close
1.

図書

図書
Ulrich Schubert, Nicola Hüsing
出版情報: Weinheim : Wiley-VCH, c2019  xviii, 404 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Abbreviations
Introduction / 1:
Solid-State Reactions / 2:
Reactions Between Solid Compounds / 2.1:
Ceramic Method / 2.1.1:
General Aspects of Solid-State Reactions / 2.1.1.1:
Facilitating Solid-State Reactions / 2.1.1.2:
Mechanochemical Synthesis / 2.1.2:
Carbothermal Reduction / 2.1.3:
Combustion Synthesis / 2.1.4:
Solution Combustion Synthesis / 2.1.4.1:
Solid-Gas Reactions / 2.2:
Ceramics Processing / 2.3:
Sintering / 2.3.1:
Intercalation Reactions / 2.4:
Mechanistic Aspects / 2.4.1:
Preparative Methods / 2.4.2:
Intercalation of Polymers in Layered Systems / 2.4.3:
Pillaring of Layered Compounds / 2.4.4:
Further Reading
Formation of Solids from the Gas Phase / 3:
Chemical Vapour Transport / 3.1:
Halogen Lamps / 3.1.1:
Transport Reactions / 3.1.2:
Chemical Vapour Deposition / 3.2:
General Aspects / 3.2.1:
Techniques / 3.2.2:
Metal CVD / 3.2.3:
Silicon and Aluminium / 3.2.3.1:
Tungsten / 3.2.3.2:
Copper / 3.2.3.3:
CVD of Carbon / 3.2.4:
CVD of Binary and Multinary Compounds / 3.2.5:
Metal Oxides / 3.2.5.1:
Metal Nitrides / 3.2.5.2:
Metal Chalcogenides and Pnictides / 3.2.5.3:
Aerosol-Assisted CVD / 3.2.6:
Chemical Vapour Infiltration / 3.2.7:
Gas-Phase Powder Syntheses / 3.3:
Formation of Solids from Solutions and Melts / 4:
Glass / 4.1:
The Structural Theory of Glass Formation / 4.1.1:
Crystallization Versus Glass Formation / 4.1.2:
Glass Melting / 4.1.3:
Phase Separation / 4.1.4:
Metallic Glasses / 4.1.5:
Crystallization from Solution / 4.2:
Monodispersity / 4.2.1:
Shape Control of Crystals / 4.2.2:
Non-classical Crystallization / 4.2.3:
Biomineralization / 4.2.4:
Biogenic Materials / 4.2.4.1:
Bioinspired Materials Chemistry / 4.2.4.2:
Electrodeposition / 4.3:
Colloids / 4.3.1:
Electrodeposition of Ceramics / 4.3.2:
Solvothermal Processes / 4.4:
Fundamentals / 4.4.1:
Growing Single Crystals / 4.4.2:
Solvothermal Synthesis / 4.4.3:
Synthetic Calcium Phosphate Biomaterials / 4.4.3.1:
Zeolites / 4.4.3.3:
Sol-Gel Processes / 4.5:
The Chemistry of Alkoxide Precursors / 4.5.1:
Hydrolysis and Condensation / 4.5.2:
Silica-Based Materials / 4.5.2.1:
Metal Oxide-Based Materials / 4.5.2.2:
The Sol-Gel Transition (Gelation) / 4.5.3:
Aging and Drying / 4.5.4:
Nonhydrolytic Sol-Gel Processes / 4.5.5:
Inorganic-Organic Hybrid Materials / 4.5.6:
Aerogels / 4.5.7:
Preparation and Modification of Inorganic Polymers / 5:
Synthesis and Crosslinking / 5.1:
Copolymers / 5.1.2:
Polysiloxanes (Silicones) / 5.2:
Properties and Applications / 5.2.1:
Structure / 5.2.2:
Preparation / 5.2.3:
Curing ('Vulcanizing') / 5.2.4:
Polyphosphazenes / 5.3:
Preparation and Modification / 5.3.1:
Polysilanes / 5.4:
Polycarbosilanes / 5.4.1:
Polysilazanes and Related Polymers / 5.6:
Polymers with B-N Backbones / 5.7:
Other Inorganic Polymers / 5.8:
Other Phosphorus-Containing Polymers / 5.8.1:
Polymers with S-N Backbones / 5.8.2:
Metallopolymers / 5.8.3:
Polymer-to-Ceramic Transformation / 5.9:
Self-Assembly / 6:
Self-Assembled Monolayers / 6.1:
Metal-Organic Frameworks / 6.2:
Modularity of the Structures / 6.2.1:
Synthesis and Modification / 6.2.2:
Supramolecular Arrangements of Surfactants and Block Copolymers / 6.3:
Layer-by-Layer Assembly / 6.4:
Templating / 7:
Introduction to Porosity and High Surface Area Materials / 7.1:
Infiltration and Coating of Templates / 7.2:
Replica Technique / 7.2.1:
Sacrificial Templates / 7.2.2:
Colloidal Crystals / 7.2.2.1:
Hollow Particles / 7.2.2.2:
Direct Foaming / 7.2.3:
Nanocasting / 7.2.4:
In Situ Formation of Templates / 7.3:
Breath Figures / 7.3.1:
Freeze Casting / 7.3.2:
Supramolecular Assemblies of Amphiphiles / 7.3.3:
Synthesis of Periodic Mesoporous Silicas / 7.3.3.1:
Evaporation-Induced Self-Assembly / 7.3.3.2:
Incorporation of Organic Groups / 7.3.3.3:
Reorganization and Transformation Processes / 7.4:
Pseudomorphic Transformation / 7.4.1:
Kirkendall Effect / 7.4.2:
Galvanic Replacement / 7.4.3:
Phase Separation and Leaching / 7.4.4:
Nanomaterials / 8:
Properties of Nanomaterials / 8.1:
Properties Due to Surface Effects / 8.1.1:
Properties of Nanocrystalline Materials / 8.1.2:
Catalytic Properties / 8.1.3:
Optical Properties / 8.1.4:
Electrical Properties / 8.1.5:
Magnetic Properties / 8.1.6:
Syntheses of Nanoparticles / 8.2:
Severe Plastic Deformation / 8.2.1:
Formation from Vapours / 8.2.2:
Formation from Solution / 8.2.3:
Surface Modification with Organic Groups / 8.2.4:
One-Dimensional Nanostructures / 8.3:
Nanowires and Nanorods / 8.3.1:
Nanotubes / 8.3.2:
Carbon Nanotubes / 8.3.2.1:
Titania Nanotubes / 8.3.2.2:
Two-Dimensional Nanomaterials / 8.4:
Graphene / 8.4.1:
Other 2D Nanomaterials / 8.4.2:
Heterostructures and Composites / 8.5:
Core-Shell Nanoparticles / 8.5.1:
Vertical 2D Heterostructures / 8.5.2:
Polymer-Matrix Nanocomposites / 8.5.3:
Supported Metal Nanoparticles / 8.5.4:
Glossary
Index
Preface
Acknowledgements
Abbreviations
2.

図書

図書
Ulf Leonhardt
出版情報: Cambridge : Cambridge University Press, 2010  xii, 277 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
Quantum theory / 1.2:
Axioms / 1.2.1:
Quantum statistics / 1.2.2:
Schrödinger and Heisenberg pictures / 1.2.3:
On the questions and homework problems / 1.3:
Further reading / 1.4:
Quantum field theory of light / 2:
Light in media / 2.1:
Maxwell's equations / 2.1.1:
Quantum commutator / 2.1.2:
Light modes / 2.2:
Modes and their scalar product / 2.2.1:
Bose commutation relations / 2.2.2:
Interference / 2.2.3:
Monochromatic modes / 2.2.4:
Zero-point energy and Casimir force / 2.3:
An attractive cavity / 2.3.1:
Reflections / 2.3.2:
Questions / 2.4:
Homework problem / 2.5:
Simple quantum states of light / 2.6:
The electromagnetic oscillator / 3.1:
Single-mode states / 3.2:
Quadrature states / 3.2.1:
Fock states / 3.2.2:
Thermal states / 3.2.3:
Coherent states / 3.2.4:
Uncertainty and squeezing / 3.3:
Quasiprobability distributions / 3.4:
Wigner representation / 4.1:
Wigner's formula / 4.1.1:
Basic properties / 4.1.2:
Examples / 4.1.3:
Other quasiprobability distributions / 4.2:
Q function / 4.2.1:
P function / 4.2.2:
s-parameterized quasiprobability distributions / 4.2.3:
Simple optical instruments / 4.3:
Beam splitter / 5.1:
Heisenberg picture / 5.1.1:
Schrödinger picture / 5.1.2:
Fock representation and wave-particle dualism / 5.1.3:
Detection / 5.2:
Photodetector / 5.2.1:
Balanced homodyne detection / 5.2.2:
Quantum tomography / 5.2.3:
Simultaneous measurement of conjugate variables / 5.2.4:
Irrevesible processes / 5.3:
Lindblad's theorem / 6.1:
Irreversibility / 6.1.1:
Reversible dynamics / 6.1.2:
Irreversible dynamics / 6.1.3:
Loss and gain / 6.2:
Absorption and amplification / 6.2.1:
Absorber / 6.2.2:
Amplifier / 6.2.3:
Eavesdropper / 6.2.4:
Continuous quantum measurements / 6.3:
Entanglement / 6.4:
Parametric amplifier / 7.1:
Einstein-Podolski-Rosen state / 7.1.1:
Quantum teleportation / 7.1.4:
Polarization correlations / 7.2:
Singlet state / 7.2.1:
Polarization / 7.2.2:
Bell's theorem / 7.2.3:
Horizons / 7.3:
Minkowski space / 8.1:
Locality and relativity / 8.1.1:
Space-time geometry / 8.1.2:
Light / 8.1.3:
Accelerated observers / 8.2:
Rindler coordinates / 8.2.1:
Accelerated modes / 8.2.2:
Unruh effect / 8.2.3:
Moving media / 8.3:
Motivation / 8.3.1:
Trans-Planckian problem / 8.3.2:
Light in moving media / 8.3.3:
Geometry of light / 8.3.4:
Hawking radiation / 8.3.5:
Stress of the quantum vacuum / 8.4:
State reconstruction in quantum mechanics / Appendix B:
References
Index
Irreversible processes
Appendixes
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
3.

図書

図書
Gregory Falkovich
出版情報: Cambridge : Cambridge University Press, 2011  xii, 167 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Prologue
Basic equations and steady flows / 1:
Definitions and basic equations / 1.1:
Definitions / 1.1.1:
Equations of motion for an ideal fluid / 1.1.2:
Hydrostatics / 1.1.3:
Isentropic motion / 1.1.4:
Conservation laws and potential flows / 1.2:
Kinematics / 1.2.1:
Kelvin's theorem / 1.2.2:
Energy and momentum fluxes / 1.2.3:
Irrotational and incompressible flows / 1.2.4:
Flow past a body / 1.3:
Incompressible potential flow past a body / 1.3.1:
Moving sphere / 1.3.2:
Moving body of an arbitrary shape / 1.3.3:
Quasi-momentum and induced mass / 1.3.4:
Viscosity / 1.4:
Reversibility paradox / 1.4.1:
Viscous stress tensor / 1.4.2:
Navier-Stokes equation / 1.4.3:
Law of similarity / 1.4.4:
Stokes flow and the wake / 1.5:
Slow motion / 1.5.1:
The boundary layer and the separation phenomenon / 1.5.2:
Flow transformations / 1.5.3:
Drag and lift with a wake / 1.5.4:
Exercises
Unsteady flows / 2:
Instabilities / 2.1:
Kelvin-Helmholtz instability / 2.1.1:
Energetic estimate of the stability threshold / 2.1.2:
Landau's law / 2.1.3:
Turbulence / 2.2:
Cascade / 2.2.1:
Turbulent river and wake / 2.2.2:
Acoustics / 2.3:
Sound / 2.3.1:
Riemann wave / 2.3.2:
Burgers equation / 2.3.3:
Acoustic turbulence / 2.3.4:
Mach number / 2.3.5:
Dispersive waves / 3:
Linear waves / 3.1:
Surface gravity waves / 3.1.1:
Viscous dissipation / 3.1.2:
Capillary waves / 3.1.3:
Phase and group velocity / 3.1.4:
Weakly non-linear waves / 3.2:
Hamiltonian description / 3.2.1:
Hamiltonian normal forms / 3.2.2:
Wave instabilities / 3.2.3:
Non-linear Schrödinger equation (NSE) / 3.3:
Derivation of NSE / 3.3.1:
Modulational instability / 3.3.2:
Soliton, collapse and turbulence / 3.3.3:
Korteveg-de-Vries (KdV) equation / 3.4:
Waves in shallow water / 3.4.1:
The KdV equation and the soliton / 3.4.2:
Inverse scattering transform / 3.4.3:
Solutions to exercises / 4:
Chapter 1
Chapter 2
Chapter 3
Epilogue
Notes
References
Index
Preface
Prologue
Basic equations and steady flows / 1:
4.

図書

図書
edited by Xin-bo Zhang
出版情報: Weinheim : Wiley-VCH, c2018  xiv, 417 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
Sodium-O2 Battery / 1.2:
References
Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries / Bin Liu and Wu Xu and Ji-Guang Zhang2:
Introduction / 2.1:
Recent Progresses in Li Metal Protection for Li-O2 Batteries / 2.2:
Design of Composite Protective Layers / 2.2.1:
New Insights on the Use of Electrolyte / 2.2.2:
Functional Separators / 2.2.3:
Solid-State Electrolytes / 2.2.4:
Alternative Anodes / 2.2.5:
Challenges and Perspectives / 2.3:
Acknowledgment
Li-Air Batteries: Discharge Products / Xuanxuan Bi and Rongyue Wang and Jun Lu3:
Discharge Products in Aprotic Li-O2 Batteries / 3.1:
Peroxide-based Li-O2 Batteries / 3.2.1:
Electrochemical Reactions / 3.2.1.1:
Crystalline and Electronic Band Structure of Li2O2 / 3.2.1.2:
Reaction Mechanism and the Coexistence of Li2O2 and LiO2 / 3.2.1.3:
Super oxide-based Li-02 Batteries / 3.2.2:
Problems and Challenges in Aprotic Li-O2 Batteries / 3.2.3:
Decomposition of the Electrolyte / 3.2.3.1:
Degradation of the Carbon Cathode / 3.2.3.2:
Discharge Products in Li-Air Batteries / 3.3:
Challenges to Exchanging O2 to Air / 3.3.1:
Effect of Water on Discharge Products / 3.3.2:
Effect of Small Amount of Water / 3.3.2.1:
Aqueous Li-O2 Batteries / 3.3.2.2:
Effect of C02 on Discharge Products / 3.3.3:
Current Li-Air Batteries and Perspectives / 3.3.4:
Electrolytes for Li-O2 Batteries / Alex R. Neale and Peter Goodrich and Christopher Hardacre and Johan Jacquemin4:
General Li-O2 Battery Electrolyte Requirements and Considerations / 4.1:
Electrolyte Salts / 4.1.1:
Ethers and Glymes / 4.1.2:
Dimethyl Sulfoxide (DMSO) and Sulfones / 4.1.3:
Nitriles / 4.1.4:
Amides / 4.1.5:
Ionic Liquids / 4.1.6:
Future Outlook / 4.1.7:
Li-Oxygen Battery: Parasitic Reactions / Xiahui Yao and Qi Dong and Qingmei Cheng and Dunwei Wang5:
The Desired and Parasitic Chemical Reactions for Li-Oxygen Batteries / 5.1:
Parasitic Reactions of the Electrolyte / 5.2:
Nucleophilic Attack / 5.2.1:
Autoxidation Reaction / 5.2.2:
Acid-Base Reaction / 5.2.3:
Proton-mediated Parasitic Reaction / 5.2.4:
Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction / 5.2.5:
Parasitic Reactions at the Cathode / 5.3:
The Corrosion of Carbon in the Discharge Process / 5.3.1:
The Corrosion of Carbon in the Recharge Process / 5.3.2:
Catalyst-induced Parasitic Chemical Reactions / 5.3.3:
Alternative Cathode Materials and Corresponding Parasitic Chemistries / 5.3.4:
Additives and Binders / 5.3.5:
Contaminations / 5.3.6:
Parasitic Reactions on the Anode / 5.4:
Corrosion of the Li Metal / 5.4.1:
SEI in the Oxygenated Atmosphere / 5.4.2:
Alternative Anodes and Associated Parasitic Chemistries / 5.4.3:
New Opportunities from the Parasitic Reactions / 5.5:
Summary and Outlook / 5.6:
Li-Air Battery: Electrocatalysts / 6:
Types of ELectrocatalyst / 6.1:
Carbonaceous Materials / 6.2.1:
Commercial Carbon Powders / 6.2.1.1:
Carbon Nanotubes (CNTs) / 6.2.1.2:
Graphene / 6.2.1.3:
Doped Carbonaceous Material / 6.2.1.4:
Noble Metal and Metal Oxides / 6.2.2:
Transition Metal Oxides / 6.2.3:
Perovskite Catalyst / 6.2.3.1:
Redox Mediator / 6.2.3.2:
Research of Catalyst / 6.3:
Reaction Mechanism / 6.4:
Summary / 6.5:
Lithium-Air Battery Mediator / Zhuojion Liang and Guangtao Cong and Yu Wang and Yi-Chun Lu7:
Redox Mediators in Lithium Batteries / 7.1:
Redox Mediators in Li-Air Batteries / 7.1.1:
Redox Mediators in Li-ion and Lithium-flow Batteries / 7.1.2:
Overcharge Protection in Li-ion Batteries / 7.1.2.1:
Redox Targeting Reactions in Lithium-flow Batteries / 7.1.2.2:
Selection Criteria and Evaluation of Redox Mediators for Li-O2 Batteries / 7.2:
Redox Potential / 7.2.1:
Stability / 7.2.2:
Reaction Kinetics and Mass Transport Properties / 7.2.3:
Catalytic Shuttle vs Parasitic Shuttle / 7.2.4:
Charge Mediators / 7.3:
Lil (Lithium Iodide) / 7.3.1:
LiBr (Lithium Bromide) / 7.3.2:
Nitroxides: TEMPO (2,2,6,6-TetramethyIpiperidinyioxyl) and Others / 7.3.3:
TTF (Tetrathiafulvalene) / 7.3.4:
Tris[4-(diethylamino)phenyl]amine (TDPA) / 7.3.5:
Comparison of the Reported Charge Mediators / 7.3.6:
Discharge Mediator / 7.4:
Iron Phthalocyanine (FePc) / 7.4.1:
2,5-Di-tert'butyl-l,4-benzoquinone (DBBQ) / 7.4.2:
Conclusion and Perspective / 7.5:
Spatiotemporal Operando X-ray Diffraction Study on Li-Air Battery / Di-Jia Liu and Jiang-Lan Shui8:
Microfocused X-ray Diffraction (¿-XRD) and Li-O2 Cell Experimental Setup / 8.1:
Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB / 8.2:
Study on Separator: Impact of Precipitates to LAB Performance / 8.3:
Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox Reaction / 8.4:
Metal-Air Battery: In Situ Spectroelectrochemical Techniquesx / lain M. Aldous and Laurence J. Hardwick and Richard J. Nichols and J. Padmanabhan Vivek9:
Raman Spectroscopy / 9.1:
In Situ Raman Spectroscopy for Metal-O2 Batteries / 9.1.1:
Background Theory / 9.1.2:
Practical Considerations / 9.1.3:
Electrochemical Roughening / 9.1.3.1:
Addressing Inhomogeneous SERS Enhancement / 9.1.3.2:
In Situ Raman Setup / 9.1.4:
Determination of Oxygen Reduction and Evolution Reaction Mechanisms Within Metal-O2 Batteries / 9.1.5:
Infrared Spectroscopy / 9.2:
Background / 9.2.1:
IR Studies of Electrochemical Interfaces / 9.2.2:
Infrared Spectroscopy for Metal-O2 Battery Studies / 9.2.3:
UV/Visible Spectroscopic Studies / 9.3:
UV/Vis Spectroscopy / 9.3.1:
UV/Vis Spectroscopy for Metal-O2 Battery Studies / 9.3.2:
Electron Spin Resonance / 9.4:
Cell Setup / 9.4.1:
Deployment of Electrochemical ESR in Battery Research / 9.4.2:
Zn-Air Batteries / Tong wen Yu and Rui Cai and Zhongwei Chen9.5:
Zinc Electrode / 10.1:
Electrolyte / 10.3:
Separator / 10.4:
Air Electrode / 10.5:
Structure of Air Electrode / 10.5.1:
Oxygen Reduction Reaction / 10.5.2:
Oxygen Evolution Reaction / 10.5.3:
Electrocatalyst / 10.5.4:
Noble Metals and Alloys / 10.5.4.1:
Inorganic-Organic Hybrid Materials / 10.5.4.2:
Meta-free Materials / 10.5.4.4:
Conclusions and Outlook / 10.6:
Experimental and Computational investigation of Nonaqueous Mg/O2 Batteries / Jeffrey G. Smith and Güiin Vardar and Charles W. Monroe and Donald J. Siegel11:
Experimental Studies of Magnesium/Air Batteries and Electrolytes / 11.1:
Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries / 11.2.1:
Modified Grignard Electrolytes for Mg/O2 Batteries / 11.2.2:
All-inorganic Electrolytes for Mg/O2 Batteries / 11.2.3:
Electrochemical Impedance Spectroscopy / 11.2.4:
Computational Studies of Mg/O2 Batteries / 11.3:
Calculation of Thermodynamic Overpotentials / 11.3.1:
Charge Transport in Mg/O2 Discharge Products / 11.3.2:
Concluding Remarks / 11.4:
Novel Methodologies to Model Charge Transport In Metal-Air Batteries / Nicoiai Rask Mathiesen and Marko Melander and Mikael Kuisma and Pablo García-Fernandez and Juan Maria García Lastra12:
Modeling Electrochemical Systems with GPAW / 12.1:
Density Functional Theory / 12.2.1:
Conductivity from DFT Data / 12.2.2:
The GPAW Code / 12.2.3:
Charge Transfer Rates with Constrained DFT / 12.2.4:
Marcus Theory of Charge Transfer / 12.2.4.1:
Constrained DFT / 12.2.4.2:
Polaronic Charge Transport at the Cathode / 12.2.4.3:
Electrochemistry at Solid-Liquid Interfaces / 12.2.5:
Modeling the Electrochemical Interface / 12.2.5.1:
Implicit Solvation at the Electrochemical Interface / 12.2.5.2:
Generalized Poisson-Boltzmann Equation for the Electric Double Layer / 12.2.5.3:
A Electrode Potential Within the Poisson-Boltzmann Model
Calculations at Constant Electrode Potential / 12.2.6:
The Need for a Constant Potential Presentation / 12.2.6.1:
Grand Canonical Ensemble for Electrons / 12.2.6.2:
Fictitious Charge Dynamics / 12.2.6.3:
Model in Practice / 12.2.6.4:
Conclusions / 12.2.7:
Second Principles for Material Modeling / 12.3:
The Energy in SP-DET / 12.3.1:
The Lattice Term (E(0)) / 12.3.2:
Electronic Degrees of Freedom / 12.3.3:
Model Construction / 12.3.4:
Perspectives on SP-DFT / 12.3.5:
Acknowledgments
Flexible Metal-Air Batteries / Huisheng Peng and Yifan Xu and Jian Pan and Yang Zhao and Lie Wang and Xiang Shi13:
Flexible Electrolytes / 13.1:
Aqueous Electrolytes / 13.2.1:
PAA-based Gel Polymer Electrolyte / 13.2.1.1:
PEO-based Gel Polymer Electrolyte / 13.2.1.2:
PVA-based Gel Polymer Electrolyte / 13.2.1.3:
Nonaqueous Electrolytes / 13.2.2:
PEO-based Polymer Electrolyte / 13.2.2.1:
PVDF-HFP-based Polymer Electrolyte / 13.2.2.2:
Ionic Liquid Electrolyte / 13.2.2.3:
Flexible Anodes / 13.3:
Flexible Cathodes / 13.4:
Modified Stainless Steel Mesh / 13.4.1:
Modified Carbon Textile / 13.4.2:
Carbon Nanotube / 13.4.3:
Graphene-based Cathode / 13.4.4:
Other Composite Electrode / 13.4.5:
Prototype Devices / 13.5:
Sandwich Structure / 13.5.1:
Fiber Structure / 13.5.2:
Perspectives on the Development of Metal-Air Batteries / 13.6:
Lithium Anode / 14.1:
Cathode / 14.1.2:
The Reaction Mechanisms / 14.1.4:
The Development of Solid-state Li-O2 Battery / 14.1.5:
The Development of Flexible Li-O2 Battery / 14.1.6:
Na-O2 Battery / 14.2:
Zn-air Battery / 14.3:
Index
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
5.

図書

図書
Daniel Minoli
出版情報: Boca Raton, Fla. : CRC Press, c2011  xiv, 302 p., [24] p. of plates ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Author
Introduction / Chapter 1:
Overview / 1.1:
Background and Opportunities / 1.2:
Course of Investigation / 1.3:
References
Bibliography
Some Basic Fundamentals of Visual Science / Chapter 2:
Stereo Vision Concepts / 2.1:
Stereoscopy / 2.1.1:
Binocular Depth Perception and Convergence / 2.1.2:
Cyclopean Image / 2.1.3:
Accommodation / 2.1.4:
Parallax Concepts / 2.2:
Parallax / 2.2.1:
Parallax Barrier and Lenticular Lenses / 2.2.2:
Other Concepts / 2.3:
Polarization / 2.3.1:
Chromostereopsis / 2.3.2:
3D Imaging / 2.3.3:
Occlusion and Scene Reconstruction / 2.3.4:
Conclusion / 2.4:
Analytical 3D Aspects of the Human Visual System / Appendix 2A:
Theory of Stereo Reproduction / 2A.1:
Analytics / 2A.2:
Depth Perception / 2A.2.1:
Geometry of Stereoscopic 3D Displays / 2A.2.2:
Geometry of Stereo Capturing / 2A.2.3:
Stereoscopic 3D Distortions / 2A.2.4:
Workflow of Conventional Stereo Production / 2A.3:
Basic Rules and Production Grammar / 2A.3.1:
Example / 2A.3.2:
Application of Visual Science Fundamentals to 3DTV / Chapter 3:
Application of the Science to 3D Projection/3DTV / 3.1:
Common Video Treatment Approaches / 3.1.1:
Projections Methods for Presenting Stereopairs / 3.1.2:
Polarization, Synchronization, and Colorimetrics / 3.1.3:
Autostereoscopic Viewing / 3.2:
Lenticular Lenses / 3.2.1:
Parallax Barriers / 3.2.2:
Other Longer-Term Systems / 3.3:
Multi-Viewpoint 3D Systems / 3.3.1:
Integral Imaging/Holoscopic Imaging / 3.3.2:
Holographic Approaches / 3.3.3:
Volumetric Displays/Hybrid Holographic / 3.3.4:
Viewer Physiological Issues with 3D Content / 3.4:
The Accommodation Problem / 3.4.1:
Infinity Separation / 3.4.2:
Conclusion and Requirements of Future 3DTV / 3.5:
Basic 3DTV Approaches for Content Capture and Mastering / Chapter 4:
General Capture, Mastering, and Distribution Process / 4.1:
3D Capture, Mastering, and Distribution Process / 4.2:
Content Acquisition / 4.2.1:
3D Mastering / 4.2.2:
Spatial Compression / 4.2.2.1:
Temporal Multiplexing / 4.2.2.2:
2D in Conjunction with Metadata (2D+M) / 4.2.2.3:
Color Encoding / 4.2.2.4:
Overview of Network Transport Approaches / 4.3:
MPEG Standardization Efforts / 4.4:
Additional Details on 3D Video Formats / Appendix 4A:
Conventional Stereo Video (CSV) / 4A.1:
Video plus Depth (V+D) / 4A.2:
Multiview Video plus Depth (MV+D) / 4A.3:
Layered Depth Video (LDV) / 4A.4:
3D Basic 3DTV Approaches and Technologies for In-Home Display of Content / Chapter 5:
Connecting the In-Home Source to the Display / 5.1:
3DTV Display Technology / 5.2:
Commercial Displays Based on Projection / 5.2.1:
Commercial Displays Based on LCD and PDP Technologies / 5.2.2:
LCD 3DTV Polarized Display / 5.2.3:
Summary of 3DTV Polarized Displays / 5.2.4:
Glasses Accessories / 5.2.5:
Other Display Technologies / 5.3:
Autostereoscopic Systems with Parallax Support in the Vertical and Horizontal Axes / 5.3.1:
Autostereoscopic Systems for PDAs / 5.3.2:
Primer on Cables/Connectivity for High-End Video / 5.4:
In-Home Connectivity Using Cables / 5A.1:
Digital Visual Interface (DVI) / 5A.1.1:
High-Definition Multimedia Interface" (HDMI") / 5A.1.2:
DisplayPort / 5A.1.3:
In-Home Connectivity Using Wireless Technology / 5A.2:
Wireless Gigabit Alliance / 5A.2.1:
WirelessHD / 5A.2.2:
Other Wireless / 5A.2.3:
3DTV Advocacy and System-Level Research Initiatives / Chapter 6:
3D Consortium (3DC) / 6.1:
3D@Home Consortium / 6.2:
3D Media Cluster / 6.3:
3DTV / 6.4:
Challenges and Players in the 3DTV Universe / 6.5:
European Information Society Technologies (IST) Project "Advanced Three-Dimensional Television System Technologies" (ATTEST) / 6.5.1:
3D Content Creation / 6.5.1.1:
3D Video Coding / 6.5.1.2:
Transmission / 6.5.1.3:
Virtual-View Generation and 3D Display / 6.5.1.4:
3DPhone / 6.5.2:
Mobile3DTV / 6.5.3:
Real3D / 6.5.4:
HELIUM3D (High Efficiency Laser Based Multi User Multi Modal 3D Display) / 6.5.5:
The MultiUser 3D Television Display (MUTED) / 6.5.6:
3D4YOU / 6.5.7:
3DPresence / 6.5.8:
Audio-Visual Content Search and Retrieval in a Distributed P2P Repository (Victory) / 6.5.9:
Victory in Automotive Industry / 6.5.9.1:
Victory in Game Industry / 6.5.9.2:
2020 3D Media / 6.5.10:
i3DPost / 6.5.11:
Glossary
Index
Preface
The Author
Introduction / Chapter 1:
6.

図書

図書
edited by Caitlin H. Bell ... [et al.]
出版情報: Boca Raton : CRC Press, c2019  xxix, 439 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Foreword
Acknowledgments
Editors
Contributors
Introduction to Emerging Contaminants / Chapter 1:
Introduction / 1.1:
Who Identifies Emerging Contaminants? / 1.2:
United States Environmental Protection Agency / 1.2.1:
United States Department of Defense / 1.2.2:
United States Geologic Survey / 1.2.3:
State Agencies in the United States / 1.2.4:
Stockholm Convention on Persistent Organic Pollutants / 1.2.5:
European Union / 1.2.6:
Australian National Environment Protection Council / 1.2.7:
What is the Life Cycle of an Emerging Contaminant? / 1.3:
What are the Key Challenges Associated with Emerging Contaminants? / 1.4:
The Need for Balance / 1.5:
This Book / 1.6:
Acronyms
1,4-Dioxane / Chapter 2:
Basic Information / 2.1:
Toxicity and Risk Assessment / 2.3:
Potential Noncancer Effects / 2.3.1:
Potential Cancer Effects / 2.3.2:
Regulatory Status / 2.4:
Site Characterization / 2.5:
Investigation Approaches / 2.5.1:
Analytical Methods / 2.5.2:
Advanced Investigation Techniques / 2.5.3:
Soil Treatment / 2.6:
Groundwater Treatment / 2.7:
In Situ Treatment / 2.7.1:
In Situ Chemical Oxidation / 2.7.1.1:
Bioremediation / 2.7.1.2:
Phytoremediation / 2.7.1.3:
Thermal Treatment / 2.7.1.4:
Ex Situ Treatment and Dynamic Groundwater Recirculation / 2.7.2:
Natural Attenuation / 2.7.3:
Drinking Water and Wastewater Treatment / 2.8:
Point-of-Use and Point-of-Entry Treatment / 2.8.1:
1.4-Dioxane Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 2.9:
Advanced Oxidation Processes / 2.9.1:
Bioreaetors / 2.9.2:
Granular Activated Carbon and Other Sorbenl Media / 2.9.3:
Electrochemical Oxidation / 2.9.4:
Conclusion / 2.10:
Per- and Polyfluoroalkyl Substances / Chapter 3:
PFASs Chemistry / 3.1:
Ionic State / 3.2.1:
Linear and Branched Isomers / 3.2.2:
Perfluoroalkyl Substances / 3.2.3:
Perfluoroalkyl Sulfonic Acids / 3.2.3.1:
Perfluoroalkyl Carboxylic Acids / 3.2.3.2:
Perfluoroalkyl Phosphonic and Phosphinic Acids / 3.2.3.3:
Perfluoroalkyl Ether Carboxylates and Perfluoroalkyl Ether Sulfonates / 3.2.3.4:
Polyfluoroalkyl Substances / 3.2.4:
ECF-Derived Polyfluoroalkyl Substances / 3.2.4.1:
Fluorotelomerizat ion-Derived Polyfluoroalkyl Substances / 3.2.4.2:
Long- and Short-Chain PFASs / 3.2.5:
Polymeric PFASs / 3.2.6:
Replacement PFASs / 3.2.7:
Chemistry of PFASs in Class B Firefighting Foams / 3.2.8:
Physical, Chemical, and Biological Properties / 3.3:
Biological Activity Towards PFASs / 3.3.1:
Transformation of Polyfluoroalkyl Substances / 3.3.2:
Abiotic Transformation / 3.3.2.1:
Biotic Transformation / 3.3.2.2:
PFASs Production and Use / 3.4:
Manufacturing Processes and Uses / 3.4.1:
Electrochemical Fluorination / 3.4.2:
Fluorotelomerization / 3.4.3:
Oligomerization / 3.4.4:
Uses / 3.4.5:
Use as Surfactants / 3.4.5.1:
Use as Surface Coatings / 3.4.5.2:
Other Uses / 3.4.5.3:
Sampling and Analysis / 3.5:
General Sampling Guidelines / 3.5.1:
Soil and Sediment Sampling / 3.5.1.1:
Surface Water and Groundwater Sampling / 3.5.1.2:
Storage and Hold Times / 3.5.1.3:
Chemical Analysis Methods / 3.5.2:
Overview of Standard Methods / 3.5.2.1:
Advanced Analytical Techniques / 3.5.2.2:
Health Considerations / 3.6:
Exposure Routes / 3.6.1:
Distribution in Tissue / 3.6.2:
Bioaccumulation / 3.6.3:
Elimination / 3.6.4:
Toxicologic and Epidemiological Studies / 3.6.5:
Acute Toxicity / 3.6.5.1:
(Sub)Chronic Toxicity / 3.6.5.2:
Epidemiological Studies / 3.6.5.3:
Polyfluoroalkyl Substance Toxicity / 3.6.5.4:
Derivation of Reference Doses/Tolerable Daily Intakes / 3.6.5.5:
Carcinogenic Effects / 3.6.5.6:
Regulation / 3.7:
Regulation of PFASs / 3.7.1:
Global Treaties and Conventions / 3.7.1.1:
United States of America / 3.7.1.2:
Europe / 3.7.1.3:
Australia / 3.7.1.4:
Regulation of Perfluoroalkyl Ethers / 3.7.2:
Fate and Transport / 3.8:
PFAS Distribution in Environmental Matrices / 3.8.1:
PFASs in Soils / 3.8.1.1:
Leaching / 3.8.1.2:
Transport and Retardation in Groundwater / 3.8.1.3:
Surface Waters and Sediments / 3.8.1.4:
Vapor Migration / 3.8.1.5:
Atmospheric Deposition / 3.8.1.6:
Detections and Background Levels in the Environment / 3.8.2:
Sites of Concern / 3.8.3:
CSM for Industrial Facilities / 3.8.3.1:
CSM for Fire Training Areas and Class B Fire Response Areas / 3.8.3.2:
CSM for WWTPs and Biosolid Application Areas / 3.8.3.3:
CSM for Landfills / 3.8.3.4:
PFAS-Relevant Treatment Technologies / 3.9:
Biological Treatment / 3.9.1:
Soil and Sediment Treatment / 3.9.2:
Incineration / 3.9.2.1:
Stabilization/Solidification / 3.9.2.2:
Vapor Energy Generator Technology / 3.9.2.3:
Soil/Sediment Washing / 3.9.2.4:
High-Energy Electron Beam / 3.9.2.5:
Mechanochemical Destruction / 3.9.2.6:
Water Treatment / 3.9.3:
Mature Water Treatment Technologies / 3.9.3.1:
Developing Treatment Technologies / 3.9.3.2:
Experimental Treatment Technologies / 3.9.3.3:
Conclusions / 3.10:
Hexavalent Chromium / Chapter 4:
Geochemistry of Chromium / 4.1:
Sources of Cr(VI) / 4.1.2:
U.S. Federal Regulations / 4.2:
U.S. State Regulations / 4.3.2:
California / 4.3.2.1:
North Carolina / 4.3.2.2:
New Jersey / 4.3.2.3:
Other Countries / 4.3.3:
Occurrence of Cr(VI) / 4.4:
Naturally Occurring (Background) Cr(VI) in Groundwater / 4.4.1:
Cr(VI) in Drinking Water / 4.4.2:
Investigation of Cr(VI) in Groundwater / 4.5:
Chromium Isotopes / 4.5.2:
Mineralogical Analyses / 4.5.3.2:
In Situ Reduction / 4.6:
In Situ Chemical Reduction / 4.6.1.1:
In Situ Biological Reduction / 4.6.1.2:
Permeable Reactive Barriers / 4.6.1.3:
Reoxidation of Cr(III) Formed by In Situ Reduction / 4.6.1.4:
Ex Situ Treatment / 4.6.2:
Dynamic Groundwater Recirculation
Tier I / 4.6.4:
Tier II / 4.6.4.2:
Tier III / 4.6.4.3:
Tier IV / 4.6.4.4:
Drinking Water Treatment / 4.7:
Point-of-Entry and Point-of-Use Treatment / 4.7.1:
Cr(VI) Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 4.8:
Reduction/Coagulation/Filtration with Ferrous Iron / 4.8.1:
Ion Exchange / 4.8.2:
Weak Base Anion Resins / 4.8.2.1:
Strong Base Anion Resins / 4.8.2.2:
Reverse Osmosis / 4.8.3:
Bioreactors / 4.8.4:
Phytostabilization / 4.8.4.1:
Iron Media / 4.8.4.2:
Reduction/Filtration via Stannous Chloride (RF-Sn[II]) / 4.8.5:
1,2,3-Trichloropropane / 4.9:
International Guidance / 5.1:
Investigation / 5.4:
Groundwater Remediation Technologies / 5.4.2:
In Situ Hydrolysis / 5.5.1:
In Situ Biological Treatment / 5.5.1.2:
TCP Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 5.5.1.3:
Granular Activated Carbon / 5.7.1:
Air Stripping / 5.7.2:
Other Processes / 5.7.4:
Considerations for Future Contaminants of Emerging Concern / 5.8:
Categorizing Future Emerging Contaminants / 6.1:
The Challenges Posed in Emerging Contaminant Management / 6.3:
Challenges Associated with Release to the Environment / 6.3.1:
Challenges Associated with Assessing Toxicological Risk / 6.3.2:
Challenges Associated with Regulation / 6.3.3:
Challenges Associated with Characterization and Analysis / 6.3.4:
Challenges Associated with Treatment / 6.3.5:
The Future of Emerging Contaminants / 6.4:
Appendices
USEPA Candidate Contaminant List / Appendix A:
REACH Candidate List / Appendix B:
Emerging Contaminants and Their Physical and Chemical Properties / Appendix C:
NGI Preliminary List of Substances That Could Be Considered to Meet the PMT or vPvM Criteria / Appendix D:
Summary of PFAS Environmental Standards: Soil / Appendix E.1:
Summary of PFAS Environmental Standards: Groundwater / Appendix E.2:
Summary of PFAS Environmental Standards: Surface Water / Appendix E.3:
Summary of PFAS Environmental Standards: Drinking Water / Appendix E.4:
Notes / Appendix E.5:
Index
List of Figures
List of Tables
Foreword
7.

図書

図書
Shiping Liu, Gang (Sheng) Chen
出版情報: Hoboken, NJ : Wiley, 2019  xii, 254 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
Contact Perception in Virtual Environment / 1.2:
Organization of This Book / 1.3:
References
Fundamentals of Robot Dynamics and Control / 2:
Robot Kinematics / 2.1:
Matrix Description of Robot Kinematics / 2.1.1:
Homogeneous Transformation Matrices / 2.1.2:
Forward Kinematics / 2.1.3:
Inverse Kinematics / 2.1.4:
Velocity Kinematics / 2.1.5:
Robot Dynamics / 2.2:
Robot Control / 2.3:
Trajectory Control / 2.3.1:
Point-to-point Control / 2.3.2.1:
Trajectories for Paths Specified by Points / 2.3.2.2:
Interaction Control / 2.3.3:
Impedance Control / 2.3.3.1:
Hybrid Force-Position Control 38 References / 2.3.3.2:
Friction and Contact of Solid Interfaces / 3:
Contact Between Two Solid Surfaces / 3.1:
Description of Surfaces / 3.2.1:
Contact Mechanics of Two Solid Surfaces / 3.2.2:
Friction Between Two Solid Surfaces / 3.3:
Adhesion / 3.3.1:
Dry Friction / 3.3.2:
Friction Mechanisms / 3.3.2.1:
Friction Transitions and Wear / 3.3.2.2:
Static Friction, Hysteresis, Time, and Displacement Dependence / 3.3.2.3:
Effects of Environmental and Operational Condition on Friction / 3.3.2.4:
Liquid Mediated Friction / 3.3.3:
Stribeck Curve / 3.3.3.1:
Unsteady Liquid-Mediated Friction / 3.3.3.2:
Negative Slope of Friction-Velocity Curve / 3.3.3.3:
Friction Models / 3.3.4:
Friction Dynamics of Manipulators / 4:
Friction Models of Robot Manipulator Joints / 4.1:
Modeling Friction with Varied Effects / 4.2:
The Motion Equations of Dynamics of Robot Manipulators with Friction / 4.3:
The General Motion Equation of Robot Manipulators / 4.3.1:
The Motion Equation of Two-Link Robot Manipulators / 4.3.2:
Nonlinear Dynamics and Chaos of Manipulators / 4.4:
Parameters Identification / 4.5:
Identification of Dynamic Parameters / 4.5.1:
Identification of Parameters of Friction Models / 4.5.2:
Uncertainty Analysis / 4.5.3:
Friction Compensation and Control of Robot Manipulator Dynamics / 4.6:
Force Feedback and Haptic Rendering / 5:
Overview of Robot Force Feedback / 5.1:
Generating Methods of Feedback Force / 5.2:
Serial Mechanism / 5.2.1:
Kinematics / 5.2.1.1:
Dynamics / 5.2.1.2:
Parallel Mechanism / 5.2.2:
Kinematics Model / 5.2.2.1:
Dynamics Based on Virtual Work / 5.2.2.2:
Friction Compensation / 5.2.3:
Calculation of Virtual Force / 5.3:
Collision Detection / 5.3.1:
The Construction of the Bounding Box / 5.3.1.1:
Calculation of Distance between Bounding Boxes / 5.3.1.2:
Calculating the Model of Virtual Force / 5.3.2:
1-DoF Interaction / 5.3.2.1:
2-DoF Interaction / 5.3.2.2:
3-DoF Interaction / 5.3.2.3:
6-DoF Interaction / 5.3.2.4:
Haptic Display Based on Point Haptic Device / 5.4:
Human Tactile Perception / 5.4.1:
Haptic Texture Display Methods / 5.4.2:
Virtual Simulation of Robot Control / 6:
Overview of Robot Simulation / 6.1:
3D Graphic Environment / 6.2:
Virtual Reality-Based Robot Control / 6.3:
Overview of Virtual Reality / 6.3.1:
Overview of Teleoperation / 6.3.2:
Virtual Reality-Based Teleoperation / 6.3.3:
Augmented Reality-Based Tele operation / 6.4:
Overview of Augmented Reality / 6.4.1:
Augmented Reality-Based Teleoperation / 6.4.2:
Task Planning Methods in Virtual Environment / 6.5:
Overview / 6.5.1:
Interactive Graphic Mode / 6.5.2:
Index
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
8.

図書

図書
Rance D. Necaise
出版情報: Hoboken, N.J. : Wiley, c2011  xviii, 520 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
Data Structures / 1.1.2:
The Date ADT / 1.2:
Preconditions and Postconditions / 1.2.1:
Using the ADT / 1.2.2:
Implementing the ADT / 1.2.3:
The Bag ADT / 1.3:
Selecting a Data Structure / 1.3.1:
The Class Definition / 1.3.3:
Iterators / 1.4:
The Set ADT / 1.5:
The Map ADT / 1.5.1:
Defining the ADT / 1.6.1:
Implementing the Map ADT / 1.6.2:
Alternate Implementation / 1.6.3:
Application: Histograms / 1.7:
Building a Histogram / 1.7.1:
Implementing the Histogram ADT / 1.7.2:
Programming Problems
Arrays and Vectors / Chapter 2:
The Array Structure / 2.1:
Simulating an Array / 2.1.1:
The Array ADT / 2.1.2:
The Python List (Vector) / 2.1.3:
Multi-Dimensional Arrays / 2.3:
The MultiArray ADT / 2.3.1:
Data Organization / 2.3.2:
Variable Length Arguments / 2.3.3:
MultiArray Implementation / 2.3.4:
The Matrix ADT / 2.4:
Matrix Operations / 2.4.1:
Application: The Game of Life / 2.4.2:
Rules of the Game / 2.5.1:
Designing a Solution / 2.5.2:
ADT Implementation / 2.5.3:
Exercises
Algorithm Analysis / Chapter 3:
Complexity Analysis / 3.1:
Big-O Notation / 3.1.1:
Classes of Algorithms / 3.1.2:
Empirical Analysis / 3.1.3:
Evaluating ADT Implementations / 3.2:
Evaluating the Python List / 3.2.1:
Evaluating the Set ADT / 3.2.2:
Searching / 3.3:
Linear Search / 3.3.1:
Binary Search / 3.3.2:
Working with Ordered Lists / 3.4:
Building An Ordered List / 3.4.1:
Merging Ordered Lists / 3.4.2:
The Set ADT Revisited / 3.5:
Application: The Sparse Matrix / 3.6:
Implementation / 3.6.1:
Analysis / 3.6.2:
The Linked List / Chapter 4:
A Linked Structure / 4.1:
The Singly-Linked List / 4.2:
Basic Operations / 4.2.1:
Evaluating the Linked List / 4.2.2:
The Bag ADT Revisited / 4.3:
Implementation Details / 4.3.1:
Linked List Iterator / 4.3.2:
Using a Tail Pointer / 4.4:
The Ordered Linked List / 4.5:
The Sparse Matrix Revisited / 4.6:
The New Implementation / 4.6.1:
Comparing Implementations / 4.6.2:
Application: Polynomials / 4.7:
Polynomial Operations / 4.7.1:
The Polynomial ADT / 4.7.2:
Advanced Linked Lists / 4.7.3:
Doubly-Linked List / 5.1:
Organization / 5.1.1:
List Operations / 5.1.2:
Circular Linked List / 5.2:
Multi-Linked Lists / 5.2.1:
Multiple Chains / 5.3.1:
The Sparse Matrix / 5.3.2:
Complex Iterators / 5.4:
Application: Text Editor / 5.5:
Typical Editor Operations / 5.5.1:
The Edit Buffer ADT / 5.5.2:
Stacks / 5.5.3:
The Stack ADT / 6.1:
Implementing the Stack / 6.2:
Vector Based / 6.2.1:
Linked List Version / 6.2.2:
Stack Applications / 6.3:
Balanced Delimiters / 6.3.1:
Evaluating Postfix Expressions / 6.3.2:
Application: Solving a Maze / 6.4:
Backtracking / 6.4.1:
The Maze ADT / 6.4.2:
Queues / 6.4.4:
The Queue ADT / 7.1:
Implementing the Queue / 7.2:
Circular Array / 7.2.1:
The Priority Queue / 7.2.3:
Application: Computer Simulations / 7.4:
Airline Ticket Counter / 7.4.1:
Class Specifications / 7.4.2:
Hash Tables / Chapter 8:
Hash Functions / 8.1:
Open Addressing / 8.3:
Linear Probing / 8.3.1:
Collision Resolution / 8.3.2:
Bucket Hashing / 8.4:
Hashing Efficiency / 8.5:
The Map ADT Revisited / 8.6:
Application: The Color Histogram / 8.7:
Recursion / Chapter 9:
Recursive Functions / 9.1:
Properties of Recursion / 9.2:
Classic Example: The Factorial Function / 9.2.1:
Greatest Common Divisor / 9.2.2:
Recursion and Stacks / 9.3:
The Towers of Hanoi / 9.4:
Backtracking Revisited / 9.5:
The Eight-Queens Problem / 9.5.1:
Solving the Four-Queens / 9.5.2:
Recursive Solution / 9.5.3:
Application: Sudoku Puzzles / 9.6:
Binary Trees and Heaps / Chapter 10:
Tree Structure / 10.1:
The Binary Tree / 10.2:
Traversals / 10.2.1:
Arithmetic Expresssions / 10.2.2:
Tree Threading / 10.3:
Heaps / 10.4:
Insertions / 10.4.1:
Removals / 10.4.2:
Evaluating the Heap / 10.4.3:
The Priority Queue Revisited / 10.4.4:
Application: Morse Code / 10.5:
Advanced Search Trees / Chapter 11:
The Binary Search Tree / 11.1:
Deletions / 11.1.1:
Evaluating the BST / 11.1.4:
AVL Trees / 11.2:
Evaluating the AVL Tree / 11.2.1:
2-3 Trees / 11.3:
Splay Trees / 11.4:
Application: Improved Map ADT / 11.5:
Sorting Algorithms / Chapter 12:
The Simple Algorithms / 12.1:
Bubble Sort / 12.1.1:
Selection Sort / 12.1.2:
Insertion Sort / 12.1.3:
Radix Sort / 12.2:
Basic Algorithm / 12.2.1:
Bucket Sorting / 12.2.2:
Divide and Conquer / 12.3:
Merge Sort / 12.3.1:
Quick Sort / 12.3.2:
Heap Sort / 12.4:
Application: Empirical Analysis / 12.5:
Python Review / Appendix A:
Basic Concepts / A.1:
Functions / A.2:
Sequence Types / A.3:
Classes / A.4:
Copying Objects / A.5:
Exceptions / A.6:
Object-Oriented Programming / Appendix B:
Encapsulation / B.1:
Inheritance / B.3:
Polymorphism / B.4:
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
9.

図書

図書
Arvind Agarwal, Srinivasa Rao Bakshi, Debrupa Lahiri
出版情報: Boca Raton : CRC, c2011  xx, 305 p. ; 25 cm
シリーズ名: Nanomaterials and their applications
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Authors
List of Abbreviations
Introduction / 1:
Composite Materials / 1.1:
Development of Carbon Fibers / 1.2:
Carbon Nanotubes: Synthesis and Properties / 1.3:
Carbon Nanotube-Metal Matrix Composites / 1.4:
Chapter Highlights / 1.5:
References
Processing Techniques / 2:
Powder Metallurgy Routes / 2.1:
Conventional Sintering / 2.1.1:
Hot Pressing / 2.1.2:
Spark Plasma Sintering / 2.1.3:
Deformation Processing / 2.1.4:
Melt Processing / 2.2:
Casting / 2.2.1:
Melt Infiltration / 2.2.2:
Thermal Spraying / 2.3:
Plasma Spraying / 2.3.1:
High Velocity Oxy-Fuel Spraying / 2.3.2:
Cold Spraying / 2.3.3:
Electrochemical Routes / 2.4:
Novel Techniques / 2.5:
Molecular Level Mixing / 2.5.1:
Sputtering / 2.5.2:
Sandwich Processing / 2.5.3:
Torsion/Friction Processing / 2.5.4:
Chemical/Physical Vapor Deposition Techniques / 2.5.5:
Nanoscale Dispersion / 2.5.6:
Laser Deposition / 2.5.7:
Conclusion / 2.6:
Characterization of Metal Matrix-Carbon Nanotube Composites / 2.7:
X-Ray Diffraction / 3.1:
Raman Spectroscopy / 3.2:
Scanning Electron Microscopy with Energy Dispersive Spectroscopy / 3.3:
High Resolution Transmission Electron Microscopy / 3.4:
Electron Energy Loss Spectroscopy / 3.5:
X-Ray Photoelectron Spectroscopy / 3.6:
Mechanical Properties Evaluation / 3.7:
Nanoscale Mechanical Testing / 3.7.1:
Nano-Indentation / 3.7.1.1:
Nano Dynamic Modulus Analysis / 3.7.1.2:
Modulus Mapping / 3.7.1.3:
Nanoscratch / 3.7.1.4:
Macroscale/Bulk Mechanical Testing / 3.7.2:
Tensile/Compression Test / 3.7.2.1:
Tribological Property Evaluation / 3.7.2.2:
Thermal Properties / 3.8:
Electrical Properties / 3.9:
Electrochemical Properties / 3.10:
Metal-Carbon Nanotube Systems / 3.11:
Aluminum-Carbon Nanotube System / 4.1:
Copper-Carbon Nanotube System / 4.2:
Nickel-Carbon Nanotube System / 4.3:
Magnesium-Carbon Nanotube System / 4.4:
Other Metals-Carbon Nanotube Systems / 4.5:
Mechanics of Metal-Carbon Nanotube Systems / 4.6:
Elastic Modulus of Metal Matrix-Carbon Nanotube Composites / 5.1:
Modified Rule of Mixtures / 5.1.1:
Cox Model / 5.1.2:
Halpin-Tsai Model / 5.1.3:
Hashin-Shtrikman Model / 5.1.4:
Modified Eshelby Model / 5.1.5:
Dispersion-Based Model / 5.1.6:
Strengthening Mechanisms in Metal Matrix-Carbon Nanotube Composites / 5.2:
Shear Lag Models / 5.2.1:
Strengthening by Interphase / 5.2.2:
Strengthening by Carbon Nanotube Clusters / 5.2.3:
Halpin-Tsai Equations / 5.2.4:
Strengthening by Dislocations / 5.2.5:
Strengthening by Grain Refinement / 5.2.6:
Interfacial Phenomena in Carbon Nanotube Reinforced Metal Matrix Composites / 5.3:
Significance of Interfacial Phenomena / 6.1:
Energetics of Carbon Nanotube-Metal Interaction / 6.2:
Carbon Nanotube-Metal Interaction in Various Systems / 6.3:
Dispersion of Carbon Nanotubes in Metal Matrix / 6.4:
Significance of Carbon Nanotube Dispersion / 7.1:
Methods of Improving Carbon Nanotube Dispersion / 7.2:
Quantification of Carbon Nanotube Dispersion / 7.3:
Electrical, Thermal, Chemical, Hydrogen Storage, and Tribological Properties / 7.4:
Corrosion Properties / 8.1:
Hydrogen Storage Property / 8.4:
Sensors and Catalytic Properties / 8.5:
Tribological Properties / 8.6:
Computational Studies in Metal Matrix-Carbon Nanotube Composites / 8.7:
Thermodynamic Prediction of Carbon Nanotube-Metal Interface / 9.1:
Microstructure Simulation / 9.2:
Mechanical and Thermal Property Prediction by the Object-Oriented Finite Element Method / 9.3:
Summary and Future Directions / 9.4:
Summary of Research on MM-CNT Composites / 10.1:
Future Directions / 10.2:
Improvement in Quality of Carbon Nanotubes / 10.2.1:
Challenges Related to Processing / 10.2.2:
Aligned MM-CNT Composites / 10.2.3:
Understanding Mechanisms of Property Improvement / 10.2.4:
Environmental and Toxicity Aspects of MM-CNT Composites / 10.2.5:
Exploring Novel Applications / 10.2.6:
Index
Foreword
Preface
Authors
10.

図書

図書
Paul Darbyshire and David Hampton
出版情報: Chichester, West Sussex : Wiley, 2011  xv, 261 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
The Structure of a Hedge Fund / 1.2:
Fund Administrators / 1.2.1:
Prime Brokers / 1.2.2:
Custodian, Auditors and Legal / 1.2.3:
The Global Hedge Fund Industry / 1.3:
North America / 1.3.1:
Europe / 1.3.2:
Asia / 1.3.3:
Specialist Investment Techniques / 1.4:
Short Selling / 1.4.1:
Leverage / 1.4.2:
Liquidity / 1.4.3:
New Developments for Hedge Funds / 1.5:
UCITS III Hedge Funds / 1.5.1:
The European Passport / 1.5.2:
Restrictions on Short Selling / 1.5.3:
Major Hedge Fund Strategies / 2:
Single and Multi Strategy Hedge Funds / 2.1:
Fund of Hedge Funds / 2.2:
Hedge Fund Strategies / 2.3:
Tactical Strategies / 2.3.1:
Global Macro / 2.3.1.1:
Managed Futures / 2.3.1.2:
Long/Short Equity / 2.3.1.3:
Pairs Trading / 2.3.1.4:
Event-Driven / 2.3.2:
Distressed Securities / 2.3.2.1:
Merger Arbitrage / 2.3.2.2:
Relative Value / 2.3.3:
Equity Market Neutral / 2.3.3.1:
Convertible Arbitrage / 2.3.3.2:
Fixed Income Arbitrage / 2.3.3.3:
Capital Structure Arbitrage / 2.3.3.3.1:
Swap-Spread Arbitrage / 2.3.3.3.2:
Yield CurveArbitrage / 2.3.3.3.3:
Hedge Fund Data Sources / 3:
Hedge Fund Databases / 3.1:
Major Hedge Fund Indices / 3.2:
Non investable and Investable Indices / 3.2.1:
Dow Jones Credit Suisse Hedge Fund Indexes / 3.2.2:
Liquid Alternative Betas / 3.2.2.1:
Hedge Fund Research / 3.2.3:
Hedge Fund net / 3.2.4:
FTSE Hedge / 3.2.5:
FTSE Hedge Momentum Index / 3.2.5.1:
Greenwich Alternative Investments / 3.2.6:
GAI Investable Indices / 3.2.6.1:
Morningstar Alternative Investment Center / 3.2.7:
MSCI Hedge Fund Classification Standard / 3.2.7.1:
MSCI Investable Indices / 3.2.7.2:
EDHEC Risk and Asset Management Research Centre (www.edhec-risk.com) / 3.2.8:
Database and Index Biases / 3.3:
Survivorship Bias / 3.3.1:
Instant History Bias / 3.3.2:
Benchmarking / 3.4:
Tracking Error / 3.4.1:
Weighting Schemes / Appendix A:
Statistical Analysis / 4:
Basic Performance Plots / 4.1:
Value Added Monthly Index / 4.1.1:
Histograms / 4.1.2:
Probability Distributions / 4.2:
Populations and Samples / 4.2.1:
Probability Density Function / 4.3:
Cumulative Distribution Function / 4.4:
The Normal Distribution / 4.5:
Standard Normal Distribution / 4.5.1:
Visual Tests for Normality / 4.6:
Inspection / 4.6.1:
Normal Q-Q Plot / 4.6.2:
Moments of a Distribution / 4.7:
Mean and Standard Deviation / 4.7.1:
Skewness / 4.7.2:
Excess Kurtosis / 4.7.3:
Data Analysis Tool: Descriptive Statistics / 4.7.4:
Geometric Brownian Motion / 4.8:
Uniform Random Numbers / 4.8.1:
Covariance and Correlation / 4.9:
Regression Analysis / 4.10:
Ordinary Least Squares / 4.10.1:
Coefficient of Determination / 4.10.1.1:
Residual Plots / 4.10.1.2:
Jarque-Bera Normality Test / 4.10.1.3:
Data Analysis Tool: Regression / 4.10.1.4:
Portfolio Theory / 4.11:
Mean Variance Analysis / 4.11.1:
Solver: Portfolio Optimisation / 4.11.2:
Efficient Portfolios / 4.11.3:
Risk-Adjusted Return Metrics / 5:
The Intuition behind Risk Adjusted Returns / 5.1:
Risk Adjusted Returns / 5.1.1:
Common Risk Adjusted Performance Ratios / 5.2:
The Sharpe Ratio / 5.2.1:
The Modified Sharpe Ratio / 5.2.2:
The Sortino Ratio / 5.2.3:
The Drawdown Ratio / 5.2.4:
Common Performance Measures in the Presence of a Market Benchmark / 5.3:
The Information Ratio / 5.3.1:
The M Squared Metric / 5.3.2:
The Treynor Ratio / 5.3.3:
Jensen's Alpha / 5.3.4:
The Omega Ratio / 5.4:
Asset Pricing Models / 6:
The Risk Adjusted Two Moment Capital Asset Pricing Model / 6.1:
Interpreting H / 6.1.1:
Static Alpha Analysis / 6.1.2:
Dynamic Rolling Alpha Analysis / 6.1.3:
Multi factor Models / 6.2:
The Choice of Factors / 6.3:
A Multi Factor Framework for a Risk Adjusted Hedge Fund Alpha League Table / 6.3.1:
Alpha and Beta Separation / 6.3.2:
Dynamic Style Based Return Analysis / 6.4:
The Markowitz Risk Adjusted Evaluation Method / 6.5:
Hedge Fund Market Risk Management / 7:
Value at Risk / 7.1:
Traditional Measures / 7.2:
Historical Simulation / 7.2.1:
Parametric Method / 7.2.2:
Monte Carlo Simulation / 7.2.3:
Modified Var / 7.3:
Expected Shortfall / 7.4:
Extreme Value Theory / 7.5:
Block Maxima / 7.5.1:
Peaks over Threshold / 7.5.2:
References
Important Legal Information
Index
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
11.

図書

図書
Nobuyasu Kanekawa ... [et al.]
出版情報: New York : Springer, c2011  xxv, 204 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
For the Best Result / 1.3:
References
Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques / 2:
SER in Memory Devices / 2.1:
MCU in Memory Devices / 2.1.2:
SET and MNU in Logic Devices / 2.1.3:
Chip/System-Level SER Problem: SER Estimation and Mitigation / 2.1.4:
Scope of This Chapter / 2.1.5:
Basic Knowledge on Terrestrial Neutron-Induced Soft-Error in MOSFET Devices / 2.2:
Cosmic Rays from the Outer Space / 2.2.1:
Nuclear Spallation Reaction and Charge Collection in CMOSFET Device / 2.2.2:
Experimental Techniques to Quantify Soft-Error Rate (SER) and Their Standardization / 2.3:
The System to Quantify SER - SECIS / 2.3.1:
Basic Method in JESD89A / 2.3.2:
SEE Classification Techniques in Time Domain / 2.3.3:
MCU Classification Techniques in Topological Space Domain / 2.3.4:
Evolution of Multi-node Upset Problem / 2.4:
MCU Characterization by Accelerator-Based Experiments / 2.4.1:
Multi-coupled Bipolar Interaction (MCBI) / 2.4.2:
Simulation Techniques for Neutron-Induced Soft Error / 2.5:
Overall Microscopic Soft-Error Model / 2.5.1:
Nuclear Spallation Reaction Models / 2.5.2:
Charge Deposition Model / 2.5.3:
SRAM Device Model / 2.5.4:
Cell Matrix Model / 2.5.5:
Recycle Simulation Method / 2.5.6:
Validation of SRAM Model / 2.5.7:
Prediction for Scaling Effects Down to 22 nm Design Rule in SRAMs / 2.6:
Roadmap Assumption / 2.6.1:
Results and Discussions / 2.6.2:
Validity of Simulated Results / 2.6.3:
SER Estimation in Devices/Components/System / 2.7:
Standards for SER Measurement for Memories / 2.7.1:
Revisions Needed for the Standards / 2.7.2:
Quantification of SER in Logic Devices and Related Issues / 2.7.3:
An Example of Chip/Board-Level SER Measurement and Architectural Mitigation Techniques / 2.8:
SER Test Procedures for Network Components / 2.8.1:
Hierarchical Mitigation Strategies / 2.8.2:
Basic Three Approaches / 2.9.1:
Design on the Upper Bound (DOUB) / 2.9.2:
Inter Layer Built-in Reliability (LABIR) / 2.10:
Summary / 2.11:
Electromagnetic Compatibility / 3:
Quantitative Estimation of the EMI Radiation Based on the Measured Near-Field Magnetic Distribution / 3.1:
Measurement of the Magnetic Field Distribution Near the Circuit Board / 3.2.1:
Calculation of the Electric Current Distribution on the Circuit Board / 3.2.2:
Calculation of the Far-Field Radiated EMI / 3.2.3:
Development of a Non-contact Current Distribution Measurement Technique for LSI Packaging on PCBs / 3.3:
Electric Current Distribution Detection / 3.3.1:
The Current Detection Result and Its Verification / 3.3.2:
Reduction Technique of Radiated Emission from Chassis with PCB / 3.4:
Far-Field Measurement of Chassis with PCB / 3.4.1:
Measurements of Junction Current / 3.4.2:
PSPICE Modeling / 3.4.3:
Experimental Validation / 3.4.4:
Chapter Summary / 3.5:
Power Integrity / 4:
Detrimental Effect and Technical Trends of Power Integrity Design of Electronic Systems and Devices / 4.1:
Detrimental Effect by Power Supply Noise on Semiconducting Devices / 4.2.1:
Trends of Power Supply Voltage and Power Supply Current for CMOS Semiconducting Devices / 4.2.2:
Trend of Power Distribution Network Design for Electronic Systems / 4.2.3:
Design Methodology of Power Integrity / 4.3:
Definition of Power Supply Noise in Electric System / 4.3.1:
Time-Domain and Frequency-Domain Design Methodology / 4.3.2:
Modeling and Design Methodologies of PDS / 4.4:
Modeling of Electrical Circuit Parameters / 4.4.1:
Design Strategies of PDS / 4.4.2:
Simultaneous Switching Noise (SSN) / 4.5:
Principle of SSN / 4.5.1:
S-G loop SSN / 4.5.2:
P-G loop SSN / 4.5.3:
Measurement of Power Distribution System Performance / 4.6:
On-Chip Voltage Waveform Measurement / 4.6.1:
On-Chip Power Supply Impedance Measurement / 4.6.2:
Fault-Tolerant System Technology / 4.7:
Metrics for Dependability / 5.1:
Reliability / 5.2.1:
Availability / 5.2.2:
Safety / 5.2.3:
Reliability Paradox / 5.3:
Survey on Fault-Tolerant Systems / 5.4:
Technical Issues / 5.5:
High Performance / 5.5.1:
Transparency / 5.5.2:
Physical Transparency / 5.5.3:
Fault Tolerance of Fault Tolerance for Ultimate Safety / 5.5.4:
Reliability of Software / 5.5.5:
Industrial Approach / 5.6:
Autonomous Decentralized Systems / 5.6.1:
Space Application / 5.6.2:
Commercial Fault-Tolerant Systems / 5.6.3:
Ultra-Safe System / 5.6.4:
Availability Improvement vs. Coverage Improvement / 5.7:
Trade-Off Between Availability and Coverage - Stepwise Negotiating Voting / 5.8:
Basic Concept / 5.8.1:
Hiten Onboard Computer / 5.8.2:
Fault-Tolerance Experiments / 5.8.3:
Extension of SNV - Redundancy Management / 5.8.4:
Coverage Improvement / 5.9:
Self-Checking Comparator / 5.9.1:
Optimal Time Diversity / 5.9.2:
On-Chip Redundancy / 5.10:
High Performance (Commercial Fault-Tolerant Computer) / 5.11:
Basic Concepts of TPR Architecture / 5.11.1:
System Configuration / 5.11.2:
System Reconfiguration on Fault Occurrence / 5.11.3:
Processing Take-Over on Fault Occurrence / 5.11.4:
Fault Tolerance of Fault Tolerance / 5.11.5:
Commercial Product Model / 5.11.6:
Current Application Field: X-by-Wire / 5.12:
Challenges in the Future / 6:
Index
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
12.

図書

図書
Richard J. Brown
出版情報: Oxford : Oxford University Press, 2018  xvi, 408 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
Maps / 1.1.2:
Symbolic Dynamics / 1.1.3:
Billiards / 1.1.4:
Higher-Order Recursions / 1.1.5:
The Viewpoint / 1.2:
Simple Dynamics / 2:
Preliminaries / 2.1:
A Simple System / 2.1.1:
The Time-t Map / 2.1.2:
Metrics on Sets / 2.1.3:
Lipschitz Continuity / 2.1.4:
The Contraction Principle / 2.2:
Contractions on Intervals / 2.2.1:
Contractions in Several Variables / 2.2.2:
Application: The Newton-Raphson Method / 2.2.3:
Application: Existence and Uniqueness of ODE Solutions / 2.2.4:
Application: Heron of Alexandria / 2.2.5:
Interval Maps / 2.3:
Cobwebbing / 2.3.1:
Fixed-Point Stability / 2.3.2:
Monotonic Maps / 2.3.3:
Homochnic/Heteroclinic Points / 2.3.4:
Bifurcations of Interval Maps / 2.4:
Saddle-Node Bifurcation / 2.4.1:
Transcritical Bifurcation / 2.4.2:
Pitchfork Bifurcation / 2.4.3:
First Return Maps / 2.5:
A Quadratic Interval Map; The Logistic Map / 2.6:
The Objects of Dynamics / 3:
Topology on Sets / 3.1:
More on Metrics / 3.2:
More on Lipschitz Continuity / 3.2.1:
Metric Equivalence / 3.2.2:
Fixed-Point Theorems / 3.2.3:
Some Non-Euclidean Metric Spaces / 3.3:
The n-Sphere / 3.3.1:
The Unit Circle / 3.3.2:
The Cylinder / 3.3.3:
The 2-Torus / 3.3.4:
A Cantor Set / 3.4:
The Koch Curve / 3.4.1:
Sierpinski Carpet / 3.4.2:
The Sponges / 3.4.3:
Flows and Maps of Euclidean Space / 4:
Linear, First-order ODE Systems in the Plane / 4.1:
General Homogeneous, Linear Systems in Euclidean Space / 4.1.1:
Autonomous Linear Systems / 4.1.2:
The Matrix Exponential / 4.1.3:
Two-Dimensional Classification / 4.1.4:
Bifurcations in Linear Planar Systems / 4.2:
Linearized Poincaré-Andronov-Hopf Bifurcation / 4.2.1:
Linear Planar Maps / 4.2.2:
Nodes: Sinks and Sources / 4.3.1:
Star or Proper Nodes / 4.3.2:
Degenerate or Improper Nodes / 4.3.3:
Spirals and Centers / 4.3.4:
Saddle Points / 4.3.5:
Linear Flows versus Linear Maps / 4.4:
Local Linearization and Stability of Equilibria / 4.5:
Isolated Periodic Orbit Stability / 4.6:
The Poincaré-Bendixson Theorem / 4.6.1:
Limit Sets of Flows / 4.6.2:
Flows in the Plane / 4.6.3:
Application: The van der Pol Oscillator / 4.6.4:
The Poincaré-Andronov-Hopf Bifurcation / 4.6.5:
Application: Competing Species / 4.7:
The Fixed Points / 4.7.1:
Type and Stability / 4.7.2:
Recurrence / 5:
Rotations of the circle / 5.1:
Continued Fraction Representation / 5.1.1:
Equidistribution and Weyl's Theorem / 5.2:
Application: Periodic Function Reconstruction via Sampling / 5.2.1:
Linear Flows on the Torus / 5.3:
Application: Lissajous Figures / 5.3.1:
Application: A Polygonal Billiard / 5.3.2:
Toral Translations / 5.4:
Invertible Circle Maps / 5.5:
Phase Volume Preservation / 6:
In compressibility / 6.1:
Newtonian Systems of Classical Mechanics / 6.2:
Generating Flows from Functions: Lagrange / 6.2.1:
Generating Flows from Functions: Hamilton / 6.2.2:
Exact Differential Equations / 6.2.3:
Application: The Planar Pendulum / 6.2.4:
First Integrals / 6.2.5:
Application: The Spherical Pendulum / 6.2.6:
Poincaré Recurrence / 6.3:
Non-Wandering Points / 6.3.1:
The Poincaré Recurrence Theorem / 6.3.2:
Circular Billiards / 6.4:
Elliptic Billiards / 6.4.2:
General Convex Billiards / 6.4.3:
Poincaré's Last Geometric Theorem / 6.4.4:
Application: Pitcher Problems / 6.4.5:
Complicated Orbit Structure / 7:
Counting Periodic Orbits / 7.1:
The Quadratic Map: Beyond 4 / 7.1.1:
Hyperbolic Toral Automorphisms / 7.1.2:
Application: Image Restoration / 7.1.3:
Inverse Limit Spaces / 7.1.4:
Shift Spaces / 7.1.5:
Markov Partitions / 7.1.6:
Application: The Baker's Transformation / 7.1.7:
Two-Dimensional Markov Partitions: Arnol'd's Cat Map / 7.2:
Chaos and Mixing / 7.3:
Sensitive Dependence on Initial Conditions / 7.4:
Quadratic Maps: The Final interval / 7.5:
Period-Doubling Bifurcation / 7.5.1:
Trie Schwarzian Derivative / 7.5.2:
Sharkovskii's Theorem / 7.5.3:
Two More Examples of Complicated Dynamical Systems / 7.6:
Complex Dynamics / 7.6.1:
Smale Horseshoe / 7.6.2:
Dynamical Invariants / 8:
Topological Conjugacy / 8.1:
Conjugate Maps / 8.1.1:
Conjugate Hows / 8.1.2:
Conjugacy as Classification / 8.1.3:
Topological Entropy / 8.2:
Lyapunov Exponents / 8.2.1:
Capacity / 8.2.2:
Box Dimension / 8.2.3:
Bowen-Dinaburg (Metric) Topological Entropy / 8.2.4:
Bibliography
Index
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
13.

図書

図書
Mike Lancaster
出版情報: Cambridge : Royal Society of Chemistry, c2010  xv, 328 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Principles and Concepts of Green Chemistry / Chapter 1:
Introduction / 1.1:
Sustainable Development and Green Chemistry / 1.2:
Green Engineering / 1.2.1:
Atom Economy / 1.3:
Atom Economic Reactions / 1.4:
Rearrangement Reactions / 1.4.1:
Addition Reactions / 1.4.2:
Atom Un-economic Reactions / 1.5:
Substitution Reactions / 1.5.1:
Elimination Reactions / 1.5.2:
Wittig Reactions / 1.5.3:
Reducing Toxicity / 1.6:
Measuring Toxicity / 1.6.1:
Review Questions
Further Reading
Waste: Production, Problems, and Prevention / Chapter 2:
Some Problems Caused by Waste / 2.1:
Sources of Waste from the Chemical Industry / 2.3:
Cost of Waste / 2.4:
Waste Minimization Techniques / 2.5:
The Team Approach to Waste Minimization / 2.5.1:
Process Design for Waste Minimization / 2.5.2:
Minimizing Waste from Existing Processes / 2.5.3:
On-site Waste Treatment / 2.6:
Physical Treatment / 2.6.1:
Chemical Treatment / 2.6.2:
Biotreatment Plants / 2.6.3:
Design for Degradation / 2.7:
Degradation and Surfactants / 2.7.1:
DDT / 2.7.2:
Polymers / 2.7.3:
Some Rules for Degradation / 2.7.4:
Polymer Recycling / 2.8:
Separation and Sorting / 2.8.1:
Incineration / 2.8.2:
Mechanical Recycling / 2.8.3:
Chemical Recycling to Monomers / 2.8.4:
Measuring and Controlling Environmental Performance / Chapter 3:
The Importance of Measurement / 3.1:
Lactic Acid Production / 3.1.1:
Safer Gasoline / 3.1.2:
Introduction to Life Cycle Assessment / 3.2:
Four Stages of LCA / 3.2.1:
Carbon Footprinting / 3.2.2:
Green Process Metrics / 3.3:
Environmental Management Systems (EMS) / 3.4:
ISO 14001 / 3.4.1:
The European Eco-Management and Audit Scheme (EMAS) / 3.4.2:
Eco-Labels / 3.5:
Legislation / 3.6:
Integrated Pollution Prevention and Control (IPPC) / 3.6.1:
Reach / 3.6.2:
Catalysis and Green Chemistry / Chapter 4:
Introduction to Catalysis / 4.1:
Comparison of Catalyst Types / 4.1.1:
Heterogeneous Catalysts / 4.2:
Basics of Heterogeneous Catalysis / 4.2.1:
Zeolites and the Bulk Chemical Industry / 4.2.2:
Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries / 4.2.3:
Catalytic Converters / 4.2.4:
Homogeneous Catalysts / 4.3:
Transition Metal Catalysts with Phosphine or Carbonyl Ligands / 4.3.1:
Greener Lewis Acids / 4.3.2:
Asymmetric Catalysis / 4.3.3:
Phase Transfer Catalysis / 4.4:
Hazard Reduction / 4.4.1:
C-C Bond Formation / 4.4.2:
Oxidation using Hydrogen Peroxide / 4.4.3:
Biocatalysis / 4.5:
Photocatalysis / 4.6:
Conclusions / 4.7:
Organic Solvents: Environmentally Benign Solutions / Chapter 5:
Organic Solvents and Volatile Organic Compounds / 5.1:
Solvent-free Systems / 5.2:
Supercritical Fluids / 5.3:
Supercritical Carbon Dioxide (scCO2) / 5.3.1:
Supercritical Water / 5.3.2:
Water as a Reaction Solvent / 5.4:
Water Based Coatings / 5.4.1:
Ionic Liquids / 5.5:
Ionic Liquids as Catalysts / 5.5.1:
Ionic Liquids as Solvents / 5.5.2:
Fluorous Biphase Solvents / 5.6:
Comparing Greenness of Solvents / 5.7:
Renewable Resources / 5.8:
Biomass as a Renewable Resource / 6.1:
Energy / 6.2:
Fossil Fuels / 6.2.1:
Energy from Biomass / 6.2.2:
Solar Power / 6.2.3:
Other Forms of Renewable Energy / 6.2.4:
Fuel Cells / 6.2.5:
Chemicals from Renewable Feedstocks / 6.3:
Chemicals from Fatly Acids / 6.3.1:
Polymers from Renewable Resources / 6.3.2:
Some Other Chemicals from Natural Resources / 6.3.3:
Alternative Economies / 6.4:
Syngas Economy / 6.4.1:
Hydrogen Economy / 6.4.2:
Biorefinery / 6.5:
Emerging Greener Technologies and Alternative Energy Sources / 6.6:
Design for Energy Efficiency / 7.1:
Photochemical Reactions / 7.2:
Advantages of and Challenges Faced by Photochemical Processes / 7.2.1:
Examples of Photochemical Reactions / 7.2.2:
Chemistry using Microwaves / 7.3:
Microwave Heating / 7.3.1:
Microwave-assisted Reactions / 7.3.2:
Sonochemistry / 7.4:
Sonochemistry and Green Chemistry / 7.4.1:
Electrochemical Synthesis / 7.5:
Examples of Electrochemical Synthesis / 7.5.1:
Designing Greener Processes / 7.6:
Conventional Reactors / 8.1:
Batch Reactors / 8.2.1:
Continuous Reactors / 8.2.2:
Inherently Safer Design / 8.3:
Minimization / 8.3.1:
Simplification / 8.3.2:
Substitution / 8.3.3:
Moderation / 8.3.4:
Limitation / 8.3.5:
Process Intensification / 8.4:
Some PI Equipment / 8.4.1:
Some Example of Intensified Processes / 8.4.2:
In-process Monitoring / 8.5:
Near-infrared Spectroscopy / 8.5.1:
Process Safety / 8.6:
Industrial Case Studies / Chapter 9:
Methyl Methacrylate / 9.1:
Greening of Acetic Acid Manufacture / 9.3:
EPDM Rubbers / 9.4:
Vitamin C / 9.5:
Leather Manufacture / 9.6:
Tanning / 9.6.1:
Fatliquoring / 9.6.2:
Dyeing to be Green / 9.7:
Some Manufacturing Improvements / 9.7.1:
Dye Application / 9.7.2:
Polyethylene / 9.8:
Radical Process / 9.8.1:
Ziegler-Natta Catalysis / 9.8.2:
Metallocene Catalysis / 9.8.3:
Post Metallocene Catalysts / 9.8.4:
Eco-friendly Pesticides / 9.9:
Insecticides / 9.9.1:
Epichlorohydrin / 9.10:
The Future's Green: An Integrated Approach to a Greener Chemical Industry / Chapter 10:
Society and Sustainability / 10.1:
Barriers & Drivers / 10.2:
Role of Legislation / 10.3:
Green Chemical Supply Strategies / 10.4:
Greener Energy / 10.5:
Subject Index / 10.6:
Principles and Concepts of Green Chemistry / Chapter 1:
Introduction / 1.1:
Sustainable Development and Green Chemistry / 1.2:
14.

図書

図書
Vítor Araújo, Maria José Pacifico
出版情報: Berlin : Springer, c2010  xix, 358 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge . A series of modern surveys in mathematics ; v. 53
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Organization of the Text / 1.1:
Preliminary Definitions and Results / 2:
Fundamental Notions and Definitions / 2.1:
Critical Elements, Non-wandering Points, Stable and Unstable Sets / 2.1.1:
Limit Sets, Transitivity, Attractors and Repellers / 2.1.2:
Hyperbolic Critical Elements / 2.1.3:
Topological Equivalence, Structural Stability / 2.1.4:
Low Dimensional Flow Versus Chaotic Behavior / 2.2:
One-Dimensional Flows / 2.2.1:
Two-Dimensional Flows / 2.2.2:
Three Dimensional Chaotic Attractors / 2.2.3:
Hyperbolic Flows / 2.3:
Hyperbolic Sets and Singularities / 2.3.1:
Examples of Hyperbolic Sets and Axiom A Flows / 2.3.2:
Expansiveness and Sensitive Dependence on Initial Conditions / 2.4:
Chaotic Systems / 2.4.1:
Expansive Systems / 2.4.2:
Basic Tools / 2.5:
The Tubular Flow Theorem / 2.5.1:
Transverse Sections and the Poincaré Return Map / 2.5.2:
The Hartman-Grobman Theorem on Local Linearization / 2.5.3:
The (Strong) Inclination Lemma (or ?-Lemma) / 2.5.4:
Homoclinic Classes, Transitiveness and Denseness of Periodic Orbits / 2.5.5:
The Closing Lemma / 2.5.6:
The Connecting Lemma / 2.5.7:
The Ergodic Closing Lemma / 2.5.8:
A Perturbation Lemma for Flows / 2.5.9:
Generic Vector Fields and Lyapunov Stability / 2.5.10:
The Linear Poincaré Flow / 2.6:
Hyperbolic Splitting for the Linear Poincaré Flow / 2.6.1:
Dominated Splitting for the Linear Poincaré Flow / 2.6.2:
Incompressible Flows, Hyperbolicity and Dominated Splitting / 2.6.3:
Ergodic Theory / 2.7:
Physical or SRB Measures / 2.7.1:
Gibbs Measures Versus SRB Measures / 2.7.2:
Stability Conjectures / 2.8:
Singular Cycles and Robust Singular Attractors / 3:
Singular Horseshoe / 3.1:
A Singular Horseshoe Map / 3.1.1:
A Singular Cycle with a Singular Horseshoe First Return Map / 3.1.2:
The Singular Horseshoe Is a Partially Hyperbolic Set with Volume Expanding Central Direction / 3.1.3:
Bifurcations of Saddle-Connections / 3.2:
Saddle-Connection with Real Eigenvalues / 3.2.1:
Inclination Flip and Orbit Flip / 3.2.2:
Saddle-Focus Connection and Shil'nikov Bifurcations / 3.2.3:
Lorenz Attractor and Geometric Models / 3.3:
Properties of the Lorenz System of Equations / 3.3.1:
The Geometric Model / 3.3.2:
The Geometric Lorenz Attractor Is a Partially Hyperbolic Set with Volume Expanding Central Direction / 3.3.3:
Existence and Robustness of Invariant Stable Foliation / 3.3.4:
Robustness of the Geometric Lorenz Attractors / 3.3.5:
The Geometric Lorenz Attractor Is a Homoclinic Class / 3.3.6:
Robustness on the Whole Ambient Space / 4:
No Equilibria Surrounded by Regular Orbits with Dominated Splitting / 4.1:
Homogeneous Flows and Dominated Splitting / 4.2:
Dominated Splitting over the Periodic Orbits / 4.2.1:
Dominated Splitting over Regular Orbits from the Periodic Ones / 4.2.2:
Bounded Angles on the Splitting over Hyperbolic Periodic Orbits / 4.2.3:
Dominated Splitting for the Linear Poincaré Flow Along Regular Orbits / 4.2.4:
Uniform Hyperbolicity for the Linear Poincaré Flow / 4.3:
Subadditive Functions of the Orbits of a Flow and Exponential Growth / 4.3.1:
Uniform Hyperbolicity for the Linear Poincaré Flow on the Whole Manifold / 4.3.2:
Robust Transitivity and Singular-Hyperbolicity / 5:
Definitions and Statement of Results / 5.1:
Equilibria of Robust Attractors Are Lorenz-Like / 5.1.1:
Robust Attractors Are Singular-Hyperbolic / 5.1.2:
Brief Sketch of the Proofs / 5.1.3:
Higher Dimensional Analogues / 5.2:
Singular-Attractor with Arbitrary Number of Expanding Directions / 5.2.1:
The Notion of Sectionally Expanding Sets / 5.2.2:
Homogeneous Flows and Sectionally Expanding Attractors / 5.2.3:
Proof of Sufficient Conditions to Obtain Attractors / 5.3:
Robust Singular Transitivity Implies Attractors or Repellers / 5.3.2:
Attractors and Singular-Hyperbolicity / 5.4:
Uniformly Dominated Splitting over the Periodic Orbits / 5.4.1:
Dominated Splitting over a Robust Attractor / 5.4.2:
Flow-Boxes Near Equilibria / 5.4.3:
Uniformly Bounded Angle Between Stable and Center-Unstable Directions on Periodic Orbits / 5.4.5:
Singular-Hyperbolicity and Robustness / 6:
Cross-Sections and Poincaré Maps / 6.1:
Stable Foliations on Cross-Sections / 6.1.1:
Hyperbolicity of Poincaré Maps / 6.1.2:
Adapted Cross-Sections / 6.1.3:
Global Poincaré Return Map / 6.1.4:
The One-Dimensional Piecewise Expanding Map / 6.1.5:
Denseness of Periodic Orbits and the One-Dimensional Map / 6.1.6:
Crossing Strips and the One-Dimensional Map / 6.1.7:
Homoclinic Class / 6.2:
Sufficient Conditions for Robustness / 6.3:
Denseness of Periodic Orbits and Transitivity with a Unique Singularity / 6.3.1:
Unstable Manifolds of Periodic Orbits Inside Singular-Hyperbolic Attractors / 6.3.2:
Expansiveness and Physical Measure / 7:
Statements of the Results and Overview of the Arguments / 7.1:
Robust Sensitiveness / 7.1.1:
Existence and Uniqueness of a Physical Measure / 7.1.2:
Expansiveness / 7.2:
Proof of Expansiveness / 7.2.1:
Infinitely Many Coupled Returns / 7.2.2:
Semi-global Poincaré Map / 7.2.3:
A Tube-Like Domain Without Singularities / 7.2.4:
Every Orbit Leaves the Tube / 7.2.5:
Expansiveness of the Poincaré Map / 7.2.6:
Singular-Hyperbolicity and Chaotic Behavior / 7.2.8:
Non-uniform Hyperbolicity / 7.3:
The Starting Point / 7.3.1:
The Hölder Property of the Projection / 7.3.2:
Integrability of the Global Return Time / 7.3.3:
Suspending Invariant Measures / 7.3.4:
Physical Measure for the Global Poincaré Map / 7.3.5:
Suspension Flow from the Poincaré Map / 7.3.6:
Physical Measures for the Suspension / 7.3.7:
Physical Measure for the Flow / 7.3.8:
Hyperbolicity of the Physical Measure / 7.3.9:
Absolutely Continuous Disintegration of the Physical Measure / 7.3.10:
Constructing the Disintegration / 7.3.11:
The Support Covers the Whole Attractor / 7.3.12:
Singular-Hyperbolicity and Volume / 8:
Dominated Decomposition and Zero Volume / 8.1:
Dominated Splitting and Regularity / 8.1.1:
Uniform Hyperbolicity / 8.1.2:
Singular-Hyperbolicity and Zero Volume / 8.2:
Positive Volume Versus Transitive Anosov Flows / 8.2.1:
Extension to Sectionally Expanding Attractors in Higher Dimensions / 8.2.3:
Global Dynamics of Generic 3-Flows / 9:
Spectral Decomposition / 9.1:
Some Consequences of the Generic Dichotomy / 9.2:
Generic 3-Flows, Lyapunov Stability and Singular-Hyperbolicity / 9.2.2:
Conservative Tubular Flow Theorem / 9.3:
Realizable Linear Flows / 9.3.2:
Blending Oseledets Directions Along an Orbit Segment / 9.3.3:
Lowering the Norm: Local Procedure / 9.3.4:
Lowering the Norm: Global Procedure / 9.3.5:
Proof of the Dichotomy with Singularities (Theorem 9.4) / 9.3.6:
Related Results and Recent Developments / 10:
More on Singular-Hyperbolicity / 10.1:
Topological Dynamics / 10.1.1:
Attractors that Resemble the Lorenz Attractor / 10.1.2:
Unfolding of Singular Cycles / 10.1.3:
Contracting Lorenz-Like Attractors / 10.1.4:
Dimension Theory, Ergodic and Statistical Properties / 10.1.5:
Large Deviations for the Lorenz Flow / 10.2.1:
Central Limit Theorem for the Lorenz Flow / 10.2.2:
Decay of Correlations / 10.2.3:
Decay of Correlations for the Return Map and Quantitative Recurrence on the Geometric Lorenz Flow / 10.2.4:
Non-mixing Flows and Slow Decay of Correlations / 10.2.5:
Decay of Correlations for Flows / 10.2 6:
Thermodynamical Formalism / 10.2.7:
Generic Conservative Flows in Dimension 3 / 10.3:
Lyapunov Stability on Generic Vector Fields / Appendix A:
Robustness of Dominated Decomposition / Appendix B:
References
Index
Introduction / 1:
Organization of the Text / 1.1:
Preliminary Definitions and Results / 2:
15.

図書

図書
Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin
出版情報: Heidelberg : Springer, c2011  xv, 523 p. ; 25 cm
シリーズ名: Die Grundlehren der mathematischen Wissenschaften ; 343
所蔵情報: loading…
目次情報: 続きを見る
Basic Analysis / 1:
Basic Real Anslysis / 1.1:
Holder and Convolution Inequslities / 1.1.1:
The Atomic Decomposition / 1.1.2:
Proof of Refined Young Inequslityp8 / 1.1.3:
A Bilinear Interpolation Theorem / 1.1.4:
A Linear Interpolation Result / 1.1.5:
The Hardy-Littlewood Maximal Function / 1.1.6:
The Fourier Transform / 1.2:
Fourier Transforms of Functions and the Schwartz Space / 1.2.1:
Tempered Distributions and the Fourier Transform / 1.2.2:
A Few Calculations of Fourier Transforms / 1.2.3:
Homogeneous Sobolev Spaces / 1.3:
Definition and Basic Properties / 1.3.1:
Sobolev Embedding in Lebesgue Spaces / 1.3.2:
The Limit Case Hd/2 / 1.3.3:
The Embedding Theorem in Hölder Spaces / 1.3.4:
Nonhomogeneous Sobolev Spaces on Rd / 1.4:
Embedding / 1.4.1:
A Density Theorem / 1.4.3:
Hardy Inequality / 1.4.4:
References and Remarks / 1.5:
Littlewood-Paley Theory / 2:
Functions with Compactly Supported Fourier Transforms / 2.1:
Bernstein-Type Lemmas / 2.1.1:
The Smoothing Effect of Heat Flow / 2.1.2:
The Action of a Diffeomorphism / 2.1.3:
The Effects of Some Nonlinear Functions / 2.1.4:
Dyadic Partition of Unity / 2.2:
Homogeneous Besov Spaces / 2.3:
Characterizations of Homogeneous Besov Spaces / 2.4:
Besov Spaces, Lebesgue Spaces, and Refined Inequalities / 2.5:
Homogeneous Paradifferential Calculus / 2.6:
Homogeneous Bony Decomposition / 2.6.1:
Action of Smooth Functions / 2.6.2:
Time-Space Besov Spaces / 2.6.3:
Nonhomogeneous Besov Spaces / 2.7:
Nonhomogeneous Paradifferential Calculus / 2.8:
The Bony Decomposition / 2.8.1:
The Paralinearization Theorem / 2.8.2:
Besov Spaces and Compact Embeddings / 2.9:
Commutator Estimates / 2.10:
Around the Space B&infty;,&infty;1 / 2.11:
Transport and Transport-Diffusion Equations / 2.12:
Ordinary Differential Equations / 3.1:
The Cauchy-Lipschitz Theorem Revisited / 3.1.1:
Estimates for the Flow / 3.1.2:
A Blow-up Criterion for Ordinary Differential Equations / 3.1.3:
Transport Equations: The Lipschitz Case / 3.2:
A Priori Estimates in General Besov Spaces / 3.2.1:
Refined Estimates in Besov Spaces with Index 0 / 3.2.2:
Solving the Transport Equation in Besov Spaces / 3.2.3:
Application to a Shallow Water Equation / 3.2.4:
Losing Estimates for Transport Equations / 3.3:
Linear Loss of Regularity in Besov Spaces / 3.3.1:
The Exponential Loss / 3.3.2:
Limited Loss of Regularity / 3.3.3:
A Few Applications / 3.3.4:
Transport-Diffusion Equations / 3.4:
A Priori Estimates / 3.4.1:
Exponential Decay / 3.4.2:
Quasilinear Symmetric Systems / 3.5:
Definition and Examples / 4.1:
Linear Symmetric Systems / 4.2:
The Well-posedness of Linear Symmetric Systems / 4.2.1:
Finite Propagation Speed / 4.2.2:
Further Well-posedness Results for Linear Symmetric Systems / 4.2.3:
The Resolution of Quasilinear Symmetric Systems / 4.3:
Paralinearization and Energy Estimates / 4.3.1:
Convergence of the Scheme / 4.3.2:
Completion of the Proof of Existence / 4.3.3:
Uniqueness and Continuation Criterion / 4.3.4:
Data with Critical Regularity and Blow-up Criteria / 4.4:
Critical Besov Regularity / 4.4.1:
A Refined Blow-up Crndition / 4.4.2:
Continuity of the Flow Map / 4.5:
The Incompressible Navier-Stokes System / 4.6:
Basic Facts Concerning the Navier-Stokes System / 5.1:
Well-posedness in Sobolev Spaces / 5.2:
A General Result / 5.2.1:
The Behavior of the Hd/2-1 Norm Near 0 / 5.2.2:
Results Related to the Structure of the System / 5.3:
The Particular Case of Dimension Two / 5.3.1:
The Case of Dimension Three / 5.3.2:
An Elementary Lp Approach / 5.4:
The Endpoint Space for Picard's Scheme / 5.5:
The Use of the L1-smoothing Effect of the Heat Flow / 5.6:
The Cannone-Meyer-Planchon Theorem Revisited / 5.6.1:
The Flow of the Solutions of the Navier-Stokes System / 5.6.2:
Anisotropic Viscosity / 5.7:
The Case of L2 Data with One Vertical Derivative in L2 / 6.1:
A Global Existence Result in Anisotropic Besov Spaces / 6.2:
Anisotropic Localization in Fourier Space / 6.2.1:
The Functional Framework / 6.2.2:
Statement of the Main Result / 6.2.3:
Some Technical Lemmas / 6.2.4:
The Proof of Existence / 6.3:
The Proof of Uniqueness / 6.4:
Euler System for Perfect Incompressible Fluids / 6.5:
Local Well-posedness Results for Inviscid Fluids / 7.1:
The Biot-Savart Law / 7.1.1:
Estimates for the Pressure / 7.1.2:
Another Formulation of the Euler System / 7.1.3:
Local Existence of Smooth Solutions / 7.1.4:
Uniqueness / 7.1.5:
Continuation Criteria / 7.1.6:
Global Existence Results in Dimension Two / 7.2:
Smooth Solutions / 7.2.1:
The Borderline Case / 7.2.2:
The Yudovich Theorem / 7.2.3:
The Inviscid Limit / 7.3:
Regularity Results for the Navier-Stokes System / 7.3.1:
The Smooth Case / 7.3.2:
The Rough Case / 7.3.3:
Viscous Vortex Patches / 7.4:
Results Related to Striated Regularity / 7.4.1:
A Stationary Estimate for the Velocity Field / 7.4.2:
Uniform Estimates for Striated Regularity / 7.4.3:
A Global Convergence Result for Striated Regularity / 7.4.4:
Application to Smooth Vortex Patches / 7.4.5:
Strichartz Estimates and Applications to Semilinear Dispersive Equations / 7.5:
Examples of Dispersive Estimates / 8.1:
The Dispersive Estimate for the Free Transport Equation / 8.1.1:
The Dispersive Estimates for the Schrdillger Equation / 8.1.2:
Integral of Oscillating Functions / 8.1.3:
Dispersive Estimates for the Wave Equation / 8.1.4:
The L2 Boundedness of Some Fourier Integral Operators / 8.1.5:
Billnear Methods / 8.2:
The Duality Method and the TT* Argument / 8.2.1:
Strichartz Estimates: The Case q > 2 / 8.2.2:
Strichartz Estimates: The Endpoint Case q = 2 / 8.2.3:
Application to the Cubic Semilinear Schrödinger Equation / 8.2.4:
Strichartz Estimates for the Wave Equation / 8.3:
The Basic Strichartz Estimate / 8.3.1:
The Refined Strichartz Estimate / 8.3.2:
The Qulntic Wave Equation in R3 / 8.4:
The Cubic Wave Equation in R3 / 8.5:
Solutions in H1 / 8.5.1:
Local and Global Well-posedness for Rough Data / 8.5.2:
The Nonlinear Interpolation Method / 8.5.3:
Application to a Class of Semilinear Wave Equations / 8.6:
Smoothing Effect in Quasilinear Wave Equations / 8.7:
A Well-posedness Result Based on an Energy Method / 9.1:
The Main Statement and the Strategy of its Proof / 9.2:
Refined Paralinearization of the Wave Equation / 9.3:
Reduction to a Microlocal Strichartz Estimate / 9.4:
Microlocal Strichartz Estimates / 9.5:
A Rather General Statement / 9.5.1:
Geometrical Optics / 9.5.2:
The Solution of the Eikonal Equation / 9.5.3:
The Transport Equation / 9.5.4:
The Approximation Theorem / 9.5.5:
The Proof of Theorem 9.16 / 9.5.6:
The Compressible Navier-Stokes System / 9.6:
About the Model / 10.1:
General Overview / 10.1.1:
The Barotropic Navier-Stokes Equations / 10.1.2:
Local Theory for Data with Critical Regularity / 10.2:
Scaling Invariance and Statement of the Main Result / 10.2.1:
Existence of a Local Solution / 10.2.2:
A Continuation Criterion / 10.2.4:
Local Theory for Data Bounded Away from the Vacuum / 10.3:
A Priori Estimates for the Linearized Momentum Equation / 10.3.1:
Global Existence for Small Data / 10.3.2:
Statement of the Results / 10.4.1:
A Spectral Analysis of the Linearized Equation / 10.4.2:
A Prioli Estimates for the Linearized Equation / 10.4.3:
Proof of Global Existence / 10.4.4:
The Incompressible Limit / 10.5:
Main Results / 10.5.1:
The Case of Small Data with Critical Regularity / 10.5.2:
The Case of Large Data with More Regularity / 10.5.3:
References / 10.6:
List of Notations
Index
Basic Analysis / 1:
Basic Real Anslysis / 1.1:
Holder and Convolution Inequslities / 1.1.1:
16.

図書

図書
Maher S. Amer
出版情報: Cambridge : Royal Society of Chemistry, c2010  xiv, 287 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no. 13
所蔵情報: loading…
目次情報: 続きを見る
Nanotechnology, the Technology of Small Thermodynamic Systems / Chapter 1:
Introduction / 1.1:
Origins of Nanotechnology / 1.2:
What Nanotechnology Is / 1.3:
What Can Nanotechnology Do For Us? / 1.3.1:
Where did the Name "Nano" Came From? / 1.3.2:
Does Every Nanosystem Have to Be so Small? / 1.3.3:
How and Why do the Properties of Matter Change by Entering the Nano-domain? / 1.3.4:
Has Nanotechnology Been Used Before? / 1.3.5:
Why did it Take us so Long to Realize the Importance of Nanotechnology? / 1.3.6:
Back to the Science / 1.4:
Large Systems and Small Systems Limits / 1.5:
Scales of Inhomogeneity / 1.6:
Thermal Gravitational Scale / 1.6.1:
Capillary Length / 1.6.2:
Tolman Length / 1.6.3:
Line Tension (?) and the (?/?) Ratio / 1.6.4:
Correlation Length (?) / 1.6.5:
Thermodynamics of Small Systems / 1.7:
Configurational Entropy of Small Systems / 1.8:
Nanophenomena / 1.9:
Optical Phenomena / 1.9.1:
Electronic Phenomena / 1.9.2:
Thermal Phenomena / 1.9.3:
Mechanical Phenomena / 1.9.4:
References
Raman Spectroscopy; (the Diagnostic Tool / Chapter 2:
Raman Phenomenon / 2.1:
General Theory of Raman Scattering / 2.3:
Raman Selection Rules / 2.4:
Vibration Modes and the Polarizability Tensor / 2.4.1:
Symmetry / 2.5:
Identity (E) / 2.5.1:
Center of Symmetry (i) / 2.5.2:
Planes of Symmetry (?) (Minor Planes) / 2.5.3:
Symmetry Elements and Symmetry Operations / 2.5.5:
Point Groups / 2.6:
Point Groups of Molecules / 2.6.1:
Point Groups of Crystals / 2.6.2:
Space Groups / 2.7:
Glide Planes / 2.7.1:
Space Groups in One- and Two-dimensional Space / 2.7.3:
Character Table / 2.8:
Symmetry Operations and Transformation of Directional Properties / 2.8.1:
Degenerate Symmetry Species (Degenerate Representations) / 2.8.2:
Symmetry Species in Linear Molecules / 2.8.3:
Classification of Normal Vibration by Symmetry / 2.8.4:
Raman Overtones and Combination Bands / 2.8.5:
Molecular and Lattice Raman Modes / 2.8.6:
Raman from an Energy Transfer Viewpoint / 2.9:
Boltzmann Distribution and its Correlation to Raman Lines / 2.10:
Perturbation Effects on Raman Bands / 2.11:
Strain Effects / 2.11.1:
Heat Effects / 2.11.2:
Hydrostatic Pressure Effects / 2.11.3:
Structural Imperfections Effects / 2.11.4:
Chemical Potentials Effects / 2.11.5:
Resonant Raman Effect / 2.12:
Calculations of Raman Band Positions / 2.13:
Polarized Raman and Band Intensity / 2.14:
Dispersion Effect / 2.15:
Instrumentation / 2.16:
Recommended General Reading
Fullerenes, the Building Blocks / Chapter 3:
Overview / 3.1:
Fullerenes, the Beginnings and Current State / 3.2:
Zero-dimensional Fullerenes: The Structure / 3.4:
Structure of the [60] Fullerene Molecule / 3.4.1:
Structure of the [70] Fullerene Molecule / 3.4.2:
Production Methods of Fullerenes / 3.5:
Huffman- Krätschmer Method / 3.5.1:
Benzene Combustion Method / 3.5.2:
Condensation Method / 3.5.3:
Extraction Methods of Fullerenes / 3.6:
Purification Methods of Fullerene / 3.7:
Fullerene Onions / 3.8:
One-dimensional Fullerene: the Structure / 3.9:
Single-walled Carbon Nanotubes (SWCNTs) / 3.9.1:
Multi-walled Carbon Nanotubes (MWCNTs) / 3.9.2:
Production of Carbon Nanotubes / 3.9.3:
Two-dimensional Fullerenes - Graphene / 3.10:
The Nano-frontier; Properties, Achievements, and Challenges / Chapter 4:
Raman Scattering of Fullerenes / 4.1:
Raman Scattering of Single-walled Carbon Nanotubes / 4.2.1:
Raman Scattering of Double- and Multi-walled Carbon Nanotubes / 4.2.4:
Raman Scattering of Graphene / 4.2.5:
Thermal Effects on Raman Scattering / 4.2.6:
Fullerene Solubility and Solvent Interactions / 4.3:
Solvent Effects on Fullerenes / 4.3.1:
Fullerene Effects on Solvents / 4.3.2:
Fullerenes under Pressure / 4.4:
Overview, Potentials, Challenges, and Concluding Remarks / 4.5:
Character Tables for Various Point Groups / Appendix 1:
General Formula for Calculating the Number of Normal Vibrations in Each Symmetry Species / Appendix 2:
Polarizability Tensors for the 32 Point Groups including the Icosahedral Group / Appendix 3:
Subject Index
Nanotechnology, the Technology of Small Thermodynamic Systems / Chapter 1:
Introduction / 1.1:
Origins of Nanotechnology / 1.2:
17.

図書

図書
Deborah D.L. Chung
出版情報: Singapore : World Scientific, c2019  xiii, 367 p. ; 24 cm
シリーズ名: Engineering materials for technological needs ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
Graphite / 1.1.1:
Diamond / 1.1.2:
Fullerene / 1.1.3:
The graphite family / 1.2:
Graphite and turbostratic carbon / 1.2.1:
Carbon fibers and nanofibers / 1.2.2:
Carbon nanotubes / 1.2.3:
Intercalated graphite / 1.2.4:
Graphite oxide / 1.2.5:
Exfoliated graphite / 1.2.6:
Flexible graphite / 1.2.7:
Graphene / 1.2.8:
Activated carbon / 1.2.9:
Carbon black / 1.2.10:
Carbon-carbon composites / 1.2.11:
The diamond family / 1.3:
Diamond-like carbon / 1.3.1:
Graphane
The fullerene family / 1.4:
References
Structure of graphite and carbon in the graphite family / 2:
Fabrication of graphite / 2.2:
Polycrytalline graphite / 2.2.1:
Graphite flakes / 2.2.2:
Pyrolytic graphite / 2.2.3:
Properties of graphite / 2.3:
Reciprocal lattice / 2.4:
Electronic energy bands / 2.5:
Magnetic energy levels / 2.6:
Electrical properties / 2.7:
Lattice vibrations / 2.8:
Graphite intercalation compounds / 2.9:
Classification of graphite intercalation compounds / 2.9.1:
Covalent intercalation compounds / 2.9.2:
Graphite oxide (graphitic acid) / 2.9.2.1:
Carbon monofluoride (graphite monofluoride) / 2.9.2.2:
Tetracarbon monofluoride / 2.9.2.3:
Ionic intercalation compounds / 2.9.3:
Graphite-halogens / 2.9.3.1:
Graphite-alkali metals / 2.9.3.2:
Graphite-acid compounds / 2.9.3.3:
Graphite-halide compounds / 2.9.3.4:
Intercalated graphite fibers / 2.9.4:
Structure and formation / 2.10:
Viscoelastic and elastomeric properties / 2.10.2:
Dielectric properties / 2.10.3:
Thermal and electrical conductivities / 2.10.4:
Adsorption and filtration behavior / 2.10.5:
Electronic structure of graphene / 2.11:
Optical behavior / 3.3:
Defects in graphene / 3.4:
Mechanical behavior / 3.5:
Preparation of graphene / 3.6:
Preparation of graphene by the cleavage of graphite / 3.6.1:
Preparation of graphene by the mechanical disintegration of intercalated graphite / 3.6.2:
Preparation of graphene by the chemical reduction of graphene oxide / 3.6.3:
Preparation of graphene by nonoxidizing liquid exfoliation / 3.6.4:
Preparation of graphene by chemical vapor deposition / 3.6.5:
Graphene yarns / 3.7:
Graphene paper / 3.8:
Graphene foam / 3.9:
Graphene ink / 3.10:
Graphene quantum dots / 3.11:
Doping of graphene / 3.12:
Hybrids of graphene and carbon nanotubes / 3.13:
Hybrids of graphene and carbon fibers / 3.14:
Hybrids of graphene and electrochemical electrode materials / 3.15:
Fabrication / 4:
Structure / 4.3:
Squish ability and compaction / 4.4:
Application in thermal interface materials / 4.5:
Application as an electrically conductive additive / 4.6:
Dielectric behavior / 4.7:
Viscoelastic behavior / 4.8:
Nanoindentation behavior / 4.8.1:
Dynamic mechanical properties / 4.8.2:
Carbon black composites / 4.9:
Competing materials / 4.10:
Market and applications / 4.11:
Structure of activated carbon / 5:
Adsorption / 5.2:
Forms of activated carbon / 5.3:
Granular activated carbon / 5.3.1:
Powdered activated carbon / 5.3.2:
Extruded activated carbon / 5.3.3:
Bead activated carbon / 5.3.4:
Activated carbon assemblies / 5.4:
Honeycomb carbon filters / 5.4.1:
Activated carbon blocks with hollow channels / 5.4.2:
Activated carbon foam / 5.4.3:
Activated carbon foam assemblies / 5.4.4:
Activated carbon fiber fabric / 5.4.5:
Activated carbon composites / 5.4.6:
Fabrication of activated carbon / 5.5:
Steam activation / 5.5.1:
Gas activation / 5.5.2:
Chemical activation / 5.5.3:
Regeneration of activated carbon / 5.6:
Processing-structure-properly relationships of activated carbon / 5.7:
Applications of activated carbon / 5.8:
Water purification / 5.8.1:
Air purification / 5.8.2:
Gas purification / 5.8.3:
Waste treatment / 5.8.4:
Carbon dioxide capture / 5.8.5:
Heat pumps and refrigeration / 5.8.6:
Electrochemical components / 5.8.7:
Catalyst support / 5.8.8:
Market of activated carbon / 5.9:
Carbon fibers / 6:
Applications and market / 6.1:
Continuous fiber assemblies / 6.3:
Discontinuous fibers / 6.4:
Microstructure / 6.5:
Continuous carbon fibers vs. other materials / 6.6:
Carbon fiber composites / 6.8:
Carbon nanofibers and nanotubes / 7:
Structure of carbon nanofibers and nanotubes / 7.1:
Properties of carbon nanofibers and nanotubes / 7.3:
Mats and yams of CNFs/CNTs / 7.4:
Mats / 7.4.1:
Fabrication of mats / 7.4.1.1:
Electrical and electromagnetic behavior of mats / 7.4.1.2:
Mechanical behavior of mats / 7.4.1.3:
Electrochemical behavior of mats / 7.4.1.4:
Yarns / 7.4.2:
Fabrication of yarns / 7.4.2.1:
Mechanical behavior of yarns / 7.4.2.2:
Assemblies involving CNTs/CNFs / 7.5:
Vertically aligned CNTs / 7.5.1:
CMF/CNT with filled core channel / 7.5.2:
CNFs/CNTs grown on carbon fibers / 7.5.3:
CNTs grown on carbon black / 7.5.4:
CNTs grown on graphene, reduced graphene oxide or exfoliated graphite / 7.5.5:
Carbon deposited on CNTs / 7.5.6:
CNTs grown on alumina / 7.5.7:
CNTs grown on silica fibers / 7.5.8:
CNFs grown on cordierite / 7.5.9:
CNTs grown on metals / 7.5.10:
CNTs attached to polymers / 7.5.11:
CNFs/CNTs mixed with electrochemical electrode material / 7.5.12:
Fabrication of carbon nanofibers and nanotubes / 7.6:
Fabrication of carbon nanofibers/nanotubes from carbonaceous gases / 7.6.1:
Fabrication of carbon nanofibers from electro spun polymer nanofibers / 7.6.2:
Graphitization of carbon nanofibers / 7.6.4:
Index / 7.7:
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
18.

図書

図書
Brian R. Martin, G. Shaw
出版情報: Hoboken, NJ : Wiley, 2019  xiv, 499 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Notes
Basic concepts / 1:
History / 1.1:
The origins of nuclear physics / 1.1.1:
The emergence of particle physics: hadrons and quarks / 1.1.2:
The standard model of particle physics / 1.1.3:
Relativity and antiporticles / 1.2:
Space-time symmetries and conservation laws / 1.3:
Parity / 1.3.1:
Charge conjugation / 1.3.2:
Time reversal / 1.3.3:
Interactions and Feynman diagrams / 1.4:
Interactions / 1.4.1:
Feynman diagrams / 1.4.2:
Particle exchange: forces and potentials / 1.5:
Range of forces / 1.5.1:
The Yukawa potential / 1.5.2:
Observable quantities: cross-sections and decay rates / 1.6:
Amplitudes / 1.6.1:
Cross-sections / 1.6.2:
The basic scattering formulas / 1.6.3:
Unstable states / 1.6.4:
Units / 1.7:
Problems 1
Nuclear phenomenology / 2:
Mass spectroscopy / 2.1:
Deflection spectrometers / 2.1.1:
Kinematic analysis / 2.1.2:
Penning trap measurements / 2.1.3:
Nuclear shapes and sizes / 2.2:
Charge distribution / 2.2.1:
Matter distribution / 2.2.2:
Semi-empirical mass formula: the liquid drop model / 2.3:
Binding energies / 2.3.1:
Semi-empirical mass formula / 2.3.2:
Nuclear instability / 2.4:
Decay chains / 2.5:
ß decay phenomenology / 2.6:
Odd-mass nuclei / 2.6.1:
Even-mass nuclei / 2.6.2:
Fission / 2.7:
¿ decays / 2.8:
Nuclear reactions / 2.9:
Problems 2
Particle phenomenology / 3:
Leptons / 3.1:
Lepton multiplets and lepton numbers / 3.1.1:
Universal lepton interactions; the number of neutrinos / 3.1.2:
Neutrinos / 3.1.3:
Neutrino mixing and oscillations / 3.1.4:
Oscillation experiments / 3.1.5:
Neutrino masses and mixing angles / 3.1.0:
Lepton numbers revisited / 3.1.7:
Quarks / 3.2:
Evidence for quarks / 3.2.1:
Quark generations and quark numbers / 3.2.2:
Hadrons / 3.3:
Flavour independence and charge multiplets / 3.3.1:
The simple quark model / 3.3.2:
Hadron decays and lifetimes / 3.3.3:
Hadron magnetic moments and masses / 3.3.4:
Heavy quarkonia / 3.3.5:
Allowed and exotic quantum numbers / 3.3.6:
Problems 3
Experimental methods / 4:
Overview / 4.1:
Accelerators and beams / 4.2:
DC accelerators / 4.2.1:
AC accelerators / 4.2.2:
Neutral and unstable particle beams / 4.2.3:
Particle interactions with matter / 4.3:
Short-range interactions with nuclei / 4.3.1:
Ionisation energy losses / 4.3.2:
Radiation energy losses / 4.3.3:
Interactions of photons in matter
Ranges and interaction lengths
Particle detectors / 4.4:
Gaseous ionisation detectors / 4.4.1:
Scintillation counters / 4.4.2:
Semiconductor detectors / 4.4.3:
Cerenkov counters and transition radiation / 4.4.4:
Calorimeters / 4.4.5:
Detector Systems / 4.5:
Problems 4
Quark dynamics: the strong interaction / 5:
Colour / 5.1:
Quantum chromodynamics (QCD) / 5.2:
The strong coupling constant / 5.2.1:
Screening, antiscreening and asymptotic freedom / 5.2.2:
New forms of matter / 5.3:
Exotic hadrons / 5.3.1:
The quark-gluon plasma / 5.3.2:
Jets and gluons / 5.4:
Colour counting / 5.4.1:
Deep inelastic scattering and nucleoli structure / 5.5:
Scaling / 5.5.1:
The quark-par ton model / 5.5.2:
Scaling violations and parton distributions / 5.5.3:
Inelastic neutrino scattering / 5.5.4:
Other processes / 5.0:
Jets / 5.0.1:
Lepton pair production / 5.0.2:
Current and constituent quarks / 5.7:
Problems 5
Weak interactions and electroweak unification / 6:
Charged and neutral currents / 6.1:
Charged current reactions / 6.2:
W-lepton interactions / 6.2.1:
Lepton-quark symmetry and mixing / 6.2.2:
W-boson decays / 6.2.3:
Charged current selection rules / 6.2.4:
The third generation / 6.3:
More quark mixing / 6.3.1:
Properties of the top quark / 6.3.2:
Neutral currents and the unified theory / 6.4:
Electroweak unification / 0.4.1:
The Z° vertices and electroweak reactions / 6.4.2:
Gauge invariance and the Higgs boson / 6.5:
Unification and the gauge principle / 6.5.1:
Particle masses and the Higgs held / 6.5.2:
Properties of the Higgs boson / 6.5.3:
Discovery of the Higgs boson / 6.5.4:
Problems 0
Symmetry breaking in the weak interaction / 7:
P violation, C violation, and CP conservation / 7.1:
Muon decay symmetries / 7.1.1:
Parity violation in electro weak processes / 7.1.2:
Spin structure of the weak interactions / 7.2:
Left-handed neutrinos and right-handed antineutrinos / 7.2.1:
Particles with mass: chirality / 7.2.2:
Neutral kaons: particle-antiparticle mixing and CP violation / 7.3:
CP invariance and neutral kaons / 7.3.1:
CP violation in K0L decay / 7.3.2:
Flavour oscillations and CPT invariance / 7.3.3:
CP violation and flavour oscillations in B decays / 7.4:
Direct CP violation in decay rates / 7.4.1:
B0-B0 mixing / 7.4.2:
CP violation in interference / 7.4.3:
CP violation in the standard model / 7.5:
Problems 7
Models and theories of nuclear physics / 8:
The nucleon-nucleon potential / 8.1:
Fermi gas model / 8.2:
Shell model / 8.3:
Shell structure of atoms / 8.3.1:
Nuclear shell structure and magic numbers / 8.3.2:
Spins, parities, and magnetic dipole moments
Excited states
Nonspbcrical nuclei / 8.4:
Electric quadrupole moments / 8.4.1:
Collective model / 8.4.2:
Summary of nuclear structure models / 8.5:
¿ decay / 8.6:
ß decay / 8.7:
V - A theory / 8.7.1:
Electron and positron momentum distributions / 8.7.2:
Selection rules / 8.7.3:
Applications of Fermi theory / 8.7.4:
Transition rates / 8.8:
Problems 8
Applications of nuclear and particle physics / 9:
Induced fission and chain reactions / 9.1:
Thermal fission reactors / 9.1.2:
Radioactive waste / 9.1.3:
Power from ADS systems / 9.1.4:
Fusion / 9.2:
Coulomb barrier / 9.2.1:
Fusion reaction rates / 9.2.2:
Nucleosynthesis and stellar evolution / 9.2.3:
Fusion reactors / 9.2.4:
Nuclear weapons / 9.3:
Fission devices / 9.3.1:
Fission/fusion devices / 9.3.2:
Biomedical applications / 9.4:
Radiation and living matter / 9.4.1:
Radiation therapy / 9.4.2:
Medical imaging using ionising radiation / 9.4.3:
Magnetic resonance imaging / 9.4.4:
Further applications / 9.5:
Computing and data analysis / 9.5.1:
Archaeology and geophysics / 9.5.2:
Accelerators and detectors / 9.5.3:
Industrial applications / 9.5.4:
Problems 9
Some outstanding questions and future prospects / 10:
Hadrons and nuclei / 10.1:
Hadron structure and the nuclear environment / 10.2.1:
Nuclear structure / 10.2.2:
Unification schemes / 10.3:
Grand unification / 10.3.1:
Supersymmetry / 10.3.2:
Strings and things / 10.3.3:
The nature of the neutrino / 10.4:
Neutrinoless double beta decay / 10.4.1:
Particle astrophysics / 10.5:
Neutrino astrophysics / 10.5.1:
Cosmology and dark matter / 10.5.2:
Matter antimatter asymmetry / 10.5.3:
Axioms and the strong CP problem / 10.5.4:
Some results in quantum mechanics / A:
Barrier penetration / A.1:
Density of states / A.2:
Perturbation theory and the Second Golden Rule / A.3:
Isospin formalism / A.4:
Isospin operators and quark states / A.4.1:
Hadron states / A.4.2:
Problems A
Relativistic kinematics / B:
Loreutz transformations and four-vectors / B.1:
Frames of reference / B.2:
Invariants / B.3:
Problems B
Rutherford scattering / C:
Classical physios / C.1:
Quantum mechanics / C.2:
Problems C
Gauge theories / D:
Gauge invariance and the standard model / D.1:
Electromagnetism and the gauge principle / D.1.1:
The standard model / D.1.2:
Problems D / D.2:
Short answers to selected problems / E:
References
Index
Inside Rear Cover: Table of constants and conversion factors
Preface
Notes
Basic concepts / 1:
19.

電子ブック

EB
Joseph C. Akunna
出版情報: Taylor & Francis Group, 2018  1 online resource (137 p. ; 24 cm)
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Author
Biological Treatment Processes / 1:
Process Fundamentals / 1.1:
Anaerobic Processes / 1.2:
Process Description / 1.2.1:
Biomass Production / 1.2.2:
Factors Affecting Process Efficiency / 1.2.3:
Start-Up Inoculum / 1.2.3.1:
Waste Organic Content and Biodegradability / 1.2.3.2:
Nutrient Availability / 1.2.3.3:
pH and Alkalinity / 1.2.3.4:
Temperature / 1.2.3.5:
Solids and Hydraulic Retention Times / 1.2.3.6:
Organic Loading Rate / 1.2.3.7:
Toxic Compounds / 1.2.3.8:
Treatment Configuration: Single- and Multi-Stage Systems / 1.2.3.9:
Applications, Benefits, and Drawbacks / 1.2.4:
Aerobic Processes / 1.3:
Wastewater Treatment / 1.3.1:
Aerobic Digestion or Composting / 1.3.3:
Aerobic versus Anaerobic Processes / 1.3.4:
Anoxic Processes / 1.4:
Anaerobic Wastewater Treatment / 2:
Applications and Limitations / 2.1:
Wastewater Biodegradability / 2.2:
Wastewater Pretreatment / 2.3:
Flow Equalization / 2.3.1:
pH Correction / 2.3.2:
Nutrient Balance / 2.3.3:
Temperature Control / 2.3.4:
Solids Reduction / 2.3.5:
Reduction of Toxic Compounds / 2.3.6:
Process Variations / 2.4:
System Configuration / 2.5:
Process Design and Operational Control / 2.6:
Hydraulic Retention Time (HRT) / 2.6.1:
Solids Retention Time (SRT) / 2.6.2:
Hydraulic Loading Rate (HLR) / 2.6.3:
Organic Loading Rate (OLR) / 2.6.4:
Food/Microorganism Ratio / 2.6.5:
Specific Biogas Yield / 2.6.6:
Specific Biogas Production Rate (BPR) / 2.6.7:
Treatment Efficiency / 2.6.8:
Performance and Process Monitoring Indicators / 2.6.9:
Foaming and Control / 2.8:
Anaerobic Digestion (AD) of Organic Solid Residues and Biosolids / 3:
Applications, Benefits, and Challenges / 3.1:
Mono- and Co-Digestion / 3.2:
Standard Rate Digestion / 3.3:
High-Rate Digestion / 3.3.2:
Low-Solids Digestion / 3.3.3:
High-Solids (or "Dry") Digestion / 3.3.4:
Combined Anaerobic-Aerobic System / 3.3.5:
Process Design, Performance, and Operational Control / 3.4:
Feedstock C/N Ratio / 3.4.1:
Retention Time (RT) / 3.4.2:
Solids Loading Rate (SLR) / 3.4.3:
Biogas Production and Operational Criteria / 3.5:
Modes of Operation / 3.6:
Batch Operation / 3.6.1:
Semi-Continuous Operation / 3.6.2:
Continuous Operation / 3.6.3:
Pretreatment in Anaerobic Treatment / 4:
Need for Pretreatment / 4.1:
Mechanical Pretreatment / 4.2:
Collection and Segregation / 4.2.1:
Size Reduction / 4.2.2:
Ultrasound (US) / 4.2.3:
Biological Pretreatment / 4.3:
Aerobic Composting or Digestion / 4.3.1:
Fungi / 4.3.3:
Enzymatic Hydrolysis / 4.3.4:
Bio-Augmentation / 4.3.5:
Bio-Supplementation / 4.3.6:
Chemical Pretreatment / 4.4:
Acid and Alkaline / 4.4.1:
Ozonation / 4.4.2:
Thermal / 4.5:
High Temperature / 4.5.1:
Wet Air Oxidation / 4.5.2:
Pyrolysis / 4.5.3:
Microwave (MW) Irradiation / 4.5.4:
Combined Processes / 4.6:
Thermochemical Pretreatment / 4.6.1:
Thermomechanical Pretreatment / 4.6.2:
Extrusion / 4.6.3:
Summary of Common Pretreatments / 4.7:
Assessing the Effects of Pretreatment / 4.8:
Chemical Analysis / 4.8.1:
Biochemical Methane Potential / 4.8.2:
Posttreatment, Reuse, and Management of Co-Products / 5:
Biogas / 5.1:
Biogas Utilization / 5.1.1:
Biogas Treatment / 5.1.2:
Moisture and Particulates Reduction / 5.1.2.1:
Biogas Upgrading / 5.1.2.2:
Hydrogen Sulfide Removal / 5.1.2.3:
Simultaneous Removal of CO2 and H2S / 5.1.2.4:
Siloxanes Occurrence and Removal / 5.1.2.5:
Health and Safety Considerations / 5.1.3:
Liquid Effluents / 5.2:
Digestate Management and Disposal / 5.3:
Characteristics and Management Options / 5.3.1:
Aerobic Composting / 5.3.2:
Disinfection / 5.3.3:
Applications in Warm Climates and Developing Countries / 6:
Characteristics of Warm Climatic Conditions / 6.1:
Characteristics of Developing Countries / 6.2:
Waste and Wastewater Characteristics / 6.3:
Large-Scale Systems / 6.4:
Micro-Scale Systems / 6.4.2:
Waste Stabilization Ponds / 6.4.3:
Solid Wastes and Slurries Treatment / 6.5:
Case Studies / 7:
Brewery Wastewater Treatment Using the Granular Bed Anaerobic Baffled Reactor (GRABBR) / 7.1:
Seaweed Anaerobic Digestion / 7.2:
Seaweed Anaerobic Co-Digestion / 7.3:
Worked Examples on Anaerobic Wastewater Treatment / Appendix A:
Worked Examples on Anaerobic Digestion of Solid Wastes and Biosolids / Appendix B:
References and Further Reading
Subject Index
Preface
Abbreviations
Author
20.

図書

図書
Joseph B. Lambert, Eugene P. Mazzola, Clark D. Ridge
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xxii, 456 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to First Edition
Acknowledgments
Preface to Second Edition
Solutions
Symbols
Abbreviations
Introduction / 1:
Magnetic Properties of Nuclei / 1.1:
The Chemical Shift / 1.2:
Excitation and Relaxation / 1.3:
Pulsed Experiments / 1.4:
The Coupling Constant / 1.5:
Quantitation and Complex Splitting / 1.6:
Commonly Studied Nuclides / 1.7:
Dynamic Effects / 1.8:
Spectra of Solids / 1.9:
Problems
Tips on Solving NMR Problems
References
Further Reading
Introductory Experimental Methods / 2:
The Spectrometer / 2.1:
Sample Preparation / 2.2:
Optimizing the Signal / 2.3:
Sample Tube Placement / 2.3.1:
Probe Tuning / 2.3.2:
Field/Frequency Locking / 2.3.3:
Spectrometer Shimming / 2.3.4:
Determination of NMR Spectral-Acquisition Parameters / 2.4:
Number of Data Points / 2.4.1:
Spectral Width / 2.4.2:
Filter Bandwidth / 2.4.3:
Acquisition Time / 2.4.4:
Transmitter Offset / 2.4.5:
Flip Angle / 2.4.6:
Receiver Gain / 2.4.7:
Number of Scans / 2.4.8:
Steady-State Scans / 2.4.9:
Oversampling and Digital Filtration / 2.4.10:
Decoupling for X Nuclei / 2.4.11:
Typical NMR Experiments / 2.4.12:
Determination of NMR Spectral-Processing Parameters / 2.5:
Exponential Weighting / 2.5.1:
Zero Filling / 2.5.2:
FID Truncation and Spectral Artifacts / 2.5.3:
Resolution / 2.5.4:
Determination of NMR Spectra: Spectral Presentation / 2.6:
Signal Phasing and Baseline Correction / 2.6.1:
Zero Referencing / 2.6.2:
Determination of Certain NMR Parameters / 2.6.3:
Chemical Shifts and Coupling Constants / 2.6.3.1:
1H Integration / 2.6.3.2:
Calibrations / 2.7:
Pulse Width (Flip Angle) / 2.7.1:
Decoupler Field Strength / 2.7.2:
Factors That Influence Proton Shifts / 3:
Local Fields / 3.1.1:
Nonlocal Fields / 3.1.2:
Proton Chemical Shifts and Structure / 3.2:
Saturated Aliphatics / 3.2.1:
Alkanes / 3.2.1.1:
Functionalized Alkanes / 3.2.1.2:
Unsaturated Aliphatics / 3.2.2:
Alkynes / 3.2.2.1:
Alkenes / 3.2.2.2:
Aldehydes / 3.2.2.3:
Aromatics / 3.2.3:
Protons on Oxygen and Nitrogen / 3.2.4:
Programs for Empirical Calculations / 3.2.5:
Medium and Isotope Effects / 3.3:
Medium Effects / 3.3.1:
Isotope Effects / 3.3.2:
Factors That Influence Carbon Shifts / 3.4:
Carbon Chemical Shifts and Structure / 3.5:
Acyclic Alkanes / 3.5.1:
Cyclic Alkanes / 3.5.1.2:
Unsaturated Compounds / 3.5.1.3:
Alkynes and Nitriles / 3.5.2.1:
Carbonyl Groups / 3.5.2.3:
Tables of Chemical Shifts / 3.5.4:
Further Tips on Solving NMR Problems
First- and Second-order Spectra / 4:
Chemical and Magnetic Equivalence / 4.2:
Signs and Mechanisms of Coupling / 4.3:
Couplings over One Bond / 4.4:
Geminal Couplings / 4.5:
Vicinal Couplings / 4.6:
Long-range Couplings / 4.7:
¿- ¿ Overlap / 4.7.1:
Zigzag Pathways / 4.7.2:
Through-Space Coupling / 4.7.3:
Spectral Analysis / 4.8:
Second-order Spectra / 4.9:
Deceptive Simplicity / 4.9.1:
Virtual Coupling / 4.9.2:
Shift Reagents / 4.9.3:
Isotope Satellites / 4.9.4:
Tables of Coupling Constants / 4.10:
Further Topics in One-Dimensional NMR Spectroscopy / 5:
Spin-Lattice and Spin-Spin Relaxation / 5.1:
Causes of Relaxation / 5.1.1:
Measurement of Relaxation Time / 5.1.2:
Transverse Relaxation / 5.1.3:
Structural Ramifications / 5.1.4:
Anisotropic Motion / 5.1.5:
Segmental Motion / 5.1.6:
Partially Relaxed Spectra / 5.1.7:
Quadrupolar Relaxation / 5.1.8:
Reactions on the NMR Time Scale / 5.2:
Hindered Rotation / 5.2.1:
Ring Reversal / 5.2.2:
Atomic Inversion / 5.2.3:
Valence Tautomerizations and Bond Shifts / 5.2.4:
Quantification / 5.2.5:
Magnetization Transfer and Spin Locking / 5.2.6:
Multiple Resonance / 5.3:
Spin Decoupling / 5.3.1:
Difference Decoupling / 5.3.2:
Classes of Multiple Resonance Experiments / 5.3.3:
Off-resonance Decoupling / 5.3.4:
The Nuclear Overhauser Effect / 5.4:
Origin / 5.4.1:
Observation / 5.4.2:
Difference NOE / 5.4.3:
Applications / 5.4.4:
Limitations / 5.4.5:
Spectral Editing / 5.5:
The Spin-Echo Experiment / 5.5.1:
The Attached Proton Test / 5.5.2:
The DEPT Sequence / 5.5.3:
Sensitivity Enhancement / 5.6:
The INEPT sequence / 5.6.1:
Refocused INEPT / 5.6.2:
Spectral Editing with Refocused INEPT / 5.6.3:
DEPT Revisited / 5.6.4:
Carbon Connectivity / 5.7:
Phase Cycling, Composite Pulses, and Shaped Pulses / 5.8:
Phase Cycling / 5.8.1:
Composite Pulses / 5.8.2:
Shaped Pulses / 5.8.3:
Two-Dimensional NMR Spectroscooy / 6:
Proton-Proton Correlation Through/Coupling / 6.1:
COSY45 / 6.1.1:
Long-Range COSY (LRCOSY or Delayed COSY) / 6.1.2:
Phase-Sensitive COSY (¿-COSY) / 6.1.3:
Multiple Quantum Filtration / 6.1.4:
TOtal Correlation SpectroscopY (TOCSY) / 6.1.5:
Relayed COSY / 6.1.6:
J-Resolved Spectroscopy / 6.1.7:
COSY for Other Nuclides / 6.1.8:
Proton-Heteronucleus Correlation / 6.2:
HETCOR / 6.2.1:
HMQC / 6.2.2:
BIRD-HMQC / 6.2.3:
HSQC / 6.2.4:
COLOC / 6.2.5:
HMBC / 6.2.6:
Heteronuclear Relay Coherence Transfer / 6.2.7:
Proton-Proton Correlation Through Space or Chemical Exchange / 6.3:
Carbon-Carbon Correlation / 6.4:
Higher Dimensions / 6.5:
Pulsed Field Gradients / 6.6:
Diffusion-Ordered Spectroscopy / 6.7:
Summary of 2D Methods / 6.8:
Advanced Experimental Methods / 7:
Part A: One-Dimensional Techniques / 7.1:
T1 Measurements / 7.1.1:
13C Spectral Editing Experiments / 7.1.2:
The APT Experiment / 7.1.2.1:
The DEPT Experiment / 7.1.2.2:
NOE Experiments / 7.1.3:
The NOE Difference Experiment / 7.1.3.1:
The Double-Pulse, Field-Gradient, Spin-Echo NOE Experiment / 7.1.3.2:
Part B: Two-Dimensional Techniques / 7.2:
Two-Dimensional NMR Data-Acquisition Parameters / 7.2.1:
Number of Time Increments / 7.2.1.1:
Spectral Widths / 7.2.1.3:
Relaxation Delay / 7.2.1.4:
Number of Scans per Time Increment / 7.2.1.8:
Two-Dimensional NMR Data-Processing Parameters / 7.2.1.10:
Weighting Functions / 7.2.2.1:
Digital Resolution / 7.2.2.2:
Linear Prediction / 7.2.2.4:
Two-Dimensional NMR Data Display / 7.2.3:
Phasing and Zero Referencing / 7.2.3.1:
Symmetrization / 7.2.3.2:
Use of Cross Sections in Analysis / 7.2.3.3:
Part C: Two-Dimensional Techniques: The Experiments / 7.3:
Homonuclear Chemical-Shift Correlation Experiments via Scalar / 7.3.1:
Coupling
The COSY Family: COSY-90°, COSY-45°, Long-Range COSY, and DQF-COSY / 7.3.1.1:
The TOCSY Experiment / 7.3.1.2:
Direct Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.2:
The HMQC Experiment / 7.3.2.1:
The HSQC Experiment / 7.3.2.2:
The HETCOR Experiment / 7.3.2.3:
Indirect Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.3:
The HMBC Experiment / 7.3.3.1:
The FLOCK Experiment / 7.3.3.2:
The HSQC-TOCSY Experiment / 7.3.3.3:
Homonuclear Chemical-Shift Correlation via Dipolar Coupling / 7.3.4:
The NOESY Experiment / 7.3.4.1:
The ROESY Experiment / 7.3.4.2:
1D and Advanced 2D Experiments / 7.3.5:
The 1D TOCSY Experiment / 7.3.5.1:
The 1D NOESY and ROESY Experiments / 7.3.5.2:
The Multiplicity-Edited HSQC Experiment / 7.3.5.3:
The H2BC Experiment / 7.3.5.4:
Nonuniform Sampling / 7.3.5.5:
Pure Shift NMR / 7.3.5.6:
Covariance NMR / 7.3.5.7:
Pure Shift-Covariance NMR / 7.3.6:
Structural Elucidation: Two Methods / 8:
Part A: Spectral Analysis / 8.1:
1H NMR Data / 8.1.1:
13C NMR Data / 8.1.2:
The COSY Experiment / 8.13:
General Molecular Assembly Strategy / 8.1.6:
A Specific Molecular Assembly Procedure / 8.1.8:
Part B: Computer-Assisted Structure Elucidation / 8.1.9:
CASE Procedures / 8.2.1:
T-2 Toxin / 8.2.2:
Derivation of the NMR Equation / Appendix A:
The Bloch Equations / Appendix B:
Reference
Quantum Mechanical Treatment of the Two-Spin System / Appendix C:
Analysis of Second-Order. Three- and Four-Spin Systems by Inspection / Appendix D:
Relaxation / Appendix E:
Product-Operator Formalism and Coherence-Level Diagrams / Appendix F:
Stereochemical Considerations / Appendix G:
Homotopics Groups / G.1:
Enantiotopic Groups / G.2:
Diastereotopic Groups / G.3:
Index
Preface to First Edition
Acknowledgments
Preface to Second Edition
21.

図書

東工大
目次DB

図書
東工大
目次DB
赤間世紀著
出版情報: 東京 : カットシステム, 2011.11  xiv, 408p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
第1章 統計ソフトR 1
   1.1 Rの歴史 2
   1.2 Rの機能 3
   1.3 本書の使用法 4
   1.4 構文の構成 4
第2章 基本項目
   2.1 データ属性 8
    2.1.1 attr 8
    2.1.2 attributes 9
    2.1.3 comment 10
    2.1.4 length 11
    2.1.5 names 12
    2.1.6 NULL 13
    2.1.7 numeric 14
    2.1.8 structure 15
    2.1.9 typeof 15
   2.2 日付と時間 16
    2.2.1 Sys.time 16
    2.2.2 Sys.Date 17
    2.2.3 date 17
    2.2.4 as.POSIX 18
    2.2.5 difftime 19
    2.2.6 strptime 20
    2.2.7 weekdays 21
    2.2.8 months 22
    2.2.9 Date 22
    2.2.10 DateTimeClasses 23
   2.3 データタイプ 25
    2.3.1 integer 25
    2.3.2 numeric 26
    2.3.3 double 27
    2.3.4 complex 29
    2.3.5 character 30
    2.3.6 logical 31
    2.3.7 vector 33
    2.3.8 matrix 34
    2.3.9 data.frame 35
    2.3.10 array 37
    2.3.11 list 39
    2.3.12 seq 41
    2.3.13 NA 42
    2.3.14 is.finit 43
   2.4 基本システム変数 44
    2.4.1 commandArgs 44
    2.4.2 LETTERS 45
    2.4.3 NULL 46
    2.4.4 Random 47
    2.4.5 R.Version 48
   2.5 データセット
    2.5.1 ability.cov 50
    2.5.2 airmiles 51
    2.5.3 AirPassengers 52
    2.5.4 airquality 53
    2.5.5 anscombe 54
    2.5.6 attenu 55
    2.5.7 attitude 56
    2.5.8 austres 57
    2.5.9 beaver 58
    2.5.10 BJsales 59
    2.5.11 BOD 61
    2.5.12 cars 62
    2.5.13 ChickWeight 63
    2.5.14 chickwts 64
    2.5.15 C02 65
    2.5.16 co2 66
    2.5.17 crimtab67
    2.5.18 discoveries 68
    2.5.19 DNase 69
    2.5.20 esoph 70
    2.5.21 euro 71
    2.5.22 eurodist 73
    2.5.23 EuStockMarkets 75
    2.5.24 faithful 76
    2.5.25 Formaldehyde 77
    2.5.26 freeny 78
    2.5.27 HairEyeColor 80
    2.5.28 Harman23.cor 81
    2.5.29 Harman74.cor 82
    2.5.30 Indometh 83
    2.5.31 infert 84
    2.5.32 InsectSprays 86
    2.5.33 iris 87
    2.5.34 islands 88
    2.5.35 JohnsonJohnson 90
    2.5.36 LakeHuron 91
    2.5.37 lh 92
    2.5.38 LifeCycleSavings 92
    2.5.39 Loblolly 94
    2.5.40 longley 95
    2.5.41 lynx 96
    2.5.42 morley 97
    2.5.43 mtcars 98
    2.5.44 nhtemp 99
    2.5.45 Nile 100
    2.5.46 nottem 101
    2.5.47 occupationalStatus 102
    2.5.48 Orange 103
    2.5.49 OrchardSprays 104
    2.5.50 PlantGrowth 106
    2.5.51 precip 107
    2.5.52 presidents 108
    2.5.53 pressure 110
    2.5.54 Puromycin 111
    2.5.55 quakes 11 2
    2.5.56 randu 113
    2.5.57 rivers 114
    2.5.58 rock 11 5
    2.5.59 sleep 116
    2.5.60 stackloss 118
    2.5.61 state 120
    2.5.62 sunspot.month 122
    2.5.63 sunspot.year 122
    2.5.64 sunspots 1 23
    2.5.65 swiss 124
    2.5.66 Theoph 126
    2.5.67 Titanic 127
    2.5.68 ToothGrowth 128
    2.5.69 treering 130
    2.5.70 trees 131
    2.5.71 UCBAdmissions 132
    2.5.72 UKDriverDeaths 133
    2.5.73 UKgas 135
    2.5.74 UKLungDeaths 136
    2.5.75 USAccDeaths 137
    2.5.76 USArrests 138
    2.5.77 USJudgeRatings 139
    2.5.78 USPersonalExpenditure 140
    2.5.79 uspop 141
    2.5.80 VADeaths 142
    2.5.81 volcano 143
    2.5.82 warpbreaks 144
    2.5.83 women 145
    2.5.84 WorldPhones 146
    2.5.85 WWWusage 147
   2.6 主なパッケージ 148
    2.6.1 base-package 148
    2.6.2 utilis-package 148
    2.6.3 stats-package 148
    2.6.4 graphics-package 148
    2.6.5 grDevices-package 149
第3章 数学 151
   3.1 算術 152
    3.1.1 Arithmetic 152
    3.1.2 Extremes 153
    3.1.3 colSums 155
    3.1.4 cumsum 156
    3.1.5 prod 157
    3.1.6 Round 158
    3.1.7 range 159
    3.1.8 sets 161
    3.1.9 sort 162
    3.1.10 sum 164
   3.2 数学関数 165
    3.2.1 abs 165
    3.2.2 sign 166
    3.2.3 log 167
    3.2.4 Trig 168
    3.2.5 Hyperbolic 170
    3.2.6 Special 172
    3.2.7 Bessel 174
    3.2.8 norm 176
    3 2 9 polyroot 177
   3.3 論理演算 178
    3.3.1 Comparison 178
    3.3.2 Logic 180
    3.3.3 logical 182
    3.3.4 all 183
    3.3.5 any 184
    3.3.6 complete.cases 185
    3.3.7 which 186
   3.4 配列と行列 187
    3.4.1 backsolve 187
    3.4.2 col 190
    3.4.3 row 191
    3.4.4 crossprod 192
    3.4.5 %*% 193
    3.4.6 %o% 195
    3.4.7 nrow 198
    3.4.8 ncol 199
    3.4.9 t 200
    3.4.10 det 201
    3.4.11 diag 202
    3.4.12 dim 203
    3.4.13 dimnames 204
    3.4.14 row.names 206
    3.4.15 row/colnames 207
    3.4.16 eigen 208
    3.4.17 kronecker 210
    3.4.18 lower.tri 211
    3.4.19 qr 213
    3.4.20 svd 214
    3.4.21 chol 215
    3.4.22 solve 216
第4章 グラフィックス 219
   4.1 プロット 220
    4.1.1 plot 220
    4.1.2 curve 222
    4.1.3 barplot 223
    4.1.4 pie 225
    4.1.5 hist 227
    4.1.6 boxplot 229
    4.1.7 qqnorm 231
    4.1.8 contour 233
   4.2 グラフィックスデバイス 235
    4.2.1 Devices 235
    4.2.2 dev 236
    4.2.3 embedFonts 238
    4.2.4 Japanese 239
    4.2.5 pdf 240
    4.2.6 pictex 242
    4.2.7 png 243
    4.2.8 postscript 244
    4.2.9 windows 246
    4.2.10 xfig 248
   4.3 カラー 249
    4.3.1 RGB 249
    4.3.2 XYZ 250
    4.3.3 colors 251
    4.3.4 rgb 252
第5章 プログラミング 253
   5.1 制御 254
    5.1.1 Control 254
    5.1.2 ifelse 257
    5.1.3 switch 258
    5.1.4 function 259
    5.1.5 debug 260
    5.1.6 call 262
    5.1.7 eval 263
    5.1.8 expression 264
    5.1.9 message 265
    5.1.10 mode 266
    5.1.11 name 267
    5.1.12 stop 268
    5.1.13 try 269
    5.1.14 warning 270
   5.2 メソッド 271
    5.2.1 setClass 271
    5.2.2 new 272
    5.2.3 as 274
    5.2.4 setMethod 275
    5.2.5 is 277
   5.3 入出力 279
    5.3.1 scan 279
    5.3.2 print 281
    5.3.3 readline 282
    5.3.4 readBin 283
    5.3.5 readChar 284
    5.3.6 read.table 286
    5.3.7 write 288
    5.3.8 write.table 289
    5.3.9 sprintf 290
   5.4 ユーティリティ 292
    5.4.1 demo 292
    5.4.2 edit 293
    5.4.3 example 295
第6章 統計 297
   6.1 確率分布と乱数 298
    6.1.1 Beta 298
    6.1.2 Binomial 300
    6.1.3 Cauchy 302
    6.1.4 Chisquare 303
    6.1.5 Exponential 305
    6.1.6 FDist 306
    6.1.7 GammaDist 308
    6.1.8 Geometric 309
    6.1.9 Hypergeometric 310
    6.1.10 Lognormal 312
    6.1.11 NegBinomial 313
    6.1.12 Normal 315
    6.1.13 Poisson 317
    6.1.14 TDist 318
    6.1.15 Uniform 321
    6.1.16 Weibull 322
   6.2 記述統計 324
    6.2.1 mean 325
    6.2.2 median 326
    6.2.3 quantile 327
    6.2.4 IQR 328
    6.2.5 Correlation 328
    6.2.6 sd 331
    6.2.7 fivenurn 332
    6.2.8 skewness 333
    6.2.9 kurtosis 335
   6.3 推測統計 337
    6.3.1 binom.test 339
    6.3.2 prop.test 340
    6.3.3 t.test 342
    6.3.4 chisq.test 344
    6.3.5 var.test 346
    6.3.6 cor.test 347
   6.4 統計モデル 349
    6.4.1 formula 349
    6.4.2 lm 350
    6.4.3 summary.lm 353
    6.4.4 predict.lm 354
    6.4.5 nls 356
    6.4.6 summary.nls 357
    6.4.7 predict.nls 358
    6.4.8 glm 360
   6.5 時系列 362
    6.5.1 ts 362
    6.5.2 plot.ts 363
    6.5.3 lag 365
    6.5.4 diff 366
    6.5.5 acf 367
    6.5.6 plot.acf 369
    6.5.7 spec.pgram 371
    6.5.8 spectrum 374
    6.5.9 ar 376
    6.5.10 arima 378
    6.5.11 garch 380
参考文献 384
逆引き索引 385
   (1)基本項目 385
   (2)データセット 387
   (3)数学 390
   (4)グラフィックス 392
   (5)プログラミング 393
   (6)統計 395
索引 398
第1章 統計ソフトR 1
   1.1 Rの歴史 2
   1.2 Rの機能 3
22.

図書

図書
edited by Mark Wild, Gregory J. Offer
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xiv, 335 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
Overview of a LiS cell / 1.1:
The Development of the Cell Voltage / 1.2:
Using the Electrochemical Potential / 1.2.1:
Electrochemical Reactions / 1.2.2:
The Electric Double Layer / 1.2.3:
Reaction Equilibrium / 1.2.4:
A Finite Electrolyte / 1.2.5:
The Need for a Second Electrode / 1.2.6:
Allowing a Current to Flow / 1.3:
The Reaction Overpotential / 1.3.1:
The Transport Overpotential / 1.3.2:
General Comments on the Over potentials / 1.3.3:
Additional Processes Which Define the Behavior of a LiS Cell / 1.4:
Multiple Electrochemical Reactions at One Surface / 1.4.1:
Chemical Reactions / 1.4.2:
Species Solubility and Indirect Reaction Effects / 1.4.3:
Transport Limitations in the Cathode / 1.4.4:
The Active Surface Area / 1.4.5:
Precipitate Accumulation / 1.4.6:
Electrolyte Viscosity, Conductivity, and Species Transport / 1.4.7:
Side Reactions and SEI Formation at the Anode / 1.4.8:
Anode Morphological Changes / 1.4.9:
Polysulfide Shuttle / 1.4.10:
Summary / 1.5:
References
Sulfur Cathodes / Holger Althues and Susanne Dörfler and Sören Thieme and Patrick Strubel and Stefan Kaskel2:
Cathode Design Criteria / 2.1:
Overview of Cathode Components and Composition / 2.1.1:
Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry / 2.1.2:
Cathode Design: Impact on Energy Density on Cell Level / 2.1.3:
Cathode Design: Impact on Cycle Life and Self-discharge / 2.1.4:
Cathode Design: Impact on Rate Capability / 2.1.5:
Cathode Materials / 2.2:
Properties of Sulfur / 2.2.1:
Porous and Nanostructured Carbons as Conductive Cathode Scaffolds / 2.2.2:
Graphite-Like Carbons / 2.2.2.1:
Synthesis of Graphite-like Carbons / 2.2.2.2:
Carbon Black / 2.2.2.3:
Activated Carbons / 2.2.2.4:
Carbide-Derived Carbon / 2.2.2.5:
Hard-Template-Assisted Carbon Synthesis / 2.2.2.6:
Carbon Surface Chemistry / 2.2.2.7:
Carbon/Sulfur Composite Cathodes / 2.2.3:
Microporous Carbons / 2.2.3.1:
Mesoporous Carbons / 2.2.3.2:
Macroporous Carbons and Nanotube-based Cathode Systems / 2.2.3.3:
Hierarchical Mesoporous Carbons / 2.2.3.4:
Hierarchical Microporous Carbons / 2.2.3.5:
Hollow Carbon Spheres / 2.2.3.6:
Graphene / 2.2.3.7:
Retention of LiPS by Surface Modifications and Coating / 2.2.4:
Metal Oxides as Adsorbents for Lithium Polysulfides / 2.2.4.1:
Cathode Processing / 2.3:
Methods for C/S Composite Preparation / 2.3.1:
Wet (Organic, Aqueous) and Dry Coating for Cathode Production / 2.3.2:
Alternative Cathode Support Concepts (Carbon Current Collectors, Binder-free Electrodes) / 2.3.3:
Processing Perspective for Carbons, Binders, and Additives / 2.3.4:
Conclusions / 2.4:
Electrolyte for Lithium-Sulfur Batteries / Marzieh Barghamadi and Mustafa Musameh and Thomas Rüther and Anand I. Bhatt and Anthony F. Hollenkamp and Adam S. Best3:
The Case for Better Batteries / 3.1:
Li-S Battery: Origins and Principles / 3.2:
Solubility of Species and Electrochemistry / 3.3:
Liquid Electrolyte Solutions / 3.4:
Modified Liquid Electrolyte Solutions / 3.5:
Variation in Electrolyte Salt Concentration / 3.5.1:
Mixed Organic-Ionic Liquid Electrolyte Solutions / 3.5.2:
Ionic Liquid Electrolyte Solutions / 3.5.3:
Solid and Solidified Electrolyte Configurations / 3.6:
Polymer Electrolytes / 3.6.1:
Absorbed Liquid/Gelled Electrolyte / 3.6.1.1:
Solid Polymer Electrolytes / 3.6.1.2:
Non-polymer Solid Electrolytes / 3.6.2:
Challenges of the Cathode and Solvent for Device Engineering / 3.7:
Tire Cathode Loading Challenge / 3.7.1:
Cathode Wetting Challenge / 3.7.2:
Concluding Remarks and Outlook / 3.8:
Anode-Electrolyte Interface / Mark Wild4:
Introduction / 4.1:
SEI Formation / 4.2:
Anode Morphology / 4.3:
Electrolyte Additives for Stable SEI Formation / 4.4:
Barrier Layers on the Anode / 4.6:
A Systemic Approach / 4.7:
Mechanisms / Part II:
Reference
Molecular Level Understanding of the Interactions Between Reaction Intermediates of Li-S Energy Storage Systems and Ether Solvents / Rajeev S. Assary and Larry A. Curtiss5:
Computational Details / 5.1:
Results and Discussions / 5.3:
Reactivity of Li-S Intermediates with Dimethoxy Ethane (DME) / 5.3.1:
Kinetic Stability of Ethers in the Presence of Lithium Polysulfide / 5.3.2:
Linear Fluorinated Ethers / 5.3.3:
Summary and Conclusions / 5.4:
Acknowledgments
Lithium Sulfide / Sylwia Walus6:
Li2S as the End Discharge Product / 6.1:
General / 6.2.1:
Discharge Product: Li2S or Li2S2/Li2S? / 6.2.2:
A Survey of Experimental and Theoretical Findings Involving Li2S and Li2S2 Formation and Proposed Reduction Pathways / 6.2.3:
Mechanistic Insight into Li2S/Li2S2 Nucleation and Growth / 6.2.4:
Strategies to Limit Li2S Precipitation and Enhance the Capacity / 6.2.5:
Charge Mechanism and its Difficulties / 6.2.6:
Li2S-Based Cathodes: Toward a Li Ion System / 6.3:
Initial Activation of Li2S - Mechanism of First Charge / 6.3.1:
Recent Developments in Li2S Cathodes for Improved Performances / 6.3.3:
Degradation in Lithium-Sulfur Batteries / Rajlakshmi Purkoyastha6.4:
Degradation Processes Within a Lithium- Sulfur Cell / 7.1:
Degradation at Cathode / 7.2.1:
Degradation at Anode / 7.2.2:
Degradation in Electrolyte / 7.2.3:
Degradation Due to Operating Conditions: Temperature, C-Rates, and Pressure / 7.2.4:
Degradation Due to Geometry: Scale-Up and Topology / 7.2.5:
Capacity Fade Models / 7.3:
Dendrite Models / 7.3.1:
Equivalent Circuit Network Models / 7.3.2:
Methods of Detecting and Measuring Degradation / 7.4:
Incremental Capacity Analysis / 7.4.1:
Differential Thermal Voltammetry / 7.4.2:
Electrochemical Impedance Spectroscopy / 7.4.3:
Resistance Curves / 7.4.4:
Macroscopic Indicators / 7.4.5:
Methods for Countering Degradation / 7.5:
Future Direction / 7.6:
Modeling / Part III:
Lithium-Sulfur Model Development / Teng Zhang and Monica Marinescu and Gregory J. Offer8:
Zero-Dimensional Model / 8.1:
Model Formulation / 8.2.1:
Shuttle and Precipitation / 8.2.1.1:
Time Evolution of Species / 8.2.1.3:
Model Implementation / 8.2.1.4:
Basic Charge/Discharge Behaviors / 8.2.2:
Modeling Voltage Loss in Li-S Cells / 8.3:
Electrolyte Resistance / 8.3.1:
Anode Potential / 8.3.2:
Surface Passivation / 8.3.3:
Transport Limitation / 8.3.4:
Higher Dimensional Models / 8.4:
One-Dimensional Models / 8.4.1:
Multi-Scale Models / 8.4.2:
Battery Management Systems - State Estimation for Lithium-Sulfur Batteries / Daniel J. Auger and Abbas Fotouhi and Karsten Propp and Stefano Longo8.5:
Motivation / 9.1:
Capacity / 9.1.1:
State of Charge (SoC) / 9.1.2:
State of Health (SoH) / 9.1.3:
Limitations of Existing Battery State Estimation Techniques / 9.1.4:
SoC Estimation from "Coulomb Counting" / 9.1.4.1:
SoC Estimation from Open-Circuit Voltage (OCV) / 9.1.4.2:
Direction of Current Work / 9.1.5:
Experimental Environment for Li-S Algorithm Development / 9.2:
Pulse Discharge Tests / 9.2.1:
Driving Cycle Tests / 9.2.2:
State Estimation Techniques from Control Theory / 9.3:
Electrochemical Models / 9.3.1:
Equivalent Circuit Network (ECN) Models / 9.3.2:
Kalman Filters and Their Derivatives / 9.3.3:
State Estimation Techniques from Computer Science / 9.4:
ANFIS as a Modeling Tool / 9.4.1:
Human Knowledge and Fuzzy Inference Systems (FIS) / 9.4.2:
Adaptive Neuro-Fuzzy Inference Systems / 9.4.3:
State-of-Charge Estimation Using ANFIS / 9.4.4:
Conclusions and Further Directions / 9.5:
Application / Part IV:
Commercial Markets for Li-S / Mark Crittenden10:
Technology Strengths Meet Market Needs / 10.1:
Weight / 10.1.1:
Safety / 10.1.2:
Cost / 10.1.3:
Temperature Tolerance / 10.1.4:
Shipment and Storage / 10.1.5:
Power Characteristics / 10.1.6:
Environmentally Friendly Technology (Clean Tech) / 10.1.7:
Pressure Tolerance / 10.1.8:
Control / 10.1.9:
Electric Aircraft / 10.2:
Satellites / 10.3:
Cars / 10.4:
Buses / 10.5:
Trucks / 10.6:
Electric Scooter and Electric Bikes / 10.7:
Marine / 10.8:
Energy Storage / 10.9:
Low-Temperature Applications / 10.10:
Defense / 10.11:
Looking Ahead / 10.12:
Conclusion / 10.13:
Battery Engineering / Gregory J. Offer11:
Mechanical Considerations / 11.1:
Thermal and Electrical Considerations / 11.2:
Case Study / Paul Brooks12:
A Potted History of Eternal Solar Flight / 12.1:
Why Has It Been So Difficult? / 12.3:
Objectives of HALE UAV / 12.4:
Stay Above the Cloud / 12.4.1:
Stay Above the Wind / 12.4.2:
Stay in the Sun / 12.4.3:
Year-Round Markets / 12.4.4:
Seasonal Markets / 12.4.5:
How Valuable Are These Markets and What Does That Mean for the Battery? / 12.4.6:
Worked Example - HALE UAV / 12.5:
Cells, Batteries, and Real Life / 12.6:
Cycle Life, Charge, and Discharge Rates / 12.6.1:
Payload / 12.6.2:
Avionics / 12.6.3:
Temperature / 12.6.4:
End-of-Life Performance / 12.6.5:
Protection / 12.6.6:
Balancing - Useful Capacity / 12.6.7:
Summary of Real-World Issues / 12.6.8:
A Quick Aside on Regenerative Fuel Cells / 12.7:
So What Do We Need from Our Battery Suppliers? / 12.8:
The Challenges for Battery Developers / 12.9:
The Answer to the Title / 12.10:
Index / 12.11:
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
23.

図書

図書
Steven Tadelis
出版情報: Princeton : Princeton University Press, c2013  xv, 396 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Rational Decision Making / Part I:
The Single-Person Decision Problem / Chapter 1:
Actions, Outcomes, and Preferences / 1.1:
Preference Relations / 1.1.1:
Payoff Functions / 1.1.2:
The Rational Choice Paradigm / 1.2:
Summary / 1.3:
Exercises / 1.4:
Introducing Uncertainty and Time / Chapter 2:
Risk, Nature, and Random Outcomes / 2.1:
Finite Outcomes and Simple Lotteries / 2.1.1:
Simple versus Compound Lotteries / 2.1.2:
Lotteries over Continuous Outcomes / 2.1.3:
Evaluating Random Outcomes / 2.2:
Expected Payoff: The Finite Case / 2.2.1:
Expected Payoff: The Continuous Case / 2.2.2:
Caveat: It's Not Just the Order Anymore / 2.2.3:
Risk Attitudes / 2.2.4:
The St. Petersburg Paradox / 2.2.5:
Rational Decision Making with Uncertainty / 2.3:
Rationality Revisited / 2.3.1:
Maximizing Expected Payoffs / 2.3.2:
Decisions over Time / 2.4:
Backward Induction / 2.4.1:
Discounting Future Payoffs / 2.4.2:
Applications / 2.5:
The Value of Information / 2.5.1:
Discounted Future Consumption / 2.5.2:
Theory versus Practice / 2.6:
Static Games of Complete Information / 2.7:
Preliminaries / Chapter 3:
Normal-Form Games with Pure Strategies / 3.1:
Example: The Prisoner's Dilemma / 3.1.1:
Example: Cournot Duopoly / 3.1.2:
Example: Voting on a New Agenda / 3.1.3:
Matrix Representation: Two-Player Finite Game / 3.2:
Example: Rock-Paper-Scissors / 3.2.1:
Solution Concepts / 3.3:
Assumptions and Setup / 3.3.1:
Evaluating Solution Concepts / 3.3.2:
Evaluating Outcomes / 3.3.3:
Rationality and Common Knowledge / 3.4:
Dominance in Pure Strategies / 4.1:
Dominated Strategies / 4.1.1:
Dominant Strategy Equilibrium / 4.1.2:
Evaluating Dominant Strategy Equilibrium / 4.1.3:
Iterated Elimination of Strictly Dominated Pure Strategies / 4.2:
Iterated Elimination and Common Knowledge of Rationality / 4.2.1:
Evaluating IESDS / 4.2.2:
Beliefs, Best Response, and Rationalizability / 4.3:
The Best Response / 4.3.1:
Beliefs and Best-Response Correspondences / 4.3.2:
Rationalizability / 4.3.3:
The Cournot Duopoly Revisited / 4.3.4:
The "p-Beauty Contest" / 4.3.5:
Evaluating Rationalizability / 4.3.6:
Pinning Down Beliefs: Nash Equilibrium / 4.4:
Nash Equilibrium in Pure Strategies / 5.1:
Pure-Strategy Nash Equilibrium in a Matrix / 5.1.1:
Evaluating the Nash Equilibria Solution / 5.1.2:
Nash Equilibrium: Some Classic Applications / 5.2:
Two Kinds of Societies / 5.2.1:
The Tragedy of the Commons / 5.2.2:
Coumot Duopoly / 5.2.3:
Bertrand Duopoly / 5.2.4:
Political Ideology and Electoral Competition / 5.2.5:
Mixed Strategies / 5.3:
Strategies, Beliefs, and Expected Payoffs / 6.1:
Finite Strategy Sets / 6.1.1:
Continuous Strategy Sets / 6.1.2:
Beliefs and Mixed Strategies / 6.1.3:
Expected Payoffs / 6.1.4:
Mixed-Strategy Nash Equilibrium / 6.2:
Example: Matching Pennies / 6.2.1:
Multiple Equilibria: Pure and Mixed / 6.2.2:
IESDS and Rationalizability Revisited / 6.3:
Nash's Existence Theorem / 6.4:
Dynamic Games of Complete Information / 6.5:
The Extensive-Form Game / Chapter 7:
Game Trees / 7.1.1:
Imperfect versus Perfect Information / 7.1.2:
Strategies and Nash Equilibrium / 7.2:
Pure Strategies / 7.2.1:
Mixed versus Behavioral Strategies / 7.2.2:
Normal-Form Representation of Extensive-Form Games / 7.2.3:
Nash Equilibrium and Paths of Play / 7.3:
Credibility and Sequential Rationality / 7.4:
Sequential Rationality and Backward Induction / 8.1:
Subgame-Perfect Nash Equilibrium: Concept / 8.2:
Subgame-Perfect Nash Equilibrium: Examples / 8.3:
The Centipede Game / 8.3.1:
Stackelberg Competition / 8.3.2:
Mutually Assured Destruction / 8.3.3:
Time-Inconsistent Preferences / 8.3.4:
Multistage Games / 8.4:
Payoffs / 9.1:
Strategies and Conditional Play / 9.3:
Subgame-Perfect Equilibria / 9.4:
The One-Stage Deviation Principle / 9.5:
Repeated Games / 9.6:
Finitely Repeated Games / 10.1:
Infinitely Repeated Games / 10.2:
Strategies / 10.2.1:
Application: Tacit Collusion / 10.3:
Sequential Interaction and Reputation / 10.5:
Cooperation as Reputation / 10.5.1:
Third-Party Institutions as Reputation Mechanisms / 10.5.2:
Reputation Transfers without Third Parties / 10.5.3:
The Folk Theorem: Almost Anything Goes / 10.6:
Strategic Bargaining / 10.7:
One Round of Bargaining: The Ultimatum Game / 11.1:
Finitely Many Rounds of Bargaining / 11.2:
The Infinite-Horizon Game / 11.3:
Application: Legislative Bargaining / 11.4:
Closed-Rule Bargaining / 11.4.1:
Open-Rule Bargaining / 11.4.2:
Static Games of Incomplete Information / 11.5:
Bayesian Games / Chapter 12:
Strategic Representation of Bayesian Games / 12.1:
Players, Actions, Information, and Preferences / 12.1.1:
Deriving Posteriors from a Common Prior: A Player's Beliefs / 12.1.2:
Strategies and Bayesian Nash Equilibrium / 12.1.3:
Examples / 12.2:
Teenagers and the Game of Chicken / 12.2.1:
Study Groups / 12.2.2:
Inefficient Trade and Adverse Selection / 12.3:
Committee Voting / 12.4:
Mixed Strategies Revisited: Harsanyi's Interpretation / 12.5:
Auctions and Competitive Bidding / 12.6:
Independent Private Values / 13.1:
Second-Price Sealed-Bid Auctions / 13.1.1:
English Auctions / 13.1.2:
First-Price Sealed-Bid and Dutch Auctions / 13.1.3:
Revenue Equivalence / 13.1.4:
Common Values and the Winner's Curse / 13.2:
Mechanism Design / 13.3:
Setup: Mechanisms as Bayesian Games / 14.1:
The Players / 14.1.1:
The Mechanism Designer / 14.1.2:
The Mechanism Game / 14.1.3:
The Revelation Principle / 14.2:
Dominant Strategies and Vickrey-Clarke-Groves Mechanisms / 14.3:
Dominant Strategy Implementation / 14.3.1:
Vickrey-Clarke-Groves Mechanisms / 14.3.2:
Dynamic Games of Incomplete Information / 14.4:
Sequential Rationality with Incomplete Information / Chapter 15:
The Problem with Subgame Perfection / 15.1:
Perfect Bayesian Equilibrium / 15.2:
Sequential Equilibrium / 15.3:
Signaling Games / 15.4:
Education Signaling: The MBA Game / 16.1:
Limit Pricing and Entry Deterrence / 16.2:
Separating Equilibria / 16.2.1:
Pooling Equilibria / 16.2.2:
Refinements of Perfect Bayesian Equilibrium in Signaling Games / 16.3:
Building a Reputation / 16.4:
Cooperation in a Finitely Repeated Prisoner's Dilemma / 17.1:
Driving a Tough Bargain / 17.2:
A Reputation for Being "Nice" / 17.3:
Information Transmission and Cheap Talk / 17.4:
Information Transmission: A Finite Example / 18.1:
Information Transmission: The Continuous Case / 18.2:
Application: Information and Legislative Organization / 18.3:
Mathematical Appendix / 18.4:
Sets and Sequences / 19.1:
Basic Definitions / 19.1.1:
Basic Set Operations / 19.1.2:
Functions / 19.2:
Continuity / 19.2.1:
Calculus and Optimization / 19.3:
Differentiation and Optimization / 19.3.1:
Integration / 19.3.3:
Probability and Random Variables / 19.4:
Cumulative Distribution and Density Functions / 19.4.1:
Independence, Conditional Probability, and Bayes' Rule / 19.4.3:
Expected Values / 19.4.4:
References
Index
Preface
Rational Decision Making / Part I:
The Single-Person Decision Problem / Chapter 1:
24.

電子ブック

EB
Yuri Kabanov, Mher Safarian
出版情報: [Berlin ; Heidelberg] : Springer, [201-]  1 online resource (xiv, 294 p.)
シリーズ名: Springer finance
所蔵情報: loading…
目次情報: 続きを見る
Approximative Hedging / 1:
Black-Scholes Formula Revisited / 1.1:
Pricing by Replication / 1.1.1:
Explicit Formulae / 1.1.2:
Discussion / 1.1.3:
Leland-Lott Theorem / 1.2:
Formulation and Comments / 1.2.1:
Proof / 1.2.2:
Constant Coefficient: Discripancy / 1.3:
Main Result / 1.3.1:
Pergamenshchikov Theorem / 1.3.2:
Rate of Convergence of the Replications Error / 1.4:
Formulation / 1.4.1:
Preparatory Manipulations / 1.4.2:
Convenient Representations, Explicit Formulae, and Useful Bounds / 1.4.3:
Tools / 1.4.4:
Analysis of the Principal Terms: Proof of Proposition 1.4.5 / 1.4.5:
Asymptotics of Gaussian Integrals / 1.4.6:
Functional Limit Theorem for ? = 1/2 / 1.5:
Limit Theorem for Semimartingale Scheme / 1.5.1:
Problem Reformulation / 1.5.3:
Tightness / 1.5.4:
Limit Measure / 1.5.5:
Identification of the Limit / 1.5.6:
Superhedging by Buy-and-Hold / 1.6:
Levental-Skorokhod Theorem / 1.6.1:
Extensions for One-Side Transaction Costs / 1.6.2:
Hedging of Vector-Valued Contingent Claims / 1.6.4:
Arbitrage Theory for Frictionless Markets / 2:
Models without Friction / 2.1:
DMW Theorem / 2.1.1:
Auxiliary Results: Measurable Subsequences and the Kreps-Yan Theorem / 2.1.2:
Proof of the DMW Theorem / 2.1.3:
Fast Proof of the DMW Theorem / 2.1.4:
NA and Conditional Distributions of Price Increments / 2.1.5:
Comment on Absolute Continuous Martingale Measures / 2.1.6:
Complete Markets and Replicable contingent Claims / 2.1.7:
DMW Theorem with Restricted Information / 2.1.8:
Hedging Theorem for American-Type Options / 2.1.9:
Stochastic Discounting Factors / 2.1.10:
Optional Decomposition Theorem / 2.1.11:
Martingale Measures with Bounded Densities / 2.1.13:
Utility Maximization and convex Duality / 2.1.14:
Discrete-Time Infinite-Horizon Model / 2.2:
Martingale Measures in Infinite-Horizon Model / 2.2.1:
No Free Lunch for Models with Infinite Time Horizon / 2.2.2:
No Free Lunch with Vanishing Risk / 2.2.3:
Example: "Retiring" Process / 2.2.4:
The Delbaen-Schachemayer Theory in Continuous Time / 2.2.5:
Arbitrage Theory under Transaction Costs / 3:
Models with Transaction Costs / 3.1:
Basic Model / 3.1.1:
Variants / 3.1.2:
No-arbitrage Problem: Abstract Approach / 3.1 3:
The Grigoriev Theorem / 3.2.1:
Counterexamples / 3.2.4:
A Complement: The Rásonyi Theorem / 3.2.5:
Arbitrage Opportunities of the Second Kind / 3.2.6:
Hedging of European Options / 3.3:
Hedging Theorem: Finite ? / 3.3.1:
Hedging Theorem: Discrete Time, Arbitrary ? / 3.3.2:
Hedging of American Options / 3.4:
American Options: Finite ? / 3.4.1:
American Options: Arbitrary ? / 3.4.2:
Complementary Results and Comments / 3.4.3:
Ramifications / 3.5:
Models with Incomplete Information / 3.5.1:
No Arbitrage Criteria: Finite ? / 3.5.2:
No Arbitrage Criteria: Arbitrary ? / 3.5.3:
Hedging Theorem / 3.5.4:
Hedging Theorems: Continuous Time / 3.6:
Introductory Comments / 3.6.1:
Model Specification / 3.6.2:
Hedging Theorem in Abstract Setting / 3.6.3:
Hedging Theorem: Proof / 3.6.4:
Rásonyi Counterexample / 3.6.5:
Campi-Schachermayer Model / 3.6.6:
Hedging Theorem for American Options / 3.6.7:
When Does a Consistent Price System Exits? / 3.6.8:
Asymptotic Arbitrage Opportunities of the Second Kind / 3.7:
Consumption-Investment Problems / 4:
Consumption-Investment without Friction / 4.1:
The Merton Problem / 4.1.1:
The HJB Equation and a Verification Theorem / 4.1.2:
Proof of the Merton Theorem / 4.1.3:
Robustness of the Merton Solution / 4.1.4:
Consumption-Investment under Transaction Costs / 4.2:
The Model / 4.2.1:
Goal Functionals / 4.2.2:
The Hamilton-Jacobi-Bellman Equation / 4.2.3:
Viscosity Solution / 4.2.4:
Ishii's Lemma / 4.2.5:
Uniqueness of the Solution and Lyapunov Functions / 4.3:
Uniqueness Theorem / 4.3.1:
Existence of Lyapunov Function and Classical Supersolutions / 4.3 2:
Supersolutions and Properties of the Bellman Function / 4.4:
When is W Finite on K? / 4.4.1:
Strict Local Supersolutions / 4.4.2:
Dynamic Programming Principle / 4.5:
The Bellman Function and the HJB Euation / 4.6:
Properties of the Bellman Function / 4.7:
The Subdifferential: Gneralities / 4.7.1:
The Bellman Function of the Two-Asset Model / 4.7.2:
Lower Bounds for the Bellman Function / 4.7.3:
The Davis-Norman Solution / 4.8:
Two-Asset Model: The Result / 4.8.1:
Structure of Bellman Function / 4.8.2:
Study of the Scalar Problem / 4.8.3:
Skorohod Problem / 4.8.4:
Optimal Strategy / 4.8.5:
Precisions on the No-Transaction Region / 4.8.6:
Liquidity Premium / 4.9:
Non-Robustness with Respect to Transaction Costs / 4.9.1:
First-Order Asymptotic Expansion / 4.9.2:
Exceptional Case: ? = 1 / 4.9.3:
Appendix / 5:
Facts from Convex Analysis / 5.1:
Césaro Convergence / 5.2:
Komló Theorem / 5.2.1:
Von Weizsäcker Theorem / 5.2.2:
Delbaen-Schachermayer Lemma / 5.2.4:
Facts from Probability / 5.3:
Essential Supremum / 5.3.1:
Generalized Martingales / 5.3.2:
Equivalent Probabilities / 5.3.3:
Snell Envelopes of Q-Martingales / 5.3.4:
Measurable Selection / 5.4:
Skorokhod Problem and SDE with Reflections / 5.5:
Deterministic Skorokhod Problem / 5.6.1:
Skorokhod Mapping / 5.6.2:
Stochastic Skorokhod Problem / 5.6.3:
Bibliographical Comments
References
Index
Approximative Hedging / 1:
Black-Scholes Formula Revisited / 1.1:
Pricing by Replication / 1.1.1:
25.

図書

図書
Michael Baron
出版情報: Boca Raton, FL : CRC Press, c2019  xix, 465 p. ; 27 cm
シリーズ名: A Chapman & Hall book
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction and Overview / 1:
Making decisions under uncertainty / 1.1:
Overview of this book / 1.2:
Summary and conclusions
Exercises
Probability and Random Variables / I:
Probability / 2:
Events and their probabilities / 2.1:
Outcomes, events, and the sample space / 2.1.1:
Set operations / 2.1.2:
Rules of Probability / 2.2:
Axioms of Probability / 2.2.1:
Computing probabilities of events / 2.2.2:
Applications in reliability / 2.2.3:
Combinatorics / 2.3:
Equally likely outcomes / 2.3.1:
Permutations and combinations / 2.3.2:
Conditional probability and independence / 2.4:
Discrete Random Variables and Their Distributions / 3:
Distribution of a random variable / 3.1:
Main concepts / 3.1.1:
Types of random variables / 3.1.2:
Distribution of a random vector / 3.2:
Joint distribution and marginal distributions / 3.2.1:
Independence of random variables / 3.2.2:
Expectation and variance / 3.3:
Expectation / 3.3.1:
Expectation of a function / 3.3.2:
Properties / 3.3.3:
Variance and standard deviation / 3.3.4:
Covariance and correlation / 3.3.5:
Chebyshev's inequality / 3.3.6:
Application to finance / 3.3.8:
Families of discrete distributions / 3.4:
Bernoulli distribution / 3.4.1:
Binomial distribution / 3.4.2:
Geometric distribution / 3.4.3:
Negative Binomial distribution / 3.4.4:
Poisson distribution / 3.4.5:
Poisson approximation of Binomial distribution / 3.4.6:
Continuous Distributions / 4:
Probability density / 4.1:
Families of continuous distributions / 4.2:
Uniform distribution / 4.2.1:
Exponential distribution / 4.2.2:
Gamma distribution / 4.2.3:
Normal distribution / 4.2.4:
Central Limit Theorem / 4.3:
Computer Simulations and Monte Carlo Methods / 5:
Introduction / 5.1:
Applications and examples / 5.1.1:
Simulation of random variables / 5.2:
Random number generators / 5.2.1:
Discrete methods / 5.2.2:
Inverse transform method / 5.2.3:
Rejection method / 5.2.4:
Generation of random vectors / 5.2.5:
Special methods / 5.2.6:
Solving problems by Monte Carlo methods / 5.3:
Estimating probabilities / 5.3.1:
Estimating means and standard deviations / 5.3.2:
Forecasting / 5.3.3:
Estimating lengths, areas, and volumes / 5.3.4:
Monte Carlo integration / 5.3.5:
Stochastic Processes / II:
Definitions and classifications / 6:
Markov processes and Markov chains / 6.2:
Markov chains / 6.2.1:
Matrix approach / 6.2.2:
Steady-state distribution / 6.2.3:
Counting processes / 6.3:
Binomial process / 6.3.1:
Poisson process / 6.3.2:
Simulation of stochastic processes / 6.4:
Queuing Systems / 7:
Main components of a queuing system / 7.1:
The Little's Law / 7.2:
Bernoulli single-server queuing process / 7.3:
Systems with limited capacity / 7.3.1:
M/M/1 system / 7.4:
Evaluating the system's performance / 7.4.1:
Multiserver queuing systems / 7.5:
Bernoulli k-server queuing process / 7.5.1:
M/M/k systems / 7.5.2:
Unlimited number of servers and M/M/∞ / 7.5.3:
Simulation of queuing systems / 7.6:
Statistics / III:
Introduction to Statistics / 8:
Population and sample, parameters and statistics / 8.1:
Descriptive statistics / 8.2:
Mean / 8.2.1:
Median / 8.2.2:
Quantiles, percentiles, and quartiles / 8.2.3:
Standard errors of estimates / 8.2.4:
Interquartile range / 8.2.6:
Graphical statistics / 8.3:
Histogram / 8.3.1:
Stem-and-leaf plot / 8.3.2:
Boxplot / 8.3.3:
Scatter plots and time plots / 8.3.4:
Statistical Inference I / 9:
Parameter estimation / 9.1:
Method of moments / 9.1.1:
Method of maximum likelihood / 9.1.2:
Estimation of standard errors / 9.1.3:
Confidence intervals / 9.2:
Construction of confidence intervals: a general method / 9.2.1:
Confidence interval for the population mean / 9.2.2:
Confidence interval for the difference between two means / 9.2.3:
Selection of a sample size / 9.2.4:
Estimating means with a given precision / 9.2.5:
Unknown standard deviation / 9.3:
Large samples / 9.3.1:
Confidence intervals for proportions / 9.3.2:
Estimating proportions with a given precision / 9.3.3:
Small samples: Student's t distribution / 9.3.4:
Comparison of two populations with unknown variances / 9.3.5:
Hypothesis testing / 9.4:
Hypothesis and alternative / 9.4.1:
Type I and Type II errors: level of significance / 9.4.2:
Level ¿ tests: general approach / 9.4.3:
Rejection regions and power / 9.4.4:
Standard Normal null distribution (Z-test) / 9.4.5:
Z-tests for means and proportions / 9.4.6:
Pooled sample proportion / 9.4.7:
Unknown ¿: T-tests / 9.4.8:
Duality: two-sided tests and two-sided confidence intervals / 9.4.9:
P-value / 9.4.10:
Inference about variances / 9.5:
Variance estimator and Chi-square distribution / 9.5.1:
Confidence interval for the population variance / 9.5.2:
Testing variance / 9.5.3:
Comparison of two variances. F-distribution / 9.5.4:
Confidence interval for the ratio of population variances / 9.5.5:
F-tests comparing two variances / 9.5.6:
Statistical Inference II / 10:
Chi-square tests / 10.1:
Testing a distribution / 10.1.1:
Testing a family of distributions / 10.1.2:
Testing independence / 10.1.3:
Nonparametric statistics / 10.2:
Sign test / 10.2.1:
Wilcoxon signed rank test / 10.2.2:
Mann-Whitney-Wilcoxon rank sum test / 10.2.3:
Bootstrap / 10.3:
Bootstrap distribution and all bootstrap samples / 10.3.1:
Computer generated bootstrap samples / 10.3.2:
Bootstrap confidence intervals / 10.3.3:
Bayesian inference / 10.4:
Prior and posterior / 10.4.1:
Bayesian estimation / 10.4.2:
Bayesian credible sets / 10.4.3:
Bayesian hypothesis testing / 10.4.4:
Regression / 11:
Least squares estimation / 11.1:
Examples / 11.1.1:
Method of least squares / 11.1.2:
Linear regression / 11.1.3:
Regression, and correlation / 11.1.4:
Overfitting a model / 11.1.5:
Analysis of variance, prediction, and further inference / 11.2:
ANOVA and R-square / 11.2.1:
Tests and confidence intervals / 11.2.2:
Prediction / 11.2.3:
Multivariate regression / 11.3:
Introduction and examples / 11.3.1:
Matrix approach and least squares estimation / 11.3.2:
Analysis of variance, tests, and prediction / 11.3.3:
Model building / 11.4:
Adjusted R-square / 11.4.1:
Extra sum of squares, partial F-tests, and variable selection / 11.4.2:
Categorical predictors and dummy variables / 11.4.3:
Appendix
Data sets / A.1:
Inventory of distributions / A.2:
Discrete families / A.2.1:
Continuous families / A.2.2:
Distribution tables / A.3:
Calculus review / A.4:
Inverse function / A.4.1:
Limits and continuity / A.4.2:
Sequences and series / A.4.3:
Derivatives, minimum, and maximum / A.4.4:
Integrals / A.4.5:
Matrices and linear systems / A.5:
Answers to selected exercises / A.6:
Index
Preface
Introduction and Overview / 1:
Making decisions under uncertainty / 1.1:
26.

電子ブック

EB
Xu Ma and Gonzalo R. Arce
出版情報: [Hoboken, N.J.] : Wiley Online Library, 2010  1 online resource (xv, 226 p.)
シリーズ名: Wiley series in pure and applied optics ;
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Acronyms
Introduction / 1:
Optical Lithography / 1.1:
Optical Lithography and Integrated Circuits / 1.1.1:
Brief History of Optical Lithography Systems / 1.1.2:
Rayleigh's Resolution / 1.2:
Resist Processes and Characteristics / 1.3:
Techniques in Computational Lithography / 1.4:
Optical Proximity Correction / 1.4.1:
Phase-Shifting Masks / 1.4.2:
Off-Axis Illumination / 1.4.3:
Second-Generation RETs / 1.4.4:
Outline / 1.5:
Optical Lithography Systems / 2:
Partially Coherent Imaging Systems / 2.1:
Abbe's Model / 2.1.1:
Hopkins Diffraction Model / 2.1.2:
Coherent and Incoherent Imaging Systems / 2.1.3:
Approximation Models / 2.2:
Fourier Series Expansion Model / 2.2.1:
Singular Value Decomposition Model / 2.2.2:
Average Coherent Approximation Model / 2.2.3:
Discussion and Comparison / 2.2.4:
Summary / 2.3:
Rule-Based Resolution Enhancement Techniques / 3:
RET Types / 3.1:
Rule-Based RETs / 3.1.1:
Model-Based RETs / 3.1.2:
Hybrid RETs / 3.1.3:
Rule-Based OPC / 3.2:
Catastrophic OPC / 3.2.1:
One-Dimensional OPC / 3.2.2:
Line-Shortening Reduction OPC / 3.2.3:
Two-Dimensional OPC / 3.2.4:
Rule-Based PSM / 3.3:
Dark-Field Application / 3.3.1:
Light-Field Application / 3.3.2:
Rule-Based OAI / 3.4:
Fundamentals of Optimization / 3.5:
Definition and Classification / 4.1:
Definitions in the Optimization Problem / 4.1.1:
Classification of Optimization Problems / 4.1.2:
Unconstrained Optimization / 4.2:
Solution of Unconstrained Optimization Problem / 4.2.1:
Unconstrained Optimization Algorithms / 4.2.2:
Computational Lithography with Coherent Illumination / 4.3:
Problem Formulation / 5.1:
OPC Optimization / 5.2:
OPC Design Algorithm / 5.2.1:
Simulations / 5.2.2:
Two-Phase PSM Optimization / 5.3:
Two-Phase PSM Design Algorithm / 5.3.1:
Generalized PSM Optimization / 5.3.2:
Generalized PSM Design Algorithm / 5.4.1:
Resist Modeling Effects / 5.4.2:
Regularization Framework / 5.6:
Discretization Penalty / 6.1:
Discretization Penalty for OPC Optimization / 6.1.1:
Discretization Penalty for Two-Phase PSM Optimization / 6.1.2:
Discretization Penalty for Generalized PSM Optimization / 6.1.3:
Complexity Penalty / 6.2:
Total Variation Penalty / 6.2.1:
Global Wavelet Penalty / 6.2.2:
Localized Wavelet Penalty / 6.2.3:
Computational Lithography with Partially Coherent Illumination / 6.3:
OPC Design Algorithm Using the Fourier Series Expansion Model / 7.1:
Simulations Using the Fourier Series Expansion Model / 7.1.2:
OPC Design Algorithm Using the Average Coherent Approximation Model / 7.1.3:
Simulations Using the Average Coherent Approximation Model / 7.1.4:
PSM Optimization / 7.1.5:
PSM Design Algorithm Using the Singular Value Decomposition Model / 7.2.1:
Discretization Regularization for PSM Design Algorithm / 7.2.2:
Other RET Optimization Techniques / 7.2.3:
Double-Patterning Method / 8.1:
Post-Processing Based on 2D DCT / 8.2:
Photoresist Tone Reversing Method / 8.3:
Source and Mask Optimization / 8.4:
Lithography Preliminaries / 9.1:
Topological Constraint / 9.2:
Source-Mask Optimization Algorithm / 9.3:
Coherent Thick-Mask Optimization / 9.4:
Kirchhoff Boundary Conditions / 10.1:
Boundary Layer Model / 10.2:
Boundary Layer Model in Coherent Imaging Systems / 10.2.1:
Boundary Layer Model in Partially Coherent Imaging Systems / 10.2.2:
OPC Optimization Algorithm Based on BL Model Under Coherent Illumination / 10.3:
PSM Optimization Algorithm Based on BL Model Under Coherent Illumination / 10.4.3:
Conclusions and New Directions of Computational Lithography / 10.5.3:
Conclusion / 11.1:
New Directions of Computational Lithography / 11.2:
OPC Optimization for the Next-Generation Lithography Technologies / 11.2.1:
Initialization Approach for the Inverse Lithography Optimization / 11.2.2:
Double Patterning and Double Exposure Methods in Partially Coherent Imaging System / 11.2.3:
OPC and PSM Optimizations for Inverse Lithography Based on Rigorous Mask Models in Partially Coherent Imaging System / 11.2.4:
Simultaneous Source and Mask Optimization for Inverse Lithography Based on Rigorous Mask Models / 11.2.5:
Investigation of Factors Influencing the Complexity of the OPC and PSM Optimization Algorithms / 11.2.6:
Formula Derivation in Chapter 5 / Appendix A:
Manhattan Geometry / Appendix B:
Formula Derivation in Chapter 6 / Appendix C:
Formula Derivation in Chapter 7 / Appendix D:
Formula Derivation in Chapter 8 / Appendix E:
Formula Derivation in Chapter 9 / Appendix F:
Formula Derivation in Chapter 10 / Appendix G:
Software Guide / Appendix H:
References
Index
Preface
Acknowledgments
Acronyms
27.

図書

図書
Yoshihiro Kanno
出版情報: Boca Raton, FL : CRC Press, 2011  xix, 425 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Convex Optimization over Symmetric Cone / I:
Cones, Complementarity, and Conic Optimization / 1:
Proper Cones and Conic Inequalities / 1.1:
Convex sets and cones / 1.1.1:
Partial order induced by proper cone / 1.1.2:
Complementarity over Cones / 1.2:
Dual cones and self-duality / 1.2.1:
Complementarity problems / 1.2.2:
Variational inequalities / 1.2.3:
Complementarity over nonnegative orthant / 1.2.4:
Overview of complementarity over cones / 1.2.5:
Positive-Semidefinite Cone / 1.3:
Positive-semidefinite matrices / 1.3.1:
Inner product of matrices / 1.3.2:
Self-duality of positive-semidefinite cone / 1.3.3:
Complementarity over positive-semidefinite cone / 1.3.4:
Second-Order Cone / 1.4:
Fundamentals of second-order cone / 1.4.1:
Self-duality of second-order cone / 1.4.2:
Complementarity over second-order cone / 1.4.3:
Conic Constraints and Their Relationship / 1.5:
Conic Optimization / 1.6:
Linear programming / 1.6.1:
Semidefmite programming / 1.6.2:
Second-order cone programming / 1.6.3:
Notes / 1.7:
Optimality and Duality / 2:
Fundamentals of Convex Analysis / 2.1:
Convex sets and convex functions / 2.1.1:
Monotone functions and convexity / 2.1.2:
Closed convex functions / 2.1.3:
Subdifferential / 2.1.4:
Conjugate function / 2.1.5:
Dual problem / 2.2:
Weak duality / 2.2.2:
Strong duality / 2.2.3:
Optimality condition / 2.2.4:
Fenchel duality / 2.2.5:
Lagrangian duality / 2.2.6:
KKT conditions / 2.2.7:
Application to Semidefinite Programming / 2.3:
Fenchel dual problem of SDP / 2.3.1:
Duality and optimality of SDP / 2.3.2:
Lagrangian duality of SDP / 2.3.3:
Applications in Structural Engineering / 2.4:
Compliance Optimization / 3.1:
Definition of compliance / 3.1.1:
Compliance minimization / 3.1.2:
Worst-case compliance and robust optimization / 3.1.3:
Eigenvalue Optimization / 3.2:
Eigenvalue optimization of structures / 3.2.1:
SDP formulation / 3.2.2:
Set-Valued Constitutive Law / 3.2.3:
Constitutive law / 3.3.1:
Linear elasticity and Legendre transformation / 3.3.2:
Inversion via Fenchel transformation / 3.3.3:
Unilateral contact law and Fenchel transformation / 3.3.4:
Cable Networks: An Example in Nonsmooth Mechanics / 3.4:
Principles of Potential Energy for Cable Networks / 4:
No-compression model / 4.1:
Inclusion form / 4.1.2:
Variational form / 4.1.3:
Complementarity form / 4.1.4:
Potential Energy Principles in Convex Optimization Forms / 4.2:
Principle of potential energy in general form / 4.2.1:
Principle for large strain / 4.2.2:
Principle for linear strain / 4.2.3:
Principle for the Green-Lagrange strain / 4.2.4:
More on Cable Networks: Nonlinear Material Law / 4.3:
Piecewise-linear law / 4.3.1:
Piecewise-quadratic law / 4.3.2:
Duality in Cable Networks: Principles of Complementary Energy / 4.4:
Duality in Cable Networks (1): Large Strain / 5.1:
Embedding to Fenchel form / 5.1.1:
Duality and optimality / 5.1.2:
Principle of complementary energy / 5.1.4:
Existence and uniqueness of solution / 5.1.5:
Duality in Cable Networks (2): Linear Strain / 5.2:
Duality in Cable Networks (3): Green-Lagrange Strain / 5.2.1:
Numerical Methods / 5.3.1:
Algorithms for Conic Optimization / 6:
Primal-Dual Interior-Point Method / 6.1:
Outline of interior-point methods / 6.1.1:
Interior-point method for linear programming / 6.1.2:
Interior-point method for semidefinite programming / 6.1.3:
Reformulation and Smoothing Method / 6.2:
Reformulation method / 6.2.1:
Smoothing method / 6.2.2:
Extensions to conic complementarity problems / 6.2.3:
Numerical Analysis of Cable Networks / 6.3:
Cable Networks with Pin-Joints / 7.1:
Cable Networks with Sliding Joints / 7.2:
Form-Finding of Cable Networks / 7.3:
Form-finding with specified axial forces / 7.3.1:
Special cases / 7.3.2:
Problems in Nonsmooth Mechanics / 7.4:
Masonry Structures / 8:
Introduction / 8.1:
Notation / 8.1.1:
Principle of Potential Energy for Masonry Structures / 8.2:
Principle of potential energy / 8.2.1:
Conic optimization formulation / 8.2.2:
Principle of Complementary Energy for Masonry Structures / 8.3:
Duality and optimally / 8.3.1:
Numerical Aspects / 8.3.4:
Spatial discretization / 8.4.1:
Examples / 8.4.2:
Planar Membranes / 8.5:
Analysis in Small Deformation / 9.1:
Principle of potential energy in small deformation / 9.2.1:
Principle of complementary energy in small deformation / 9.2.2:
Principle of Potential Energy for Membranes / 9.3:
Principle of Complementary Energy for Membranes / 9.3.1:
Spatial discretizatio / 9.4.1:
Frictional Contact Problems / 9.5.2:
Friction Law / 10.1:
Coulomb's law / 10.1.1:
Second-order cone complementarity formulation / 10.1.2:
Incremental Problem / 10.2:
Friction law in incremental problems / 10.2.1:
Contact kinematics / 10.2.2:
Problem formulation / 10.2.3:
Discussions on Various Complementarity Forms / 10.3:
On auxiliary variables / 10.3.1:
Maximum dissipation law and its optimality conditions / 10.3.2:
A formulation using projection operator / 10.3.3:
Friction law and normality rule / 10.3.4:
Plasticity / 10.4:
Fundamentals of Plasticity / 11.1:
Perfect Plasticity / 11.2:
Classical formulation of flow rule in perfect plasticity / 11.2.1:
Plasticity with Isotropic Hardening / 11.2.2:
Linear isotropic hardening law / 11.3.1:
Incremental problem / 11.3.2:
SOCP formulation of incremental problem / 11.3.4:
Plasticity with Kinematic Hardening / 11.4:
Linear kinematic hardening / 11.4.1:
References / 11.4.2:
Index
About the Author
Convex Optimization over Symmetric Cone / I:
Cones, Complementarity, and Conic Optimization / 1:
Proper Cones and Conic Inequalities / 1.1:
28.

図書

図書
Darryl D Holm
出版情報: London : Imperial College Press , Toh Tuck Link, Singapore : World Scientific [distributor], c2011  xx, 390 p. ; 23 cm
シリーズ名: Geometric mechanics ; pt. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface
Galileo / 1:
Principle of Galilean relativity / 1.1:
Galilean transformations / 1.2:
Admissible force laws for an N-particle system / 1.2.1:
Subgroups of the Galilean transformations / 1.3:
Matrix representation of SE(3) / 1.3.1:
Lie group actions of SE(3) / 1.4:
Lie group actions of G(3) / 1.5:
Matrix representation of G(3) / 1.5.1:
Lie algebra of SE(3) / 1.6:
Lie algebra of G(3) / 1.7:
Newton, Lagrange, Hamilton and the rigid body / 2:
Newton / 2.1:
Newtonian form of free rigid rotation / 2.1.1:
Newtonian form of rigid-body motion / 2.1.2:
Lagrange / 2.2:
The principle of stationary action / 2.2.1:
Noether's theorem / 2.3:
Lie symmetries and conservation laws / 2.3.1:
Infinitesimal transformations of a Lie group / 2.3.2:
Lagrangian form of rigid-body motion / 2.4:
Hamilton-Pontryagin constrained variations / 2.4.1:
Manakov's formulation of the SO(n) rigid body / 2.4.2:
Matrix Euler-Poincaré equations / 2.4.3:
An isospectral eigenvalue problem for the SO(n) rigid body / 2.4.4:
Manakov's integration of the SO(n) rigid body / 2.4.5:
Hamilton / 2.5:
Hamiltonian form of rigid-body motion / 2.5.1:
Lie-Poisson Hamiltonian rigid-body dynamics / 2.5.2:
Lie-Poisson bracket / 2.5.3:
Nambu's R3 Poisson bracket / 2.5.4:
Clebsch variational principle for the rigid body / 2.5.5:
Rotating motion with potential energy / 2.5.6:
Quaterions / 3:
Operating with quaternions / 3.1:
Multiplying quaternions using Pauli matrices / 3.1.1:
Quaternionic conjugate / 3.1.2:
Decomposition of three-vectors / 3.1.3:
Alignment dynamics for Newton's second law / 3.1.4:
Quaternionic dynamics of Kepler's problem / 3.1.5:
Quaternionic conjugation / 3.2:
Cayley-Klein parameters / 3.2.1:
Pure quaternions, Pauli matrices and SU(2) / 3.2.2:
Tilde map: R3 su(2) so(3) / 3.2.3:
Dual of the tilde map: R3* su(2)* so(3)* / 3.2.4:
Pauli matrices and Poincaré's sphere C2 → S2 / 3.2.5:
Poincaré's sphere and Hopf's fibration / 3.2.6:
Coquaternions / 3.2.7:
Adjoint and coadjoint actions / 4:
Cayley-Klein dynamics for the rigid body / 4.1:
Cayley-Klein parameters, rigid-body dynamics / 4.1.1:
Body angular frequency / 4.1.2:
Actions of quaternions, Lie groups and Lie algebras / 4.1.3:
AD, Ad, ad, Ad* and ad* actions of quaternions / 4.2.1:
AD, Ad, and ad for Lie algebras and groups / 4.2.2:
Example: The Heisenberg Lie group / 4.3:
Definitions for the Heisenberg group / 4.3.1:
Adjoint actions: AD, Ad and ad / 4.3.2:
Coadjoint actions: Ad* and ad* / 4.3.3:
Coadjoint motion and harmonic oscillations / 4.3.4:
The special orthogonal group SO(3) / 5:
Adjoint and coadjoint actions of SO(3) / 5.1:
Ad and ad operations for the hat map / 5.1.1:
AD, Ad and ad actions of SO(3) / 5.1.2:
Dual Lie algebra isomorphism / 5.1.3:
Adjoint and codajoint semidirect-product group actions / 6:
Special Euclidean group SE(3) / 6.1:
Adjoint operations for SE(3) / 6.2:
Adjoint actions of SE(3)'s Lie algebra / 6.3:
The ad action of se(3) on itself / 6.3.1:
The ad* action of se(3) on its dual se(3)* / 6.3.2:
Left versus right / 6.3.3:
Special Euclidean group SE(2) / 6.4:
Semidirect-product group SL(2,R) SR2 / 6.5:
Definitions for SL(2,E)SR2 / 6.5.1:
AD, Ad, and ad actions / 6.5.2:
Ad* and ad* actions / 6.5.3:
Coadjoint motion relation / 6.5.4:
Galilean group / 6.6:
Definitions for G(3) / 6.6.1:
AD, Ad, and ad actions of G(3) / 6.6.2:
Iterated semidirect products / 6.7:
Euler-Poincaré and Lie-Poisson equation SE(3) / 7:
Euler-Poincaré equations for left-invariant Lagrangians under SE(3) / 7.1:
Legendre transform from se(3) to se(3)* / 7.1.1:
Lie-Poisson bracket on se(3)* / 7.1.2:
Coadjoint motion on se(3)* / 7.1.3:
Kirchhoff equations on se(3)* / 7.2:
Looks can be deceiving: The heavy top / 7.2.1:
Heavy-top equation / 8:
Introduction and definitions / 8.1:
Heavy-top action principle / 8.2:
Lie-Poisson brackets / 8.3:
Lie-Poisson brackets and momentum maps / 8.3.1:
Lie-Poisson brackets for the heavy top / 8.3.2:
Clebsch action principle / 8.4:
Kaluza-Klein construction / 8.5:
The Euler-Poincaré theorem / 9:
Action principles on Lie algebras / 9.1:
Hamilton-Pontryagin principle / 9.2:
Clebsch approach to Euler-Poincaré / 9.3:
Defining the Lie derivative / 9.3.1:
Clebsch Euler-Poincaré principle / 9.3.2:
Lie-Poisson Hamiltonian formulation / 9.4:
Cotangent-lift momentum maps / 9.4.1:
Lie-Poisson Hamiltonian form of a continuum spin chain / 10:
Formulating continuum spin chain equations / 10.1:
Euler-Poincaré equations / 10.2:
Hamiltonian formulation / 10.3:
Momentum maps / 11:
The momentum map / 11.1:
Cotangent lift / 11.2:
Examples of momentum maps / 11.3:
The Poincaré sphere S2 ∈ S3 / 11.3.1:
Overview / 11.3.2:
Roudn, rolling rigid bodies / 12:
Introduction / 12.1:
Holonomic versus nonholonomic / 12.1.1:
The Chaplygin ball / 12.1.2:
Nonholonomic Hamilton-Pontryagin variational principle / 12.2:
HP principle for the Chaplygin ball / 12.2.1:
Circular disk rocking in a vertical plane / 12.2.2:
Euler's rolling and spinning disk / 12.2.3:
Nonholonomic Euler-Poincaré reduction / 12.3:
Semidirect-product structure / 12.3.1:
Euler-Poincaré theorem
Constrained reduced Lagrangian / 12.3.3:
A Geometrical structure of classical mechanics
Manifold / A 1:
Motion: Tangent vectors and flows / A.2:
Vector fields, integral curves and flows / A.2.1:
Differentials of functions: The cotangent bundle / A.2.2:
Tangent and cotangent lifts / A.3:
Summary of derivatives on manifolds / A.3.1:
B Lie groups and Lie algebras
Matrix Lie groups / B.1:
Defining matrix Lie algebras / B.2:
Examples of matrix Lie groups / B.3:
Lie group actions / B.4:
Left and right translations on a Lie group / B.4.1:
Tangent and cotangent lift actions / B 5:
Jacobi-Lie bracket / B.6:
Lie derivative and Jacobi-Lie bracket / B.7:
Lie derivative of a vector field / B.7.1:
Vector fields in ideal fluid dynamics323 / B.7.2:
C Enhanced coursework
Variations on rigid-body dynamics / C.1:
Two times / C.1.1:
Rotations in complex space / C.1.2:
Rotations in four dimensions: SO(4) / C.1.3:
C3 oscillators / C.2:
Momentum maps for GL(n,R) / C.3:
Motion on the symplectic Lie group Sp(2) / C.4:
Two coupled rigid bodies / C.5:
Poincaré's 1901 paper / D:
Bibliography
Index
Preface
Galileo / 1:
Principle of Galilean relativity / 1.1:
29.

図書

図書
Piedad Brox, Iluminada Baturone, and Santiago Sánchez-Solano
出版情報: Berlin : Springer Verlag, c2010  x, 174 p. ; 24 cm
シリーズ名: Studies in fuzziness and soft computing ; 246
所蔵情報: loading…
目次情報: 続きを見る
Basic Concepts / 1:
Television Transmission Systems / 1.1:
Monochrome Television Systems / 1.1.1:
Analog Color Television Broadcast Systems / 1.1.2:
Digital Color Television Broadcast Systems / 1.1.3:
Equipment for Broadcasting Television Images / 1.2:
Video Cameras / 1.2.1:
Movie Cameras / 1.2.2:
Film-to-Video Transference: Pull-Down Process / 1.2.3:
The Need of De-Interlacing / 1.3:
Review of De-Interlacing Algorithms / 1.3.1:
Implementation of Video De-Interlacing / 1.4:
Consumer Video Processing Chips / 1.4.1:
De-Interlacing Implementations Based on DSPs, FPGAs and IP Cores / 1.4.2:
The Role of Fuzzy Logic in Video Processing / 1.5:
Basic Concepts of Fuzzy Logic Theory / 1.5.1:
CAD Tools for Designing Fuzzy Systems / 1.5.2:
Conclusions / 1.6:
References
Fuzzy Motion-Adaptive Algorithm for Video De-Interlacing / 2:
Motion-Adaptive De-Interlacing / 2.1:
Van de Ville et al. Proposal / 2.2:
A New Fuzzy Motion-Adaptive De-Interlacing Algorithm / 2.3:
Simulation Results / 2.4:
Results on Benchmark Video Sequences / 2.4.1:
Detailed Results on Three Sequences / 2.4.2:
Design Options of the Fuzzy Motion-Adaptive Algorithm / 2.5:
Convolution Mask Options / 3.1:
Rule Base Options / 3.1.1:
Tuning of Membership Function and Consequent Parameters / 3.2.1:
Reference / 3.2.2:
Fuzzy Motion-Adaptive De-Interlacing with Edge-Adaptive Spatial Interpolation / 4:
Basic Fuzzy-ELA Algorithm / 4.1:
Determination of the Membership Function Parameters / 4.1.1:
Performance of the Basic Fuzzy-ELA Algorithm / 4.1.2:
Modifications of the Basic Fuzzy-ELA Algorithm / 4.2:
Recursive Fuzzy-ELA Algorithm / 4.2.1:
ELA 5+5 and Fuzzy-ELA 5+5 Algorithm / 4.2.2:
Improved Fuzzy-ELA 5+5 Algorithm / 4.2.3:
Comparison of the Fuzzy-ELA Algorithms / 4.2.4:
Robustness of Fuzzy Proposals against Noise / 4.2.5:
Fuzzy Motion Adaptive Algorithm with the 'Improved Fuzzy-ELA 5+5' as Spatial Interpolator / 4.2.6:
Fuzzy Motion-Adaptive De-Interlacing with Smart Temporal Interpolation / 4.3:
A Smart Temporal Interpolator / 5.1:
Morphological Operations / 5.1.1:
Performance of the Proposed Algorithm / 5.2:
Evolution of the Fuzzy De-Interlacing Proposals / 5.3:
Comparison with MC De-Interlacing Methods / 5.4:
Glossary / 5.5:
Index
Basic Concepts / 1:
Television Transmission Systems / 1.1:
Monochrome Television Systems / 1.1.1:
30.

図書

図書
by Hiroki Nakamura
出版情報: Singapore : World Scientific, c2012  xiv, 500 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Introduction: What is "Nonadiabatic Transition"? / Chapter 1:
Multi-Disciplinarity / Chapter 2:
Physics / 2.1:
Chemistry / 2.2:
Biology / 2.3:
Economics / 2.4:
Historical Survey of Theoretical Studies / Chapter 3:
Landau-Zener-Stueckelberg Theory / 3.1:
Rosen-Zener-Demkov Theory / 3.2:
Nikitin's Exponential Model / 3.3:
Nonadiabatic Transition Due to Coriolis Coupling and Dynamical State Representation / 3.4:
Background Mathematics / Chapter 4:
Wentzel-Kramers-Brillouin Semiclassical Theory / 4.1:
Stokes Phenomenon / 4.2:
Basic Two-State Theory for Time-Independent Processes / Chapter 5:
Exact Solutions of the Linear Curve Crossing Problems / 5:
Landau-Zener type / 5.1.1:
Nonadiabatic tunneling type / 5.1.2:
Complete Semiclassical Solutions of General Curve Crossing Problems / 5.2:
Landau-Zener (LZ) type / 5.2.1:
E ≥ EX (b2 ≥ 0) / 5.2.1.1:
E ≤ EX (b2 ≤ 0) / 5.2.1.2:
Numerical examples / 5.2.1.3:
Nonadiabatic Tunneling (NT) Type / 5 2 2:
E ≤ Et (b2 ≤ -1) / 5.2.2.1:
Et ≤ E ≤ Eb ( / 5.2.2.2:
E ≥ Eb (b2 ≥ 1 / 5.2.2.3:
Complete reflection / 5.2.2.4:
Non-Curve-Crossing Case / 5.2.2.5:
Rosen-Zener-Demkov model / 5.3.1:
Diabatically avoided crossing model / 5 3 2:
Exponential Potential Model: Unification of the Landau-Zener and Rosen-Zener Models / 5.4:
-Exact Solution / 5.4.1:
-Semiclassical Solution / 5.4.2:
Mathematical Implications / 5.5:
Basic Two-State Theory for Time-Dependent Processes / 5.5.1:
Exact Solution of Quadratic Potential Problem / 6.1:
Semiclassical Solution in General Case / 6.2:
Two-crossing case: (β ≥ 0 / 6.2.1:
Diabatically avoided crossing case: β ≤ 0 / 6.2.2:
Other Exactly Solvable Models / 6.3:
Two-State Problems / Chapter 7:
Diagrammatic Technique / 7.1:
Inelastic Scattering / 7.2:
Elastic Scattering with Resonances and Predissocation / 7.3:
Perturbed Bound States / 7.4:
Time-Dependent Periodic Crossing Problems / 7.5:
Time-Dependent Nonlinear Equations Related to Bose-Einstein Condensate Problems / 7.6:
Wave Packet Dynamics in a Linearly Chirped Laser Field / 7.7:
Effects of Coupling to Phonons and Quantum Devices / Chapters 8:
Effects of Coupling to Phonons / 8.1:
Quantum Devices / 8.2:
Multi-Channel Problems / Chapter 9:
Exactly Solvable Models / 9.1:
Time-independent case / 9.1.1:
Time-dependent case / 9.1.2:
Semiclassical Theory of Time-Independent Multi-Channel Problems / 9.2:
General framework / 9.2.1:
Case of no closed channel (m = 0) / 9.2.1.1:
Case of m ≠ 0 at energies higher than the bottom of the highest adiabatic potential / 9.2.1.2:
Case of m ≠ 0 at energies lower than the bottom of the highest adiabatic potential / 9.2.1.3:
Numerical example / 9.2.2:
Time-Dependent Problems / 9.3:
Multi-Dimensional Problems / Chapter 10:
Classification of Surface Crossing / 10.1:
Crossing seam / 10.1.1:
Conical intersection / 10 1 2:
Rermer-Teller effect / 10.1.3:
Reduction to One-Dimensional Multi-Channel Problem / 10.2:
Linear Jahn-Teller proble / 10.2.1:
Electronically adiabatic chemical reaction / 10.2.2:
Semiclassical Propagation Method / 10.3:
Trajectory surface hopping method / 10.3.1:
Semiclassical initial value representation method / 10.3.2:
Semiclassical frozen Gaussian propagation method / 10.3.3:
Nonadiabatic Transition State Theory / 10.4:
General formulation / 10.4.1:
Improvement of the Marcus theory of electron transfer / 10.4.2:
Complete Reflection and Bound States in the Continuum / Chapter 11:
One NT-Type Crossing Case / 11.1:
Diabatically Avoided Crossing (DAC) Case / 11.2:
Two NT-Type Crossings Case / 11.3:
At energies above the top of the barrier: (Eu, ∞) / 11.3.1:
At energies between the barrier top and the higher crossing: (E+, Eu) / 11.3.2:
At energies in between the two crossing regions: (E E-, E E+) / 11.3.3:
At energies below the crossing points: (-∞,E E-) / 11.3.4:
New Mechanism of Molecular Switching / 11.3.5:
Basic Idea / 12.1:
One-Dimensional Model / 12.2:
Transmission in a pure system / 12.2.1:
Transmission in a system with impurities / 12.2.2:
Two-Dimensional Model / 12.3:
Two-dimensional constriction model / 12.3.1:
Wave functions, matching, and transmission coefficient / 12.3.2:
Numerical Examples / 12.4:
Control of Nonadiabatic Processes by an External Field / Chapter 13:
Floquet Theorem and Nonadiabatic Transitions in a Quasi-Periodic Field / 13.1:
Floquet theorem and dressed state representation / 13.1.1:
Nonadiabatic transitions in a quasi-periodic field / 13.1.2:
Basic ideas / 13.2Control of Nonadiabatic Transitions by Periodically Sweeping External Field:
Basic theory of periodic sweeping / 13.2.2:
Semiclassical Guided Optimal Control Theory / 13.3:
Laser Control of Photodissociation with Use of the Complete Reflection Phenomenon / 13.4:
Comprehension of Nonadiabatic Chemical Dynamics / Chapter 14:
Chemical Reaction Dynamics / 14.1:
Three-dimensional chemical reactions / 14.1.1:
Nonadiabatic chemical reactions / 14.1.2:
Photo-Induced Dynamics / 14.2:
Photo-isomerization of retinal / 14.2.1:
Photo-absorption spectrum / 14.2.2:
Electron Transfer / 14.3:
Normal case / 14.3.1:
Inverted case / 14.3.2:
Control of Chemical Dynamics / Chapter 15:
Efficient Excitation/De-Excitation by Periodic Chirping / 15.1:
Spin tunneling by magnetic field / 15.1.1:
Vibrational and tunneling transitions controlled by laser / 15.1.2:
Selective and complete excitation of energy levels / 15.1.3:
Pump and dump of wave packet / 15.1.4:
Control of Wave Packet Motion and Transition at Conical Intersection / 15.2:
Vibrational isomerization of HCN / 15.2.1:
Giving a pre-determined directed momentum to wave packet / 15.2.2:
Selective Photo-dissociation of OHC1 into O+HCl / 15.2.3:
Selective Photo-Dissociation with Use of the Complete Reflection Phenomenon / 15.3:
Control of π-Electron Rotation and Its Coupling to Molecular Vibration / 15.4:
Manifestation of Molecular Functions / Chapter 16:
Molecular Switching / 16.1:
Hydrogen Transmission Through Carbon Ring / 16.2:
Photo-Chromic Conversion of Cyclohexadiene to Hexatriene / 16.3:
Molecular Motors / 16.4:
Conclusions: Future Perspectives / Chapter 17:
Final Recommended Formulas of the Zhu-Nakamura Theory for General Time-Independent Two-Channel Problem / Appendix A:
Landau-Zener Type (see Fig. A.l) / A.1:
E ≥ Ex / A.1.1:
E ≤ Ex / A.1.2:
Definitions of σzn, σzn, and σψ / A.1.3:
Total scattering matrix / A.1.4:
Nonadiabatic Tunneling Type (see Fig. A.2) / A.2:
E ≥ Eb / A.2.1:
Eb ≥ E ≥ Et / A.2.2:
E ≤ Et / A.2.3:
Time-Dependent Version of the Zhu-Nakamura Theory / Appendix B:
References
Index
Preface to the Second Edition
Preface to the First Edition
Introduction: What is "Nonadiabatic Transition"? / Chapter 1:
31.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
32.

図書

図書
P.A. Durbin, B.A. Pettersson Reif
出版情報: Chichester : Wiley, 2011 [i.e. 2010]  xiii, 357 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Preface to second edition
Preface to first edition
Motivation
Epitome
Acknowledgements
Fundamentals of Turbulence / Part I:
Introduction / 1:
The turbulence problem / 1.1:
Closure modeling / 1.2:
Categories of turbulent flow / 1.3:
Exercises
Mathematical and statistical background / 2:
Dimensional analysis / 2.1:
Scales of turbulence / 2.1.1:
Statistical tools / 2.2:
Averages and probability density functions / 2.2.1:
Correlations / 2.2.2:
Cartesian tensors / 2.3:
Isotropic tensors / 2.3.1:
Tensor functions of tensors; Cayley-Hamilton theorem / 2.3.2:
Reynolds averaged Navier-Stokes equations / 3:
Background to the equations / 3.1:
Reynolds averaged equations / 3.2:
Terms of kinetic energy and Reynolds stress budgets / 3.3:
Passive contaminant transport / 3.4:
Parallel and self-similar shear flows / 4:
Plane channel flow / 4.1:
Logarithmic layer / 4.1.1:
Roughness / 4.1.2:
Boundary layer / 4.2:
Entrainment / 4.2.1:
Free-shear layers / 4.3:
Spreading rates / 4.3.1:
Remarks on self-similar boundary layers / 4.3.2:
Heat and mass transfer / 4.4:
Parallel flow and boundary layers / 4.4.1:
Dispersion from elevated sources / 4.4.2:
Vorticity and vortical structures / 5:
Structures / 5.1:
Boundary layers / 5.1.1:
Non-random vortices / 5.1.3:
Vorticity and dissipation / 5.2:
Vortex stretching and relative dispersion / 5.2.1:
Mean-squared vorticity equation / 5.2.2:
Single-Point Closure Modeling / Part II:
Models with scalar variables / 6:
Boundary-layer methods / 6.1:
Integral boundary-layer methods / 6.1.1:
Mixing length model / 6.1.2:
The ?- model / 6.2:
Analytical solutions to the ?- model / 6.2.1:
Boundary conditions and near-wall modifications / 6.2.2:
Weak solution at edges of free-shear flow; free-stream sensitivity / 6.2.3:
The ?-? model / 6.3:
Stagnation-point anomaly / 6.4:
The question of transition / 6.5:
Reliance on the turbulence model / 6.5.1:
Intermittency equation / 6.5.2:
Laminar fluctuations / 6.5.3:
Eddy viscosity transport models / 6.6:
Models with tensor variables / 7:
Second-moment transport / 7.1:
A simple illustration / 7.1.1:
Closing the Reynolds stress transport equation / 7.1.2:
Models for the slow part / 7.1.3:
Models for the rapid part / 7.1.4:
Analytic solutions to SMC models / 7.2:
Homogeneous shear flow / 7.2.1:
Curved shear flow / 7.2.2:
Algebraic stress approximation and nonlinear eddy viscosity / 7.2.3:
Non-homogeneity / 7.3:
Turbulent transport / 7.3.1:
Near-wall modeling / 7.3.2:
No-slip condition / 7.3.3:
Nonlocal wall effects / 7.3.4:
Reynolds averaged computation / 7.4:
Numerical issues / 7.4.1:
Examples of Reynolds averaged computation / 7.4.2:
Advanced topics / 8:
Further modeling principles / 8.1:
Galilean invariance and frame rotation / 8.1.1:
Realizability / 8.1.2:
Second-moment closure and Langevin equations / 8.2:
Moving equilibrium solutions of SMC / 8.3:
Criterion for steady mean flow / 8.3.1:
Solution in two-dimensional mean flow / 8.3.2:
Bifurcations / 8.3.3:
Passive scalar flux modeling / 8.4:
Scalar diffusivity models / 8.4.1:
Tensor diffusivity models / 8.4.2:
Scalar flux transport / 8.4.3:
Scalar variance / 8.4.4:
Active scalar flux modeling: effects of buoyancy / 8.5:
Second-moment transport models / 8.5.1:
Stratified shear flow / 8.5.2:
Theory of Homogeneous Turbulence / Part III:
Mathematical representations / 9:
Fourier transforms / 9.1:
Three-dimensional energy spectrum of homogeneous turbulence / 9.2:
Spectrum tensor and velocity covariances / 9.2.1:
Modeling the energy spectrum / 9.2.2:
Navier-Stokes equations in spectral space / 10:
Convolution integrals as triad interaction / 10.1:
Evolution of spectra / 10.2:
Small-? behavior and energy decay / 10.2.1:
Energy cascade / 10.2.2:
Final period of decay / 10.2.3:
Rapid distortion theory / 11:
Irrotational mean flow / 11.1:
Cauchy form of vorticity equation / 11.1.1:
Distortion of a Fourier mode / 11.1.2:
Calculation of covariances / 11.1.3:
General homogeneous distortions / 11.2:
Homogeneous shear / 11.2.1:
Turbulence near a wall / 11.2.2:
Turbulence Simulation / Part IV:
Eddy-resolving simulation / 12:
Direct numerical simulation / 12.1:
Grid requirements / 12.1.1:
Numerical dissipation / 12.1.2:
Energy-conserving schemes / 12.1.3:
Illustrations / 12.2:
Pseudo-spectral method / 12.3:
Simulation of large eddies / 13:
Large eddy simulation / 13.1:
Filtering / 13.1.1:
Subgrid models / 13.1.2:
Detached eddy simulation / 13.2:
References
Index
Preface
Preface to second edition
Preface to first edition
33.

図書

図書
Peter Bajorski
出版情報: Hoboken, N.J. : Wiley, c2012  xiv, 379 p. ; 25 cm
シリーズ名: Wiley series in probability and mathematical statistics
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Who Should Read This Book / 1.1:
How This Book is Organized / 1.2:
How to Read This Book and Learn from It / 1.3:
Note for Instructors / 1.4:
Book Web Site / 1.5:
Fundamentals of Statistics / 2:
Statistical Thinking / 2.1:
Data Format / 2.2:
Descriptive Statistics / 2.3:
Measures of Location / 2.3.1:
Measures of Variability / 2.3.2:
Data Visualization / 2.4:
Dot Plots / 2.4.1:
Histograms / 2.4.2:
Box Plots / 2.4.3:
Scatter Plots / 2.4.4:
Probability and Probability Distributions / 2.5:
Probability and Its Properties / 2.5.1:
Probability Distributions / 2.5.2:
Expected Value and Moments / 2.5.3:
Joint Distributions and Independence / 2.5.4:
Covariance and Correlation / 2.5.5:
Rules of Two and Three Sigma / 2.6:
Sampling Distributions and the Laws of Large Numbers / 2.7:
Skewness and Kurtosis / 2.8:
Statistical Inference / 3:
Point Estimation of Parameters / 3.1:
Definition and Properties of Estimators / 3.2.1:
The Method of the Moments and Plug-In Principle / 3.2.2:
The Maximum Likelihood Estimation / 3.2.3:
Interval Estimation / 3.3:
Hypothesis Testing / 3.4:
Samples From Two Populations / 3.5:
Probability Plots and Testing for Population Distributions / 3.6:
Probability Plots / 3.6.1:
Kolmogorov-Smirnov Statistic / 3.6.2:
Chi-Squared Test / 3.6.3:
Ryan-Joiner Test for Normality / 3.6.4:
Outlier Detection / 3.7:
Monte Carlo Simulations / 3.8:
Bootstrap / 3.9:
Statistical Models / 4:
Regression Models / 4.1:
Simple Linear Regression Model / 4.2.1:
Residual Analysis / 4.2.2:
Multiple Linear Regression and Matrix Notation / 4.2.3:
Geometric Interpretation in an n-Dimensional Space / 4.2.4:
Statistical Inference in Multiple Linear Regression / 4.2.5:
Prediction of the Response and Estimation of the Mean Response / 4.2.6:
More on Checking the Model Assumptions / 4.2.7:
Other Topics in Regression / 4.2.8:
Experimental Design and Analysis / 4.3:
Analysis of Designs with Qualitative Factors / 4.3.1:
Other Topics in Experimental Design / 4.3.2:
Supplement 4A. Vector and Matrix Algebra
Vectors
Matrices
Eigenvalues and Eigenvectors of Matrices
Spectral Decomposition of Matrices
Positive Definite Matrices
A Square Root Matrix
Supplement 4B. Random Vectors and Matrices
Sphering
Fundamentals of Multivariate Statistics / 5:
The Multivariate Random Sample / 5.1:
Multivariate Data Visualization / 5.3:
The Geometry of the Sample / 5.4:
The Geometric Interpretation of the Sample Mean / 5.4.1:
The Geometric Interpretation of the Sample Standard Deviation / 5.4.2:
The Geometric Interpretation of the Sample Correlation Coefficient / 5.4.3:
The Generalized Variance / 5.5:
Distances in the p-Dimensional Space / 5.6:
The Multivariate Normal (Gaussian) Distribution / 5.7:
The Definition and Properties of the Multivariate Normal Distribution / 5.7.1:
Properties of the Mahalanobis Distance / 5.7.2:
Multivariate Statistical Inference / 6:
Inferences About a Mean Vector / 6.1:
Testing the Multivariate Population Mean / 6.2.1:
Interval Estimation for the Multivariate Population Mean / 6.2.2:
Confidence Regions / 6.2.3:
Comparing Mean Vectors from Two Populations / 6.3:
Equal Covariance Matrices / 6.3.1:
Unequal Covariance Matrices and Large Samples / 6.3.2:
Unequal Covariance Matrices and Samples Sizes Not So Large / 6.3.3:
Inferences About a Variance-Covariance Matrix / 6.4:
How to Check Multivariate Normality / 6.5:
Principal Component Analysis / 7:
Definition and Properties of Principal Components / 7.1:
Definition of Principal Components / 7.2.1:
Finding Principal Components / 7.2.2:
Interpretation of Principal Component Loadings / 7.2.3:
Scaling of Variables / 7.2.4:
Stopping Rules for Principal Component Analysis / 7.3:
Fair-Share Stopping Rules / 7.3.1:
Large-Gap Stopping Rules / 7.3.2:
Principal Component Scores / 7.4:
Statistical Inference in Principal Component Analysis / 7.5:
Independent and Identically Distributed Observations / 7.6.1:
Imaging Related Sampling Schemes / 7.6.2:
Further Reading / 7.7:
Canonical Correlation Analysis / 8:
Mathematical Formulation / 8.1:
Practical Application / 8.3:
Calculating Variability Explained by Canonical Variables / 8.4:
Canonical Correlation Regression / 8.5:
Cross-Validation / 8.6:
Discrimination and Classification - Supervised Learning / 9:
Classification for Two Populations / 9.1:
Classification Rules for Multivariate Normal Distributions / 9.2.1:
Cross-Validation of Classification Rules / 9.2.2:
Fisher's Discriminant Function / 9.2.3:
Classification for Several Populations / 9.3:
Gaussian Rules / 9.3.1:
Fisher's Method / 9.3.2:
Spatial Smoothing for Classification / 9.4:
Clustering - Unsupervised Learning / 9.5:
Similarity and Dissimilarity Measures / 10.1:
Similarity and Dissimilarity Measures for Observations / 10.2.1:
Similarity and Dissimilarity Measures for Variables and Other Objects / 10.2.2:
Hierarchical Clustering Methods / 10.3:
Single Linkage Algorithm / 10.3.1:
Complete Linkage Algorithm / 10.3.2:
Average Linkage Algorithm / 10.3.3:
Ward Method / 10.3.4:
Nonhierarchical Clustering Methods / 10.4:
K-Means Method / 10.4.1:
Clustering Variables / 10.5:
Data Sets / 10.6:
Miscellanea / Appendix C:
References
Index
Preface
Introduction / 1:
Who Should Read This Book / 1.1:
34.

図書

図書
Peter J. Huber
出版情報: Hoboken, N.J. : Wiley, c2011  xiv, 210 p. ; 25 cm
シリーズ名: Wiley series in probability and mathematical statistics
所蔵情報: loading…
目次情報: 続きを見る
Preface
What is Data Analysis? / 1:
Tukey's 1962 paper / 1.1:
The Path of Statistics / 1.2:
Strategy Issues in Data Analysis / 2:
Strategy in Data Analysis / 2.1:
Philosophical issues / 2.2:
On the theory of data analysis and its teaching / 2.2.1:
Science and data analysis / 2.2.2:
Economy of forces / 2.2.3:
Issues of size / 2.3:
Strategic planning / 2.4:
Planning the data collection / 2.4.1:
Choice of data and methods. / 2.4.2:
Systematic and random errors / 2.4.3:
Strategic reserves / 2.4.4:
Human factors / 2.4.5:
The stages of data analysis / 2.5:
Inspection / 2.5.1:
Error checking / 2.5.2:
Modification / 2.5.3:
Comparison / 2.5.4:
Modeling and Model fitting / 2.5.5:
Simulation / 2.5.6:
What-if analyses / 2.5.7:
Interpretation / 2.5.8:
Presentation of conclusions / 2.5.9:
Tools required for strategy reasons / 2.6:
Ad hoc programming / 2.6.1:
Graphics / 2.6.2:
Record keeping / 2.6.3:
Creating and keeping order / 2.6.4:
Massive Data Sets / 3:
Introduction / 3.1:
Disclosure: Personal experiences / 3.2:
What is massive? A classification of size / 3.3:
Obstacles to scaling / 3.4:
Human limitations: visualization / 3.4.1:
Human - machine interactions / 3.4.2:
Storage requirements / 3.4.3:
Computational complexity / 3.4.4:
Conclusions / 3.4.5:
On the structure of large data sets / 3.5:
Types of data / 3.5.1:
How do data sets grow? / 3.5.2:
On data organization / 3.5.3:
Derived data sets / 3.5.4:
Data base management and related issues / 3.6:
Data archiving / 3.6.1:
The stages of a data analysis / 3.7:
Actual collection / 3.7.1:
Data access / 3.7.3:
Initial data checking / 3.7.4:
Data analysis proper / 3.7.5:
The final product: presentation of arguments and conclusions / 3.7.6:
Examples and some thoughts on strategy / 3.8:
Volume reduction / 3.9:
Supercomputers and software challenges / 3.10:
When do we need a Concorde? / 3.10.1:
General Purpose Data Analysis and Supercomputers / 3.10.2:
Languages, Programming Environments and Data-based Prototyping / 3.10.3:
Summary of conclusions / 3.11:
Languages for Data Analysis / 4:
Goals and purposes / 4.1:
Natural languages and computing languages / 4.2:
Natural languages / 4.2.1:
Batch languages / 4.2.2:
Immediate languages / 4.2.3:
Language and literature / 4.2.4:
Object orientation and related structural issues / 4.2.5:
Extremism and compromises, slogans and reality / 4.2.6:
Some conclusions / 4.2.7:
Interface issues / 4.3:
The command line interface / 4.3.1:
The menu interface / 4.3.2:
The batch interface and programming environments / 4.3.3:
Some personal experiences / 4.3.4:
Miscellaneous issues / 4.4:
On building blocks / 4.4.1:
On the scope of names / 4.4.2:
On notation / 4.4.3:
Book-keeping problems / 4.4.4:
Requirements for a general purpose immediate language / 4.5:
Approximate Models / 5:
Models / 5.1:
Bayesian modeling / 5.2:
Mathematical statistics and approximate models / 5.3:
Statistical significance and physical relevance / 5.4:
Judicious use of a wrong model / 5.5:
Composite models / 5.6:
Modeling the length of day / 5.7:
The role of simulation / 5.8:
Pitfalls / 5.9:
Simpson's paradox / 6.1:
Missing data / 6.2:
The Case of the Babylonian Lunar Six / 6.2.1:
X-ray crystallography / 6.2.2:
Regression of Y on X or of X on Y? / 6.3:
Create order in data / 7:
General considerations / 7.1:
Principal component methods / 7.2:
Principal component methods: Jury data / 7.2.1:
Multidimensional scaling / 7.3:
Multidimensional scaling: the method / 7.3.1:
Multidimensional scaling: a synthetic example / 7.3.2:
Multidimensional scaling: map reconstruction / 7.3.3:
Correspondence analysis / 7.4:
Correspondence analysis: the method / 7.4.1:
Kültepe eponyms / 7.4.2:
Further examples: marketing and Shakespearean plays / 7.4.3:
Multidimensional scaling vs. Correspondence analysis / 7.5:
Hodson's grave data / 7.5.1:
Plato data / 7.5.2:
More case studies / 8:
A nutshell example / 8.1:
Shape invariant modeling / 8.2:
Comparison of point configurations / 8.3:
The cyclodecane conformation / 8.3.1:
The Thomson problem / 8.3.2:
Notes on numerical optimization / 8.4:
References
Index
Preface
What is Data Analysis? / 1:
Tukey's 1962 paper / 1.1:
35.

電子ブック

EB
Rüdiger Memming
出版情報: Wiley Online Library Online Books, 2015 , Weinheim : Wiley-VCH, c2015
所蔵情報: loading…
目次情報: 続きを見る
Principles of Semiconductor Physics / 1:
Crystal Structure / 1.1:
Energy Levels in Solids / 1.2:
Optical Properties / 1.3:
Density of States and Carrier Concentrations / 1.4:
Intrinsic Semiconductors / 1.4.1:
Doped Semiconductors / 1.4.2:
Carrier Transport Phenomena / 1.5:
Excitation and Recombination of Charge Carriers / 1.6:
Fermi Levels under Non-Equilibrium Conditions / 1.7:
Semiconductor Surfaces and Solid-Solid Junctions / 2:
Metal and Semiconductor Surfaces in a Vacuum / 2.1:
Metal-Semiconductor Contacts (Schottky Junctions) / 2.2:
Barrier Heights / 2.2.1:
Majority Carrier Transfer Processes / 2.2.2:
Minority Carrier Transfer Processes / 2.2.3:
p-n Junctions / 2.3:
Ohmic Contacts / 2.4:
Photovoltages and Photocurrents / 2.5:
Surface Recombination / 2.6:
Electrochemical Systems / 3:
Electrolytes / 3.1:
Ion Transport in Solutions / 3.1.1:
Interaction between Ions and Solvent / 3.1.2:
Potentials and Thermodynamics of Electrochemical Cells / 3.2:
Chemical and Electrochemical Potentials / 3.2.1:
Cell Voltages / 3.2.2:
Reference Potentials / 3.2.3:
Standard Potential and Fermi Level of Redox Systems / 3.2.4:
Experimental Techniques / 4:
Electrode Preparation / 4.1:
Current-Voltage Measurements / 4.2:
Voltametry / 4.2.1:
Photocurrent Measurements / 4.2.2:
Rotating Ring Disc Electrodes / 4.2.3:
Scanning Electrochemical Microscopy (SECM) / 4.2.4:
Measurements of Surface Recombination and Minority Carrier Injection / 4.3:
Impedance Measurements / 4.4:
Basic Rules and Techniques / 4.4.1:
Evaluation of Impedance Spectra / 4.4.2:
Intensity-Modulated Photocurrent Spectroscopy (IMPS) / 4.5:
Flash Photolysis Investigations / 4.6:
Surface Science Techniques / 4.7:
Spectroscopic Methods / 4.7.1:
In Situ Surface Microscopy (STM and AFM) / 4.7.2:
Solid-Liquid Interface / 5:
Structure of the Interface and Adsorption / 5.1:
Charge and Potential Distribution at the Interface / 5.2:
The Helmholtz Double Layer / 5.2.1:
The Gouy Layer in the Electrolyte / 5.2.2:
The Space Charge Layer in the Semiconductor / 5.2.3:
Charge Distribution in Surface States / 5.2.4:
Analysis of the Potential Distribution / 5.3:
Germanium Electrodes / 5.3.1:
Silicon Electrodes / 5.3.2:
Compound Semiconductor Electrodes / 5.3.3:
Flatband Potential and Position of Energy Bands at the Interface / 5.3.4:
Unpinning of Energy Bands during Illumination / 5.3.5:
Electron Transfer Theories / 6:
The Theory of Marcus / 6.1:
Electron Transfer in Homogeneous Solutions / 6.1.1:
The Reorganization Energy / 6.1.2:
Adiabatic and Non-adiabatic Reactions / 6.1.3:
Electron Transfer Processes at Electrodes / 6.1.4:
The Gerischer Model / 6.2:
Energy States in Solution / 6.2.1:
Electron Transfer / 6.2.2:
Quantum Mechanical Treatments of Electron Transfer Processes / 6.3:
Introductory Comments / 6.3.1:
Non-adiabatic Reactions / 6.3.2:
Adiabatic Reactions / 6.3.3:
The Problem of Deriving Rate Constants / 6.4:
Comparison of Theories / 6.5:
Charge Transfer Processes at the Semiconductor-Liquid Interface / 7:
Charge Transfer Processes at Metal Electrodes / 7.1:
Kinetics of Electron Transfer at the Metal-Liquid Interface / 7.1.1:
Diffusion-controlled Processes / 7.1.2:
Investigations of Redox Reactions by Linear Sweep Voltametry / 7.1.3:
Criteria for Reversible and Irreversible Reactions / 7.1.4:
Qualitative Description of Current-Potential Curves at Semiconductor Electrodes / 7.2:
One-step Redox Reactions / 7.3:
The Energetics of Charge Transfer Processes / 7.3.1:
Quantitative Derivation of Current-Potential Curves / 7.3.2:
Light-induced Processes / 7.3.3:
Majority Carrier Reactions / 7.3.4:
Minority Carrier Reactions / 7.3.5:
Electron Transfer in the 'Inverted Region' / 7.3.6:
The Quasi-Fermi Level Concept / 7.4:
Basic Model / 7.4.1:
Application of the Concept to Photocurrents / 7.4.2:
Consequences for the Relation between Impedance and IMPS Spectra / 7.4.3:
Quasi-Fermi Level Positions under High Level Injections / 7.4.4:
Determination of the Reorganization Energy / 7.5:
Two-step Redox Processes / 7.6:
Photoluminescence and Electroluminescence / 7.7:
Kinetic Studies by Photoluminescence Measurement / 7.7.1:
Electroluminescence Induced by Minority Carrier Injection / 7.7.2:
Hot Carrier Processes / 7.8:
Catalysis of Electrode Reactions / 7.9:
Electrochemical Decomposition of Semiconductors / 8:
Anodic Dissolution Reactions / 8.1:
Germanium / 8.1.1:
Silicon / 8.1.2:
Anodic Formation of Amorphous (Porous) Silicon / 8.1.3:
Compound Semiconductors / 8.1.4:
Cathodic Decomposition / 8.2:
Dissolution under Open Circuit Conditions / 8.3:
Energetics and Thermodynamics of Corrosion / 8.4:
Competition between Redox Reaction and Anodic Dissolution / 8.5:
Photoreactions at Semiconductor Particles / 9:
Quantum Size Effects / 9.1:
Quantum Dots / 9.1.1:
Single Crystalline Quantum Films and Superlattices / 9.1.2:
Size Quantized Nanocrystalline Films / 9.1.3:
Charge Transfer Processes at Semiconductor Particles / 9.2:
Reactions in Suspensions and Colloidal Solutions / 9.2.1:
Photoelectron Emission / 9.2.2:
Comparison between Reactions at Semiconductor Particles and at Compact Electrodes / 9.2.3:
The Role of Surface Chemistry / 9.2.4:
Enhanced Redox Chemistry in Quantized Colloids / 9.2.5:
Reaction Routes at Small and Big Particles / 9.2.6:
Sandwich Formation between Different Particles and between Particle and Electrode / 9.2.7:
Charge Transfer Processes at Quantum Well Electrodes (MQW, SQW) / 9.3:
Photoelectrochemical Reactions at Nanocrystalline Semiconductor Layers / 9.4:
Electron Transfer Processes between Excited Molecules and Semiconductor Electrodes / 10:
Energy Levels of Excited Molecules / 10.1:
Reactions at Semiconductor Electrodes / 10.2:
Spectra of Sensitized Photocurrents / 10.2.1:
Dye Molecules Adsorbed on the Electrode and in Solution / 10.2.2:
Potential Dependence of Sensitization Currents / 10.2.3:
Sensitization Processes at Semiconductor Surfaces Modified by Dye Monolayers / 10.2.4:
Quantum Efficiencies, Regeneration and Supersensitization / 10.2.5:
Kinetics of Electron Transfer between Dye and Semiconductor Electrode / 10.2.6:
Sensitization Processes at Nanocrystalline Semiconductor Electrodes / 10.2.7:
Comparison with Reactions at Metal Electrodes / 10.3:
Production of Excited Molecules by Electron Transfer / 10.4:
Applications / 11:
Photoelectrochemical Solar Energy Conversion / 11.1:
Electrochemical Photovoltaic Cells / 11.1.1:
Analysis of Systems / 11.1.1.1:
Dye-Sensitized Solar Cells / 11.1.1.2:
Conversion Efficiencies / 11.1.1.3:
Photoelectrolysis / 11.1.2:
Two-Electrode Configurations / 11.1.2.1:
Photochemical Diodes / 11.1.2.2:
Photoelectrolysis Driven by Photovoltaics / 11.1.2.3:
Efficiency / 11.1.2.4:
Production of Other Fuels / 11.1.3:
Photoelectrolysis of H[subscript 2]S / 11.1.3.1:
Photoelectrolysis of Halides / 11.1.3.2:
Photoreduction of CO[subscript 2] / 11.1.4:
Photocatalytic Reactions / 11.2:
Photodegradation of Pollutants / 11.2.1:
Light-Induced Chemical Reactions / 11.2.2:
Etching of Semiconductors / 11.3:
Light-Induced Metal Deposition / 11.4:
Appendices
References
Subject Index
Principles of Semiconductor Physics / 1:
Crystal Structure / 1.1:
Energy Levels in Solids / 1.2:
36.

図書

図書
C.N.R. Rao, A. Govindaraj
出版情報: Cambridge : RSC Publishing, c2011  xiii, 542 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no. 18
所蔵情報: loading…
目次情報: 続きを見る
Carbon Nanotubes / Chapter 1:
Introduction / 1.1:
Synthesis / 1.2:
Multi-walled Nanotubes / 1.2.1:
Aligned Nanotube Bundles and Micropatterning / 1.2.2:
Single-walled Carbon Nanotubes / 1.2.3:
Direct Spinning of Nanotube Yarns / 1.2.4:
Selective Preparative Procedures for Semiconducting and Metallic SWNTs / 1.2.5:
Junction Nanotubes / 1.2.6:
Peapods and Double-walled Nanotubes / 1.2.7:
Mechanism of Formation / 1.2.8:
Purification of SWNTs / 1.2.9:
Separation of Metallic and Semiconducting SWNTs / 1.2.10:
Structure, Spectra and Characterization / 1.3:
General Structural Features / 1.3.1:
Raman and other Spectroscopies / 1.3.2:
Pressure-induced Transformations / 1.3.3:
Electronic Structure / 1.3.4:
Chemically Modified Nanotubes / 1.4:
Doping with Boron and Nitrogen / 1.4.1:
Intercalation by Alkali Metals / 1.4.2:
Metal Semiconductor Transitions Induced by Molecular Interaction / 1.4.3:
Chirality Selection / 1.4.4:
Opening and Filling of Nanotubes / 1.4.5:
Decoration and Coating / 1.4.6:
Reactivity, Solubilization and Functionalization / 1.4.7:
Covalent Functionalization / 1.4.8:
Non-covalent Functionalization / 1.4.9:
Interaction with Biomolecules / 1.4.10:
Endrohedral Filling / 1.4.11:
Functionalization Using Fluorous Chemistry and Click Chemistry / 1.4.12:
Electronic Properties / 1.5:
Phase Transitions and Fluid Mechanics / 1.6:
Carbon Nanotube Composites / 1.7:
Applications, Potential and Otherwise / 1.8:
Electronic Applications / 1.8.1:
Field-effect Transistors and Related Devices / 1.8.2:
Field Emission / 1.8.3:
Energy Storage and Conversion: Supercapacitors, Solar Cells and Actuators / 1.8.4:
Sensors and Probes / 1.8.5:
Biological Aspects / 1.8.6:
Mechanical Properties and Related Devices / 1.8.7:
Lithium Batteries / 1.8.8:
Gas Adsorption and Hydrogen Storage / 1.8.9:
Other Useful Properties and Devices / 1.8.10:
References
Inorganic Nanotubes / Chapter 2:
Synthetic Methods / 2.1:
Specific Cases / 2.3:
Nanotubes of Elemental Materials / 2.3.1:
Metal Chalcogenide Nanotubes / 2.3.2:
Pnictide Nanotubes / 2.3.3:
Nanotubes of Carbides and other Materials / 2.3.4:
Metal Oxide Nanotubes / 2.3.5:
Complex Inorganic Nanostructures Based on Nanotubes / 2.3.6:
Properties and Applications / 2.4:
Mechanical Properties / 2.4.1:
Electronic, Magnetic, Optical and Related Properties / 2.4.2:
Tribological Properties / 2.4.3:
Thermal Properties / 2.4.4:
Solubilization and Functionalization / 2.4.5:
Applications / 2.4.6:
Inorganic Nanowires / Chapter 3:
Synthetic Strategies / 3.1:
Vapour Phase Growth / 3.2.1:
Vapour-Liquid-Solid Growth / 3.2.2:
Oxide-assisted Growth / 3.2.3:
Vapour-Solid Growth / 3.2.4:
Carbo-thermal Reactions / 3.2.5:
Solution-based Growth / 3.2.6:
Anisotropic Structures / 3.2.7:
Template-based Synthesis / 3.2.8:
Solution-Liquid-Solid Process / 3.2.9:
Solvothermal Synthesis / 3.2.10:
Growth Control and Integration / 3.2.11:
Elemental Nanowires / 3.3:
Silicon / 3.3.1:
Germanium / 3.3.2:
Boron / 3.3.3:
In, Sn, Pb, Sb and Bi / 3.3.4:
Se and Te / 3.3.5:
Gold / 3.3.6:
Silver / 3.3.7:
Iron and Cobalt / 3.3.8:
Nickel and Copper / 3.3.9:
Other Metals and Alloys / 3.3.10:
Metal Oxide Nanowires / 3.4:
MgO / 3.4.1:
A12O3, Ga203 and ln203 / 3.4.2:
SnO2 / 3.4.3:
CeO2 / 3.4.4:
SiO2 and Ge02 / 3.4.5:
TiO2 / 3.4.6:
CrO2, Mn02 and Mn304 / 3.4.7:
CuxO / 3.4.8:
ZnO / 3.4.9:
Vanadium and Tungsten Oxides / 3.4.10:
Other Binary Oxides / 3.4.11:
Ternary and Quarternary Oxides / 3.4.12:
Metal Nitride Nanowires / 3.5:
Boron Nitride / 3.5.1:
Aluminium Nitride / 3.5.2:
Gallium Nitride / 3.5.3:
Indium Nitride / 3.5.4:
Si3N4 and Si2N2O / 3.5.5:
Metal Carbide and Boride Nanowires / 3.6:
Boron Carbide / 3.6.1:
Silicon Carbide / 3.6.2:
Borides / 3.6.3:
Metal Chalcogenide Nanowires / 3.7:
Cadmium Sulfide / 3.7.1:
CdSe and CdTe / 3.7.2:
PbS, PbSe and PbTe / 3.7.3:
Bismuth Chalcogenides / 3.7.4:
CuS and CuSe / 3.7.5:
ZnS and ZnSe / 3.7.6:
NbS2, NbSe2 and NbSe3 / 3.7.7:
Other Chalcogenides / 3.7.8:
GaAs, InP and other Semiconductor Nanowires / 3.8:
Gallium Arsenide / 3.8.1:
InP and GaP / 3.8.2:
Miscellaneous Nanowires / 3.9:
Coaxial Nanowires and Coating Nanowires / 3.9.1:
Self Assembly and Functionalization / 3.10:
Useful Properties and Potential Applications / 3.11:
Optical Properties / 3.11.1:
Electrical and Magnetic Properties / 3.11.2:
Transistors and Devices / 3.11.3:
Energy Storage and Conversion / 3.11.4:
Electromechanical Devices / 3.11.6:
Subject Index / 3.11.7:
Carbon Nanotubes / Chapter 1:
Introduction / 1.1:
Synthesis / 1.2:
37.

図書

図書
Philip J. Armitage
出版情報: New York : Cambridge University Press, 2010  x, 284 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Observations of planetary systems / 1:
Solar System planets / 1.1:
The minimum mass Solar Nebula / 1.1.1:
Minor bodies in the Solar System / 1.2:
Radioactive dating of the Solar System / 1.3:
The snowline in the Solar Nebula / 1.4:
Chondritic meteorites / 1.5:
Extrasolar planetary systems / 1.6:
Direct imaging / 1.6.1:
Radial velocity searches / 1.6.2:
Astrometry / 1.6.3:
Transits / 1.6.4:
Gravitational microlensing / 1.6.5:
Properties of extrasolar planets / 1.7:
Further reading / 1.8:
Protoplanetary disk structure / 2:
Disks in the context of star formation / 2.1:
Classification of Young Stellar Objects / 2.1.1:
Vertical structure / 2.2:
Radial force balance / 2.3:
Radial temperature profile of passive disks / 2.4:
Razor-thin disks / 2.4.1:
Flared disks / 2.4.2:
Radiative equilibrium disks / 2.4.3:
The Chiang-Goldreich model / 2.4.4:
Spectral energy distributions / 2.4.5:
Opacity / 2.5:
Opacity in the optically thin outer disk / 2.5.1:
Analytic opacities / 2.5.2:
The condensation sequence / 2.6:
Ionization state of protoplanetary disks / 2.7:
Thermal ionization / 2.7.1:
Nonthermal ionization / 2.7.2:
Protoplanetary disk evolution / 2.8:
Observations of disk evolution / 3.1:
Surface density evolution of a thin disk / 3.2:
The viscous time scale / 3.2.1:
Solutions to the disk evolution equation / 3.2.2:
Temperature profile of accreting disks / 3.2.3:
Vertical structure of protoplanetary disks / 3.3:
The central temperature of accreting disks / 3.3.1:
Shakura-Sunyaev ? prescription / 3.3.2:
Vertically averaged solutions / 3.3.3:
Angular momentum transport mechanisms / 3.4:
The Rayleigh criterion / 3.4.1:
The magnetorotational instability / 3.4.2:
Disk winds and magnetic braking / 3.4.3:
Hydrodynamic turbulence / 3.4.4:
Fffects of partial ionization on disk evolution / 3.5:
Layered disks / 3.5.1:
Disk dispersal / 3.6:
Photoevaporation / 3.6.1:
Viscous evolution with photoevaporation / 3.6.2:
Magnetospheric accretion / 3.7:
Planetesiroal formation / 3.8:
Aerodynamic drag on solid particles / 4.1:
Epstein drag / 4.1.1:
Stokes drag / 4.1.2:
Dust settling / 4.2:
Single particle settling with coagulation / 4.2.1:
Settling in the presence of turbulence / 4.2.2:
Radial drift of solid particles / 4.3:
Radial drift with coagulation / 4.3.1:
Particle concentration at pressure maxima / 4.3.2:
Turbulent radial diffusion / 4.3.3:
Diffusion of large particles / 4.4:
Planetesimal formation via coagulation / 4.5:
Coagulation equation / 4.5.1:
Sticking efficiencies / 4.5.2:
Goldreich-Ward mechanism / 4.6:
Gravitational stability of a particle layer / 4.6.1:
Application to planetesimal formation / 4.6.2:
Self-excited turbulence / 4.6.3:
Routes to planetesimal formation / 4.7:
Terrestrial planet formation / 4.8:
Physics of collisions / 5.1:
Gravitational focusing / 5.1.1:
Shear versus dispersion dominated encounters / 5.1.2:
Accretion versus disruption / 5.1.3:
Statistical models of planetary growth / 5.2:
Approximate treatment / 5.2.1:
Shear and dispersion dominated limits / 5.2.2:
Isolation mass / 5.2.3:
Velocity dispersion / 5.3:
Viscous stirring / 5.3.1:
Dynamical friction / 5.3.2:
Gas drag / 5.3.3:
Analytic formulae for planetary growth / 5.4:
Collisional damping and turbulent excitation / 5.5:
Final assembly / 5.6:
Giant planet formation / 5.8:
Core accretion / 6.1:
Core/envelope structure / 6.1.1:
Critical core mass / 6.1.2:
Growth of giant planets / 6.1.3:
Disk instability / 6.2:
Fragmentation conditions / 6.2.1:
Disk cooling time scale / 6.2.2:
Comparison with observations / 6.3:
Early evolution of planetary systems / 6.4:
Migration in gaseous disks / 7.1:
Resonant torques / 7.1.1:
Type 1 migration / 7.1.2:
Type 2 migration / 7.1.3:
Applications / 7.1.4:
Resonant evolution / 7.2:
Resonant capture / 7.2.1:
Kozai resonance / 7.2.2:
Migration in planetesimal disks / 7.3:
Application to the outer Solar System / 7.3.1:
The Nice Model / 7.3.2:
Application to extrasolar planetary systems / 7.3.3:
Planetary system stability / 7.4:
Hill stability / 7.4.1:
Planet-planet scattering / 7.4.2:
Physical and astronomical constants / 7.5:
N-body methods / Appendix 2:
References
Index
Preface
Observations of planetary systems / 1:
Solar System planets / 1.1:
38.

学位論文

学位
by Shunsuke Yoshizawa
出版情報: 東京 : 東京工業大学, 2010
所蔵情報: loading…
39.

図書

図書
Richard J. Szabo
出版情報: London : Imperial College Press, c2011  xv, 148 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to Second Edition
Preface to First Edition
A Brief History of String Theory / Chapter 1:
Classical String Theory / Chapter 2:
The Relativistic Particle / 2.1:
Reparametrization Invariance / 2.1.1:
Examples / 2.1.2:
The Bosonic String / 2.2:
Worldsheet Symmetries / 2.2.1:
String Equations of Motion / 2.3:
Mode Expansions / 2.3.1:
Mass-Shell Constraints / 2.3.2:
Quantization of the Bosonic String / Chapter 3:
Canonical Quantization / 3.1:
Normal Ordering / 3.1.1:
The Physical String Spectrum / 3.2:
The Open String Spectrum / 3.2.1:
The Closed String Spectrum / 3.2.2:
Worldsheet-Spacetime Interplay / 3.2.3:
Vertex Operators / 3.3:
String Perturbation Theory / 3.3.1:
Chan-Paton Factors / 3.5:
Superstrings / Chapter 4:
Motivation / 4.1:
The RNS Superstring / 4.2:
The Superstring Spectrum / 4.2.1:
The Open Superstring Spectrum / 4.3.1:
The Closed Superstring Spectrum / 4.3.2:
The GSO Projection / 4.4:
Spacetime Supersymmetry / 4.4.1:
Example: One-Loop Vacuum Amplitude / 4.5:
Fermionic Spin Structures / 4.5.1:
Ramond-Ramond Charges and T-Duality / Chapter 5:
Ramond-Ramond Charges / 5.1:
Remarks on Superstring Types / 5.1.1:
Type II Ramond-Ramond States / 5.1.2:
T-Duality for Closed Strings / 5.1.3:
String Geometry / 5.2.1:
T-Duality for Open Strings / 5.3:
T-Duality for Type II Superstrings / 5.4:
D-Branes and Gauge Theory / Chapter 6:
D-Branes / 6.1:
Wilson Lines / 6.2:
D-Brane Terminology / 6.2.1:
Collective Coordinates for D-Branes / 6.3:
Non-Abelian Gauge Symmetry / 6.3.1:
The Born-Infeld Action / 6.4:
D-Brane Dynamics / Chapter 7:
The Dirac-Born-Infeld Action / 7.1:
Example / 7.1.1:
Supergravity Couplings / 7.1.2:
Supersymmetric Yang-Mills Theory / 7.2:
Forces Between D-Branes / 7.2.1:
BPS States / 7.3.1:
Ramond-Ramond Couplings of D-Branes / Chapter 8:
D-Brane Anomalies / 8.1:
Chern-Simons Actions / 8.2:
Branes within Branes / 8.3:
Solutions to Exercises / Chapter 9:
Bibliography
Index
Preface to Second Edition
Preface to First Edition
A Brief History of String Theory / Chapter 1:
40.

図書

図書
Slobodan P. Simonović
出版情報: Hoboken, N.J. : Wiley, c2011  xxxiv, 308 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
List of Figures and Tables
About the Author
Foreword
Preface
List of Acronyms and Abbreviations
Management of Disasters / I:
Introduction / 1:
Issues in Management of Disasters-Personal Experience / 1.1:
Red River Flooding / 1.1.1:
"Red River Flood of the Century," Manitoba, Canada / 1.1.2:
Tools for Management of Disasters-Two New Paradigms / 1.2:
The Complexity Paradigm / 1.2.1:
The Uncertainty Paradigm / 1.2.2:
Conclusions / 1.3:
References
Exercises
Integrated Disaster Management / 2:
Definition / 2.1:
Integrated Disaster Management Activities / 2.2:
Mitigation / 2.2.1:
Preparedness / 2.2.2:
Response / 2.2.3:
Recovery / 2.2.4:
Disaster Management in Canada-Brief Overview / 2.3:
Emergency Management Act / 2.3.1:
National Disaster Mitigation Strategy / 2.3.2:
Joint Emergency Preparedness Program / 2.3.3:
Emergency Response / 2.3.4:
The Role of Federal Government in Disaster Recovery / 2.3.5:
Decision Making and Integrated Disaster Management / 2.4:
Individual Decision Making / 2.4.1:
Decision Making in Organizations / 2.4.2:
Decision Making in Government / 2.4.3:
Systems View of Integrated Disaster Management / 2.5:
Systems Analaysis for Integrated Management of Disasters / II:
Systems Thinking and Integrated Disaster Management / 3:
System Definitions / 3.1:
What is a System? / 3.1.1:
Systems Thinking / 3.1.2:
Systems Analysis / 3.1.3:
The Systems Approach / 3.1.4:
Systems "Engineering" / 3.1.5:
Feedback / 3.1.6:
Mathematical Modeling / 3.1.7:
A Classification of Systems / 3.1.8:
A Classification of Mathematical Models / 3.1.9:
A Systems Typology in Integrated Disaster Management / 3.2:
Systems View of Disaster Management / 3.2.2:
Systems View of Disaster Management Activities / 3.2.3:
Systems Formulation Examples / 3.3:
Dynamics of Epidemics / 3.3.1:
Shortest Supply Route / 3.3.2:
Resources Allocation / 3.3.3:
Introduction to Methods and Tools for a Systems Approach to Management of Disaster / 4:
Simulation / 4.1:
System Dynamics Simulation / 4.2:
Optimization / 4.3:
Multiobjective Analysis / 4.4:
Disaster Risk Management / 4.5:
Sources of Uncertainty / 4.5.1:
Conceptual Risk Definitions / 4.5.2:
Probabilistic Approach / 4.5.3:
A Fuzzy Set Approach / 4.5.4:
Computer Support: Decision Support Systems / 4.6:
Implementation of Systems Analysis to Management of Disasters / III:
Definitions / 5:
System Structure and Patterns of Behavior / 5.2:
System Dynamics Simulation Modeling Process / 5.3:
Causal Loop Diagram / 5.3.1:
Stock and Flow Diagram / 5.3.2:
Generic Principles of System Dynamics Simulation Modeling / 5.3.3:
Numerical Simulation / 5.3.4:
Policy Design and Evaluation-Model Use / 5.3.5:
System Dynamics Simulation Modeling Examples / 5.4:
A Simple Flu Epidemic Model / 5.4.1:
A More Complex Flu Epidemic Model with Recovery / 5.4.2:
An Example of Disaster Management Simulation-Flood Evacuation Simulation Model / 5.5:
Human Behavior During Disasters / 5.5.1:
A System Dynamics Simulation Model / 5.5.3:
Application of the Evacuation Model to the Analyses of Flood Emergency Procedures in the Red River Basin, Manitoba, Canada / 5.5.4:
Linear Programming / 5.5.5:
Formulation of Linear Optimization Models / 6.1.1:
Algebraic Representations of Linear Optimization Models / 6.1.2:
The Simplex Method for Solving Linear Programs / 6.2:
Completeness of the Simplex Algorithm / 6.2.1:
The Big M Method / 6.2.2:
Duality in LP / 6.3:
Sensitivity Analysis / 6.3.1:
Special Types of LP Problems-Transportation Problem / 6.4:
Formulation of the Transportation Problem / 6.4.1:
Solution of the Transportation Problem / 6.4.2:
Special Types of LP Problems-Network Problems / 6.5:
The Shortest Path Problem / 6.5.1:
The Minimum Spanning Tree Problem / 6.5.2:
The Maximum Flow Problem / 6.5.3:
An Example of Disaster Management Optimization-The Optimal Placement of Casualty Evacuation Assets / 6.6:
The OPTEVAC Model / 6.6.1:
A Casualty Evacuation Example / 6.6.3:
Summary / 6.6.4:
Toward Operational Framework for Multiobjective Analysis / 7:
An Illustrative Example / 7.1.2:
Multiobjective Analysis Methodology / 7.2:
Change of Concept / 7.2.1:
Nondominated Solutions / 7.2.2:
Participation of Decision Makers / 7.2.3:
Classification of Multiobjective Techniques / 7.2.4:
Disaster Management Applications / 7.2.5:
The Weighting Method / 7.3:
The Compromise Programming Method / 7.4:
Compromise Programming / 7.4.1:
Some Practical Recommendations / 7.4.2:
The COMPRO Computer Program / 7.4.3:
An Example of Disaster Management Multiobjective Analysis-Selection of Flood Management Alternative / 7.5:
Preparation of Input Data / 7.5.1:
Solution of Flood Management Problem Using Compromise Programming / 7.5.2:
Be Prepared / 7.5.3:
A View Ahead / 8:
Issues in Future Disaster Management / 8.1:
Climate Change / 8.1.1:
Population Growth and Migrations / 8.1.2:
A Systems View / 8.2:
Index
List of Figures and Tables
About the Author
Foreword
41.

図書

図書
Paul Murrell
出版情報: Boca Raton : CRC Press, c2019  xvii, 423 p. ; 24 cm
シリーズ名: The R series
A Chapman & Hall book
所蔵情報: loading…
目次情報: 続きを見る
Preface
An Introduction to R Graphics / 1:
R graphics examples / 1.1:
Standard plots / 1.1.1:
Trellis plots / 1.1.2:
The grammar of graphics / 1.1.3:
Specialized plots / 1.1.4:
General graphical scenes / 1.1.5:
The organization of R graphics / 1.2:
Base graphics versus grid graphics / 1.2.1:
Base Graphics / I:
Simple Usage of Base Graphics / 2:
The base graphics model / 2.1:
The plot() function / 2.2:
Plots of a single variable / 2.3:
Plots of two variables / 2.4:
Plots of many variables / 2.5:
Arguments to graphics functions / 2.6:
Standard arguments to graphics functions / 2.6.1:
Customizing Base Graphics / 2.7:
The base graphics model in more detail / 3.1:
Plotting regions / 3.1.1:
The base graphics state / 3.1.2:
Controlling the appearance of plots / 3.2:
Colors / 3.2.1:
Lines / 3.2.2:
Text / 3.2.3:
Data symbols / 3.2.4:
Axes / 3.2.5:
Clipping / 3.2.6:
Moving to a new plot / 3.2.8:
Arranging multiple plots / 3.3:
Using the base graphics state / 3.3.1:
Layouts / 3.3.2:
The split-screen approach / 3.3.3:
Annotating plots / 3.4:
Annotating the plot region / 3.4.1:
Annotating the margins / 3.4.2:
Legends / 3.4.3:
Coordinate systems / 3.4.4:
Special cases / 3.4.6:
Creating new plots / 3.5:
A simple plot from scratch / 3.5.1:
A more complex plot from scratch / 3.5.2:
Writing base graphics functions / 3.5.3:
Interactive graphics / 3.6:
Grid Graphics / II:
Trellis Graphics: The lattice Package / 4:
The lattice graphics model / 4.1:
Why another graphics system? / 4.1.1:
Lattice plot types / 4.2:
The formula argument and multipanel conditioning / 4.3:
The group argument and legends / 4.4:
The layout argument and arranging plots / 4.5:
The scales argument and labeling axes / 4.6:
The panel argument and annotating plots / 4.7:
Adding output to a lattice plot / 4.7.1:
Par. settings and graphical parameters / 4.8:
The Grammar of Graphics: The ggplot2 Package / 5:
Quick plots / 5.1:
The ggplot2 graphics model / 5.2:
Data / 5.2.1:
Geoms and aesthetics / 5.4:
Scales / 5.5:
Statistical transformations / 5.6:
The group aesthetic / 5.7:
Position adjustments / 5.8:
Coordinate transformations / 5.9:
Facets / 5.10:
Themes / 5.11:
Annotating / 5.12:
Extending ggplot2 / 5.13:
The grid Graphics Model / 6:
A brief overview of grid graphics / 6.1:
A simple example / 6.1.1:
Graphical primitives / 6.2:
Graphical utilities / 6.2.1:
Standard arguments / 6.2.2:
Conversion functions / 6.2.3:
Complex units / 6.3.2:
Controlling the appearance of output / 6.4:
Specifying graphical parameter settings / 6.4.1:
Vectorized graphical parameter settings / 6.4.2:
Viewports / 6.5:
Pushing, popping, and navigating between viewports / 6.5.1:
Clipping to viewports / 6.5.2:
Viewport lists, stacks, and trees / 6.5.3:
Viewports as arguments to graphical primitives / 6.5.4:
Graphical parameter settings in viewports / 6.5.5:
Missing values and non-finite values / 6.5.6:
Customizing lattice plots / 6.7:
Adding grid output to lattice output / 6.8.1:
Adding lattice output to grid output / 6.8.2:
Customizing ggplot2 output / 6.9:
Adding grid output to ggplot2 output / 6.9.1:
Adding ggplot2 output to grid output / 6.9.2:
The grid Graphics Object Model / 7:
Working with graphical output / 7.1:
Listing graphical objects / 7.2:
Selecting graphical objects / 7.3:
Grab lists, trees, and paths / 7.4:
Graphical parameter settings in gTrees / 7.4.1:
Searching for grobs / 7.5:
Editing graphical context / 7.6:
Forcing graphical objects / 7.7:
Working with graphical objects off-screen / 7.8:
Reordering graphical objects / 7.9:
Capturing output / 7.10:
Querying grobs / 7.11:
Calculating the sizes of grobs / 7.11.1:
Calculating the positions of grobs / 7.11.2:
Placing and packing grobs in frames / 7.12:
Placing and packing off-screen / 7.12.1:
Display lists / 7.13:
Working with lattice grobs / 7.14:
Working with ggplot2 grobs / 7.15:
Developing New Graphical Functions and Objects / 8:
An example / 8.1:
Graphical functions / 8.2:
Modularity / 8.2.1:
Embeddable output / 8.2.2:
Editable output / 8.2.3:
Annotatable output / 8.2.4:
Graphical objects / 8.3:
Defining a static grob / 8.3.1:
Editable grobs / 8.3.2:
Defining a static grob with drawing context / 8.3.3:
Defining a dynamic grob / 8.3.4:
Forcing grobs / 8.3.5:
Reverting grobs / 8.3.6:
Defining a dynamic grob with drawing context / 8.3.7:
Querying graphical objects / 8.3.8:
Summary of graphical object methods / 8.3.9:
Calculations during drawing / 8.3.10:
Avoiding argument explosion / 8.3.11:
Mixing graphical functions and graphical objects / 8.4:
Debugging grid / 8.5:
The Graphics Engine / III:
Graphics Formats / 9:
Graphics devices / 9.1:
Graphical output formats / 9.2:
Vector formats / 9.2.1:
Raster formats / 9.2.2:
R Studio / 9.2.3:
Including R graphics in other documents / 9.3:
Latex / 9.3.1:
"Productivity" software / 9.3.2:
Web pages / 9.3.3:
Device-specific features / 9.4:
Multiple pages of output / 9.5:
Extension packages / 9.6:
Graphical Parameters / 10:
Semitransparent colors / 10.1:
Converting colors / 10.1.2:
Color sets / 10.1.3:
Device dependency of color specifications / 10.1.4:
Line styles / 10.2:
Line widths / 10.2.1:
Line types / 10.2.2:
Line ends and joins / 10.2.3:
Fonts / 10.3:
Font family / 10.4.1:
Font face / 10.4.2:
Multi-line text / 10.4.3:
Locales / 10.4.4:
Escape sequences / 10.4.5:
Anti-aliasing / 10.4.6:
Mathematical formulae / 10.5:
Integrating Graphics Systems / IV:
Importing Graphics / 11:
The Moon and the tides / 11.1:
Importing raster graphics / 11.2:
Importing vector graphics / 11.3:
The grImport package / 11.3.1:
The grImport2 package / 11.3.2:
Combining Graphics Systems / 12:
The gridBase package / 12.1:
Annotating base graphics using grid / 12.1.1:
Base graphics in grid viewports / 12.1.2:
Problems and limitations of gridBase / 12.1.3:
The gridGraphics package / 12.2:
Editing base graphics using grid / 12.2.1:
Problems and limitations of gridGraphics / 12.2.2:
Advanced Graphics / 13:
Exporting SVG / 13.1:
SVG advanced features / 13.2:
Gradient fills / 13.2.1:
Pattern fills / 13.2.2:
Filters / 13.2.3:
Clipping paths / 13.2.4:
Masks / 13.2.5:
SVG drawing context / 13.3:
SVG definitions / 13.4:
Drawing off screen / 13.5:
SVG fonts / 13.6:
Exporting base graphics / 13.7:
Exporting to other formats / 13.8:
Exporting imported images / 13.9:
Bibliography
Index
Preface
An Introduction to R Graphics / 1:
R graphics examples / 1.1:
42.

図書

図書
Eleftherios Papantonopoulos, editor
出版情報: Berlin : Springer, c2011  xviii, 425 p. ; 24 cm
シリーズ名: Lecture notes in physics ; 828
所蔵情報: loading…
目次情報: 続きを見る
Introduction to the AdS/CFT Correspondence / Part I:
Introduction to Anti de Sitter Black Holes / 1:
Spacetimes of Constant Curvature / 1.1:
Spaces of Maximal Symmetry and Constant Curvature / 1.1.1:
Flat Spacetime / 1.1.2:
Anti de Sitter Spacetime / 1.1.3:
Static Black Holes / 1.2:
Basic Properties / 1.2.1:
Thermodynamics / 1.2.2:
Beyond Static Black Holes / 1.3:
References
Perturbations of Anti de Sitter Black Holes / 2:
Introduction / 2.1:
Perturbations / 2.2:
Scalar Perturbations / 2.2.1:
Gravitational Perturbations / 2.2.2:
Electromagnetic Perturbations / 2.2.3:
Hydrodynamics / 2.3:
Vector Perturbations / 2.3.1:
Tensor Perturbations / 2.3.2:
Hydrodynamics on the AdS boundary / 2.3.4:
Conformal Soliton Flow / 2.3.5:
Phase Transitions / 2.4:
K = 0 / 2.4.1:
K = -1 / 2.4.2:
Conclusion / 2.5:
CFTs / 3:
Conformal Algebra / 3.2.1:
Local Field Operators / 3.2.2:
Conformal Correlators / 3.2.3:
AdS/CFT Correspondence / 3.3:
AdS Geometry / 3.3.1:
Partition Function / 3.3.2:
Semi-classical Gravity Limit / 3.3.3:
Large N / 3.4:
SYM from D-Branes / 3.5:
D3-Brane Near Horizon Geometry / 3.5.2:
Strong/Weak Duality / 3.5.3:
Extensions / 3.6:
Holography and the AdS/CFT Correspondence / Part II:
Improved Holographic QCD / 4:
The 5D Model / 4.1:
Scheme Dependence / 4.3:
The Potential and the Parameters of the Model / 4.4:
The Normalization of the Coupling Constant ? / 4.4.1:
The AdS Scale l / 4.4.2:
The UV Expansion Coefficients of V(?) / 4.4.3:
The String Length / 4.4.4:
Integration Constants / 4.4.6:
Latent Heat and Equation of State / 4.5:
Glueball Spectrum / 4.5.2:
Critical Temperature / 4.5.3:
String Tension / 4.5.4:
CP-odd Sector / 4.5.5:
Coupling Normalization / 4.5.6:
Bulk Viscosity / 4.6:
The Holographic Computation / 4.6.1:
The Adiabatic Approximation / 4.6.2:
Buchel's Bound / 4.6.4:
The Drag Force on Strings and Heavy Quarks / 4.7:
The Drag Force / 4.7.1:
The Relativistic Asymptotics / 4.7.2:
The Non-relativistic Asymptotics / 4.7.3:
The Diffusion Time / 4.7.4:
Including the Correction to the Quark Mass / 4.7.5:
Temperature Matching and Diffusion Time Estimates / 4.7.6:
Jet Quenching Parameter / 4.8:
Discussion and Outlook / 4.9:
Drag Force / 4.9.1:
Diffusion Time / 4.9.3:
Jet Quenching / 4.9.4:
The Dynamics of Quark-Gluon Plasma and AdS/CFT / 5:
The AdS/CFT Correspondence / 5.1:
Effective Degrees of Freedom at Strong Coupling / 5.2.1:
Why study N = 4 Plasma? / 5.3:
The AdS/CFT for Studying Real-Time Dynamics of Plasma / 5.4:
Exact Analytical Examples / 5.4.1:
A Case Study: Static Uniform Plasma / 5.5.1:
A Case Study: A Planar Shock Wave / 5.5.2:
Boost-Invariant Flow / 5.6:
Large Proper Time Behaviour / 5.7:
The AdS/CFT Analysis / 5.7.1:
Perfect Fluid Geometry / 5.7.2:
Plasma Dynamics Beyond Perfect Fluid / 5.8:
Interlude: Hydrodynamics Redux / 5.9:
Plasma Dynamics Beyond Hydrodynamics / 5.10:
Dynamics at Small Proper Time / 5.11:
The Absence of a Scaling Variable / 5.11.1:
The Existence of a Regular Initial Condition / 5.11.2:
The Classification of Possible Initial Conditions / 5.11.3:
An Analysis of Some Aspects of the Small Proper Time Behaviour of ?(?) / 5.11.4:
Conclusions / 5.12:
Appendix
Fluid Dynamics from Gravity / 6:
Quantum Gravity / 6.1:
Universal Implications / 6.1.2:
QCD / 6.1.3:
Fluid Dynamics / 6.1.4:
Background / 6.2:
Conformal Fluid Dynamics / 6.2.1:
Gravity in the Bulk / 6.2.2:
Fluid/Gravity Map / 6.2.3:
Construction of Bulk Metric and Boundary Stress Tensor / 6.3:
0th Order / 6.3.1:
1st Order / 6.3.2:
Solution to Second Order / 6.4:
The Spacetime Geometry Dual to Fluids / 6.4.1:
Summary / 6.5:
The Gauge-Gravity Duality and Heavy Ion Collisions / 7:
The Wake of a Quark / 7.1:
Jet Correlations at RHIC / 7.1.1:
A Holographic Computation / 7.1.2:
Entropy Production / 7.2:
AdS/CFT on the Brane / 8:
Braneworlds in AdS Spacetime / 8.1:
RS Models / 8.2.1:
Cosmology / 8.2.2:
View from the Brane / 8.3:
Geometrical Holography / 8.3.1:
Does AdS/CFT Play Any Role in Braneworld? / 8.4:
Single-Brane Model / 8.4.1:
Two-Brane Model / 8.4.2:
Gradient Expansion Method / 8.5:
Single Brane Model (RS2) / 8.6:
Einstein Gravity at Lowest Order / 8.6.1:
AdS/CFT Emerges / 8.6.2:
Two-Brane Model (RS1) / 8.7:
Scalar-Tensor Theory Emerges / 8.7.1:
AdS/CFT in Two-Brane System? / 8.7.2:
The Answers / 8.8:
AdS/CFT in Dilatonic Braneworld / 8.8.1:
Dilatonic Braneworld / 8.9.1:
AdS/Radion Correspondence / 8.9.2:
AdS/CFT and KK Corrections: Single-Brane Cases / 8.9.3:
Condensed Matter and the AdS/CFT Correspondence / 8.10:
Condensed Matter and AdS/CFT / 9:
Model Systems and Their Critical Theories / 9.1:
Coupled Dimer Antiferromagnets / 9.2.1:
Deconfined Criticality / 9.2.2:
Graphene / 9.2.3:
Finite Temperature Crossovers / 9.3:
Quantum Critical Transport / 9.4:
Exact Results for Quantum Critical Transport / 9.5:
Hydrodynamic Theory / 9.6:
Relativistic Magnetohydrodynamics / 9.6.1:
Dyonic Black Hole / 9.6.2:
Results / 9.6.3:
d-wave Superconductors / 9.7:
Dirac Fermions / 9.7.1:
Time-Reversal Symmetry Breaking / 9.7.2:
Nematic Ordering / 9.7.3:
Metals / 9.8:
Field Theories / 9.8.1:
Symmetries / 9.8.2:
Scaling Theory / 9.8.3:
Large N Expansion / 9.8.4:
Introduction to Holographic Superconductors / 9.8.5:
Superconductivity / 10.1:
A Gravitational Dual / 10.2:
Probe Limit / 10.3:
Condensate / 10.3.1:
Conductivity / 10.3.2:
Full Solution with Backreaction / 10.4:
Reformulation of the Conductivity / 10.4.1:
Zero Temperature Limit / 10.5:
Adding Magnetic Fields / 10.5.1:
London Equation / 10.6.1:
Correlation Length / 10.6.2:
Vortices / 10.6.3:
Recent Developments / 10.7:
Conclusions and Open Problems / 10.8:
Open Problems / 10.8.1:
Flavor Superconductivity and Superfluidity / 11:
String Motivation / 11.1:
Condensed Matter Motivation / 11.1.2:
Superconductivity and Holography / 11.2:
Basics of Superconductivity and Our Field Theory Idea / 11.2.1:
Holographic Realization / 11.2.2:
Holographic Setup / 11.3:
Flavor from Intersecting Branes / 11.3.1:
Background and Brane Configuration / 11.3.2:
DBI Action and Equations of Motion / 11.3.3:
D-Brane Thermodynamics and Spectrum / 11.4:
Baryon Chemical Potential / 11.4.1:
Isospin Chemical Potential / 11.4.2:
Instabilities and the New Phase / 11.4.3:
Signatures of Super-Something / 11.5:
Thermodynamics of the Broken Phase / 11.5.1:
Fluctuations in the Broken Phase / 11.5.2:
Conductivity and Spectrum / 11.5.3:
Meissner-Ochsenfeld-Effect / 11.5.4:
Interpretation and Conclusion / 11.6:
String Theory Picture / 11.6.1:
Outlook / 11.6.2:
Holographic Torsion and the Prelude to Kalb-Ramond Superconductivity / 12:
Introduction and Summary of the Results / 12.1:
Torsion as the Non-trivial Magnetic Field of Gravity / 12.2:
Details on the the 3 + 1-Split Formalism / 12.2.1:
The Analog of ?-Angle in Gravity / 12.3.1:
Torsion and the Magnetic Field of Gravity / 12.3.2:
The Nieh-Yan Models / 12.4:
General Aspects / 12.4.1:
The 3 + 1-Split of the Pseudoscalar Nieh-Yan Model / 12.4.2:
The Torsion Domain Wall / 12.5:
The Gravity Dual of Parity Symmetry Breaking / 12.6:
Physics in the Bulk: The Superconductor Analogy / 12.7:
Torsion Domain Wall Versus Abrikosov Vortex / 12.7.1:
Domain Wall Condensation / 12.7.2:
Index / 12.8:
Introduction to the AdS/CFT Correspondence / Part I:
Introduction to Anti de Sitter Black Holes / 1:
Spacetimes of Constant Curvature / 1.1:
43.

電子ブック

EB
edited by R. Morris Bullock
出版情報: Weinheim : Wiley-VCH, 〓2010  1 online resource (xviii, 290 pages)
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
H* Transfer Between M-H Bonds and Organic Radicals / 1.1:
H* Transfer Between Ligands and Organic Radicals / 1.2:
H* Transfer Between M-H and C-C Bonds / 1.3:
Chain Transfer Catalysis / 1.4:
Catalysis of Radical Cydizations / 1.5:
Competing Methods for the Cyclization of Dienes / 1.6:
Summary and Conclusions / 1.7:
References
Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum / Richard R. Schrock2:
Some Characteristics of Triamidoamine Complexes / 2.1Introduction:
Possible [HIPTN3N]Mo Intermediates in a Catalytic Reduction of Molecular Nitrogen / 2.3:
MoN2 and MoN2- / 2.3.1:
Mo-N=NH / 2.3.2:
Conversion of Mo(N2) into Mo-N=NH / 2.3.3:
[Mo=N-NH2]+ / 2.3.4:
Mo=N and [Mo=NH]+ / 2.3.5:
Mo(NH3) and [Mo(NH3)+ / 2.3.6:
Interconversion of Mo(NH3) and Mo(N2) / 2.4:
Catalytic Reduction of Dinitrogen / 2.5:
MoH and Mo(H2) / 2.6:
Ligand and Metal Variations / 2.7:
Comments / 2.8:
Acknowledgements
Molybdenum and Tungsten Catalysts for Hydrogenation, Hydrosilylation and Hydrolysis / R. Morris Bullock3:
Introduction / 3.1:
Proton Transfer Reactions of Metal Hydrides / 3.2:
Hydride Transfer Reactions of Metal Hydrides / 3.3:
Stoichiometric Hydride Transfer Reactivity of Anionic Metal Hydride Complexes / 3.4:
Catalytic Hydrogenation of Ketones with Anionic Metal Hydrides / 3.5:
Ionic Hydrogenation of Ketones Using Metal Hydrides and Added Acid / 3.6:
Ionic Hydrogenations from Dihydrides: Delivery of the Proton and Hydride from One Metal / 3.7:
Catalytic Ionic Hydrogenations With Mo and W Catalysts / 3.8:
Mo Phosphine Catalysts With Improved lifetimes / 3.9:
Tungsten Hydrogenation Catalysts with N-Heterocyclic Carbene Ligands / 3.10:
Catalysts for Hydrosilylation of Ketones / 3.11:
Cp2Mo Catalysts for Hydrolysis, Hydrogenations and Hydrations / 3.12:
Conclusion / 3.13:
Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions / Paul J. Chink4:
Alkene Hydrogenation / 4.1:
Iron Carbonyl Complexes / 4.2.1:
Iron Phosphine Compounds / 4.2.2:
Bis(imino)pyridine Iron Complexes / 4.2.3:
α-Diimine Iron Complexes / 4.2.4:
Carbonyl Hydrogenation / 4.3:
Hydrosilylation / 4.3.1:
Bifunctional Complexes / 4.3.2:
Outlook / 4.4:
Olefin Oligomerizations and Polymerizations Catalyzed by Iron and Cobalt Complexes Bearing Bis(imino)pyridine Ligands / Vernon C. Gibson ; Gregory A. Solan5:
Precatalyst Synthesis / 5.1:
Ligand Preparation / 5.2.1:
Complexation with MX2 (M = Fe, Co) / 5.2.2:
Precatalyst Activation and Catalysis / 5.3:
Olefin Polymerization / 5.3.1:
Catalytic Evaluation / 5.3.1.1:
Steric Versus Electronic Effects / 5.3.1.2:
Effect of MAO Concentration / 5.3.1.3:
Effects of Pressure and Temperature / 5.3.1.4:
α-Olefin Monomers / 5.3.1.5:
Olefin Oligomerization / 5.3.2:
Substituent Effects / 5.3.2.1:
Schulz-Flory Distributions / 5.3.2.3:
Poisson Distributions / 5.3.2.4:
The Active Catalyst and Mechanism / 5.3.2.5:
Active Species / 5.4.:
Iron Catalyst / 5.4.1.1:
Cobalt Catalyst / 5.4.1.2:
Propagation and Chain Transfer Pathways/Theoretical Studies / 5.4.2:
Well-Defined Iron and Cobalt Alkyls / 5.4.3:
Other Applications / 5.5:
Immobilization / 5.5.1:
Reactor Blending and Tandem Catalysis / 5.5.2:
Conclusions and Outlook / 5.6:
Cobalt and Nickel Catalyzed Reactions Involving C-H and C-N Activation Reactions / Renee Becker ; William D. Jones6:
Catalysis with Cobal / 6.1:
Catalysis with Nickel / 6.3:
A Modular Approach to the Development of Molecular Electrocatalysts for H2 Oxidation and Production Based on Inexpensive Metals / M. Rakowski DuBois ; Daniel L. DuBois7:
Concepts in Catalyst Design Based on Structural Studies of Hydrogenase Enzymes / 7.1:
A Layered or Modular Approach to Catalyst Design / 7.3:
Using the First Coordination Sphere to Control the Energies of Catalytic Intermediates / 7.4:
Using the Second Coordination Sphere to Control the Movement of Protons between the Metal and the Exterior of the Molecular Catalyst / 7.5:
Integration of the First and Second Coordination Spheres / 7.6:
Summary / 7.7:
Nickel-Catalyzed Reductive Couplings and Cyclizations / Hasnain A. Malik ; Ryan D. Baxter ; John Montgomery8:
Couplings of Alkynes with α,β-Unsaturated Carbonyls / 8.1:
Three-Component Couplings via Alkyl Group Transfer-Methods Development / 8.2.1:
Reductive Couplings via Hydrogen Atom Transfer-Methods Development / 8.2.2:
Mechanistic Insights / 8.2.3:
Metallacycle-Based Mechanistic Pathway / 8.2.3.1:
Use in Natural Product Synthesis / 8.2.4:
Couplings of Alkynes with Aldehydes / 8.3:
Three-Component Couplings via Alkyl Group Transfer-Method Development / 8.3.1:
Reductive Couplings via Hydrogen Atom Transfer-Method Development / 8.3.2:
Simple Aldehyde and Alkyne Reductive Couplings / 8.3.2.1:
Directed Processes / 8.3.2.2:
Diastereoselective Variants: Transfer of Chirality / 8.3.2.3:
Asymmetric Variants / 8.3.2.4:
Cydocondensations via Hydrogen Gas Extrusion / 8.3.3:
Copper-Catalyzed Ligand Promoted Ullmann-type Coupling Reactions / Yongwen Jiang ; Dawei Ma8.3.5:
C-N Bond Formation / 9.1:
Arylation of Amines / 9.2.1:
Arylation of Aliphatic Primary and Secondary Amines / 9.2.1.1:
Arylation of Aryl Amines / 9.2.1.2:
Arylation of Ammonia / 9.2.1.3:
Arylation and Vinylation of N-Heterocycles / 9.2.2:
Coupling of Aryl Halides and N-Heterocycles / 9.2.2.1:
Coupling of Vinyl Bromides and N-Heterocycles / 9.2.2.2:
Aromatic Amidation / 9.2.3:
Cross-Coupling of aryl Halides with Amides and Carbamates / 9.2.3.1:
Cross-Coupling of Vinyl Halides with Amides or Carbamates / 9.2.3.2:
Cross-Coupling of Alkynl Halides with Amides or Carbamates / 9.2.3.3:
Azidation / 9.2.4:
C-0 Bond Formation / 19.3:
Synthesis of Diaryl Ethers / 9.3.1:
Aryloxylation of Vinyl Halides / 9.3.2:
Cross-Coupling of Aryl Halides with Aliphatic Alcohols / 9.3.3:
C-C Bond Formation / 9.4:
Cross-Coupling with Terminal Acetylene / 9.4.1:
The Arylation of Activated Methylene Compounds / 9.4.2:
Cyanation / 9.4.3:
C-S Bond Formation / 9.5:
The Formation of Bisaryl- and Arylalkyl-Thioethers / 9.5.1:
The Synthesis of Alkenylsulfides / 9.5.2:
Assembly of aryl Sulfones / 9.5.3:
C-P Bond Formation / 9.6:
Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) / M.G. Finn ; Valery V. Fokin9.7:
Azide-Alkyne Cycloaddition: Basics / 10.1:
Copper-Catalyzed Cycloadditions / 10.3:
Catalysts and Ligands / 10.3.1:
CuAAC with In Situ Generated Azides / 10.3.2:
Mechanistic Aspects of the CuAAC / 10.3.3:
Reactions of Sulfonyl Azides / 10.3.4:
Copper-Catalyzed Reactions with Other Dipolar Species / 10.3.5:
Examples of Application of the CuAAC Reaction / 10.3.6:
Synthesis of Compound libraries for Biological Screening / 10.3.6.1:
Copper-Binding Adhesives / 10.3.6.2:
Representative Experimental Procedures / 10.3.7:
"Frustrated Lewis Pairs": A Metal-Free Strategy for Hydrogenation Catalysis / Douglas W. Stephan11:
Phosphine-Borane Activation of H2 / 11.1:
"Frustrated Lewis Pairs" / 11.2:
Metal-Free Catalytic Hydxogenation / 11.3:
Future Considerations / 11.4:
Index
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
44.

図書

図書
Dominik G. Rabus, Karsten Rebner, Cinzia Sada
出版情報: Berlin : Walter de Gruyter, c2019  xvi, 476 p. ; 24 cm
シリーズ名: De Gruyter textbook
所蔵情報: loading…
目次情報: 続きを見る
Foreword
List of Abbreviations
Introduction / 1:
Materials / 2:
Inorganic materials / 2.1:
Silicon / 2.1.1:
Glass in opto-microfluidics / 2.1.2:
Polymers / 2.2:
Role of polymer composition / 2.2.1:
Role of thermal response in polymers / 2.2.2:
Role of structure order - molecular arrangement / 2.2.3:
Elastomers: PDMS / 2.2.4:
Thermoplastics: PMMA, PC, PVC CBC / 2.2.5:
Thermoset: SU-8 photoresist, polyimide / 2.2.6:
Smart polymers: Hydrogels / 2.2.7:
General properties of polymers in microfluidics / 2.2.8:
Papers / 2.3:
Comparisons / 2.4:
Smart materials / 2.5:
Shape memory materials / 2.5.1:
Smart fluids / 2.5.2:
Magnetostrictive materials / 2.5.3:
Electrostrictive / 2.5.4:
Chromogenic materials / 2.5.5:
Quantum dots (QD) / 2.6:
Nanowires / 2.7:
Conclusion / 2.8:
Further reading
Self-assessment questions
Materials fabrication and patterning techniques / 3:
Fabrication techniques in opto-microfluidics: Film deposition / 3.1:
Evaporation / 3.1.1:
Sputtering techniques / 3.1.2:
Chemical vapor deposition and plasma-enhanced chemical vapor deposition - PECVD / 3.1.3:
Sol-gel coating / 3.1.4:
Epitaxial growth and heteroepitaxial growth / 3.1.6:
Fabrication techniques: Local modification of bulk material properties / 3.2:
Thermal diffusion / 3.2.1:
Ion exchange / 3.2.2:
Material implantation and irradiation / 3.3:
Ion implantation / 3.3.1:
Modification of polymers by radiation / 3.3.2:
Patterning techniques / 3.4:
Photolithography / 3.4.1:
Replication / 3.5:
Replica molding / 3.5.1:
Self Assessment questions
Photonics and biophotonics / 4:
Wave guiding basics / 4.1:
Characterization of optical waveguide based-devices / 4.2:
Types of waveguides / 4.3:
Types of optical fibers / 4.4:
Fabrication methods for optical waveguides / 4.5:
Lithography / 4.5.1:
Dry & wet etching / 4.5.2:
Planar waveguide-based devices / 4.6:
All polymer waveguides / 4.6.1:
Silicon-polymer hybrid waveguides / 4.6.2:
Active photonic devices / 4.7:
Light-emitting diodes (LEDs) / 4.7.1:
Detectors / 4.7.2:
Image sensors / 4.7.3:
Semiconductor lasers / 4.7.4:
Organic LEDs, organic PDs and organic lasers / 4.7.5:
Biology / 4.8:
Cell types / 4.8.1:
Patterning of living cells / 4.8.2:
Fluldlcs and fluid control systems / 4.9:
Valve basics / 5.1:
Introduction into fluidic mechanics / 5.2:
Theory of fluid control elements in systems / 5.3:
Introduction into control theory / 5.4:
Open-loop and closed-loop controls / 5.4.1:
The control loop / 5.4.2:
Adapting the controller to the controlled system / 5.4.3:
Rating and selection of control valves / 5.4.4:
Microvalves / 5.5:
Fabrication of fluidic channels: Bonding / 5.6:
Sensors for Optofluidic systems / 5.7:
Process sensors / 6.1:
Temperature sensors / 6.1.1:
Pressure sensors / 6.1.2:
Flow sensors / 6.1.3:
Level sensors / 6.1.4:
Self-Assessment Questions
Process analytical sensors / 6.2:
The added-value concept / 6.2.1:
Taxonomy / 6.2.2:
Process analyzer categories / 6.2.3:
Spectroscopic in-line monitoring / 6.3:
Industry relevance / 6.3.1:
The interaction of radiation with matter / 6.3.2:
UV-Vis spectroscopy / 6.3.3:
Flow chemistry applications with UV/Vis spectroscopy / 6.3.4:
Fluorescence spectroscopy / 6.3.5:
Infrared spectroscopy / 6.3.6:
Spectrometer components and designs / 6.3.7:
Raman spectroscopy / 6.3.8:
Multivariate data analysis / 6.4:
The importance of data quality / 6.4.1:
Inspect the data / 6.4.2:
Check the process or reference data / 6.4.3:
Bus technologies for optofluidic systems / 6.5:
Optofluidic systems / 7.1:
Specimens and analytical control material / 7.1.1:
Chemicals and calibrators / 7.1.2:
Apparatus / 7.1.3:
BANSAI photometric measurement with laser light / 7.1.4:
Reference method / 7.1.5:
Imprecision / 7.1.6:
Drift / 7.1.7:
Accuracy / 7.1.8:
Method comparison / 7.19:
Linearity / 7.1.10:
Limits of detection and quantification / 7.1.11:
Statistical analysis / 7.1.12:
Festo optofluidic / 7.1.13:
Real-time optical analysis / 7.1.14:
Visualization of hidden information / 7.1.15:
Separation of different fluids / 7.1.16:
Outlook / 7.2:
Glossary of optofluidics terms and definitions / 9:
Chemical resistance properties of materials / 10:
International standards and regulations
AATCC Evaluation Procedures - Textiles
AS/NZS Australian/New Zealand Standards
ASBC - Beer
ASTM Standard Specifications
Din
ICUMSA Sugar Methods
ISO
JIS
SAE J1545
TAPPI Test Methods - Pulp and Paper
USP - Pharmaceuticals
References
Index
Foreword
List of Abbreviations
Introduction / 1:
45.

図書

図書
Hideki Matsumura, Hironobu Umemoto, Karen K. Gleason, Ruud E. I. Schropp
出版情報: Weinheim : Wiley-VCH, c2019  xvi, 421 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Introduction / 1:
Thin Film Technologies / 1.1:
Birth of Cat-CVD / 1.2:
Research History of Cat-CVD and Related Technologies / 1.3:
Structure of This Book / 1.4:
References
Fundamentals for Studying the Physics of Cat-CVD and Difference from PECVD / 2:
Fundamental Physics of the Deposition Chamber / 2.1:
Density of Molecules and Their Thermal Velocity / 2.1.1:
Mean Free Path / 2.1.2:
Equation Expressing the Mean Free Path / 2.1.2.1:
Estimation of Diameter of Molecules or Species / 2.1.2.2:
Examples of Mean Free Path / 2.1.2.3:
Interval Time Between the First Collision and the Second Collision / 2.1.2.4:
Collisions with a Solid Surface / 2.1.3:
Comparison of Collisions of Molecules in Space with Collisions at Chamber Wall / 2.1.3.1:
Residence Time of Species in Chamber / 2.1.4:
Difference Between Cat-CVD and PECVD Apparatuses / 2.2:
Fundamental Features of PECVD / 2.3:
Birth of PECVD / 2.3.1:
Generation of Plasma / 2.3.2:
DC Plasma to RF Plasma / 2.3.3:
Sheath Voltage / 2.3.4:
Density of Decomposed Species in PECVD / 2.3.5:
Number of Collisions Between Electrons and Gas Molecules / 2.3.5.1:
Number of Decomposed Species in PECVD / 2.3.5.2:
Drawbacks of PECVD and Technologies Overcoming Them / 2.4:
Plasma Damage / 2.4.1:
Increase of Frequency in PECVD / 2.4.2:
Power Transferring System / 2.4.3:
Large Area Uniformity for Film Deposition / 2.4.4:
Features of Cat-CVD as Technology Overcoming Drawbacks of PECVD / 2.5:
Rough Calculation of Ranges (R) of Si and H Atoms and Defect Range (Rdefect) Created by Si and H Atoms Implanted with Very Low Energy / 2.A:
Fundamentals for Analytical Methods for Revealing Chemical Reactions in Cat-CVD / 3:
Importance of Radical Species in CVD Processes / 3.1:
Radical Detection Techniques / 3.2:
One-Photon Laser-Induced Fluorescence / 3.3:
General Formulation / 3.3.1:
Validity of the Assumption of a Two-State System / 3.3.2:
Anisotropy of the Fluorescence / 3.3.3:
Correction for Nonradiative Decay Processes / 3.3.4:
Spectral Broadening / 3.3.5:
Typical Apparatus for One-Photon LIF and the Experimental Results / 3.3.6:
Determination of Rotational and Vibrational State Distributions of Molecular Radicals / 3.3.7:
Estimation of Absolute Densities in One-Photon LIF / 3.3.8:
Two-Photon Laser-Induced Fluorescence / 3.4:
Single-Path Vacuum Ultraviolet (VUV) Laser Absorption / 3.5:
Other Laser Spectroscopic Techniques / 3.6:
Resonance-Enhanced Multiphoton Ionization / 3.6.1:
Cavity Ringdown Spectroscopy / 3.6.2:
Tunable Diode Laser Absorption Spectroscopy / 3.6.3:
Mass Spectrometric Techniques / 3.7:
Photoionization Mass Spectrometry / 3.7.1:
Threshold Ionization Mass Spectrometry / 3.7.2:
Ion Attachment Mass Spectrometry / 3.7.3:
Determination of Gas-Phase Composition of Stable Molecules / 3.8:
Term Symbols Used in Atomic and Molecular Spectroscopy / 3.A:
Physics and Chemistry of Cat-CVD / 4:
Kinetics of Molecules in Cat-CVD Chamber / 4.1:
Molecules in Cat-CVD Chamber / 4.1.1:
Comparison with PECVD for Decomposition / 4.1.2:
Influence of Surface Area of Catalyzer / 4.1.3:
What Happens on Catalyzer Surfaces - Catalytic Reactions / 4.2:
Poisoning of Surface Decomposition Processes / 4.3:
Gas Temperature Distribution in Cat-CVD Chambers / 4.4:
Decomposition Mechanisms on Metal Wire Surfaces and Gas-Phase Kinetics / 4.5:
Catalytic Decomposition of Diatomic Molecules: H2, N2, and O2 / 4.5.1:
Catalytic Decomposition of H2O / 4.5.2:
Catalytic Decomposition of SiH4 and SiH4/H2 and the Succeeding Gas-Phase Reactions / 4.5.3:
Catalytic Decomposition of NH3 and the Succeeding Gas-Phase Reactions / 4.5.4:
Catalytic Decomposition of CH4 and CH4/H2 and the Succeeding Gas-Phase Reactions / 4.5.5:
Catalytic Decomposition of PH3 and PH3/H2 and the Succeeding Gas-Phase Reactions / 4.5.6:
Catalytic Decomposition of B2H6 and B2H6/H2 and the Succeeding Gas-Phase Reactions / 4.5.7:
Catalytic Decomposition of H3NBH3 and Release of B Atoms from Boronized Wires / 4.5.8:
Catalytic Decomposition of Methyl-Substituted Silanes and Hexamethyldisilazane (HMDS) / 4.5.9:
Summary of Catalytic Decomposition of Various Molecules on Metal Wires / 4.5.10:
Si Film Formation Mechanisms in Cat-CVD / 4.6:
Properties of Inorganic Films Prepared by Cat-CVD / 5:
Properties of Amorphous Silicon (a-Si) Prepared by Cat-CVD / 5.1:
Fundamentals of Amorphous Silicon (a-Si) / 5.1.1:
Birth of Device Quality Amorphous Silicon (a-Si) / 5.1.1.1:
Band Structure of Amorphous Materials / 5.1.1.2:
General Properties of a-Si / 5.1.1.3:
Fundamentals of Preparation of a-Si by Cat-CVD / 5.1.2:
Deposition Parameters / 5.1.2.1:
Structural Studies on Cat-CVD a-Si: Infrared Absorption / 5.1.2.2:
General Properties of Cat-CVD a-Si / 5.1.3:
Deposition Mechanism of a-Si in Cat-CVD Process - Growth Model / 5.1.4:
Crystallization of Silicon Films and Microcrystalline Silicon (¿c-Si) / 5.2:
Growth of Crystalline Si Film / 5.2.1:
Structure of Cat-CVD Poly-Si / 5.2.2:
Properties of Cat-CVD Poly-Si Films / 5.2.3:
Si Crystal Growth on Crystalline Si / 5.2.4:
Properties of Silicon Nitride (SiNx) / 5.3:
Usefulness of Silicon Nitride (SiNx) Films / 5.3.1:
Fundamentals for the Preparation of SiNx / 5.3.2:
SiNx Preparation from NH3 and SiH4 Mixture / 5.3.3:
SiNx Preparation from Mixture of NH3, SiH4, and a Large Amount of H2 / 5.3.4:
Conformal Step Coverage of SiNx Prepared from the Mixture of NH3, SiH4, and a Large Amount of H2 / 5.3.5:
Cat-CVD SiNx Prepared from HMDS / 5.3.6:
Properties of Silicon Oxynitride (SiOxNy) / 5.4:
SiOxNy Films Prepared by SiH4, NH3, H2, and O2 Mixtures / 5.4.1:
SiOxNy Films Prepared by HMDS, NH3, H2, and O2 Mixtures / 5.4.2:
Properties of Silicon Oxide (SiO2) Films Prepared by Cat-CVD / 5.5:
Preparation of Aluminum Oxide (Al2O3) Films by Cat-CVD / 5.6:
Preparation of Aluminum Nitride (AIN) by Cat-CVD / 5.7:
Summary of Cat-CVD Inorganic Films / 5.8:
Organic Polymer Synthesis by Cat-CVD-Related Technology - Initiated CVD (iCVD) / 6:
PTFE Synthesis by Cat-CVD-Related Technology / 6.1:
Select Characteristics and Applications of CVD PTFE Films / 6.2.1:
Influence of the Catalyzing Materials for PTFE Deposition / 6.2.2:
Mechanistic Principles of iCVD / 6.3:
Initiators and Inhibitors / 6.3.1:
Monomer Adsorption / 6.3.2:
Deposition Rate and Molecular Weight / 6.3.3:
Copolymerization / 6.3.4:
Conformality / 6.3.5:
Functional, Surface-Reactive, and Responsive Organic Films Prepared by iCVD / 6.4:
Polyglycidyl Methacrylate (PGMA): Properties and Applications / 6.4.1:
iCVD Films with Perfluoroalkyl Functional Groups: Properties and Applications / 6.4.2:
Polyhydroxyethylacrylate (PHEMA) and Its Copolymers: Properties and Applications / 6.4.3:
Organosilicon and Organosilazanes: Properties and Applications / 6.4.4:
iCVD of Styrene, 4-Aminostyrene, and Divinylbenzene: Properties and Applications / 6.4.5:
iCVD of EGDA and EGDMA: Properties and Applications / 6.4.6:
Zwitterionic and Polyionic iCVD Films: Properties and Applications / 6.4.7:
iCVD "Smart Surfaces": Properties and Applications / 6.4.8:
Interfacial Engineering with iCVD: Adhesion and Grafting / 6.5:
Reactors for Synthesizing Organic Films by iCVD / 6.6:
Summary and Future Prospects for iCVD / 6.7:
Physics and Technologies for Operating Cat-CVD Apparatus / 7:
Influence of Gas Flow in Cat-CVD Apparatus / 7.1:
Experiment Using a Long Cylindrical Chamber for Establishing Quasi-laminar Flow / 7.1.1:
Dissociation Probability of SiH4 Derived from a Cylindrical Chamber / 7.1.2:
Factors Deciding Film Uniformity / 7.2:
Equation Expressing the Geometrical Relation Between Catalyzer and Substrates / 7.2.1:
Example of Estimation of Uniformity of Film Thickness / 7.2.2:
Limit of Packing Density of Catalyzing Wires / 7.3:
Thermal Radiation from a Heated Catalyzer / 7.4:
Fundamentals of Thermal Radiation / 7.4.1:
Control of Substrate Temperatures in Thermal Radiation / 7.4.2:
Thermal Radiation in CVD Systems / 7.4.3:
Contamination from a Heated Catalyzer / 7.5:
Contamination of Catalyzing Materials / 7.5.1:
Contamination from Other Impurities / 7.5.2:
Flux Density of Impurities Emitted from Heated Catalyzers / 7.5.3:
Lifetime of Catalyzing Wires and Techniques to Expand Their Lifetimes / 7.6:
Silicide Formation of W Catalyzer / 7.6.1:
Silicide Formation of Ta Catalyzer / 7.6.3:
Suppression of Silicide Formation by Carburization of W Surface / 7.6.4:
Ta Catalyzer and Method for Extension of Its Lifetime / 7.6.5:
Lifetime Extension by Using TaC / 7.6.6:
Lifetime Extension by Using Other Ta Alloys / 7.6.7:
Lifetimes of W Catalyzer in Carbon-Containing Gases / 7.6.8:
Long-Life Catalyzer Used in iCVD / 7.6.9:
Chamber Cleaning / 7.7:
Status of Mass Production Machine / 7.8:
Cat-CVD Mass Production Machine for Applications in Compound Semiconductors / 7.8.1:
Cat-CVD Mass Production Apparatus for Large Area Deposition / 7.8.2:
Cat-CVD Apparatus for Coating of PET Bottles / 7.8.3:
Prototypes for Any Other Mass Production Machine / 7.8.4:
Application of Cat-CVD Technologies / 8:
Introduction: Summarized History of Cat-CVD Research and Application / 8.1:
Application to Solar Cells / 8.2:
Silicon and Silicon Alloy Thin Film Solar Cells / 8.2.1:
Amorphous Silicon Solar Cells / 8.2.1.1:
Amorphous Silicon-Germanium Alloy Solar Cells / 8.2.1.3:
Micro crystalline Silicon Solar Cells and Tandem Cells / 8.2.1.4:
Nanostructured Solar Cells / 8.2.1.5:
Application to Crystalline Silicon (c-Si) Solar Cells / 8.2.2:
Cat-CVD Silicon-Nitride (SiNx/Amorphous-Silicon (a-Si)-Stacked Passivation / 8.2.2.1:
Cat-CVD SiNx/a-Si-Stacked Passivation on Textured c-Si Substrates / 8.2.2.3:
a-Si and c-Si Heterojunction Solar Cells / 8.2.3:
Surface Passivation on c-Si Solar Cells / 8.2.3.1:
Application to Thin Film Transistors (TFT) / 8.3:
Amorphous Silicon (a-Si) TFT / 8.3.1:
General Features of a-Si TFT / 8.3.1.1:
Cat-CVD a-Si TFT: Differences from PECVD a-Si TFT / 8.3.1.2:
Poly-Si TFT / 8.3.2:
Surface Passivation on Compound Semiconductor Devices / 8.4:
Passivation for Gallium-Arsenide (GaAs) High Electron Mobility Transistor (HEMT) / 8.4.1:
Passivation for Ultrahigh-Frequency Transistors / 8.4.2:
Passivation for Semiconductor Lasers / 8.4.3:
Application for ULSI Industry / 8.5:
Gas Barrier Films for Various Devices Such as Organic Devices / 8.6:
Inorganic Gas Barrier Films, SiNx/SiOxNy, for OLED / 8.6.1:
Inorganic/Organic Stacked Gas Barrier Films / 8.6.2:
Gas Barrier Films for Food Packages / 8.6.3:
Other Application and Summary of Present Cat-CVD Application / 8.7:
Radicals Generated in Cat-CVD Apparatus and Their Application / 9:
Generation of High-Density Hydrogen (H) Atoms / 9.1:
Generation of High-Density H Atoms / 9.1.1:
Transportation of H Atoms / 9.1.2:
Cleaning and Etching by H Atoms Generated in Cat-CVD Apparatus / 9.2:
Etching of Crystalline Silicon / 9.2.1:
Cleaning of Carbon-Contaminated Surface / 9.2.2:
Photoresist Removal by Hydrogen Atoms / 9.3:
Reduction of Metal Oxide by H atoms / 9.4:
Reduction of Various Metal Oxides / 9.4.1:
Characteristic Control of Metal Oxide Semiconductors by H Atoms / 9.4.2:
Low-Temperature Formation of Low-Resistivity Metal Lines from Liquid Ink by H Atoms / 9.5:
Low-Temperature Surface Oxidation - "Cat-Oxidation" / 9.6:
Low-Temperature Surface Nitridation - "Cat-Nitridation" of Si and GaAs / 9.7:
"Cat-Chemical Sputtering": A New Thin Film Deposition Method Utilizing Radicals / 9.8:
Cat-doping: A Novel Low-Temperature Impurity Doping Technology / 10:
Discovery or Invention of Cat-doping / 10.1:
Low-Temperature and Shallow Phosphorus (P) Doping into c-Si / 10.3:
Measurement of Electrical Properties of a Shallow-Doped Layer / 10.3.1:
Measurement of Concentration Profiles of Cat-Doped Impurities by SIMS / 10.3.2:
Estimation of Diffusion Constant / 10.3.3:
Properties of Cat-Doped P Atoms / 10.3.4:
Mechanism of Cat-doping / 10.3.5:
Possibility of Diffusion Enhancement by H Atoms / 10.3.5.1:
Vacancy Transportation Model / 10.3.5.2:
Si-Modified Surface Layer Model / 10.3.5.3:
Low-Temperature Boron (B) Doping into c-Si / 10.4:
Cat-Doping into a-Si / 10.5:
Feasibility of Cat-Doping for Various Applications / 10.6:
Surface Potential Control by Cat-doping Realizing High-Quality Passivation / 10.6.1:
Cat-doping into a-Si and Its Application to Heterojunction Solar Cells / 10.6.2:
Index
Preface
Abbreviations
Introduction / 1:
46.

図書

図書
Ian J.R. Aitchison, Anthony J.G. Hey
出版情報: Boca Raton : CRC Press, c2013  xiv, 438 p., [2] p. of plates ; 24 cm
シリーズ名: Gauge theories in particle physics : a practical introduction ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introductory Survey, Electromagnetism as a Gauge Theory, and Relativistic Quantum Mechanics / I:
The Particles and Forces of the Standard Model / 1:
Introduction: the Standard Model / 1.1:
The fermions of the Standard Model / 1.2:
Leptons / 1.2.1:
Quarks / 1.2.2:
Particle interactions in the Standard Model / 1.3:
Classical and quantum fields / 1.3.1:
The Yukawa theory of force as virtual quantum exchange / 1.3.2:
The one-quantum exchange amplitude / 1.3.3:
Electromagnetic interactions / 1.3.4:
Weak interactions / 1.3.5:
Strong interactions / 1.3.6:
The gauge bosons of the Standard Model / 1.3.7:
Renormalization and the Higgs sector of the Standard Model / 1.4:
Renormalization / 1.4.1:
The Higgs boson of the Standard Model / 1.4.2:
Summary / 1.5:
Problems
Electromagnetism as a Gauge Theory / 2:
Introduction / 2.1:
The Maxwell equations: current conservation / 2.2:
The Maxwell equations: Lorentz covariance and gauge invariance / 2.3:
Gauge invariance (and covariance) in quantum, mechanics / 2.4:
The argument reversed: the gauge principle / 2.5:
Comments on the gauge principle in electromagnetism / 2.6:
Relativistic Quantum Mechanics / 3:
The Klein-Gordon equation / 3.1:
Solutions in coordinate space / 3.1.1:
Probability current for the KG equation / 3.1.2:
The Dirac equation / 3.2:
Free-particle solutions / 3.2.1:
Probability current for the Dirac equation / 3.2.2:
Spin / 3.3:
The negative-energy solutions / 3.4:
Positive-energy spinors / 3.4.1:
Negative-energy spinors / 3.4.2:
Dirac's interpretation of the negative-energy solutions of the Dirac equation / 3.4.3:
Feynman's interpretation of the negative-energy solutions of the KG and Dirac equations / 3.4.4:
Inclusion of electromagnetic interactions via the gauge principle: the Dirac prediction of g = 2 for the electron / 3.5:
Lorentz Transformations and Discrete Symmetries / 4:
Lorentz transformations / 4.1:
The KG equation / 4.1.1:
Discrete transformations: P, C and T / 4.1.2:
Parity / 4.2.1:
Charge conjugation / 4.2.2:
CP / 4.2.3:
Time reversal / 4.2.4:
CPT / 4.2.5:
Introduction to Quantum Field Theory / II:
Quantum Field Theory I: The Free Scalar Field / 5:
The quantum field: (i) descriptive / 5.1:
The quantum field: (ii) Lagrange-Hamilton formulation / 5.2:
The action principle: Lagrangian particle mechanics / 5.2.1:
Quantum particle mechanics a la Heisenberg-Lagrange-Hamilton / 5.2.2:
Interlude: the quantum oscillator / 5.2.3:
Lagrange-Hamilton classical field mechanics / 5.2.4:
Heisenberg-Lagrange-Hamilton quantum field mechanics / 5.2.5:
Generalizations: four dimensions, relativity and mass / 5.3:
Quantum Field Theory II: Interacting Scalar Fields / 6:
Interactions in quantum field theory: qualitative introduction / 6.1:
Perturbation theory for interacting fields: the Dyson expansion of the S-matrix / 6.2:
The interaction picture / 6.2.1:
The 5-matrix and the Dyson expansion / 6.2.2:
Applications to the 'ABC theory / 6.3:
The decay C → A + B / 6.3.1:
A + B → A + B scattering: the amplitudes / 6.3.2:
A + B → A + B scattering: the Yukawa exchange mechanism, s and u channel processes / 6.3.3:
A + B → A + B scattering: the differential cross section / 6.3.4:
A + B → A +'B scattering: loose ends / 6.3.5:
Quantum Field Theory III: Complex Scalar Fields, Dirac and Maxwell Fields; Introduction of Electromagnetic Interactions / 7:
The complex scalar field: global U(1) phase invariance, particles and antiparticles / 7.1:
The Dirac field and the spin-statistics connection / 7.2:
The Maxwell field Aμ (x) / 7.3:
The classical field case / 7.3.1:
Quantizing Aμ(x) / 7.3.2:
Introduction of electromagnetic interactions / 7.4:
P, C and T in quantum field theory / 7.5:
Tree-Level Applications in QED / 7.5.1:
Elementary Processes in Scalar and Spinor Electrodynamics / 8:
Coulomb scattering of charged spin-0 particles / 8.1:
Coulomb scattering of s+ (wavefunction approach) / 8.1.1:
Coulomb scattering of s+ (field-theoretic approach) / 8.1.2:
Coulomb scattering of s- / 8.1.3:
Coulomb scattering of charged spin-1/2 particles / 8.2:
Coulomb scattering of e- (wavefunction approach) / 8.2.1:
Coulomb scattering of e- (field-theoretic approach) / 8.2.2:
Trace techniques for spin summations / 8.2.3:
Coulomb scattering of e+ / 8.2.4:
e-s+ scattering / 8.3:
The amplitude for e-s+ → e-s+ / 8.3.1:
The cross section for e-s+ → e-s+ / 8.3.2:
Scattering from a non-point-like object: the pion form factor in e-π+ → e-π+ / 8.4:
e- scattering from a charge distribution / 8.4.1:
Lorentz invariance / 8.4.2:
Current conservation / 8.4.3:
The form factor in the time-like region: e+e- → π+π- and crossing symmetry / 8.5:
Electron Compton scattering / 8.6:
The lowest-order amplitudes / 8.6.1:
Gauge invariance / 8.6.2:
The Compton cross section / 8.6.3:
Electron muon elastic scattering / 8.7:
Electron-proton elastic scattering and nucleon form factors / 8.8:
Deep Inelastic Electron-Nucleon Scattering and the Parton Model / 8.8.1:
Inelastic electron-proton scattering: kinematics and structure functions / 9.1:
Bjorken scaling and the parton model / 9.2:
Partons as quarks and gluons / 9.3:
The Drell-Yan process / 9.4:
e+e- annihilation into hadrons / 9.5:
Loops and Renormalization / IV:
Loops and Renormalization I: The ABC Theory / 10:
The propagator correction in ABC theory / 10.1:
The Ο(g2) self-energy ΠC[2] (q2) / 10.1.1:
Mass shift / 10.1.2:
Field strength renormalization / 10.1.3:
The vertex correction / 10.2:
Dealing with the bad news: a simple example / 10.3:
Evaluating ΠC[2] (q2) / 10.3.1:
Regularization and renormalization / 10.3.2:
Bare and renormalized perturbation theory / 10.4:
Reorganizing perturbation theory / 10.4.1:
The Ο(gph2) renormalized self-energy revisited: how counter terms are determined by renormalization conditions / 10.4.2:
Renormalizability / 10.5:
Loops and Renormalization II: QED / 11:
Counter terms / 11.1:
The Ο(e2) fermion self-energy / 11.2:
The Ο (e2) photon self-energy / 11.3:
The Ο (e2) renormalized photon self-energy / 11.4:
The physics of Πγ[2] (q2) / 11.5:
Modified Coulomb's law / 11.5.1:
Radiatively induced charge form factor / 11.5.2:
The running coupling constant / 11.5.3:
ΠC[2] in the s-channel / 11.5.4:
The Ο(e2) vertex correction, and Z1 = Z2 / 11.6:
The anomalous magnetic moment and tests of QED / 11.7:
Which theories are renormalizable - and does it matter? / 11.8:
Non-relativistic Quantum Mechanics / A:
Natural Units / B:
Maxwell's Equations: Choice of Units / C:
Special Relativity: Invariance and Covariance / D:
Dirac 5-Function / E:
Contour Integration / F:
Green Functions / G:
Elements of Non-relativistic Scattering Theory / H:
Time-independent formulation and differential cross section / H.1:
Expression for the scattering amplitude: Born approximation / H.2:
Time-dependent approach / H.3:
The Schrodinger and Heisenberg Pictures
Dirac Algebra and Trace Identities / J:
Dirac algebra / J.1:
γ matrices / J.1.1:
γ5 identities / J.1.2:
Hermitian conjugate of spinor matrix elements / J.1.3:
Spin sums and projection operators / J.1.4:
Trace theorems / J.2:
Example of a Cross Section Calculation / K:
The spin-averaged squared matrix element / K.1:
Evaluation of two-body Lorentz-invariant phase space in 'laboratory' variables / K.2:
Feynman Rules for Tree Graphs in QED / L:
External particles / L.1:
Propagators / L.2:
Vertices / L.3:
References
Index
Preface
Introductory Survey, Electromagnetism as a Gauge Theory, and Relativistic Quantum Mechanics / I:
The Particles and Forces of the Standard Model / 1:
47.

図書

図書
Dirk Steinborn
出版情報: Weinheim : Wiley-VCH, c2012  xvii, 456 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
The Beginnings of Catalytic Research
The Catalysis Definitions of Berzelius and Ostwald
Principles of Organometallic Catalysis
Homogeneous versus Heterogeneous Catalysis
Catalytic Cycles
Activity and Productivity of Catalysts
Selectivity and Specificity of Catalysts
Determination of Catalytic Mechanisms
Glossary for Catalysis
The Development of Organometallic Catalysis
Elementary Steps in Organometallic Catalysis
Cleavage and Coordination of Ligands
Oxidative Addition and Reductive Elimination
Oxidative Coupling and Reductive Cleavage
Olefin Insertion and Beta-Hydrogen Elimination
Alpha-Hydrogen Elimination and Carbene Insertion Reactions
Addition of Nucleophiles and Heterolytic Fragmentation
Insertion and Extrusion of CO
One-Electron Reduction and Oxidation
Hydrogenation of Olefins
The Wilkinson Catalyst
Enantioselective Hydrogenation
Dihydrogen Complexes and H2 Activation
Transfer Hydrogenation
Hydroformylation of Olefins and Fischer-Tropsch Synthesis
Cobalt Catalysts
Phosphane-Modified Rhodium Catalysts
Enantioselective Hydroformylation
Significance of Hydroformylation and Outlook
The Fischer-Tropsch Synthesis
Carbonylation of Methanol and Water-Gas Shift Reaction
Principles
The Monsanto Process
Synthesis of Acetic Anhydride
The Cativa Process
Water-Gas Shift Reaction and Carbon Monoxide Dehydrogenases
Metathesis
Metathesis of Olefins
Metathesis of Alkynes
Enyne Metathesis
Delta-Bond Metathesis
Metathesis of Alanes
Oligomerization of Olefins
Ziegler Growth Reaction
Nickel Effect and Nickel-Catalyzed Dimerization of Ethene
Trimerization of Ethene
Shell Higher Olefin and Alpha-Sablin Processes
Polymerization of Olefins
Ethene Polymerization
Propene Polymerization
Metallocene Catalysts
Nonmetallocene Catalysts
Copolymerization of Olefins and CO
C-C Linkage of Dienes
Allyl and Butadiene Complexes
Organometallic Elementary Steps of Allyl Ligands
Oligomerization and Telomerization of Butadiene
Polymerization of Butadiene
C-C Coupling Reactions
Palladium-Catalyzed Cross-Coupling Reactions
The Heck Reaction
Palladium-Catalyzed Allylic Alkylation
Hydrocyanation, Hydrosilylation, and Hydroamination of Olefins
Hydrocyanation
Hydrosilylation
Hydroamination
Oxidation of Olefins and Alkanes
The Wacker Process
Epoxidation of Olefins
C-H Functionalization of Alkanes
Nitrogen Fixation
Fundamentals
Heterogeneously Catalyzed Nitrogen Fixation
Enzyme-Catalyzed Nitrogen Fixation
Homogeneously Catalyzed Nitrogen Fixation
Index of Frequently Used Abbreviations
Homogeneously Catalyzed Reactions / 1:
Heterogeneously Catalyzed Reactions / 1.1.2:
Berzelius' Catalysis Concept / 1.2:
Ostwald's Definition of Catalysis / 1.2.2:
Catalytic Activity / 2:
Catalytic Productivity / 2.3.2:
Conversion Time Plots / 2.3.3:
Experimental Studies / 2.4:
Theoretical Studies / 2.5.2:
Oxidative Addition and Reductive Elirnination / 2.6:
Olefin Insertion and p-Hydrogen Elimination / 3.3:
α-Hydrogen Elimination and Carbene Insertion Reactions / 3.5:
One Electron Reduction and Oxidation / 3.6:
Mechanism of Olefin Hydrogenation / 4:
Applications and Examples / 4.3:
Applications for Asymmetric Hydrogenation / 4.3.2.1:
Combinatorial Catalysis / 4.3.2.2:
Nonlinear Effects / 4.3.2.3:
KineticaHy Controlled Enantioselectivity-A Closer Look / 4.3.3:
Dihydrogen Complexes / 4.4:
Activation of Dihydrogen / 4.4.2:
Phosphane Modified Rhodium Catalysts / 4.5:
Enantioselecrive Hydroformylation / 5.3:
Diphosphates as Ligands / 5.4:
Biphasic Catalysis / 5.4.2:
Synthesis of Vitamin A / 5.4.3:
Carbon Dioxide as Alternative to CO / 5.4.4:
Combinatorial and Supramolecular Catalysis / 5.4.5:
Mechanism / 5.5:
Carbonylation of Methanol and Water Gas Shift Reaction / 6:
Water Gas Shift Reaction and Carbon Monoxide Dehydrogenases / 6.1:
Water Gas Shift Reaction / 6.5.1:
Carbon Monoxide Dehydrogenases / 6.5.2:
Catalysts / 7:
Mechanism A Closer Look / 7.1.4:
Metathesis of Cycloalkenes / 7.1.5:
Metathesis of Acyclic Dienes / 7.1.6:
Enantioselective Metathesis / 7.1.7:
Bond Metathesis / 7.2:
Metathesis of Alkanes / 7.5:
Alkane Metathesis Via Tandem Reactions / 7.5.1:
Shell Higher Olefin and α-Sablin Processes / 8:
The Shell Higher Olefin Process (SHOP) / 8.4.1:
α-Sablin Process / 8.4.2:
Use of Linear α-Olefins / 8.4.3:
Ziegler Catalysts / 9:
Phillips Catalysts / 9.2.2:
Polymer Types and Process Specifications / 9.2.4:
Regioselectivity and Stereoselectivity / 9.3:
Ziegler-Natta Catalysts / 9.3.2:
Cocatalysts and Anion Influence / 9.3.3:
C2- and Cs- Symmetric Metallocene Catalysts / 9.4.2:
Metallocene Catalysts with Diastereotopic Coordination Pockets / 9.4.2.1:
Hemitactic Polymers / 9.4.3.1:
Stereoblock Polymers / 9.4.3.3:
On the Significance of Metallocene Catalysts / 9.4.4:
Catalyst Systems of Early Transition Metals / 9.5:
Catalyst Systems of Late Transition Metals / 9.5.2:
Living Polymerization of Olefins and Block Copolymers / 9.5.3:
Perfectly Alternating Copolymerization / 9.6:
C C Linkage of Dienes / 9.6.2Imperfectly Alternating Copolymerization:
Allyl Complexes / 10.1:
Butadiene Complexes / 10.2.2:
Re Si and supine prone Coordination of Allyl and Butadiene Ligands / 10.2.3:
Butadiene Insertion and P-Hydrogen Elimination / 10.3:
Allyl Insertion / 10.3.3:
anti/cis and syn/trans Correlations / 10.3.4:
Cyclotrimerization of Butadiene / 10.4:
cis/trans Selectivity A Closer Look / 10.4.1.1:
Industrial Synthesis of CDT / 10.4.1.3:
Cyclodimerization of Butadiene / 10.4.2:
Selectivity Control / 10.4.2.1:
Linear Oligomerization and Telomerization of Butadiene / 10.4.3:
Butadiene Polymerization Catalyzed by Allylnickel (II) Complexes / 10.5:
Synthesis and Properties of Polybutadienes and Polyisoprenes / 10.5.3:
Palladium Catalyzed Cross Coupling Reactions / 11:
Mechanism of Cross Coupling Reactions / 11.1.1:
Selected Types of Cross-Coupling / 11.1.3:
Cross Coupling with Organolithium, Organomagnesium, and Organozinc Reagents / 11.1.3.1:
Suzuki Coupling / 11.1.3.2:
Hiyama Coupling / 11.1.3.3:
Stille Coupling / 11.1.3.4:
Sonogashira Coupling / 11.1.3.5:
Ligand Effects / 11.1.3.6:
Alkyl Alkyl Coupling / 11.1.3.7:
Enantioselective Cross-Coupling / 11.1.3.8:
Carbonylative Cross-Coupling / 11.1.3.9:
Mechanism of Heck Reactions / 11.2:
Enantioselective Heck Reactions / 11.2.2:
Principles and Mechanism / 11.3:
Chirality Transfer in Asymmetric Allylation / 11.3.2:
The DuPont Adiponitrile Process / 12:
Outlook / 12.2.3:
Enantioselective Hydrocyanation / 12.2.3.1:
Hydrocyanation of Alkynes / 12.2.3.2:
Hydrocyanation of Polar C=X Bonds / 12.2.3.3:
Significance of Hydrosilylation and Outlook / 12.3:
Applications / 12.3.2.1:
Enantioselective Hydrosilylation / 12.3.2.2:
Hydrosilylation of Alkynes / 12.3.2.3:
Complexes of Silanes / 12.3.2.4:
Catalyst Types / 12.4:
Alkali Metal Amides as Catalysts / 12.4.2.1:
Platinum Group Metals as Catalysts / 12.4.2.2:
Gold Complexes as Catalysts / 12.4.2.3:
Lanthanoid Complexes as Catalysts / 12.4.2.4:
Mechanism of Ethene Oxidation / 13:
Oxypalladation of Olefins / 13.1.3:
Types of Oxypalladation / 13.1.3.1:
Enantioselective Oxypalladation / 13.1.3.2:
Palladium Oxidase Catalysis / 13.1.3.3:
Epoxidation of Ethene and Propene / 13.2:
O2 and ROOH as Oxygen Transfer Agents / 13.2.2.1:
H2 O2as Oxygen Transfer Agent / 13.2.2.2:
Enantioselecrive Oxidation of Olefins / 13.2.3:
Epoxidation of Allyl Alcohols / 13.2.3.1:
Epoxidation of Nonactivated Olefins / 13.2.3.2:
Monooxygenases / 13.2.4:
C-H Activation of Alkanes / 13.3:
Cyclometallation and Orthometallation / 13.3.2.1:
Intermolecular C-H Activation of Alkanes / 13.3.2.2:
C-H Functionalization / 13.3.3:
The Shilov Catalyst System / 13.3.3.1:
The Catalytica System Hg" as Catalyst / 13.3.3.2:
The Catalytica System Pt" as Catalystp326 / 13.3.3.3:
Cytochrome P-450 / 13.3.3.4:
Mechanism of Catalysis / 14:
The Industrial Catalyst / 14.2.3:
Ruthenium Catalysts / 14.2.4:
Enzyme Catalyzed Nitrogen Fixation / 14.3:
The Fe Protein Cycle / 14.3.1:
The MoFe Protein Cycle / 14.3.2:
A Prebiotic Nitrogen Fixing System? / 14.3.3:
Stoichiometric Reduction of N2 Complexes / 14.4:
Catalytic Reduction of Dinirrogen / 14.4.2:
Functionalization of Dinirrogen / 14.4.3:
Solutions to Exercises
Bibliography and Sources
References
Further Reading
Source for Structures
Index
Index of Backgrounds
Preface
Introduction
The Beginnings of Catalytic Research
48.

図書

図書
Frieder Mugele, Jason Heikenfeld
出版情報: Weinheim : Wiley-VCH, c2019  xii, 299 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Capillarity and Wetting Phenomena / 1:
Surface Tension and Surface Free Energy / 1.1:
The Microscopic Origin of Surface Energies / 1.1.1:
Macroscopic Definition of Surface Energy and Surface Tension / 1.1.2:
Young-Lap lace Equation: The Basic Law of Capillarity / 1.2:
Laplace's Equation and the Pressure Jump Across Liquid Surfaces / 1.2.1:
Applications of the Young-Laplace Equation: The Rayleigh-Plateau Instability / 1.2.2:
Young-Dupré Equation: The Basic Law of Wetting / 1.3:
To Spread or Not to Spread: From Solid Surface Tension to Liquid Spreading / 1.3.1:
Partial Wetting: The Young Equation / 1.3.2:
Wetting in the Presence of Gravity / 1.4:
Bond Number and Capillary Length / 1.4.1:
Case Studies / 1.4.2:
The Shape of a Liquid Puddle / 1.4.2.1:
The Pendant Drop Method: Measuring Surface Tension by Balancing Capillary and Gravity Forces / 1.4.2.2:
Capillary Rise / 1.4.2.3:
Variational Derivation of the Young-Laplace and the Young-Dupré Equation / 1.5:
Wetting at the Nanoscale / 1.6:
The Effective Interface Potential / 1.6.1:
The Effective Interface Potential for van der Waals Interaction / 1.6.2:
Equilibrium Surface Profile Near the Three-Phase Contact Line / 1.6.2.2:
Wetting of Heterogeneous Surfaces / 1.7:
Young-Laplace and Young-Dupré Equation for Heterogeneous Surfaces / 1.7.1:
Gibbs Criterion for Contact Line Pinning at Domain Boundaries / 1.7.2:
From Discrete Morphology Transitions to Contact Angle Hysteresis / 1.7.3:
Optimum Contact Angle on Heterogeneous Surfaces: The Laws of Wenzel and Cassie / 1.7.4:
Superhydrophobic Surfaces / 1.7.5:
Wetting of Heterogeneous Surfaces in Three Dimensions / 1.7.6:
Wetting of Complex Surfaces in Three Dimensions: Morphology Transitions, Instabilities, and Symmetry Breaking / 1.7.7:
Mechanical Equilibrium and Stress Tensor / 1.A:
Problems
References
Electrostatics / 2:
Fundamental Laws of Electrostatics / 2.1:
Electric Fields and the Electrostatic Potential / 2.1.1:
Specific Examples / 2.1.2:
Materials in Electric Fields / 2.2:
Conductors / 2.2.1:
Dielectrics / 2.2.2:
Dielectric Liquids and Leaky Dielectrics / 2.2.3:
Electrostatic Energy / 2.3:
Energy of Charges, Conductors, and Electric Fields / 2.3.1:
Capacitance Coefficients and Capacitance / 2.3.2:
Thermodynamic Energy of Charged Systems: Constant Charge Versus Constant Potential / 2.3.3:
Electrostatic Stresses and Forces / 2.4:
Global Forces Acting on Rigid Bodies / 2.4.1:
Local Forces: The Maxwell Stress Tensor / 2.4.2:
Stress Boundary Condition at Interfaces / 2.4.3:
Two Generic Case Studies / 2.5:
Parallel Plate Capacitor / 2.5.1:
Charge and Energy Distribution for Two Capacitors in Series / 2.5.2:
Adsorption at Interfaces / 3:
Adsorption Equilibrium / 3.1:
General Principles / 3.1.1:
Langmuir Adsorption / 3.1.2:
Reduction of Surface Tension / 3.1.3:
Adsorption Kinetics / 3.2:
Surface-Active Solutes: From Surfactants to Polymers, Proteins, and Particles / 3.3:
A Statistical Mechanics Model of Interfacial Adsorption / 3.A:
From Electric Double Layer Theory to Lippmann's Electrocapillary Equation / 4:
Electrocapillarity: the Historic Origins / 4.1:
The Electric Double Layer at Solid-Electrolyte Interfaces / 4.2:
Poisson-Boltzmann Theory and Gouy-Chapman Model of the EDL / 4.2.1:
Total Charge and Capacitance of the Diffuse Layer / 4.2.2:
Voltage Dependence of the Free Energy: Electrowetting / 4.2.3:
Shortcomings of Poisson-Boltzmann Theory and the Gouy-Chapman Model / 4.3:
Teflon-Water Interfaces: a Case Study / 4.4:
Statistical Mechanics Derivation of the Governing Equations / 4.A:
Principles of Modem Electrowetting / 5:
The Standard Model of Electrowetting (on Dielectric) / 5.1:
Electrowetting Phenomenology / 5.1.1:
Macroscopic EW Response / 5.1.2:
Microscopic Structure of the Contact Line Region / 5.1.3:
Interpretation of the Standard Model of EW / 5.2:
The Electromechanical Interpretation / 5.2.1:
Standard Model of EW Versus Lippmann's Electrocapillarity / 5.2.2:
Limitations of the Standard Model: Nonlinearities and Contact Angle Saturation / 5.2.3:
DC Versus AC Electrowetting / 5.3:
Application Example: Parallel Plate Geometry / 5.3.1:
Elements of Fluid Dynamics / 6:
Navier-Stokes Equations / 6.1:
General Principles: from Newton to Navier-Stokes / 6.1.1:
Boundary Conditions / 6.1.2:
Nondimensional Navier-Stokes Equation: The Reynolds Number / 6.1.3:
Example: Pressure-Driven Flow Between Two Parallel Plates / 6.1.4:
Lubrication Flows / 6.2:
General Lubrication Flows / 6.2.1:
Lubrication Flows with a Free Liquid Surface / 6.2.2:
Application I: Linear Stability Analysis of a Thin Liquid Film / 6.2.3:
Application II: Entrainment of Liquid Films / 6.2.4:
Contact Line Dynamics / 6.3:
Tanner's Law and the Spreading of Drops on Macroscopic Scales / 6.3.1:
Surface Profiles on the Mesoscopic Scale: The Cox-Voinov Law / 6.3.2:
Dynamics of the Microscopic Contact Angle: The Molecular Kinetic Picture / 6.3.3:
Comparison to Experimental Results / 6.3.4:
Surface Waves and Drop Oscillations / 6.4:
Surface Waves / 6.4.1:
Oscillating Drops / 6.4.2:
Example: Electrowetting-Driven Excitation of Eigenmodes of a Sessile Drop / 6.4.3:
General Consequences / 6.4.4:
Electrowetting Materials and Fabrication / 7:
Practical Requirements / 7.1:
Electro wetting Deviation: Caused by Non-obvious Materials Behavior / 7.2:
Commonly Observed Temporal Deviations / 7.2.1:
Dielectric Failure (Leakage Current) / 7.2.1.1:
Dielectric Charging / 7.2.1.2:
Charges into the Oil / 7.2.1.3:
Oil Relaxation / 7.2.1.4:
Surfactant Diffusion (Interface Absorption) / 7.2.1.5:
Oil Film Trapping / 7.2.1.6:
Commonly Observed Nontemporal Deviation / 7.2.2:
Unexpected Young's Angles: Gravity Effects / 7.2.2.1:
Unexpected Young's Angles: Surface and Interface Fouling / 7.2.2.2:
Unexpected Young's Angles: Dielectric Charging / 7.2.2.3:
Wetting Hysteresis / 7.2.2.4:
Deviation That Is Often Both Highly Temporal and Nontemporal / 7.2.3:
Chemical/Surface Potentials / 7.2.3.1:
Electrowetting Saturation / 7.3:
The Invariant Onset of Deviation or Saturation and Lack of a Universal Theory for This Invariance / 7.4:
The Invariance of Saturation for Aqueous Conducting Fluids / 7.4.1:
The Invariance of the Onset of Deviation or Saturation for All Types of Conducting Fluids with ¿ci > 5 mN m-1 / 7.4.2:
Summary / 7.4.3:
Choosing Materials: Large Young's Angle and Low Wetting Hysteresis / 7.5:
Conventional Ultralow Surface Energy Coatings (Fluoropolymers) / 7.5.1:
Hydrophilic Coatings Made Hydrophobic Through Proper Choice of Insulating Fluid / 7.5.2:
Superhydrophobic Coatings: Larger Young's Angle in Air but Small Modulation Range / 7.5.3:
Choosing Materials: the Electrowetting Dielectric (Capacitor) / 7.6:
Current State of the Art for Low Potential Electrowetting: Multilayer Dielectrics / 7.6.1:
A Note of Critical Importance for the Topcoat in a Multilayer System / 7.6.2:
Carefully Choosing the Best Materials for Each Individual Layer of the Dielectric Stack / 7.6.3:
First Layer: Inorganic Dielectrics / 7.6.3.1:
Second Layer: Organic Dielectrics / 7.6.3.2:
Third Layer: Fluoropolymer / 7.6.3.3:
The Simplest Approaches Available to Electrowetting Practitioners / 7.6.3.4:
Choosing Materials: Insulating and Conducting Fluids / 7.7:
The Insulating Fluid / 7.7.1:
The Conducting Fluid / 7.7.2:
Ionic Content / 7.7.2.1:
Don't Use Water! / 7.7.2.2:
Summary of General Best Practices / 7.8:
Mitigating Surface Fouling in Biological Applications / 7.9:
Additional Issues for Complex or Integrated Devices / 7.10:
Acknowledgement
Trapped Charge Derivation / 7.A:
Fundamentals of Applied Electrowetting / 8:
Introduction and Scope / 8.1:
Droplet Transport / 8.2:
Basic Force Balance Interpretation of Droplet Transport / 8.2.1:
Advanced Droplet Transport Physics: Threshold and Velocity / 8.2.2:
Advanced Droplet Transport Physics: Flow Field / 8.2.2.1:
Additional Practical Notes on Implementation of Basic Droplet Transport / 8.2.3:
Droplet Transport for Splitting, Dosing, Merging, and Mixing / 8.3:
Simple Experimental Examples / 8.3.1:
Fundamentals of Droplet Splitting / 8.3.2:
Influence of Vertical Radii of Curvature / 8.3.2.1:
Influence of Horizontal Radii of Curvature / 8.3.2.2:
Fundamentals of Droplet Dosing (Dispensing) / 8.3.3:
Fundamentals of Droplet Mixing / 8.3.4:
Stationary Droplet Oscillation, Jumping, and Mixing / 8.4:
Droplet Oscillation / 8.4.1:
Droplet Oscillation and Jumping / 8.4.2:
Droplet Oscillation and Hysteresis / 8.4.3:
Droplet Oscillation and Mixing / 8.4.4:
Gating, Valving, and Pumping / 8.5:
Fundamentals / 8.5.1:
Generating Droplets and Channels / 8.6:
Fundamentals for Droplet Generation / 8.6.1:
Fundamentals for Channel Generation / 8.6.2:
Shape Change in a Channel / 8.7:
Control of Meniscus Curvature / 8.7.1:
Additional Notes on Implementation / 8.8.1:
Control of Meniscus Surface Area/Coverage / 8.9:
Control of Film Breakup and Oil Entrapment / 8.9.1:
ID, 2D, and 3D Control of Rigid Objects / 8.10.1:
Reverse Electro wetting and Energy Harvesting / 8.11.1:
Related and Emerging Topics / 9:
Dielectrophoresis and Dielectrowetting / 9.1:
Basic Dielectrophoresis / 9.2.1:
Dielectrowetting / 9.2.2:
Innovations in Liquid Metal Electrowetting and Electrocapillarity / 9.3:
Electrowetting of GalnSn Liquid Metal Alloys / 9.3.1:
Giant Electrochemical Changes in Liquid Metal Interfacial Surface Tensions / 9.3.2:
Nonequilibrium Electrical Control Without Contact Angle Modulation / 9.4:
Some Limitations of Conventional Electrowetting / 9.4.1:
Electrowetting Without Wetting / 9.4.2:
Appendix Historical Perspective of Modern Electrowetting: individual Testimonials
"CJ" Kim
Authors Note from Heikenfeld
Johan Feenstra
Tom Jones
Frieder Mugele
Richard Fair
Author's Note from Heikenfeld
Bruno Berge
Glen McHale
Stein Kuiper
Jason Heikenfeld
Kwan Hyung Kang: An Appreciation / T. B. Jones
Author's Note from Mugele
Index
Preface
Introduction to Capillarity and Wetting Phenomena / 1:
Surface Tension and Surface Free Energy / 1.1:
49.

図書

図書
Urs Graf
出版情報: Basel : Birkhäuser, c2010  xi, 415 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Hyperfunctions / 1:
Generalized Functions / 1.1:
The Concept of a Hyperfunction / 1.2:
Properties of Hyperfunctions / 1.3:
Linear Substitution / 1.3.1:
Hyperfunctions of the Type f (ø(x)) / 1.3.2:
Differentiation / 1.3.3:
The Shift Operator as a Differential Operator / 1.3.4:
Parity, Complex Conjugate and Realness / 1.3.5:
The Equation ø(x)f(x) = h(x) / 1.3.6:
Finite Part Hyperfunctions / 1.4:
Integrals / 1.5:
Integrals with respect to the Independent Variable / 1.5.1:
Integrals with respect to a Parameter / 1.5.2:
More Familiar Hyperfunctions / 1.6:
Unit-Step, Delta Impulses, Sign, Characteristic Hyperfunctions / 1.6.1:
Integral Powers / 1.6.2:
Non-integral Powers / 1.6.3:
Logarithms / 1.6.4:
Upper and Lower Hyperfunctions / 1.6.5:
Hyperfunctions Concentrated at One Point / 1.6.6:
Analytic Properties / 2:
Sequences, Series, Limits / 2.1:
Cauchy-type Integrals / 2.2:
Projections of Functions / 2.3:
Functions Satisfying the Hölder Condition / 2.3.1:
Projection Theorems / 2.3.2:
Convergence Factors / 2.3.3:
Homologous and Standard Hyperfunctions / 2.3.4:
Projections of Hyperfunctions / 2.4:
Holomorphic and Meromorphic Hyperfunctions / 2.4.1:
Standard Defining Functions / 2.4.2:
Micro-analytic Hyperfunctions / 2.4.3:
Support, Singular Support and Singular Spectrum / 2.4.4:
Product of Hyperfunctions / 2.5:
Product of Upper or Lower Hyperfunctions / 2.5.1:
Products in the Case of Disjoint Singular Supports / 2.5.2:
The Integral of a Product / 2.5.3:
Hadamard's Finite Part of an Integral / 2.5.4:
Periodic Hyperfunctions and Their Fourier Series / 2.6:
Convolutions of Hyperfunctions / 2.7:
Definition and Existence of the Convolution / 2.7.1:
Sufficient Conditions for the Existence of Convolutions / 2.7.2:
Operational Properties / 2.7.3:
Principal Value Convolution / 2.7.4:
Integral Equations I / 2.8:
Laplace Transforms / 3:
Loop Integrals / 3.1:
The Two-Sided Laplace Transform / 3.2:
The Classical Laplace Transform / 3.2.1:
Laplace Transforms of Hyperfunctions / 3.3:
Transforms of some Familiar Hyperfunctions / 3.4:
Dirac Impulses and their Derivatives / 3.4.1:
Non-negative Integral Powers / 3.4.2:
Negative Integral Powers / 3.4.3:
Powers with Logarithms / 3.4.4:
Exponential Integrals / 3.4.6:
Transforms of Finite Part Hyperfunctions / 3.4.7:
Linearity / 3.5:
Image Translation Rule / 3.5.2:
The Multiplication or Image Differentiation Rule / 3.5.3:
Similarity Rule / 3.5.4:
Differentiation Rule / 3.5.5:
Integration Rule / 3.5.6:
Original Translation Rule / 3.5.7:
Linear Substitution Rules / 3.5.8:
Inverse Laplace Transforms and Convolutions / 3.6:
Inverse Laplace Transforms / 3.6.1:
The Convolution Rule / 3.6.2:
Fractional Integrals and Derivatives / 3.6.3:
Right-sided Laplace Transforms / 3.7:
Integral Equations II / 3.8:
Volterra Integral Equations of Convolution Type / 3.8.1:
Convolution Integral Equations over an Infinite Range / 3.8.2:
Fourier Transforms / 4:
Fourier Transforms of Hyperfunctions / 4.1:
Basic Definitions / 4.1.1:
Connection to Laplace Transformation / 4.1.2:
Fourier Transforms of Some Familiar Hyperfunctions / 4.2:
Inverse Fourier Transforms / 4.3:
Reciprocity / 4.3.1:
Linear Substitution Rule / 4.4:
Shift-Rules / 4.4.2:
Complex Conjugation and Realness / 4.4.3:
Differentiation and Multiplication Rule / 4.4.4:
Convolution Rules / 4.4.5:
Further Examples / 4.5:
Poisson's Summation Formula / 4.6:
Application to Integral and Differential Equations / 4.7:
Integral Equations III / 4.7.1:
Heat Equation and Weierstrass Transformation / 4.7.2:
Hubert Transforms / 5:
Hilbert Transforms of Hyperfunctions / 5.1:
Definition and Basic Properties / 5.1.1:
Using Fourier Transforms / 5.1.2:
Analytic Signals and Conjugate Hyperfunctions / 5.2:
Integral Equations IV / 5.3:
Mellin Transforms / 6:
The Classical Mellin Transformation / 6.1:
Mellin Transforms of Hyperfunctions / 6.2:
Scale Changes / 6.3:
Reflection / 6.3.3:
Differentiation Rules / 6.3.6:
Integration Rules / 6.3.7:
Inverse Mellin Transformation / 6.4:
M-Convolutions / 6.5:
Reciprocal Integral Transforms / 6.5.1:
Transform of a Product and Parseval's Formula / 6.5.2:
Applications / 6.6:
Dirichlet's Problem in a Wedge-shaped Domain / 6.6.1:
Euler's Differential Equation / 6.6.2:
Integral Equations V / 6.6.3:
Summation of Series / 6.6.4:
Hankel Transforms / 7:
Hankel Transforms of Ordinary Functions / 7.1:
Genesis of the Hankel Transform / 7.1.1:
Cylinder Functions / 7.1.2:
Lommel's Integral / 7.1.3:
MacRobert's Proof / 7.1.4:
Some Hankel Transforms of Ordinary Functions / 7.1.5:
Hankel Transforms of Hyperfunctions / 7.1.6:
Complements / 7.2.1:
Physical Interpretation of Hyperfunctions / A.1:
Flow Fields and Holomorphic Functions / A.1.1:
Pólya fields and Defining Functions / A.1.2:
Laplace Transforms in the Complex Plane / A.2:
Functions of Exponential Type / A.2.1:
Laplace Hyperfunctions and their Transforms / A.2.2:
Some Basic Theorems of Function Theory / A.3:
Interchanging Infinite Series with Improper Integrals / A.3.1:
Reversing the Order of Integration / A.3.2:
Defining Holomorphic Functions by Series and Integrals / A.3.3:
Tables / B:
Convolution Properties of Hyperfunctions
Operational Rules for the Laplace Transformation
Some Laplace Transforms of Hyperfunctions
Operational Rules for the Fourier Transformation
Some Fourier Transforms of Hyperfunctions
Operational Rules for the Hilbert Transformation
Some Hilbert Transforms of Hyperfunctions
Operational Rules for the Mellin Transformation
Some Mellin Transforms of Hyperfunctions
Operational Rules for the Hankel Transformation
Some Hankel Transforms of order ? of Hyperfunctions
Bibliography
List of Symbols
Index
Preface
Introduction to Hyperfunctions / 1:
Generalized Functions / 1.1:
50.

電子ブック

EB
Ricardo García
出版情報: [Hoboken, N.J.] : Wiley Online Library, 2010  1 online resource (xiv, 179 p.)
所蔵情報: loading…
目次情報: 続きを見る
Preface
Annotation List
Introduction / 1:
Historical Perspective / 1.1:
Evolution Periods and Milestones / 1.2:
Early Times 1987-1992 / 1.2.1:
Exploration and Expansion 1993-1999 / 1.2.2:
Cantilever Tip Dynamics 2000-2006 / 1.2.3:
Multifrequency AFM 2007 to Present / 1.2.4:
Tapping Mode or Amplitude Modulation Force Microscopy? / 1.3:
Other Dynamic APM Methods / 1.4:
Frequency Modulation AFM / 1.4.1:
Amplitude Modulation versus Frequency Modulation AFM / 1.4.2:
Instrumental and Conceptual Aspects / 2:
Amplitude Modulation AFM / 2.1:
Elements of an Amplitude Modulation AFM / 2.3:
Feedback Controller / 2.3.1:
Optical Beam Deflection / 2.3.2:
Other Detection Methods / 2.3.3:
Tip Sample Motion System / 2.3.4:
Imaging Acquisition and Display / 2.3.5:
Cantilever-Tip System / 2.4:
Cantilevers / 2.4.1:
Tips / 2.4.2:
Excitation of Cantilever-Tip Oscillations / 2.4.3:
Calibration Protocols / 2.5:
Optical Sensitivity / 2.5.1:
Calibration of the Cantilever Force Constant / 2.5.2:
Thermal Noise Method / 2.5.2.1:
Sader Method / 2.5.2.2:
Common Experimental Curves / 2.6:
Resonance Curves in Air and liquids / 2.6.1:
Amplitude and Phase Shift Distance Curves / 2.6.2:
Displacements and Distances / 2.7:
Tip-Surface Interaction Forces / 3:
Van der Waals Forces / 3.1:
Contact Mechanics Forces / 3.3:
Derjaguin-Muller-Toporov Model / 3.3.1:
Johnson-Kendall-Roberts Model / 3.3.2:
Capillary Force / 3.4:
Forces in Liquid / 3.5:
Electrostatic Double-Layer Force / 3.5.1:
Derjaguin-Landau-Verwey-Overbeek Forces / 3.5.2:
Solvation Forces / 3.5.3:
Other Forces in Aqueous Solutions / 3.5.4:
Electrostatic Forces / 3.6:
Nonconservative Forces / 3.7:
Net Tip-Surface Force / 3.8:
Tip-Surface Force for a Stiff Material with Surface Adhesion Hysteresis / 3.8.1:
Tip-Surface Force for a Viscoelastic Material / 3.8.2:
Theory of Amplitude Modulation AFM / 4:
Equation of Motion / 4.1:
The Point-Mass Model: Elemental Aspects / 4.3:
The Harmonic Oscillator / 4.3.1:
Dynamics of a Weakly Perturbed Harmonic Oscillator / 4.3.2:
The Point-Mass Model: Analytical Approximations / 4.4:
Perturbed Harmonic Oscillator / 4.4.1:
Wang Model / 4.4.2:
Virial Dissipation Method / 4.4.3:
Peak and Average Forces / 4.5:
Peak Forces / 4.5.1:
Average Forces / 4.5.2:
The Point-Mass Model: Numerical Solutions / 4.6:
Attractive and Repulsive Interaction Regimes / 4.6.1:
Driving the Cantilever Below Resonance / 4.6.2:
The Effective Model / 4.7:
Appendix: The Runge-Kutta Algorithm
Advanced Theory of Amplitude Modulation AFM / 5:
Q-Control / 5.1:
Nonlinear Dynamics / 5.3:
Continuous Cantilever Beam Model / 5.4:
One-Dimensional Model / 5.4.1:
Equivalence between Point-Mass and Continuous Models / 5.5:
Systems Theory Description / 5.6:
Force Reconstruction Methods: Force versus Distance / 5.7:
Lee-Jhe Method / 5.7.1:
Hölscher Method / 5.7.2:
Time-Resolved Force / 5.8:
Acceleration / 5.8.1:
Higher Harmonics Method / 5.8.2:
Direct Time-Resolved Force Measurements / 5.8.3:
Amplitude Modulation AFM in Liquid / 6:
Qualitative Aspects of the Cantilever Dynamics in Liquid / 6.1:
Dynamics Far from the Surface / 6.2.1:
Dynamics Close to the Surface / 6.2.2:
Interaction Forces in Liquid / 6.3:
Some Experimental and Conceptual Considerations / 6.4:
Theoretical Descriptions of Dynamic AFM in Liquid / 6.5:
Analytical Descriptions: Far from the Surface / 6.5.1:
Analytical and Numerical Descriptions in the Presence of Tip-Surface Forces / 6.5.2:
Semianalytical Models / 6.5.3:
Finite Element Simulations / 6.5.4:
Phase Imaging Atomic Force Microscopy / 7:
Theory of Phase Imaging AFM / 7.1:
Phase Imaging Atomic AFM: High Q / 7.3.1:
Phase Imaging AFM: Low Q / 7.3.2:
Energy Dissipation Measurements at the Nanoscale / 7.4:
Energy Dissipation and Observables / 7.4.1:
Identification of Energy Dissipation Processes / 7.4.2:
Atomic and Nanoscale Dissipation Processes / 7.4.3:
Resolution, Noise, and Sensitivity / 8:
Spatial Resolution / 8.1:
Vertical Resolution and Noise / 8.2.1:
Lateral Resolution / 8.2.2:
Image Distortion and Surface Reconstruction / 8.3:
Force-Induced Surface Deformations / 8.4:
Atomic, Molecular, and Subnanometer Lateral Resolution / 8.5:
True Resolution / 8.5.1:
High-Resolution Imaging of Isolated Molecules / 8.6:
Conditions for High-Resolution Imaging / 8.7:
Image Artifacts / 8.8:
Multifrequency Atomic Force Microscopy / 9:
Normal Modes and Harmonics / 9.1:
Generation of Higher Harmonics / 9.2.1:
Coupling Eigenmodes and Harmonics / 9.2.2:
Imaging Beyond the Fundamental Mode / 9.2.3:
Bimodal AFM / 9.3:
Intermodulation Frequencies / 9.3.1:
Mode-Synthesizing Atomic Force Microscopy / 9.4:
Torsional Harmonic AFM / 9.5:
Band Excitation / 9.6:
Beyond Topographic Imaging / 10:
Scattering Near Field Optical Microscopy / 10.1:
Topography and Recognition Imaging / 10.3:
Tip Functionalization / 10.3.1:
Nanofabrication by AFM / 10.4:
AFM Oxidation Nanolithography / 10.4.1:
Patterning and Devices / 10.4.2:
References
Index
Preface
Annotation List
Introduction / 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼