close
1.

図書

図書
D. M. Freifelder著 ; 志村令郎 [ほか] 共訳
出版情報: 京都 : 化学同人, 1989  2冊 ; 27cm
所蔵情報: loading…
2.

図書

東工大
目次DB

図書
東工大
目次DB
田中博著
出版情報: 東京 : パーソナルメディア, 2007.7  263p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
はじめに 3
1章 生命をシステムで解く 9
   1.1 ゲノムは解読された。しかし…―ゲノムから「システムとしての生命」へ 10
   1.1.1 すべての始まりとしてのヒトゲノム解読計画 10
   1.1.2 ゲノムからオミックスヘ 13
   1.1.3 生命をシステムとして理解する 17
   1.2 生命とはいかなるシステムか 25
   1.2.1 生命―再帰的関係において組織化されたシステム 25
   1.2.2 体制を転移する生命 29
   1.3 新しい生命へのアプローチ―生命を支える情報ネットワーク 38
   1.3.1 生命における「情報という構造」 38
   1.3.2 新しいシステム生命科学へ 42
2章 ゲノムの中に見えるシステム生命 47
   2.1 ゲノムから生命へ 48
   2.1.1 生命の出現からゲノムまで 49
   2.1.2 ゲノムの構造 55
   2.2 生命の祖先の歴史はゲノムだけが知っている 64
   2.3 多重遺伝子族の集団としての進化 69
3章 生命はダイナミックなネットワークだ 79
   3.1 生命のしくみを明らかにするネットワーク理論 80
   3.2 友達の友達は友達だ―スモールワールドの理論 87
   3.3 生命はインターネットだった―スケールフリーネットワークと生命 91
   3.4 タンパク質間相互作用のネットワークの構造解明へ―タンパク質インターアクトームの構造 98
4章 単細胞生物が脳をもつ? 113
   4.1 単細胞生物の脳としてのシグナル伝達系 114
   4.2 シグナル伝達系の原型としての2成分制御系 118
   4.3 2成分制御系から多様で複雑なシグナル伝達系へ 126
   4.4 まとめ 141
5章 形作りに働く情報のネットワーク 143
   5.1 カンブリア紀のステキな怪物たち 144
   5.1.1 多細胞化の戦略―多細胞生物の出現 144
   5.1.2 カンブリア爆発とそれ以前 146
   5.1.3 カンブリア紀以前の多細胞生物 149
   5.2 多細胞化のために越えるべき壁とは 153
   5.2.1 多細胞生物の局所的な分子メカニズム 153
   5.2.2 多細胞生物への過渡的形態 154
   5.3 多細胞生物の形作りのボディプラン 157
   5.3.1 胚葉構造の多重化と対称性 157
   5.3.2 胚葉構造と体腔―二旺葉動物の誕生 158
   5.3.3 左右相称体制の確立―三胚葉動物の登場 159
   5.4 発生という形作りの実際 164
   5.4.1 発生を決定する原理 164
   5.4.2 すべてはショウジョウバエから始まった 165
   5.5 発生システムの階層性と入れ子進化 176
   5.5.1 発生の階層的な遺伝子制御構造 176
   5.5.2 Hoxクラスタの階層的システム進化 177
   5.6 まとめ 184
6章 生命=情報―生命は宇宙の塵から生まれた 185
   6.1 エントロピーに立ち向かう生命 186
   6.1.1 生命を宇宙的スケールのもとに見る 186
   6.1.2 エントロピーと生命の不思議 187
   6.1.3 熱サイクルのしくみと秩序への変換 189
   6.1.4 エントロピーとその意味 191
   6.2 情報と生命 199
   6.2.1 生命の秩序―非平衡循環構造 200
   6.2.1.1 生命は物理的系としては循環構造をもつ非平衡系である 200
   6.2.1.2 生命は自己触媒系を含んだ自律的な反応ネットワークである 202
   6.2.2 生命系の秩序―情報による組織化 202
   6.2.2.1 「情報」の出現する自然の階層としての生命系 202
   6.2.2.2 「情報による秩序形成」の基本的特徴 205
   6.2.3 生命は進化的に複雑化する 207
   6.2.4 生命の自己性 209
   6.3 膨張宇宙論とわれわれ生命の未来 214
7章 生命システム理論からシステム医学へ 223
   7.1 「生命をシステムとして理解する」理念が新しい医学を作り出す 224
   7.2 ゲノム医療の展開 227
   7.2.1 単因子性遺伝疾患と遺伝子診断 227
   7.2.2 多因子性疾患と疾患感受性遺伝子の探索 227
   7.2.3 SNPなどのゲノム多型情報と相対的リスク 228
   7.2.4 薬剤感受性の遺伝情報と個別化治療 230
   7.3 ゲノムからオミックス医療へ 232
   7.3.1 オミックス情報に基づいた医療 232
   7.3.2 オミックス医療の理念 233
   7.3.3 オミックス医療を支える2つの柱―臨床オミックスとシステム病態学 237
   7.3.4 システム病態学の原理 238
   7.3.5 オミックス医療の現実化 240
   7.4 オミックス医療へ向けて 242
   7.4.1 オミックス医療の体系化のための基盤 242
   7.4.2 疾患オミックスデータのシステム的解析 243
   7.4.3 疾患システムバイオロジーによる疾患階層情報モデルの構築 244
   7.4.4 オミックス・システム医療に向けた解析―肝細胞がんでの例 247
   7.5 未来のオミックス医療の発展のシナリオ 250
結語―<生命=進化する分子ネットワーク>論の体系的構築を目指して 253
索引 255
はじめに 3
1章 生命をシステムで解く 9
   1.1 ゲノムは解読された。しかし…―ゲノムから「システムとしての生命」へ 10
3.

図書

図書
H.F. ジャドソン著 ; 野田春彦訳
出版情報: 東京 : 東京化学同人, 1982.2  2冊 ; 20cm
所蔵情報: loading…
4.

図書

東工大
目次DB

図書
東工大
目次DB
柳田充弘, 西田栄介, 野田亮編
出版情報: 東京 : 東京化学同人, 2009.7  xi, 290p ; 26cm
所蔵情報: loading…
目次情報: 続きを見る
1.分子生物学の普遍性 1
   1.1 分子生物学的なアプローチ 1
   1.2 物質的な普遍性 : 低分子から高分子へ,高分子から分子複合体へ 3
    1.2.1 原子から巨大分子まで 3
    1.2.2 低分子 4
    1.2.3 高分子 4
    1.2.4 分子間相互作用 6
    1.2.5 タンパク質合成系,自己形成能とシャペロン,分解系 6
   1.3 システムとしての普遍性細胞小器官から細胞へ 7
    1.3.1 細胞構造 7
    1.3.2 細胞小器官と細胞骨格 8
   1.4 遺伝(伝承)システムとしての普遍性遺伝子と染色体 9
    1.4.1 ゲノムDNAの解析 9
    1.4.2 細胞の自己複製と子孫への遺伝的継承 10
    1.4.3 染色体,紡錘体,核膜 10
   1.5 個体系としての普遍性生活史と多細胞系システム 11
    1.5.1 生殖と性 11
    1.5.2 生活環 11
   1.6 多細胞体制,高等生物を対象とする分子生物学 12
2.細胞学的知見の普遍性 13
   2.1 動物細胞 13
    2.1.1 細胞核 13
    2.1.2 細胞質 14
    2.1.3 原形質膜 15
    コラム ミトコンドリア内膜に存在する電子伝達系 15
    2.1.4 細胞内の繊維状構造 16
    2.1.5 細胞外マトリックス 17
    2.1.6 動物細胞の研究法 18
   2.2 植物細胞 22
    2.2.1 植物細胞の基本構造―動物細胞との比較 22
    2.2.2 色素体のダイナミズム 24
    コラム 細胞壁の除去と液胞の除去 24
    コラム 両性遺伝 28
    2.2.3 液胞とミクロボディのダイナミズム 29
    2.2.4 細胞壁と植物細胞の分裂,成長様式 29
3.構造生物学の意義と役割 31
   3.1 構造生物学とは何か 31
   3.2 タンパク質と核酸の立体構造解析方法 32
    3.2.1 X線結晶解析 32
    コラム シンクロトロン 33
    3.2.2 NMR 34
    コラム NMRと安定同位体 34
    3.2.3 電子顕微鏡 35
    3.2.4 三つの方法の比較 36
   3.3 タンパク質の構造と機能 36
   3.4 核酸の構造と機能 39
   3.5 タンパク質の分子分類学 40
   3.6 いろいろなタンパク質ドメイン 43
   3.7 タンパク質の相互作用 43
   3.8 タンパク質と核酸の相互作用 44
   3.9 超分子複合体の構造解析の方法と意義 44
   3.10 構造に関連するバイオインフォマティクス 45
   3.11 構造生物学の将来 45
4.遺伝物質(DNA)
   4.1 遺伝物質としてのDNA 46
   4.2 DNA複製 46
    4.2.1 DNAの複製 46
    4.2.2 半保存的なDNA複製―DNA複製の基本原理 47
    4.2.3 DNAポリメラーゼ 47
    4.2.4 DNAポリメラーゼ以外の複製因子 50
    4.2.5 DNA複製のプロセス 52
   4.3 DNA修復機構 53
    4.3.1 DNA損傷と修復機構 53
    4.3.2 塩基の修飾の逆反応による修復 54
    4.3.3 除去修復 54
    4.3.4 組換え修復 56
    4.3.5 突然変異 56
    4.3.6 点突然変異の機構 57
    4.3.7 突然変異率とホットスポット 57
   4.4 組換え 57
    4.4.1 相同組換え 58
    4.4.2 部位特異的組換え 60
5.遺伝子発現とその調節(RNA)
   5.1 はじめに 61
   5.2 遺伝子発現における分子基盤 61
   5.3 遺伝子DNAの情報を写し取る転写反応 62
    5.3.1 転写反応からの合成産物 62
    5.3.2 転写の機構と制御 62
    5.3.3 転写の機構にかかわる因子と因子間相互作用 64
   5.4 RNAの成熟化 71
    5.4.1 RNA成熟化での修飾反応と修飾産物 71
    5.4.2 RNA成熟化機構と制御 72
    5.4.3 RNA成熟化での因子と因子間相互作用 74
   5.5 翻訳反応の理解に向けて 76
    5.5.1 翻訳反応でのRNAの役割と合成産物 76
    5.5.2 翻訳反応の機構と制御 77
    5.5.3 翻訳反応での因子と分子間相互作用 80
   5.6 おわりに 82
6.原核生物の分子遺伝学
   6.1 原核生物 84
   6.2 原核生物の細胞構造と多様性 84
   6.3 ゲノム編成から見た細胞システム 86
   6.4 原核細胞に見られる種々の増殖性因子 86
    6.4.1 ファージ 86
    6.4.2 トランスポゾン 87
    6.4.3 プラスミド 87
   6.5 大腸菌の特性およびその分子遺伝学の基本知識 88
    コラム ファージによる形質導入 91
   6.6 細胞増殖機構 92
    6.6.1 複製と分配 92
    6.6.2 組換え 93
    6.6.3 修復 93
    6.6.4 転写 94
    6.6.5 翻訳とtRNA 95
   6.7 代謝系のいろいろ 98
    6.7.1 代謝拮抗物質(代謝阻害剤) 98
    6.7.2 フィードバック阻害とアロステリック効果 99
    6.7.3 リプレッサーによる転写制御 99
   6.8 これからの原核生物の研究 102
7.分子生物学を支える基礎技術
   7.1 核酸の物理化学的特性 109
    7.1.1 DNAの特徴 109
    7.1.2 RNAの特徴 110
   7.2 核酸の単離法 111
   7.3 遺伝子工学の原理 111
    7.3.1 プラスミド 111
    7.3.2 遺伝子工学の目的 111
    7.3.3 DNAのための“はさみ”と“のり” 112
    7.3.4 組換えDNA実験のデザイン 113
    7.3.5 電気泳動でDNAを見る 114
    7.3.6 DNA断片のリガーゼ処理 115
    7.3.7 DNAを大腸菌に戻して増やす 116
    7.3.8 プラスミドを取出す 117
    7.3.9 ハイブリダイゼーションによる希少DNAのクローニング 117
    7.3.10 バクテリオファージベクター 117
    7.3.11 その他のベクター 118
    7.3.12 DNAライブラリー 118
   7.4 PCR法の原理 120
   7.5 電気泳動および関連技術 120
    7.5.1 核酸の電気泳動 120
    7.5.2 タンパク質の電気泳動 121
    7.5.3 その他の電気泳動 121
    7.5.4 ブロッティング 121
    コラム サンガー法(ジデオキシ法) 122
   7.6 タンパク質の発現 124
    コラム ブロッティング法の産みの親は? 124
   7.7 cDNAライブラリーの応用 125
   7.8 部位特異的突然変異誘発 125
   7.9 融合遺伝子 126
   7.10 トランスフェクション 127
   7.11 ノックアウトとノックダウン 127
   7.12 タンパク質間相互作用の解析 128
    7.12.1 免疫沈降法 128
    7.12.2 ツーハイブリッドシステム 128
   7.13 遺伝的多型の解析 128
   7.14 マイクロアレイを用いたゲノム解析技術 129
   7.15 質量分析を用いたタンパク質解析技術 130
   7.16 バイオインフォマティクス 132
    7.16.1 配列検索とデータベース 132
    コラム 次世代シーケンサー 132
    7.16.2 網羅的解析ヒバイオインフォマティクス 133
    7.16.3 比較ゲノム学 133
8.タンパク質の動態
   8.1 細胞小器官とそのトポロジー 134
   8.2 タンパク質のフォールディング 135
    8.2.1 タンパク質の構造形成 135
    8.2.2 タンパク質合成初期過程におけるフォールディング 136
   8.3 翻訳後修飾 137
    8.3.1 タンパク質のプロセシング 137
    8.3.2 ジスルフィド結合(S-S結合) 138
    8.3.3 糖鎖付加(グリコシル化) 138
   8.4 細胞内輸送 139
    8.4.1 核輸送 140
    8.4.2 中央分泌系 140
   8.5 エンドサイトーシスとエキソサイトーシス 145
    8.5.1 エキソサイトーシス 145
    8.5.2 エンドサイトーシス 146
   8.6 ミトコンドリアへの輸送 147
   8.7 タンパク質の分解 147
    8.7.1 ユビキチン依存型経路 147
    8.7.2 その他のプロテアーゼ 148
    8.7.3 タンパク質品質管理機構 148
9.細胞周期の制御と染色体
   9.1 真核生物の細胞分裂周期とは何か : 四つの異なるステージ 151
   9.2 真核生物における細胞周期の普遍性 153
   9.3 卵成熟因子の発見 155
   9.4 細胞周期制御遺伝子の同定 156
    9.4.1 サイクリン 156
    9.4.2 Cdc25ホスファターゼとWeelキナーゼ 156
    9.4.3 CDKインヒビター 157
   9.5 ユビキチン分解系の重要性 157
   9.6 チェックポイント制御の存在 158
   9.7 真核生物の染色体 159
    9.7.1 凝縮染色体の視覚化 159
    9.7.2 複製起点 160
    9.7.3 テロメア 161
    9.7.4 動原体 162
    9.7.5 姉妹染色分体間の結合 163
   9.8 染色体の分配と細胞周期制御 164
10.ウイルスとがん
   10.1 分子腫瘍学研究の流れ 165
    10.1.1 実験動物を用いたがん研究の時代 165
    10.1.2 培養細胞を用いたがんウイルス研究の時代 165
    10.1.3 発がんの分子機構に関する仮説 168
    10.1.4 分子レベルでのがん研究の黎明 168
    10.1.5 がん遺伝子の時代 171
    10.1.6 がん抑制遺伝子の時代 172
    10.1.7 ゲノムサイエンスに基づくがん研究の時代 173
    10.1.8 遺伝子の探索から診断・治療へ 174
   10.2 DNA腫瘍ウイルス 175
    10.2.1 はじめに 175
    10.2.2 ゲノム構造およびその転写 175
    10.2.3 発がん機構 177
   10.3 レトロウイルス 183
    10.3.1 レトロウイルスゲノムの構造 183
    10.3.2 プロウイルスの合成 184
    10.3.3 プロウイルスの組込み 186
    10.3.4 レトロウイルスの遺伝子発現と粒子形成 186
    10.3.5 欠損ウイルスと内在性ウイルス 187
    10.3.6 レトロウイルスベクター 188
    10.3.7 その他のレトロポゾン 189
11.シグナル伝達
   11.1 細胞間コミュニケーション 191
   11.2 シグナル因子 192
   11.3 受容体 194
   11.4 細胞内シグナル伝達因子 195
   11.5 がん遺伝子 197
   11.6 各種のシグナル伝達経路 197
    11.6.1 三量体型Gタンパク質共役型受容体を介したシグナル伝達 198
    11.6.2 酵素内在型受容体を介したシグナル伝達 202
    11.6.3 酵素共役型受容体を介したシグナル伝達 206
    11.6.4 イオンチャンネル型受容体 208
   11.7 今後の展望 209
12.多細胞体制の分子生物学
   12.1 単細胞生物・群体・多細胞生物210
   12.2 組織の分化 211
    12.2.1 ショウジョウバエの体節の形成 211
    コラム プログラムされた細胞死 213
    12.2.2 アフリカツメガエルの初期発生 214
    12.2.3 組織分化の一般性 215
    コラム Pax6 215
    12.2.4 植物組織の分化 216
   12.3 細胞の選択的接着 216
    12.3.1 細胞接着分子 217
    12.3.2 細胞外基質接着分子 218
    12.3.3 細胞骨格 220
    コラム がんと細胞接着 220
    12.3.4 細胞接着装置 221
    コラム βカテニン 222
    12.3.5 植物細胞の細胞壁および細胞間結合 223
   12.4 多細胞生物の形態形成に関与するその他の因子 224
    12.4.1 分泌型シグナル伝達因子 224
    12.4.2 細胞の極性 225
    12.4.3 細胞外基質とマトリックスメタロプロテアーゼ 225
    12.4.4 植物の形態形成 226
   12.5 おわりに 226
13.脳・神経
   13.1 脳・神経系の働きと進化 227
   13.2 神経細胞の構造と機能 228
   13.3 脳・神経解剖学 229
   13.4 神経系の発生・分化と回路網形成 231
   13.5 神経活動の分子的基礎 232
    13.5.1 細胞膜内外のイオン分布と細胞内電位 232
    13.5.2 神経伝達物質と受容体 235
   13.6 学習と記憶 237
    13.6.1 学習と記憶 237
    13.6.2 高次機能 239
14.モデル生物の分子生物学
   14.1 酵母 240
    14.1.1 モデル系としての二つの酵母―sacharomyces と Schizosaccharomyces 240
    14.1.2 なぜ酵母がモデル系となるのか 241
    14.1.3 酵母を用いた研究が注目される分野 241
    コラム ツーハイブリッドシステム 243
    14.1.4 酵母研究の現在と未来 244
   14.2 線虫 244
    14.2.1 なぜ線虫か 244
    14.2.2 C. elegans とは 245
    14.2.3 C. elegans のゲノム情報とゲノム生物学 245
    14.2.4 発生と細胞系譜 245
    14.2.5 神経系と行動 247
   14.3 ショウジョウバエ 248
    14.3.1 パターン形成研究の代表的モデル生物 248
    14.3.2 前後軸方向のボディープランの決定機構ホメオボックスの発見 249
    14.3.3 翔のパターン形成 : 分泌性シグナルタンパク質による位置情報の創出 249
    14.3.4 神経発生における細胞運命決定機構 : 側方抑制と非対称分裂 250
    14.3.5 モデル生物としての将来 250
   14.4 マウス 251
    14.4.1 はじめに 251
    14.4.2 トランスジェニックマウス 251
    14.4.3 遺伝子ターゲッティング 252
    14.4.4 マウスリソースの開発 254
   14.5 アラビドプシス(シロイヌナズナ) 255
    14.5.1 モデル植物としてのアラビドプシス 255
    14.5.2 花の形態形成のABCモデル 255
    14.5.3 植物の多様性とモデル植物の研究 258
   14.6 その他のモデル生物 259
    14.6.1 モデル生物研究の意義 259
    14.6.2 比較ゲノム学と遺伝子の進化 259
    14.6.3 分子生物学の広がりとモデル生物の多様性 260
15.ヒトの分子生物学
   15.1 ヒトの分子生物学とは,その目指す方向と意義 261
    15.1.1 複雑系としてのヒト 261
    15.1.2 病気を理解するための共通言語としての分子生物学の役割 261
   15.2 ヒトの分子生物学の研究対象 262
    コラム マラリアに抵抗性を示す鎌状赤血球貧血へテロ接合体 262
   15.3 ヒ卜を対象とした分子生物学的な研究手段と成果 264
    15.3.1 白血病の基本概念化に向けて 264
    15.3.2 遺伝病の基本形態について 265
    15.3.3 神経変性疾患の基本概念化に向けて 266
    コラム リピート伸長病 268
   15.4 ヒトのゲノム解析と再生医療 269
   15.5 医学との接点 : 診断,治療における分子生物学的なアプローチの実際 270
   15.5.1 鋭敏な検出手段としてのPCR 271
   15.5.2 分子生物学的なアプローチによってつくりだされた疾患モデル 271
   15.5.3 治療薬としてのリコンビナントタンパク質とその可能性 272
   15.6 将来の展望 273
索引 274
1.分子生物学の普遍性 1
   1.1 分子生物学的なアプローチ 1
   1.2 物質的な普遍性 : 低分子から高分子へ,高分子から分子複合体へ 3
5.

図書

東工大
目次DB

図書
東工大
目次DB
仲野徹編
出版情報: 東京 : コロナ社, 2006.3  xiv, 250p, 図版[2]p ; 26cm
シリーズ名: 再生医療の基礎シリーズ : 生医学と工学の接点 ; 3
所蔵情報: loading…
目次情報: 続きを見る
1テロメア
   1.1テロメアが再生医療にとって重要な理由 1
   1.2テロメアは分裂寿命の指標 1
   1.2.1テロメアの構造と機能 1
   1.2.2テロメアとDNA末端複製障害 2
   1.2.3テロメア・テロメラーゼ仮説 3
   1.2.4テロメアの解析手法 4
   1.3テロメア・ホメオスターシスにかかわる諸要因 6
   1.3.1テロメラーゼホロ酵素 6
   1.3.2テロメア結合タンパクによるテロメア長の負の制御 8
   1.4DNA修復反応経路とテロメア維持機構 10
   1.5幹細胞とテロメア 11
   1.5.1幹細胞のテロメア・テロメラーゼ 11
   1.5.2幹細胞の自己複製能とテロメア短縮 13
   1.5.3骨髄不全におけるテロメア機能障害 13
   1.5.4テロメア長の人工的改変と懸念される点 14
   1.6再生医療とテロメア 14
   引用・参考文献 14
2.細胞周期制御
   2.1はじめに 17
   2.2細胞周期制御 18
   2.2.1細胞周期の進行 18
   2.2.2細胞周期制御分子の機能 19
   2.3幹細胞における細胞周期制御 21
   2.3.1幹細胞の特性 21
   2.3.2幹細胞の細胞周期制御 23
   2.3.3幹細胞ニッチにおける細胞分裂、細胞周期制御 25
   2.3.4幹細胞における細胞周期制御分子の機能 27
   2.4組織/器官の発生・再生過程における細胞周期制御 29
   2.4.1組織/器官の大きさと増殖制御 30
   2.4.2細胞の分化と細胞周期制御 30
   2.5細胞周期制御の再生医療への応用 32
   2.5.1組織幹細胞の増幅の試み 32
   2.5.2成熟細胞の細胞周期への再導入の試み 32
   引用・参考文献 33
3.アポトーシス
   3.1はじめに 36
   3.1.1アポトーシスと起源と進化上の意義 36
   3.1.2共通の部分と特有な部分 37
   3.1.3アポトーシス制御と実行の分子メカニズム 39
   3.2アポトーシス基本システム 39
   3.2.1Bcl-2ファミリー因子 40
   3.2.2カスペースカスケード 42
   3.2.3アポトーシス細胞の貧食除去 44
   3.3アポトーシスの誘因とそのシグナル伝達経路 44
   3.3.1サイトカインの欠乏 45
   3.3.2DNA損傷 46
   3.3.3死のシグナル 48
   3.3.4小胞体ストレス 50
   3.4おわりに 51
4.ゲノムインプリンティング
   4.1はじめに-哺乳類におけるエピジェネティクス- 52
   4.2ゲノムインプリンティングの概要 53
   4.3生殖細胞系列でのゲノムインプリンティング記憶のリプログラミング 55
   4.4体細胞系列でのPegとMegの片親性発現の成立 61
   4.5ゲノムインプリンティングの生物学的意味 62
   4.6ゲノムインプリンティングと体細胞クローン 63
   引用・参考文献 63
5.核移植クローンとリブログラミング
   5.1核移植クローンとは 66
   5.1.1核移植クローンの歴史 66
   5.1.2核移植クローンの手法 67
   5.1.3核移植クローンの効率 67
   5.2ゲノムのリプログラミング 69
   5.2.1リプログラミングとは 69
   5.2.2核移植クローンにおけるエビジェネティック解析 69
   5.2.3生殖細胞におけるゲノムリプログラミング 73
   5.2.4アフリカツメガエルを用いたリプログラミング因子の探索 74
   5.3核移植を用いた再生医療 74
   引用・参考文献 75
6.DNAメチル化
   6.1はじめに 80
   6.2DNAメチル化の基礎知識 80
   6.2.1DNAのメチル化とは 80
   6.2.2de novoメチル化、維持メチル化と脱メチル化 81
   6.2.3CpG配列の頻度、分布とCpGアイランゴ 82
   6.3マウス発生におけるDANメチル化のダイナミクス 84
   6.4細胞分化とDNAメチル化 85
   6.5DNAメチル化酵素 86
   6.6DNAメチル化に影響する因子 87
   6.7メチル化DNA結合タンパク質 88
   6.8DNAメチル化による転写抑制の機構 89
   6.9DNAメチル化のかかわるエビジェネティックな現象 90
   6.10DNAメチル化異常と発がん 91
   6.11DNAメチル化と再生医学 91
   6.12DNAメチル化の解析手法 92
   6.12.1メチル化感受性制限酵素を利用する方法 92
   6.12.2bisulfite処理を用いる方法 92
   6.13DANメチル化の操作の可能性 93
   6.14おわりに 94
   引用・参考文献 94
7.ヒストン修飾
   7.1はじめに 97
   7.2クマンチンの構造 98
   7.3ヒストンアセチル化酵素(HAT) 99
   7.3.1GNATファミリー 99
   7.3.2MYSTファミリー 101
   7.3.3そのほかのファミリー 101
   7.4ヒストン脱アセチル化酵素(HDAC) 102
   7.5ヒストンリン酸化 103
   7.5.1分裂間期におけるH3のリン酸化 103
   7.5.2転写活性化のメカニズム 104
   7.6ヒストンメチル化 105
   7.7ヒストン脱メチル化酵素の存在 107
   7.8おわりに 107
   引用・索引文献 108
8.胚性幹細胞における未分化性維持機構
   8.1はじめに 110
   8.2LIF/gp130/STAT 3112
   8.3Oct3/ 4114
   8.4Sox 2116
   8.5Nanog 117
   8.6FoxD 3118
   8.7BMP/GDF 118
   8.8Wnt/β-catenin 119
   8.9PI3キナーゼ/ERas/mTOR 119
   8.10Src 120
   8.11おわりに 120
   引用・参考文献 121
9.幹細胞のシグナル伝達~血管新生因子~
   9.1はじめに 124
   9.2血管システムの発生 125
   9.2.1血管内皮細胞の起源 125
   9.2.2血管システム構築 126
   9.3血管内皮細胞の分化 128
   9.3.1動脈・静脈内皮細胞分化 128
   9.3.2リンパ管の発生 129
   9.4in vitro分化誘導システムを用いた血管構築 131
   9.5血管新生療法 132
   9.5.1血管新生タンパク、遺伝子、造血性サイトカインを用いた血管新生治療 132
   9.5.2細胞移植治療 133
   引用・索引文献 134
10.幹細胞のシグナル伝達~ケモカイン~
   10.1はじめに 135
   10.2CXCL12とその受容体CXCR4について 136
   10.3造血幹細胞の胎生期での臓器間の移動におけるCXCL12の役割 137
   10.4始原生殖細胞の胎生期での臓器間の移動におけるCXCL12の役割 139
   10.5造血における骨髄内でのニッチ細胞の同定と造血幹細胞、前駆細胞の動態およびCXCL12の役割 141
   10.6おわりに―生物学・基礎医学的側面と臨床医学的側面から― 143
   引用・参考文献 144
11.幹細胞のシグナル伝達~KIT~
   11.1はじめに 146
   11.2WおよびSI突然変異マウス 147
   11.2.1W突然変異マウス(KIT)の機能喪失性突然変異マウス) 147
   11.2.2SI突然変異マウス(SCFの機能喪失性突然変異マウス) 149
   11.2.3W遺伝子座とSI遺伝子座の関係 149
   11.3WとKITおよびSIとSCF 150
   11.3.1W遺伝子座とc‐kit遺伝子 150
   11.3.2SI遺伝子座とSCF 150
   11.4KITのシグナル伝達系 151
   11.5c‐kit遺伝子の機能獲得性突然変異 153
   11.5.1マスト細胞性腫瘍 153
   11.5.2c‐kit遺伝子と消化管間質細胞腫 154
   11.5.3KIT活性阻害薬 155
   11.6おわりに 156
   引用・参考文献 156
12.幹細胞ノシグナル伝達~STAT3と他のシグナルのクロストーク~
   12.1はじめに 159
   12.2神経幹細胞の性質 159
   12.3JAK-STATシグナル伝達経路が制御するアストロシアト分化機構 161
   12.4アストロサイト分化に関与する細胞内シグナル伝達経路のクロストーク 163
   12.4.1STAT3経路とBMP‐Smad経路とのクロストーク 163
   12.4.2STAT3活性化シグナルと細胞内在性プログラムノクロストーク 165
   12.4.3Notch‐Hes経路とSTAT3経路とのクロストーク 165
   12.5アストロサイト分化トニューロン分化・オリゴデンドロサイト分化の相互作用 166
   12.5.1STAT3経路とニューロン分化シグナルのクロストーク 166
   12.5.2STAT3経路とオリゴデンドロサイト分化シグナルのクロストーク 167
   12.6神経系疾患における再生医療の現状 167
   12.7まとめと今後の展開 169
   引用・参考文献 169
13.幹細胞のシグナル伝達~BMP~
   13.1はじめに 171
   13.2BMPのシグナル伝達 172
   13.3マウスの発生におけるBMPシグナルの役割 174
   13.4マウスES細胞の自己複製におけるBMPシグナルの役割 176
   13.5ヒトES細胞におけるBMPシグナルの役割 177
   13.6間葉系幹細胞の文化制御におけるBMPシグナルの役割 178
   13.7血管内皮前駆細胞・造血幹細胞におけるBMPシグナルの役割 179
   13.8神経幹細胞の分化制御におけるBMPシグナルの役割 180
   13.9始原生殖細胞形成におけるBMPシグナルの役割 181
   13.10腸管上皮幹細胞におけるBMPシグナルの役割 181
   13.11おわりに 182
   引用・参考文献 182
14.幹細胞ノシグナル伝達~Wntシグナル~
   14.1Wntシグナル研究の流れ 187
   14.2細胞内Wntシグナル伝達経路の概要 188
   14.2.1β-カテニン経路 189
   14.2.2PCP経路 189
   14.2.3Ca2+経路 192
   14.3ES細胞とWntシグナル 192
   14.3.1APC欠損マウスとES細胞 193
   14.3.2WntによるES細胞の自己複製の制御 193
   14.4EC細胞とWntシグナル 194
   14.4.1F9細胞とWntシグナル 194
   14.4.2P19細胞とWntシグナル 195
   14.5組織幹細胞とWntシグナル 196
   14.5.1造血幹細胞とWntシグナル 196
   14.5.2腸管上皮幹細胞とWntシグナル 196
   14.6おわりに 197
   引用・参考文献 197
15.幹細胞のシグナル伝達~PI3K/Akt~
   15.1はじめに 201
   15.2PI3KとPIP3分解酵素 202
   15.2.1哺乳類PI3K 202
   15.2.2PIP3分解酵素 204
   15.3PHドメイン 205
   15.4Akt 206
   15.4.1活性制御機構 207
   15.4.2Aktの基質と下流のシグナル伝達 208
   15.5PI3K‐Akt経路の幹細胞での役割と再生医学への応用 210
   15.5.1ES細胞の自己複製におけるIa型PI3Kの役割 210
   15.5.2始原生殖細胞および神経幹細胞の自己複製におけるPTENの役割 210
   15.5.3心筋の再生におけるAKtの役割 211
   引用・参考文献 211
16.幹細胞のシグナル伝達~Notch~
   16.1Notchシグナル 213
   16.1.1Notchの歴史的背景 213
   16.1.2Notch受容体の構造とシグナル伝達 214
   16.2哺乳動物におけるNotchシグナルの役割-幹細胞とのかかわり- 217
   16.2.1発生における役割 217
   16.2.2発生期以降におけるNotchシグナルの役割と再生医療への応用 220
   16.3Notchシグナルと腫瘍 224
   引用・参考文献 225
17.幹細胞のシグナル伝達~Hox/Polycomb~
   17.1はじめに 228
   17.2HoxとPcG 22
   17.3PcG複合体の基本的な分子機能 231
   17.4Hoxによる造血幹細胞制御 233
   17.5PcGによる造血幹細胞制御 233
   17.6おわりに 235
   引用・参考文献 235
18.幹細胞のシグナル伝達~bHLH因子~
   18.1はじめに 239
   18.2神経幹細胞とは 239
   18.3bHLH型転写抑制因子Hes 240
   18.4Hesの発現制御 241
   18.5Hes因子群による神経幹細胞の維持 243
   18.6ダイナミックなHesの発現変化-2時間を刻む生物時計- 245
   引用・参考文献 246
   索引 247
1テロメア
   1.1テロメアが再生医療にとって重要な理由 1
   1.2テロメアは分裂寿命の指標 1
6.

図書

図書
岡田節人編
出版情報: 東京 : 岩波書店, 1990.9-1990.11  2冊 ; 27cm
シリーズ名: 岩波講座分子生物科学 / 岡田節人 [ほか] 編 ; 8-9
所蔵情報: loading…
7.

図書

図書
Finn Wold著 ; 浜口浩三訳
出版情報: 東京 : 東京化学同人, 1978.2  xiii, 288p ; 22cm
シリーズ名: 現代生化学の基礎 ; 2
所蔵情報: loading…
8.

図書

図書
松原謙一, 中村桂子著
出版情報: 東京 : 岩波書店, 1990.5  vii, 230p ; 19cm
所蔵情報: loading…
9.

図書

東工大
目次DB

図書
東工大
目次DB
渡辺公綱著
出版情報: 東京 : 共立出版, 1988.6  v, 145p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1章 遺伝暗号とは何か
   1-1 遺伝現象-遺伝子-遺伝暗号 1
   1-2 生体を構成する2大要素-タンパク質と核酸 2
   1-3 遺伝子の本体 5
   1-4 DNAの二重らせん構造 6
   1-5 DNAの複製機構 8
   1-6 DNAによる形質発現 10
   1-7 遺伝暗号 11
2章 遺伝情報発現のメカニズム
   2-1 遺伝子の構成 14
   2-2 mRNA 15
   2-3 リボソーム 17
   2-4 tRNA 19
   2-5 タンパク質合成の経路 21
   2-6 アミノアシル化反応 23
   2-7 ARSで誘起されるtRNAの構造変化 25
   2-8 リボソーム上でのtRNAのコドン認識 26
   2-9 アンチコドン1字目の違うtRNAによるコドンの読み分け 29
   2-10 コドンの使用頻度とtRNAの保存量の相関 32
3章 遺伝暗号はどのようにして解読されたか
   3-1 遺伝暗号解読の流れ 35
   3-2 ガモフの仮説 36
   3-3 アダプター仮説からtRNA 37
   3-4 tRNA研究の歴史 38
   3-5 トリプレットコドンに関する種々の仮説 40
   3-6 重複のない縮重したトリプレットコドンの実証 42
   3-7 酵素の誘導現象からオペロン説へ 46
   3-8 mRNA実在の証明 49
   3-9 遺伝暗号の解読ラッシュ 52
   3-10 ニーレンバーグとコナラによる仕上げ 55
   3-11 終止コドンの決定 56
   3-12 タンパク質合成の開始コドン 60
   3-13 in vivoコード 62
4章 自然界に存在する異常暗号とその解読機構
   4-1 遺伝暗号の普遍性 65
   4-2 ミトコンドリアとその遺伝子の構造 66
   4-3 種々の動物におけるミトコンドリアの遺伝情報系の特徴 68
   4-4 ミトコンドリアの異常暗号の解読機構と異常構造をもつtRNAの関係 73
   4-5 ミトコンドリアの進化と遺伝暗号の変遷 75
   4-6 三中二読仮説 77
   4-7 繊毛虫類にみられる異常暗号 79
   4-8 マイコプラズマの異常暗号とAT選択圧 82
   4-9 他の真核細胞に存在する天然サプレッサーtRNA 83
   4-10 フレームシフトによる終止コドンの回避 85
   4-11 異常コドンの読み取りとコンテックス効果 86
5章 遺伝暗号の起源と進化
   5-1 遺伝暗号のなぞを追って 88
   5-2 化学進化のモデル実験 89
   5-3 高分子物質の生成 92
   5-4 原始細胞モデル 93
   5-5 原始遺伝子を探る 93
   5-6 触媒活性をもつRNA-リボザイム-の発見 95
   5-7 自己複製能をもつRNA擬種-原始RNA遺伝子の出現 97
   5-8 原始タンパク質合成系と連携した遺伝暗号の成立過程 98
   5-9 エラーカタストロフィーとハイパーサイクルモデル 105
   5-10 遺伝暗号の起源-二つの仮説 107
   5-11 立体化学説にまつわる実験と仮説 109
   5-12 C4N仮説-その長所と短所 112
   5-13 遺伝暗号の起源をいかに探るか 116
   5-14 生物進化 121
   5-15 終わりに 122
参考書 123
引用文献 125
索引 139
1章 遺伝暗号とは何か
   1-1 遺伝現象-遺伝子-遺伝暗号 1
   1-2 生体を構成する2大要素-タンパク質と核酸 2
10.

図書

図書
内田驍, 香川靖雄編
出版情報: 東京 : 岩波書店, 1990  2冊 ; 27cm
シリーズ名: 岩波講座分子生物科学 / 岡田節人 [ほか] 編 ; 5-6
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼