalysts for Selective Oxidation / 5:
Liquid-phase oxidation / 5.1:
Oxidation with dioxygen / 5.1.1:
Oxidation with hydrogen peroxide / 5.1.2:
Oxidation with organic peroxides / 5.1.3:
Miscellaneous oxidations / 5.1.4:
Gas-phase oxidation / 5.2:
Oxidation catalysts / 5.2.1:
Reactions / 5.2.3:
Miscellaneous Catalytic Applications of Polyoxometalates / 6:
Hydrogenation, carbonylation and related reactions / 6.1:
Polyanion-stabilised clusters / 6.2:
Polyoxometalates as catalyst precursors / 6.3:
Catalysis by Polyoxometalates in Industry / 7:
Acid catalysis / 7.1:
Hydration of olefins / 7.1.1:
Synthesis of ethyl acetate from ethylene and acetic acid / 7.1.2:
Selective oxidation / 7.2:
Oxidation of methacrolein in methacrylic acid / 7.2.1:
Oxidation of ethylene to acetic acid / 7.2.2:
Other Applications of Polyoxometalates / 8:
Analytical chemistry / 8.1:
Elemental analysis / 8.1.1:
Analysis of biomaterials / 8.1.2:
Separation / 8.2:
Processing of radioactive waste / 8.2.1:
Sorption of gases / 8.2.2:
Corrosion-resistant coatings / 8.3:
Polyoxometalates as additives to inorganic and organic matrices / 8.4:
Additives in sol-gel matrices / 8.4.1:
Additives in polymer matrices / 8.4.2:
Membranes / 8.5:
Fuel cells / 8.5.1:
Selective electrodes / 8.5.2:
Gas sensors / 8.5.3:
Polyoxometalates in medicine: antiviral and antitumoral activity / 8.6:
Index
Series Preface
Preface to Volume 2
Introduction / 1:
2.

図書

図書
Bernard Valeur
出版情報: Weinheim : Wiley-VCH, c2002  xiv, 387 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Today's Chemical Industry
Which Way is Up?
Prologue
Today's Challenge -Value Creation
Strategic Choices for the Chemical Industry in the New Millenium / 1:
Managing Commodity PortfoliosHow to Succeed in the Rapidly Maturing Specialty Chemicals Industry
Introduction
Chemical Companies and Biotechnology
The Impact of E-Commerce on the Chemical Industry / 1.1:
The Alchemy of Leveraged Buyouts
What is luminescence?
Revitalizing Innovation
Managing the Organizational Context / 1.2:
Creating an Entrepreneurial Procurement Organization
A brief history of fluorescence and phosphorescence
Achieving Excellence in Production
A Customer-centric Approach to Sales and Marketing / 1.3:
The Role of Mergers and Acquisitions
Fluorescence and other de-excitation processes of excited molecules
The Delicate Game of Post-merger Management
Cyclicality: Trying to Manage the Unmanageable / 1.4:
Index
Fluorescent probes
Molecular fluorescence as an analytical tool / 1.5:
Ultimate spatial and temporal resolution: femtoseconds, femtoliters, femtomoles and single-molecule detection / 1.6:
Bibliography / 1.7:
Absorption of UV-visible light / 2:
Types of electronic transitions in polyatomic molecules / 2.1:
Probability of transitions. The Beer-Lambert Law. Oscillator strength / 2.2:
Selection rules / 2.3:
The Franck-Condon principle / 2.4:
Characteristics of fluorescence emission / 2.5:
Radiative and non-radiative transitions between electronic states / 3.1:
Internal conversion / 3.1.1:
Fluorescence / 3.1.2:
Intersystem crossing and subsequent processes / 3.1.3:
Intersystem crossing / 3.1.3.1:
Phosphorescence versus non-radiative de-excitation / 3.1.3.2:
Delayed fluorescence / 3.1.3.3:
Triplet-triplet transitions / 3.1.3.4:
Lifetimes and quantum yields / 3.2:
Excited-state lifetimes / 3.2.1:
Quantum yields / 3.2.2:
Effect of temperature / 3.2.3:
Emission and excitation spectra / 3.3:
Steady-state fluorescence intensity / 3.3.1:
Emission spectra / 3.3.2:
Excitation spectra / 3.3.3:
Stokes shift / 3.3.4:
Effects of molecular structure on fluorescence / 3.4:
Extent of [pi]-electron system. Nature of the lowest-lying transition / 3.4.1:
Substituted aromatic hydrocarbons / 3.4.2:
Internal heavy atom effect / 3.4.2.1:
Electron-donating substituents: -OH, -OR, -NHR, -NH[subscript 2] / 3.4.2.2:
Electron-withdrawing substituents: carbonyl and nitro compounds / 3.4.2.3:
Sulfonates / 3.4.2.4:
Heterocyclic compounds / 3.4.3:
Compounds undergoing photoinduced intramolecular charge transfer (ICT) and internal rotation / 3.4.4:
Environmental factors affecting fluorescence / 3.5:
Homogeneous and inhomogeneous broadening. Red-edge effects / 3.5.1:
Solid matrices at low temperature / 3.5.2:
Fluorescence in supersonic jets / 3.5.3:
Effects of intermolecular photophysical processes on fluorescence emission / 3.6:
Overview of the intermolecular de-excitation processes of excited molecules leading to fluorescence quenching / 4.1:
Phenomenological approach / 4.2.1:
Dynamic quenching / 4.2.2:
Stern-Volmer kinetics / 4.2.2.1:
Transient effects / 4.2.2.2:
Static quenching / 4.2.3:
Sphere of effective quenching / 4.2.3.1:
Formation of a ground-state non-fluorescent complex / 4.2.3.2:
Simultaneous dynamic and static quenching / 4.2.4:
Quenching of heterogeneously emitting systems / 4.2.5:
Photoinduced electron transfer / 4.3:
Formation of excimers and exciplexes / 4.4:
Excimers / 4.4.1:
Exciplexes / 4.4.2:
Photoinduced proton transfer / 4.5:
General equations / 4.5.1:
Determination of the excited-state pK / 4.5.2:
Prediction by means of the Forster cycle / 4.5.2.1:
Steady-state measurements / 4.5.2.2:
Time-resolved experiments / 4.5.2.3:
pH dependence of absorption and emission spectra / 4.5.3:
Excitation energy transfer / 4.6:
Distinction between radiative and non-radiative transfer / 4.6.1:
Radiative energy transfer / 4.6.2:
Non-radiative energy transfer / 4.6.3:
Fluorescence polarization. Emission anisotropy / 4.7:
Characterization of the polarization state of fluorescence (polarization ratio, emission anisotropy) / 5.1:
Excitation by polarized light / 5.1.1:
Vertically polarized excitation / 5.1.1.1:
Horizontally polarized excitation / 5.1.1.2:
Excitation by natural light / 5.1.2:
Instantaneous and steady-state anisotropy / 5.2:
Instantaneous anisotropy / 5.2.1:
Steady-state anisotropy / 5.2.2:
Additivity law of anisotropy / 5.3:
Relation between emission anisotropy and angular distribution of the emission transition moments / 5.4:
Case of motionless molecules with random orientation / 5.5:
Parallel absorption and emission transition moments / 5.5.1:
Non-parallel absorption and emission transition moments / 5.5.2:
Effect of rotational Brownian motion / 5.6:
Free rotations / 5.6.1:
Hindered rotations / 5.6.2:
Applications / 5.7:
Principles of steady-state and time-resolved fluorometric techniques / 5.8:
Steady-state spectrofluorometry / 6.1:
Operating principles of a spectrofluorometer / 6.1.1:
Correction of excitation spectra / 6.1.2:
Correction of emission spectra / 6.1.3:
Measurement of fluorescence quantum yields / 6.1.4:
Problems in steady-state fluorescence measurements: inner filter effects and polarization effects / 6.1.5:
Measurement of steady-state emission anisotropy. Polarization spectra / 6.1.6:
Time-resolved fluorometry / 6.2:
General principles of pulse and phase-modulation fluorometries / 6.2.1:
Design of pulse fluorometers / 6.2.2:
Single-photon timing technique / 6.2.2.1:
Stroboscopic technique / 6.2.2.2:
Other techniques / 6.2.2.3:
Design of phase-modulation fluorometers / 6.2.3:
Phase fluorometers using a continuous light source and an electro-optic modulator / 6.2.3.1:
Phase fluorometers using the harmonic content of a pulsed laser / 6.2.3.2:
Problems with data collection by pulse and phase-modulation fluorometers / 6.2.4:
Dependence of the instrument response on wavelength. Color effect / 6.2.4.1:
Polarization effects / 6.2.4.2:
Effect of light scattering / 6.2.4.3:
Data analysis / 6.2.5:
Pulse fluorometry / 6.2.5.1:
Phase-modulation fluorometry / 6.2.5.2:
Judging the quality of the fit / 6.2.5.3:
Global analysis / 6.2.5.4:
Complex fluorescence decays. Lifetime distributions / 6.2.5.5:
Lifetime standards / 6.2.6:
Time-dependent anisotropy measurements / 6.2.7:
Time-resolved fluorescence spectra / 6.2.7.1:
Lifetime-based decomposition of spectra / 6.2.9:
Comparison between pulse and phase fluorometries / 6.2.10:
Appendix: Elimination of polarization effects in the measurement of fluorescence intensity and lifetime / 6.3:
Effect of polarity on fluorescence emission. Polarity probes / 6.4:
What is polarity? / 7.1:
Empirical scales of solvent polarity based on solvatochromic shifts / 7.2:
Single-parameter approach / 7.2.1:
Multi-parameter approach / 7.2.2:
Photoinduced charge transfer (PCT) and solvent relaxation / 7.3:
Theory of solvatochromic shifts / 7.4:
Examples of PCT fluorescent probes for polarity / 7.5:
Effects of specific interactions / 7.6:
Effects of hydrogen bonding on absorption and fluorescence spectra / 7.6.1:
Examples of the effects of specific interactions / 7.6.2:
Polarity-induced inversion of n-[pi] and [pi]-[pi] states / 7.6.3:
Polarity-induced changes in vibronic bands. The Py scale of polarity / 7.7:
Conclusion / 7.8:
Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes / 7.9:
What is viscosity? Significance at a microscopic level / 8.1:
Use of molecular rotors / 8.2:
Methods based on intermolecular quenching or intermolecular excimer formation / 8.3:
Methods based on intramolecular excimer formation / 8.4:
Fluorescence polarization method / 8.5:
Choice of probes / 8.5.1:
Homogeneous isotropic media / 8.5.2:
Ordered systems / 8.5.3:
Practical aspects / 8.5.4:
Concluding remarks / 8.6:
Resonance energy transfer and its applications / 8.7:
Determination of distances at a supramolecular level using RET / 9.1:
Single distance between donor and acceptor / 9.2.1:
Distributions of distances in donor-acceptor pairs / 9.2.2:
RET in ensembles of donors and acceptors / 9.3:
RET in three dimensions. Effect of viscosity / 9.3.1:
Effects of dimensionality on RET / 9.3.2:
Effects of restricted geometries on RET / 9.3.3:
RET between like molecules. Excitation energy migration in assemblies of chromophores / 9.4:
RET within a pair of like chromophores / 9.4.1:
RET in assemblies of like chromophores / 9.4.2:
Lack of energy transfer upon excitation at the red-edge of the absorption spectrum (Weber's red-edge effect) / 9.4.3:
Overview of qualitative and quantitative applications of RET / 9.5:
Fluorescent molecular sensors of ions and molecules / 9.6:
Fundamental aspects / 10.1:
pH sensing by means of fluorescent indicators / 10.2:
Principles / 10.2.1:
The main fluorescent pH indicators / 10.2.2:
Coumarins / 10.2.2.1:
Pyranine / 10.2.2.2:
Fluorescein and its derivatives / 10.2.2.3:
SNARF and SNAFL / 10.2.2.4:
PET (photoinduced electron transfer) pH indicators / 10.2.2.5:
Fluorescent molecular sensors of cations / 10.3:
General aspects / 10.3.1:
PET (photoinduced electron transfer) cation sensors / 10.3.2:
Crown-containing PET sensors / 10.3.2.1:
Cryptand-based PET sensors / 10.3.2.3:
Podand-based and chelating PET sensors / 10.3.2.4:
Calixarene-based PET sensors / 10.3.2.5:
PET sensors involving excimer formation / 10.3.2.6:
Examples of PET sensors involving energy transfer / 10.3.2.7:
Fluorescent PCT (photoinduced charge transfer) cation sensors / 10.3.3:
PCT sensors in which the bound cation interacts with an electron-donating group / 10.3.3.1:
PCT sensors in which the bound cation interacts with an electron-withdrawing group / 10.3.3.3:
Excimer-based cation sensors / 10.3.4:
Miscellaneous / 10.3.5:
Oxyquinoline-based cation sensors / 10.3.5.1:
Further calixarene-based fluorescent sensors / 10.3.5.2:
Fluorescent molecular sensors of anions / 10.3.6:
Anion sensors based on collisional quenching / 10.4.1:
Anion sensors containing an anion receptor / 10.4.2:
Fluorescent molecular sensors of neutral molecules and surfactants / 10.5:
Cyclodextrin-based fluorescent sensors / 10.5.1:
Boronic acid-based fluorescent sensors / 10.5.2:
Porphyrin-based fluorescent sensors / 10.5.3:
Towards fluorescence-based chemical sensing devices / 10.6:
Spectrophotometric and spectrofluorometric pH titrations / Appendix A.:
Determination of the stoichiometry and stability constant of metal complexes from spectrophotometric or spectrofluorometric titrations / Appendix B.:
Advanced techniques in fluorescence spectroscopy / 10.7:
Time-resolved fluorescence in the femtosecond time range: fluorescence up-conversion technique / 11.1:
Advanced fluorescence microscopy / 11.2:
Improvements in conventional fluorescence microscopy / 11.2.1:
Confocal fluorescence microscopy / 11.2.1.1:
Two-photon excitation fluorescence microscopy / 11.2.1.2:
Near-field scanning optical microscopy (NSOM) / 11.2.1.3:
Fluorescence lifetime imaging spectroscopy (FLIM) / 11.2.2:
Time-domain FLIM / 11.2.2.1:
Frequency-domain FLIM / 11.2.2.2:
Confocal FLIM (CFLIM) / 11.2.2.3:
Two-photon FLIM / 11.2.2.4:
Fluorescence correlation spectroscopy / 11.3:
Conceptual basis and instrumentation / 11.3.1:
Determination of translational diffusion coefficients / 11.3.2:
Chemical kinetic studies / 11.3.3:
Determination of rotational diffusion coefficients / 11.3.4:
Single-molecule fluorescence spectroscopy / 11.4:
General remarks / 11.4.1:
Single-molecule detection in flowing solutions / 11.4.2:
Single-molecule detection using advanced fluorescence microscopy techniques / 11.4.3:
Epilogue / 11.5:
Preface
Today's Chemical Industry
Which Way is Up?
3.

図書

図書
Brian R. Eggins
出版情報: Chichester, West Sussex : Wiley, c2002  xxi, 273 p. ; 23 cm
シリーズ名: Analytical Techniques in the Sciences(AnTS)
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface
Acronyms, Abbreviations and Symbols
About the Author
Introduction / 1:
Introduction to Sensors / 1.1:
What are Sensors? / 1.1.1:
The Nose as a Sensor / 1.1.2:
Sensors and Biosensors--Definitions / 1.2:
Aspects of Sensors / 1.3:
Recognition Elements / 1.3.1:
Transducers--the Detector Device / 1.3.2:
Methods of Immobilization / 1.3.3:
Performance Factors / 1.3.4:
Areas of Application / 1.3.5:
Transduction Elements / 2:
Electrochemical Transducers--Introduction / 2.1:
Potentiometry and Ion-Selective Electrodes: The Nernst Equation / 2.2:
Cells and Electrodes / 2.2.1:
Reference Electrodes / 2.2.2:
Quantitative Relationships: The Nernst Equation / 2.2.3:
Practical Aspects of Ion-Selective Electrodes / 2.2.4:
Measurement and Calibration / 2.2.5:
Voltammetry and Amperometry / 2.3:
Linear-Sweep Voltammetry / 2.3.1:
Cyclic Voltammetry / 2.3.2:
Chronoamperometry / 2.3.3:
Amperometry / 2.3.4:
Kinetic and Catalytic Effects / 2.3.5:
Conductivity / 2.4:
Field-Effect Transistors / 2.5:
Semiconductors--Introduction / 2.5.1:
Semiconductor--Solution Contact / 2.5.2:
Field-Effect Transistor / 2.5.3:
Modified Electrodes, Thin-Film Electrodes and Screen-Printed Electrodes / 2.6:
Thick-Film--Screen-Printed Electrodes / 2.6.1:
Microelectrodes / 2.6.2:
Thin-Film Electrodes / 2.6.3:
Photometric Sensors / 2.7:
Optical Techniques / 2.7.1:
Ultraviolet and Visible Absorption Spectroscopy / 2.7.3:
Fluorescence Spectroscopy / 2.7.4:
Luminescence / 2.7.5:
Optical Transducers / 2.7.6:
Device Construction / 2.7.7:
Solid-Phase Absorption Label Sensors / 2.7.8:
Applications / 2.7.9:
Further Reading
Sensing Elements / 3:
Ionic Recognition / 3.1:
Ion-Selective Electrodes--Introduction / 3.2.1:
Interferences / 3.2.2:
Conducting Devices / 3.2.3:
Modified Electrodes and Screen-Printed Electrodes / 3.2.4:
Molecular Recognition--Chemical Recognition Agents / 3.3:
Thermodynamic--Complex Formation / 3.3.1:
Kinetic--Catalytic Effects: Kinetic Selectivity / 3.3.2:
Molecular Size / 3.3.3:
Molecular Recognition--Spectroscopic Recognition / 3.4:
Infrared Spectroscopy--Molecular / 3.4.1:
Ultraviolet Spectroscopy--Less Selective / 3.4.3:
Nuclear Magnetic Resonance Spectroscopy--Needs Interpretation / 3.4.4:
Mass Spectrometry / 3.4.5:
Molecular Recognition--Biological Recognition Agents / 3.5:
Enzymes / 3.5.1:
Tissue Materials / 3.5.3:
Micro-Organisms / 3.5.4:
Mitochondria / 3.5.5:
Antibodies / 3.5.6:
Nucleic Acids / 3.5.7:
Receptors / 3.5.8:
Immobilization of Biological Components / 3.6:
Adsorption / 3.6.1:
Microencapsulation / 3.6.3:
Entrapment / 3.6.4:
Cross-Linking / 3.6.5:
Covalent Bonding / 3.6.6:
Selectivity / 4:
Ion-Selective Electrodes / 4.2.1:
Others / 4.2.2:
Sensitivity / 4.3:
Range, Linear Range and Detection Limits / 4.3.1:
Time Factors / 4.4:
Response Times / 4.4.1:
Recovery Times / 4.4.2:
Lifetimes / 4.4.3:
Precision, Accuracy and Repeatability / 4.5:
Different Biomaterials / 4.6:
Different Transducers / 4.7:
Urea Biosensors / 4.7.1:
Amino Acid Biosensors / 4.7.2:
Glucose Biosensors / 4.7.3:
Uric Acid / 4.7.4:
Some Factors Affecting the Performance of Sensors / 4.8:
Amount of Enzyme / 4.8.1:
Immobilization Method / 4.8.2:
pH of Buffer / 4.8.3:
Electrochemical Sensors and Biosensors / 5:
Potentiometric Sensors--Ion-Selective Electrodes / 5.1:
Concentrations and Activities / 5.1.1:
Calibration Graphs / 5.1.2:
Examples of Ion-Selective Electrodes / 5.1.3:
Gas Sensors--Gas-Sensing Electrodes / 5.1.4:
Potentiometric Biosensors / 5.2:
pH-Linked / 5.2.1:
Ammonia-Linked / 5.2.2:
Carbon Dioxide-Linked / 5.2.3:
Iodine-Selective / 5.2.4:
Silver Sulfide-Linked / 5.2.5:
Amperometric Sensors / 5.3:
Direct Electrolytic Methods / 5.3.1:
The Three Generations of Biosensors / 5.3.2:
First Generation--The Oxygen Electrode / 5.3.3:
Second Generation--Mediators / 5.3.4:
Third Generation--Directly Coupled Enzyme Electrodes / 5.3.5:
NADH/NAD[superscript +] / 5.3.6:
Examples of Amperometric Biosensors / 5.3.7:
Amperometric Gas Sensors / 5.3.8:
Conductometric Sensors and Biosensors / 5.4:
Chemiresistors / 5.4.1:
Biosensors Based on Chemiresistors / 5.4.2:
Semiconducting Oxide Sensors / 5.4.3:
Applications of Field-Effect Transistor Sensors / 5.5:
Chemically Sensitive Field-Effect Transistors (CHEMFETs) / 5.5.1:
Ion-Selective Field-Effect Transistors (ISFETs) / 5.5.2:
FET-Based Biosensors (ENFETs) / 5.5.3:
Photometric Applications / 6:
Techniques for Optical Sensors / 6.1:
Modes of Operation of Waveguides in Sensors / 6.1.1:
Immobilized Reagents / 6.1.2:
Visible Absorption Spectroscopy / 6.2:
Measurement of pH / 6.2.1:
Measurement of Carbon Dioxide / 6.2.2:
Measurement of Ammonia / 6.2.3:
Examples That Have Been Used in Biosensors / 6.2.4:
Fluorescent Reagents / 6.3:
Fluorescent Reagents for pH Measurements / 6.3.1:
Halides / 6.3.2:
Sodium / 6.3.3:
Potassium / 6.3.4:
Gas Sensors / 6.3.5:
Indirect Methods Using Competitive Binding / 6.4:
Reflectance Methods--Internal Reflectance Spectroscopy / 6.5:
Evanescent Waves / 6.5.1:
Reflectance Methods / 6.5.2:
Attenuated Total Reflectance / 6.5.3:
Total Internal Reflection Fluorescence / 6.5.4:
Surface Plasmon Resonance / 6.5.5:
Light Scattering Techniques / 6.6:
Types of Light Scattering / 6.6.1:
Quasi-Elastic Light Scattering Spectroscopy / 6.6.2:
Photon Correlation Spectroscopy / 6.6.3:
Laser Doppler Velocimetry / 6.6.4:
Mass-Sensitive and Thermal Sensors / 7:
The Piezo-Electric Effect / 7.1:
Principles / 7.1.1:
Gas Sensor Applications / 7.1.2:
Biosensor Applications / 7.1.3:
The Quartz Crystal Microbalance / 7.1.4:
Surface Acoustic Waves / 7.2:
Plate Wave Mode / 7.2.1:
Evanescent Wave Mode / 7.2.2:
Lamb Mode / 7.2.3:
Thickness Shear Mode / 7.2.4:
Thermal Sensors / 7.3:
Thermistors / 7.3.1:
Catalytic Gas Sensors / 7.3.2:
Thermal Conductivity Devices / 7.3.3:
Specific Applications / 8:
Determination of Glucose in Blood--Amperometric Biosensor / 8.1:
Survey of Biosensor Methods for the Determination of Glucose / 8.1.1:
Aim / 8.1.2:
Determination of Nanogram Levels of Copper(I) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent / 8.2:
Background to Stripping Voltammetry--Anodic and Cathodic / 8.2.1:
Determination of Several Ions Simultaneously--'The Laboratory on a Chip' / 8.2.2:
Sensor Arrays and 'Smart' Sensors / 8.3.1:
Background to Ion-Selective Field-Effect Transistors / 8.3.3:
Determination of Attomole Levels of a Trinitrotoluene--Antibody Complex with a Luminescent Transducer / 8.3.4:
Background to Immuno--Luminescent Assays / 8.4.1:
Determination of Flavanols in Beers / 8.4.2:
Background / 8.5.1:
Responses to Self-Assessment Questions / 8.5.2:
Bibliography
Glossary of Terms
SI Units and Physical Constants
Periodic Table
Index
Series Preface
Preface
Acronyms, Abbreviations and Symbols
4.

図書

図書
S. Morita, R. Wiesendanger, E. Meyer (eds.)
出版情報: Berlin : Springer-Verlag, c2002-2015  2 v. ; 24 cm
シリーズ名: Nanoscience and technology
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
Future Prospects for NC-AFM / 1.3:
References
Principle of NC-AFM / Franz J. Giessibl2:
Basics / 2.1:
Relation to the Scanning Tunneling Microscope (STM) / 2.1.1:
Atomic Force Microscope (AFM) / 2.1.2:
Operating Modes of AFMs / 2.1.3:
Scanning Speed, Signal Bandwidth and Noise / 2.1.4:
The Four Additional Challenges Faced by AFM / 2.2:
Jump-to-Contact and Other Instabilities / 2.2.1:
Contribution of Long-Range Forces / 2.2.2:
Noisein theImagingSignal / 2.2.3:
Non-MonotonicImaging Signal / 2.2.4:
Frequency-Modulation AFM (FM-AFM) / 2.3:
Experimental Setup / 2.3.1:
Applications / 2.3.2:
Relation between Frequency Shift and Forces / 2.4:
Generic Calculation / 2.4.1:
Frequency Shift for a Typical Tip-Sample Force / 2.4.2:
Calculation of the Tunneling Current for Oscillating Tips / 2.4.3:
Noise in Frequency-Modulation AFM / 2.5:
Noisein theFrequencyMeasurement / 2.5.1:
Optimal Amplitude for Minimal Vertical Noise / 2.5.3:
A Novel Force Sensor Based on a Quartz Tuning Fork / 2.6:
Quartz Versus Silicon as a Cantilever Material / 2.6.1:
Benefits in Clamping One of the Beams (qPlus Configuration) / 2.6.2:
Conclusion and Outlook / 2.7:
Semiconductor Surfaces / Yasuhiro Sugawara3:
Instrumentation / 3.1:
Three-Dimensional Mapping of Atomic Force / 3.2:
Control ofAtomic Force / 3.3:
Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H / 3.4:
Surface Strain on an Atomic Scale / 3.5:
Low Temperature Image of Si(100) Clean Surface / 3.6:
Mechanical Control ofAtomPosition / 3.7:
Atom Identification Using Covalent Bonding Force / 3.8:
Charge Imaging with Atomic Resolution / 3.9:
Mechanical Atom Manipulation / 3.10:
Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces / Toyoko Arai ; Masahiko Tomitori4:
Experimental Conditions / 4.1:
Bias Dependence of NC-AFM Images for Si(111)7×7 / 4.2:
MechanismofInvertedAtomicCorrugation / 4.2.1:
NC-AFM Imaging and Tunneling Current / 4.2.2:
NC-AFM Images for Ge/Si(111) / 4.3:
Concluding Remarks / 4.4:
Alkali Halides / Roland Bennewitz ; Martin Bammerlin ; Ernst Meyer5:
Experimental Techniques / 5.1:
Relevant Forces / 5.1.2:
Imaging of Single Crystals / 5.2:
Sample Preparation / 5.2.1:
Atomic Corrugation / 5.2.2:
Imaging of Defects / 5.2.3:
Mixed Alkali Halide Crystals / 5.2.4:
Imaging of Thin Films / 5.3:
Preparation of Thin Films / 5.3.1:
Atomic Resolutionat Low-Coordinated Sites / 5.3.2:
Radiation Damage / 5.4:
Metallization and Bubble Formation in CaF2 / 5.4.1:
Monatomic Pits in KBr / 5.4.2:
Dissipation Measurements / 5.5:
Material and Site-Specific Contrast / 5.5.1:
Using Damping for Distance Control / 5.5.2:
Atomic Resolution Imaging on Fluorides / Michael Reichling ; Clemens Barth6:
Tip Instabilities / 6.1:
Flat Surfaces / 6.3:
Step Edges / 6.4:
Atomically Resolved Imaging of a NiO(001) Surface / Hirotaka Hosoi ; Kazuhisa Sueoka ; Kazunobu Hayakawa ; Koichi Mukasa7:
Antiferromagnetic Nickel Oxide / 7.1:
ExperimentalConsiderations / 7.2:
Morphology ofthe Cleaved Surface / 7.3:
Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips / 7.4:
Short-Range Magnetic Interaction / 7.5:
Analysis ofthe Cross-Section / 7.6:
Conclusion / 7.7:
Atomic Structure, Order and Disorder on High Temperature Reconstructed α-Al2O3(0001) / 8:
TheCleanSurface / 8.1:
Defect Formation upon Water Exposure / 8.2:
Self-Organized Formation of Nanoclusters / 8.3:
NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides / Chi Lun Pang ; Geoff Thornton9:
1×1 to 1×3 Phase Transition of TiO2(100) / 9.1:
Surface Reconstructions of TiO2(110) / 9.3:
The 1×2 Reconstruction of SnO2(110) / 9.4:
Imaging Thin Film Alumina: NiAl(110)-Al2O3 / 9.5:
Growth of Cu and Pd on α-Al2O3(0001)- <$$> / 9.6:
A Short-Range-Ordered Overlayer of K on TiO2(110) / 9.7:
Conclusions / 9.8:
Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces / Ken-ichi Fukui ; Yasuhiro Iwasawa10:
Background / 10.1:
Brief Description of Experiments / 10.2:
Surface Structures of TiO2(110) / 10.3:
Adsorbed Atoms and Molecules on TiO2(110) / 10.4:
Carboxylate Ions on TiO2(110) / 10.4.1:
Hydrogen Adatoms on TiO2(110) / 10.4.2:
Fluctuation ofAcetate Ions on TiO2(110) / 10.5:
Surface Structures of CeO2(111) / 10.6:
NC-AFM Imaging of Adsorbed Molecules / 10.7:
NucleicAcidBasesonaGraphiteSurface / 11.1:
Double-StrandedDNAonaMicaSurface / 11.2:
Alkanethiol on a Au(111) Surface / 11.3:
Organic Molecular Films / Hirofumi Yamada12:
AFM Imaging of Molecular Films / 12.1:
Fullerenes / 12.1.1:
AlkanethiolSAMs / 12.1.2:
Ferroelectric Molecular Films / 12.1.3:
Surface Potential Measurements / 12.2:
Technical Developments in NC-AFM Imaging ofMolecules / 12.3:
Single-Molecule Analysis / Akira Sasahara ; Hiroshi Onishi12.4:
Molecules and Surface / 13.1:
Experimental Methods / 13.3:
Alkyl-Substituted Carboxylates / 13.4:
Numerical Simulation ofPropiolate Topography / 13.5:
Sphere-Substrate Force / 13.5.1:
Sphere-Carboxylate Force / 13.5.2:
Cluster-Substrate Force / 13.5.3:
Cluster-Carboxylate Force / 13.5.4:
Simulated Topography / 13.5.5:
Fluorine-Substituted Acetates / 13.6:
Conclusions and Perspectives / 13.7:
Low-Temperature Measurements: Principles, Instrumentation, and Application / Wolf Allers ; Alexander Schwarz ; Udo D. Schwarz14:
Microscope Operation at Low Temperatures / 14.1:
Drift / 14.2.1:
Noise / 14.2.2:
Van der Waals Surfaces / 14.3:
HOPG(0001) / 14.4.1:
Xenon / 14.4.2:
Nickel Oxide / 14.5:
Semiconductors / 14.6:
Δf(z) Curves on Specific Atomic Sites / 14.6.1:
Tip-Dependent Atomic Scale Contrast / 14.6.2:
Tip-Induced Relaxation / 14.6.3:
Magnetic Force Microscopy at Low Temperatures / 14.7:
MFM Data Acquisition / 14.7.1:
Domain Structure of La0.7Ca0.3MnO3-δ / 14.7.2:
Vortices on YBa2Cu3O7-δ / 14.7.3:
Theory of Non-Contact Atomic Force Microscopy / Masaru Tsukada ; Naruo Sasaki ; Michel Gauthier ; Katsunori Tagami ; Satoshi Watanabe14.8:
Cantilever Dynamics / 15.1:
Theoretical Simulation of NC-AFM Images / 15.3:
Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces / 15.4:
Effect of Tip on Image for the Si(100)2×1: H Surface / 15.5:
Effect of Tip on Surface Structure Change and its Relation to Dissipation / 15.6:
Chemical Interaction in NC-AFM on Semiconductor Surfaces / San-Huang Ke ; Tsuyoshi Uda ; Kiyoyuki Terakura ; Ruben Pérez ; Ivan Štich15.7:
First-Principles Calculation of Tip-Surface Chemical Interaction / 16.1:
Simulation of NC-AFM Images / 16.3:
Simulations on Various Surfaces / 16.4:
Tip-Induced Surface Relaxation on the GaAs(110) Surface / 16.5:
Vertical Scan Over an As Atom / 16.5.1:
Vertical Scan Over a Ga Atom / 16.5.2:
RelevancetoNear-Contact STM Observations / 16.5.3:
Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM / 16.5.4:
Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence / 16.6:
Effect of Tip Morphology on NC-AFM Images / 16.7:
Image Contrast for the Ga/Si Tip / 16.7.1:
Image Contrast for the As/Si Tip / 16.7.2:
Contrast Mechanisms on InsulatingSurfaces / Adam Foster ; Alexander Shluger16.8:
Model ofAFM and Main Forces / 17.1:
Tip-Surface Setup / 17.2.1:
Forces / 17.2.2:
Simulating Scanning / 17.3:
TheSurface / 17.3.1:
TheTip / 17.3.2:
Tip-Surface Interaction / 17.3.3:
Modelling Oscillations / 17.3.4:
Generating a Theoretical Surface Image / 17.3.5:
The Calcium Fluoride (111) Surface / 17.4:
Calcite: Surface Deformations During Scanning / 17.4.2:
Studying Surface and Defect Properties / 17.5:
Analysis of Microscopy and Spectroscopy Experiments / Hendrik Hölscher17.6:
BasicPrinciples / 18.1:
Origin ofthe Frequency Shift / 18.2.1:
Calculation ofthe FrequencyShift / 18.2.3:
Frequency Shift for Conservative Tip-Sample Forces / 18.2.4:
Experimental NC-AFM Images of van der Waals Surfaces 355 / 18.3:
BasicPrinciplesoftheSimulationMethod / 18.3.2:
Applications ofthe Simulation Method / 18.3.3:
Dynamic Force Spectroscopy / 18.4:
Determining Forces fromFrequencies / 18.4.1:
Analysis ofTip-Sample Interaction Forces / 18.4.2:
Theory of Energy Dissipation into Surface Vibrations / Lev Kantorovich18.5:
Possible Dissipation Mechanisms / 19.1:
Adhesion Hysteresis / 19.2.1:
Stochastic Dissipation / 19.2.2:
Other Mechanisms / 19.2.3:
Brownian Particle MechanismofEnergy Dissipation / 19.3:
Brownian Particle / 19.3.1:
Fluctuation-Dissipation Theorem / 19.3.2:
Oscillating Tip as a Brownian Particle / 19.3.3:
Energy Dissipated Per Oscillation Cycle / 19.3.4:
Nonequilibrium Considerations for NC-AFM Systems / 19.4:
Preliminary Remarks / 19.4.1:
Mixed Quantum-Classical Representation / 19.4.2:
Equation ofMotion for the Tip / 19.4.3:
Estimation ofDissipation Energies in NC-AFM / 19.5:
Comparison with STM / 19.6:
Conclusions and Future Directions / 19.7:
Measurement of Dissipation Induced by Tip-Sample Interactions / H.J. Hug ; A. Baratoff20:
Experimental Aspects of Energy Dissipation / 20.1:
ExperimentalMethods / 20.3:
ApparentEnergyDissipation / 20.4:
Velocity-DependentDissipation / 20.5:
Electric-Field-MediatedJouleDissipation / 20.5.1:
Magnetic-Field-MediatedJouleDissipation / 20.5.2:
Magnetic-Field-MediatedDissipation / 20.5.3:
Brownian Dissipation / 20.5.4:
Hysteresis-Related Dissipation / 20.6:
Magnetic-Field-Induced Hysteresis / 20.6.1:
Hysteresis Due to Adhesion / 20.6.2:
Hysteresis Due to Atomic Instabilities / 20.6.3:
DissipationImagingwithAtomicResolution / 20.7:
DissipationSpectroscopy / 20.8:
Index / 20.9:
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
5.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
6.

図書

図書
Mario Pitteri, G. Zanzotto
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, c2002  385 p. ; 24 cm
シリーズ名: Applied mathematics / ed. R.J. Knops ; 19
所蔵情報: loading…
目次情報: 続きを見る
List of figures
List of tables
Foreword
Introduction / 1:
Outline of chapter contents / 1.1:
Some experimental observations / 1.2:
Preliminaries / 2:
Basic notation / 2.1:
Some notions of elementary group theory / 2.2:
Basic definitions / 2.2.1:
Conjugacy / 2.2.2:
Group actions and symmetry / 2.2.3:
Linear and orthogonal transformations / 2.3:
Tensors with period two / 2.3.1:
Simple shears / 2.3.2:
Finite groups of tensors or matrices / 2.3.3:
Affine transformations / 2.4:
Continuum mechanics / 2.5:
Deformation / 2.5.1:
Thermodynamic potentials and their invariance / 2.5.2:
Stability of equilibrium / 2.5.3:
Simple lattices / 3:
Definitions and global symmetry / 3.1:
Geometric symmetry and crystal systems / 3.2:
Crystallographic point groups and holohedries / 3.2.1:
Crystal classes and crystal systems / 3.2.2:
Laue groups / 3.2.3:
Arithmetic symmetry and Bravais lattice types / 3.3:
Lattice groups / 3.3.1:
Conjugacy in O (crystal systems) and in GL(3, Z) (Bravais lattice types) / 3.3.2:
Centerings / 3.3.3:
The fourteen Bravais lattices / 3.4:
Fixed sets of lattice groups / 3.5:
An example / 3.5.1:
Symmetry-preserving stretches for simple lattices / 3.6:
Commutation relations / 3.6.1:
Structure of the fixed sets / 3.6.2:
The Bain stretch in the centered cubic lattices / 3.6.3:
Lattice subspaces, packings and indices / 3.7:
Lattice rows and lattice planes / 3.7.1:
Close-packed structures / 3.7.2:
Miller indices and crystallographic equivalence / 3.7.3:
Miller-Bravais indices for hexagonal lattices / 3.7.4:
Lattice groups and fixed sets for planar lattices / 3.8:
Weak-transformation neighborhoods and variants / 4:
Reconciliatio of global and local symmetries / 4.1:
Symmetry-breaking stretches for simple lattices / 4.2:
Small deformations and weak phase transformations / 4.3:
Small symmetry-preserving stretches / 4.3.1:
Small symmetry-breaking stretches / 4.3.2:
Constructing the small symmetry-breaking stretches / 4.4:
Variant structures (local orbits) in the wt-nbhds / 4.5:
General definitions / 4.5.1:
Variants and cosets / 4.5.3:
Variant structures and conjugacy classes / 4.5.4:
Explicit variant structures / 5:
Variant structures in cubic wt-nbhds / 5.1:
Tetragonal conjugacy class and variant structure / 5.1.1:
Rhombohedral conjugacy class and variant structure / 5.1.2:
Orthorhombic conjugacy classes and variant structures / 5.1.3:
Orthorhombic 'cubic edges' variants / 5.1.3.1:
Orthorhombic 'mixed axes' variants / 5.1.3.2:
Monoclinic conjugacy classes / 5.1.4:
Monoclinic 'cubic edges' variants / 5.1.4.1:
Monoclinic 'face-diagonals' variants / 5.1.4.2:
Triclinic conjugacy class and variant structure / 5.1.5:
Variant structures in hexagonal wt-nbhds / 5.2:
Orthorhombic conjugacy class and variant structure / 5.2.1:
Monoclinic conjugacy classes and variant structures / 5.2.2:
Monoclinic 'basal diagonals' variants / 5.2.2.1:
Monoclinic 'basal side-axes' variants / 5.2.2.2:
Monoclinic 'optic axis' variants / 5.2.2.3:
Kinematics of weak phase transformations / 5.2.3:
Irreducible invariant subspaces for the holohedries / 5.4:
General properties / 5.4.1:
Reduced actions and reduced symmetry groups on the i.i. subspaces / 5.4.2:
Decompositions of Sym under the action of the holohedries / 5.4.3:
Triclinic decompositions / 5.4.3.1:
Monoclinic decompositions / 5.4.3.2:
Orthorhombic decompositions / 5.4.3.3:
Rhombohedral decompositions / 5.4.3.4:
Tetragonal decompositions / 5.4.3.5:
Hexagonal decompositions / 5.4.3.6:
Cubic decompositions / 5.4.3.7:
Energetics / 6:
Invariance of simple-lattice energies / 6.1:
The Cauchy-Born hypothesis / 6.2:
The Born rule / 6.2.1:
Failures of the Born rule / 6.2.2:
Thermoelastic constitutive equations for crystals / 6.3:
Invariance of the response functions of elastic crystals / 6.3.1:
Energy minimizers and their general properties / 6.4:
Multiplicity of the symmetry-related minimizers / 6.4.1:
Multiphase crystals: minimizers that are not symmetry-related / 6.4.2:
Lack of convexity and symmetry-induced instabilities / 6.4.3:
Constitutive functions for weak phase transitions / 6.5:
Weak and symmetry-breaking transformations / 6.5.1:
Domain restrictions for the constitutive functions / 6.5.2:
Energy wells in the wt-nbhds / 6.5.3:
In the vicinity of an energy well / 6.6:
Thermal expansion and compressibility of a crystal / 6.6.1:
The elasticity tensor / 6.6.2:
Temperature-dependence of the elastic moduli / 6.6.3:
Anisotropic elasticity / 6.7:
Bifurcation patterns / 7:
The Landau theory / 7.1:
Isolated critical points and bifurcation points / 7.2:
Neighborhoods of bifurcation points / 7.2.1:
Genericity / 7.2.2:
Reduced bifurcation problems; order parameters / 7.3:
Analysis of the reduced bifurcation problems / 7.4:
Reduced problem (1) / 7.4.1:
Reduced problem (2) / 7.4.2:
Reduced problem (3) / 7.4.3:
Reduced problem (4) / 7.4.4:
Reduced problem (5) / 7.4.5:
Reduced problem (6) / 7.4.6:
Comparison with the kinematic transitions of [section]5.3 / 7.4.7:
Behavior of the moduli along the transitions / 7.5:
Examples of energy functions for simple lattices / 7.6:
A schematic 1-dimensional example / 7.6.1:
Energies for cubic-to-tetragonal and for tetragonal-to-monoclinic transitions / 7.6.2:
Orientation relationships and lattice correspondence / 7.6.3:
Relation with the Landau theory / 7.7:
General references / 7.8:
Mechanical twinning / 8:
Coherence and rank-1 connections / 8.1:
The twinning equation / 8.2:
Solutions of the twinning equation / 8.3:
Different descriptions of the same twin and cosets / 8.3.1:
Crystallographically equivalent twins / 8.3.2:
Reciprocal twins / 8.3.3:
Generic twins / 8.3.4:
Type-1 and Type-2 (conventional) twins / 8.3.5:
Compound twins / 8.3.6:
Conventional twins and rationality conditions / 8.3.7:
Short remarks / 8.4:
Experimental data / 8.4.1:
Mechanical twinning and the Born rule / 8.4.2:
Growth twins / 8.4.3:
Transformation twins / 9:
Procedure to determine the transformation twins / 9.1:
Rk-1 connections in a cubic wt-nbhd / 9.2:
Tetragonal variant structure / 9.2.1:
Rhombohedral variant structure / 9.2.2:
Orthorhombic variant structures / 9.2.3:
Orthorhombic 'cubic edges' wells / 9.2.3.1:
Orthorhombic 'mixed axes' wells / 9.2.3.2:
Monoclinic variant structures / 9.2.4:
Monoclinic 'cubic edges' wells / 9.2.4.1:
Monoclinic 'face-diagonals' wells / 9.2.4.2:
Triclinic variant structure / 9.2.5:
Rk-1 connections in a hexagonal wt-nbhd / 9.3:
Orthorhombic variant structure / 9.3.1:
Monoclinic 'basal diagonals' wells / 9.3.2:
Monoclinic 'basal side-axes' wells / 9.3.2.2:
Monoclinic 'optic axis' wells / 9.3.2.3:
The Mallard law / 9.3.3:
Microstructures / 10:
Piecewise homogeneous equilibria / 10.1:
Generalized solutions / 10.2:
The minors relations / 10.2.1:
The N-well problem / 10.2.2:
Examples of microstructures that are not laminates / 10.3:
Habit planes in martensite / 10.4:
Geometrically nonlinear theory / 10.4.1:
Self-accommodation in shape memory alloys / 10.4.2:
Wedges and other microstructures / 10.4.3:
Kinematics of multilattices / 11:
Crystals as multilattices / 11.1:
Descriptors and configuration spaces for deformable multilattices / 11.1.1:
Essential descriptions of multilattices / 11.1.2:
The global symmetry of multilattices / 11.2:
Indeterminateness of the descriptors (P[subscript 0,...], P[subscript n-1], e[subscript a]) / 11.2.1:
Indeterminateness of the descriptors (P[subscript 0], [varepsilon subscript [sigma]) / 11.2.2:
Nonessential descriptors of multilattices / 11.2.3:
The affine symmetry of multilattices / 11.3:
Space groups; crystal class and crystal system of a multilattice / 11.3.1:
The arithmetic symmetry of multilattices / 11.4:
Lattice groups of multilattices / 11.4.1:
Relation between the arithmetic and the space-group symmetries / 11.4.2:
Examples / 11.5:
Three-dimensional 2-lattices and hexagonal close-packed structures / 11.5.1:
The structure of quartz as a 3-lattice / 11.5.2:
Weak-transformation neighborhoods / 11.6:
The energy of a multilattice and its invariance / 11.7:
Minimizing out the internal variables of complex crystals / 11.7.1:
Local invariance of multilattice energies; the example of quartz / 11.7.2:
Twinning in multilattices / 11.8:
A proposal for a class of twins / 11.8.1:
Two examples / 11.8.2:
A model for stress relaxation / 11.8.3:
References
Index
List of figures
List of tables
Foreword
7.

図書

東工大
目次DB

図書
東工大
目次DB
Satoshi Kawata, Motoichi Ohtsu, Masahiro Irie (eds.)
出版情報: Berlin : Springer, c2002  xv, 321 p. ; 24 cm
シリーズ名: Springer series in optical sciences ; v. 84
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
   1.1.2 Resonant SNOM 9
   1.1.3 Coupling of Cavity Modes and Matter Excitation 11
   1.2 Quantization of Evanescent Waves and Optical Near-Rield Interaction of Atoms 13
   1.2.1 State of Vector Fields 14
   1.2.2 Radiative Fields Near a Planar Dielectric Surface 17
   1.2.3 Detector-Mode Functions and Field Quantization 19
   1.2.4 Multipole Radiation near a Dielectric Surface 23
   1.2.5 Spontaneous Radiative Lifetime in an Optical Near-Field 25
   1.3 Quantum Mechanical Aspects of Optical Near-Field Problems 27
   1.3.1 Properties of Near-Field Optical Interactions 27
   1.3.2 Observations and Transport Properties in the Near-Field 29
   1.3.3 Local Mode Descriptions and Compatibility with Macroscopic Descriptions 30
   References 32
2 Electromagnetism Theory and Analysis for Near-Field Nano-Optics S. Kawata, K. Tanaka, N. Takahashi 35
   2.1 Finite-Difference Time-Domain Analysis of a Near-Field Microscope System 36
   2.1.1 Near-Field Microscope as a Multiple Scattering System 36
   2.1.2 Finite-Difference Time-Domain Algorithm for NSOM Imaging 37
   2.1.3 NSOM Image Without Effects of Probe-Sample Interaction 39
   2.1.4 NSOM Image When the Probe-Sample Interaction in Included 41
   2.1.5 Effect of the Probe-Sample Distance on the Generated NSOM Images 44
   2.1.6 Dependence of NSOM Image on the Spatial Frequency Content of Sample Surface 45
   2.2 Reconstruction of an Optical Image from NSOM Data 47
   2.2.1 Necessity for Numerical Inversion of the NSOM System 47
   2.2.2 NSOM Image of Dielectric Strips 47
   2.2.3 Deconvolution of Dielectric Strips with Nonnegativity Constraint 49
   2.2.4 Reconstruction of Metal Strips 50
   2.3 Radiation Force Exerted near a Nano-Aperture 51
   2.3.1 Radiation Force to Trap a Small Particle 51
   2.3.2 Force Distribution Exerted on the Sphere near a Subwavelength Aperture 54
   2.3.3 Force Exerted on Two Spheres in the Near-Field of a Small Aperture 57
   References 58
3 High-Resolution and High-Throughput Probes M. Ohtsu, K. Sawada 61
   3.1 Excitation of a HE-Plasmon Mode 64
   3.1.1 Mode Analysis 64
   3.1.2 Edged Probes for Exciting a HE-Plasmon Mode 64
   3.2 Multiple-Tapered Probes 66
   3.2.1 Double-Tapered Probe 66
   3.2.2 Triple-Tapered Probe 70
   References 73
Apertureless Near-Field Probes S. Kawata, Y. Inouye, T. Kataoka, T. Okamoto 75
   4.1 Local Plasmon in a Metallic Nanoparticle 76
   4.1.1 Local Plasmon Resonance in a Metallic Nanoparticle 76
   4.1.2 Local Plasmon Resonance in a Metallic Nanoparticle above a Substrate 79
   4.1.3 Optical Sensor Using Colloidal Gold Monolayers 82
   4.1.4 Gold Nanoparticle Probe 85
   4.2 Laser-Trapping of a Metallic Particle for a Near-Field Microscope Probe 87
   4.2.1 Mechanism of Laser Trapping 88
   4.2.2 Laser Trapping of a Probe for NSOM 89
   4.2.3 Experimental Setup 90
   4.2.4 Feedback Stabilization of a Particle 90
   4.2.5 Experimental Results 91
   4.3 Near-Field Enhancement at a Metallic Probe 93
   4.3.1 Field Enhancement at the Tip 93
   4.3.2 Near-Field Raman Spectroscopy 96
   4.4 Scattering Near-Field Optical Microscope with a Microcavity 101
   4.4.1 Resonant Microcavity Probe 101
   4.4.2 FDTD Simulation of a Resonant Microcavity Probe 102
   4.4.3 Fabrication of a "Resonant Microcavity Probe" 104
   4.4.4 Observation of a Vacuum-Evaporated Gold Film 106
   References 107
5 Integrated and Functional Probes T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, K. Hane 111
   5.1 Micromachined Probes 111
   5.1.1 Fabrication of a Miniature Aperture 112
   5.1.2 Throughput Measurement 116
   5.1.3 Fabrication of an Aperture Having a Metal Nanowire at the Center 117
   5.1.4 Imaging with a Fabricated Aperture Probe 119
   5.2 Light Detection from Force 120
   5.2.1 Method of Measuring Optical Near-Field Using Force 121
   5.2.2 Imaging Properties 124
   5.3 High Efficiency Light Transmission Through a Nano-Waveguide 126
   5.3.1 Low-Dimensional Optical Wave and Negative Dielectric 126
   5.3.2 One-Dimensional Optical Waveguides 127
   5.3.3 Negative-Dielectric Pin and Hole 128
   5.3.4 Negative-Dielectric Tube 131
   5.3.5 Lossy Waveguides and Applications 132
   References 133
6 High-Density Optical Memory and Ultrafine Photofabrication M. Irie 137
   6.1 Photochromic Memory Media 138
   6.2 Near-Field Optical Memory 141
   6.2.1 Diarylethenes 141
   6.2.2 Perinaphthothioindigo 142
   6.3 Future Prospects for Near-Field Optical Memory 144
   6.4 Nanofabrication: Chemical Vapor Deposition 144
   6.5 Nanofabrication: Organic Film 147
   References 149
7 Near-Field Imaging of Molecules and Thin Films M. Fujihira, S. Itoh, A. Takahara, O. Karthaus, S. Okazaki, K. Kajikawa 151
   7.1 Near-Field Imaging of Molecules and Thin Films 151
   7.1.1 Preparation of Organic Thin Films 151
   7.1.2 Control of Tip-Sample Separation 151
   7.1.3 Various Modes of Observations 152
   7.1.4 Optical Recording on Organic Thin Films 152
   7.2 Two-Dimensional Morphology of Ultrathin Polymer Films 152
   7.2.1 Materials, Preparation of Films, and Apparatus 153
   7.2.2 Observation of Two-Dimensional Morphology 156
   7.2.3 Conclusion 161
   7.3 Observation of Polyethylene (PE) Crystals 161
   7.3.1 AFM and NSOM Observation of PE Single Crystals 161
   7.3.2 AFM and NSOM Observation of Melt-Crystallized PE Thin Films 163
   7.3.3 Conclusions 167
   7.4 Preparation of Micrometer-Sized Chromophore Aggregates 168
   7.4.1 Control of Aggregation 168
   7.4.2 Mesoscopic Patterns 169
   7.4.3 Mechanism of Pattern Formation 169
   7.4.4 Chromophore-Containing Mesoscopic Patterns 170
   7.4.5 Azobenzene-Containing Polyion Complex 171
   7.4.6 Mesoscopic Line Pattern of Poly (hexylthiophene) 173
   7.5 Application to Electrochemical Research 174
   7.5.1 Fabrication of an Aluminum Nanoelectrode SNOM Probe to Stimulate Electroluminescent (EL) Polymers 174
   7.5.2 Integration of STM with SNOM Microscopy by Fabricating Original Chemically Etched Conducting Hybrid Probes 176
   7.5.3 Development of a New Type of AFM/SNOM Integrated System 178
   7.5.4 Biological Applications 180
   7.6 Second-Harmonic Generation in Near-Field Optics 184
   7.6.1 Materials and Apparatus 186
   7.6.2 SHG Observation 186
   7.6.3 Conclusion 187
   References 187
8 Near-Field Microscopy for Biomolecular Systems T. Yanagida, E. Tamiya, H. Muramatsu, P. Degenaar, Y. Ishii, Y. Sako, K. Saito, S. Ohta-Iino, S. Ogawa, G. Marriott, A. Kusumi, H. Tatsumi 191
   8.1 Near-Field Imaging of Human Chromosomes and Single DNA Molecules 192
   8.1.1 SNOAM System 193
   8.1.2 SNOAM Imaging of Human Chromosomes [19] 194
   8.1.3 SNOAM Imaging of a Single DNA Molecule [20} 198
   8.2 Imaging of Biological Molecules 199
   8.2.1 Myosin-Actin Motors 199
   8.2.2 Membrane Receptors 209
   8.2.3 ATP Synthase 215
   8.3 Cell and Cellular Functions 220
   8.3.1 Near-Field Fluorescent Microscopy of Living Cells 220
   8.3.2 Dynamics of Cell Membranes 222
   8.3.3 Near-Field Imaging of Neuronal Cell and Transmitter 229
   References 233
9 Near-Field Imaging of Quantum Devices and Photonic Structures M. Gonokami, H. Akiyama, M. Fukui 237
   9.1 Spectroscopy of Quantum Devices and Structures 237
   9.1.1 Near-Field Microscopy with a Solid-Immersion Lens 238
   9.1.2 Solid-Immersion Microscopy of GaAs Nanostructures 242
   9.1.3 Time-Resolved Spectroscopy of Single Quantum Dots Using NSOM 247
   9.2 Observation of Polysilane by Near-Field Scanning Optical Microscope in the Ultraviolet (UV) Region 251
   9.2.1 Morphologies and Quantum Size Effects of Single InAs Quantum Dots Studied by Scanning Tunneling Microscopy/Spectroscopy 255
   9.2.2 Photonic Structures Consisting of Dielectric Spheres 257
   9.2.3 Interaction of a Near-Field Light with Two-Dimensionally Ordered Spheres 265
   9.2.4 Photonic-Band Effect on Near-Field Optical Images of 2-D Sphere Arrays 270
   9.3 Near-Field Photon Tunneling 275
   9.3.1 What is Photon Tunneling? 275
   9.3.2 Resonant Photon Tunneling Through a Photonic Double-Barrier Structure 277
   9.3.3 Resonant Photon Tunneling Mediated by a Photonic Dot 280
   9.3.4 Concluding Remarks 281
   References 281
10 Other Imaging and Applications N. Umeda, A. Yamamoto, R. Nishitani, J. Bae, T. Tanaka, S. Yamamoto 287
   10.1 Birefringent Imaging with an Illumination-Mode Near-Field Scanning Optical Microscope 287
   10.1.1 Principle 288
   10.1.2 Apparatus 289
   10.1.3 System Performance 291
   10.1.4 Observation of Sample 292
   10.1.5 Conclusion 294
   10.2 Plain-Type Low-Temperature NSOM System 294
   10.2.1 Experimental Setup 295
   10.2.2 Results and Discussion 296
   10.2.3 Conclusion 298
   10.3 STM-Induced Luminescence 298
   10.3.1 Theoretical Model 298
   10.3.2 Experimental Method 299
   10.3.3 Results 300
   10.3.4 Conclusion 304
   10.4 Energy Modulation of Electrons with Evanescent Waves 304
   10.4.1 Sensing an Optical Near-Field with Electrons 304
   10.4.2 Metal Microslit 304
   10.4.3 Experiment 306
   10.4.4 Conclusion 308
   10.5 Manipulation of Particles by Photon Force 308
   10.5.1 Method 308
   10.5.2 Experiments 309
   10.5.3 Conclusion 314
   References 315
Index 317
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
8.

図書

図書
D. Owen Harrop
出版情報: London ; New York : Spon Press, c2002  [xiii], 384 p. ; 24 cm
シリーズ名: Clay's library of health and the environment
所蔵情報: loading…
目次情報: 続きを見る
Preface
Dedication
Acknowledgements
Introduction / 1:
Air pollution - a concern / 1.1:
Book format / 1.3:
Air Pollution Sources and Types / 2:
Composition of the atmosphere / 2.1:
Air pollution sources / 2.3:
Types of pollutants and their sources / 2.4:
Carcinogenic pollutants / 2.4.1:
Carbon monoxide / 2.4.2:
Carbon dioxide / 2.4.3:
Lead / 2.4.4:
Nitrogen dioxide / 2.4.5:
Ozone / 2.4.6:
Particulates / 2.4.7:
Sulphur dioxide / 2.4.8:
Dioxins and furans / 2.4.9:
Other pollutants / 2.4.10:
Trends in air quality / 2.5:
Indoor air pollution / 2.5.1:
Smoking / 2.6.1:
Effects of Air Pollution / 3:
Human health / 3.1:
Smogs and air pollution episodes / 3.2.1:
Assessing health effects / 3.2.2:
Asthma / 3.2.3:
Health effects of specific air pollutants / 3.2.4:
Flora / 3.3:
Fauna / 3.4:
Ecosystems / 3.5:
Materials / 3.6:
Visibility (particle haze) / 3.7:
Visual range / 3.7.1:
Strategic air quality issues / 3.8:
Acid rain / 3.8.1:
Ozone depletion / 3.8.2:
Greenhouse effect / 3.8.3:
Emission Inventories / 4:
The purpose of emission inventories / 4.1:
Atmospheric emission inventory initiatives / 4.3:
Types of emission release and sources / 4.4:
Industrial emissions / 4.4.1:
Domestic emissions / 4.4.2:
Agricultural emissions / 4.4.3:
Motor vehicle emissions / 4.4.4:
Aircraft emissions / 4.4.5:
Information requirements / 4.5:
Examples of national emission inventories / 4.6:
UK national atmospheric emissions inventory / 4.6.1:
European emission inventories / 4.6.2:
Canadian national emission inventory / 4.6.3:
US national emission inventory / 4.6.4:
Transboundary emissions / 4.7:
Terrestrial / 4.7.1:
Marine / 4.7.2:
Pollution emission trends / 4.8:
Exercise / 4.9:
Air Pollution Monitoring / 5:
Forms of monitoring / 5.1:
Site selection / 5.3:
Monitoring strategies / 5.4:
Monitoring standards and accreditation / 5.5:
Monitoring methods and techniques / 5.6:
Methods of measurement / 5.6.1:
Measurement techniques / 5.6.2:
Particulate measurement / 5.6.3:
Oxides of nitrogen / 5.6.4:
Volatile organic compounds / 5.6.7:
Odour measurement / 5.6.9:
Other equipment / 5.8:
Monitoring networks / 5.9:
Gems / 5.9.1:
National and municipal air quality monitoring networks / 5.9.2:
Source monitoring / 5.10:
Point source monitoring / 5.10.1:
Mobile sources / 5.10.2:
Impact Prediction / 6:
Mechanisms for dispersion / 6.1:
Wind speed and direction / 6.2.1:
Atmospheric turbulence / 6.2.2:
Temperature inversions / 6.2.3:
Topography / 6.2.4:
Plume formation / 6.2.5:
Air dispersion modelling / 6.3:
What is a model? / 6.3.1:
Model characteristics / 6.4:
Time and space scales / 6.4.1:
Frame of reference / 6.4.2:
Pollutants and reaction mechanisms / 6.4.3:
Treatment of turbulence / 6.4.4:
Plume additivity (treatment of multiple sources) / 6.4.5:
Model accuracy and limitations / 6.4.7:
Data requirements / 6.5:
Air dispersion modelling procedures / 6.6:
Stack height determination / 6.7:
Plume rise / 6.8:
Gaussian modelling / 6.9:
Extrapolating time average concentrations / 6.9.1:
Box models / 6.10:
Linear models / 6.11:
Physical models / 6.12:
Types of air dispersion models / 6.13:
Impact Significance and Legislation / 6.14:
Impact significance / 7.1:
EU air quality standards / 7.2.1:
World Health Organisation air quality guidelines / 7.2.2:
National air quality standards / 7.2.3:
Derived air quality standards / 7.2.4:
Air pollution indices / 7.3:
Risk assessment / 7.4:
Nuisance / 7.5:
Odour / 7.5.1:
Visibility / 7.5.3:
Pollution episodes / 7.6:
Air pollution legislation / 7.9:
Greenhouse gases / 7.9.1:
Ozone layer / 7.9.2:
International conventions / 7.9.3:
European Union / 7.9.4:
World Health Organisation / 7.9.5:
National air pollution control regimes / 7.10:
UK air pollution control regime / 7.10.1:
US air pollution control regime / 7.10.2:
Japanese air pollution control regime / 7.10.3:
Singaporean air pollution control regime / 7.10.4:
People's Republic of China legislative system / 7.10.5:
Public awareness / 7.11:
Mitigation, Control and Management / 8:
What is mitigation and control? / 8.1:
Control of fugitive emissions / 8.3:
Fugitive dust control / 8.3.1:
Fugitive gaseous control / 8.3.2:
Visual inspections / 8.3.3:
Techniques for the control of gaseous emissions / 8.4:
General abatement techniques / 8.4.1:
Control of oxides of nitrogen / 8.4.2:
Control of sulphur dioxide / 8.4.3:
Odour control / 8.4.4:
Control of dioxin emissions / 8.4.5:
Techniques for the control of particulate emissions / 8.5:
Gravity settler / 8.5.1:
Cyclone / 8.5.2:
Fabric or bag filters / 8.5.3:
Electrostatic precipitators / 8.5.4:
Wet scrubber / 8.5.5:
Equipment selection / 8.5.6:
Control of emissions from agricultural practices / 8.6:
Flaring / 8.7:
Control of emissions from motor vehicles / 8.8:
Cost effectiveness / 8.9:
Air quality management / 8.10:
AQM process / 8.10.1:
Air quality management in the UK / 8.10.2:
Designation of air quality management areas / 8.10.3:
Air quality action plans / 8.10.4:
Site Inspection and Project Management / 9:
Process inspection / 9.1:
Presentation to management / 9.2.1:
Orientation tour / 9.2.2:
Techniques / 9.2.3:
Verification techniques / 9.2.4:
Inspection findings / 9.2.5:
Close out meeting / 9.2.6:
Project management / 9.3:
Report writing / 9.3.1:
Financial control / 9.3.2:
Case Studies / 10:
Case Study 1 - Screening air quality monitoring study / 10.1:
Case Study 2 - Indoor air quality health assessment / 10.3:
Case Study 3 - Emission inventory / 10.4:
Case Study 4 - Baseline air quality monitoring study / 10.5:
Sulphur dioxide and smoke / 10.5.1:
Monitoring / 10.5.2:
Case Study 5 - Air dispersion modelling study / 10.6:
Case Study 6 - Quantitative health risk assessment / 10.7:
Case Study 7 - Air quality management / 10.8:
Screening study / 10.8.1:
Long-term calculations / 10.8.2:
Areas of expected exceedences of air quality objectives / 10.8.3:
Case Study 8 - Emission control / 10.9:
Case Study 9 - Spireslack open cast coal site / 10.10:
Method of assessment / 10.10.1:
Baseline air quality and meteorological conditions / 10.10.2:
The proposed development / 10.10.3:
Potential emissions / 10.10.4:
Mitigation measures / 10.10.5:
Environmental consequences / 10.10.6:
Case Study 10 - Power station air dispersion modelling study / 10.11:
Meteorological data / 10.11.1:
Modelling parameters / 10.11.2:
Modelling results / 10.11.3:
Assessment of predicted concentrations / 10.11.4:
Comparison of predicted deposition levels with critical load levels / 10.11.5:
Case Study 11 - Widening of the Tolo/Fanling highway between the Island House Interchange and Fanling (Hong Kong), People's Republic of China / 10.11.6:
Description of study area / 10.12.1:
Construction phase air quality impacts / 10.12.2:
Operational phase air quality impacts / 10.12.3:
Case Study 12 - Emission inventory of VOCs / 10.12.4:
Case Study 13 - Assessment of air quality data / 10.14:
Case Study 14 - A comparison of model predictions and baseline monitoring data / 10.15:
Epilogue
Appendix
Terminology / A1:
Pollutants / A2:
Units / A3:
Annotations / A4:
Useful contact details / A5:
National environmental agencies / A.5.1:
International institutions / A.5.2:
Conversion tables / A6:
References
Country index
Subject index
Preface
Dedication
Acknowledgements
9.

図書

図書
L. Ramdas Ram-Mohan
出版情報: Oxford : Oxford University Press, 2002  xviii, 605 p. ; 24 cm
シリーズ名: Oxford texts in applied and engineering mathematics ; 5
所蔵情報: loading…
目次情報: 続きを見る
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
Schrodinger's equation / 1.1.1:
Postulates of quantum mechanics / 1.1.2:
Principle of stationary action / 1.2:
The action integral / 1.2.1:
Examples / 1.2.2:
Finite elements / 1.3:
Historical comments / 1.4:
Problems / 1.5:
References
Simple quantum systems / 2:
The simple harmonic oscillator / 2.1:
The hydrogen atom / 2.2:
The Rayleigh-Ritz variational method / 2.3:
Programming considerations / 2.4:
Interpolation polynomials in one dimension / 2.5:
Lagrange interpolation polynomials / 3.1:
Hermite interpolation polynomials / 3.3:
Transition elements / 3.4:
Low order interpolation polynomials / 3.5:
Low order Lagrange interpolation / 3.5.1:
Low order Hermite interpolation / 3.5.2:
Interpolation polynomials in Mathematica / 3.6:
Lagrange interpolation / 3.6.1:
Hermite interpolation / 3.6.2:
Infinite elements / 3.7:
Simple quantum systems revisited / 3.8:
Adaptive FEM / 3.9:
Error in interpolation / 4.1:
Error in the discretized action / 4.3:
h-convergence / 4.3.1:
p-convergence / 4.3.2:
The action in adaptive calculations / 4.4:
An ordinary differential equation / 4.4.1:
The H atom again / 4.4.2:
Adaptive p-refinement / 4.4.3:
Concluding remarks / 4.5:
Applications in 1D / Part II:
Quantum mechanical tunneling / 5:
Mixed BCs: redefining the action / 5.1:
The Galerkin method / 5.3:
Tunneling calculations in the FEM / 5.4:
Evaluation of the residual / 5.4.1:
Applying mixed BCs / 5.4.2:
Comparing Galerkin FEM with WKB / 5.5:
Quantum states in asymmetric wells / 5.6:
Schrodinger-Poisson self-consistency / 5.7:
Schrodinger and Poisson equations / 6.1:
Source terms / 6.3:
The Fermi energy and charge neutrality / 6.4:
The Galerkin finite element approach / 6.5:
Boundary conditions / 6.5.1:
The iteration procedure / 6.5.2:
Numerical issues / 6.5.3:
Essential and natural boundary conditions / 6.5.4:
Further developments / 6.6:
Landau states in a magnetic field / 6.7:
Landau levels / 7.1:
Density of states / 7.1.2:
Heterostructures in a B-field / 7.2:
Faraday configuration / 7.2.1:
Voigt configuration / 7.2.2:
Comparison with experiments / 7.3:
Interband transitions / 7.3.1:
Energy dependence on the orbit center / 7.3.2:
Level mixing in superlattices with small band offsets / 7.3.3:
Density of states in the Voigt geometry / 7.3.4:
Voigt geometry and a semiclassical model / 7.4:
Landau orbit theory / 7.4.1:
Envelope functions and the FEM in k-space / 7.4.2:
Wavefunction engineering / 7.5:
k P theory of band structure / 8.1:
Designing mid-infrared lasers / 8.3:
The type-II W-laser / 8.3.1:
The interband cascade laser / 8.3.2:
Concluding comments / 8.4:
2D Applications of the FEM / Part III:
2D elements and shape functions / 9:
Rectangular elements / 9.1:
Lagrange elements / 9.2.1:
Hermite elements / 9.2.2:
Triangular elements / 9.3:
Defining curved edges / 9.4:
An element on a parametric curve / 9.4.1:
Parametric form of 2D surfaces / 9.4.2:
The action in 2D problems / 9.5:
Gauss integration in two dimensions / 9.6:
Mesh generation / 10:
Meshing simple regions / 10.1:
Distortion of regular regions / 10.1.1:
Using orthogonal curved coordinates / 10.1.2:
Regions of arbitrary shape / 10.2:
Delaunay meshing / 10.2.1:
Advancing front algorithms / 10.2.2:
The algebraic integer method / 10.2.3:
Applications in atomic physics / 11:
The H atom in a magnetic field / 11.1:
Schrodinger's equation and the action / 11.1.1:
Applying the FEM / 11.1.2:
Magnetic fields / 11.1.3:
Ground state energy in helium / 11.2:
Other results / 11.3:
Quantum wires / 12:
Quantum wires and the FEM / 12.1:
Symmetry properties of the square wire / 12.3:
The checkerboard superlattice / 12.4:
Optical nonlinearity in the CBSL / 12.5:
Quantum wires of any cross-section / 12.6:
Quantum waveguides / 13:
Quantization of resistance / 13.1:
The straight waveguide / 13.2:
Quantum bound states in waveguides / 13.3:
The quantum interference transistor / 13.4:
"Stealth" elements and absorbing BC / 13.5:
The Ginzburg-Landau equation / 13.6:
Time-dependent problems / 14:
Standard approaches to time evolution / 14.1:
Schrodinger's equation and the method of finite differences / 14.2.1:
The finite difference method for the wave equation / 14.2.2:
A transfer matrix for time evolution / 14.3:
Lanczos reduction of transfer matrices / 14.4:
Instability with initial conditions / 14.5:
Comparing IVBC and two-point BCs / 14.5.1:
The variational approach / 14.6:
A variational difficulty / 14.6.1:
Variations using adjoint functions / 14.6.2:
Adjoint variations for the wave equation / 14.6.3:
Connection with quantum field theory / 14.6.4:
Sparse Matrix Applications / 14.7:
Matrix solvers and related issues / 15:
Bandwidth reduction / 15.1:
Solution of linear equations / 15.3:
Gauss elimination / 15.3.1:
The conjugate gradient method / 15.3.2:
The standard eigenvalue problem / 15.4:
The generalized eigenvalue problem / 15.5:
Sturm sequence check / 15.5.1:
Inverse vector iteration / 15.5.2:
The subspace vectors / 15.5.3:
The Rayleigh quotient / 15.5.4:
Subspace iteration / 15.5.5:
The Davidson algorithm / 15.5.6:
Least square residual minimization / 15.5.7:
The Lanczos method / 15.5.8:
Boundary Elements / Part V:
The boundary element method / 16:
The boundary integral / 16.1:
An analytical approach / 16.3:
A Dirichlet problem / 16.3.1:
A Neumann problem / 16.3.2:
Infinite domain Green's function / 16.4:
Evaluation of the element integrals / 16.5:
Applying boundary conditions / 16.5.2:
Boundary condition at the corner node / 16.5.3:
Setting up the matrix equation / 16.5.4:
Construction of interior solution / 16.5.5:
A worked example / 16.6:
Two sum rules / 16.7:
Comparing the BEM with the FEM / 16.8:
The BEM and surface plasmons / 16.9:
Multiregion BEM: two regions / 17.1:
Linear interpolation / 17.2.1:
Bulk and surface plasmons / 17.2.2:
Bulk plasma oscillations / 17.3.1:
Surface plasmons at a single planar interface / 17.3.2:
Surface plasmons for slab geometry / 17.3.3:
Surface plasmons in a cylindrical wire / 17.3.4:
Two metallic wires / 17.3.5:
Metal wire on a substrate / 17.3.6:
Plasmons in other confining geometries / 17.3.7:
Surface-enhanced Raman scattering / 17.4:
The BEM and quantum applications / 17.5:
2D electron waveguides / 18.1:
Implementing boundary conditions / 18.2.1:
Multiregion waveguide problems / 18.2.2:
Multiple ports and transmission / 18.2.3:
The BEM and 2D scattering / 18.3:
Eigenvalue problems and the BEM / 18.4:
Hearing the shape of a drum / 18.4.1:
Concluding remarks on the BEM / 18.5:
Appendices / 18.6:
Gauss quadrature / A:
Gauss-Legendre quadrature / A.1:
Gauss-Legendre base points and weights / A.3:
An algorithm for adaptive quadrature / A.4:
Other Gauss formulas / A.5:
The Cauchy principal value of an integral / A.6:
Properties of Legendre functions / A.7:
Generalized functions / A.8:
The Dirac [delta]-function / B.1:
The [delta]-function as the limit of a "normal" function / B.2:
[delta]-functions in three dimensions / B.3:
Other generalized functions / B.4:
The step-function [theta](x) / B.4.1:
The sign-function [varepsilon](x) / B.4.2:
The Plemelj formula / B.4.3:
An integral representation for [theta](z) / B.4.4:
Green's functions / B.5:
Properties of Green's functions / C.1:
Sturm-Liouville differential operators / C.3:
Green's functions in electrostatics / C.4:
Boundary integral solutions: a comment / C.5:
Green's functions in electrodynamics / C.6:
The wave equation in one dimension / C.7:
The wave equation in two dimensions / C.8:
Green's functions and integral equations / C.9:
Physical constants / C.10:
Author index
Subject index
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
10.

図書

東工大
目次DB

図書
東工大
目次DB
Masao Kaneko, Ichiro Okura (eds.)
出版情報: Tokyo : Kodansha , Berlin ; London : Springer, c2002  xvi, 356 p. ; 25 cm
シリーズ名: Biological and medical physics series
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Preface
   1 Introduction 1
   1.1 Background 1
   1.2 Aim and Outline of This Volume 2
   1.3 Summary 4
   1.4 Future Perspectives 4
   References 5
Ⅰ Fundamental Aspects of Photocatalysts
   2 Photoelectrochemical Processes of Semiconductors 9
   2.1 Semiconductor Electrodes for Solar Energy Conversion 11
   2.2 Reduction of CO2 at Illuminated Semiconductor Electrodes 15
   2.3 Photocatalysis 18
   2.3.1 General Remarks 18
   2.3.2 Mechanistic Studies 19
   2.3.3 Low Intensity Illumination 22
   2.3.4 Applications 24
   References 26
   3 Design, Preparation and Characterization of Highly Active Metal Oxide Photocatalysts 29
   3.1 Introduction 29
   3.2 Photocatalytic Activity 29
   3.2.1 Effect of Surface Area on Photocatalytic Activity 30
   3.2.2 Effect of Electron-hole Recombination on Photocatalytic Activity 32
   3.2.3 Design of Photocatalysts of High Activity 33
   3.3 Preparation of Titanium (IV) Oxide Powders 33
   3.3.1 Sulfate Method 33
   3.3.2 Chloride Method (Vapor Method) 34
   3.3.3 Alkoxide Method 34
   3.3.4 Specific Methods 34
   3.3.5 Activation of TiO2 Photocatalysts 36
   3.4 Preparation of Other Photocatalysts 38
   3.5 Characterization of TiO2 Photocatalysts of Both High Crystallinity and Large Surface Area 38
   3.5.1 Photocatalytic Activity of HyCOM TiO2 in Aqueous Suspension Systems 38
   3.5.2 Correlation Between Physical Properties and Photocatalytic Activity of HyCOM TiO2 39
   3.5.3 Novel Hypothesis for Activity of Photocatalyst 43
   3.6 Preparation and Characterization of Photocatalytic Thin Films 44
   3.6.1 Preparation of Photocatalytic TiO2 Thin Films 44
   3.6.2 Characterization of Photocatalytic Thin Films Prepared from HyCOM TiO2 Powders 45
   3.7 Summary 47
   References 47
   4 Photoelectrochemistry at Semiconductor/Liquid Interfaces 51
   4.1 Introduction 51
   4.2 Basic Properties of Semiconductor/Liquid Interface 52
   4.2.1 Band Bending 52
   4.2.2 Barrier Height and Flat Band Potential 54
   4.2.3 Electron Transfer and Corrosion Reactions 57
   4.3 Photoelectrochemistry at Atomically Well-defined Surfaces 59
   4.3.1 Atomically Flat H-terminated Si Surfaces 59
   4.3.2 Selective Exposition of (100) Face on n-TiO2 (Rutile) by Photoetching 62
   4.4 Photoelectrochemistry at Metal Dot-coated Semiconductors 64
   4.4.1 Ideal Semiconductor Electrodes 64
   4.4.2 Metal-loaded TiO2 Electrodes 66
   References 67
   5 Photoelectrochemical Reactions at Semiconductor Microparticle 69
   5.1 Introduction 69
   5.2 Energy Structure of Semiconductor Microparticle 69
   5.2.1 Depletion Layer 69
   5.2.2 Electric Heterogeneity of Surface 71
   5.2.3 Size Quantization Effect 72
   5.3 Kinetics at Semiconductor Microparticle 72
   5.3.1 Recombination Model 73
   5.3.2 2D Ladder Model 74
   5.3.3 Effect of Size 76
   5.4 Observation of Primary Reaction Intermediates 77
   5.4.1 ESR Analysis for Irradiated TiO2 Particles 78
   5.4.2 Direct Observation of Intermediate Radicals 81
   5.4.3 Chemiluminescent Probe for Active Oxygens 83
   References 85
   6 New Approaches in Solution-phase Processing of Semiconductor Thin Films 87
   6.1 Introduction 87
   6.2 Previous Methods for Solution-phase Deposition of Semiconductor Thin Films 89
   6.2.1 Chemical Bath Deposition of Metal Sulfide Thin Films 89
   6.2.2 Electrodeposition of Metal Sulfide Thin Films 90
   6.2.3 Chemical and Electrochemical Deposition of Metal Oxide Thin Films 92
   6.3 Electrochemically Induced Chemical Deposition (EICD) of Cds Thin Films 93
   6.3.1 Idea 93
   6.3.2 Morphological and Structural Analysis 94
   6.3.3 Growth Kinetics and Mechanism of EICD Process 95
   6.3.4 Modification of EICD Process 97
   6.4 True Electrodeposition of Metal Sulfide Thin Films by Reduction of Thiocyanato Complexes 97
   6.4.1 Idea 97
   6.4.2 Thermodynamic Consideration 98
   6.4.3 Electrochemical Layer-by-layer Growth of CdS Thin Films 98
   6.4.4 Electrodeposition of Other Metal Sulfides 100
   6.5 Electrochemical Self-assembly of ZnO/Dye Hybrid Thin Films 100
   6.5.1 Idea 100
   6.5.2 Electrochemical Self-assembly of ZnO/Dye Hybrid Structure 102
   6.5.3 Mechanism of Electrochemical Self-assembly 104
   6.6 Summary 104
   References 105
Ⅱ Application to Environmental Cleaning
   7 Self-cleaning Properties of TiO2-coated Substrates 109
   7.1 Introduction 109
   7.2 Photocatalytic Decomposition 110
   7.2.1 Air Purifying Effect 110
   7.2.2 Sterilization Effect 111
   7.2.3 Anti-fouling Effect 113
   7.2.4 Photo-induced High Amphiphilicity 114
   7.3 Conclusions 120
   References 121
   8 Cleaning Atmospheric Environment 123
   8.1 Introduction 123
   8.2 Photocatalytic Activities of TiO2 124
   8.2.1 Oxidation of Air Pollutants by Photogenerated Active Oxygen Species 124
   8.2.2 Photocatalytic Reactions of Volatile Hydrocarbons 125
   8.2.3 Photocatalytic Reactions of Halogenated Hydrocarbons 136
   8.2.4 Nitrogen Oxides (Nox) 143
   8.3 Development of Air Purifying Materials Based on Photocatalyst 147
   8.3.1 Immobilization of Powder Photocatalysts 147
   8.3.2 Preparation of Air-purifying Materials 148
   8.3.3 Performance Characteristics of Air-purifying Materials 149
   8.4 Application of Photocatalysis to Cleaning of Atmospheric Environment 151
   8.4.1 Passive Purification of Polluted Air 151
   8.4.2 Active Air Purification of Closed Space 153
   8.5 Summary 154
   References 155
   9 Water Purification - Degradation of Aqueous Pollutant and Application to Water Treatment 157
   9.1 Introduction 157
   9.2 Photocatalytic Characteristics of Titanium Dioxide 157
   9.3 Photocatalytic Degradation of Pollutant 160
   9.3.1 Volatile Organohalide Compound 160
   9.3.2 Pesticides 162
   9.3.3 Other Organic Compounds 164
   9.3.4 Environmental Hormones (Endocrine Disruptors) 165
   9.4 Enhancement of Degradation Rate 166
   9.4.1 Pt-loading 166
   9.4.2 Addition of H2O2 167
   9.4.3 Ozone 169
   9.4.4 Increase in Adsorption 169
   9.5 Solar System for Water Treatment 171
   9.6 Immobilization of TiO2 and Instrumentation 171
   9.7 Conclusion and Outlook 172
   References 172
   10 Second-generation TiO2 Photocatalysts Able to Initiate Reactions Under Visible Light Irradiation 175
   10.1 Introduction 175
   10.2 Experimental Section 175
   10.3 Results and Discussion 176
   10.4 Conclusion 182
   References 182
Ⅲ Application to Photoenergy Conversion
   11 Photocatalytic Organic Syntheses Using Semiconductor Particles 185
   11.1 Introduction 185
   11.2 Principle of Photocatalysis by Semiconductor Particles 186
   11.3 Photocatalytic Reactions by Semiconductor Suspension 187
   11.4 Redox Combined Photocatalytic Processes for Nitrogen-containing Substrates 189
   11.5 Further Development to Stereoselective Organic Synthesis of Nitrogen-containing Compounds 191
   11.6 Introduction of Oxygen Atoms into Organic Compounds 194
   11.6.1 Stereospecific Epoxidation of 2-hexene on Photoirradiated TiO2 Powders Using Molecular Oxygen as Oxidant 195
   11.6.2 Selective Oxidation of Naphthalene by Molecular Oxygen and Water Using TiO2 Photocatalysts 196
   11.6.3 Photocatalytic Oxygenation: Summary 198
   11.7 Concluding Remarks 199
   References 199
   12 Sonophotocatalysis - Joint System of Sonochemical and Photocatalytic Reactions 203
   12.1 Introduction - What is Sonophotocatalysis? 203
   12.2 Utilization of Sonophotocatalytic Reaction 204
   12.2.1 Sonophotocatalysis of Water 204
   12.2.2 Sonophotocatalysis of Artificial Seawater 216
   12.2.3 Sonophotocatalyses of Organic Compounds 219
   12.3 Conclusion and Future Scopes 220
   References 221
   13 Gas-phase Water Photolysis by NaOH-coated Photocatalysts 223
   13.1 Introduction 223
   13.2 Water Photolysis by Pt/TiO2 224
   13.3 Water Photolysis by Metallized Semiconductor Powders 226
   13.3.1 Gas-phase Water Photolysis by NaOH-coating 226
   13.3.2 Factors Influencing Yield of Water Photolysis 229
   13.4 Concluding Remarks 233
   References 234
   14 Water Photolysis by TiO2 Particles - Significant Effect of Na2CO3 Addition on Water Splitting 235
   14.1 Introduction 235
   14.2 Significant Effect of Carbonate Salt Addition on Water Splitting from Pt/TiO2 Water Suspension 236
   14.3 Role of Carbonate Salts on Water Splitting and Reaction Mechanism 240
   14.4 Effective Screening of Active Photocatalysts for Water Splitting Using Na2CO3 Addition Method 242
   14.5 Solar Hydrogen Production Using Na2CO3 Addition Method 246
   14.6 Conclusion 248
   References 248
   15 Water Photolysis by Titanates with Tunnel Structures 249
   15.1 Water Photolysis by RuO2/BaTi4O9 with Pentagonal Prism Tunnel Structure 250
   15.2 Water Photolysis by RuO2/N2Ti6O13 with Rectangular Tunnel Structure 257
   References 260
   16 Water Photolysis by Layered Compounds 261
   16.1 Introduction 261
   16.2 Layered Oxides of Transition Metals 261
   16.3 K4Nb6O17 263
   16.3.1 Structure and Physico-chemical Properties 263
   16.3.2 Photocatalytic Overall Water Splitting 265
   16.3.3 Structure of Ni-loaded K4Nb6O17 and Reaction Mechanism 267
   16.4 Perovskite-related Layered Oxides 268
   16.5 Summary 276
   References 276
   17 Splitting of Water by Combining Two Photocatalytic Reactions via Quinone Redox Couple Dissolved in Oil Phase: Artificial Photosynthesis 279
   17.1 Introduction 279
   17.2 Strategy for Water Splitting by Mimicking Photosynthesis 280
   17.3 Photocatalytic Hydrogen and Oxygen Evolution in Separate Systems 281
   17.3.1 Photooxidation of Water Using TiO2 Particles 282
   17.3.2 Photoreduction of Water Using Pt-loaded TiO2 Particles 285
   17.4 Approaches to Electrochemical and Chemical Combinations of Two Photocatalytic Reactions 286
   17.5 Splitting of Water by a Combination of Two Photocatalytic Reactions via DDQ/DDHQ 289
   17.6 Conclusions 291
   References 291
   18 Sensitization by Metal Complexes Towards Future Artificial Photosynthesis 293
   18.1 Introduction 293
   18.2 Photoinduced Hydrogen Evolution in Homogeneous Four-component Systems 294
   18.2.1 Photoinduced Hydrogen Evolution with Porphyrin Metal Complexes and Hydrogenase 294
   18.2.2 Photoinduced Hydrogen Evolution Using Cytochrome c3 as Electron Carrier 296
   18.2.3 Photoinduced Hydrogen Evolution Using Chemically-modified Chlorophyll 298
   18.3 Photoinduced Hydrogen Evolution with Viologen-linked orphyrin Metal Complexes 299
   18.3.1 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Cationic Porphyrin Metal Complexes and Hydrogenase 300
   18.3.2 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Anionic Porphyrin and Hydrogenase 302
   18.4 Other Systems for Hydrogen Evolution Using Natural Photosensitizers 303
   18.5 Conclusion 306
   References 306
   19 Catalyses and Sensitization for Water Reaction Towards Future Artificial Photosynthesis 309
   19.1 Introduction 309
   19.2 Design of Artificial Photosynthesis 309
   19.2.1 Photosynthesis and Energy Cycle on Earth 309
   19.2.2 Artificial Photosynthesis 311
   19.3 Molecular Catalysts for Water Reactions and CO2 Reduction 312
   19.3.1 Catalysis in Water Oxidation 312
   19.3.2 Catalysis in Proton Reduction 316
   19.3.3 Catalysis in Carbon Dioxide Reduction 316
   19.4 Photoexcited State Electron Transfer in Heterogeneous Phases 317
   19.5 Sensitization of TiO2 Powders and Films in Water 320
   19.6 Conclusion and Future Prospects 322
   References 323
   20 Photoelectric TiO2 Solar Cells 325
   20.1 Introduction 325
   20.2 Dye-sensitization of Semiconductors 325
   20.2.1 History 325
   20.2.2 Innovative Dye-sensitized Solar Cells 327
   20.2.3 Fabrication of Dye-sensitized TiO2 Solar Cells 328
   20.2.4 Characterization of Innovative Dye-sensitized TiO2 Solar Cells 329
   20.3 Electron-transfer Sensitization on TiO2 330
   20.3.1 Bonding Structure of Dye on TiO2 Influencing ηei 331
   20.3.2 Dynamics in Electron Transfer from Photoexcited Dye 2 to TiO2 331
   20.3.3 Electron Transfer Between Oxidized Dye 2 and I-/I3- Electrolyte 332
   20.4 Electron Transport in Porous TiO2 Electrodes 333
   20.4.1 Electron Transport Models for High ηet 334
   20.4.2 Time-course Analysis 335
   20.4.3 Frequency Analysis 335
   20.4.4 Effect of TiO2 Films on Performance of Dye-sensitized Solar Cells 337
   20.5 Sensitization Dyes 337
   20.5.1 Ruthenium Polypyridine Complexes 337
   20.5.2 Other Metal Complexes 339
   20.5.3 Organic Dyes 340
   20.5.4 Natural Dyes 342
   20.6 Recent Research Progress in Dye-sensitized Solar Cells 343
   20.7 Future Work on Dye-sensitized Solar Cells 344
   20.8 Concluding Remarks 345
   References 346
Index 349
List of Contributors
Preface
   1 Introduction 1
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼