close
1.

図書

図書
Thomas Barkowsky
出版情報: Berlin ; Tokyo : Springer, c2002  x, 174 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2541 . Lecture notes in artificial intelligence
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
Mental Construction of Spatial Knowledge: An Example / 1.1.2:
Theses and Assumptions / 1.2:
Knowledge Construction and Human Memory / 1.2.1:
Characteristics of Geographic Knowledge / 1.2.2:
Spatial Knowledge Organization in Long-Term Memory / 1.2.3:
Visual Mental Images and Diagrammatic Reasoning / 1.2.4:
Research Questions and Goals / 1.3:
Research Questions / 1.3.1:
Goals / 1.3.2:
Approach: Experimental Computational Modeling / 1.4:
Computational Cognition / 1.4.1:
Building Computational Models / 1.4.2:
Modeling as Experimental Approach / 1.4.3:
Organization of this Thesis / 1.5:
State of the Art / 2:
Spatial Knowledge Conceptions: Cognitive Maps and Other Metaphors / 2.1:
Rubber Sheet Maps, Cognitive Atlases, Collages, and Geographic Information Systems / 2.1.1:
Spatial Mental Models / 2.1.3:
Other Conceptions / 2.1.4:
Human Memory / 2.2:
Working Memory / 2.2.1:
Long-Term Memory / 2.2.2:
Interacting Memory Systems in Mental Imagery / 2.2.3:
Mental Imagery / 2.3:
The Imagery Debate / 2.3.1:
Psychological and Neuroscientific Foundations / 2.3.2:
The Kosslyn Models / 2.3.3:
The 1980 Model / 2.3.3.1:
The 1994 Model / 2.3.3.2:
Spatial Reasoning / 2.4:
Topology / 2.4.1:
Orientation / 2.4.2:
Distance / 2.4.3:
Shape / 2.4.4:
Computational Geometry / 2.4.5:
Diagrammatic Reasoning / 2.5:
Propositional vs. Analogical Knowledge Representation / 2.5.1:
Types of Diagrammatic Reasoning Systems / 2.5.2:
Examples for Diagrammatic Reasoning Architectures / 2.5.3:
DEPIC-2D / 2.5.3.1:
WHISPER / 2.5.3.2:
Computational Imagery / 2.5.3.3:
Summary / 2.6:
MIRAGE - Developing the Model / 3:
Characteristics of the Model / 3.1:
Evaluating the Working Memory Representation / 3.1.1:
MIRAGE - Outline of the Model / 3.2:
Types of Entities and Spatial Relations in MIRAGE / 3.3:
Entities / 3.3.1:
Relations / 3.3.2:
Subsystems, Structures, and Processes / 3.4:
Long-Term Memory Activation / 3.4.1:
Spatial Knowledge Fragments / 3.4.1.1:
The Hierarchical Long-Term Memory Representation / 3.4.1.2:
The Access Process / 3.4.1.3:
The Activated Long-Term Memory Representation / 3.4.1.4:
The Construction Process / 3.4.1.5:
Visual Mental Image Construction / 3.4.2:
The Enriched Representation / 3.4.2.1:
The Conversion Process / 3.4.2.2:
The Visual Buffer / 3.4.2.3:
The Visualization Process / 3.4.2.4:
Image Inspection / 3.4.3:
The Inspection Result / 3.4.3.1:
The Inspection Process / 3.4.3.2:
Visual Mental Image Construction in Detail / 4:
A More Demanding Scenario / 4.1:
Diagrammatic Representations of Lean Knowledge / 4.2:
Consequences for Image Construction / 4.3:
Relaxation of Spatial Constraints / 4.3.1:
Completion of Qualitative Spatial Relations / 4.3.2:
Interpretation of Qualitative Spatial Relations / 4.3.3:
Image Revision Strategies in MIRAGE / 4.4:
Unstable Images / 4.4.1:
Omission of Facts / 4.4.2:
Revision of Relational Completion / 4.4.3:
Variation of Relational Completion / 4.4.3.1:
Relaxation of Relational Completion / 4.4.3.2:
Revision of Image Specification / 4.4.4:
Depicting Qualitative Spatial Relations / 4.4.4.1:
Depicting Unspecified Spatial Relations / 4.4.4.2:
MIRAGE Implementation / 4.5:
Computational Tools for Modeling: SIMSIS / 5.1:
The Idea of SIMSIS / 5.1.1:
The Aspect Map Model / 5.1.1.1:
Modeling Aspect Maps in SIMSIS / 5.1.1.2:
Depictions, Scenarios, and Interpretations / 5.1.2:
SIMSIS Pictures / 5.1.2.1:
SIMSIS Facts and Scenarios / 5.1.2.2:
SIMSIS Interpretations and Meaning Systems / 5.1.2.3:
Realization of the Model / 5.2:
MIRAGE Structures / 5.2.1:
Entities, Relations, and Spatial Knowledge Fragments / 5.2.1.1:
The Long-Term Memory Representations / 5.2.1.2:
MIRAGE Processes / 5.2.1.3:
The Long-Term Memory Activation Processes / 5.2.2.1:
The Image Construction Processes / 5.2.2.2:
Operation and Behavior of MIRAGE / 5.2.2.3:
Conclusion and Outlook / 6:
Results and Discussion / 6.1:
Reflecting the Theses / 6.2.1:
Spatial Knowledge Construction / 6.2.1.1:
Underdeterminacy in Long-Term Memory / 6.2.1.2:
Fragmentation and Hierarchical Organization / 6.2.1.3:
Visual Mental Imagery / 6.2.1.4:
The Parameters of the Model / 6.2.2:
Explicit Parameters / 6.2.2.1:
Implicit Parameters / 6.2.2.2:
Conclusions / 6.2.3:
Future Work / 6.3:
Extending MIRAGE / 6.3.1:
Geographic Entities and Spatial Relations / 6.3.1.1:
Partially Aggregated Knowledge Structures / 6.3.1.2:
Mental Imagery Functionality / 6.3.1.3:
Parameters of MIRAGE / 6.3.1.4:
Empirical Investigations / 6.3.2:
Use of Default Knowledge / 6.3.2.1:
Control of Image Construction / 6.3.2.2:
Processing Capacity for Mental Images / 6.3.2.3:
Use of Chunking Facilities / 6.3.2.4:
Combination of Propositional and Image-Based Reasoning / 6.3.2.5:
Application Perspectives / 6.3.3:
Adequate Presentation of Visual Information / 6.3.3.1:
External Support of Reasoning in Mental Images / 6.3.3.2:
Bibliography
Index
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
2.

図書

図書
A.A. Martynyuk
出版情報: New York : Marcel Dekker, c2002  x, 301 p. ; 24 cm
シリーズ名: Monographs and textbooks in pure and applied mathematics ; 246
所蔵情報: loading…
目次情報: 続きを見る
Preface
Preliminaries / 1:
Introduction / 1.1:
Nonlinear Continuous Systems / 1.2:
General equations of nonlinear dynamics / 1.2.1:
Perturbed motion equations / 1.2.2:
Definitions of Stability / 1.3:
Scalar, Vector and Matrix-Valued Liapunov Functions / 1.4:
Auxiliary scalar functions / 1.4.1:
Comparison functions / 1.4.2:
Vector Liapunov functions / 1.4.3:
Matrix-valued metafunction / 1.4.4:
Comparison Principle / 1.5:
Liapunov-Like Theorems / 1.6:
Matrix-valued function and its properties / 1.6.1:
A version of the original theorems of Liapunov / 1.6.2:
Advantages of Cone-Valued Liapunov Functions / 1.7:
Stability with respect to two measures / 1.7.1:
Stability analysis of large scale systems / 1.7.2:
Liapunov's Theorems for Large Scale Systems in General / 1.8:
Why are matrix-valued Liapunov functions needed? / 1.8.1:
Stability and instability of large scale systems / 1.8.2:
Notes / 1.9:
Qualitative Analysis of Continuous Systems / 2:
Nonlinear Systems with Mixed Hierarchy of Subsystems / 2.1:
Mixed hierarchical structures / 2.2.1:
Hierarchical matrix function structure / 2.2.2:
Structure of hierarchical matrix function derivative / 2.2.3:
Stability and instability conditions / 2.2.4:
Linear autonomous system / 2.2.5:
Examples of third order systems / 2.2.6:
Dynamics of the Systems with Regular Hierarchy Subsystems / 2.3:
Ikeda-Siljak hierarchical decomposition / 2.3.1:
Hierarchical Liapunov's matrix-valued functions / 2.3.2:
Linear nonautonomous systems / 2.3.3:
Stability Analysis of Large Scale Systems / 2.4:
A class of large scale systems / 2.4.1:
Construction of nondiagonal elements of matrix-valued function / 2.4.2:
Test for stability analysis / 2.4.3:
Linear large scale system / 2.4.4:
Discussion and numerical example / 2.4.5:
Overlapping Decomposition and Matrix-Valued Function Construction / 2.5:
Dynamical system extension / 2.5.1:
Liapunov matrix-valued function construction / 2.5.2:
Test for stability of system (2.5.1) / 2.5.3:
Numerical example / 2.5.4:
Exponential Polystability Analysis of Separable Motions / 2.6:
Statement of the Problem / 2.6.1:
A method for the solution of the problem / 2.6.2:
Autonomous system / 2.6.3:
Polystability by the first order approximations / 2.6.4:
Integral and Lipschitz Stability / 2.7:
Definitions / 2.7.1:
Sufficient conditions for integral and asymptotic integral stability / 2.7.2:
Uniform Lipschitz stability / 2.7.3:
Qualitative Analysis of Discrete-Time Systems / 2.8:
Systems Described by Difference Equations / 3.1:
Matrix-Valued Liapunov Functions Method / 3.3:
Auxiliary results / 3.3.1:
Comparison principle application / 3.3.2:
General theorems on stability / 3.3.3:
Large Scale System Decomposition / 3.4:
Stability and Instability of Large Scale Systems / 3.5:
Auxiliary estimates / 3.5.1:
Autonomous Large Scale Systems / 3.5.2:
Hierarchical Analysis of Stability / 3.7:
Hierarchical decomposition and stability conditions / 3.7.1:
Novel tests for connective stability / 3.7.2:
Controlled Systems / 3.8:
Nonlinear Dynamics of Impulsive Systems / 3.9:
Large Scale Impulsive Systems in General / 4.1:
Notations and definitions / 4.2.1:
Sufficient stability conditions / 4.2.2:
Instability conditions / 4.2.4:
Hierarchical Impulsive Systems / 4.3:
Analytical Construction of Liapunov Function / 4.4:
Structure of hierarchical matrix-valued Liapunov function / 4.4.1:
Structure of the total derivative of hierarchical matrix-valued function / 4.4.2:
Uniqueness and Continuability of Solutions / 4.5:
On Boundedness of the Solutions / 4.6:
Novel Methodology for Stability / 4.7:
Stability conditions / 4.7.1:
Applications / 4.8:
Estimations of Asymptotic Stability Domains in General / 5.1:
A fundamental Zubov's result / 5.2.1:
Some estimates for quadratic matrix-valued functions / 5.2.2:
Algorithm of constructing a point network covering boundary of domain E / 5.2.3:
Numerical realization and discussion of the algorithm / 5.2.4:
Illustrative examples / 5.2.5:
Construction of Estimate for the Domain E of Power System / 5.3:
Oscillations and Stability of Some Mechanical Systems / 5.4:
Three-mass systems / 5.4.1:
Nonautonomous oscillator / 5.4.2:
Absolute Stability of Discrete Systems / 5.5:
References / 5.6:
Subject Index
Preface
Preliminaries / 1:
Introduction / 1.1:
3.

図書

図書
Nam-Trung Nguyen, Steven T. Wereley
出版情報: Boston : Artech House, c2002  xiii, 471 p. ; 24 cm
シリーズ名: MEMS--Microelectromechanical systems series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
Microfluidics--The Emerging Technology / 1.1:
What Is Microfluidics? / 1.1.1:
Commercial Aspects / 1.1.2:
Scientific Aspects / 1.1.3:
Milestones of Microfluidics / 1.2:
Device Development / 1.2.1:
Technology Development / 1.2.2:
Organization of the Book / 1.3:
References
Fluid Mechanics Theory / Chapter 2:
Intermolecular Forces / 2.1:
The Three States of Matter / 2.1.2:
Continuum Assumption / 2.1.3:
Continuum Fluid Mechanics at Small Scales / 2.2:
Gas Flows / 2.2.1:
Liquid Flows / 2.2.2:
Boundary Conditions / 2.2.3:
Parallel Flows / 2.2.4:
Low Reynolds Number Flows / 2.2.5:
Entrance Effects / 2.2.6:
Surface Tension / 2.2.7:
Molecular Approaches / 2.3:
MD / 2.3.1:
DSMC Technique / 2.3.2:
Electrokinetics / 2.4:
Electro-Osmosis / 2.4.1:
Electrophoresis / 2.4.2:
Dielectrophoresis / 2.4.3:
Conclusion / 2.5:
Problems
Fabrication Techniques for Microfluidics / Chapter 3:
Basic Microtechniques / 3.1:
Photolithography / 3.1.1:
Additive Techniques / 3.1.2:
Subtractive Techniques / 3.1.3:
Pattern Transfer Techniques / 3.1.4:
Silicon-Based Micromachining Techniques / 3.2:
Silicon Bulk Micromachining / 3.2.1:
Silicon Surface Micromachining / 3.2.2:
Polymer-Based Micromachining Techniques / 3.3:
Thick Resist Lithography / 3.3.1:
Polymeric Surface Micromachining / 3.3.2:
Soft Lithography / 3.3.3:
Microstereo Lithography / 3.3.4:
Micromolding / 3.3.5:
Other Micromachining Techniques / 3.4:
Assembly and Packaging of Microfluidic Devices / 3.4.1:
Wafer Level Assembly and Packaging / 3.5.1:
Device Level Packaging / 3.5.2:
Biocompatibility / 3.6:
Material Response / 3.6.1:
Tissue and Cellular Response / 3.6.2:
Biocompatibility Tests / 3.6.3:
Experimental Flow Characterization / Chapter 4:
Pointwise Methods / 4.1:
Full-Field Methods / 4.1.2:
Overview of Micro-PIV / 4.2:
Fundamental Physics Considerations of Micro-PIV / 4.2.1:
Special Processing Methods for Micro-PIV Recordings / 4.2.2:
Advanced Processing Methods Suitable for Both Micro/Macro-PIV Recordings / 4.2.3:
Micro-PIV Examples / 4.3:
Flow in a Microchannel / 4.3.1:
Flow in a Micronozzle / 4.3.2:
Flow Around a Blood Cell / 4.3.3:
Flow in Microfluidic Biochip / 4.3.4:
Conclusions / 4.3.5:
Extensions of the Micro-PIV technique / 4.4:
Microfluidic Nanoscope / 4.4.1:
Microparticle Image Thermometry / 4.4.2:
Infrared Micro-PIV / 4.4.3:
Particle Tracking Velocimetry / 4.4.4:
Microfluidics for External Flow Control / Chapter 5:
Velocity and Turbulence Measurement / 5.1:
Velocity Sensors / 5.1.1:
Shear Stress Sensors / 5.1.2:
Turbulence Control / 5.2:
Microflaps / 5.2.1:
Microballoon / 5.2.2:
Microsynthetic Jet / 5.2.3:
Microair Vehicles / 5.3:
Fixed-Wing MAV / 5.3.1:
Flapping-Wing MAV / 5.3.2:
Microrotorcraft / 5.3.3:
Microrockets / 5.3.4:
Microfluidics for Internal Flow Control: Microvalves / Chapter 6:
Design Considerations / 6.1:
Actuators / 6.1.1:
Valve Spring / 6.1.2:
Valve Seat / 6.1.3:
Pressure Compensation Design / 6.1.4:
Pneumatic Valves / 6.2:
Pneumatic Actuators / 6.2.1:
Design Examples / 6.2.2:
Thermopneumatic Valves / 6.3:
Thermopneumatic Actuators / 6.3.1:
Thermomechanical Valves / 6.3.2:
Solid-Expansion Valves / 6.4.1:
Bimetallic Valves / 6.4.2:
Shape-Memory Alloy Valves / 6.4.3:
Piezoelectric Valves / 6.5:
Piezoelectric Actuators / 6.5.1:
Electrostatic Valves / 6.5.2:
Electrostatic Actuators / 6.6.1:
Electromagnetic Valves / 6.6.2:
Electromagnetic Actuators / 6.7.1:
Electrochemical Valves / 6.7.2:
Capillary-Force Valves / 6.9:
Capillary-Force Actuators / 6.9.1:
Microfluidics for Internal Flow Control: Micropumps / 6.9.2:
Mechanical Pumps / 7.1:
Check-Valve Pumps / 7.1.1:
Peristaltic Pumps / 7.1.3:
Valveless Rectification Pumps / 7.1.4:
Rotary Pumps / 7.1.5:
Centrifugal Pumps / 7.1.6:
Ultrasonic Pumps / 7.1.7:
Nonmechanical Pumps / 7.2:
Electrical Pumps / 7.2.1:
Surface Tension Driven Pumps / 7.2.2:
Chemical Pumps / 7.2.3:
Magnetic Pumps / 7.2.4:
Scaling Law for Micropumps / 7.3:
Microfluidics for Internal Flow Control: Microflow Sensors / Chapter 8:
Nonthermal Flow Sensors / 8.1:
Differential Pressure Flow Sensors / 8.1.1:
Drag Force Flow Sensors / 8.1.2:
Lift Force Flow Sensors / 8.1.3:
Coriolis Flow Sensors / 8.1.4:
Electrohydrodynamic Flow Sensors / 8.1.5:
Thermal Flow Sensors / 8.2:
Thermoresistive Flow Sensors / 8.2.1:
Thermocapacitive Flow Sensors / 8.2.3:
Thermoelectric Flow Sensors / 8.2.4:
Thermoelectronic Flow Sensors / 8.2.5:
Pyroelectric Flow Sensors / 8.2.6:
Frequency Analog Sensors / 8.2.7:
Microfluidics for Life Sciences and Chemistry / Chapter 9:
Microfilters / 9.1:
Microneedles / 9.1.1:
Micromixers / 9.2.1:
Microreactors / 9.3.1:
Microdispensers / 9.4.1:
Microseparators / 9.5.1:
Gas Chromatography / 9.6.1:
Liquid Chromatography / 9.6.3:
List of Symbols / 9.6.4:
Resources for Microfluidics Research / Appendix B:
Abbreviations of Different Plastics / Appendix C:
Linear Elastic Deflection Models / Appendix D:
About the Authors
Index
Preface
Acknowledgments
Introduction / Chapter 1:
4.

図書

図書
Iwao Teraoka
出版情報: New York : Wiley, c2002  xv, 338 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
Chain Architecture / 1.1.1:
Models of a Linear Polymer Chain / 1.1.2:
Real Chains and Ideal Chains / 1.1.3:
Ideal Chains / 1.2:
Random Walk in One Dimension / 1.2.1:
Random Walks in Two and Three Dimensions / 1.2.2:
Dimensions of Random-Walk Chains / 1.2.3:
Problems / 1.2.4:
Gaussian Chain / 1.3:
What is a Gaussian Chain? / 1.3.1:
Dimension of a Gaussian Chain / 1.3.2:
Entropy Elasticity / 1.3.3:
Real Chains / 1.3.4:
Excluded Volume / 1.4.1:
Dimension of a Real Chain / 1.4.2:
Self-Avoiding Walk / 1.4.3:
Semirigid Chains / 1.4.4:
Examples of Semirigid Chains / 1.5.1:
Wormlike Chain / 1.5.2:
Branched Chains / 1.5.3:
Architecture of Branched Chains / 1.6.1:
Dimension of Branched Chains / 1.6.2:
Molecular Weight Distribution / 1.6.3:
Average Molecular Weights / 1.7.1:
Typical Distributions / 1.7.2:
Concentration Regimes / 1.7.3:
Concentration Regimes for Linear Flexible Polymers / 1.8.1:
Concentration Regimes for Rodlike Molecules / 1.8.2:
Thermodynamics of Dilute Polymer Solutions / 1.8.3:
Polymer Solutions and Thermodynamics / 2.1:
Flory-Huggins Mean-Field Theory / 2.2:
Model / 2.2.1:
Free Energy, Chemical Potentials, and Osmotic Pressure / 2.2.2:
Dilute Solutions / 2.2.3:
Coexistence Curve and Stability / 2.2.4:
Polydisperse Polymer / 2.2.5:
Phase Diagram and Theta Solutions / 2.2.6:
Phase Diagram / 2.3.1:
Theta Solutions / 2.3.2:
Coil-Globule Transition / 2.3.3:
Solubility Parameter / 2.3.4:
Static Light Scattering / 2.3.5:
Sample Geometry in Light-Scattering Measurements / 2.4.1:
Scattering by a Small Particle / 2.4.2:
Scattering by a Polymer Chain / 2.4.3:
Scattering by Many Polymer Chains / 2.4.4:
Correlation Function and Structure Factor / 2.4.5:
Structure Factor of a Polymer Chain / 2.4.6:
Light Scattering of a Polymer Solution / 2.4.7:
Other Scattering Techniques / 2.4.8:
Size Exclusion Chromatography and Confinement / 2.4.9:
Separation System / 2.5.1:
Plate Theory / 2.5.2:
Partitioning of Polymer with a Pore / 2.5.3:
Calibration of SEC / 2.5.4:
SEC With an On-Line Light-Scattering Detector / 2.5.5:
Appendixes / 2.5.6:
Review of Thermodynamics for Colligative Properties in Nonideal Solutions / 2.A:
Osmotic Pressure / 2.A.1:
Vapor Pressure Osmometry / 2.A.2:
Another Approach to Thermodynamics of Polymer Solutions / 2.B:
Correlation Function of a Gaussian Chain / 2.C:
Dynamics of Dilute Polymer Solutions / 3:
Dynamics of Polymer Solutions / 3.1:
Dynamic Light Scattering and Diffusion of Polymers / 3.2:
Measurement System and Autocorrelation Function / 3.2.1:
Autocorrelation Function / 3.2.2:
Dynamic Structure Factor of Suspended Particles / 3.2.3:
Diffusion of Particles / 3.2.4:
Diffusion and DLS / 3.2.5:
Dynamic Structure Factor of a Polymer Solution / 3.2.6:
Hydrodynamic Radius / 3.2.7:
Particle Sizing / 3.2.8:
Diffusion From Equation of Motion / 3.2.9:
Diffusion as Kinetics / 3.2.10:
Concentration Effect on Diffusion / 3.2.11:
Diffusion in a Nonuniform System / 3.2.12:
Viscosity / 3.2.13:
Viscosity of Solutions / 3.3.1:
Measurement of Viscosity / 3.3.2:
Intrinsic Viscosity / 3.3.3:
Flow Field / 3.3.4:
Normal Modes / 3.3.5:
Rouse Model / 3.4.1:
Normal Coordinates / 3.4.2:
Equation of Motion for the Normal Coordinates in the Rouse Model / 3.4.3:
Results of the Normal-Coordinates / 3.4.4:
Results for the Rouse Model / 3.4.5:
Zimm Model / 3.4.6:
Dynamic Structure Factor / 3.4.7:
Motion of Monomers / 3.4.9:
Dynamics of Rodlike Molecules / 3.4.10:
Diffusion Coefficients / 3.5.1:
Rotational Diffusion / 3.5.2:
Dynamics of Wormlike Chains / 3.5.3:
Appendices / 3.5.6:
Evaluation of [left angle bracket]q[subscript i superscript 2 right angle bracket subscript eq] / 3.A:
Evaluation of [left angle bracket]exp[ik [middle dot] (Aq - Bp) right angle bracket] / 3.B:
Initial Slope of S[subscript 1](k,t) / 3.C:
Thermodynamics and Dynamics of Semidilute Solutions / 4:
Semidilute Polymer Solutions / 4.1:
Thermodynamics of Semidilute Polymer Solutions / 4.2:
Blob Model / 4.2.1:
Scaling Theory and Semidilute Solutions / 4.2.2:
Partitioning with a Pore / 4.2.3:
Dynamics of Semidilute Solutions / 4.2.4:
Cooperative Diffusion / 4.3.1:
Tube Model and Reptation Theory / 4.3.2:
References / 4.3.3:
Further Readings
Delta Function / A1:
Fourier Transform / A2:
Integrals / A3:
Series / A4:
Index
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
5.

図書

図書
Alexander Vasilʹev
出版情報: Berlin ; Tokyo : Springer-Verlag, c2002  ix, 211 p. ; 24 cm
シリーズ名: Lecture notes in mathematics ; 1788
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
Definition / 2.1.1:
Properties / 2.1.2:
Examples / 2.1.3:
Grötzsch lemmas / 2.1.4:
Exercises / 2.1.5:
Reduced moduli and capacity / 2.2:
Reduced modulus / 2.2.1:
Capacity and transfinite diameter / 2.2.2:
Digons, triangles and their reduced moduli / 2.2.3:
Elliptic functions and integrals / 2.3:
Elliptic functions / 2.3.1:
Elliptic integrals and JacobiÆs functions / 2.3.2:
Some frequently used moduli / 2.4:
Moduli of doubly connected domains / 2.4.1:
Moduli of quadrilaterals / 2.4.2:
Reduced moduli / 2.4.3:
Reduced moduli of digons / 2.4.4:
Symmetrization and polarization / 2.5:
Circular symmetrization / 2.5.1:
Polarization / 2.5.2:
Quadratic differentials on Riemann surfaces / 2.6:
Riemann surfaces / 2.6.1:
Quadratic differentials / 2.6.2:
Local trajectory structure / 2.6.3:
Trajectory structure in the large / 2.6.4:
Free families of homotopy classes of curves and extremal par- titions / 2.7:
The case of ring domains and quadrangles / 2.7.1:
The case of circular, strip domains, and triangles / 2.7.2:
Continuous and differentiable moduli / 2.7.3:
Moduli in Extremal Problems for Conformal Mapping / 3:
Classical extremal problems for univalent functions / 3.1:
Koebe set, growth, distortion / 3.1.1:
Lower boundary curve for the range of ( / 3.1.2:
Special moduli / 3.1.3:
Upper boundary curve for the range of ( / 3.1.4:
Two-point distortion for univalent functions / 3.2:
Bounded univalent functions / 3.2.1:
Elementary estimates / 3.3.1:
Boundary curve for the range of ( / 3.3.2:
Montel functions / 3.4:
Covering theorems / 3.4.1:
Distortion at the points of normalization / 3.4.2:
The range of ( / 3.4.3:
Univalent functions with the angular derivatives / 3.5:
Estimates of the angular derivatives / 3.5.1:
Moduli in Extremal Problems for Quasiconformal Mapping / 3.5.2:
General information and simple extremal problems / 4.1:
Quasiconformal mappings of Riemann surfaces / 4.1.1:
Growth and Hölder continuity / 4.1.2:
Quasiconformal motion of a quadruple of points / 4.1.3:
Two-point distortion for quasiconformal maps of the plane / 4.2:
Special differentials and extremal partitions / 4.2.1:
Quasisymmetric functions and the extremal maps / 4.2.2:
Boundary parameterization / 4.2.3:
The class QK. Estimations of functionals / 4.2.4:
Conclusions and unsolved problems / 4.2.5:
Two-point distortion for quasiconformal maps of the unit disk / 4.3:
Extremal problems / 4.3.1:
Moduli on Teichmüller Spaces / 5:
Some information on Teichmüller spaces / 5.1:
Moduli on Teichmüller spaces / 5.2:
Variational formulae / 5.2.1:
Three lemmas / 5.2.2:
Harmonic properties of the moduli / 5.3:
Descriptions of the Teichmüller metric / 5.4:
Invariant metrics / 5.5:
References
List of symbols
Index
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
6.

図書

図書
Tod A. Laursen
出版情報: Berlin ; Tokyo : Springer, c2002  xv, 454 p. ; 24 cm
シリーズ名: Engineering online library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
Useful Background for this Presentation / 1.2:
Overview / 1.3:
Finite Element Formulations in Nonlinear Solid Mechanics / 2:
Initial/Boundary Value Problems in the Kinematically Lin-ear Regime / 2.1:
Strong Form of the EBVP / 2.1.1:
Weak Form of the IBVP / 2.1.2:
The IBVP in the Finite Strain Case / 2.2:
Notation and Problem Formulation / 2.2.1:
Finite Strain Kinematics / 2.2.2:
Stress Definitions Appropriate for Large Deformations / 2.2.3:
Frame Indifference / 2.2.4:
The Strong Form in Finite Strains / 2.2.5:
The Weak Form in Finite Strains / 2.2.6:
Finite Element Discretization / 2.3:
Discretized Weak Form; Generation of Discrete Non-linear Equations / 2.3.1:
Discrete Nonlinear Equations for the Kinematically Linear Case / 2.3.2:
Solution Strategies for Spatially Discrete Systems / 2.4:
Quasistatics and Incremental Load Methods / 2.4.1:
Dynamics and Global Time Stepping Procedures / 2.4.2:
Local (Constitutive) Time Stepping Procedures / 2.4.3:
Nonlinear Equation Solving / 2.4.4:
Consistent Algorithmic Linearization of Material Re-sponse / 2.4.5:
The Kinematically Linear Contact Problem / 3:
Strong Forms in Linearized Frictionless Contact / 3.1:
The Signorini Problem: Contact with a Rigid Obstacle / 3.1.1:
The Two Body Contact Problem / 3.1.2:
Weak Statements of the Contact Problem / 3.2:
Variational Inequalities / 3.2.1:
The Quasistatic Elastic Case: Contact as a Problem of Constrained Optimization / 3.2.2:
Methods of Constraint Enforcement / 3.3:
Classical Lagrange Multiplier Methods / 3.3.1:
Penalty Methods / 3.3.2:
Augmented Lagrangian Methods / 3.3.3:
Inclusion of Friction into the Problem Description / 3.4:
Friction Kinematics and Traction Measures / 3.4.1:
Unregularized Coulomb Friction Laws / 3.4.2:
Regularization of Friction / 3.4.3:
Variational Statements Including Friction / 3.4.4:
Nonlocal Frictional Descriptions / 3.4.5:
Continuum Mechanics of Large Deformation Contact / 4:
Two Body Contact Problem Definition / 4.1:
Local Momentum Balances / 4.1.1:
Initial and Boundary Conditions / 4.1.2:
Contact Constraints in Large Deformations / 4.2:
The Gap Function as Defined by Closest Point Projection / 4.2.1:
Frictional Kinematics on Interfaces / 4.2.2:
Frame Indifference of Contact Rate Variables / 4.2.3:
Coulomb Friction in Large Sliding / 4.2.4:
Summary: Strong Form of the Large Deformation Contact Problem / 4.3:
Virtual Work Expressions Incorporating Contact / 4.4:
Contact Virtual Work: The Contact Integral / 4.4.1:
Linearization of Contact Virtual Work / 4.4.2:
Summary: Weak Form of the Large Deformation Con-tact Problem / 4.4.3:
Finite Element Implementation of Contact Interaction / 5:
Finite Dimensional Representation of Contact Interaction / 5.1:
Contact Surface Discretization / 5.1.1:
Numerical Integration of the Contact Integral / 5.1.2:
Contact Detection (Searching) / 5.1.3:
Time Discretization / 5.2:
Global time integration schemes / 5.2.1:
Temporally Discrete Frictional Laws for the Penalty Regularized Case / 5.2.2:
Contact Stiffness and Residual: Penalty Regularized Case / 5.3:
Three dimensional matrix expressions / 5.3.1:
Two dimensional matrix expressions / 5.3.2:
Augmented Lagrangian Constraint Enforcement Algorithms / 5.4:
Uzawa's Method (Method of Multipliers) / 5.4.1:
Algorithmic Symmetrization Using Augmented La-grangians / 5.4.2:
Augmented Lagrangian Discrete Force and Stiffness Expressions / 5.4.3:
Numerical Examples / 5.5:
General Demonstrations of the Computational Frame-work / 5.5.1:
Demonstrations of Augmented Lagrangian Algorith-mic Performance / 5.5.2:
Tribological Complexity in Interface Constitutive Models / 6:
Rate and State Dependent Friction / 6.1:
Motivation / 6.1.1:
One Dimensional Model Development / 6.1.2:
Model Incorporation into Convective Slip Advected Frame / 6.1.3:
Local Time Stepping Algorithm / 6.1.4:
Contact Force Vector and Stiffness Matrix / 6.1.5:
Thermomechanically Coupled Friction on Interfaces / 6.1.6:
Thermally Coupled Problem Definition / 6.2.1:
A Thermodynamically Consistent Friction Model / 6.2.3:
Variational Principle and Finite Element Implemen-tation / 6.2.4:
Thermodynamical Algorithmic Consistency / 6.2.5:
Constitutive Framework for Bulk Continua / 6.3.1:
Thermomechanical Interface Model Framework / 6.3.2:
A Priori Stability Estimates for Dynamic Frictional Contact / 6.3.3:
A New Partitioned Scheme for Thermomechanical Contact / 6.3.4:
Algorithmic Treatment of Contact Conditions According to the Adiabatic Split / 6.3.5:
Energy-Momentum Approaches to Impact Mechanics / 7:
Energy Stability of Traditional Schemes / 7.1:
A Model System / 7.1.1:
The Concept of Energy Stability / 7.1.2:
Influence of Contact Constraints on System Energy / 7.1.3:
Energy-Momentum Methods for Elastodynamics / 7.2:
Conservation Laws / 7.2.1:
Conservative Discretization Schemes / 7.2.2:
Energy-Momentum Algorithmic Treatment of Prictionless Impact / 7.3:
Discrete Contact Constraints / 7.3.1:
Spatial Discretization and Implementation / 7.3.2:
Introduction of Frictional and Bulk Dissipation: Energy Con-sistency / 7.3.3:
Coulomb Friction Model Formulation / 7.4.1:
Local Split of the Coulomb Model / 7.4.2:
Algorithmic Formulation / 7.4.3:
Energy Consistent Treatment of Bulk Inelasticity / 7.4.4:
Numerical Examples With Friction and Inelasticity / 7.4.5:
EM Algorithms Involving a Discontinuous Velocity Update / 7.5:
Temporally Discontinuous Velocity Update / 7.5.1:
Reexamination of Conservation Conditions / 7.5.2:
Contact Constraints / 7.5.3:
Summary of the Algorithm / 7.5.4:
Emerging Paradigms for Contact Surface Discretization / 7.5.5:
Contact Smoothing / 8.1:
An Alternative Variational Framework / 8.1.1:
Smoothing Strategies in Two Dimensions / 8.1.2:
Smoothing Strategies in Three Dimensions / 8.1.3:
Mortar-Finite Element Methods for Contact Description / 8.1.4:
Tied Contact and the Role of Mortar Formulations in Convergence / 8.2.1:
A Mortar-Finite Element Formulation of Frictional Contact / 8.2.2:
Numerical Examples of Mortar Treatment of Frictional Contact / 8.2.3:
References
Index
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
7.

図書

図書
Peter Müller
出版情報: Berlin : Springer, c2002  xiv, 292 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2262
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
The Problem / 1.3:
Modular Correctness / 1.3.1:
The Frame Problem / 1.3.2:
Modular Verification of Type Invariants / 1.3.3:
The Extended State Problem / 1.3.4:
Alias Control / 1.3.5:
Modularity Aspects of Programs, Specifications, and Proofs / 1.4:
Modularity of Programs / 1.4.1:
Modularity of Universal Specifications / 1.4.2:
Modularity of Interface Specifications / 1.4.3:
Modularity of Correctness Proofs / 1.4.4:
Approach, Outline, and Contributions / 1.5:
Approach / 1.5.1:
Outline / 1.5.2:
Contributions / 1.5.3:
Related Work / 1.6:
Specification Techniques / 1.6.1:
Verification and Analysis Techniques / 1.6.2:
Mojave and the Universe Type System / 2:
Mojave: The Language / 2.1:
The Language Core / 2.1.1:
Modularity / 2.1.2:
Universes: A Type System for Flexible Alias Control / 2.2:
The Ownership Model / 2.2.1:
The Universe Programming Model / 2.2.2:
Programming with Universes / 2.2.3:
Examples / 2.2.4:
Formalization of the Universe Type System / 2.2.5:
Discussion / 2.2.6:
The Semantics of Mojave / 2.3:
Programming Logic / 3.1:
Formal Data and State Model / 3.1.1:
Axiomatic Semantics / 3.1.2:
Language Properties / 3.1.3:
Type Safety / 3.2.1:
Liveness Properties / 3.2.2:
Properties of Readonly Methods / 3.2.3:
Correctness / 3.3:
Correctness of Closed Programs / 3.3.1:
Correctness of Open Programs: Modular Correctness / 3.3.2:
Modular Soundness / 3.3.3:
Composition of Modular Correct Open Programs / 3.3.4:
Modular Specification and Verification of Functional Behavior / 3.4:
Foundations of Interface Specifications / 4.1:
Specification of Functional Behavior / 4.2:
Abstract Fields / 4.2.1:
Pre-post-specifications / 4.2.2:
Verification of Functional Behavior / 4.3:
Verification of Method Bodies / 4.3.1:
Proofs for Virtual Methods / 4.3.2:
Example / 4.3.3:
Modular Specification and Verification of Frame Properties / 4.4:
Meaning of Modifies-Clauses / 5.1:
Explicit Dependencies / 5.1.2:
Modularity Rules / 5.1.3:
Formalization of Explicit Dependencies / 5.2:
Declaration of Dependencies / 5.2.1:
Axiomatization of the Depends-Relation / 5.2.2:
Consistency with Representation / 5.2.3:
Formalization of the Modularity Rules / 5.2.4:
Axiomatization of the Notdepends-Relation / 5.2.5:
Formalization of Modifies-Clauses / 5.2.6:
Verification of Frame Properties / 5.4:
Local Update Property / 5.4.1:
Accessibility Properties / 5.4.3:
Modularity Theorem for Frame Properties / 5.4.4:
Leino's and Nelson's Work on Dependencies / 5.4.5:
Other Work on the Frame Problem / 5.5.2:
Modular Specification and Verification of Type Invariants / 6:
Motivation and Approach / 6.1:
Invariant Semantics for Nonmodular Programs / 6.1.1:
Problems for Modular Verification of Invariants / 6.1.2:
Specification of Type Invariants / 6.1.3:
Declaration of Type Invariants / 6.2.1:
Formal Meaning of Invariants / 6.2.2:
Verification of Type Invariants / 6.3:
Verification Methodology / 6.3.1:
Module Invariants / 6.3.2:
History Constraints / 6.4.2:
Conclusion / 6.5:
Summary and Contributions / 7.1:
The Lopex Project / 7.2:
Tool Support / 7.3:
Directions for Future Work / 7.4:
Formal Background and Notations / A:
Formal Background / A.1:
Notations / A.2:
Predefined Type Declarations / B:
Doubly Linked List / C:
Property Editor / C.2:
Auxiliary Lemmas, Proofs, and Models / D:
Auxiliary Lemmas and Proofs from Chapter 3 / D.1:
Auxiliary Lemmas and Proofs from Chapter 5 / D.2:
Auxiliary Lemmas and Proofs from Chapter 6 / D.3:
A Model for the Axiomatization of the Depends-Relation / D.4:
Bibliography
List of Figures
Index
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
8.

図書

図書
Song Y. Yan ; foreword by Martin E. Hellman
出版情報: Berlin : Springer-Verlag, c2002  xxii, 435 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
Algebraic Preliminaries / 1.1.2:
Theory of Divisibility / 1.2:
Basic Properties of Divisibility / 1.2.1:
Fundamental Theorem of Arithmetic / 1.2.2:
Mersenne Primes and Fermat Numbers / 1.2.3:
Euclid's Algorithm / 1.2.4:
Continued Fractions / 1.2.5:
Diophantine Equations / 1.3:
Basic Concepts of Diophantine Equations / 1.3.1:
Linear Diophantine Equations / 1.3.2:
Pell's Equations / 1.3.3:
Arithmetic Functions / 1.4:
Multiplicative Functions / 1.4.1:
Functions ?(n), ?(n) and s(n) / 1.4.2:
Perfect, Amicable and Sociable Numbers / 1.4.3:
Functions ?(n), ?(n) and ?(n) / 1.4.4:
Distribution of Prime Numbers / 1.5:
Prime Distribution Function ?(x) / 1.5.1:
Approximations of ?(x) by x/ ln x / 1.5.2:
Approximations of ?(x) by Li(x) / 1.5.3:
The Riemann ?-Function ?(s) / 1.5.4:
The nth Prime / 1.5.5:
Distribution of Twin Primes / 1.5.6:
The Arithmetic Progression of Primes / 1.5.7:
Theory of Congruences / 1.6:
Basic Properties of Congruences / 1.6.1:
Modular Arithmetic / 1.6.2:
Linear Congruences / 1.6.3:
The Chinese Remainder Theorem / 1.6.4:
High-Order Congruences / 1.6.5:
Legendre and Jacobi Symbols / 1.6.6:
Orders and Primitive Roots / 1.6.7:
Indices and kth Power Residues / 1.6.8:
Arithmetic of Elliptic Curves / 1.7:
Basic Concepts of Elliptic Curves / 1.7.1:
Geometric Composition Laws of Elliptic Curves / 1.7.2:
Algebraic Computation Laws for Elliptic Curves / 1.7.3:
Group Laws on Elliptic Curves / 1.7.4:
Number of Points on Elliptic Curves / 1.7.5:
Bibliographic Notes and Further Reading / 1.8:
Algorithmic Number Theory / 2:
What is Algorithmic Number Theory? / 2.1:
E ective Computability / 2.1.2:
Computational Complexity / 2.1.3:
Complexity of Number-Theoretic Algorithms / 2.1.4:
Fast Modular Exponentiations / 2.1.5:
Fast Group Operations on Elliptic Curves / 2.1.6:
Algorithms for Primality Testing / 2.2:
Deterministic and Rigorous Primality Tests / 2.2.1:
Fermat's Pseudoprimality Test / 2.2.2:
Strong Pseudoprimality Test / 2.2.3:
Lucas Pseudoprimality Test / 2.2.4:
Elliptic Curve Test / 2.2.5:
Historical Notes on Primality Testing / 2.2.6:
Algorithms for Integer Factorization / 2.3:
Complexity of Integer Factorization / 2.3.1:
Trial Division and Fermat Method / 2.3.2:
Legendre's Congruence / 2.3.3:
Continued FRACtion Method (CFRAC) / 2.3.4:
Quadratic and Number Field Sieves (QS/NFS) / 2.3.5:
Polland's "rho" and "p - 1" Methods / 2.3.6:
Lenstra's Elliptic Curve Method (ECM) / 2.3.7:
Algorithms for Discrete Logarithms / 2.4:
Shanks' Baby-Step Giant-Step Algorithm / 2.4.1:
Silver{Pohlig{Hellman Algorithm / 2.4.2:
Subexponential Algorithms / 2.4.3:
Algorithm for the Root Finding Problem / 2.4.4:
Quantum Number-Theoretic Algorithms / 2.5:
Quantum Information and Computation / 2.5.1:
Quantum Computability and Complexity / 2.5.2:
Quantum Algorithm for Integer Factorization / 2.5.3:
Quantum Algorithms for Discrete Logarithms / 2.5.4:
Miscellaneous Algorithms in Number Theory / 2.6:
Algorithms for Computing ?(x) / 2.6.1:
Algorithms for Generating Amicable Pairs / 2.6.2:
Algorithms for Verifying Goldbach's Conjecture / 2.6.3:
Algorithm for Finding Odd Perfect Numbers / 2.6.4:
Applied Number Theory / 2.7:
Why Applied Number Theory? / 3.1:
Computer Systems Design / 3.2:
Representing Numbers in Residue Number Systems / 3.2.1:
Fast Computations in Residue Number Systems / 3.2.2:
Residue Computers / 3.2.3:
Complementary Arithmetic / 3.2.4:
Hashing Functions / 3.2.5:
Error Detection and Correction Methods / 3.2.6:
Random Number Generation / 3.2.7:
Cryptography and Information Security / 3.3:
Secret-Key Cryptography / 3.3.1:
Data/Advanced Encryption Standard (DES/AES) / 3.3.3:
Public-Key Cryptography / 3.3.4:
Discrete Logarithm Based Cryptosystems / 3.3.5:
RSA Public-Key Cryptosystem / 3.3.6:
Quadratic Residuosity Cryptosystems / 3.3.7:
Elliptic Curve Public-Key Cryptosystems / 3.3.8:
Digital Signatures / 3.3.9:
Digital Signature Algorithm/Standard (DSA/DSS) / 3.3.10:
Database Security / 3.3.11:
Secret Sharing / 3.3.12:
Internet/Web Security and Electronic Commerce / 3.3.13:
Steganography / 3.3.14:
Quantum Cryptography / 3.3.15:
Bibliography / 3.4:
Index
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
9.

図書

図書
Mark A. Pinsky
出版情報: Australia : Brooks/Cole, c2002  xviii, 376 p. ; 25 cm
シリーズ名: Brooks/Cole series in advanced mathematics
所蔵情報: loading…
目次情報: 続きを見る
Fourier Series on the Circle / 1:
Motivation and Heuristics / 1.1:
Motivation from Physics / 1.1.1:
The Vibrating String / 1.1.1.1:
Heat Flow in Solids / 1.1.1.2:
Absolutely Convergent Trigonometric Series / 1.1.2:
Examples of Factorial and Bessel Functions / 1.1.3:
Poisson Kernel Example / 1.1.4:
Proof of Laplace's Method / 1.1.5:
Nonabsolutely Convergent Trigonometric Series / 1.1.6:
Formulation of Fourier Series / 1.2:
Fourier Coefficients and Their Basic Properties / 1.2.1:
Fourier Series of Finite Measures / 1.2.2:
Rates of Decay of Fourier Coefficients / 1.2.3:
Piecewise Smooth Functions / 1.2.3.1:
Fourier Characterization of Analytic Functions / 1.2.3.2:
Sine Integral / 1.2.4:
Other Proofs That Si([infinity]) = 1 / 1.2.4.1:
Pointwise Convergence Criteria / 1.2.5:
Integration of Fourier Series / 1.2.6:
Convergence of Fourier Series of Measures / 1.2.6.1:
Riemann Localization Principle / 1.2.7:
Gibbs-Wilbraham Phenomenon / 1.2.8:
The General Case / 1.2.8.1:
Fourier Series in L[superscript 2] / 1.3:
Mean Square Approximation--Parseval's Theorem / 1.3.1:
Application to the Isoperimetric Inequality / 1.3.2:
Rates of Convergence in L[superscript 2] / 1.3.3:
Application to Absolutely-Convergent Fourier Series / 1.3.3.1:
Norm Convergence and Summability / 1.4:
Approximate Identities / 1.4.1:
Almost-Everywhere Convergence of the Abel Means / 1.4.1.1:
Summability Matrices / 1.4.2:
Fejer Means of a Fourier Series / 1.4.3:
Wiener's Closure Theorem on the Circle / 1.4.3.1:
Equidistribution Modulo One / 1.4.4:
Hardy's Tauberian Theorem / 1.4.5:
Improved Trigonometric Approximation / 1.5:
Rates of Convergence in C (T) / 1.5.1:
Approximation with Fejer Means / 1.5.2:
Jackson's Theorem / 1.5.3:
Higher-Order Approximation / 1.5.4:
Converse Theorems of Bernstein / 1.5.5:
Divergence of Fourier Series / 1.6:
The Example of du Bois-Reymond / 1.6.1:
Analysis via Lebesgue Constants / 1.6.2:
Divergence in the Space L[superscript 1] / 1.6.3:
Appendix: Complements on Laplace's Method / 1.7:
First Variation on the Theme-Gaussian Approximation / 1.7.0.1:
Second Variation on the Theme-Improved Error Estimate / 1.7.0.2:
Application to Bessel Functions / 1.7.1:
The Local Limit Theorem of DeMoivre-Laplace / 1.7.2:
Appendix: Proof of the Uniform Boundedness Theorem / 1.8:
Appendix: Higher-Order Bessel functions / 1.9:
Appendix: Cantor's Uniqueness Theorem / 1.10:
Fourier Transforms on the Line And Space / 2:
Basic Properties of the Fourier Transform / 2.1:
Riemann-Lebesgue Lemma / 2.2.1:
Approximate Identities and Gaussian Summability / 2.2.2:
Improved Approximate Identities for Pointwise Convergence / 2.2.2.1:
Application to the Fourier Transform / 2.2.2.2:
The n-Dimensional Poisson Kernel / 2.2.2.3:
Fourier Transforms of Tempered Distributions / 2.2.3:
Characterization of the Gaussian Density / 2.2.4:
Wiener's Density Theorem / 2.2.5:
Fourier Inversion in One Dimension / 2.3:
Dirichlet Kernel and Symmetric Partial Sums / 2.3.1:
Example of the Indicator Function / 2.3.2:
Dini Convergence Theorem / 2.3.3:
Extension to Fourier's Single Integral / 2.3.4.1:
Smoothing Operations in R[superscript 1]-Averaging and Summability / 2.3.5:
Averaging and Weak Convergence / 2.3.6:
Cesaro Summability / 2.3.7:
Approximation Properties of the Fejer Kernel / 2.3.7.1:
Bernstein's Inequality / 2.3.8:
One-Sided Fourier Integral Representation / 2.3.9:
Fourier Cosine Transform / 2.3.9.1:
Fourier Sine Transform / 2.3.9.2:
Generalized h-Transform / 2.3.9.3:
L[superscript 2] Theory in R[superscript n] / 2.4:
Plancherel's Theorem / 2.4.1:
Bernstein's Theorem for Fourier Transforms / 2.4.2:
The Uncertainty Principle / 2.4.3:
Uncertainty Principle on the Circle / 2.4.3.1:
Spectral Analysis of the Fourier Transform / 2.4.4:
Hermite Polynomials / 2.4.4.1:
Eigenfunction of the Fourier Transform / 2.4.4.2:
Orthogonality Properties / 2.4.4.3:
Completeness / 2.4.4.4:
Spherical Fourier Inversion in R[superscript n] / 2.5:
Bochner's Approach / 2.5.1:
Piecewise Smooth Viewpoint / 2.5.2:
Relations with the Wave Equation / 2.5.3:
The Method of Brandolini and Colzani / 2.5.3.1:
Bochner-Riesz Summability / 2.5.4:
A General Theorem on Almost-Everywhere Summability / 2.5.4.1:
Bessel Functions / 2.6:
Fourier Transforms of Radial Functions / 2.6.1:
L[superscript 2]-Restriction Theorems for the Fourier Transform / 2.6.2:
An Improved Result / 2.6.2.1:
Limitations on the Range of p / 2.6.2.2:
The Method of Stationary Phase / 2.7:
Statement of the Result / 2.7.1:
Proof of the Method of Stationary Phase / 2.7.2:
Abel's Lemma / 2.7.4:
Fourier Analysis in L[superscript p] Spaces / 3:
The M. Riesz-Thorin Interpolation Theorem / 3.1:
Generalized Young's Inequality / 3.2.0.1:
The Hausdorff-Young Inequality / 3.2.0.2:
Stein's Complex Interpolation Theorem / 3.2.1:
The Conjugate Function or Discrete Hilbert Transform / 3.3:
L[superscript p] Theory of the Conjugate Function / 3.3.1:
L[superscript 1] Theory of the Conjugate Function / 3.3.2:
Identification as a Singular Integral / 3.3.2.1:
The Hilbert Transform on R / 3.4:
L[superscript 2] Theory of the Hilbert Transform / 3.4.1:
L[superscript p] Theory of the Hilbert Transform, 1 [ p [ [infinity] / 3.4.2:
Applications to Convergence of Fourier Integrals / 3.4.2.1:
L[superscript 1] Theory of the Hilbert Transform and Extensions / 3.4.3:
Kolmogorov's Inequality for the Hilbert Transform / 3.4.3.1:
Application to Singular Integrals with Odd Kernels / 3.4.4:
Hardy-Littlewood Maximal Function / 3.5:
Application to the Lebesgue Differentiation Theorem / 3.5.1:
Application to Radial Convolution Operators / 3.5.2:
Maximal Inequalities for Spherical Averages / 3.5.3:
The Marcinkiewicz Interpolation Theorem / 3.6:
Calderon-Zygmund Decomposition / 3.7:
A Class of Singular Integrals / 3.8:
Properties of Harmonic Functions / 3.9:
General Properties / 3.9.1:
Representation Theorems in the Disk / 3.9.2:
Representation Theorems in the Upper Half-Plane / 3.9.3:
Herglotz/Bochner Theorems and Positive Definite Functions / 3.9.4:
Poisson Summation Formula And Multiple Fourier Series / 4:
The Poisson Summation Formula in R[superscript 1] / 4.1:
Periodization of a Function / 4.2.1:
Statement and Proof / 4.2.2:
Shannon Sampling / 4.2.3:
Multiple Fourier Series / 4.3:
Basic L[superscript 1] Theory / 4.3.1:
Pointwise Convergence for Smooth Functions / 4.3.1.1:
Representation of Spherical Partial Sums / 4.3.1.2:
Basic L[superscript 2] Theory / 4.3.2:
Restriction Theorems for Fourier Coefficients / 4.3.3:
Poisson Summation Formula in R[superscript d] / 4.4:
Simultaneous Nonlocalization / 4.4.1:
Application to Lattice Points / 4.5:
Kendall's Mean Square Error / 4.5.1:
Landau's Asymptotic Formula / 4.5.2:
Application to Multiple Fourier Series / 4.5.3:
Three-Dimensional Case / 4.5.3.1:
Higher-Dimensional Case / 4.5.3.2:
Schrodinger Equation and Gauss Sums / 4.6:
Distributions on the Circle / 4.6.1:
The Schrodinger Equation on the Circle / 4.6.2:
Recurrence of Random Walk / 4.7:
Applications to Probability Theory / 5:
Basic Definitions / 5.1:
The Central Limit Theorem / 5.2.1:
Restatement in Terms of Independent Random Variables / 5.2.1.1:
Extension to Gap Series / 5.3:
Extension to Abel Sums / 5.3.1:
Weak Convergence of Measures / 5.4:
An Improved Continuity Theorem / 5.4.1:
Another Proof of Bochner's Theorem / 5.4.1.1:
Convolution Semigroups / 5.5:
The Berry-Esseen Theorem / 5.6:
Extension to Different Distributions / 5.6.1:
The Law of the Iterated Logarithm / 5.7:
Introduction to Wavelets / 6:
Heuristic Treatment of the Wavelet Transform / 6.1:
Wavelet Transform / 6.2:
Wavelet Characterization of Smoothness / 6.2.0.1:
Haar Wavelet Expansion / 6.3:
Haar Functions and Haar Series / 6.3.1:
Haar Sums and Dyadic Projections / 6.3.2:
Completeness of the Haar Functions / 6.3.3:
Haar Series in C[subscript 0] and L[subscript p] Spaces / 6.3.3.1:
Pointwise Convergence of Haar Series / 6.3.3.2:
Construction of Standard Brownian Motion / 6.3.4:
Haar Function Representation of Brownian Motion / 6.3.5:
Proof of Continuity / 6.3.6:
Levy's Modulus of Continuity / 6.3.7:
Multiresolution Analysis / 6.4:
Orthonormal Systems and Riesz Systems / 6.4.1:
Scaling Equations and Structure Constants / 6.4.2:
From Scaling Function to MRA / 6.4.3:
Additional Remarks / 6.4.3.1:
Meyer Wavelets / 6.4.4:
From Scaling Function to Orthonormal Wavelet / 6.4.5:
Direct Proof that V[subscript 1] [minus sign in circle] V[subscript 0] Is Spanned by {[Psi](t - k)}[subscript k[set membership]Z] / 6.4.5.1:
Null Integrability of Wavelets Without Scaling Functions / 6.4.5.2:
Wavelets with Compact Support / 6.5:
From Scaling Filter to Scaling Function / 6.5.1:
Explicit Construction of Compact Wavelets / 6.5.2:
Daubechies Recipe / 6.5.2.1:
Hernandez-Weiss Recipe / 6.5.2.2:
Smoothness of Wavelets / 6.5.3:
A Negative Result / 6.5.3.1:
Cohen's Extension of Theorem 6.5.1 / 6.5.4:
Convergence Properties of Wavelet Expansions / 6.6:
Wavelet Series in L[superscript p] Spaces / 6.6.1:
Large Scale Analysis / 6.6.1.1:
Almost-Everywhere Convergence / 6.6.1.2:
Convergence at a Preassigned Point / 6.6.1.3:
Jackson and Bernstein Approximation Theorems / 6.6.2:
Wavelets in Several Variables / 6.7:
Two Important Examples / 6.7.1:
Tensor Product of Wavelets / 6.7.1.1:
General Formulation of MRA and Wavelets in R[superscript d] / 6.7.2:
Notations for Subgroups and Cosets / 6.7.2.1:
Riesz Systems and Orthonormal Systems in R[superscript d] / 6.7.2.2:
Scaling Equation and Structure Constants / 6.7.2.3:
Existence of the Wavelet Set / 6.7.2.4:
Proof That the Wavelet Set Spans V[subscript 1] [minus sign in circle] V[subscript 0] / 6.7.2.5:
Cohen's Theorem in R[superscript d] / 6.7.2.6:
Examples of Wavelets in R[superscript d] / 6.7.3:
References
Notations
Index
Fourier Series on the Circle / 1:
Motivation and Heuristics / 1.1:
Motivation from Physics / 1.1.1:
10.

図書

図書
Josef Honerkamp
出版情報: Berlin : Springer, c2002  xiv, 515 p. ; 24 cm
シリーズ名: Advanced texts in physics
所蔵情報: loading…
目次情報: 続きを見る
Statistical Physics Is More than Statistical Mechanics / 1:
Modeling of Statistical Systems / Part I:
Random Variables: Fundamentals of Probability Theory and Statistics / 2:
Probability and Random Variables / 2.1:
The Space of Events / 2.1.1:
Introduction of Probability / 2.1.2:
Random Variables / 2.1.3:
Multivariate Random Variables and Conditional Probabilities / 2.2:
Multidimensional Random Variables / 2.2.1:
Marginal Densities / 2.2.2:
Conditional Probabilities and Bayes' Theorem / 2.2.3:
Moments and Quantiles / 2.3:
Moments / 2.3.1:
Quantiles / 2.3.2:
The Entropy / 2.4:
Entropy for a Discrete Set of Events / 2.4.1:
Entropy for a Continuous Space of Events / 2.4.2:
Relative Entropy / 2.4.3:
Remarks / 2.4.4:
Applications / 2.4.5:
Computations with Random Variables / 2.5:
Addition and Multiplication of Random Variables / 2.5.1:
Further Important Random Variables / 2.5.2:
Limit Theorems / 2.5.3:
Stable Random Variables and Renormalization Transformations / 2.6:
Stable Random Variables / 2.6.1:
The Renormalization Transformation / 2.6.2:
Stability Analysis / 2.6.3:
Scaling Behavior / 2.6.4:
The Large Deviation Property for Sums of Random Variables / 2.7:
Random Variables in State Space: Classical Statistical Mechanics of Fluids / 3:
The Microcanonical System / 3.1:
Systems in Contact / 3.2:
Thermal Contact / 3.2.1:
Systems with Exchange of Volume and Energy / 3.2.2:
Systems with Exchange of Particles and Energy / 3.2.3:
Thermodynamic Potentials / 3.3:
Susceptibilities / 3.4:
Heat Capacities / 3.4.1:
Isothermal Compressibility / 3.4.2:
Isobaric Expansivity / 3.4.3:
Isochoric Tension Coefficient and Adiabatic Compressibility / 3.4.4:
A General Relation Between Response Functions / 3.4.5:
The Equipartition Theorem / 3.5:
The Radial Distribution Function / 3.6:
Approximation Methods / 3.7:
The Virial Expansion / 3.7.1:
Integral Equations for the Radial Distribution Function / 3.7.2:
Perturbation Theory / 3.7.3:
The van der Waals Equation / 3.8:
The Isotherms / 3.8.1:
The Maxwell Construction / 3.8.2:
Corresponding States / 3.8.3:
Critical Exponents / 3.8.4:
Some General Remarks about Phase Transitions and Phase Diagrams / 3.9:
Random Fields: Textures and Classical Statistical Mechanics of Spin Systems / 4:
Discrete Stochastic Fields / 4.1:
Markov Fields / 4.1.1:
Gibbs Fields / 4.1.2:
Equivalence of Gibbs and Markov Fields / 4.1.3:
Examples of Markov Random Fields / 4.2:
Model with Independent Random Variables / 4.2.1:
Auto Model / 4.2.2:
Multilevel Logistic Model / 4.2.3:
Gauss Model / 4.2.4:
Characteristic Quantities of Densities for Random Fields / 4.3:
Simple Random Fields / 4.4:
The White Random Field or the Ideal Paramagnetic System / 4.4.1:
The One-Dimensional Ising Model / 4.4.2:
Random Fields with Phase Transitions / 4.5:
The Curie-Weiss Model / 4.5.1:
The Mean Field Approximation / 4.5.2:
The Two-Dimensional Ising Model / 4.5.3:
The Landau Free Energy / 4.6:
The Renormalization Group Method for Random Fields and Scaling Laws / 4.7:
Scaling Laws / 4.7.1:
Time-Dependent Random Variables: Classical Stochastic Processes / 5:
Markov Processes / 5.1:
The Master Equation / 5.2:
Examples of Master Equations / 5.3:
Analytic Solutions of Master Equations / 5.4:
Equations for the Moments / 5.4.1:
The Equation for the Characteristic Function / 5.4.2:
Examples / 5.4.3:
Simulation of Stochastic Processes and Fields / 5.5:
The Fokker-Planck Equation / 5.6:
Fokker-Planck Equation with Linear Drift Term and Additive Noise / 5.6.1:
The Linear Response Function and the Fluctuation-Dissipation Theorem / 5.7:
The [Omega] Expansion / 5.8:
The One-Particle Picture / 5.8.2:
More General Stochastic Processes / 5.9:
Self-Similar Processes / 5.9.1:
Fractal Brownian Motion / 5.9.2:
Stable Levy Processes / 5.9.3:
Autoregressive Processes / 5.9.4:
Quantum Random Systems / 6:
Quantum-Mechanical Description of Statistical Systems / 6.1:
Ideal Quantum Systems: General Considerations / 6.2:
Expansion in the Classical Regime / 6.2.1:
First Quantum-Mechanical Correction Term / 6.2.2:
Relations Between the Thermodynamic Potential and Other System Variables / 6.2.3:
The Ideal Fermi Gas / 6.3:
The Fermi-Dirac Distribution / 6.3.1:
Determination of the System Variables at Low Temperatures / 6.3.2:
Applications of the Fermi-Dirac Distribution / 6.3.3:
The Ideal Bose Gas / 6.4:
Particle Number and the Bose-Einstein Distribution / 6.4.1:
Bose-Einstein Condensation / 6.4.2:
Pressure / 6.4.3:
Energy and Specific Heat / 6.4.4:
Entropy / 6.4.5:
Applications of Bose Statistics / 6.4.6:
The Photon Gas and Black Body Radiation / 6.5:
The Kirchhoff Law / 6.5.1:
The Stefan-Boltzmann Law / 6.5.2:
The Pressure of Light / 6.5.3:
The Total Radiative Power of the Sun / 6.5.4:
The Cosmic Background Radiation / 6.5.5:
Lattice Vibrations in Solids: The Phonon Gas / 6.6:
Systems with Internal Degrees of Freedom: Ideal Gases of Molecules / 6.7:
Magnetic Properties of Fermi Systems / 6.8:
Diamagnetism / 6.8.1:
Paramagnetism / 6.8.2:
Quasi-particles / 6.9:
Models for the Magnetic Properties of Solids / 6.9.1:
Superfluidity / 6.9.2:
Changes of External Conditions / 7:
Reversible State Transformations, Heat, and Work / 7.1:
Cyclic Processes / 7.2:
Exergy and Relative Entropy / 7.3:
Time Dependence of Statistical Systems / 7.4:
Analysis of Statistical Systems / Part II:
Estimation of Parameters / 8:
Samples and Estimators / 8.1:
Confidence Intervals / 8.2:
Propagation of Errors / 8.3:
The Maximum Likelihood Estimator / 8.4:
The Least-Squares Estimator / 8.5:
Signal Analysis: Estimation of Spectra / 9:
The Discrete Fourier Transform and the Periodogram / 9.1:
Filters / 9.2:
Filters and Transfer Functions / 9.2.1:
Filter Design / 9.2.2:
Consistent Estimation of Spectra / 9.3:
Frequency Distributions for Nonstationary Time Series / 9.4:
Filter Banks and Discrete Wavelet Transformations / 9.5:
Wavelets / 9.6:
Wavelets as Base Functions in Function Spaces / 9.6.1:
Wavelets and Filter Banks / 9.6.2:
Solutions of the Dilation Equation / 9.6.3:
Estimators Based on a Probability Distribution for the Parameters / 10:
Bayesian Estimator and Maximum a Posteriori Estimator / 10.1:
Marginalization of Nuisance Parameters / 10.2:
Numerical Methods for Bayesian Estimators / 10.3:
Identification of Stochastic Models from Observations / 11:
Hidden Systems / 11.1:
The Maximum a Posteriori (MAP) Estimator for the Inverse Problem / 11.2:
The Least-Squares Estimator as a Special MAP Estimator / 11.2.1:
Strategies for Choosing the Regularization Parameter / 11.2.2:
The Regularization Method / 11.2.3:
Examples of Estimating a Distribution Function by a Regularization Method / 11.2.4:
Estimating the Realization of a Hidden Process / 11.3:
The Viterbi Algorithm / 11.3.1:
The Kalman Filter / 11.3.2:
Estimating the Parameters of a Hidden Stochastic Model / 12:
The Expectation Maximization Method (EM Method) / 12.1:
Use of the EM Method for Estimation of the Parameters in Hidden Systems / 12.2:
Estimating the Parameters of a Hidden Markov Model / 12.3:
The Forward Algorithm / 12.3.1:
The Backward Algorithm / 12.3.2:
The Estimation Formulas / 12.3.3:
Estimating the Parameters in a State Space Model / 12.4:
Statistical Tests and Classification Methods / 13:
General Comments Concerning Statistical Tests / 13.1:
Test Quantity and Significance Level / 13.1.1:
Empirical Moments for a Test Quantity: The Bootstrap Method / 13.1.2:
The Power of a Test / 13.1.3:
Some Useful Tests / 13.2:
The z- and the t-Test / 13.2.1:
Test for the Equality of the Variances of Two Sets of Measurements, the F-Test / 13.2.2:
The x[superscript 2]-Test / 13.2.3:
The Kolmogorov-Smirnov Test / 13.2.4:
The F-Test for Least-Squares Estimators / 13.2.5:
The Likelihood-Ratio Test / 13.2.6:
Classification Methods / 13.3:
Classifiers / 13.3.1:
Estimation of Parameters That Arise in Classifiers / 13.3.2:
Automatic Classification (Cluster Analysis) / 13.3.3:
Random Number Generation for Simulating Realizations of Random Variables / Appendix:
Problems
Hints and Solutions
References
Index
Statistical Physics Is More than Statistical Mechanics / 1:
Modeling of Statistical Systems / Part I:
Random Variables: Fundamentals of Probability Theory and Statistics / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼