close
1.

図書

図書
American Institute of Chemical Engineers. Center for Chemical Process Safety
出版情報: New York : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1995  xxvii, 210 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
Preface
Acknowledgments
Glossary
List of Symbols
Introduction / Chapter 1:
General / 1.1:
Chemical Reactivity / 1.2:
Detonations, Deflagrations, and Runaways / 1.3:
Assessment and Testing Strategies / 1.4:
Identification of Hazardous Chemical Reactivity / Chapter 2:
Summary/Strategy / 2.1:
Hazard Identification Strategy / 2.1.1:
Exothermic Reactions / 2.1.3:
Experimental Thermal and Reactivity Measurements / 2.1.4:
Test Strategies / 2.1.5:
Overview of Thermal Stability Test methods / 2.1.6:
Examples of Interpretation and Application of Test Data / 2.1.7:
Technical Section / 2.2:
Identification of High Energy Substances / 2.2.2:
Hazard Prediction by Thermodynamic Calculations / 2.2.3:
Oxygen Balance / 2.2.3.1:
Calculation of the Reaction Enthalpy / 2.2.3.2:
Application of Computer Programs / 2.2.3.3:
Instability/Incompatibility Factors / 2.2.4:
Factors Influencing Stability / 2.2.4.1:
Redox Systems / 2.2.4.2:
Reactions with Water / 2.2.4.3:
Reactions between Halogenated Hydrocarbons and Metals / 2.2.4.4:
Practical Testing / 2.3:
Screening Tests / 2.3.1:
Thermal Analysis / 2.3.1.1:
Isoperibolic Calorimetry / 2.3.1.2:
Thermal Stability and Runaway Testing / 2.3.2:
Isothermal Storage Tests / 2.3.2.1:
Dewar Flask Testing and Adiabatic Storage Tests / 2.3.2.2:
Accelerating Rate Calorimeter (ARC) / 2.3.2.3:
Stability Tests for Powders / 2.3.2.4:
Explosibility Testing / 2.3.3:
.Detonation Testing / 2.3.3.1:
Deflagration Testing and Autoclave Testing / 2.3.3.2:
Mechanical Sensitivity Testing / 2.3.3.3:
Sensitivity to heating Under Confinement / 2.3.3.4:
Reactivity Testing / 2.3.4:
Pyrophoric Properties / 2.3.4.1:
Reactivity with Water / 2.3.4.2:
Oxidizing Properties / 2.3.4.3:
Flammability Testing / 2.3.5:
Chemical Reactivity Considerations in Process/Reactor Design and Operation / Chapter 3:
Thermal Hazards: Identification and Analysis / 3.1:
Cause, Definition, and Prevention of a Runaway / 3.1.1.1:
Some Simple Rules for Inherent Safety / 3.1.1.2:
Strategy for Inherent Safety in Design and Operation / 3.1.1.3:
Equipment to be Used for the Analysis of Hazards / 3.1.1.4:
Reactor, Heat and Mass Balance Considerations / 3.2:
Heat and Mass Balances, Kinetics, and Reaction Stability / 3.2.1:
Adiabatic Temperature Rise / 3.2.1.1:
The Reaction / 3.2.1.2:
Reaction Rate / 3.2.1.3:
Reaction Rate Constant / 3.2.1.4:
Concentration of Reactants / 3.2.1.5:
Effect of Surrounding Temperature on Stability / 3.2.1.6:
Effect of Agitation and Surface Fouling on Stability / 3.2.1.7:
Mass Balance / 3.2.1.8:
Choice of Reactor / 3.2.2:
Heat Transfer / 3.2.3:
Heat Transfer in Nonagitated Vessels / 3.2.3.1:
Heat Transfer in Agitated Vessels / 3.2.3.2:
Acquisition and Use of Process Design data / 3.3:
Bench-Scale Equipment for Batch/Tank Reactors / 3.3.1:
Reaction Calorimeter (RC1) / 3.3.2.1:
Contalab / 3.3.2.2:
CPA ThermoMetric Instruments / 3.3.2.3:
Quantitative Reaction Calorimeter / 3.3.2.4:
Specialized Rectors / 3.3.2.5:
Vent Size Package (VSP) / 3.3.2.6:
Reactive System Screening Tool (RSST) / 3.3.2.7:
Process Safety for Reactive Systems / 3.3.3:
Test Plan / 3.3.3.1:
System Under Investigation / 3.3.3.2:
Test Results / 3.3.3.3:
Malfunction and Process Deviation Testing / 3.3.3.4:
Pressure Effect / 3.3.3.5:
Results from the ARC, RSST, and VSP / 3.3.3.6:
Scale-up and Pilot Plants / 3.3.4:
General Remarks / 3.3.4.1:
Chemical Kinetics. 3 / 3.3.4.2:
List of Tables
List of Figures
Preface
2.

図書

図書
Ulrich Schubert, Nicola Hüsing
出版情報: Weinheim : Wiley-VCH, c2019  xviii, 404 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Abbreviations
Introduction / 1:
Solid-State Reactions / 2:
Reactions Between Solid Compounds / 2.1:
Ceramic Method / 2.1.1:
General Aspects of Solid-State Reactions / 2.1.1.1:
Facilitating Solid-State Reactions / 2.1.1.2:
Mechanochemical Synthesis / 2.1.2:
Carbothermal Reduction / 2.1.3:
Combustion Synthesis / 2.1.4:
Solution Combustion Synthesis / 2.1.4.1:
Solid-Gas Reactions / 2.2:
Ceramics Processing / 2.3:
Sintering / 2.3.1:
Intercalation Reactions / 2.4:
Mechanistic Aspects / 2.4.1:
Preparative Methods / 2.4.2:
Intercalation of Polymers in Layered Systems / 2.4.3:
Pillaring of Layered Compounds / 2.4.4:
Further Reading
Formation of Solids from the Gas Phase / 3:
Chemical Vapour Transport / 3.1:
Halogen Lamps / 3.1.1:
Transport Reactions / 3.1.2:
Chemical Vapour Deposition / 3.2:
General Aspects / 3.2.1:
Techniques / 3.2.2:
Metal CVD / 3.2.3:
Silicon and Aluminium / 3.2.3.1:
Tungsten / 3.2.3.2:
Copper / 3.2.3.3:
CVD of Carbon / 3.2.4:
CVD of Binary and Multinary Compounds / 3.2.5:
Metal Oxides / 3.2.5.1:
Metal Nitrides / 3.2.5.2:
Metal Chalcogenides and Pnictides / 3.2.5.3:
Aerosol-Assisted CVD / 3.2.6:
Chemical Vapour Infiltration / 3.2.7:
Gas-Phase Powder Syntheses / 3.3:
Formation of Solids from Solutions and Melts / 4:
Glass / 4.1:
The Structural Theory of Glass Formation / 4.1.1:
Crystallization Versus Glass Formation / 4.1.2:
Glass Melting / 4.1.3:
Phase Separation / 4.1.4:
Metallic Glasses / 4.1.5:
Crystallization from Solution / 4.2:
Monodispersity / 4.2.1:
Shape Control of Crystals / 4.2.2:
Non-classical Crystallization / 4.2.3:
Biomineralization / 4.2.4:
Biogenic Materials / 4.2.4.1:
Bioinspired Materials Chemistry / 4.2.4.2:
Electrodeposition / 4.3:
Colloids / 4.3.1:
Electrodeposition of Ceramics / 4.3.2:
Solvothermal Processes / 4.4:
Fundamentals / 4.4.1:
Growing Single Crystals / 4.4.2:
Solvothermal Synthesis / 4.4.3:
Synthetic Calcium Phosphate Biomaterials / 4.4.3.1:
Zeolites / 4.4.3.3:
Sol-Gel Processes / 4.5:
The Chemistry of Alkoxide Precursors / 4.5.1:
Hydrolysis and Condensation / 4.5.2:
Silica-Based Materials / 4.5.2.1:
Metal Oxide-Based Materials / 4.5.2.2:
The Sol-Gel Transition (Gelation) / 4.5.3:
Aging and Drying / 4.5.4:
Nonhydrolytic Sol-Gel Processes / 4.5.5:
Inorganic-Organic Hybrid Materials / 4.5.6:
Aerogels / 4.5.7:
Preparation and Modification of Inorganic Polymers / 5:
Synthesis and Crosslinking / 5.1:
Copolymers / 5.1.2:
Polysiloxanes (Silicones) / 5.2:
Properties and Applications / 5.2.1:
Structure / 5.2.2:
Preparation / 5.2.3:
Curing ('Vulcanizing') / 5.2.4:
Polyphosphazenes / 5.3:
Preparation and Modification / 5.3.1:
Polysilanes / 5.4:
Polycarbosilanes / 5.4.1:
Polysilazanes and Related Polymers / 5.6:
Polymers with B-N Backbones / 5.7:
Other Inorganic Polymers / 5.8:
Other Phosphorus-Containing Polymers / 5.8.1:
Polymers with S-N Backbones / 5.8.2:
Metallopolymers / 5.8.3:
Polymer-to-Ceramic Transformation / 5.9:
Self-Assembly / 6:
Self-Assembled Monolayers / 6.1:
Metal-Organic Frameworks / 6.2:
Modularity of the Structures / 6.2.1:
Synthesis and Modification / 6.2.2:
Supramolecular Arrangements of Surfactants and Block Copolymers / 6.3:
Layer-by-Layer Assembly / 6.4:
Templating / 7:
Introduction to Porosity and High Surface Area Materials / 7.1:
Infiltration and Coating of Templates / 7.2:
Replica Technique / 7.2.1:
Sacrificial Templates / 7.2.2:
Colloidal Crystals / 7.2.2.1:
Hollow Particles / 7.2.2.2:
Direct Foaming / 7.2.3:
Nanocasting / 7.2.4:
In Situ Formation of Templates / 7.3:
Breath Figures / 7.3.1:
Freeze Casting / 7.3.2:
Supramolecular Assemblies of Amphiphiles / 7.3.3:
Synthesis of Periodic Mesoporous Silicas / 7.3.3.1:
Evaporation-Induced Self-Assembly / 7.3.3.2:
Incorporation of Organic Groups / 7.3.3.3:
Reorganization and Transformation Processes / 7.4:
Pseudomorphic Transformation / 7.4.1:
Kirkendall Effect / 7.4.2:
Galvanic Replacement / 7.4.3:
Phase Separation and Leaching / 7.4.4:
Nanomaterials / 8:
Properties of Nanomaterials / 8.1:
Properties Due to Surface Effects / 8.1.1:
Properties of Nanocrystalline Materials / 8.1.2:
Catalytic Properties / 8.1.3:
Optical Properties / 8.1.4:
Electrical Properties / 8.1.5:
Magnetic Properties / 8.1.6:
Syntheses of Nanoparticles / 8.2:
Severe Plastic Deformation / 8.2.1:
Formation from Vapours / 8.2.2:
Formation from Solution / 8.2.3:
Surface Modification with Organic Groups / 8.2.4:
One-Dimensional Nanostructures / 8.3:
Nanowires and Nanorods / 8.3.1:
Nanotubes / 8.3.2:
Carbon Nanotubes / 8.3.2.1:
Titania Nanotubes / 8.3.2.2:
Two-Dimensional Nanomaterials / 8.4:
Graphene / 8.4.1:
Other 2D Nanomaterials / 8.4.2:
Heterostructures and Composites / 8.5:
Core-Shell Nanoparticles / 8.5.1:
Vertical 2D Heterostructures / 8.5.2:
Polymer-Matrix Nanocomposites / 8.5.3:
Supported Metal Nanoparticles / 8.5.4:
Glossary
Index
Preface
Acknowledgements
Abbreviations
3.

図書

図書
Charles E. Baukal, Jr.
出版情報: Boca Raton, Fla. : CRC Press, c2000  545 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
Research Needs / 1.1.2:
Literature Discussion / 1.2:
Heat Transfer / 1.2.1:
Combustion / 1.2.2:
Heat Transfer and Combustion / 1.2.3:
Combustion System Components / 1.3:
Burners / 1.3.1:
Competing Priorities / 1.3.1.1:
Design Factors / 1.3.1.2:
General Burner Types / 1.3.1.3:
Combustors / 1.3.2:
Design Considerations / 1.3.2.1:
General Classifications / 1.3.2.2:
Heat Load / 1.3.3:
Process Tubes / 1.3.3.1:
Moving Substrate / 1.3.3.2:
Opaque Materials / 1.3.3.3:
Transparent Materials / 1.3.3.4:
Heat Recovery Devices / 1.3.4:
Recuperators / 1.3.4.1:
Regenerators / 1.3.4.2:
References
Some Fundamentals of Combustion / Chapter 2:
Combustion Chemistry / 2.1:
Fuel Properties / 2.1.1:
Oxidizer Composition / 2.1.2:
Mixture Ratio / 2.1.3:
Operating Regimes / 2.1.4:
Combustion Properties / 2.2:
Combustion Products / 2.2.1:
Air and Fuel Preheat Temperature / 2.2.1.1:
Fuel Composition / 2.2.1.4:
Flame Temperature / 2.2.2:
Oxidizer and Fuel Composition / 2.2.2.1:
Oxidizer and Fuel Preheat Temperature / 2.2.2.2:
Available Heat / 2.2.3:
Flue Gas Volume / 2.2.4:
Exhaust Product Transport Properties / 2.3:
Density / 2.3.1:
Specific Heat / 2.3.2:
Thermal Conductivity / 2.3.3:
Viscosity / 2.3.4:
Prandtl Number / 2.3.5:
Lewis Number / 2.3.6:
Heat Transfer Modes / Chapter 3:
Convection / 3.1:
Forced Convection / 3.2.1:
Forced Convection from Flames / 3.2.1.1:
Forced Convection from Outside Combustor Wall / 3.2.1.2:
Forced Convection from Hot Gases to Tubes / 3.2.1.3:
Natural Convection / 3.2.2:
Natural Convection from Flames / 3.2.2.1:
Natural Convection from Outside Combustor Wall / 3.2.2.2:
Radiation / 3.3:
Surface Radiation / 3.3.1:
Nonluminous Radiation / 3.3.2:
Theory / 3.3.2.1:
Combustion Studies / 3.3.2.2:
Luminous Radiation / 3.3.3:
Conduction / 3.3.3.1:
Steady-State Conduction / 3.4.1:
Transient Conduction / 3.4.2:
Phase Change / 3.5:
Melting / 3.5.1:
Boiling / 3.5.2:
Internal Boiling / 3.5.2.1:
External Boiling / 3.5.2.2:
Condensation / 3.5.3:
Heat Sources and Sinks / Chapter 4:
Heat Sources / 4.1:
Combustibles / 4.1.1:
Fuel Combustion / 4.1.1.1:
Volatile Combustion / 4.1.1.2:
Thermochemical Heat Release / 4.1.2:
Equilibrium TCHR / 4.1.2.1:
Catalytic TCHR / 4.1.2.2:
Mixed TCHR / 4.1.2.3:
Heat Sinks / 4.2:
Load / 4.2.1:
Tubes / 4.2.1.1:
Substrate / 4.2.1.2:
Granular Solid / 4.2.1.3:
Molten Liquid / 4.2.1.4:
Surface Conditions / 4.2.1.5:
Wall Losses / 4.2.2:
Openings / 4.2.3:
Gas Flow Through Openings / 4.2.3.1:
Material Transport / 4.2.4:
Computer Modeling / Chapter 5:
Combustion Modeling / 5.1:
Modeling Approaches / 5.2:
Fluid Dynamics / 5.2.1:
Moment Averaging / 5.2.1.1:
Vortex Methods / 5.2.1.2:
Spectral Methods / 5.2.1.3:
Direct Numerical Simulation / 5.2.1.4:
Geometry / 5.2.2:
Zero-Dimensional Modeling / 5.2.2.1:
One-Dimensional Modeling / 5.2.2.2:
Multi-dimensional Modeling / 5.2.2.3:
Reaction Chemistry / 5.2.3:
Nonreacting Flows / 5.2.3.1:
Simplified Chemistry / 5.2.3.2:
Complex Chemistry / 5.2.3.3:
Nonradiating / 5.2.4:
Participating Media / 5.2.4.2:
Time Dependence / 5.2.5:
Steady State / 5.2.5.1:
Transient / 5.2.5.2:
Simplified Models / 5.3:
Computational Fluid Dynamic Modeling / 5.4:
Increasing Popularity of CFD / 5.4.1:
Potential Problems of CFD / 5.4.2:
Equations / 5.4.3:
Chemistry / 5.4.3.1:
Multiple Phases / 5.4.3.4:
Boundary and Initial Conditions / 5.4.4:
Inlets and Outlets / 5.4.4.1:
Surfaces / 5.4.4.2:
Symmetry / 5.4.4.3:
Discretization / 5.4.5:
Finite Difference Technique / 5.4.5.1:
Finite Volume Technique / 5.4.5.2:
Finite Element Technique / 5.4.5.3:
Mixed / 5.4.5.4:
None / 5.4.5.5:
Solution Methods / 5.4.6:
Model Validation / 5.4.7:
Industrial Combustion Examples / 5.4.8:
Modeling Burners / 5.4.8.1:
Modeling Combustors / 5.4.8.2:
Experimental Techniques / Chapter 6:
Heat Flux / 6.1:
Total Heat Flux / 6.2.1:
Steady-State Uncooled Solids / 6.2.1.1:
Steady-State Cooled Solids / 6.2.1.2:
Steady-State Cooled Gages / 6.2.1.3:
Transient Uncooled Targets / 6.2.1.4:
Transient Uncooled Gages / 6.2.1.5:
Radiant Heat Flux / 6.2.2:
Heat Flux Gage / 6.2.2.1:
Ellipsoidal Radiometer / 6.2.2.2:
Spectral Radiometer / 6.2.2.3:
Other Techniques / 6.2.2.4:
Convective Heat Flux / 6.2.3:
Temperature / 6.3:
Gas Temperature / 6.3.1:
Suction Pyrometer / 6.3.1.1:
Optical Techniques / 6.3.1.2:
Fine Wire Thermocouples / 6.3.1.3:
Line Reversal / 6.3.1.4:
Surface Temperature / 6.3.2:
Embedded Thermocouple / 6.3.2.1:
Infrared Detectors / 6.3.2.2:
Gas Flow / 6.4:
Gas Velocity / 6.4.1:
Pitot Tubes / 6.4.1.1:
Laser Doppler Velocimetry / 6.4.1.2:
Static Pressure Distribution / 6.4.1.3:
Stagnation Velocity Gradient / 6.4.2.1:
Stagnation Zone / 6.4.2.2:
Gas Species / 6.5:
Other Measurements / 6.6:
Physical Modeling / 6.7:
Flame Impingement / Chapter 7:
Experimental Conditions / 7.1:
Configurations / 7.2.1:
Flame Normal to a Cylinder in Crossflow / 7.2.1.1:
Flame Normal to a Hemispherically Nosed Cylinder / 7.2.1.2:
Flame Normal to a Plane Surface / 7.2.1.3:
Flame Parallel to a Plane Surface / 7.2.1.4:
Operating Conditions / 7.2.2:
Oxidizers / 7.2.2.1:
Fuels / 7.2.2.2:
Equivalence Ratios / 7.2.2.3:
Firing Rates / 7.2.2.4:
Reynolds Number / 7.2.2.5:
Nozzle Diameter / 7.2.2.6:
Location / 7.2.2.8:
Stagnation Targets / 7.2.3:
Size / 7.2.3.1:
Target Materials / 7.2.3.2:
Surface Preparation / 7.2.3.3:
Surface Temperatures / 7.2.3.4:
Measurements / 7.2.4:
Semianalytical Heat Transfer Solutions / 7.3:
Equation Parameters / 7.3.1:
Thermophysical Properties / 7.3.1.1:
Sibulkin Results / 7.3.1.2:
Fay and Riddell Results / 7.3.2.2:
Rosner Results / 7.3.2.3:
Comparisons With Experiments / 7.3.3:
Forced Convection (Negligible TCHR) / 7.3.3.1:
Forced Convection with TCHR / 7.3.3.2:
Sample Calculations / 7.3.4:
Laminar Flames Without TCHR / 7.3.4.1:
Turbulent Flames Without TCHR / 7.3.4.2:
Laminar Flames with TCHR
Summary / 7.3.5:
Empirical Heat Transfer Correlations / 7.4:
Flames Impinging Normal to a Cylinder / 7.4.1:
Local Convection Heat Transfer / 7.4.2.1:
Average Convection Heat Transfer / 7.4.2.2:
Average Convection Heat Transfer with TCHR / 7.4.2.3:
Average Radiation Heat Transfer / 7.4.2.4:
Maximum Convection and Radiation Heat Transfer / 7.4.2.5:
Flames Impining Normal to a Hemi-Nosed Cylinder / 7.4.3:
Local Convection Heat Transfer with TCHR / 7.4.3.1:
Flames Impinging Normal to a Plane Surface / 7.4.4:
Flames Parallel to a Plane Surface / 7.4.4.1:
Local Convection Heat Transfer With TCHR / 7.4.5.1:
Local Convection and Radiation Heat Transfer / 7.4.5.2:
Heat Transfer from Burners / Chapter 8:
Open-Flame Burners / 8.1:
Momentum Effects / 8.2.1:
Flame Luminosity / 8.2.2:
Firing Rate Effects / 8.2.3:
Flame Shape Effects / 8.2.4:
Radiant Burners / 8.3:
Perforated Ceramic or Wire Mesh Radiant Burners / 8.3.1:
Flame Impingement Radiant Burners / 8.3.2:
Porous Refractory Radiant Burners / 8.3.3:
Advanced Ceramic Radiant Burners / 8.3.4:
Radiant Wall Burners / 8.3.5:
Radiant Tube Burners / 8.3.6:
Effects on Heat Transfer / 8.4:
Fuel Effects / 8.4.1:
Solid Fuels / 8.4.1.1:
Liquid Fuels / 8.4.1.2:
Gaseous Fuels / 8.4.1.3:
Fuel Temperature / 8.4.1.4:
Oxidizer Effects / 8.4.2:
Oxidizer Temperature / 8.4.2.1:
Staging Effects / 8.4.3:
Fuel Staging / 8.4.3.1:
Oxidizer Staging / 8.4.3.2:
Burner Orientation / 8.4.4:
Hearth-Fired Burners / 8.4.4.1:
Wall-Fired Burners / 8.4.4.2:
Roof-Fired Burners / 8.4.4.3:
Side-Fired Burners / 8.4.4.4:
Heat Recuperation / 8.4.5:
Regenerative Burners / 8.4.5.1:
Recuperative Burners / 8.4.5.2:
Furnace or Flue Gas Recirculation / 8.4.5.3:
Pulse Combustion / 8.4.6:
In-Flame Treatment / 8.5:
Heat Transfer in Furnaces / Chapter 9:
Furnaces / 9.1:
Firing Method / 9.2.1:
Direct Firing / 9.2.1.1:
Indirect Firing / 9.2.1.2:
Heat Distribution / 9.2.1.3:
Load Processing Method / 9.2.2:
Batch Processing / 9.2.2.1:
Continuous Processing / 9.2.2.2:
Hybrid Processing / 9.2.2.3:
Heat Transfer Medium / 9.2.3:
Gaseous Medium / 9.2.3.1:
Vacuum / 9.2.3.2:
Liquid Medium / 9.2.3.3:
Solid Medium / 9.2.3.4:
Rotary Geometry / 9.2.4:
Rectangular Geometry / 9.2.4.2:
Ladle Geometry / 9.2.4.3:
Vertical Cylindrical Geometry / 9.2.4.4:
Furnace Types / 9.2.5:
Reverberatory Furnace / 9.2.5.1:
Shaft Kiln / 9.2.5.2:
Rotary Furnace / 9.2.5.3:
Heat Recovery / 9.3:
Gas Recirculation / 9.3.1:
Flue Gas Recirculation / 9.3.3.1:
Furnace Gas Recirculation / 9.3.3.2:
Lower Temperature Applications / Chapter 10:
Ovens and Dryers / 10.1:
Predryer / 10.2.1:
Dryer / 10.2.2:
Fired Heaters / 10.3:
Reformer / 10.3.1:
Process Heater / 10.3.2:
Heat Treating / 10.4:
Standard Atmosphere / 10.4.1:
Special Atmosphere / 10.4.2:
Higher Temperature Applications / Chapter 11:
Industries / 11.1:
Metals Industry / 11.2:
Ferrous Metal Production / 11.2.1:
Electric Arc Furnace / 11.2.1.1:
Smelting / 11.2.1.2:
Ladle Preheating / 11.2.1.3:
Reheating Furnace / 11.2.1.4:
Forging / 11.2.1.5:
Aluminum Metal Production / 11.2.2:
Minerals Industry / 11.3:
Glass / 11.3.1:
Types of Traditional Glass-Melting Furnaces / 11.3.1.1:
Unit Melter / 11.3.1.2:
Recuperative Melter / 11.3.1.3:
Regenerative or Siemens Furnace / 11.3.1.4:
Oxygen-Enhanced Combustion for Glass Production / 11.3.1.5:
Advanced Techniques for Glass Production / 11.3.1.6:
Cement and Lime / 11.3.2:
Bricks, Refractories, and Ceramics / 11.3.3:
Waste Incineration / 11.4:
Types of Incinerators / 11.4.1:
Municipal Waste Incinerators / 11.4.1.1:
Sludge Incinerators / 11.4.1.2:
Mobile Incinerators / 11.4.1.3:
Transportable Incinerators / 11.4.1.4:
Fixed Hazardous Waste Incinerators / 11.4.1.5:
Heat Transfer in Waste Incineration / 11.4.2:
Advanced Combustion Systems / Chapter 12:
Oxygen-Enhanced Combustion / 12.1:
Typical Use Methods / 12.2.1:
Air Enrichment / 12.2.1.1:
O[subscript 2] Lancing / 12.2.1.2:
Oxy/Fuel / 12.2.1.3:
Air-Oxy/Fuel / 12.2.1.4:
Heat Transfer Benefits / 12.2.2:
Increased Productivity / 12.2.3.1:
Higher Thermal Efficiencies / 12.2.3.2:
Higher Heat Transfer Efficiency / 12.2.3.3.:
Increased Flexibility / 12.2.3.4:
Potential Heat Transfer Problems / 12.2.4:
Refractory Damage / 12.2.4.1:
Nonuniform Heating / 12.2.4.2:
Industrial Heating Applications / 12.2.5:
Metals / 12.2.5.1:
Minerals / 12.2.5.2:
Incineration / 12.2.5.3:
Other / 12.2.5.4:
Submerged Combustion / 12.3:
Metals Production / 12.3.1:
Minerals Production / 12.3.2:
Liquid Heating / 12.3.3:
Miscellaneous / 12.4:
Surface Combustor-Heater / 12.4.1:
Direct-Fired Cylinder Dryer / 12.4.2:
Appendices
Reference Sources for Further Information / Appendix A:
Common Conversions / Appendix B:
Methods of Expressing Mixture Ratios for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] / Appendix C:
Properties for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] Flames / Appendix D:
Fluid Dynamics Equations / Appendix E:
Material Properties / Appendix F:
Author Index
Subject Index
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
4.

図書

図書
M. Hinze ... [et al.]
出版情報: [Dordrecht] : Springer, c2009  xi, 270 p. ; 24 cm
シリーズ名: Mathematical modelling : theory and applications ; v. 23
所蔵情報: loading…
目次情報: 続きを見る
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
Introduction and Examples / 1.1:
Introduction / 1.1.1:
Examples for Optimization Problems with PDEs / 1.1.2:
Optimization of a Stationary Heating Process / 1.1.3:
Optimization of an Unsteady Heating Processes / 1.1.4:
Optimal Design / 1.1.5:
Linear Functional Analysis and Sobolev Spaces / 1.2:
Banach and Hilbert Spaces / 1.2.1:
Sobolev Spaces / 1.2.2:
Weak Convergence / 1.2.3:
Weak Solutions of Elliptic and Parabolic PDEs / 1.3:
Weak Solutions of Elliptic PDEs / 1.3.1:
Weak Solutions of Parabolic PDEs / 1.3.2:
Gateaux- and Fréchet Differentiability / 1.4:
Basic Definitions / 1.4.1:
Implicit Function Theorem / 1.4.2:
Existence of Optimal Controls / 1.5:
Existence Result for a General Linear-Quadratic Problem / 1.5.1:
Existence Result for Nonlinear Problems / 1.5.2:
Applications / 1.5.3:
Reduced Problem, Sensitivities and Adjoints / 1.6:
Sensitivity Approach / 1.6.1:
Adjoint Approach / 1.6.2:
Application to a Linear-Quadratic Optimal Control Problem / 1.6.3:
A Lagrangian-Based View of the Adjoint Approach / 1.6.4:
Second Derivatives / 1.6.5:
Optimality Conditions / 1.7:
Optimality Conditions for Simply Constrained Problems / 1.7.1:
Optimality Conditions for Control-Constrained Problems / 1.7.2:
Optimality Conditions for Problems with General Constraints / 1.7.3:
Optimal Control of Instationary Incompressible Navier-Stokes Flow / 1.8:
Functional Analytic Setting / 1.8.1:
Analysis of the Flow Control Problem / 1.8.2:
Reduced Optimal Control Problem / 1.8.3:
Optimization Methods in Banach Spaces / 2:
Michael Ulbrich
Synopsis / 2.1:
Globally Convergent Methods in Banach Spaces / 2.2:
Unconstrained Optimization / 2.2.1:
Optimization on Closed Convex Sets / 2.2.2:
General Optimization Problems / 2.2.3:
Newton-Based Methods-A Preview / 2.3:
Unconstrained Problems-Newton's Method / 2.3.1:
Simple Constraints / 2.3.2:
General Inequality Constraints / 2.3.3:
Generalized Newton Methods / 2.4:
Motivation: Application to Optimal Control / 2.4.1:
A General Superlinear Convergence Result / 2.4.2:
The Classical Newton's Method / 2.4.3:
Generalized Differential and Semismoothness / 2.4.4:
Semismooth Newton Methods / 2.4.5:
Semismooth Newton Methods in Function Spaces / 2.5:
Semismoothness of Superposition Operators / 2.5.1:
Application to Optimal Control / 2.5.3:
Application to Elliptic Optimal Control Problems / 2.5.5:
Optimal Control of the Incompressible Navier-Stokes Equations / 2.5.7:
Sequential Quadratic Programming / 2.6:
Lagrange-Newton Methods for Equality Constrained Problems / 2.6.1:
The Josephy-Newton Method / 2.6.2:
SQP Methods for Inequality Constrained Problems / 2.6.3:
State-Constrained Problems / 2.7:
SQP Methods / 2.7.1:
Further Aspects / 2.7.2:
Mesh Independence / 2.8.1:
Application of Fast Solvers / 2.8.2:
Other Methods / 2.8.3:
Discrete Concepts in PDE Constrained Optimization / 3:
Michael Hinze
Control Constraints / 3.1:
Stationary Model Problem / 3.2.1:
First Discretize, Then Optimize / 3.2.2:
First Optimize, Then Discretize / 3.2.3:
Discussion and Implications / 3.2.4:
The Variational Discretization Concept / 3.2.5:
Error Estimates / 3.2.6:
Boundary Control / 3.2.7:
Some Literature Related to Control Constraints / 3.2.8:
Constraints on the State / 3.3:
Pointwise Bounds on the State / 3.3.1:
Pointwise Bounds on the Gradient of the State / 3.3.2:
Time Dependent Problem / 3.4:
Mathematical Model, State Equation / 3.4.1:
Optimization Problem / 3.4.2:
Discretization / 3.4.3:
Further Literature on Control of Time-Dependent Problems / 3.4.4:
Rene Pinnau / 4:
Optimal Semiconductor Design / 4.1:
Semiconductor Device Physics / 4.1.1:
The Optimization Problem / 4.1.2:
Numerical Results / 4.1.3:
Optimal Control of Glass Cooling / 4.2:
Modeling / 4.2.1:
Optimal Boundary Control / 4.2.2:
References / 4.2.3:
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
5.

図書

図書
Robert Haining
出版情報: Cambridge [England] ; New York : Cambridge University Press, 1993, c1990  xxi, 409 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
List of tables and displays
Preface
Acknowledgements
Introduction to issues in the analysis of spatially referenced data / Part A:
Introduction / 1:
Notes
Issues in analysing spatial data / 2:
Spatial data: sources, forms and storage / 2.1:
Sources: quality and quantity / 2.1.1:
Forms and attributes / 2.1.2:
Data storage / 2.1.3:
Spatial data analysis / 2.2:
The importance of space in the social and environmental sciences / 2.2.1:
Measurement error / 2.2.1 (a):
Continuity effects and spatial heterogeneity / 2.2.1 (b):
Spatial processes / 2.2.1 (c):
Types of analytical problems / 2.2.2:
Problems in spatial data analysis / 2.3:
Conceptual models and inference frameworks for spatial data / 2.3.1:
Modelling spatial variation / 2.3.2:
Statistical modelling of spatial data / 2.3.3:
Dependency in spatial data / 2.3.3 (a):
Spatial heterogeneity: regional subdivisions and parameter variation / 2.3.3 (b):
Spatial distribution of data points and boundary effects / 2.3.3 (c):
Assessing model fit / 2.3.3 (d):
Distributions / 2.3.3 (e):
Extreme data values / 2.3.3 (f):
Model sensitivity to the areal system / 2.3.3 (g):
Size-variance relationships in homogeneous aggregates / 2.3.3 (h):
A statistical framework for spatial data analysis / 2.4:
Data adaptive modelling / 2.4.1:
Robust and resistant parameter estimation / 2.4.2:
Robust estimation of the centre of a symmetric distribution / 2.4.2 (a):
Robust estimation of regression parameters / 2.4.2 (b):
Parametric models for spatial variation / Part B:
Statistical models for spatial populations / 3:
Models for spatial populations: preliminary considerations / 3.1:
Spatial stationarity and isotropy / 3.1.1:
Second order (weak) stationarity and isotropy / 3.1.1 (a):
Second order (weak) stationarity and isotropy of differences from the mean / 3.1.1 (b):
Second order (weak) stationarity and isotropy of increments / 3.1.1 (c):
Order relationships in one and two dimensions / 3.1.2:
Population models for continuous random variables / 3.2:
Models for the mean of a spatial population / 3.2.1:
Trend surface models / 3.2.1 (a):
Regression model / 3.2.1 (b):
Models for second order or stochastic variation of a spatial population / 3.2.2:
Interaction models for V of a MVN distribution / 3.2.2 (a):
Interaction models for other multivariate distributions / 3.2.2 (b):
Direct specification of V / 3.2.2 (c):
Intrinsic random functions / 3.2.2 (d):
Population models for discrete random variables / 3.3:
Boundary models for spatial populations / 3.4:
Edge structures, weighting schemes and the dispersion matrix / 3.5:
Conclusions: issues in representing spatial variation / 3.6:
Simulating spatial models / Appendix:
Statistical analysis of spatial populations / 4:
Model selection / 4.1:
Statistical inference with interaction schemes / 4.2:
Parameter estimation: maximum likelihood (ML) methods / 4.2.1:
[mu] unknown; V known / 4.2.1 (a):
[mu] known; V unknown / 4.2.1 (b):
[mu] and V unknown / 4.2.1 (c):
Models with non-constant variance / 4.2.1 (d):
Parameter estimation: other methods / 4.2.2:
Ordinary least squares and pseudo-likelihood estimators / 4.2.2 (a):
Coding estimators / 4.2.2 (b):
Moment estimators / 4.2.2 (c):
Parameter estimation: discrete valued interaction models / 4.2.3:
Properties of ML estimators / 4.2.4:
Large sample properties / 4.2.4 (a):
Small sample properties / 4.2.4 (b):
A note on boundary effects / 4.2.4 (c):
Hypothesis testing for interaction schemes / 4.2.5:
Likelihood ratio tests / 4.2.5 (a):
Lagrange multiplier tests / 4.2.5 (b):
Statistical inference with covariance functions and intrinsic random functions / 4.3:
Parameter estimation: maximum likelihood methods / 4.3.1:
Properties of estimators and hypothesis testing / 4.3.2:
Validation in spatial models / 4.4:
The consequences of ignoring spatial correlation in estimating the mean / 4.5:
Spatial data collection and preliminary analysis / Part C:
Sampling spatial populations / 5:
Spatial sampling designs / 5.1:
Point sampling / 5.2.1:
Quadrat and area sampling / 5.2.2:
Sampling spatial surfaces: estimating the mean / 5.3:
Fixed populations with trend or periodicity / 5.3.1:
Populations with second order variation / 5.3.2:
Results for one-dimensional series / 5.3.2 (a):
Results for two-dimensional surfaces / 5.3.2 (b):
Standard errors for confidence intervals and selecting sample size / 5.3.3:
Sampling spatial surfaces: second order variation / 5.4:
Kriging / 5.4.1:
Scales of variation / 5.4.2:
Sampling applications / 5.5:
Concluding comments / 5.6:
Preliminary analysis of spatial data / 6:
Preliminary data analysis: distributional properties and spatial arrangement / 6.1:
Univariate data analysis / 6.1.1:
General distributional properties / 6.1.1 (a):
Spatial outliers / 6.1.1 (b):
Spatial trends / 6.1.1 (c):
Second order non-stationarity / 6.1.1 (d):
Regional subdivisions / 6.1.1 (e):
Multivariate data analysis / 6.1.2:
Data transformations / 6.1.3:
Preliminary data analysis: detecting spatial pattern, testing for spatial autocorrelation / 6.2:
Available test statistics / 6.2.1:
Constructing a test / 6.2.2:
Interpretation / 6.2.3:
Choosing a test / 6.2.4:
Describing spatial variation: robust estimation of spatial variation / 6.3:
Robust estimators of the semi-variogram / 6.3.1:
Robust estimation of covariances / 6.3.2:
Concluding remarks / 6.4:
Modelling spatial data / Part D:
Analysing univariate data sets / 7:
Describing spatial variation / 7.1:
Non-stationary mean, stationary second order variation: trend surface models with correlated errors / 7.1.1:
Non-stationary mean, stationary increments: semi-variogram models and polynomial generalised covariance functions / 7.1.2:
Discrete data / 7.1.3:
Interpolation and estimating missing values / 7.2:
Ad hoc and cartographic techniques / 7.2.1:
Distribution based techniques / 7.2.2:
Sequential approaches (sampling a continuous surface) / 7.2.2 (a):
Simultaneous approaches / 7.2.2 (b):
Extensions / 7.2.3:
Obtaining areal properties / 7.2.3 (a):
Reconciling data sets on different areal frameworks / 7.2.3 (b):
Categorical data / 7.2.3 (c):
Other information for interpolation / 7.2.3 (d):
Analysing multivariate data sets / 8:
Measures of spatial correlation and spatial association / 8.1:
Correlation measures / 8.1.1:
Measures of association / 8.1.2:
Regression modelling / 8.2:
Problems due to the assumptions of least squares not being satisfied / 8.2.1:
Problems of model specification and analysis / 8.2.2:
Model discrimination / 8.2.2 (a):
Specifying W / 8.2.2 (b):
Parameter estimation and inference / 8.2.2 (c):
Model evaluation / 8.2.2 (d):
Interpretation problems / 8.2.3:
Problems due to data characteristics / 8.2.4:
Numerical problems / 8.2.5:
Regression applications / 8.3:
Model diagnostics and model revision (a) new explanatory variables / Example 8.1:
Model diagnostics and model revision (b) developing a spatial regression model / Example 8.2:
Regression modelling with census variables: Glasgow health data / Example 8.3:
Identifying spatial interaction and heterogeneity: Sheffield petrol price data / Example 8.4:
Robust estimation of the parameters of interaction schemes
Postscript
Glossary
References
Index
List of tables and displays
Preface
Acknowledgements
6.

図書

図書
Oded Goldreich
出版情報: Cambridge : Cambridge University Press, 2008  xxiv, 606 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
Preface
Organization and Chapter Summaries
Acknowledgments
Introduction and Preliminaries / 1:
Introduction / 1.1:
A Brief Overview of Complexity Theory / 1.1.1:
Characteristics of Complexity Theory / 1.1.2:
Contents of This Book / 1.1.3:
Approach and Style of This Book / 1.1.4:
Standard Notations and Other Conventions / 1.1.5:
Computational Tasks and Models / 1.2:
Representation / 1.2.1:
Computational Tasks / 1.2.2:
Uniform Models (Algorithms) / 1.2.3:
Non-uniform Models (Circuits and Advice) / 1.2.4:
Complexity Classes / 1.2.5:
Chapter Notes
P, NP, and NP-Completeness / 2:
The P Versus NP Question / 2.1:
The Search Version: Finding Versus Checking / 2.1.1:
The Decision Version: Proving Versus Verifying / 2.1.2:
Equivalence of the Two Formulations / 2.1.3:
Two Technical Comments Regarding NP / 2.1.4:
The Traditional Definition of NP / 2.1.5:
In Support of P Different from NP / 2.1.6:
Philosophical Meditations / 2.1.7:
Polynomial-Time Reductions / 2.2:
The General Notion of a Reduction / 2.2.1:
Reducing Optimization Problems to Search Problems / 2.2.2:
Self-Reducibility of Search Problems / 2.2.3:
Digest and General Perspective / 2.2.4:
NP-Completeness / 2.3:
Definitions / 2.3.1:
The Existence of NP-Complete Problems / 2.3.2:
Some Natural NP-Complete Problems / 2.3.3:
NP Sets That Are Neither in P nor NP-Complete / 2.3.4:
Reflections on Complete Problems / 2.3.5:
Three Relatively Advanced Topics / 2.4:
Promise Problems / 2.4.1:
Optimal Search Algorithms for NP / 2.4.2:
The Class coNP and Its Intersection with NP / 2.4.3:
Exercises
Variations on P and NP / 3:
Non-uniform Polynomial Time (P/poly) / 3.1:
Boolean Circuits / 3.1.1:
Machines That Take Advice / 3.1.2:
The Polynomial-Time Hierarchy (PH) / 3.2:
Alternation of Quantifiers / 3.2.1:
Non-deterministic Oracle Machines / 3.2.2:
The P/poly Versus NP Question and PH / 3.2.3:
More Resources, More Power? / 4:
Non-uniform Complexity Hierarchies / 4.1:
Time Hierarchies and Gaps / 4.2:
Time Hierarchies / 4.2.1:
Time Gaps and Speedup / 4.2.2:
Space Hierarchies and Gaps / 4.3:
Space Complexity / 5:
General Preliminaries and Issues / 5.1:
Important Conventions / 5.1.1:
On the Minimal Amount of Useful Computation Space / 5.1.2:
Time Versus Space / 5.1.3:
Circuit Evaluation / 5.1.4:
Logarithmic Space / 5.2:
The Class L / 5.2.1:
Log-Space Reductions / 5.2.2:
Log-Space Uniformity and Stronger Notions / 5.2.3:
Undirected Connectivity / 5.2.4:
Non-deterministic Space Complexity / 5.3:
Two Models / 5.3.1:
NL and Directed Connectivity / 5.3.2:
A Retrospective Discussion / 5.3.3:
PSPACE and Games / 5.4:
Randomness and Counting / 6:
Probabilistic Polynomial Time / 6.1:
Basic Modeling Issues / 6.1.1:
Two-Sided Error: The Complexity Class BPP / 6.1.2:
One-Sided Error: The Complexity Classes RP and coRP / 6.1.3:
Zero-Sided Error: The Complexity Class ZPP / 6.1.4:
Randomized Log-Space / 6.1.5:
Counting / 6.2:
Exact Counting / 6.2.1:
Approximate Counting / 6.2.2:
Searching for Unique Solutions / 6.2.3:
Uniform Generation of Solutions / 6.2.4:
The Bright Side of Hardness / 7:
One-Way Functions / 7.1:
Generating Hard Instances and One-Way Functions / 7.1.1:
Amplification of Weak One-Way Functions / 7.1.2:
Hard-Core Preicates / 7.1.3:
Reflections on Hardness Amplification / 7.1.4:
Hard Problems in E / 7.2:
Amplification with Respect to Polynomial-Size Circuits / 7.2.1:
Amplification with Respect to Exponential-Size Circuits / 7.2.2:
Pseudorandom Generators / 8:
The General Paradigm / 8.1:
General-Purpose Pseudorandom Generators / 8.2:
The Basic Definition / 8.2.1:
The Archetypical Application / 8.2.2:
Computational Indistinguishability / 8.2.3:
Amplifying the Stretch Function / 8.2.4:
Constructions / 8.2.5:
Non-uniformly Strong Pseudorandom Generators / 8.2.6:
Stronger Notions and Conceptual Reflections / 8.2.7:
Derandomization of Time-Complexity Classes / 8.3:
Defining Canonical Derandomizers / 8.3.1:
Constructing Canonical Derandomizers / 8.3.2:
Technical Variations and Conceptual Reflections / 8.3.3:
Space-Bounded Distinguishers / 8.4:
Definitional Issues / 8.4.1:
Two Constructions / 8.4.2:
Special-Purpose Generators / 8.5:
Pairwise Independence Generators / 8.5.1:
Small-Bias Generators / 8.5.2:
Random Walks on Expanders / 8.5.3:
Probabilistic Proof Systems / 9:
Interactive Proof Systems / 9.1:
Motivation and Perspective / 9.1.1:
Definition / 9.1.2:
The Power of Interactive Proofs / 9.1.3:
Variants and Finer Structure: An Overview / 9.1.4:
On Computationally Bounded Provers: An Overview / 9.1.5:
Zero-Knowledge Proof Systems / 9.2:
The Power of Zero-Knowledge / 9.2.1:
Proofs of Knowledge - A Parenthetical Subsection / 9.2.3:
Probabilistically Checkable Proof Systems / 9.3:
The Power of Probabilistically Checkable Proofs / 9.3.1:
PCP and Approximation / 9.3.3:
More on PCP Itself: An Overview / 9.3.4:
Relaxing the Requirements / 10:
Approximation / 10.1:
Search or Optimization / 10.1.1:
Decision or Property Testing / 10.1.2:
Average-Case Complexity / 10.2:
The Basic Theory / 10.2.1:
Ramifications / 10.2.2:
Epilogue
Glossary of Complexity Classes / Appendix A:
Preliminaries / A.1:
Algorithm-Based Classes / A.2:
Time Complexity Classes / A.2.1:
Space Complexity Classes / A.2.2:
Circuit-Based Classes / A.3:
On the Quest for Lower Bounds / Appendix B:
Boolean Circuit Complexity / B.1:
Basic Results and Questions / B.2.1:
Monotone Circuits / B.2.2:
Bounded-Depth Circuits / B.2.3:
Formula Size / B.2.4:
Arithmetic Circuits / B.3:
Univariate Polynomials / B.3.1:
Multivariate Polynomials / B.3.2:
Proof Complexity / B.4:
Logical Proof Systems / B.4.1:
Algebraic Proof Systems / B.4.2:
Geometric Proof Systems / B.4.3:
On the Foundations of Modern Cryptography / Appendix C:
The Underlying Principles / C.1:
The Computational Model / C.1.2:
Organization and Beyond / C.1.3:
Computational Difficulty / C.2:
Hard-Core Predicates / C.2.1:
Pseudorandomness / C.3:
Pseudorandom Functions / C.3.1:
Zero-Knowledge / C.4:
The Simulation Paradigm / C.4.1:
The Actual Definition / C.4.2:
A General Result and a Generic Application / C.4.3:
Definitional Variations and Related Notions / C.4.4:
Encryption Schemes / C.5:
Beyond Eavesdropping Security / C.5.1:
Signatures and Message Authentication / C.6:
General Cryptographic Protocols / C.6.1:
The Definitional Approach and Some Models / C.7.1:
Some Known Results / C.7.2:
Construction Paradigms and Two Simple Protocols / C.7.3:
Concluding Remarks / C.7.4:
Probabilistic Preliminaries and Advanced Topics in Randomization / Appendix D:
Probabilistic Preliminaries / D.1:
Notational Conventions / D.1.1:
Three Inequalities / D.1.2:
Hashing / D.2:
The Leftover Hash Lemma / D.2.1:
Sampling / D.3:
Formal Setting / D.3.1:
Known Results / D.3.2:
Hitters / D.3.3:
Randomnes Extractors / D.4:
Definitions and Various Perspectives / D.4.1:
Explicit Constructions / D.4.2:
Error-Correcting Codes / E.1:
Basic Notions / E.1.1:
A Few Popular Codes / E.1.2:
Two Additional Computational Problems / E.1.3:
A List-Decoding Bound / E.1.4:
Expander Graphs / E.2:
Definitions and Properties / E.2.1:
Some Omitted Proofs / E.2.2:
Proving That PH Reduces to #P / F.1:
Proving That IP(f) [characters not reproducible] AM(O(f)) [characters not reproducible] AM(f) / F.2:
Emulating General Interactive Proofs by AM-Games / F.2.1:
Linear Speedup for AM / F.2.2:
Some Computational Problems / Appendix G:
Graphs / G.1:
Boolean Formulae / G.2:
Finite Fields, Polynomials, and Vector Spaces / G.3:
The Determinant and the Permanent / G.4:
Primes and Composite Numbers / G.5:
Bibliography
Index
List of Figures
Preface
Organization and Chapter Summaries
7.

図書

図書
Noboru Ono
出版情報: New York : Wiley-VCH, c2001  xvi, 372 p. ; 25 cm
シリーズ名: Organic nitro chemistry series
所蔵情報: loading…
目次情報: 続きを見る
Series Foreword
Preface
Acknowledgments
Abbreviations
Introduction / 1.:
Preparation of Nitro Compounds / 2.:
Nitration of Hydrocarbons / 2.1:
Aromatic Compounds / 2.1.1:
Alkanes / 2.1.2:
Activated C-H Compounds / 2.1.3:
Alkenes / 2.1.4:
Synthesis of [alpha]-Nitro Ketones / 2.1.5:
Nitration of Alkyl Halides / 2.1.6:
Synthesis of Nitro Compounds by Oxidation / 2.2:
Oxidation of Amines / 2.2.1:
Oxidation of Oximes / 2.2.2:
The Nitro-Aldol (Henry) Reaction / 3.:
Preparation of [beta]-Nitro Alcohols / 3.1:
Derivatives from [beta]-Nitro Alcohols / 3.2:
Nitroalkenes / 3.2.1:
Nitroalkanes / 3.2.2:
[alpha]-Nitro Ketones / 3.2.3:
[beta]-Amino Alcohols / 3.2.4:
Nitro Sugars and Amino Sugars / 3.2.5:
Stereoselective Henry Reactions and Applications to Organic Synthesis / 3.3:
Michael Addition / 4.:
Addition to Nitroalkenes / 4.1:
Conjugate Addition of Heteroatom-Centered Nucleophiles / 4.1.1:
Conjugate Addition of Heteroatom Nucleophiles and Subsequent Nef Reaction / 4.1.2:
Conjugate Addition of Carbon-Centered Nucleophiles / 4.1.3:
Addition and Elimination Reaction of [beta]-Heterosubstituted Nitroalkenes / 4.2:
Michael Addition of Nitroalkanes / 4.3:
Intermolecular Addition / 4.3.1:
Intramolecular Addition / 4.3.2:
Asymmetric Michael Addition / 4.4:
Chiral Alkenes and Chiral Nitro Compounds / 4.4.1:
Chiral Catalysts / 4.4.2:
Alkylation, Acylation, and Halogenation of Nitro Compounds / 5.:
Alkylation of Nitro Compounds / 5.1:
Acylation of Nitroalkanes / 5.2:
Ring Cleavage of Cyclic [alpha]-Nitro Ketones (Retro-Acylation) / 5.3:
Alkylation of Nitro Compounds via Alkyl Radicals / 5.4:
Alkylation of Nitro Compounds Using Transition Metal Catalysis / 5.5:
Butadiene Telomerization / 5.5.1:
Pd-Catalyzed Allylic C-Alkylation of Nitro Compounds / 5.5.2:
Arylation of Nitro Compounds / 5.6:
Introduction of Heteroatoms to Nitroalkanes / 5.7:
Conversion of Nitro Compounds into Other Compounds / 6.:
Nef Reaction (Aldehydes, Ketones, and Carboxylic Acids) / 6.1:
Treatment With Acid (Classical Procedure) / 6.1.1:
Oxidative Method / 6.1.2:
Reductive Method / 6.1.3:
Direct Conversion of Nitroalkenes to Carbonyl Compounds / 6.1.4:
Nitrile Oxides and Nitriles / 6.2:
Reduction of Nitro Compounds into Amines / 6.3:
Ar-NH[subscript 2] From Ar-NO[subscript 2] / 6.3.1:
R-NH[subscript 2] From R-NO[subscript 2] / 6.3.2:
Oximes, Hydroxylamines, and Other Nitrogen Derivatives / 6.3.3:
Substitution and Elimination of NO[subscript 2] in R-NO[subscript 2] / 7.:
R-Nu from R-NO[subscript 2] / 7.1:
Radical Reactions (S[subscript RN]1) / 7.1.1:
Ionic Process / 7.1.2:
Intramolecular Nucleophilic Substitution Reaction / 7.1.3:
Allylic Rearrangement / 7.1.4:
R-H from R-NO[subscript 2] / 7.2:
Radical Denitration / 7.2.1:
Ionic Denitration / 7.2.2:
Alkenes from R-NO[subscript 2] / 7.3:
Radical Elimination / 7.3.1:
Ionic Elimination of Nitro Compounds / 7.3.2:
Cycloaddition Chemistry of Nitro Compounds / 8.:
Diels-Alder Reactions / 8.1:
Nitroalkenes Using Dienophiles / 8.1.1:
Asymmetric Diels-Alder Reaction / 8.1.2:
1,3-Dipolar Cycloaddition / 8.2:
Nitrones / 8.2.1:
Nitrile Oxides / 8.2.2:
Nitronates / 8.2.3:
Nitroalkenes as Heterodienes in Tandem [4+2]/[3+2] Cycloaddition / 8.3:
Nitroalkenes as Heterodienes / 8.3.1:
Tandem [4+2]/[3+2] Cycloaddition of Nitroalkenes / 8.3.2:
Nucleophilic Aromatic Displacement / 9.:
S[subscript N]Ar / 9.1:
Nucleophilic Aromatic Substitution of Hydrogen (NASH) / 9.2:
Carbon Nucleophiles / 9.2.1:
Nitrogen and Other Heteroatom Nucleophiles / 9.2.2:
Applications to Synthesis of Heterocyclic Compounds / 9.2.3:
Synthesis of Heterocyclic Compounds / 10.:
Pyrroles / 10.1:
Synthesis of Indoles / 10.2:
Synthesis of Other Nitrogen Heterocycles / 10.3:
Three-Membered Ring / 10.3.1:
Five- and Six-Membered Saturated Rings / 10.3.2:
Miscellaneous / 10.3.3:
Index
Series Foreword
Preface
Acknowledgments
8.

図書

図書
Ulf Leonhardt
出版情報: Cambridge : Cambridge University Press, 2010  xii, 277 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
Quantum theory / 1.2:
Axioms / 1.2.1:
Quantum statistics / 1.2.2:
Schrödinger and Heisenberg pictures / 1.2.3:
On the questions and homework problems / 1.3:
Further reading / 1.4:
Quantum field theory of light / 2:
Light in media / 2.1:
Maxwell's equations / 2.1.1:
Quantum commutator / 2.1.2:
Light modes / 2.2:
Modes and their scalar product / 2.2.1:
Bose commutation relations / 2.2.2:
Interference / 2.2.3:
Monochromatic modes / 2.2.4:
Zero-point energy and Casimir force / 2.3:
An attractive cavity / 2.3.1:
Reflections / 2.3.2:
Questions / 2.4:
Homework problem / 2.5:
Simple quantum states of light / 2.6:
The electromagnetic oscillator / 3.1:
Single-mode states / 3.2:
Quadrature states / 3.2.1:
Fock states / 3.2.2:
Thermal states / 3.2.3:
Coherent states / 3.2.4:
Uncertainty and squeezing / 3.3:
Quasiprobability distributions / 3.4:
Wigner representation / 4.1:
Wigner's formula / 4.1.1:
Basic properties / 4.1.2:
Examples / 4.1.3:
Other quasiprobability distributions / 4.2:
Q function / 4.2.1:
P function / 4.2.2:
s-parameterized quasiprobability distributions / 4.2.3:
Simple optical instruments / 4.3:
Beam splitter / 5.1:
Heisenberg picture / 5.1.1:
Schrödinger picture / 5.1.2:
Fock representation and wave-particle dualism / 5.1.3:
Detection / 5.2:
Photodetector / 5.2.1:
Balanced homodyne detection / 5.2.2:
Quantum tomography / 5.2.3:
Simultaneous measurement of conjugate variables / 5.2.4:
Irrevesible processes / 5.3:
Lindblad's theorem / 6.1:
Irreversibility / 6.1.1:
Reversible dynamics / 6.1.2:
Irreversible dynamics / 6.1.3:
Loss and gain / 6.2:
Absorption and amplification / 6.2.1:
Absorber / 6.2.2:
Amplifier / 6.2.3:
Eavesdropper / 6.2.4:
Continuous quantum measurements / 6.3:
Entanglement / 6.4:
Parametric amplifier / 7.1:
Einstein-Podolski-Rosen state / 7.1.1:
Quantum teleportation / 7.1.4:
Polarization correlations / 7.2:
Singlet state / 7.2.1:
Polarization / 7.2.2:
Bell's theorem / 7.2.3:
Horizons / 7.3:
Minkowski space / 8.1:
Locality and relativity / 8.1.1:
Space-time geometry / 8.1.2:
Light / 8.1.3:
Accelerated observers / 8.2:
Rindler coordinates / 8.2.1:
Accelerated modes / 8.2.2:
Unruh effect / 8.2.3:
Moving media / 8.3:
Motivation / 8.3.1:
Trans-Planckian problem / 8.3.2:
Light in moving media / 8.3.3:
Geometry of light / 8.3.4:
Hawking radiation / 8.3.5:
Stress of the quantum vacuum / 8.4:
State reconstruction in quantum mechanics / Appendix B:
References
Index
Irreversible processes
Appendixes
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
9.

図書

図書
Nam-Trung Nguyen, Steven T. Wereley
出版情報: Boston : Artech House, c2002  xiii, 471 p. ; 24 cm
シリーズ名: MEMS--Microelectromechanical systems series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
Microfluidics--The Emerging Technology / 1.1:
What Is Microfluidics? / 1.1.1:
Commercial Aspects / 1.1.2:
Scientific Aspects / 1.1.3:
Milestones of Microfluidics / 1.2:
Device Development / 1.2.1:
Technology Development / 1.2.2:
Organization of the Book / 1.3:
References
Fluid Mechanics Theory / Chapter 2:
Intermolecular Forces / 2.1:
The Three States of Matter / 2.1.2:
Continuum Assumption / 2.1.3:
Continuum Fluid Mechanics at Small Scales / 2.2:
Gas Flows / 2.2.1:
Liquid Flows / 2.2.2:
Boundary Conditions / 2.2.3:
Parallel Flows / 2.2.4:
Low Reynolds Number Flows / 2.2.5:
Entrance Effects / 2.2.6:
Surface Tension / 2.2.7:
Molecular Approaches / 2.3:
MD / 2.3.1:
DSMC Technique / 2.3.2:
Electrokinetics / 2.4:
Electro-Osmosis / 2.4.1:
Electrophoresis / 2.4.2:
Dielectrophoresis / 2.4.3:
Conclusion / 2.5:
Problems
Fabrication Techniques for Microfluidics / Chapter 3:
Basic Microtechniques / 3.1:
Photolithography / 3.1.1:
Additive Techniques / 3.1.2:
Subtractive Techniques / 3.1.3:
Pattern Transfer Techniques / 3.1.4:
Silicon-Based Micromachining Techniques / 3.2:
Silicon Bulk Micromachining / 3.2.1:
Silicon Surface Micromachining / 3.2.2:
Polymer-Based Micromachining Techniques / 3.3:
Thick Resist Lithography / 3.3.1:
Polymeric Surface Micromachining / 3.3.2:
Soft Lithography / 3.3.3:
Microstereo Lithography / 3.3.4:
Micromolding / 3.3.5:
Other Micromachining Techniques / 3.4:
Assembly and Packaging of Microfluidic Devices / 3.4.1:
Wafer Level Assembly and Packaging / 3.5.1:
Device Level Packaging / 3.5.2:
Biocompatibility / 3.6:
Material Response / 3.6.1:
Tissue and Cellular Response / 3.6.2:
Biocompatibility Tests / 3.6.3:
Experimental Flow Characterization / Chapter 4:
Pointwise Methods / 4.1:
Full-Field Methods / 4.1.2:
Overview of Micro-PIV / 4.2:
Fundamental Physics Considerations of Micro-PIV / 4.2.1:
Special Processing Methods for Micro-PIV Recordings / 4.2.2:
Advanced Processing Methods Suitable for Both Micro/Macro-PIV Recordings / 4.2.3:
Micro-PIV Examples / 4.3:
Flow in a Microchannel / 4.3.1:
Flow in a Micronozzle / 4.3.2:
Flow Around a Blood Cell / 4.3.3:
Flow in Microfluidic Biochip / 4.3.4:
Conclusions / 4.3.5:
Extensions of the Micro-PIV technique / 4.4:
Microfluidic Nanoscope / 4.4.1:
Microparticle Image Thermometry / 4.4.2:
Infrared Micro-PIV / 4.4.3:
Particle Tracking Velocimetry / 4.4.4:
Microfluidics for External Flow Control / Chapter 5:
Velocity and Turbulence Measurement / 5.1:
Velocity Sensors / 5.1.1:
Shear Stress Sensors / 5.1.2:
Turbulence Control / 5.2:
Microflaps / 5.2.1:
Microballoon / 5.2.2:
Microsynthetic Jet / 5.2.3:
Microair Vehicles / 5.3:
Fixed-Wing MAV / 5.3.1:
Flapping-Wing MAV / 5.3.2:
Microrotorcraft / 5.3.3:
Microrockets / 5.3.4:
Microfluidics for Internal Flow Control: Microvalves / Chapter 6:
Design Considerations / 6.1:
Actuators / 6.1.1:
Valve Spring / 6.1.2:
Valve Seat / 6.1.3:
Pressure Compensation Design / 6.1.4:
Pneumatic Valves / 6.2:
Pneumatic Actuators / 6.2.1:
Design Examples / 6.2.2:
Thermopneumatic Valves / 6.3:
Thermopneumatic Actuators / 6.3.1:
Thermomechanical Valves / 6.3.2:
Solid-Expansion Valves / 6.4.1:
Bimetallic Valves / 6.4.2:
Shape-Memory Alloy Valves / 6.4.3:
Piezoelectric Valves / 6.5:
Piezoelectric Actuators / 6.5.1:
Electrostatic Valves / 6.5.2:
Electrostatic Actuators / 6.6.1:
Electromagnetic Valves / 6.6.2:
Electromagnetic Actuators / 6.7.1:
Electrochemical Valves / 6.7.2:
Capillary-Force Valves / 6.9:
Capillary-Force Actuators / 6.9.1:
Microfluidics for Internal Flow Control: Micropumps / 6.9.2:
Mechanical Pumps / 7.1:
Check-Valve Pumps / 7.1.1:
Peristaltic Pumps / 7.1.3:
Valveless Rectification Pumps / 7.1.4:
Rotary Pumps / 7.1.5:
Centrifugal Pumps / 7.1.6:
Ultrasonic Pumps / 7.1.7:
Nonmechanical Pumps / 7.2:
Electrical Pumps / 7.2.1:
Surface Tension Driven Pumps / 7.2.2:
Chemical Pumps / 7.2.3:
Magnetic Pumps / 7.2.4:
Scaling Law for Micropumps / 7.3:
Microfluidics for Internal Flow Control: Microflow Sensors / Chapter 8:
Nonthermal Flow Sensors / 8.1:
Differential Pressure Flow Sensors / 8.1.1:
Drag Force Flow Sensors / 8.1.2:
Lift Force Flow Sensors / 8.1.3:
Coriolis Flow Sensors / 8.1.4:
Electrohydrodynamic Flow Sensors / 8.1.5:
Thermal Flow Sensors / 8.2:
Thermoresistive Flow Sensors / 8.2.1:
Thermocapacitive Flow Sensors / 8.2.3:
Thermoelectric Flow Sensors / 8.2.4:
Thermoelectronic Flow Sensors / 8.2.5:
Pyroelectric Flow Sensors / 8.2.6:
Frequency Analog Sensors / 8.2.7:
Microfluidics for Life Sciences and Chemistry / Chapter 9:
Microfilters / 9.1:
Microneedles / 9.1.1:
Micromixers / 9.2.1:
Microreactors / 9.3.1:
Microdispensers / 9.4.1:
Microseparators / 9.5.1:
Gas Chromatography / 9.6.1:
Liquid Chromatography / 9.6.3:
List of Symbols / 9.6.4:
Resources for Microfluidics Research / Appendix B:
Abbreviations of Different Plastics / Appendix C:
Linear Elastic Deflection Models / Appendix D:
About the Authors
Index
Preface
Acknowledgments
Introduction / Chapter 1:
10.

図書

図書
Robert B. Grossman
出版情報: New York : Springer, c2003  xvi, 355 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Student
Preface to the Instructor
The Basics / 1:
Structure and Stability of Organic Compounds / 1.1:
Conventions of Drawing Structures; Grossman's Rule / 1.1.1:
Lewis Structures; Resonance Structures / 1.1.2:
Molecular Shape; Hybridization / 1.1.3:
Aromaticity / 1.1.4:
Bronsted Acidity and Basicity / 1.2:
pK[subscript a] Values / 1.2.1:
Tautomerism / 1.2.2:
Kinetics and Thermodynamics / 1.3:
Getting Started in Drawing a Mechanism / 1.4:
Classes of Overall Transformations / 1.5:
Classes of Mechanisms / 1.6:
Polar Mechanisms / 1.6.1:
Free-Radical Mechanisms / 1.6.2:
Pericyclic Mechanisms / 1.6.3:
Transition-Metal-Catalyzed and -Mediated Mechanisms / 1.6.4:
Summary / 1.7:
Problems
Polar Reactions under Basic Conditions / 2:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part I / 2.1:
Substitution by the S[subscript N]2 Mechanism / 2.1.1:
[beta]-Elimination by the E2 and Elcb Mechanisms / 2.1.2:
Predicting Substitution vs. Elimination / 2.1.3:
Addition of Nucleophiles to Electrophilic [pi] Bonds / 2.2:
Addition to Carbonyl Compounds / 2.2.1:
Conjugate Addition; The Michael Reaction / 2.2.2:
Substitution at C(sp[superscript 2])-X [sigma] Bonds / 2.3:
Substitution at Carbonyl C / 2.3.1:
Substitution at Alkenyl and Aryl C / 2.3.2:
Metal Insertion; Halogen-Metal Exchange / 2.3.3:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part II / 2.4:
Substitution by the S[subscript RN]1 Mechanism / 2.4.1:
Substitution by the Elimination-Addition Mechanism / 2.4.2:
Substitution by the One-Electron Transfer Mechanism / 2.4.3:
[alpha]-Elimination; Generation and Reactions of Carbenes / 2.4.4:
Base-Promoted Rearrangements / 2.5:
Migration from C to C / 2.5.1:
Migration from C to O or N / 2.5.2:
Migration from B to C or O / 2.5.3:
Two Multistep Reactions / 2.6:
The Swern Oxidation / 2.6.1:
The Mitsunobu Reaction / 2.6.2:
Polar Reactions Under Acidic Conditions / 2.7:
Carbocations / 3.1:
Carbocation Stability / 3.1.1:
Carbocation Generation; The Role of Protonation / 3.1.2:
Typical Reactions of Carbocations; Rearrangements / 3.1.3:
Substitution and [beta]-Elimination Reactions at C(sp[superscript 3])-X / 3.2:
Substitution by the S[subscript N]1 and S[subscript N]2 Mechanisms / 3.2.1:
[beta]-Elimination by the E1 Mechanism / 3.2.2:
Electrophilic Addition to Nucleophilic C=C [pi] Bonds / 3.2.3:
Substitution at Nucleophilic C=C [pi] Bonds / 3.4:
Electrophilic Aromatic Substitution / 3.4.1:
Aromatic Substitution of Anilines via Diazonium Salts / 3.4.2:
Electrophilic Aliphatic Substitution / 3.4.3:
Nucleophilic Addition to and Substitution at Electrophilic [pi] Bonds / 3.5:
Heteroatom Nucleophiles / 3.5.1:
Carbon Nucleophiles / 3.5.2:
Pericyclic Reactions / 3.6:
Introduction / 4.1:
Classes of Pericyclic Reactions / 4.1.1:
Polyene MOs / 4.1.2:
Electrocyclic Reactions / 4.2:
Typical Reactions / 4.2.1:
Stereospecificity / 4.2.2:
Stereoselectivity / 4.2.3:
Cycloadditions / 4.3:
Regioselectivity / 4.3.1:
Sigmatropic Rearrangements / 4.3.3:
Ene Reactions / 4.4.1:
Free-Radical Reactions / 4.6:
Free Radicals / 5.1:
Stability / 5.1.1:
Generation from Closed-Shell Species / 5.1.2:
Chain vs. Nonchain Mechanisms / 5.1.3:
Chain Free-Radical Reactions / 5.2:
Substitution Reactions / 5.2.1:
Addition and Fragmentation Reactions / 5.2.2:
Nonchain Free-Radical Reactions / 5.3:
Photochemical Reactions / 5.3.1:
Reductions and Oxidations with Metals / 5.3.2:
Cycloaromatizations / 5.3.3:
Miscellaneous Radical Reactions / 5.4:
1,2-Anionic Rearrangements; Lone-Pair Inversion / 5.4.1:
Triplet Carbenes and Nitrenes / 5.4.2:
Transition-Metal-Mediated and -Catalyzed Reactions / 5.5:
Introduction to the Chemistry of Transition Metals / 6.1:
Conventions of Drawing Structures / 6.1.1:
Counting Electrons / 6.1.2:
Stoichiometric vs. Catalytic Mechanisms / 6.1.3:
Addition Reactions / 6.2:
Late-Metal-Catalyzed Hydrogenation and Hydrometallation (Pd, Pt, Rh) / 6.2.1:
Hydroformylation (Co, Rh) / 6.2.2:
Hydrozirconation (Zr) / 6.2.3:
Alkene Polymerization (Ti, Zr, Sc, and others) / 6.2.4:
Cyclopropanation, Epoxidation, and Aziridination of Alkenes (Cu, Rh, Mn, Ti) / 6.2.5:
Dihydroxylation and Aminohydroxylation of Alkenes (Os) / 6.2.6:
Nucleophilic Addition to Alkenes and Alkynes (Hg, Pd) / 6.2.7:
Conjugate Addition Reactions (Cu) / 6.2.8:
Reductive Coupling Reactions (Ti, Zr) / 6.2.9:
Pauson-Khand Reaction (Co) / 6.2.10:
Dotz Reaction (Cr) / 6.2.11:
Metal-Catalyzed Cycloaddition and Cyclotrimerization (Co, Ni, Rh) / 6.2.12:
Hydrogenolysis (Pd) / 6.3:
Carbonylation of Alkyl Halides (Pd, Rh) / 6.3.2:
Heck Reaction (Pd) / 6.3.3:
Coupling Reactions Between Nucleophiles and C(sp[superscript 2])-X: Kumada, Stille, Suzuki, Negishi, Buchwald-Hartwig, Sonogashira, and Ullmann Reactions (Ni, Pd, Cu) / 6.3.4:
Allylic Substitution (Pd) / 6.3.5:
Pd-Catalyzed Nucleophilic Substitution of Alkenes; Wacker Oxidation / 6.3.6:
Tebbe Reaction (Ti) / 6.3.7:
Propargyl Substitution in Co-Alkyne Complexes / 6.3.8:
Rearrangement Reactions / 6.4:
Alkene Isomerization (Rh) / 6.4.1:
Olefin and Alkyne Metathesis (Ru, W, Mo, Ti) / 6.4.2:
Elimination Reactions / 6.5:
Oxidation of Alcohols (Cr, Ru) / 6.5.1:
Decarbonylation of Aldehydes (Rh) / 6.5.2:
Mixed-Mechanism Problems / 6.6:
A Final Word
Index
Preface to the Student
Preface to the Instructor
The Basics / 1:
11.

図書

図書
Iwao Teraoka
出版情報: New York : Wiley, c2002  xv, 338 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
Chain Architecture / 1.1.1:
Models of a Linear Polymer Chain / 1.1.2:
Real Chains and Ideal Chains / 1.1.3:
Ideal Chains / 1.2:
Random Walk in One Dimension / 1.2.1:
Random Walks in Two and Three Dimensions / 1.2.2:
Dimensions of Random-Walk Chains / 1.2.3:
Problems / 1.2.4:
Gaussian Chain / 1.3:
What is a Gaussian Chain? / 1.3.1:
Dimension of a Gaussian Chain / 1.3.2:
Entropy Elasticity / 1.3.3:
Real Chains / 1.3.4:
Excluded Volume / 1.4.1:
Dimension of a Real Chain / 1.4.2:
Self-Avoiding Walk / 1.4.3:
Semirigid Chains / 1.4.4:
Examples of Semirigid Chains / 1.5.1:
Wormlike Chain / 1.5.2:
Branched Chains / 1.5.3:
Architecture of Branched Chains / 1.6.1:
Dimension of Branched Chains / 1.6.2:
Molecular Weight Distribution / 1.6.3:
Average Molecular Weights / 1.7.1:
Typical Distributions / 1.7.2:
Concentration Regimes / 1.7.3:
Concentration Regimes for Linear Flexible Polymers / 1.8.1:
Concentration Regimes for Rodlike Molecules / 1.8.2:
Thermodynamics of Dilute Polymer Solutions / 1.8.3:
Polymer Solutions and Thermodynamics / 2.1:
Flory-Huggins Mean-Field Theory / 2.2:
Model / 2.2.1:
Free Energy, Chemical Potentials, and Osmotic Pressure / 2.2.2:
Dilute Solutions / 2.2.3:
Coexistence Curve and Stability / 2.2.4:
Polydisperse Polymer / 2.2.5:
Phase Diagram and Theta Solutions / 2.2.6:
Phase Diagram / 2.3.1:
Theta Solutions / 2.3.2:
Coil-Globule Transition / 2.3.3:
Solubility Parameter / 2.3.4:
Static Light Scattering / 2.3.5:
Sample Geometry in Light-Scattering Measurements / 2.4.1:
Scattering by a Small Particle / 2.4.2:
Scattering by a Polymer Chain / 2.4.3:
Scattering by Many Polymer Chains / 2.4.4:
Correlation Function and Structure Factor / 2.4.5:
Structure Factor of a Polymer Chain / 2.4.6:
Light Scattering of a Polymer Solution / 2.4.7:
Other Scattering Techniques / 2.4.8:
Size Exclusion Chromatography and Confinement / 2.4.9:
Separation System / 2.5.1:
Plate Theory / 2.5.2:
Partitioning of Polymer with a Pore / 2.5.3:
Calibration of SEC / 2.5.4:
SEC With an On-Line Light-Scattering Detector / 2.5.5:
Appendixes / 2.5.6:
Review of Thermodynamics for Colligative Properties in Nonideal Solutions / 2.A:
Osmotic Pressure / 2.A.1:
Vapor Pressure Osmometry / 2.A.2:
Another Approach to Thermodynamics of Polymer Solutions / 2.B:
Correlation Function of a Gaussian Chain / 2.C:
Dynamics of Dilute Polymer Solutions / 3:
Dynamics of Polymer Solutions / 3.1:
Dynamic Light Scattering and Diffusion of Polymers / 3.2:
Measurement System and Autocorrelation Function / 3.2.1:
Autocorrelation Function / 3.2.2:
Dynamic Structure Factor of Suspended Particles / 3.2.3:
Diffusion of Particles / 3.2.4:
Diffusion and DLS / 3.2.5:
Dynamic Structure Factor of a Polymer Solution / 3.2.6:
Hydrodynamic Radius / 3.2.7:
Particle Sizing / 3.2.8:
Diffusion From Equation of Motion / 3.2.9:
Diffusion as Kinetics / 3.2.10:
Concentration Effect on Diffusion / 3.2.11:
Diffusion in a Nonuniform System / 3.2.12:
Viscosity / 3.2.13:
Viscosity of Solutions / 3.3.1:
Measurement of Viscosity / 3.3.2:
Intrinsic Viscosity / 3.3.3:
Flow Field / 3.3.4:
Normal Modes / 3.3.5:
Rouse Model / 3.4.1:
Normal Coordinates / 3.4.2:
Equation of Motion for the Normal Coordinates in the Rouse Model / 3.4.3:
Results of the Normal-Coordinates / 3.4.4:
Results for the Rouse Model / 3.4.5:
Zimm Model / 3.4.6:
Dynamic Structure Factor / 3.4.7:
Motion of Monomers / 3.4.9:
Dynamics of Rodlike Molecules / 3.4.10:
Diffusion Coefficients / 3.5.1:
Rotational Diffusion / 3.5.2:
Dynamics of Wormlike Chains / 3.5.3:
Appendices / 3.5.6:
Evaluation of [left angle bracket]q[subscript i superscript 2 right angle bracket subscript eq] / 3.A:
Evaluation of [left angle bracket]exp[ik [middle dot] (Aq - Bp) right angle bracket] / 3.B:
Initial Slope of S[subscript 1](k,t) / 3.C:
Thermodynamics and Dynamics of Semidilute Solutions / 4:
Semidilute Polymer Solutions / 4.1:
Thermodynamics of Semidilute Polymer Solutions / 4.2:
Blob Model / 4.2.1:
Scaling Theory and Semidilute Solutions / 4.2.2:
Partitioning with a Pore / 4.2.3:
Dynamics of Semidilute Solutions / 4.2.4:
Cooperative Diffusion / 4.3.1:
Tube Model and Reptation Theory / 4.3.2:
References / 4.3.3:
Further Readings
Delta Function / A1:
Fourier Transform / A2:
Integrals / A3:
Series / A4:
Index
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
12.

図書

図書
Roel Prins ... [et al]
出版情報: Hackensack, New Jersey : World Scientific, c2022  xviii, 392 p. ; 24 cm
シリーズ名: Advanced textbooks in chemistry
所蔵情報: loading…
目次情報: 続きを見る
Preface
About the Authors
Introduction / 1:
Catalysis and Catalysts / 1.1:
Heterogeneous and Homogeneous Catalysis / 1.2:
Production of Ammonia / 1.3:
Kinetics and Thermodynamics / 1.3.1:
Activity, Selectivity and Stability / 1.3.2:
H2 Production / 1.3.3:
Ammonia Synthesis / 1.3.4:
Relevance of Catalysis / 1.4:
References
Questions
Catalyst Preparation and Characterisation / 2:
Supported Catalysts / 2.1:
Crystal Structures / 2.2:
Crystal Lattices / 2.2.1:
X-ray Diffraction / 2.2.2:
Aluminas / 2.3:
Aluminium Hydroxides and Oxyhydroxides / 2.3.1:
Transition Aluminas / 2.3.2:
¿-Al2O3 / 2.3.3:
Surface of ¿-Al2O3 / 2.3.4:
Lewis acid sites / 2.3.5.1:
Brønsted acid sites / 2.3.5.2:
Surface reconstruction / 2.3.5.3:
Silica / 2.4:
Preparation of Supported Catalysts / 2.5:
Adsorption / 3:
Physisorption / 3.1:
Adsorption on Surfaces / 3.1.1:
Langmuir Adsorption Isotherm / 3.1.2:
Multilayer Adsorption, BET / 3.1.3:
Surface Diffusion / 3.2:
Chemisorption / 3.3:
Chemical Bonding / 3.3.1:
Dissociative Chemisorption / 3.3.2:
Kinetics / 4:
Langmuir-Hinshelwood Model / 4.1:
Monomolecular Reaction / 4.1.1:
Surface reaction is rate-determining / 4.1.1.1:
Adsorption of the reactant or product is rate-determining / 4.1.1.2:
Bimolecular Reaction / 4.1.2:
Influence of Diffusion / 4.2:
Bifunctional Catalysis / 4.3:
Metal Surfaces / 5:
Surface Structures / 5.1:
Surface Analysis / 5.2:
X-ray Photoelectron Spectroscopy / 5.2.1:
Auger Electron Spectroscopy / 5.2.2:
Surface Sensitivity / 5.2.3:
Surface Enrichment / 5.3:
Metal Binding / 5.4:
Metal Catalysis / 6:
Dissociation of H2 / 6.1:
Hydrogenation of Ethene / 6.2:
Synthesis of CO and H2 / 6.3:
Hydrogenation of CO / 6.4:
CO Hydrogenation to Hydrocarbons / 6.4.1:
CO dissociation / 6.4.1.1:
Methanation / 6.4.1.2:
Fischer-Tropsch reaction / 6.4.1.3:
Hydrogenation of CO and CO2 to Methanol / 6.4.2:
CO hydrogenation to methanol / 6.4.2.1:
CO2 hydrogenation to methanol / 6.4.2.2:
Hydrogenation of N2 to Ammonia / 6.5:
Fe Catalyst / 6.5.1:
Ru Catalyst / 6.5.2:
Volcano Curves / 6.6:
Catalysis by Solid Acids / 7:
Solid Acid Catalysts / 7.1:
Zeolites / 7.1.1:
Amorphous Silica-Alumina / 7.1.2:
Reactions of Hydrocarbons / 7.2:
Reactions of Alkenes and Alkanes / 7.2.1:
Isomerisation of Pentane, Hexane and Butene / 7.2.2:
Alcohols from Alkenes / 7.3:
Alkylation of Aromatics / 7.4:
Ethylation and Propylation of Benzene / 7.4.1:
Methylation of Toluene / 7.4.2:
Isomerisation, Disproportionation, Transalkylation / 7.4.3:
Gasoline Production / 7.5:
Fluid Catalytic Cracking and Hydrocracking / 7.5.1:
Methanol to Hydrocarbons / 7.5.2:
Reforming of Hydrocarbons by Bifunctional Catalysis / 7.5.3:
Cleaning of Fuels by Hydrotreating / 8:
Hydrotreating / 8.1:
Hydrotreating Catalysts / 8.2:
Metal Sulfides / 8.2.1:
Structure of sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 / 8.2.1.1:
Active sites / 8.2.1.2:
Metal Phosphides / 8.2.2:
Reaction Mechanisms / 8.3:
Hydro desulfurisation / 8.3.1:
Hydrodenitrogenation / 8.3.2:
Hydrodeoxygenation / 8.3.3:
Hydrotreating of Mixtures / 8.3.4:
Hydrotreating Processes / 8.4:
Hydrodesulfurisation of Naphtha / 8.4.1:
Hydrotreating of Diesel / 8.4.2:
Residue Hydro conversion / 8.4.3:
Oxidation Catalysis / 9:
CO Oxidation / 9.1:
Mechanism / 9.1.1:
Three-way Catalysis / 9.1.2:
Production of Sulfuric and Nitric Acid / 9.2:
Sulfuric Acid / 9.2.1:
Nitric Acid / 9.2.2:
Selective Catalytic Reduction / 9.2.3:
Oxidation of Hydrocarbons / 9.3:
Oxidation by Oxygen / 9.3.1:
Oxidation by Hydroperoxide / 9.3.2:
Selective Partial Oxidation of Hydrocarbons / 9.3.3:
Oxidation of propene to acrylic acid and acrylonitrile / 9.3.3.1:
Oxidation of C4 and C6 molecules / 9.3.3.2:
Platform Chemicals / 9.4:
Electrocatalysis / 10:
Fundamental Aspects / 10.1:
Electrochemical Cells / 10.2.1:
Cell and Electrode Potentials / 10.2.2:
The Nernst Equation / 10.2.3:
Overpotential / 10.2.4:
Electrode Kinetics / 10.2.5:
Experimental Methods and Techniques / 10.3:
Three-Electrode Cell Configuration / 10.3.1:
Techniques for Electrocatalyst Evaluation / 10.3.2:
Linear Sweep Voltammetry and Cyclic Voltammetry / 10.3.3:
Electrochemical Impedance Spectroscopy / 10.3.4:
Rotating Disc Electrode / 10.3.5:
The Electro chemically Active Surface Area / 10.3.6:
Electrocatalysis for the Production of Sustainable Fuels and Chemicals / 10.4:
Development of Electrocatalysts / 10.4.1:
Hydrogen Evolution Reaction / 10.4.2:
Oxygen Evolution Reaction / 10.4.3:
CO2 Electroreduction / 10.4.4:
Other Electrochemical Processes / 10.4.5:
Answers
Index
Preface
About the Authors
Introduction / 1:
13.

図書

図書
K. Feyrer
出版情報: Berlin : Springer, c2007  IX, 322 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
Wire Manufacturing / 1.1.2:
Metallic Coating / 1.1.3:
Corrosion Resistant Wires / 1.1.4:
Wire Tensile Test / 1.1.5:
Wire Endurance and Fatigue Strength / 1.1.6:
Strands / 1.2:
Round Strands / 1.2.1:
Shaped Strands / 1.2.2:
Compacted Strands / 1.2.3:
Rope Cores / 1.3:
Lubrication / 1.4:
Lubricant / 1.4.1:
Lubricant Consumption / 1.4.2:
Rope Endurance / 1.4.3:
Wire Ropes / 1.5:
The Classification of Ropes According to Usage / 1.5.1:
Wire Rope Constructions / 1.5.2:
Designation of Wire Ropes / 1.5.3:
Symbols and Definitions / 1.5.4:
The Geometry of Wire Ropes / 1.6:
Round Strand with Round Wires / 1.6.1:
Round Strand with Any Kind of Profiled Wires / 1.6.2:
Fibre Core / 1.6.3:
Steel Core / 1.6.4:
References
Wire Ropes under Tensile Load / 2:
Stresses in Straight Wire Ropes / 2.1:
Basic Relation for the Wire Tensile Force in a Strand / 2.1.1:
Wire Tensile Stress in the Strand or Wire Rope / 2.1.2:
Additional Wire Stresses in the Straight Spiral Rope / 2.1.3:
Additional Wire Stresses in Straight Stranded Ropes / 2.1.4:
Wire Rope Elasticity Module / 2.2:
Definition / 2.2.1:
Rope Elasticity Module of Strands and Spiral Ropes, Calculation / 2.2.2:
Rope Elasticity Module of Stranded Wire Ropes / 2.2.3:
Waves and Vibrations / 2.2.4:
Reduction of the Rope Diameter due to Rope Tensile Force / 2.3:
Torque and Torsional Stiffness / 2.4:
Rope Torque from Geometric Data / 2.4.1:
Torque of Twisted Round Strand Ropes / 2.4.2:
Rotating of the Bottom Sheave / 2.4.3:
Rope Twist Caused by the Height-Stress / 2.4.4:
Change of the Rope Length by Twisting the Rope / 2.4.5:
Wire Stresses Caused by Twisting the Rope / 2.4.6:
Rope Endurance Under Fluctuating Twist / 2.4.7:
Wire Rope Breaking Force / 2.5:
Wire Ropes Under Fluctuating Tension / 2.6:
Conditions of Tension-Tension Tests / 2.6.1:
Evaluating Methods / 2.6.2:
Results of Tension Fatigue Test-Series / 2.6.3:
Further Results of Tension Fatigue Tests / 2.6.4:
Calculation of the Number of Load Cycles / 2.6.5:
Dimensioning Stay Wire Ropes / 2.7:
Extreme Forces / 2.7.1:
Fluctuating Forces / 2.7.2:
Discard Criteria / 2.7.3:
Wire Ropes Under Bending and Tensile Stresses / 3:
Stresses in Running Wire Ropes / 3.1:
Bending and Torsion Stress / 3.1.1:
Secondary Tensile Stress / 3.1.2:
Stresses from the Rope Ovalisation / 3.1.3:
Secondary Bending Stress / 3.1.4:
Sum of the Stresses / 3.1.5:
Force Between Rope and Sheave (Line Pressure) / 3.1.6:
Pressure Between Rope and Sheave / 3.1.7:
Force on the Outer Arcs of the Rope Wires / 3.1.8:
Rope Bending Tests / 3.2:
Bending-Fatigue-Machines, Test Procedures / 3.2.1:
Number of Bending Cycles / 3.2.2:
Further Influences on the Number of Bending Cycles / 3.2.3:
Reverse Bending / 3.2.4:
Fluctuating Tension and Bending / 3.2.5:
Palmgren-Miner Rule / 3.2.6:
Limiting Factors / 3.2.7:
Ropes during Bendings / 3.2.8:
Number of Wire Breaks / 3.2.9:
Rope Drive Requirements / 3.3:
General Requirements / 3.3.1:
Lifting Installations for Passengers / 3.3.2:
Cranes and Lifting Appliances / 3.3.3:
Calculation of Rope Drives / 3.4:
Analysis of Rope Drives / 3.4.1:
Tensile Rope Force / 3.4.2:
Limits / 3.4.3:
Rope Drive Calculations, Examples / 3.4.6:
Rope Efficiency / 3.5:
Single Sheave / 3.5.1:
Rope Drive / 3.5.2:
Lowering an Empty Hook Block / 3.5.3:
Index
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
14.

図書

図書
Kenneth V. Price, Rainer M. Storn, Jouni A. Lampinen
出版情報: Berlin : Springer, c2005  xix, 538 p. ; 24 cm.
シリーズ名: Natural computing series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
Introduction to Parameter Optimization / 1.1:
Overview / 1.1.1:
Single-Point, Derivative-Based Optimization / 1.1.2:
One-Point, Derivative-Free Optimization and the Step Size Problem / 1.1.3:
Local Versus Global Optimization / 1.2:
Simulated Annealing / 1.2.1:
Multi-Point, Derivative-Based Methods / 1.2.2:
Multi-Point, Derivative-Free Methods / 1.2.3:
Differential Evolution - A First Impression / 1.2.4:
References
The Differential Evolution Algorithm / 2:
Population Structure / 2.1:
Initialization / 2.1.2:
Mutation / 2.1.3:
Crossover / 2.1.4:
Selection / 2.1.5:
DE at a Glance / 2.1.6:
Visualizing DE / 2.1.7:
Notation / 2.1.8:
Parameter Representation / 2.2:
Bit Strings / 2.2.1:
Floating-Point / 2.2.2:
Floating-Point Constraints / 2.2.3:
Initial Bounds / 2.3:
Initial Distributions / 2.3.2:
Base Vector Selection / 2.4:
Choosing the Base Vector Index, r0 / 2.4.1:
One-to-One Base Vector Selection / 2.4.2:
A Comparison of Random Base Index Selection Methods / 2.4.3:
Degenerate Vector Combinations / 2.4.4:
Implementing Mutually Exclusive Indices / 2.4.5:
Gauging the Effects of Degenerate Combinations: The Sphere / 2.4.6:
Biased Base Vector Selection Schemes / 2.4.7:
Differential Mutation / 2.5:
The Mutation Scale Factor: F / 2.5.1:
Randomizing the Scale Factor / 2.5.2:
Recombination / 2.6:
The Role of Cr in Optimization / 2.6.1:
Arithmetic Recombination / 2.6.3:
Phase Portraits / 2.6.4:
The Either/Or Algorithm / 2.6.5:
Survival Criteria / 2.7:
Tournament Selection / 2.7.2:
One-to-One Survivor Selection / 2.7.3:
Local Versus Global Selection / 2.7.4:
Permutation Selection Invariance / 2.7.5:
Crossover-Dependent Selection Pressure / 2.7.6:
Parallel Performance / 2.7.7:
Extensions / 2.7.8:
Termination Criteria / 2.8:
Objective Met / 2.8.1:
Limit the Number of Generations / 2.8.2:
Population Statistics / 2.8.3:
Limited Time / 2.8.4:
Human Monitoring / 2.8.5:
Application Specific / 2.8.6:
Benchmarking Differential Evolution / 3:
About Testing / 3.1:
Performance Measures / 3.2:
DE Versus DE / 3.3:
The Algorithms / 3.3.1:
The Test Bed / 3.3.2:
Summary / 3.3.3:
DE Versus Other Optimizers / 3.4:
Comparative Performance: Thirty-Dimensional Functions / 3.4.1:
Comparative Studies: Unconstrained Optimization / 3.4.2:
Performance Comparisons from Other Problem Domains / 3.4.3:
Application-Based Performance Comparisons / 3.4.4:
Problem Domains / 3.5:
Function and Parameter Quantization / 4.1:
Uniform Quantization / 4.2.1:
Non-Uniform Quantization / 4.2.2:
Objective Function Quantization / 4.2.3:
Parameter Quantization / 4.2.4:
Mixed Variables / 4.2.5:
Optimization with Constraints / 4.3:
Boundary Constraints / 4.3.1:
Inequality Constraints / 4.3.2:
Equality Constraints / 4.3.3:
Combinatorial Problems / 4.4:
The Traveling Salesman Problem / 4.4.1:
The Permutation Matrix Approach / 4.4.2:
Relative Position Indexing / 4.4.3:
Onwubolu's Approach / 4.4.4:
Adjacency Matrix Approach / 4.4.5:
Design Centering / 4.4.6:
Divergence, Self-Steering and Pooling / 4.5.1:
Computing a Design Center / 4.5.2:
Multi-Objective Optimization / 4.6:
Weighted Sum of Objective Functions / 4.6.1:
Pareto Optimality / 4.6.2:
The Pareto-Front: Two Examples / 4.6.3:
Adapting DE for Multi-Objective Optimization / 4.6.4:
Dynamic Objective Functions / 4.7:
Stationary Optima / 4.7.1:
Non-Stationary Optima / 4.7.2:
Architectural Aspects and Computing Environments / 5:
DE on Parallel Processors / 5.1:
Background / 5.1.1:
Related Work / 5.1.2:
Drawbacks of the Standard Model / 5.1.3:
Modifying the Standard Model / 5.1.4:
The Master Process / 5.1.5:
DE on Limited Resource Devices / 5.2:
Random Numbers / 5.2.1:
Permutation Generators / 5.2.2:
Efficient Sorting / 5.2.3:
Memory-Saving DE Variants / 5.2.4:
Computer Code / 6:
DeMat - Differential Evolution for MATLAB / 6.1:
General Structure of DeMat / 6.1.1:
Naming and Coding Conventions / 6.1.2:
Data Flow Diagram / 6.1.3:
How to Use the Graphics / 6.1.4:
DeWin - DE for MS Windows: An Application in C / 6.2:
General Structure of DeWin / 6.2.1:
How To Use the Graphics / 6.2.2:
Functions of graphics.h / 6.2.5:
Software on the Accompanying CD / 6.3:
Applications / 7:
Genetic Algorithms and Related Techniques for Optimizing Si-H Clusters: A Merit Analysis for Differential Evolution / 7.1:
Introduction / 7.1.1:
The System Model / 7.1.2:
Computational Details / 7.1.3:
Results and Discussion / 7.1.4:
Concluding Remarks / 7.1.5:
Non-Imaging Optical Design Using Differential Evolution / 7.2:
Objective Function / 7.2.1:
A Reverse Engineering Approach to Testing / 7.2.3:
A More Difficult Problem: An Extended Source / 7.2.4:
Conclusion / 7.2.5:
Optimization of an Industrial Compressor Supply System / 7.3:
Background Information on the Test Problem / 7.3.1:
System Optimization / 7.3.3:
Demand Profiles / 7.3.4:
Modified Differential Evolution; Extending the Generality of DE / 7.3.5:
Component Selection from the Database / 7.3.6:
Crossover Approaches / 7.3.7:
Testing Procedures / 7.3.8:
Obtaining 100% Certainty of the Results / 7.3.9:
Results / 7.3.10:
Minimal Representation Multi-Sensor Fusion Using Differential Evolution / 7.3.11:
Minimal Representation Multi-Sensor Fusion / 7.4.1:
Differential Evolution for Multi-Sensor Fusion / 7.4.3:
Experimental Results / 7.4.4:
Comparison with a Binary Genetic Algorithm / 7.4.5:
Determination of the Earthquake Hypocenter: A Challenge for the Differential Evolution Algorithm / 7.4.6:
Brief Outline of Direct Problem Solution / 7.5.1:
Synthetic Location Test / 7.5.3:
Convergence Properties / 7.5.4:
Conclusions / 7.5.5:
Parallel Differential Evolution: Application to 3-D Medical Image Registration / 7.6:
Medical Image Registration Using Similarity Measures / 7.6.1:
Optimization by Differential Evolution / 7.6.3:
Parallelization of Differential Evolution / 7.6.4:
Acknowledgments / 7.6.5:
Design of Efficient Erasure Codes with Differential Evolution / 7.7:
Codes from Bipartite Graphs / 7.7.1:
Code Design / 7.7.3:
Differential Evolution / 7.7.4:
FIWIZ - A Versatile Program for the Design of Digital Filters Using Differential Evolution / 7.7.5:
Unconventional Design Tasks / 7.8.1:
Approach / 7.8.3:
Examples / 7.8.4:
Optimization of Radial Active Magnetic Bearings by Using Differential Evolution and the Finite Element Method / 7.8.5:
Radial Active Magnetic Bearings / 7.9.1:
Magnetic Field Distribution and Force Computed by the Two-Dimensional FEM / 7.9.3:
RAMB Design Optimized by DE and the FEM / 7.9.4:
Application of Differential Evolution to the Analysis of X-Ray Reflectivity Data / 7.9.5:
The Data-Fitting Procedure / 7.10.1:
The Model and Simulation / 7.10.3:
Inverse Fractal Problem / 7.10.4:
General Introduction / 7.11.1:
Active Compensation in RF-Driven Plasmas by Means of Differential Evolution / 7.11.2:
RF-Driven Plasmas / 7.12.1:
Langmuir Probes / 7.12.3:
Active Compensation in RF-Driven Plasmas / 7.12.4:
Automated Control System Structure and Fitness Function / 7.12.5:
Experimental Setup / 7.12.6:
Parameters and Experimental Design / 7.12.7:
Appendix / 7.12.8:
Unconstrained Uni-Modal Test Functions / A.1:
Sphere / A.1.1:
Hyper-Ellipsoid / A.1.2:
Generalized Rosenbrock / A.1.3:
Schwefel's Ridge / A.1.4:
Neumaier #3 / A.1.5:
Unconstrained Multi-Modal Test Functions / A.2:
Ackley / A.2.1:
Griewangk / A.2.2:
Rastrigin / A.2.3:
Salomon / A.2.4:
Whitley / A.2.5:
Storn's Chebyshev / A.2.6:
Lennard-Jones / A.2.7:
Hilbert / A.2.8:
Modified Langerman / A.2.9:
Shekel's Foxholes / A.2.10:
Odd Square / A.2.11:
Katsuura / A.2.12:
Bound-Constrained Test Functions / A.3:
Schwefel / A.3.1:
Epistatic Michalewicz / A.3.2:
Rana / A.3.3:
Index
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
15.

図書

図書
Gregory Falkovich
出版情報: Cambridge : Cambridge University Press, 2011  xii, 167 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Prologue
Basic equations and steady flows / 1:
Definitions and basic equations / 1.1:
Definitions / 1.1.1:
Equations of motion for an ideal fluid / 1.1.2:
Hydrostatics / 1.1.3:
Isentropic motion / 1.1.4:
Conservation laws and potential flows / 1.2:
Kinematics / 1.2.1:
Kelvin's theorem / 1.2.2:
Energy and momentum fluxes / 1.2.3:
Irrotational and incompressible flows / 1.2.4:
Flow past a body / 1.3:
Incompressible potential flow past a body / 1.3.1:
Moving sphere / 1.3.2:
Moving body of an arbitrary shape / 1.3.3:
Quasi-momentum and induced mass / 1.3.4:
Viscosity / 1.4:
Reversibility paradox / 1.4.1:
Viscous stress tensor / 1.4.2:
Navier-Stokes equation / 1.4.3:
Law of similarity / 1.4.4:
Stokes flow and the wake / 1.5:
Slow motion / 1.5.1:
The boundary layer and the separation phenomenon / 1.5.2:
Flow transformations / 1.5.3:
Drag and lift with a wake / 1.5.4:
Exercises
Unsteady flows / 2:
Instabilities / 2.1:
Kelvin-Helmholtz instability / 2.1.1:
Energetic estimate of the stability threshold / 2.1.2:
Landau's law / 2.1.3:
Turbulence / 2.2:
Cascade / 2.2.1:
Turbulent river and wake / 2.2.2:
Acoustics / 2.3:
Sound / 2.3.1:
Riemann wave / 2.3.2:
Burgers equation / 2.3.3:
Acoustic turbulence / 2.3.4:
Mach number / 2.3.5:
Dispersive waves / 3:
Linear waves / 3.1:
Surface gravity waves / 3.1.1:
Viscous dissipation / 3.1.2:
Capillary waves / 3.1.3:
Phase and group velocity / 3.1.4:
Weakly non-linear waves / 3.2:
Hamiltonian description / 3.2.1:
Hamiltonian normal forms / 3.2.2:
Wave instabilities / 3.2.3:
Non-linear Schrödinger equation (NSE) / 3.3:
Derivation of NSE / 3.3.1:
Modulational instability / 3.3.2:
Soliton, collapse and turbulence / 3.3.3:
Korteveg-de-Vries (KdV) equation / 3.4:
Waves in shallow water / 3.4.1:
The KdV equation and the soliton / 3.4.2:
Inverse scattering transform / 3.4.3:
Solutions to exercises / 4:
Chapter 1
Chapter 2
Chapter 3
Epilogue
Notes
References
Index
Preface
Prologue
Basic equations and steady flows / 1:
16.

図書

図書
Jesse M. Kinder and Philip Nelson
出版情報: Princeton : Princeton University Press, c2021  xiii, 223 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
Algorithmic thinking / 1.1.1:
States / 1.1.2:
What does a = a + 1 mean? / 1.1.3:
Symbolic versus numerical / 1.1.4:
Launch Python / 1.2:
IPython console / 1.2.1:
Error messages / 1.2.2:
Sources of help / 1.2.3:
Good practice: Keep a log / 1.2.4:
Python modules / 1.3:
Import / 1.3.1:
From … import / 1.3.2:
NumPy and PyPlot / 1.3.3:
Python expressions / 1.4:
Numbers / 1.4.1:
Arithmetic operations and predefined functions / 1.4.2:
Good practice: Variable names / 1.4.3:
More about functions / 1.4.4:
Organizing Data / 2:
Objects and their methods / 2.1:
Lists, tuples, and arrays / 2.2:
Creating a list or tuple / 2.2.1:
NumPy arrays / 2.2.2:
Filling an array with values / 2.2.3:
Concatenation of arrays / 2.2.4:
Accessing array elements / 2.2.5:
Arrays and assignments / 2.2.6:
Slicing / 2.2.7:
Flattening an array / 2.2.8:
Reshaping an array / 2.2.9:
T2 Lists and arrays as indices / 2.2.10:
Strings / 2.3:
Raw strings / 2.3.1:
Formatting strings with the format () method / 2.3.2:
T2 Formatting strings with % / 2.3.3:
Structure and Control / 3:
Loops / 3.1:
For loops / 3.1.1:
While loops / 3.1.2:
Very long loops / 3.1.3:
Infinite loops / 3.1.4:
Array operations / 3.2:
Vectorizing math / 3.2.1:
Matrix math / 3.2.2:
Reducing an array / 3.2.3:
Scripts / 3.3:
The Editor / 3.3.1:
T2 Other editors / 3.3.2:
First steps to debugging / 3.3.3:
Good practice: Commenting / 3.3.4:
Good practice: Using named parameters / 3.3.5:
Good practice: Units / 3.3.6:
Contingent behavior: Branching / 3.4:
The if statement / 3.4.1:
Testing equality of floats / 3.4.2:
Nesting / 3.5:
Data In, Results Out / 4:
Importing data / 4.1:
Obtaining data / 4.1.1:
Bringing data into Python / 4.1.2:
Exporting data / 4.2:
Data files / 4.2.1:
Visualizing data / 4.3:
The plot command and its relatives / 4.3.1:
Log axes / 4.3.2:
Manipulate and embellish / 4.3.3:
Replacing curves / 4.3.4:
T2 More about figures and their axes / 4.3.5:
T2 Error bars / 4.3.6:
3D graphs / 4.3.7:
Multiple plots / 4.3.8:
Subplots / 4.3.9:
Saving figures / 4.3.10:
T2 Using figures in other applications / 4.3.11:
First Computer Lab / 5:
HIV example / 5.1:
Explore the model / 5.1.1:
Fit experimental data / 5.1.2:
Bacterial example / 5.2:
Random Number Generation and Numerical Methods / 5.2.1:
Writing your own functions / 6.1:
Defining functions in Python / 6.1.1:
Updating functions / 6.1.2:
Arguments, keywords, and defaults / 6.1.3:
Return values / 6.1.4:
Functional programming / 6.1.5:
Random numbers and simulation / 6.2:
Simulating coin flips / 6.2.1:
Generating trajectories / 6.2.2:
Histograms and bar graphs / 6.3:
Creating histograms / 6.3.1:
Finer control / 6.3.2:
Contour plots, surface plots, and heat maps / 6.4:
Generating a grid of points / 6.4.1:
Contour plots / 6.4.2:
Surface plots / 6.4.3:
Heat maps / 6.4.4:
Numerical solution of nonlinear equations / 6.5:
General real functions / 6.5.1:
Complex roots of polynomials / 6.5.2:
Solving systems of linear equations / 6.6:
Numerical integration / 6.7:
Integrating a predefined function / 6.7.1:
Integrating your own function / 6.7.2:
Oscillatory integrands / 6.7.3:
T2 Parameter dependence / 6.7.4:
Numerical solution of differential equations / 6.8:
Reformulating the problem / 6.8.1:
Solving an ODE / 6.8.2:
Other ODE solvers / 6.8.3:
Vector fields and streamlines / 6.9:
Vector fields / 6.9.1:
Streamlines / 6.9.2:
Second Computer Lab / 7:
Generating and plotting trajectories / 7.1:
Plotting the displacement distribution / 7.2:
Rare events / 7.3:
The Poisson distribution / 7.3.1:
Waiting times / 7.3.2:
Images and Animation / 8:
Image processing / 8.1:
Images as NumPy arrays / 8.1.1:
Saving and displaying images / 8.1.2:
Manipulating images / 8.1.3:
Displaying data as an image / 8.2:
Animation / 8.3:
Creating animations / 8.3.1:
Saving animations / 8.3.2:
HTML movies
T2 Using an encoder
Conclusion / 8.3.3:
Third Computer Lab / 9:
Convolution / 9.1:
Python tools for image processing / 9.1.1:
Averaging / 9.1.2:
Smoothing with a Gaussian / 9.1.3:
Denoising an image / 9.2:
Emphasizing features / 9.3:
T2 Image files and arrays / 9.4:
Advanced Techniques / 10:
Dictionaries and generators / 10.1:
Dictionaries / 10.1.1:
Special function arguments / 10.1.2:
List comprehensions and generators / 10.1.3:
Tools for data science / 10.2:
Series and data frames with pandas / 10.2.1:
Machine learning with scikit-learn / 10.2.2:
Next steps / 10.2.3:
Symbolic computing / 10.3:
Wolfram Alpha / 10.3.1:
The SymPy library / 10.3.2:
Other alternatives / 10.3.3:
First passage revisited / 10.3.4:
Writing your own classes / 10.4:
A random walk class / 10.4.1:
When to use classes / 10.4.2:
Get Going
Installing Python / A:
Install Python and Spyder / A.1:
Graphical installation / A.1.1:
Command line installation / A.1.2:
Setting up Spyder / A.2:
Working directory / A.2.1:
Interactive graphics / A.2.2:
Script template / A.2.3:
Restart / A.2.4:
Keeping up to date / A.3:
Installing FFmpeg / A.4:
Installing ImageMagick / A.5:
Command Line Tools / B:
The command line / B.1:
Navigating your file system / B.1.1:
Creating, renaming, moving, and removing files / B.1.2:
Creating and removing directories / B.1.3:
Python and Conda / B.1.4:
Text editors / B.2:
Version control / B.3:
How Git works / B.3.1:
Installing and using Git / B.3.2:
Tracking changes and synchronizing repositories / B.3.3:
Summary of useful workflows / B.3.4:
Troubleshooting / B.3.5:
Jupyter Notebooks / B.4:
Getting started / C.1:
Launch Jupyter Notebooks / C.1.1:
Open a notebook / C.1.2:
Multiple notebooks / C.1.3:
Quitting Jupyter / C.1.4:
T2 Setting the default directory / C.1.5:
Cells / C.2:
Code cells / C.2.1:
Graphics / C.2.2:
Markdown cells / C.2.3:
Edit mode and command mode / C.2.4:
Sharing / C.3:
More details / C.4:
Pros and cons / C.5:
Errors and Error Messages / D:
Python errors in general / D.1:
Some common errors / D.2:
Python 2 versus Python 3 / E:
Division / E.1:
Print command / E.2:
User input / E.3:
More assistance / E.4:
Under the Hood / F:
Assignment statements / F.1:
Memory management / F.2:
Functions / F.3:
Scope / F.4:
Name collisions / F.4.1:
Variables passed as arguments / F.4.2:
Summary / F.5:
Answers to "Your Turn" Questions / G:
Acknowledgments
Recommended Reading
Index
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
17.

図書

図書
Saeid Sanei and Jonathon Chambers
出版情報: Chichester : John Wiley & Sons, c2007  xxii, 289 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Abbreviations
List of Symbols
Introduction to EEG / 1:
History / 1.1:
Neural Activities / 1.2:
Action Potentials / 1.3:
EEG Generation / 1.4:
Brain Rhythms / 1.5:
EEG Recording and Measurement / 1.6:
Conventional Electrode Positioning / 1.6.1:
Conditioning the Signals / 1.6.2:
Abnormal EEG Patterns / 1.7:
Ageing / 1.8:
Mental Disorders / 1.9:
Dementia / 1.9.1:
Epileptic Seizure and Nonepileptic Attacks / 1.9.2:
Psychiatric Disorders / 1.9.3:
External Effects / 1.9.4:
Summary and Conclusions / 1.10:
References
Fundamentals of EEG Signal Processing / 2:
EEG Signal Modelling / 2.1:
Linear Models / 2.1.1:
Nonlinear Modelling / 2.1.2:
Generating EEG Signals Based on Modelling the Neuronal Activities / 2.1.3:
Nonlinearity of the Medium / 2.2:
Nonstationarity / 2.3:
Signal Segmentation / 2.4:
Signal Transforms and Joint Time-Frequency Analysis / 2.5:
Wavelet Transform / 2.5.1:
Ambiguity Function and the Wigner-Ville Distribution / 2.5.2:
Coherency, Multivariate Autoregressive (MVAR) Modelling, and Directed Transfer Function (DTF) / 2.6:
Chaos and Dynamical Analysis / 2.7:
Entropy / 2.7.1:
Kolmogorov Entropy / 2.7.2:
Lyapunov Exponents / 2.7.3:
Plotting the Attractor Dimensions from the Time Series / 2.7.4:
Estimation of Lyapunov Exponents from the Time Series / 2.7.5:
Approximate Entropy / 2.7.6:
Using the Prediction Order / 2.7.7:
Filtering and Denoising / 2.8:
Principal Component Analysis / 2.9:
Singular-Value Decomposition / 2.9.1:
Independent Component Analysis / 2.10:
Instantaneous BSS / 2.10.1:
Convolutive BSS / 2.10.2:
Sparse Component Analysis / 2.10.3:
Nonlinear BSS / 2.10.4:
Constrained BSS / 2.10.5:
Application of Constrained BSS: Example / 2.11:
Signal Parameter Estimation / 2.12:
Classification Algorithms / 2.13:
Support Vector Machines / 2.13.1:
The k-Means Algorithm / 2.13.2:
Matching Pursuits / 2.14:
Event-Related Potentials / 2.15:
Detection, Separation, Localization, and Classification of P300 Signals / 3.1:
Using ICA / 3.1.1:
Estimating Single Brain Potential Components by Modelling ERP Waveforms / 3.1.2:
Source Tracking / 3.1.3:
Localization of the ERP / 3.1.4:
Time-Frequency Domain Analysis / 3.1.5:
Adaptive Filtering Approach / 3.1.6:
Prony's Approach for Detection of P300 Signals / 3.1.7:
Adaptive Time-Frequency Methods / 3.1.8:
Brain Activity Assessment Using ERP / 3.2:
Application of P300 to BCI / 3.3:
Seizure Signal Analysis / 3.4:
Seizure Detection / 4.1:
Adult Seizure Detection / 4.1.1:
Detection of Neonate Seizure / 4.1.2:
Chaotic Behaviour of EEG Sources / 4.2:
Predictability of Seizure from the EEGs / 4.3:
Fusion of EEG-fMRI Data for Seizure Prediction / 4.4:
EEG Source Localization / 4.5:
Introduction / 5.1:
General Approaches to Source Localization / 5.1.1:
Dipole Assumption / 5.1.2:
Overview of the Traditional Approaches / 5.2:
ICA Method / 5.2.1:
MUSIC Algorithm / 5.2.2:
LORETA Algorithm / 5.2.3:
FOCUSS Algorithm / 5.2.4:
Standardized LORETA / 5.2.5:
Other Weighted Minimum Norm Solutions / 5.2.6:
Evaluation Indices / 5.2.7:
Joint ICA-LORETA Approach / 5.2.8:
Partially Constrained BSS Method / 5.2.9:
Determination of the Number of Sources / 5.3:
Sleep EEG / 5.4:
Stages of Sleep / 6.1:
NREM Sleep / 6.1.1:
REM Sleep / 6.1.2:
The Influence of Circadian Rhythms / 6.2:
Sleep Deprivation / 6.3:
Preface
List of Abbreviations
List of Symbols
18.

図書

図書
G. W. H. Cheeseman, R. F. Cookson
出版情報: New York : Wiley, c1979  xii, 835 p. ; 24 cm
シリーズ名: The chemistry of heterocyclic compounds : a series of monographs ; vol. 35
所蔵情報: loading…
目次情報: 続きを見る
General Introduction to Quinoxaline Chemistry
Quinoxaline--The Parent Heterocycle
Quinoxalines Unsubstituted in the Heteroring
Quinoxaline Mono- and Di-N-oxides
Quinoxaline-2-ones and Quinoxaline-2,3-diones
Quinoxaline-2-thiones and Quinoxaline-2,3-dithiones
Quinoxaline-2-carboxaldehydes and Quinoxaline-2,3 dicarboxaldehydes
Quinoxaline 2-Ketones and 2,3-Diketones
Quinoxaline-2-carboxylic Acids and Quinoxaline-2,3 dicarboxylic Acids
2-Halogenoquinoxalines and 2,3-Dihalogenoquinoxalines
2-Aminoquinoxalines and 2,3-Diaminoquinoxalines
2-Hydrazinoquinoxalines
2-Alkoxy-, 2-Aryloxy-, 2,3-Dialkoxy-,2-Alkoxy-, 3-aryloxy-, and 2,3-Diaryloxquinoxalines
2-Alkyl- and 2,3-Dialkylquinoxalines
2-Aryl(heteroaryl)- and 2,3-Diaryl(diheteroaryl)quinoxalines
2-Polyhydroxyalkylquinoxalines
Quinoxaline Quaternary Salts
Reduced Quinoxalines
Salts
Pyrrolo [1,2-a] pyrazines
Pyrrolo[b]pyrazines
Imidazopyrazines
Pyrazolopyrazines
Triazolo- and Tetrazolopyrazines
Furo-, Oxazolo-, Isoxazolo-, and Oxadiazolopyrazines
Thieno-, Thiazolo-, Isothiazolo-, and Thiadiazolopyrazines
Miscellaneous 5,6-Systems
Pyrido[1,2-a] pyrazines
Pyrido[2,3-b]pyrazines
Pyrido[3,4-b]pyrazines
Pyrazinopyrimidines
Pyrazinopyrazines
Pyrazinotriazines and Pyrazinotetrazines
Pyrazinooxazines
Pyrazinothiazines
Pyrroloquinoxalines
Imidazoquinoxalines
Pyrazoloquinoxaline
Benzo[f]quinoxalines
Benzo[g]quinoxalines
Pyridoquinoxalines
Author Index?
Subject Index
General Introduction to Quinoxaline Chemistry
Quinoxaline--The Parent Heterocycle
Quinoxalines Unsubstituted in the Heteroring
19.

図書

図書
edited by Xin-bo Zhang
出版情報: Weinheim : Wiley-VCH, c2018  xiv, 417 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
Sodium-O2 Battery / 1.2:
References
Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries / Bin Liu and Wu Xu and Ji-Guang Zhang2:
Introduction / 2.1:
Recent Progresses in Li Metal Protection for Li-O2 Batteries / 2.2:
Design of Composite Protective Layers / 2.2.1:
New Insights on the Use of Electrolyte / 2.2.2:
Functional Separators / 2.2.3:
Solid-State Electrolytes / 2.2.4:
Alternative Anodes / 2.2.5:
Challenges and Perspectives / 2.3:
Acknowledgment
Li-Air Batteries: Discharge Products / Xuanxuan Bi and Rongyue Wang and Jun Lu3:
Discharge Products in Aprotic Li-O2 Batteries / 3.1:
Peroxide-based Li-O2 Batteries / 3.2.1:
Electrochemical Reactions / 3.2.1.1:
Crystalline and Electronic Band Structure of Li2O2 / 3.2.1.2:
Reaction Mechanism and the Coexistence of Li2O2 and LiO2 / 3.2.1.3:
Super oxide-based Li-02 Batteries / 3.2.2:
Problems and Challenges in Aprotic Li-O2 Batteries / 3.2.3:
Decomposition of the Electrolyte / 3.2.3.1:
Degradation of the Carbon Cathode / 3.2.3.2:
Discharge Products in Li-Air Batteries / 3.3:
Challenges to Exchanging O2 to Air / 3.3.1:
Effect of Water on Discharge Products / 3.3.2:
Effect of Small Amount of Water / 3.3.2.1:
Aqueous Li-O2 Batteries / 3.3.2.2:
Effect of C02 on Discharge Products / 3.3.3:
Current Li-Air Batteries and Perspectives / 3.3.4:
Electrolytes for Li-O2 Batteries / Alex R. Neale and Peter Goodrich and Christopher Hardacre and Johan Jacquemin4:
General Li-O2 Battery Electrolyte Requirements and Considerations / 4.1:
Electrolyte Salts / 4.1.1:
Ethers and Glymes / 4.1.2:
Dimethyl Sulfoxide (DMSO) and Sulfones / 4.1.3:
Nitriles / 4.1.4:
Amides / 4.1.5:
Ionic Liquids / 4.1.6:
Future Outlook / 4.1.7:
Li-Oxygen Battery: Parasitic Reactions / Xiahui Yao and Qi Dong and Qingmei Cheng and Dunwei Wang5:
The Desired and Parasitic Chemical Reactions for Li-Oxygen Batteries / 5.1:
Parasitic Reactions of the Electrolyte / 5.2:
Nucleophilic Attack / 5.2.1:
Autoxidation Reaction / 5.2.2:
Acid-Base Reaction / 5.2.3:
Proton-mediated Parasitic Reaction / 5.2.4:
Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction / 5.2.5:
Parasitic Reactions at the Cathode / 5.3:
The Corrosion of Carbon in the Discharge Process / 5.3.1:
The Corrosion of Carbon in the Recharge Process / 5.3.2:
Catalyst-induced Parasitic Chemical Reactions / 5.3.3:
Alternative Cathode Materials and Corresponding Parasitic Chemistries / 5.3.4:
Additives and Binders / 5.3.5:
Contaminations / 5.3.6:
Parasitic Reactions on the Anode / 5.4:
Corrosion of the Li Metal / 5.4.1:
SEI in the Oxygenated Atmosphere / 5.4.2:
Alternative Anodes and Associated Parasitic Chemistries / 5.4.3:
New Opportunities from the Parasitic Reactions / 5.5:
Summary and Outlook / 5.6:
Li-Air Battery: Electrocatalysts / 6:
Types of ELectrocatalyst / 6.1:
Carbonaceous Materials / 6.2.1:
Commercial Carbon Powders / 6.2.1.1:
Carbon Nanotubes (CNTs) / 6.2.1.2:
Graphene / 6.2.1.3:
Doped Carbonaceous Material / 6.2.1.4:
Noble Metal and Metal Oxides / 6.2.2:
Transition Metal Oxides / 6.2.3:
Perovskite Catalyst / 6.2.3.1:
Redox Mediator / 6.2.3.2:
Research of Catalyst / 6.3:
Reaction Mechanism / 6.4:
Summary / 6.5:
Lithium-Air Battery Mediator / Zhuojion Liang and Guangtao Cong and Yu Wang and Yi-Chun Lu7:
Redox Mediators in Lithium Batteries / 7.1:
Redox Mediators in Li-Air Batteries / 7.1.1:
Redox Mediators in Li-ion and Lithium-flow Batteries / 7.1.2:
Overcharge Protection in Li-ion Batteries / 7.1.2.1:
Redox Targeting Reactions in Lithium-flow Batteries / 7.1.2.2:
Selection Criteria and Evaluation of Redox Mediators for Li-O2 Batteries / 7.2:
Redox Potential / 7.2.1:
Stability / 7.2.2:
Reaction Kinetics and Mass Transport Properties / 7.2.3:
Catalytic Shuttle vs Parasitic Shuttle / 7.2.4:
Charge Mediators / 7.3:
Lil (Lithium Iodide) / 7.3.1:
LiBr (Lithium Bromide) / 7.3.2:
Nitroxides: TEMPO (2,2,6,6-TetramethyIpiperidinyioxyl) and Others / 7.3.3:
TTF (Tetrathiafulvalene) / 7.3.4:
Tris[4-(diethylamino)phenyl]amine (TDPA) / 7.3.5:
Comparison of the Reported Charge Mediators / 7.3.6:
Discharge Mediator / 7.4:
Iron Phthalocyanine (FePc) / 7.4.1:
2,5-Di-tert'butyl-l,4-benzoquinone (DBBQ) / 7.4.2:
Conclusion and Perspective / 7.5:
Spatiotemporal Operando X-ray Diffraction Study on Li-Air Battery / Di-Jia Liu and Jiang-Lan Shui8:
Microfocused X-ray Diffraction (¿-XRD) and Li-O2 Cell Experimental Setup / 8.1:
Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB / 8.2:
Study on Separator: Impact of Precipitates to LAB Performance / 8.3:
Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox Reaction / 8.4:
Metal-Air Battery: In Situ Spectroelectrochemical Techniquesx / lain M. Aldous and Laurence J. Hardwick and Richard J. Nichols and J. Padmanabhan Vivek9:
Raman Spectroscopy / 9.1:
In Situ Raman Spectroscopy for Metal-O2 Batteries / 9.1.1:
Background Theory / 9.1.2:
Practical Considerations / 9.1.3:
Electrochemical Roughening / 9.1.3.1:
Addressing Inhomogeneous SERS Enhancement / 9.1.3.2:
In Situ Raman Setup / 9.1.4:
Determination of Oxygen Reduction and Evolution Reaction Mechanisms Within Metal-O2 Batteries / 9.1.5:
Infrared Spectroscopy / 9.2:
Background / 9.2.1:
IR Studies of Electrochemical Interfaces / 9.2.2:
Infrared Spectroscopy for Metal-O2 Battery Studies / 9.2.3:
UV/Visible Spectroscopic Studies / 9.3:
UV/Vis Spectroscopy / 9.3.1:
UV/Vis Spectroscopy for Metal-O2 Battery Studies / 9.3.2:
Electron Spin Resonance / 9.4:
Cell Setup / 9.4.1:
Deployment of Electrochemical ESR in Battery Research / 9.4.2:
Zn-Air Batteries / Tong wen Yu and Rui Cai and Zhongwei Chen9.5:
Zinc Electrode / 10.1:
Electrolyte / 10.3:
Separator / 10.4:
Air Electrode / 10.5:
Structure of Air Electrode / 10.5.1:
Oxygen Reduction Reaction / 10.5.2:
Oxygen Evolution Reaction / 10.5.3:
Electrocatalyst / 10.5.4:
Noble Metals and Alloys / 10.5.4.1:
Inorganic-Organic Hybrid Materials / 10.5.4.2:
Meta-free Materials / 10.5.4.4:
Conclusions and Outlook / 10.6:
Experimental and Computational investigation of Nonaqueous Mg/O2 Batteries / Jeffrey G. Smith and Güiin Vardar and Charles W. Monroe and Donald J. Siegel11:
Experimental Studies of Magnesium/Air Batteries and Electrolytes / 11.1:
Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries / 11.2.1:
Modified Grignard Electrolytes for Mg/O2 Batteries / 11.2.2:
All-inorganic Electrolytes for Mg/O2 Batteries / 11.2.3:
Electrochemical Impedance Spectroscopy / 11.2.4:
Computational Studies of Mg/O2 Batteries / 11.3:
Calculation of Thermodynamic Overpotentials / 11.3.1:
Charge Transport in Mg/O2 Discharge Products / 11.3.2:
Concluding Remarks / 11.4:
Novel Methodologies to Model Charge Transport In Metal-Air Batteries / Nicoiai Rask Mathiesen and Marko Melander and Mikael Kuisma and Pablo García-Fernandez and Juan Maria García Lastra12:
Modeling Electrochemical Systems with GPAW / 12.1:
Density Functional Theory / 12.2.1:
Conductivity from DFT Data / 12.2.2:
The GPAW Code / 12.2.3:
Charge Transfer Rates with Constrained DFT / 12.2.4:
Marcus Theory of Charge Transfer / 12.2.4.1:
Constrained DFT / 12.2.4.2:
Polaronic Charge Transport at the Cathode / 12.2.4.3:
Electrochemistry at Solid-Liquid Interfaces / 12.2.5:
Modeling the Electrochemical Interface / 12.2.5.1:
Implicit Solvation at the Electrochemical Interface / 12.2.5.2:
Generalized Poisson-Boltzmann Equation for the Electric Double Layer / 12.2.5.3:
A Electrode Potential Within the Poisson-Boltzmann Model
Calculations at Constant Electrode Potential / 12.2.6:
The Need for a Constant Potential Presentation / 12.2.6.1:
Grand Canonical Ensemble for Electrons / 12.2.6.2:
Fictitious Charge Dynamics / 12.2.6.3:
Model in Practice / 12.2.6.4:
Conclusions / 12.2.7:
Second Principles for Material Modeling / 12.3:
The Energy in SP-DET / 12.3.1:
The Lattice Term (E(0)) / 12.3.2:
Electronic Degrees of Freedom / 12.3.3:
Model Construction / 12.3.4:
Perspectives on SP-DFT / 12.3.5:
Acknowledgments
Flexible Metal-Air Batteries / Huisheng Peng and Yifan Xu and Jian Pan and Yang Zhao and Lie Wang and Xiang Shi13:
Flexible Electrolytes / 13.1:
Aqueous Electrolytes / 13.2.1:
PAA-based Gel Polymer Electrolyte / 13.2.1.1:
PEO-based Gel Polymer Electrolyte / 13.2.1.2:
PVA-based Gel Polymer Electrolyte / 13.2.1.3:
Nonaqueous Electrolytes / 13.2.2:
PEO-based Polymer Electrolyte / 13.2.2.1:
PVDF-HFP-based Polymer Electrolyte / 13.2.2.2:
Ionic Liquid Electrolyte / 13.2.2.3:
Flexible Anodes / 13.3:
Flexible Cathodes / 13.4:
Modified Stainless Steel Mesh / 13.4.1:
Modified Carbon Textile / 13.4.2:
Carbon Nanotube / 13.4.3:
Graphene-based Cathode / 13.4.4:
Other Composite Electrode / 13.4.5:
Prototype Devices / 13.5:
Sandwich Structure / 13.5.1:
Fiber Structure / 13.5.2:
Perspectives on the Development of Metal-Air Batteries / 13.6:
Lithium Anode / 14.1:
Cathode / 14.1.2:
The Reaction Mechanisms / 14.1.4:
The Development of Solid-state Li-O2 Battery / 14.1.5:
The Development of Flexible Li-O2 Battery / 14.1.6:
Na-O2 Battery / 14.2:
Zn-air Battery / 14.3:
Index
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
20.

図書

図書
Kenneth A. Small and Erik T. Verhoef
出版情報: London : Routledge, 2007  xvi, 276 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of tables
List of figures
Acknowledgments
Selected symbols and abbreviations
Introduction / 1:
Travel demand / 2:
Aggregate tabulations and models / 2.1:
Aggregate demand models / 2.1.1:
Cross-sectional studies of metropolitan areas / 2.1.2:
Cross-sectional studies within a metropolitan area / 2.1.3:
Studies using time-series data / 2.1.4:
Summary of key results of aggregate studies / 2.1.5:
Transportation and land use / 2.1.6:
Disaggregate models: methods / 2.2:
Basic discrete-choice models / 2.2.1:
Estimation / 2.2.2:
Interpreting coefficient estimates / 2.2.3:
Data / 2.2.4:
Randomness, scale of utility, and measures of benefit / 2.2.5:
Aggregation and forecasting / 2.2.6:
Specification / 2.2.7:
Ordered and rank-ordered models / 2.2.8:
Disaggregate models: examples / 2.3:
Mode choice / 2.3.1:
Trip-scheduling choice / 2.3.2:
Choice of free or express lanes / 2.3.3:
Advanced discrete-choice modeling / 2.4:
Generalized extreme value models / 2.4.1:
Combined discrete and continuous choice / 2.4.2:
Disaggregate panel data / 2.4.3:
Random parameters and mixed logit / 2.4.4:
Endogenous prices / 2.4.5:
Activity patterns and trip chaining / 2.5:
Value of time and reliability / 2.6:
Value of time: basic theory / 2.6.1:
Empirical specifications / 2.6.2:
Extensions / 2.6.3:
Value of reliability: theory / 2.6.4:
Empirical results / 2.6.5:
Conclusions / 2.7:
Costs / 3:
The nature of cost functions / 3.1:
Cost functions for public transit / 3.2:
Accounting cost studies / 3.2.1:
Engineering cost studies / 3.2.2:
Statistical cost studies / 3.2.3:
Cost functions including user inputs / 3.2.4:
Highway travel: congestion technology / 3.3:
Fundamentals of congestion / 3.3.1:
Empirical speed-flow relationships / 3.3.2:
Dynamic congestion models / 3.3.3:
Congestion modeling: a conclusion / 3.3.4:
Highway travel: short-run cost functions and equilibrium / 3.4:
Stationary-state congestion on a homogeneous road / 3.4.1:
Time-averaged models / 3.4.2:
Dynamic models with endogenous scheduling / 3.4.3:
Network equilibrium / 3.4.4:
Parking search / 3.4.5:
Empirical evidence on short-run variable costs / 3.4.6:
Highway travel: long-run cost functions / 3.5:
Analytic long-run cost functions / 3.5.1:
The role of information technology / 3.5.2:
Empirical evidence on capital costs / 3.5.3:
Is highway travel subsidized? / 3.5.4:
Intermodal cost comparisons / 3.6:
Pricing / 3.7:
First-best congestion pricing of highways / 4.1:
Static congestion / 4.1.1:
Dynamic congestion / 4.1.2:
Second-best pricing / 4.2:
Network aspects / 4.2.1:
Time-of-day aspects / 4.2.2:
User heterogeneity / 4.2.3:
Stochastic congestion and information / 4.2.4:
Interactions with other distorted markets / 4.2.5:
Second-best pricing: a conclusion / 4.2.6:
Congestion pricing in practice / 4.3:
Singapore / 4.3.1:
Norwegian toll rings / 4.3.2:
Value pricing in the US / 4.3.3:
London congestion charging / 4.3.4:
Other applications / 4.3.5:
Technology of road pricing / 4.3.6:
Pricing of parking / 4.4:
Pricing of public transit / 4.5:
Fare level / 4.5.1:
Fare structure / 4.5.2:
Incentive effects of subsidies / 4.5.3:
Political considerations / 4.5.4:
Investment / 4.6:
Capacity choice for highways / 5.1:
Basic results: capacity choice with first-best pricing and static congestion / 5.1.1:
Self-financing in more complex settings / 5.1.2:
Second-best highway capacity / 5.1.3:
Naive investment rules / 5.1.4:
Cost-benefit analysis / 5.2:
Willingness to pay / 5.2.1:
Demand and cost forecasts / 5.2.2:
Discounting future costs and benefits / 5.2.3:
Shifting of costs and benefits / 5.2.4:
External benefits and network effects / 5.2.5:
Conclusion: the use and misuse of cost-benefit analysis / 5.2.6:
Industrial organization of transportation providers / 5.3:
Private highways / 6.1:
Single road with static congestion / 6.1.1:
Single road with dynamic congestion / 6.1.2:
Heterogeneous users / 6.1.3:
Private toll lanes: the two-route problem revisited / 6.1.4:
Competition in networks / 6.1.5:
Regulation and franchising of private roads / 6.2:
Privately provided transit services / 6.3:
Forms of privatization / 6.3.1:
Market structure and competitive practices / 6.3.2:
Efficiency of public and private providers / 6.3.3:
Experience with privatization and deregulation / 6.3.4:
Paratransit / 6.3.5:
Conventional taxi service / 6.3.6:
Conclusion / 6.4:
Emerging themes / 7.1:
Implications for transportation research / 7.2:
Notes
References
Index
List of tables
List of figures
Acknowledgments
21.

図書

図書
Daniel Minoli
出版情報: Boca Raton, Fla. : CRC Press, c2011  xiv, 302 p., [24] p. of plates ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Author
Introduction / Chapter 1:
Overview / 1.1:
Background and Opportunities / 1.2:
Course of Investigation / 1.3:
References
Bibliography
Some Basic Fundamentals of Visual Science / Chapter 2:
Stereo Vision Concepts / 2.1:
Stereoscopy / 2.1.1:
Binocular Depth Perception and Convergence / 2.1.2:
Cyclopean Image / 2.1.3:
Accommodation / 2.1.4:
Parallax Concepts / 2.2:
Parallax / 2.2.1:
Parallax Barrier and Lenticular Lenses / 2.2.2:
Other Concepts / 2.3:
Polarization / 2.3.1:
Chromostereopsis / 2.3.2:
3D Imaging / 2.3.3:
Occlusion and Scene Reconstruction / 2.3.4:
Conclusion / 2.4:
Analytical 3D Aspects of the Human Visual System / Appendix 2A:
Theory of Stereo Reproduction / 2A.1:
Analytics / 2A.2:
Depth Perception / 2A.2.1:
Geometry of Stereoscopic 3D Displays / 2A.2.2:
Geometry of Stereo Capturing / 2A.2.3:
Stereoscopic 3D Distortions / 2A.2.4:
Workflow of Conventional Stereo Production / 2A.3:
Basic Rules and Production Grammar / 2A.3.1:
Example / 2A.3.2:
Application of Visual Science Fundamentals to 3DTV / Chapter 3:
Application of the Science to 3D Projection/3DTV / 3.1:
Common Video Treatment Approaches / 3.1.1:
Projections Methods for Presenting Stereopairs / 3.1.2:
Polarization, Synchronization, and Colorimetrics / 3.1.3:
Autostereoscopic Viewing / 3.2:
Lenticular Lenses / 3.2.1:
Parallax Barriers / 3.2.2:
Other Longer-Term Systems / 3.3:
Multi-Viewpoint 3D Systems / 3.3.1:
Integral Imaging/Holoscopic Imaging / 3.3.2:
Holographic Approaches / 3.3.3:
Volumetric Displays/Hybrid Holographic / 3.3.4:
Viewer Physiological Issues with 3D Content / 3.4:
The Accommodation Problem / 3.4.1:
Infinity Separation / 3.4.2:
Conclusion and Requirements of Future 3DTV / 3.5:
Basic 3DTV Approaches for Content Capture and Mastering / Chapter 4:
General Capture, Mastering, and Distribution Process / 4.1:
3D Capture, Mastering, and Distribution Process / 4.2:
Content Acquisition / 4.2.1:
3D Mastering / 4.2.2:
Spatial Compression / 4.2.2.1:
Temporal Multiplexing / 4.2.2.2:
2D in Conjunction with Metadata (2D+M) / 4.2.2.3:
Color Encoding / 4.2.2.4:
Overview of Network Transport Approaches / 4.3:
MPEG Standardization Efforts / 4.4:
Additional Details on 3D Video Formats / Appendix 4A:
Conventional Stereo Video (CSV) / 4A.1:
Video plus Depth (V+D) / 4A.2:
Multiview Video plus Depth (MV+D) / 4A.3:
Layered Depth Video (LDV) / 4A.4:
3D Basic 3DTV Approaches and Technologies for In-Home Display of Content / Chapter 5:
Connecting the In-Home Source to the Display / 5.1:
3DTV Display Technology / 5.2:
Commercial Displays Based on Projection / 5.2.1:
Commercial Displays Based on LCD and PDP Technologies / 5.2.2:
LCD 3DTV Polarized Display / 5.2.3:
Summary of 3DTV Polarized Displays / 5.2.4:
Glasses Accessories / 5.2.5:
Other Display Technologies / 5.3:
Autostereoscopic Systems with Parallax Support in the Vertical and Horizontal Axes / 5.3.1:
Autostereoscopic Systems for PDAs / 5.3.2:
Primer on Cables/Connectivity for High-End Video / 5.4:
In-Home Connectivity Using Cables / 5A.1:
Digital Visual Interface (DVI) / 5A.1.1:
High-Definition Multimedia Interface" (HDMI") / 5A.1.2:
DisplayPort / 5A.1.3:
In-Home Connectivity Using Wireless Technology / 5A.2:
Wireless Gigabit Alliance / 5A.2.1:
WirelessHD / 5A.2.2:
Other Wireless / 5A.2.3:
3DTV Advocacy and System-Level Research Initiatives / Chapter 6:
3D Consortium (3DC) / 6.1:
3D@Home Consortium / 6.2:
3D Media Cluster / 6.3:
3DTV / 6.4:
Challenges and Players in the 3DTV Universe / 6.5:
European Information Society Technologies (IST) Project "Advanced Three-Dimensional Television System Technologies" (ATTEST) / 6.5.1:
3D Content Creation / 6.5.1.1:
3D Video Coding / 6.5.1.2:
Transmission / 6.5.1.3:
Virtual-View Generation and 3D Display / 6.5.1.4:
3DPhone / 6.5.2:
Mobile3DTV / 6.5.3:
Real3D / 6.5.4:
HELIUM3D (High Efficiency Laser Based Multi User Multi Modal 3D Display) / 6.5.5:
The MultiUser 3D Television Display (MUTED) / 6.5.6:
3D4YOU / 6.5.7:
3DPresence / 6.5.8:
Audio-Visual Content Search and Retrieval in a Distributed P2P Repository (Victory) / 6.5.9:
Victory in Automotive Industry / 6.5.9.1:
Victory in Game Industry / 6.5.9.2:
2020 3D Media / 6.5.10:
i3DPost / 6.5.11:
Glossary
Index
Preface
The Author
Introduction / Chapter 1:
22.

図書

図書
edited by Caitlin H. Bell ... [et al.]
出版情報: Boca Raton : CRC Press, c2019  xxix, 439 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Foreword
Acknowledgments
Editors
Contributors
Introduction to Emerging Contaminants / Chapter 1:
Introduction / 1.1:
Who Identifies Emerging Contaminants? / 1.2:
United States Environmental Protection Agency / 1.2.1:
United States Department of Defense / 1.2.2:
United States Geologic Survey / 1.2.3:
State Agencies in the United States / 1.2.4:
Stockholm Convention on Persistent Organic Pollutants / 1.2.5:
European Union / 1.2.6:
Australian National Environment Protection Council / 1.2.7:
What is the Life Cycle of an Emerging Contaminant? / 1.3:
What are the Key Challenges Associated with Emerging Contaminants? / 1.4:
The Need for Balance / 1.5:
This Book / 1.6:
Acronyms
1,4-Dioxane / Chapter 2:
Basic Information / 2.1:
Toxicity and Risk Assessment / 2.3:
Potential Noncancer Effects / 2.3.1:
Potential Cancer Effects / 2.3.2:
Regulatory Status / 2.4:
Site Characterization / 2.5:
Investigation Approaches / 2.5.1:
Analytical Methods / 2.5.2:
Advanced Investigation Techniques / 2.5.3:
Soil Treatment / 2.6:
Groundwater Treatment / 2.7:
In Situ Treatment / 2.7.1:
In Situ Chemical Oxidation / 2.7.1.1:
Bioremediation / 2.7.1.2:
Phytoremediation / 2.7.1.3:
Thermal Treatment / 2.7.1.4:
Ex Situ Treatment and Dynamic Groundwater Recirculation / 2.7.2:
Natural Attenuation / 2.7.3:
Drinking Water and Wastewater Treatment / 2.8:
Point-of-Use and Point-of-Entry Treatment / 2.8.1:
1.4-Dioxane Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 2.9:
Advanced Oxidation Processes / 2.9.1:
Bioreaetors / 2.9.2:
Granular Activated Carbon and Other Sorbenl Media / 2.9.3:
Electrochemical Oxidation / 2.9.4:
Conclusion / 2.10:
Per- and Polyfluoroalkyl Substances / Chapter 3:
PFASs Chemistry / 3.1:
Ionic State / 3.2.1:
Linear and Branched Isomers / 3.2.2:
Perfluoroalkyl Substances / 3.2.3:
Perfluoroalkyl Sulfonic Acids / 3.2.3.1:
Perfluoroalkyl Carboxylic Acids / 3.2.3.2:
Perfluoroalkyl Phosphonic and Phosphinic Acids / 3.2.3.3:
Perfluoroalkyl Ether Carboxylates and Perfluoroalkyl Ether Sulfonates / 3.2.3.4:
Polyfluoroalkyl Substances / 3.2.4:
ECF-Derived Polyfluoroalkyl Substances / 3.2.4.1:
Fluorotelomerizat ion-Derived Polyfluoroalkyl Substances / 3.2.4.2:
Long- and Short-Chain PFASs / 3.2.5:
Polymeric PFASs / 3.2.6:
Replacement PFASs / 3.2.7:
Chemistry of PFASs in Class B Firefighting Foams / 3.2.8:
Physical, Chemical, and Biological Properties / 3.3:
Biological Activity Towards PFASs / 3.3.1:
Transformation of Polyfluoroalkyl Substances / 3.3.2:
Abiotic Transformation / 3.3.2.1:
Biotic Transformation / 3.3.2.2:
PFASs Production and Use / 3.4:
Manufacturing Processes and Uses / 3.4.1:
Electrochemical Fluorination / 3.4.2:
Fluorotelomerization / 3.4.3:
Oligomerization / 3.4.4:
Uses / 3.4.5:
Use as Surfactants / 3.4.5.1:
Use as Surface Coatings / 3.4.5.2:
Other Uses / 3.4.5.3:
Sampling and Analysis / 3.5:
General Sampling Guidelines / 3.5.1:
Soil and Sediment Sampling / 3.5.1.1:
Surface Water and Groundwater Sampling / 3.5.1.2:
Storage and Hold Times / 3.5.1.3:
Chemical Analysis Methods / 3.5.2:
Overview of Standard Methods / 3.5.2.1:
Advanced Analytical Techniques / 3.5.2.2:
Health Considerations / 3.6:
Exposure Routes / 3.6.1:
Distribution in Tissue / 3.6.2:
Bioaccumulation / 3.6.3:
Elimination / 3.6.4:
Toxicologic and Epidemiological Studies / 3.6.5:
Acute Toxicity / 3.6.5.1:
(Sub)Chronic Toxicity / 3.6.5.2:
Epidemiological Studies / 3.6.5.3:
Polyfluoroalkyl Substance Toxicity / 3.6.5.4:
Derivation of Reference Doses/Tolerable Daily Intakes / 3.6.5.5:
Carcinogenic Effects / 3.6.5.6:
Regulation / 3.7:
Regulation of PFASs / 3.7.1:
Global Treaties and Conventions / 3.7.1.1:
United States of America / 3.7.1.2:
Europe / 3.7.1.3:
Australia / 3.7.1.4:
Regulation of Perfluoroalkyl Ethers / 3.7.2:
Fate and Transport / 3.8:
PFAS Distribution in Environmental Matrices / 3.8.1:
PFASs in Soils / 3.8.1.1:
Leaching / 3.8.1.2:
Transport and Retardation in Groundwater / 3.8.1.3:
Surface Waters and Sediments / 3.8.1.4:
Vapor Migration / 3.8.1.5:
Atmospheric Deposition / 3.8.1.6:
Detections and Background Levels in the Environment / 3.8.2:
Sites of Concern / 3.8.3:
CSM for Industrial Facilities / 3.8.3.1:
CSM for Fire Training Areas and Class B Fire Response Areas / 3.8.3.2:
CSM for WWTPs and Biosolid Application Areas / 3.8.3.3:
CSM for Landfills / 3.8.3.4:
PFAS-Relevant Treatment Technologies / 3.9:
Biological Treatment / 3.9.1:
Soil and Sediment Treatment / 3.9.2:
Incineration / 3.9.2.1:
Stabilization/Solidification / 3.9.2.2:
Vapor Energy Generator Technology / 3.9.2.3:
Soil/Sediment Washing / 3.9.2.4:
High-Energy Electron Beam / 3.9.2.5:
Mechanochemical Destruction / 3.9.2.6:
Water Treatment / 3.9.3:
Mature Water Treatment Technologies / 3.9.3.1:
Developing Treatment Technologies / 3.9.3.2:
Experimental Treatment Technologies / 3.9.3.3:
Conclusions / 3.10:
Hexavalent Chromium / Chapter 4:
Geochemistry of Chromium / 4.1:
Sources of Cr(VI) / 4.1.2:
U.S. Federal Regulations / 4.2:
U.S. State Regulations / 4.3.2:
California / 4.3.2.1:
North Carolina / 4.3.2.2:
New Jersey / 4.3.2.3:
Other Countries / 4.3.3:
Occurrence of Cr(VI) / 4.4:
Naturally Occurring (Background) Cr(VI) in Groundwater / 4.4.1:
Cr(VI) in Drinking Water / 4.4.2:
Investigation of Cr(VI) in Groundwater / 4.5:
Chromium Isotopes / 4.5.2:
Mineralogical Analyses / 4.5.3.2:
In Situ Reduction / 4.6:
In Situ Chemical Reduction / 4.6.1.1:
In Situ Biological Reduction / 4.6.1.2:
Permeable Reactive Barriers / 4.6.1.3:
Reoxidation of Cr(III) Formed by In Situ Reduction / 4.6.1.4:
Ex Situ Treatment / 4.6.2:
Dynamic Groundwater Recirculation
Tier I / 4.6.4:
Tier II / 4.6.4.2:
Tier III / 4.6.4.3:
Tier IV / 4.6.4.4:
Drinking Water Treatment / 4.7:
Point-of-Entry and Point-of-Use Treatment / 4.7.1:
Cr(VI) Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 4.8:
Reduction/Coagulation/Filtration with Ferrous Iron / 4.8.1:
Ion Exchange / 4.8.2:
Weak Base Anion Resins / 4.8.2.1:
Strong Base Anion Resins / 4.8.2.2:
Reverse Osmosis / 4.8.3:
Bioreactors / 4.8.4:
Phytostabilization / 4.8.4.1:
Iron Media / 4.8.4.2:
Reduction/Filtration via Stannous Chloride (RF-Sn[II]) / 4.8.5:
1,2,3-Trichloropropane / 4.9:
International Guidance / 5.1:
Investigation / 5.4:
Groundwater Remediation Technologies / 5.4.2:
In Situ Hydrolysis / 5.5.1:
In Situ Biological Treatment / 5.5.1.2:
TCP Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 5.5.1.3:
Granular Activated Carbon / 5.7.1:
Air Stripping / 5.7.2:
Other Processes / 5.7.4:
Considerations for Future Contaminants of Emerging Concern / 5.8:
Categorizing Future Emerging Contaminants / 6.1:
The Challenges Posed in Emerging Contaminant Management / 6.3:
Challenges Associated with Release to the Environment / 6.3.1:
Challenges Associated with Assessing Toxicological Risk / 6.3.2:
Challenges Associated with Regulation / 6.3.3:
Challenges Associated with Characterization and Analysis / 6.3.4:
Challenges Associated with Treatment / 6.3.5:
The Future of Emerging Contaminants / 6.4:
Appendices
USEPA Candidate Contaminant List / Appendix A:
REACH Candidate List / Appendix B:
Emerging Contaminants and Their Physical and Chemical Properties / Appendix C:
NGI Preliminary List of Substances That Could Be Considered to Meet the PMT or vPvM Criteria / Appendix D:
Summary of PFAS Environmental Standards: Soil / Appendix E.1:
Summary of PFAS Environmental Standards: Groundwater / Appendix E.2:
Summary of PFAS Environmental Standards: Surface Water / Appendix E.3:
Summary of PFAS Environmental Standards: Drinking Water / Appendix E.4:
Notes / Appendix E.5:
Index
List of Figures
List of Tables
Foreword
23.

図書

図書
Shiping Liu, Gang (Sheng) Chen
出版情報: Hoboken, NJ : Wiley, 2019  xii, 254 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
Contact Perception in Virtual Environment / 1.2:
Organization of This Book / 1.3:
References
Fundamentals of Robot Dynamics and Control / 2:
Robot Kinematics / 2.1:
Matrix Description of Robot Kinematics / 2.1.1:
Homogeneous Transformation Matrices / 2.1.2:
Forward Kinematics / 2.1.3:
Inverse Kinematics / 2.1.4:
Velocity Kinematics / 2.1.5:
Robot Dynamics / 2.2:
Robot Control / 2.3:
Trajectory Control / 2.3.1:
Point-to-point Control / 2.3.2.1:
Trajectories for Paths Specified by Points / 2.3.2.2:
Interaction Control / 2.3.3:
Impedance Control / 2.3.3.1:
Hybrid Force-Position Control 38 References / 2.3.3.2:
Friction and Contact of Solid Interfaces / 3:
Contact Between Two Solid Surfaces / 3.1:
Description of Surfaces / 3.2.1:
Contact Mechanics of Two Solid Surfaces / 3.2.2:
Friction Between Two Solid Surfaces / 3.3:
Adhesion / 3.3.1:
Dry Friction / 3.3.2:
Friction Mechanisms / 3.3.2.1:
Friction Transitions and Wear / 3.3.2.2:
Static Friction, Hysteresis, Time, and Displacement Dependence / 3.3.2.3:
Effects of Environmental and Operational Condition on Friction / 3.3.2.4:
Liquid Mediated Friction / 3.3.3:
Stribeck Curve / 3.3.3.1:
Unsteady Liquid-Mediated Friction / 3.3.3.2:
Negative Slope of Friction-Velocity Curve / 3.3.3.3:
Friction Models / 3.3.4:
Friction Dynamics of Manipulators / 4:
Friction Models of Robot Manipulator Joints / 4.1:
Modeling Friction with Varied Effects / 4.2:
The Motion Equations of Dynamics of Robot Manipulators with Friction / 4.3:
The General Motion Equation of Robot Manipulators / 4.3.1:
The Motion Equation of Two-Link Robot Manipulators / 4.3.2:
Nonlinear Dynamics and Chaos of Manipulators / 4.4:
Parameters Identification / 4.5:
Identification of Dynamic Parameters / 4.5.1:
Identification of Parameters of Friction Models / 4.5.2:
Uncertainty Analysis / 4.5.3:
Friction Compensation and Control of Robot Manipulator Dynamics / 4.6:
Force Feedback and Haptic Rendering / 5:
Overview of Robot Force Feedback / 5.1:
Generating Methods of Feedback Force / 5.2:
Serial Mechanism / 5.2.1:
Kinematics / 5.2.1.1:
Dynamics / 5.2.1.2:
Parallel Mechanism / 5.2.2:
Kinematics Model / 5.2.2.1:
Dynamics Based on Virtual Work / 5.2.2.2:
Friction Compensation / 5.2.3:
Calculation of Virtual Force / 5.3:
Collision Detection / 5.3.1:
The Construction of the Bounding Box / 5.3.1.1:
Calculation of Distance between Bounding Boxes / 5.3.1.2:
Calculating the Model of Virtual Force / 5.3.2:
1-DoF Interaction / 5.3.2.1:
2-DoF Interaction / 5.3.2.2:
3-DoF Interaction / 5.3.2.3:
6-DoF Interaction / 5.3.2.4:
Haptic Display Based on Point Haptic Device / 5.4:
Human Tactile Perception / 5.4.1:
Haptic Texture Display Methods / 5.4.2:
Virtual Simulation of Robot Control / 6:
Overview of Robot Simulation / 6.1:
3D Graphic Environment / 6.2:
Virtual Reality-Based Robot Control / 6.3:
Overview of Virtual Reality / 6.3.1:
Overview of Teleoperation / 6.3.2:
Virtual Reality-Based Teleoperation / 6.3.3:
Augmented Reality-Based Tele operation / 6.4:
Overview of Augmented Reality / 6.4.1:
Augmented Reality-Based Teleoperation / 6.4.2:
Task Planning Methods in Virtual Environment / 6.5:
Overview / 6.5.1:
Interactive Graphic Mode / 6.5.2:
Index
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
24.

図書

図書
by Robert J. Hilderman, Howard J. Hamilton
出版情報: Boston, MA : Kluwer Academic Publishers, c2001  xvii, 162 p. ; 25 cm
シリーズ名: The Kluwer international series in engineering and computer science ; SECS 638
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Acknowledgments
Introduction / 1.:
KDD in a Nutshell / 1.1:
The Mining Step / 1.1.1:
The Interpretation and Evaluation Step / 1.1.2:
Objective of the Book / 1.2:
Background and Related Work / 2.:
Data Mining Techniques / 2.1:
Classification / 2.1.1:
Association / 2.1.2:
Clustering / 2.1.3:
Correlation / 2.1.4:
Other Techniques / 2.1.5:
Interestingness Measures / 2.2:
Rule Interest Function / 2.2.1:
J-Measure / 2.2.2:
Itemset Measures / 2.2.3:
Rule Templates / 2.2.4:
Projected Savings / 2.2.5:
I-Measures / 2.2.6:
Silbershatz and Tuzhilin's Interestingness / 2.2.7:
Kamber and Shinghal's Interestingness / 2.2.8:
Credibility / 2.2.9:
General Impressions / 2.2.10:
Distance Metric / 2.2.11:
Surprisingness / 2.2.12:
Gray and Orlowska's Interestingness / 2.2.13:
Dong and Li's Interestingness / 2.2.14:
Reliable Exceptions / 2.2.15:
Peculiarity / 2.2.16:
A Data Mining Technique / 3.:
Definitions / 3.1:
The Serial Algorithm / 3.2:
General Overview / 3.2.1:
Detailed Walkthrough / 3.2.2:
The Parallel Algorithm / 3.3:
Complexity Analysis / 3.3.1:
Attribute-Oriented Generalization / 3.4.1:
The All_Gen Algorithm / 3.4.2:
A Comparison with Commercial OLAP Systems / 3.5:
Heuristic Measures of Interestingness / 4.:
Diversity / 4.1:
Notation / 4.2:
The Sixteen Diversity Measures / 4.3:
The I[subscript Variance] Measure / 4.3.1:
The I[subscript Simpson] Measure / 4.3.2:
The I[subscript Shannon] Measure / 4.3.3:
The I[subscript Total] Measure / 4.3.4:
The I[subscript Max] Measure / 4.3.5:
The I[subscript McIntosh] Measure / 4.3.6:
The I[subscript Lorenz] Measure / 4.3.7:
The I[subscript Gini] Measure / 4.3.8:
The I[subscript Berger] Measure / 4.3.9:
The I[subscript Schutz] Measure / 4.3.10:
The I[subscript Bray] Measure / 4.3.11:
The I[subscript Whittaker] Measure / 4.3.12:
The I[subscript Kullback] Measure / 4.3.13:
The I[subscript MacArthur] Measure / 4.3.14:
The I[subscript Theil] Measure / 4.3.15:
The I[subscript Atkinson] Measure / 4.3.16:
An Interestingness Framework / 5.:
Interestingness Principles / 5.1:
Summary / 5.2:
Theorems and Proofs / 5.3:
Minimum Value Principle / 5.3.1:
Maximum Value Principle / 5.3.2:
Skewness Principle / 5.3.3:
Permutation Invariance Principle / 5.3.4:
Transfer Principle / 5.3.5:
Experimental Analyses / 6.:
Evaluation of the All_Gen Algorithm / 6.1:
Serial vs Parallel Performance / 6.1.1:
Speedup and Efficiency Improvements / 6.1.2:
Evaluation of the Sixteen Diversity Measures / 6.2:
Comparison of Assigned Ranks / 6.2.1:
Analysis of Ranking Similarities / 6.2.2:
Analysis of Summary Complexity / 6.2.3:
Distribution of Index Values / 6.2.4:
Conclusion / 7.:
Areas for Future Research / 7.1:
Appendices
Ranking Similarities
Summary Complexity
Index
List of Figures
List of Tables
Preface
25.

図書

図書
V. L. Cherginets
出版情報: Amsterdam ; Tokyo : Elsevier, 2005  xix, 382 p. ; 25 cm
シリーズ名: Comprehensive chemical kinetics ; v. 41
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
Definitions of acids and bases / Part 1:
Definitions of particles possessing acid or base properties / 1.1.1:
Definitions of solvents system / 1.1.2:
Hard and soft acids and bases (Pearson's concept) / 1.1.3:
Generalized definition of solvent system. Solvents of kinds I and II / 1.1.4:
Studies of homogeneous acid-base reactions in ionic melts / Part 2:
Features of high-temperature ionic solvents as media for Lux acid-base interactions / 1.2.1:
Methods of investigations / 1.2.2:
Ionic solvents based on alkali metal nitrates / 1.2.3:
Molten alkali metal sulfates / 1.2.4:
Silicate melts / 1.2.5:
KCl-NaCl equimolar mixture / 1.2.6:
Oxocompounds of chromium(VI) / 1.2.6.1:
Oxoacids of molybdenum(VI) / 1.2.6.2:
Oxocompounds of tungsten(VI) / 1.2.6.3:
Oxoacidic properties of phosphates / 1.2.6.4:
Oxoacids of vanadium(V) / 1.2.6.5:
Oxoacids of boron(III) / 1.2.6.6:
Acidic properties of Ge(IV) and Nb(V) oxocompounds / 1.2.6.7:
Molten KCl-LiCl (0.41:0.59) EUTECTIC / 1.2.7:
Molten NaI / 1.2.8:
Other alkaline-metal halides / 1.2.9:
Conclusion / 1.2.10:
Acid-base ranges in ionic melts. Estimation of relative acidic properties of ionic melts / Part 3:
The oxobasicity index as a measure of relative oxoacidic properties of high-temperature ionic solvents / 1.3.1:
Oxoacidity scales for melts based on alkali- and alkaline-earth metal halides / 1.3.2:
Oxygen electrodes in ionic melts. Oxide ion donors / 1.3.3:
Oxygen electrode reversibility in ionic melts / Part 4:
Potentiometric method of study of oxygen electrode reversibility / 2.4.1:
Direct calibration / 2.4.1.1:
Indirect calibration of oxygen electrodes / 2.4.1.2:
Experimental results / 2.4.2:
Oxygen-containing melts / 2.4.2.1:
Melts based on alkali metal halides / 2.4.2.2:
Melts based on alkali- and alkaline-earth halides / 2.4.2.3:
KCl-NaCl-NaF eutectic / 2.4.2.4:
Conclusions / 2.4.3:
Investigations of dissociation of Lux bases in ionic melts / Part 5:
Reactions of ionic melts with gases of acidic or base character / 2.5.1:
High-temperature hydrolysis of melts based on alkali metal halides / 2.5.1.1:
Purification of halide ionic melts from oxide-ion admixtures / 2.5.1.2:
Behaviour of Lux bases in ionic melts / 2.5.2:
Sodium peroxide, Na[subscript 2]O[subscript 2] / 2.5.2.1:
Alkali metal carbonates, Me[subscript 2]CO[subscript 3] / 2.5.2.2:
Alkali metal hydroxides, MeOH / 2.5.2.3:
Equilibria in "solid oxide-ionic melt" systems / 3:
Characteristics of oxide solubilities and methods of their determination / Part 6:
Parameters describing solubilities of solid substances in ionic solvents / 3.6.1:
Methods of oxide solubility determination / 3.6.2:
Isothermal saturation method / 3.6.2.1:
Potentiometric titration method / 3.6.2.2:
Sequential addition method / 3.6.2.3:
Regularities of oxide solubilities in melts based on alkali and alkaline-earth metal halides / Part 7:
Molten alkali-metal halides and their mixtures / 3.7.1:
KCl-LiCl (0.41:0.59) eutectic mixture / 3.7.1.1:
KCl-NaCl (0.50:0.50) equimolar mixture / 3.7.1.2:
CsCl-KCl-NaCl (0.455:0.245:0.30) eutectic / 3.7.1.3:
CsBr-KBr (0.66:0.34) melt / 3.7.1.4:
Molten CsI, 700[degree]C / 3.7.1.5:
Molten potassium halides / 3.7.1.6:
Other solvents based on alkali-metal halides / 3.7.1.7:
Oxide solubilities in melts based on alkali- and alkaline-earth metal halides / 3.7.2:
Solubilities of alkali earth metal carbonates in KCl-NaCl eutectic / 3.7.3:
Afterword / 3.7.4:
References
Formula Index
Subject Index
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
26.

図書

図書
Brendan J. Frey
出版情報: Cambridge, Mass : The MIT Press, c1998  xiii, 195 p. ; 24 cm
シリーズ名: Adaptive computation and machine learning
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
A probabilistic perspective / 1.1:
Pattern classification / 1.1.1:
Unsupervised learning / 1.1.2:
Data compression / 1.1.3:
Channel coding / 1.1.4:
Probabilistic inference / 1.1.5:
Graphical models: Factor graphs, Markov random fields and Bayesian belief networks / 1.2:
Factor graphs / 1.2.1:
Markov random fields / 1.2.2:
Bayesian networks / 1.2.3:
Ancestral simulation in Bayesian networks / 1.2.4:
Dependency separation in Bayesian networks / 1.2.5:
Example 1: Recursive convolutional codes and turbocodes / 1.2.6:
Parameterized Bayesian networks / 1.2.7:
Example 2: The bars problem / 1.2.8:
Organization of this book / 1.3:
Probabilistic Inference in Graphical Models / 2:
Exact inference using probability propagation (the sum-product algorithm) / 2.1:
The generalized forward-backward algorithm / 2.1.1:
The burglar alarm problem / 2.1.2:
Probability propagation (the sum-product algorithm) / 2.1.3:
Grouping and duplicating variables in Bayesian networks / 2.1.4:
Exact inference in multiply-connected networks is NP-hard / 2.1.5:
Monte Carlo inference: Gibbs sampling and slice sampling / 2.2:
Inference by ancestral simulation in Bayesian networks / 2.2.1:
Gibbs sampling / 2.2.2:
Gibbs sampling for the burglar alarm problem / 2.2.3:
Slice sampling for continuous variables / 2.2.4:
Variational inference / 2.3:
Choosing the distance measure / 2.3.1:
Choosing the form of the variational distribution / 2.3.2:
Variational inference for the burglar alarm problem / 2.3.3:
Bounds and extended representations / 2.3.4:
Helmholtz machines / 2.4:
Factorial recognition networks / 2.4.1:
Nonfactorial recognition networks / 2.4.2:
The stochastic Helmholtz machine / 2.4.3:
A recognition network that solves the burglar alarm problem / 2.4.4:
Pattern Classification / 3:
Bayesian networks for pattern classification / 3.1:
Autoregressive networks / 3.2:
The logistic autoregressive network / 3.2.1:
MAP estimation for autoregressive networks / 3.2.2:
Scaled priors in logistic autoregressive networks / 3.2.3:
Ensembles of autoregressive networks / 3.2.4:
Estimating latent variable models using the EM algorithm / 3.3:
The expectation maximization (EM) algorithm / 3.3.1:
The generalized expectation maximization algorithm / 3.3.2:
Multiple-cause networks / 3.4:
Estimation by iterative probability propagation / 3.4.1:
Estimation by Gibbs sampling / 3.4.2:
Generalized EM using variational inference / 3.4.3:
Hierarchical networks / 3.4.4:
Ensembles of networks / 3.4.6:
Classification of handwritten digits / 3.5:
Logistic autoregressive classifiers: LARC-1,ELARC-1 / 3.5.1:
The Gibbs machine: GM-1 / 3.5.2:
The mean field Bayesian network: MFBN-1 / 3.5.3:
Stochastic Helmholtz machines: SHM-1, SHM-2, ESHM-1 / 3.5.4:
The classification and regression tree: CART-1 / 3.5.5:
The naive Bayes classifier: NBAYESC-1 / 3.5.6:
The k-nearest neighbor classifier: KNN-CLASS-1 / 3.5.7:
Results / 3.5.8:
Unsupervised Learning / 4:
Extracting structure from images using the wake-sleep algorithm / 4.1:
Wake-sleep parameter estimation / 4.1.1:
Automatic clean-up of noisy images / 4.1.2:
Wake-sleep estimation without positive parameter constraints / 4.1.3:
How hard is the bars problem? / 4.1.4:
Simultaneous extraction of continuous and categorical structure / 4.2:
Continuous sigmoidal Bayesian networks / 4.2.1:
Inference using slice sampling / 4.2.2:
Parameter estimation using slice sampling / 4.2.3:
Nonlinear Gaussian Bayesian networks (NLGBNs) / 4.3:
The model / 4.3.1:
Variational inference and learning / 4.3.2:
Results on the continuous stereo disparity problem / 4.3.3:
Pattern classification using the variational bound / 4.3.4:
Data Compression / 5:
Fast compression with Bayesian networks / 5.1:
Communicating extra information through the codeword choice / 5.2:
Example: A simple mixture model / 5.2.1:
The optimal bits-back coding rate / 5.2.2:
Suboptimal bits-back coding / 5.2.3:
Relationship to maximum likelihood estimation / 5.3:
The "bits-back" coding algorithm / 5.4:
The bits-back coding algorithm with feedback / 5.4.1:
Queue drought in feedback encoders / 5.4.2:
Experimental results / 5.5:
Bits-back coding with a multiple-cause model / 5.5.1:
Compressing handwritten digits / 5.5.2:
Integrating over model parameters using bits-back coding / 5.6:
Channel Coding / 6:
Review: Simplifying the playing field / 6.1:
Additive white Gaussian noise (AWGN) / 6.1.1:
Capacity of an AWGN channel / 6.1.2:
Signal constellations / 6.1.3:
Linear binary codes can get us to capacity / 6.1.4:
Bit error rate (BER) and signal-to-noise ratio (Eb/N0) / 6.1.5:
Capacity of an AWGN channel with binary signalling / 6.1.6:
Achievable BER for an AWGN channel with binary signalling / 6.1.7:
Graphical models for error correction: Turbocodes, low-density parity-check codes and more / 6.2:
Hamming codes / 6.2.1:
Convolutional codes / 6.2.2:
Decoding convolutional codes by probability propagation / 6.2.3:
Turbocodes: parallel concatenated convolutional codes / 6.2.4:
Serially-concatenated convolutional codes, low-density parity-check codes, and product codes / 6.2.5:
"A code by any other network would not decode as sweetly" / 6.3:
Trellis-constrained codes (TCCs) / 6.4:
Homogeneous trellis-constrained codes / 6.4.1:
Ring-connected trellis-constrained codes / 6.4.2:
Decoding complexity of iterative decoders / 6.5:
Parallel iterative decoding / 6.6:
Concurrent turbodecoding / 6.6.1:
Speeding up iterative decoding by detecting variables early / 6.6.2:
Early detection / 6.7.1:
Early detection for turbocodes: Trellis splicing / 6.7.2:
Future Research Directions / 6.7.3:
Modularity and abstraction / 7.1:
Faster inference and learning / 7.2:
Scaling up to the brain / 7.3:
Improving model structures / 7.4:
Iterative decoding / 7.5:
Iterative decoding in the real world / 7.6:
Unification / 7.7:
References
Index
Preface
Introduction / 1:
A probabilistic perspective / 1.1:
27.

図書

図書
Gary E. Bowman
出版情報: Oxford : Oxford University Press, 2008  xi, 208 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
World 3 / 1.2:
Problems / 1.3:
The Quantum Postulates / 2:
Postulate 1: The Quantum State / 2.1:
Postulate 2: Observables, Operators, and Eigenstates / 2.2:
Postulate 3: Quantum Superpositions / 2.3:
Discrete Eigenvalues / 2.3.1:
Continuous Eigenvalues / 2.3.2:
Closing Comments / 2.4:
What Is a Quantum State? / 2.5:
Probabilities, Averages, and Uncertainties / 3.1:
Probabilities / 3.1.1:
Averages / 3.1.2:
Uncertainties / 3.1.3:
The Statistical Interpretation / 3.2:
Bohr, Einstein, and Hidden Variables / 3.3:
Background / 3.3.1:
Fundamental Issues / 3.3.2:
Einstein Revisited / 3.3.3:
The Structure of Quantum States / 3.4:
Mathematical Preliminaries / 4.1:
Vector Spaces / 4.1.1:
Function Spaces / 4.1.2:
Dirac's Bra-ket Notation / 4.2:
Bras and Kets / 4.2.1:
Labeling States / 4.2.2:
The Scalar Product / 4.3:
Quantum Scalar Products / 4.3.1:
Discussion / 4.3.2:
Representations / 4.4:
Basics / 4.4.1:
Superpositions and Representations / 4.4.2:
Representational Freedom / 4.4.3:
Operators / 4.5:
Introductory Comments / 5.1:
Hermitian Operators / 5.2:
Adjoint Operators / 5.2.1:
Hermitian Operators: Definition and Properties / 5.2.2:
Wavefunctions and Hermitian Operators / 5.2.3:
Projection and Identity Operators / 5.3:
Projection Operators / 5.3.1:
The Identity Operator / 5.3.2:
Unitary Operators / 5.4:
Matrix Mechanics / 5.5:
Elementary Matrix Operations / 6.1:
Vectors and Scalar Products / 6.1.1:
Matrices and Matrix Multiplication / 6.1.2:
Vector Transformations / 6.1.3:
States as Vectors / 6.2:
Operators as Matrices / 6.3:
An Operator in Its Eigenbasis / 6.3.1:
Matrix Elements and Alternative Bases / 6.3.2:
Change of Basis / 6.3.3:
Adjoint, Hermitian, and Unitary Operators / 6.3.4:
Eigenvalue Equations / 6.4:
Commutators and Uncertainty Relations / 6.5:
The Commutator / 7.1:
Definition and Characteristics / 7.1.1:
Commutators in Matrix Mechanics / 7.1.2:
The Uncertainty Relations / 7.2:
Uncertainty Products / 7.2.1:
General Form of the Uncertainty Relations / 7.2.2:
Interpretations / 7.2.3:
Reflections / 7.2.4:
Angular Momentum / 7.3:
Angular Momentum in Classical Mechanics / 8.1:
Basics of Quantum Angular Momentum / 8.2:
Operators and Commutation Relations / 8.2.1:
Eigenstates and Eigenvalues / 8.2.2:
Raising and Lowering Operators / 8.2.3:
Physical Interpretation / 8.3:
Measurements / 8.3.1:
Relating L[superscript 2] and L[subscript z] / 8.3.2:
Orbital and Spin Angular Momentum / 8.4:
Orbital Angular Momentum / 8.4.1:
Spin Angular Momentum / 8.4.2:
Review / 8.5:
The Time-Independent Schrodinger Equation / 8.6:
An Eigenvalue Equation for Energy / 9.1:
Using the Schrodinger Equation / 9.2:
Conditions on Wavefunctions / 9.2.1:
An Example: the Infinite Potential Well / 9.2.2:
Interpretation / 9.3:
Energy Eigenstates in Position Space / 9.3.1:
Overall and Relative Phases / 9.3.2:
Potential Barriers and Tunneling / 9.4:
The Step Potential / 9.4.1:
The Step Potential and Scattering / 9.4.2:
Tunneling / 9.4.3:
What's Wrong with This Picture? / 9.5:
Why Is the State Complex? / 9.6:
Complex Numbers / 10.1:
Polar Form / 10.1.1:
Argand Diagrams and the Role of the Phase / 10.1.3:
The Phase in Quantum Mechanics / 10.2:
Phases and the Description of States / 10.2.1:
Phase Changes and Probabilities / 10.2.2:
Unitary Operators Revisited / 10.2.3:
Unitary Operators, Phases, and Probabilities / 10.2.4:
Example: A Spin 1/2 System / 10.2.5:
Wavefunctions / 10.3:
Time Evolution / 10.4:
The Time-Dependent Schrodinger Equation / 11.1:
How Time Evolution Works / 11.2:
Time Evolving a Quantum State / 11.2.1:
Unitarity and Phases Revisited / 11.2.2:
Expectation Values / 11.3:
Time Derivatives / 11.3.1:
Constants of the Motion / 11.3.2:
Energy-Time Uncertainty Relations / 11.4:
Conceptual Basis / 11.4.1:
Spin 1/2: An Example / 11.4.2:
What is a Wavefunction? / 11.5:
Eigenstates and Coefficients / 12.1.1:
Representations and Operators / 12.1.2:
Changing Representations / 12.2:
Change of Basis Revisited / 12.2.1:
From x to p and Back Again / 12.2.2:
Gaussians and Beyond / 12.2.3:
Phases and Time Evolution / 12.3:
Free Particle Evolution / 12.3.1:
Wavepackets / 12.3.2:
Bra-ket Notation / 12.4:
Quantum States / 12.4.1:
Eigenstates and Transformations / 12.4.2:
Epilogue / 12.5:
Mathematical Concepts / 12.6:
Complex Numbers and Functions / A.1:
Differentiation / A.2:
Integration / A.3:
Differential Equations / A.4:
Quantum Measurement / B:
The Harmonic Oscillator / C:
Energy Eigenstates and Eigenvalues / C.1:
The Number Operator and its Cousins / C.2:
Photons as Oscillators / C.3:
Unitary Transformations / D:
Finite Transformations and Generators / D.1:
Continuous Symmetries / D.3:
Symmetry Transformations / D.3.1:
Symmetries of Physical Law / D.3.2:
System Symmetries / D.3.3:
Bibliography
Index
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
28.

図書

図書
Rance D. Necaise
出版情報: Hoboken, N.J. : Wiley, c2011  xviii, 520 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
Data Structures / 1.1.2:
The Date ADT / 1.2:
Preconditions and Postconditions / 1.2.1:
Using the ADT / 1.2.2:
Implementing the ADT / 1.2.3:
The Bag ADT / 1.3:
Selecting a Data Structure / 1.3.1:
The Class Definition / 1.3.3:
Iterators / 1.4:
The Set ADT / 1.5:
The Map ADT / 1.5.1:
Defining the ADT / 1.6.1:
Implementing the Map ADT / 1.6.2:
Alternate Implementation / 1.6.3:
Application: Histograms / 1.7:
Building a Histogram / 1.7.1:
Implementing the Histogram ADT / 1.7.2:
Programming Problems
Arrays and Vectors / Chapter 2:
The Array Structure / 2.1:
Simulating an Array / 2.1.1:
The Array ADT / 2.1.2:
The Python List (Vector) / 2.1.3:
Multi-Dimensional Arrays / 2.3:
The MultiArray ADT / 2.3.1:
Data Organization / 2.3.2:
Variable Length Arguments / 2.3.3:
MultiArray Implementation / 2.3.4:
The Matrix ADT / 2.4:
Matrix Operations / 2.4.1:
Application: The Game of Life / 2.4.2:
Rules of the Game / 2.5.1:
Designing a Solution / 2.5.2:
ADT Implementation / 2.5.3:
Exercises
Algorithm Analysis / Chapter 3:
Complexity Analysis / 3.1:
Big-O Notation / 3.1.1:
Classes of Algorithms / 3.1.2:
Empirical Analysis / 3.1.3:
Evaluating ADT Implementations / 3.2:
Evaluating the Python List / 3.2.1:
Evaluating the Set ADT / 3.2.2:
Searching / 3.3:
Linear Search / 3.3.1:
Binary Search / 3.3.2:
Working with Ordered Lists / 3.4:
Building An Ordered List / 3.4.1:
Merging Ordered Lists / 3.4.2:
The Set ADT Revisited / 3.5:
Application: The Sparse Matrix / 3.6:
Implementation / 3.6.1:
Analysis / 3.6.2:
The Linked List / Chapter 4:
A Linked Structure / 4.1:
The Singly-Linked List / 4.2:
Basic Operations / 4.2.1:
Evaluating the Linked List / 4.2.2:
The Bag ADT Revisited / 4.3:
Implementation Details / 4.3.1:
Linked List Iterator / 4.3.2:
Using a Tail Pointer / 4.4:
The Ordered Linked List / 4.5:
The Sparse Matrix Revisited / 4.6:
The New Implementation / 4.6.1:
Comparing Implementations / 4.6.2:
Application: Polynomials / 4.7:
Polynomial Operations / 4.7.1:
The Polynomial ADT / 4.7.2:
Advanced Linked Lists / 4.7.3:
Doubly-Linked List / 5.1:
Organization / 5.1.1:
List Operations / 5.1.2:
Circular Linked List / 5.2:
Multi-Linked Lists / 5.2.1:
Multiple Chains / 5.3.1:
The Sparse Matrix / 5.3.2:
Complex Iterators / 5.4:
Application: Text Editor / 5.5:
Typical Editor Operations / 5.5.1:
The Edit Buffer ADT / 5.5.2:
Stacks / 5.5.3:
The Stack ADT / 6.1:
Implementing the Stack / 6.2:
Vector Based / 6.2.1:
Linked List Version / 6.2.2:
Stack Applications / 6.3:
Balanced Delimiters / 6.3.1:
Evaluating Postfix Expressions / 6.3.2:
Application: Solving a Maze / 6.4:
Backtracking / 6.4.1:
The Maze ADT / 6.4.2:
Queues / 6.4.4:
The Queue ADT / 7.1:
Implementing the Queue / 7.2:
Circular Array / 7.2.1:
The Priority Queue / 7.2.3:
Application: Computer Simulations / 7.4:
Airline Ticket Counter / 7.4.1:
Class Specifications / 7.4.2:
Hash Tables / Chapter 8:
Hash Functions / 8.1:
Open Addressing / 8.3:
Linear Probing / 8.3.1:
Collision Resolution / 8.3.2:
Bucket Hashing / 8.4:
Hashing Efficiency / 8.5:
The Map ADT Revisited / 8.6:
Application: The Color Histogram / 8.7:
Recursion / Chapter 9:
Recursive Functions / 9.1:
Properties of Recursion / 9.2:
Classic Example: The Factorial Function / 9.2.1:
Greatest Common Divisor / 9.2.2:
Recursion and Stacks / 9.3:
The Towers of Hanoi / 9.4:
Backtracking Revisited / 9.5:
The Eight-Queens Problem / 9.5.1:
Solving the Four-Queens / 9.5.2:
Recursive Solution / 9.5.3:
Application: Sudoku Puzzles / 9.6:
Binary Trees and Heaps / Chapter 10:
Tree Structure / 10.1:
The Binary Tree / 10.2:
Traversals / 10.2.1:
Arithmetic Expresssions / 10.2.2:
Tree Threading / 10.3:
Heaps / 10.4:
Insertions / 10.4.1:
Removals / 10.4.2:
Evaluating the Heap / 10.4.3:
The Priority Queue Revisited / 10.4.4:
Application: Morse Code / 10.5:
Advanced Search Trees / Chapter 11:
The Binary Search Tree / 11.1:
Deletions / 11.1.1:
Evaluating the BST / 11.1.4:
AVL Trees / 11.2:
Evaluating the AVL Tree / 11.2.1:
2-3 Trees / 11.3:
Splay Trees / 11.4:
Application: Improved Map ADT / 11.5:
Sorting Algorithms / Chapter 12:
The Simple Algorithms / 12.1:
Bubble Sort / 12.1.1:
Selection Sort / 12.1.2:
Insertion Sort / 12.1.3:
Radix Sort / 12.2:
Basic Algorithm / 12.2.1:
Bucket Sorting / 12.2.2:
Divide and Conquer / 12.3:
Merge Sort / 12.3.1:
Quick Sort / 12.3.2:
Heap Sort / 12.4:
Application: Empirical Analysis / 12.5:
Python Review / Appendix A:
Basic Concepts / A.1:
Functions / A.2:
Sequence Types / A.3:
Classes / A.4:
Copying Objects / A.5:
Exceptions / A.6:
Object-Oriented Programming / Appendix B:
Encapsulation / B.1:
Inheritance / B.3:
Polymorphism / B.4:
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
29.

図書

図書
G. Ausiello ... [et al.]
出版情報: Berlin : Springer, c1999  xix, 524 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
The Complexity of Optimization Problems / 1:
Analysis of algorithms and complexity of problems / 1.1:
Complexity analysis of computer programs / 1.1.1:
Upper and lower bounds on the complexity of problems / 1.1.2:
Complexity classes of decision problems / 1.2:
The class NP / 1.2.1:
Reducibility among problems / 1.3:
Karp and Turing reducibility / 1.3.1:
NP-complete problems / 1.3.2:
Complexity of optimization problems / 1.4:
Optimization problems / 1.4.1:
PO and NPO problems / 1.4.2:
NP-hard optimization problems / 1.4.3:
Optimization problems and evaluation problems / 1.4.4:
Exercises / 1.5:
Bibliographical notes / 1.6:
Design Techniques for Approximation Algorithms / 2:
The greedy method / 2.1:
Greedy algorithm for the knapsack problem / 2.1.1:
Greedy algorithm for the independent set problem / 2.1.2:
Greedy algorithm for the salesperson problem / 2.1.3:
Sequential algorithms for partitioning problems / 2.2:
Scheduling jobs on identical machines / 2.2.1:
Sequential algorithms for bin packing / 2.2.2:
Sequential algorithms for the graph coloring problem / 2.2.3:
Local search / 2.3:
Local search algorithms for the cut problem / 2.3.1:
Local search algorithms for the salesperson problem / 2.3.2:
Linear programming based algorithms / 2.4:
Rounding the solution of a linear program / 2.4.1:
Primal-dual algorithms / 2.4.2:
Dynamic programming / 2.5:
Randomized algorithms / 2.6:
Approaches to the approximate solution of problems / 2.7:
Performance guarantee: chapters 3 and 4 / 2.7.1:
Randomized algorithms: chapter 5 / 2.7.2:
Probabilistic analysis: chapter 9 / 2.7.3:
Heuristics: chapter 10 / 2.7.4:
Final remarks / 2.7.5:
Approximation Classes / 2.8:
Approximate solutions with guaranteed performance / 3.1:
Absolute approximation / 3.1.1:
Relative approximation / 3.1.2:
Approximability and non-approximability of TSP / 3.1.3:
Limits to approximability: The gap technique / 3.1.4:
Polynomial-time approximation schemes / 3.2:
The class PTAS / 3.2.1:
APX versus PTAS / 3.2.2:
Fully polynomial-time approximation schemes / 3.3:
The class FPTAS / 3.3.1:
The variable partitioning technique / 3.3.2:
Negative results for the class FPTAS / 3.3.3:
Strong NP-completeness and pseudo-polynomiality / 3.3.4:
Input-Dependent and Asymptotic Approximation / 3.4:
Between APX and NPO / 4.1:
Approximating the set cover problem / 4.1.1:
Approximating the graph coloring problem / 4.1.2:
Approximating the minimum multi-cut problem / 4.1.3:
Between APX and PTAS / 4.2:
Approximating the edge coloring problem / 4.2.1:
Approximating the bin packing problem / 4.2.2:
Approximation through Randomization / 4.3:
Randomized algorithms for weighted vertex cover / 5.1:
Randomized algorithms for weighted satisfiability / 5.2:
A new randomized approximation algorithm / 5.2.1:
A 4/3-approximation randomized algorithm / 5.2.2:
Algorithms based on semidefinite programming / 5.3:
Improved algorithms for weighted 2-satisfiability / 5.3.1:
The method of the conditional probabilities / 5.4:
NP, PCP and Non-approximability Results / 5.5:
Formal complexity theory / 6.1:
Turing machines / 6.1.1:
Deterministic Turing machines / 6.1.2:
Nondeterministic Turing machines / 6.1.3:
Time and space complexity / 6.1.4:
NP-completeness and Cook-Levin theorem / 6.1.5:
Oracles / 6.2:
Oracle Turing machines / 6.2.1:
The PCP model / 6.3:
Membership proofs / 6.3.1:
Probabilistic Turing machines / 6.3.2:
Verifiers and PCP / 6.3.3:
A different view of NP / 6.3.4:
Using PCP to prove non-approximability results / 6.4:
The maximum satisfiability problem / 6.4.1:
The maximum clique problem / 6.4.2:
The PCP theorem / 6.5:
Transparent long proofs / 7.1:
Linear functions / 7.1.1:
Arithmetization / 7.1.2:
The first PCP result / 7.1.3:
Almost transparent short proofs / 7.2:
Low-degree polynomials / 7.2.1:
Arithmetization (revisited) / 7.2.2:
The second PCP result / 7.2.3:
The final proof / 7.3:
Normal form verifiers / 7.3.1:
The composition lemma / 7.3.2:
Approximation Preserving Reductions / 7.4:
The World of NPO Problems / 8.1:
AP-reducibility / 8.2:
Complete problems / 8.2.1:
NPO-completeness / 8.3:
Other NPO-complete problems / 8.3.1:
Completeness in exp-APX / 8.3.2:
APX-completeness / 8.4:
Other APX-complete problems / 8.4.1:
Probabilistic analysis of approximation algorithms / 8.5:
Introduction / 9.1:
Goals of probabilistic analysis / 9.1.1:
Techniques forthe probabilistic analysis of algorithms / 9.2:
Conditioning in the analysis of algorithms / 9.2.1:
The first and the second moment methods / 9.2.2:
Convergence of random variables / 9.2.3:
Probabilistic analysis and multiprocessor scheduling / 9.3:
Probabilistic analysis and bin packing / 9.4:
Probabilistic analysis and maximum clique / 9.5:
Probabilistic analysis and graph coloring / 9.6:
Probabilistic analysis and Euclidean TSP / 9.7:
Heuristic methods / 9.8:
Types of heuristics / 10.1:
Construction heuristics / 10.2:
Local search heuristics / 10.3:
Fixed-depth local search heuristics / 10.3.1:
Variable-depth local search heuristics / 10.3.2:
Heuristics based on local search / 10.4:
Simulated annealing / 10.4.1:
Genetic algorithms / 10.4.2:
Tabu search / 10.4.3:
Mathematical preliminaries / 10.5:
Sets / A.1:
Sequences, tuples and matrices / A.1.1:
Functions and relations / A.2:
Graphs / A.3:
Strings and languages / A.4:
Booleanlogic / A.5:
Probability / A.6:
Random variables / A.6.1:
Linear programming / A.7:
Two famous formulas / A.8:
A List of NP Optimization Problems / B:
Bibliography
Index
The Complexity of Optimization Problems / 1:
Analysis of algorithms and complexity of problems / 1.1:
Complexity analysis of computer programs / 1.1.1:
30.

図書

図書
Boris Mirkin
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, Taylor & Francis, 2005  xxiii, 266 p. ; 25 cm
シリーズ名: Series in computer science and data analysis ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Denotations
Introduction: Historical Remarks
What Is Clustering / 1:
Base words
Exemplary problems / 1.1:
Structuring / 1.1.1:
Description / 1.1.2:
Association / 1.1.3:
Generalization / 1.1.4:
Visualization of data structure / 1.1.5:
Bird's-eye view / 1.2:
Definition: data and cluster structure / 1.2.1:
Criteria for revealing a cluster structure / 1.2.2:
Three types of cluster description / 1.2.3:
Stages of a clustering application / 1.2.4:
Clustering and other disciplines / 1.2.5:
Different perspectives of clustering / 1.2.6:
What Is Data / 2:
Feature characteristics / 2.1:
Feature scale types / 2.1.1:
Quantitative case / 2.1.2:
Categorical case / 2.1.3:
Bivariate analysis / 2.2:
Two quantitative variables / 2.2.1:
Nominal and quantitative variables / 2.2.2:
Two nominal variables cross-classified / 2.2.3:
Relation between correlation and contingency / 2.2.4:
Meaning of correlation / 2.2.5:
Feature space and data scatter / 2.3:
Data matrix / 2.3.1:
Feature space: distance and inner product / 2.3.2:
Data scatter / 2.3.3:
Pre-processing and standardizing mixed data / 2.4:
Other table data types / 2.5:
Dissimilarity and similarity data / 2.5.1:
Contingency and flow data / 2.5.2:
K-Means Clustering / 3:
Conventional K-Means / 3.1:
Straight K-Means / 3.1.1:
Square error criterion / 3.1.2:
Incremental versions of K-Means / 3.1.3:
Initialization of K-Means / 3.2:
Traditional approaches to initial setting / 3.2.1:
MaxMin for producing deviate centroids / 3.2.2:
Deviate centroids with Anomalous pattern / 3.2.3:
Intelligent K-Means / 3.3:
Iterated Anomalous pattern for iK-Means / 3.3.1:
Cross validation of iK-Means results / 3.3.2:
Interpretation aids / 3.4:
Conventional interpretation aids / 3.4.1:
Contribution and relative contribution tables / 3.4.2:
Cluster representatives / 3.4.3:
Measures of association from ScaD tables / 3.4.4:
Overall assessment / 3.5:
Ward Hierarchical Clustering / 4:
Agglomeration: Ward algorithm / 4.1:
Divisive clustering with Ward criterion / 4.2:
2-Means splitting / 4.2.1:
Splitting by separating / 4.2.2:
Interpretation aids for upper cluster hierarchies / 4.2.3:
Conceptual clustering / 4.3:
Extensions of Ward clustering / 4.4:
Agglomerative clustering with dissimilarity data / 4.4.1:
Hierarchical clustering for contingency and flow data / 4.4.2:
Data Recovery Models / 4.5:
Statistics modeling as data recovery / 5.1:
Averaging / 5.1.1:
Linear regression / 5.1.2:
Principal component analysis / 5.1.3:
Correspondence factor analysis / 5.1.4:
Data recovery model for K-Means / 5.2:
Equation and data scatter decomposition / 5.2.1:
Contributions of clusters, features, and individual entities / 5.2.2:
Correlation ratio as contribution / 5.2.3:
Partition contingency coefficients / 5.2.4:
Data recovery models for Ward criterion / 5.3:
Data recovery models with cluster hierarchies / 5.3.1:
Covariances, variances and data scatter decomposed / 5.3.2:
Direct proof of the equivalence between 2-Means and Ward criteria / 5.3.3:
Gower's controversy / 5.3.4:
Extensions to other data types / 5.4:
Similarity and attraction measures compatible with K-Means and Ward criteria / 5.4.1:
Application to binary data / 5.4.2:
Agglomeration and aggregation of contingency data / 5.4.3:
Extension to multiple data / 5.4.4:
One-by-one clustering / 5.5:
PCA and data recovery clustering / 5.5.1:
Divisive Ward-like clustering / 5.5.2:
Iterated Anomalous pattern / 5.5.3:
Anomalous pattern versus Splitting / 5.5.4:
One-by-one clusters for similarity data / 5.5.5:
Different Clustering Approaches / 5.6:
Extensions of K-Means clustering / 6.1:
Clustering criteria and implementation / 6.1.1:
Partitioning around medoids PAM / 6.1.2:
Fuzzy clustering / 6.1.3:
Regression-wise clustering / 6.1.4:
Mixture of distributions and EM algorithm / 6.1.5:
Kohonen self-organizing maps SOM / 6.1.6:
Graph-theoretic approaches / 6.2:
Single linkage, minimum spanning tree and connected components / 6.2.1:
Finding a core / 6.2.2:
Conceptual description of clusters / 6.3:
False positives and negatives / 6.3.1:
Conceptually describing a partition / 6.3.2:
Describing a cluster with production rules / 6.3.3:
Comprehensive conjunctive description of a cluster / 6.3.4:
General Issues / 6.4:
Feature selection and extraction / 7.1:
A review / 7.1.1:
Comprehensive description as a feature selector / 7.1.2:
Comprehensive description as a feature extractor / 7.1.3:
Data pre-processing and standardization / 7.2:
Dis/similarity between entities / 7.2.1:
Pre-processing feature based data / 7.2.2:
Data standardization / 7.2.3:
Similarity on subsets and partitions / 7.3:
Dis/similarity between binary entities or subsets / 7.3.1:
Dis/similarity between partitions / 7.3.2:
Dealing with missing data / 7.4:
Imputation as part of pre-processing / 7.4.1:
Conditional mean / 7.4.2:
Maximum likelihood / 7.4.3:
Least-squares approximation / 7.4.4:
Validity and reliability / 7.5:
Index based validation / 7.5.1:
Resampling for validation and selection / 7.5.2:
Model selection with resampling / 7.5.3:
Conclusion: Data Recovery Approach in Clustering / 7.6:
Bibliography
Index
Preface
List of Denotations
Introduction: Historical Remarks
31.

図書

図書
S.W.S. McKeever
出版情報: Cambridge : Cambridge University Press, 1985  xiv, 376 p. ; 22 cm
シリーズ名: Cambridge solid state science series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
Luminescence / 1.2:
Early observations of thermoluminescence (pre-1948) / 1.3:
Applications / 1.4:
Radiation dosimetry / 1.4.1.:
Age determination / 1.4.2.:
Geology / 1.4.3.:
Defects in solids / 1.4.4.:
Other applications / 1.4.5.:
This book / 1.5:
Theoretical background / 2:
Elementary concepts / 2.1:
Energy bands and localized levels: crystalline materials / 2.1.1.:
Non-crystalline materials / 2.1.2.:
Traps and recombination centres / 2.1.3.:
Transitions not involving the delocalized bands / 2.1.4.:
Recombination processes / 2.2:
Direct and indirect recombination / 2.2.1.:
Radiative and non-radiative recombination / 2.2.2.:
Models for thermoluminescence / 2.3:
Simple model / 2.3.1.:
Additions to the simple model / 2.3.2.:
An alternative model / 2.3.3.:
More complex models / 2.3.4.:
Thermoluminescence analysis / 3:
Trap emptying / 3.1:
Equations for the simple model: order of kinetics / 3.2.1.:
Equations for other models / 3.2.2.:
Methods of analysis / 3.3:
Partial and whole curve analyses / 3.3.1.:
Peak shape methods / 3.3.2.:
Peak position methods / 3.3.3.:
Curve-fitting / 3.3.4.:
Isothermal analysis / 3.3.5.:
Energy distributions / 3.3.6.:
Calculation of the frequency factor, s / 3.3.7.:
Summary / 3.3.8.:
Trap filling / 3.4:
The simple model / 3.4.1.:
Additional factors governing thermoluminescence / 3.4.2.:
Further discussions of supralinearity / 4.1:
Multi-stage reaction models / 4.1.1.:
More on competition models / 4.1.2.:
Trap creation models / 4.1.3.:
Sensitization / 4.2:
Competing trap models / 4.2.1.:
Centre conversion models / 4.2.2.:
Trap creation models (radiation and thermal) / 4.2.3.:
Optical effects / 4.3:
Optical stimulation / 4.3.1.:
Phototransfer / 4.3.2.:
Tunnelling and anomalous fading / 4.4:
Quenching effects / 4.5:
Thermal quenching / 4.5.1.:
Concentration quenching / 4.5.2.:
Impurity quenching / 4.5.3.:
Defects and thermoluminescence / 5:
General introduction / 5.1:
The alkali halides / 5.2:
Structure and defects / 5.2.1.:
Irradiation effects / 5.2.2.:
Thermoluminescence from KCl, KBr, KI and NaCl, irradiated at 4K / 5.2.3.:
Samples irradiated at 80K / 5.2.4.:
Samples irradiated at room temperature / 5.2.5.:
Thermoluminescence from LiF / 5.2.6.:
Quartz and silica / 5.3:
Structure / 5.3.1.:
Defects / 5.3.2.:
Thermoluminescence; samples irradiated below room temperature / 5.3.3.:
Thermoluminescence dosimetry (TLD) / 5.3.5.:
General requirements for TLD materials / 6.1:
Dose response / 6.1.1.:
Energy response / 6.1.2.:
Fading and stability / 6.1.3.:
Annealing procedures / 6.1.4.:
Other factors / 6.1.5.:
Specific examples / 6.2:
Lithium fluoride, LiF / 6.2.1.:
Lithium borate, Li[subscript 2]B[subscript 4]O[subscript 7] / 6.2.2.:
Magnesium borate, MgB[subscript 4]O[subscript 7] / 6.2.3.:
Magnesium orthosilicate, Mg[subscript 2]SiO[subscript 4] / 6.2.4.:
Calcium sulphate, CaSO[subscript 4] / 6.2.5.:
Calcium fluoride, CaF[subscript 2] / 6.2.6.:
Beryllium oxide, BeO / 6.2.7.:
Aluminium oxide, Al[subscript 2]O[subscript 3] / 6.2.8.:
Ultra-violet effects and dose re-estimation / 6.3:
Personal dosimetry / 6.4:
Materials / 6.4.1.:
Practical application / 6.4.3.:
Environmental monitoring / 6.5:
Medical applications / 6.5.1.:
Thermoluminescence dating / 6.6.1.:
General / 7.1:
Techniques in pottery dating / 7.2:
Fine-grain dating / 7.2.1.:
Inclusion dating / 7.2.3.:
Pre-dose dating / 7.2.4.:
Phototransfer dating / 7.2.5.:
General problems / 7.3:
Fading / 7.3.1.:
Spurious thermoluminescence / 7.3.2.:
Sensitization and supralinearity / 7.3.3.:
Dose rate evaluation / 7.4:
Thermoluminescence dosimetry / 7.4.1.:
Alpha-counting and K-analysis / 7.4.3.:
Other techniques / 7.4.4.:
Special dating applications / 7.5:
Sediments / 7.5.1.:
Stones and rocks / 7.5.2.:
Shells, bones and teeth / 7.5.3.:
Authenticity testing / 7.5.4.:
Geological applications / 8:
Meteorites / 8.1:
Mineralogy / 8.2.1.:
Thermoluminescence / 8.2.2.:
The use of the natural glow-curve / 8.2.3.:
The use of the artificial glow-curve / 8.2.4.:
Lunar material / 8.3:
Mineralogy and ages / 8.3.1.:
Terrestrial geology / 8.3.2.:
Shock detection / 8.4.1.:
Geo- and palaeothermometry / 8.4.2.:
Prospecting / 8.4.3.:
Miscellaneous applications / 8.4.4.:
Concluding remarks / 8.5:
Instrumentation / 9:
Cryostat design / 9.1:
High temperature (] room temperature) / 9.2.1.:
Low temperature ([ room temperature) / 9.2.2.:
Heater design and temperature control / 9.3:
Heater design / 9.3.1.:
Temperature control / 9.3.2.:
Light detection / 9.4:
Photomultiplier tube: d.c. current mode / 9.4.1.:
Photon counting / 9.4.2.:
Special considerations / 9.5:
Background subtraction / 9.5.1.:
Emission spectra / 9.5.2.:
Commercial systems / 9.6:
Minerals / Appendix A:
Commercial thermoluminescence systems / Appendix B:
References
Index
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
32.

図書

図書
Raphael D. Levine
出版情報: Oxford : Clarendon Press, 1969  xi, 335 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
The Formulation of Quantum Mechanics / Part 1:
Introduction
States and observables / 1.1.:
The equations of motion / 1.2.:
The Green's operator for the Schrodinger equation / 1.2.1.:
The two-body problem and the addition of angular momentum / Appendix 1.A.:
Collision Theory / Part 2:
Stationary collision theory--the Lippmann-Schwinger equation / 2.1.:
The Lippmann-Schwinger equation for 'structureless' molecules / 2.2.:
The cross-section / 2.2.1.:
Separable interactions / 2.2.2.:
Partial wave analysis / 2.2.3.:
The Born approximation / 2.2.4.:
Internal excitation in collisions / 2.3.:
The theory of rotational excitation / 2.3.1.:
The rate of change of observables / 2.3.2.:
Collision rates and cross-sections / 2.4.1.:
Collision rates in ensembles / 2.4.2.:
The relaxation equation / 2.4.3.:
Formal collision theory / 2.5.:
The S matrix / 2.5.1.:
Scattering by two potentials / 2.5.2.:
The density of states / 2.5.3.:
Multiple-scattering theory / 2.5.4.:
Reactive collisions / 2.6.:
Reaction rates / 2.6.1.:
Operator formulation of the theory of reactive collisions / 2.6.2.:
The yield function--absolute rate theory / 2.6.3.:
The theory of reactive collisions in the coordinate representation / 2.6.4.:
Time-dependent collision theory / 2.7.:
The time evolution / 2.7.1.:
The wave operator / 2.7.2.:
The change in observables / 2.7.3.:
Formal theory of reactive collisions--the Jauch resolution / 2.7.4.:
Symmetry / 2.8.:
Time reversal / 2.8.1.:
Reciprocity and microscopic reversibility / 2.8.2.:
Constants of motion / 2.8.3.:
Permutation symmetry in collisions / 2.8.4.:
Normalization of the solution of the L.S. equation / Appendix 2.A.:
On the convolution theorem and linear systems / Appendix 2.B.:
Intertwinning and the S operator for reactive collisions / Appendix 2.C.:
On the long-time behaviour and adiabatic switching in collisions / Appendix 2.D.:
The transition amplitude density method / Appendix 2.E.:
Molecular Rate Processes / Part 3:
The partitioning technique / 3.1.:
Molecular encounters / 3.2.:
The adiabatic approximation / 3.2.1.:
Theories of direct reactions / 3.2.2.:
Operator partitioning theory / 3.3.:
Variational principles / 3.3.1.:
Models in collision theory / 3.4.:
The opacity function--the optical model / 3.4.1.:
The impact parameter method / 3.4.2.:
The adiabatic theory of reactive collisions / 3.4.3.:
Statistical theories / 3.5.:
The statistical approximation / 3.5.1.:
The optical potential / 3.5.2.:
Statistical theory for overlapping resonances / 3.5.3.:
Unimolecular reactions / 3.6.:
Unimolecular breakdown / 3.6.1.:
Collision theory in ensembles / 3.6.2.:
Excitation processes / 3.6.3.:
The time-correlation method / 3.7.:
Time-correlation functions / 3.7.1.:
Linear response theory / 3.7.2.:
The Liouville operator / 3.7.3.:
References
Author index
Subject index
The Formulation of Quantum Mechanics / Part 1:
Introduction
States and observables / 1.1.:
33.

図書

図書
Vladimir M. Zatsiorsky
出版情報: Champaign, Ill. : Human Kinetics, c1998  xi, 419 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Notations and Conventions
Kinematic Geometry of Human Motion: Body Position and Displacement / Chapter 1:
Defining body location / 1.1:
The coordinate method / 1.1.1:
Cartesian versus oblique coordinates / 1.1.2:
Defining body orientation / 1.2:
Fixation of a local system with a rigid body / 1.2.1:
Fixation of a somatic system with a human body / 1.2.2:
Indirect method of defining body orientation / 1.2.3:
What is ""body rotation""? / 1.2.4:
Describing position and displacement / 1.2.5:
Advantages and disadvantages of the various angular conventions / 1.2.6:
Determining body position from experimental recordings / 1.2.7:
Three-dimensional representation of human movement: Eye movement / 1.3:
Eye orientation / 1.3.1:
Motions actually made by the human eye (Donders' law and Listing's law) / 1.3.2:
Rotation surfaces. The laws obeyed by the pointing head and arm movements / 1.3.3:
Summary / 1.4:
Questions for Review / 1.5:
Bibliography / 1.6:
Kinematic Geometry of Human Motion: Body Posture / Chapter 2:
Joint configuration / 2.1:
Technical and somatic systems / 2.1.1:
The clinical reference system / 2.1.2:
Globographic representation / 2.1.3:
Segment coordinate systems / 2.1.4:
Joint rotation convention / 2.1.5:
Kinematic chains / 2.2:
Degrees of freedom. Mobility of kinematic chains / 2.2.1:
Open kinematic chains: The end-effector mobility / 2.2.2:
Kinematics models and mobility of the human body / 2.2.3:
Constraints on human movements / 2.2.4:
Position analysis of kinematic chains / 2.2.5:
Biological solutions to kinematic problems / 2.3:
Internal representation of the immediate extrapersonal space / 2.3.1:
Internal representation of the body posture / 2.3.2:
Differential Kinematics of Human Movement / 2.4:
Velocity of a kinematic chain / 3.1:
Planar movement / 3.1.1:
Motion in three dimensions / 3.1.2:
Acceleration of a kinematic chain / 3.2:
Acceleration of a planar two-link chain / 3.2.1:
Acceleration of a two-link chain in three dimensions / 3.2.2:
Acceleration of a multi-link chain / 3.2.3:
Jerk and snap / 3.2.4:
Biological solutions to the problems of differential kinematics: Control of movement velocity / 3.3:
Control of approach: The tau hypothesis / 3.3.1:
Control of velocity in reaching movement / 3.3.2:
Joint Geometry and Joint Kinematics / 3.4:
Intrajoint kinematics / 4.1:
Articular surfaces and types of joints / 4.1.1:
Movement of articular surfaces / 4.1.2:
Geometry and algebra of intra-articular motion / 4.1.3:
Ligaments and joint motion: A joint as a mechanical linkage / 4.1.4:
Centers and axes of rotation / 4.2:
Planar joint movement / 4.2.1:
Three-dimensional joint movement / 4.2.2:
Kinematics of Individual Joints / 4.3:
Nominal joint axes / 5.1:
The joints of the foot / 5.2:
Metatarsophalangeal joints. The foot as a two-speed construction / 5.2.1:
The joints of the midfoot / 5.2.2:
The ankle joint complex / 5.3:
The talocrural joint / 5.3.1:
The subtalar joint / 5.3.2:
The knee / 5.4:
The tibiofemoral joint / 5.4.1:
The patellofemoral joint / 5.4.2:
The hip joint and the pelvic girdle / 5.5:
The spine / 5.6:
Movement in synarthroses / 5.6.1:
The lumbar and thoracic spine / 5.6.2:
The cervical region: Head and neck movement / 5.6.3:
The rib cage / 5.6.4:
The shoulder complex / 5.7:
Individual joints / 5.7.1:
Movement of the shoulder complex: The scapulohumeral rhythm / 5.7.2:
The elbow complex / 5.8:
Flexion and extension / 5.8.1:
Supination and pronation / 5.8.2:
The wrist / 5.9:
The joints of the hand / 5.10:
The joints of the thumb / 5.10.1:
The joints of the fingers / 5.10.2:
The temporomandibular joint / 5.11:
Glossary / 5.12:
Index
About the Author"
Preface
Acknowledgments
Notations and Conventions
34.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
35.

図書

図書
Katsunori Muraoka, Mitsuo Maeda ; [English translation by Mark Bowden]
出版情報: Philadelphia : Institute of Physics Pub., c2001  x, 295 p. ; 24 cm
シリーズ名: Plasma physics series
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
Properties of Gases / 1.1:
Classification of Gaseous States / 1.1.1:
Fundamental Parameters used to describe Gases / 1.1.2:
Properties of Plasmas / 1.2:
Different Areas of Plasma Applications / 1.2.1:
Fundamental Parameters used to describe Plasmas / 1.2.2:
Summary / 1.2.3:
Different States of Matter and their Kinetic Properties / 1.3:
Characteristics of Laser Light / 1.4:
Coherence / 1.4.1:
Short Pulse Generation / 1.4.2:
Advantages of Laser-Aided Measurement Methods / 1.5:
References
Basic Principles of Different Laser-Aided Measurement Techniques / 2:
Interaction of Electromagnetic Waves with Single Particles / 2.1:
Thomson Scattering by Charged Particles / 2.1.1:
Mie and Rayleigh Scattering / 2.1.2:
Raman Scattering / 2.1.3:
Resonant Absorption / 2.1.4:
Photo-Ionization / 2.1.5:
Laser Propagation through Gases and Plasmas / 2.2:
Reflection / 2.2.1:
Transmission / 2.2.2:
Refraction / 2.2.3:
Scattering / 2.2.4:
Spectral Profile Measurements / 2.2.5:
Summary of Line Broadening Mechanisms / 2.3.1:
Examples of Spectral Widths / 2.3.2:
Spectral Profile Measurement Techniques / 2.3.3:
Hardware for Laser Measurements / 3:
Lasers / 3.1:
Overview of Laser Systems / 3.1.1:
Control of Laser Light / 3.1.2:
Gas Lasers / 3.1.3:
Solid-State and Semiconductor Diode Lasers / 3.1.4:
Tunable Lasers / 3.1.5:
Nonlinear Wavelength Conversion Devices / 3.2:
Nonlinear Optical Effects / 3.2.1:
Higher Harmonic Generation and Frequency Mixing / 3.2.2:
Optical Parametric Oscillators / 3.2.3:
Stimulated Scattering / 3.2.4:
Optical Elements and Optical Instruments / 3.3:
Dispersion Elements and Spectrometers / 3.3.1:
Interferometers / 3.3.2:
Optical Waveguides / 3.3.3:
Other Optical Elements / 3.3.4:
Detectors and Signal Processing / 3.4:
Light Detectors / 3.4.1:
Imaging Detectors / 3.4.2:
Noise Sources and Signal Recovery / 3.4.3:
Observation of Fast Waveforms / 3.4.4:
Applications and Measurements / Part II:
Plasma Measurements / 4:
Overview of Plasma Spectroscopic Methods / 4.1:
Laser-Aided Measurements in High-Temperature Plasmas / 4.2:
Measurement of Plasma Density and Temperature / 4.2.1:
Measurement of Density and Temperature of Neutral and Impurity Species / 4.2.2:
Measurement of Electric and Magnetic Fields and Plasma Fluctuations / 4.2.3:
Laser-Aided Measurements in Discharge Plasmas / 4.3:
Measurement of Electric Field / 4.3.1:
Measurement of Electron Density and Temperature / 4.3.2:
Measurement of Reaction Products / 4.3.3:
Combustion Measurements / 5:
Combustion Fields and Laser-Aided Measurements / 5.1:
Measurement of Particle Densities / 5.1.1:
Measurement of Temperature / 5.1.2:
Measurement of Velocity / 5.1.3:
Examples of Combustion Measurements / 5.2:
Measurements by Laser-Induced Fluorescence Spectroscopy / 5.2.1:
Measurements by Coherent Anti-Stokes Raman Spectroscopy / 5.2.2:
Measurements by Degenerate Four-Wave Mixing / 5.2.3:
Measurements in Gas Flow Systems / 6:
Measurement of Refractive Index Changes (Density Measurements) / 6.1:
Schlieren Method / 6.1.1:
Shadowgraphy / 6.1.2:
Interferometry / 6.1.3:
Holography / 6.1.4:
Measurement of Flow Velocity / 6.2:
Measurement Techniques / 6.2.1:
Examples of Measurements / 6.2.2:
Imaging of Gas Flows by Laser-Induced Fluorescence / 6.3:
Measurement of Density Distributions / 6.3.1:
Measurement of Temperature Distributions / 6.3.2:
Laser Processing Measurements / 7:
Laser Processing / 7.1:
Measurement Methods in Laser Processing / 7.2:
Different Methods and their Advantages / 7.2.1:
Detection of Atomic and Molecular Species / 7.2.2:
Examples of Laser Processing Measurements / 7.3:
Measurements of Laser CVD Processes / 7.3.1:
Measurements of Laser Ablation Processes / 7.3.2:
Analytical Chemistry / 8:
Analytical Chemistry and Laser Spectroscopy / 8.1:
Examples of Analysis using Laser Spectroscopic Techniques / 8.2:
Analysis using Laser Raman Spectroscopy / 8.2.1:
Analysis using Laser-Induced Emission Spectroscopy / 8.2.2:
Analysis using Laser-Induced Fluorescence Spectroscopy / 8.2.3:
Analysis using Laser Ionization Spectroscopy / 8.2.4:
Analysis using Laser Photothermal Spectroscopy / 8.2.5:
Remote Sensing / 9:
LIDAR and Monitoring of the Atmosphere / 9.1:
LIDAR Theory / 9.1.1:
Different LIDAR Techniques / 9.1.2:
Representative LIDAR Experiments / 9.2:
Mie Scattering LIDAR / 9.2.1:
Rayleigh Scattering LIDAR / 9.2.2:
Differential Absorption LIDAR (DIAL) / 9.2.3:
Raman LIDAR / 9.2.4:
Index
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
36.

図書

図書
Igor Nikolaev
出版情報: Berlin ; Heiderlberg : Springer, c2001  xxvi, 450 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 41
所蔵情報: loading…
目次情報: 続きを見る
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
Examples / 0.2:
Smooth Functions / 0.2.1:
1-Forms / 0.2.2:
Line Elements / 0.2.3:
Curvature Lines / 0.2.4:
A-Diffeomorphisms / 0.2.5:
Constructions / 0.3:
Suspension / 0.3.1:
Measured Foliations / 0.3.2:
Affine Foliations / 0.3.3:
Labyrinths / 0.3.4:
Gluing Together / 0.3.5:
General Theory / Part I:
Local Theory / 1:
Introduction / 1.1:
Symmetry / 1.2:
Normal Forms / 1.3:
Typical Normal Forms / 1.3.1:
Degenerate Normal Forms / 1.3.2:
Structurally Stable Singularities / 1.4:
Blowing-up Method / 1.4.1:
Fundamental Lemma / 1.4.2:
Classification / 1.4.3:
Bifurcations / 1.5:
Morse-Smale Foliations / 2:
Rough Foliations / 2.1:
Main Theorem / 2.1.1:
Structural Stability / 2.1.2:
Density / 2.1.3:
Classification of Morse-Smale Foliations / 2.2:
Rotation Systems / 2.2.1:
Equivalence Criterion / 2.2.2:
Realization of the Graphs / 2.2.3:
Example / 2.2.4:
Gradient-like Foliations / 2.3:
Lyapunov Function / 2.3.1:
Lyapunov Graph / 2.3.2:
Connected Components of Morse-Smale Foliations / 2.4:
Degrees of Stability / 2.5:
Foliations Without Holonomy / 3:
Periodic Components / 3.1:
Quasiminimal Sets / 3.2:
Structure of a Quasiminimal Set / 3.2.1:
Blowing-Down / 3.2.2:
Decomposition / 3.3:
Surgery / 3.4:
Surgery of Labyrinths / 3.4.1:
Surgery of Measured Foliations / 3.4.2:
Number of Quasiminimal Sets / 3.5:
Application: Smoothing Theorem / 3.6:
Invariants of Foliations / 4:
Torus / 4.1:
Minimal Foliations / 4.1.1:
Foliations With a Cantor Minimal Set / 4.1.2:
Foliations With Cherry Cells / 4.1.3:
Analytic Classification / 4.1.4:
Homotopy Rotation Class / 4.2:
Surfaces of Genus g ≥ 2 / 4.2.1:
Properties of the Homotopy Rotation Class / 4.2.2:
Non Orientable Surfaces / 4.3:
Torus With the Cross-Cap / 4.3.1:
Surfaces of Genus p ≥ 4 / 4.3.2:
Discrete Invariants / 4.4:
Regular Foliations on the Sphere / 4.4.1:
Orbit Complex / 4.4.2:
Cells / 4.5:
Classification of Elementary Cells / 4.5.2:
Amalgamation of Elementary Cells / 4.5.3:
Conley-Lyapunov-Peixoto Graph / 4.5.4:
Foliations With Symmetry / 4.5.5:
Cayley Graph / 4.6.1:
Isomorphism / 4.6.2:
Realization / 4.6.3:
Homology and Cohomology Invariants / 4.7:
Asymptotic Cycles / 4.7.1:
Fundamental Class / 4.7.2:
Cycles of A. Zorich / 4.7.3:
Smooth Classification / 4.8:
Torus and Klein Bottle / 4.8.1:
Surfaces of Genus g ≥ 2 / 4.8.2:
Curves on Surfaces / 5:
Curves and the Absolute / 5.1:
Background / 5.1.1:
Proof of Weil's Conjectures / 5.1.3:
Theorems of D. V. Anosov / 5.1.4:
Asymptotic Directions / 5.2:
Of Recurrent Semi-Trajectory / 5.2.1:
Of Analytic Flow / 5.2.2:
Of Foliation / 5.2.3:
Of Curves With Restriction on the Geodesic Curvature / 5.2.4:
Approximation of a Curve / 5.3:
Limit Sets at the Absolute / 5.4:
Geodesic Deviation / 5.5:
Deviation Property of Trajectories / 5.5.1:
Deviation From the Geodesic Framework / 5.5.2:
Ramified Coverings / 5.5.3:
Swing of Trajectories / 5.5.4:
Unbounded Deviation / 5.6:
Irrational Direction on Torus / 5.6.1:
Rational Direction on Torus / 5.6.3:
Family of Curves / 5.7:
Non-compact Surfaces / 6:
Foliations in the Plane / 6.1:
Non Singular Case / 6.1.1:
Singular Case / 6.1.2:
Level Set of Harmonic Functions / 6.1.3:
Depth of the Centre / 6.2:
Minimal Sets / 6.3.2:
Minimal Flows / 6.3.3:
Transitive Flows / 6.3.4:
Applications / Part II:
Ergodic Theory / 7:
Existence of Invariant Measures / 7.1:
Liouville's Theorem / 7.2.1:
Ergodicity / 7.2.2:
Mixing / 7.3.1:
Entropy / 7.4.1:
Homeomorphisms of the Unit Circle / 8:
Denjoy Flow / 8.1:
Cherry Class / 8.2:
Cherry Example / 8.2.1:
Flows With One Cell / 8.2.2:
Flows With Several Cells / 8.2.3:
Foliations on the Sphere / 8.3:
Main Result / 8.3.1:
Application to the Labyrinths / 8.3.3:
Appendix: The Dulac Functions / 8.3.4:
Addendum: Bendixson's Theorem / 8.4:
Diffeomorphisms of Surfaces / 9:
A-diffeomorphisms / 9.1:
Attractors of R. V. Plykin / 9.1.1:
One-Dimensional Basic Sets on the Sphere / 9.1.2:
Surfaces of Genus g ≥ 1 / 9.1.3:
Singularity Data / 9.2:
Isotopy Classes of Diffeomorphisms / 9.3:
C*-Algebras / 10:
Irrational Rotation Algebra / 10.1:
Dimension Groups / 10.1.1:
Continued Fractions / 10.1.2:
Effros-Shen's Theorem / 10.1.3:
Projections of Aα / 10.1.4:
Morita Equivalence / 10.1.5:
Embedding of Aα / 10.1.6:
Artin Rotation Algebra / 10.2:
Approximationssatz / 10.2.1:
Artin Numbers / 10.2.2:
K Theory / 10.2.3:
Foliation With Reeb Components / 10.3.1:
Baum-Connes Conjecture / 10.3.2:
C*-Algebras of Morse-Smale Flows / 10.4:
Quadratic Differentials / 11:
Finite Critical Points / 11.1:
Pole of Order 2 / 11.2.3:
Higher Order Poles / 11.2.4:
Global Behaviour of the Trajectories / 11.3:
Flat Structures / 12:
Flat Metric With Cone Singularities / 12.1:
Classification of Closed Flat Surfaces / 12.1.1:
Connection With Quadratic Differentials and Measured Foliations / 12.2:
Rational Billiards / 12.3:
Veech Dichotomy / 12.4:
Principal Curvature Lines / 13:
Invariants of the 2-Jets / 13.1:
Stability Lemma / 13.1.3:
Classification of Simple Umbilics / 13.1.4:
Carathéodory Conjecture / 13.2:
ϕ-Geodesics / 13.2.1:
CMC-Surfaces / 13.2.3:
Proof of Theorem 13.2.1 / 13.2.4:
Elements of Global Theory / 13.3:
Bifurcation of Umbilical Connections / 13.3.1:
Differential Equations / 14:
Characteristic Curve / 14.1:
Background and Notations / 14.1.1:
Theorem of Hartman and Wintner / 14.1.2:
Generic Singularities / 14.2:
Theorem of A. G. Kuzmin / 14.2.2:
Positive Differential 2-Forms / 15:
Space of Forms / 15.1:
Stable Subspace / 15.3.1:
Theorem of V. Guinez / 15.3.2:
Control Theory / B. Piccoli16:
Optimal Control / 16.1:
Optimal Flows / 16.3:
Generic Optimal Flows on the Plane / 16.4:
Optimal Flows on 2 Manifolds / 16.5:
Appendix / Part III:
Riemann Surfaces / 17:
Uniformization Theorem / 17.1:
Discrete Groups / 17.2:
Möbius Transformations / 17.2.1:
Fuchsian Group / 17.2.2:
Limit Set of Fuchsian Groups / 17.2.3:
Modular Group / 17.2.4:
Teichmuller Space / 17.2.5:
Conformal Invariants / 17.3.1:
Quasiconformal Mappings / 17.3.2:
Beltrami Equation / 17.3.3:
Ahlfors-Bers' Theorem / 17.3.4:
Geometry of Quadratic Differentials / 17.3.5:
Associated Metric / 17.3.6:
Isothermal Coordinates / 17.3.7:
Complex Curves / 17.4:
Projective Curves / 17.4.1:
Degree-Genus Formula / 17.4.2:
Elliptic Curves / 17.4.3:
Divisors and the Riemann-Roch Theorem / 17.4.4:
Application: Dimension of the Teichmuller Space / 17.4.5:
Bibliography
Index
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
37.

図書

図書
Vilho Räisänen
出版情報: Chichester, England : Wiley, c2003  xxvii, 325 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
List of Figures
List of Tables
Abbreviations
Drivers for the Adoption of Multi-service Networks
Service Quality Requirements
Network Mechanisms for Multi-service Quality Support
Traffic Engineering for Multi-service IP Networks / 1:
Mapping Service Requirements to Network Resources
Service Level Management Techniques
Measurements / 1.1:
Mechanisms for Dynamic Service Quality Control
Customer Perspective
Case Study: Service Quality Support in an IP-based Cellular RAN
Conclusion / 1.2:
References
Network Operator Perspective
Index
Service Provider Perspective / 1.3:
Summary / 1.4:
Services on the Internet / 2:
Definition of a Service / 2.2:
End user service versus provider-level services / 2.2.1:
About service instances and service events / 2.2.2:
Reference model for this section / 2.2.3:
Service Quality Estimation / 2.3:
Measures of end user experienced service quality / 2.3.1:
Recency effect / 2.3.2:
Psychological factors / 2.3.3:
Service Implementation Aspects / 2.3.4:
Choice of transport protocols / 2.4.1:
Throughput adaptability of services / 2.4.2:
Inherent Service Quality Requirements / 2.5:
Service quality characterizations in standards / 2.5.1:
Availability of service / 2.5.2:
Continuity of service / 2.5.3:
Delivery time end-to-end / 2.5.4:
Throughput / 2.5.5:
Support for continuous service data unit transmission / 2.5.6:
Reliability of service delivery / 2.5.7:
Support for variable transfer rate / 2.5.8:
Generic considerations related to service requirements / 2.5.9:
Service Quality Descriptors / 2.6:
Measurement-based determination of traffic profile / 2.6.1:
Introduction to Network Quality Support / 2.7:
Policing of Traffic at Ingress / 3.2:
About Layers / 3.3:
Types of Network Support for Service Quality / 3.4:
Capacity reservation / 3.4.1:
Differentiated treatment / 3.4.2:
Differentiation of service quality instantiation / 3.4.3:
Summary of generic network service quality support mechanisms / 3.4.4:
Service Support in ATM / 3.5:
ATM service models / 3.5.1:
Summary of ATM service support / 3.5.2:
Service Support Models in Internet Protocol / 3.6:
Best effort service model / 3.6.1:
Controlled-load service support / 3.6.2:
Guaranteed QoS support / 3.6.3:
RSVP / 3.6.4:
Statistical QoS: DiffServ model / 3.6.5:
EF PHB / 3.6.5.1:
AF PHB group / 3.6.5.2:
Other PHBs / 3.6.5.3:
Functions of a DiffServ router / 3.6.5.4:
Summary of DiffServ / 3.6.5.5:
Summary of IP QoS service models / 3.6.6:
Routing in IP Networks / 3.7:
On addressing / 3.7.1:
IP routing protocol-based methods / 3.7.2:
ATM overlays / 3.7.3:
Lower layer tunnels: MPLS / 3.7.4:
Link Layer Issues / 3.8:
Performance / 3.8.1:
A note on scheduling / 3.8.2:
Traffic Engineering / 3.9:
Context of traffic engineering / 4.1.1:
The traffic engineering process / 4.1.2:
Obtaining performance data from the network and analysing it / 4.1.3:
Traffic aggregate performance measurements / 4.1.3.1:
Obtaining data relevant for routing control / 4.1.3.2:
Performance enhancement / 4.1.4:
Scope of network optimization / 4.1.5:
IP Routing Control and Traffic Engineering / 4.2:
Optimizing routing based on service quality characteristics / 4.2.1:
Traffic engineering using MPLS / 4.2.2:
DiffServ over MPLS / 4.2.2.1:
Traffic engineering using IP routing protocols / 4.2.3:
Configuration / 4.2.4:
Policy-based management / 4.3.1:
Policy-based management of DiffServ / 4.3.2:
Case study of policy-based management of DiffServ / 4.3.2.1:
Scope of this Chapter / 4.4:
ETSI EP TIPHON Reference Model / 5.2:
Architecture / 5.2.1:
QoS model / 5.2.2:
QBONE / 5.2.3:
Service support models / 5.3.1:
3GPP QoS Model / 5.3.2:
Other Models / 5.4.1:
Utility-based Allocation of Resources / 5.6:
Generic Resource Allocation Framework / 5.6.1:
Signalling / 5.7.1:
Mapping of services onto network resources / 5.7.2:
Network quality support configuration for DiffServ / 5.7.3:
End-to-end service quality budgets / 5.7.4:
Delay / 5.7.4.1:
Delay variation / 5.7.4.2:
Packet loss rate / 5.7.4.3:
Packet loss correlation / 5.7.4.4:
Optimization of resource allocation / 5.7.4.5:
Models for Service Level Management / 5.8:
Areas of service level management / 6.1.1:
Layers of service level management / 6.1.2:
Models for managed data / 6.1.3:
Service Planning and Creation Process / 6.2:
Interests of the customer / 6.2.1:
Network operator viewpoint / 6.2.2:
Service definition / 6.2.3:
Reporting / 6.2.4:
Service Level Agreements / 6.3:
SLA and DiffServ / 6.3.1:
SLA contents / 6.3.2:
End user SLAs / 6.3.3:
End-to-end Services / 6.4:
Assumptions about connection endpoints / 6.4.1:
Assumptions about per-domain service management / 6.4.2:
Requirements for end-to-end service management / 6.4.3:
Service Brokers and Charging / 6.5:
Traffic Characterization / 6.6:
Network Monitoring / 7.2:
Troubleshooting measurements for services / 7.2.1:
Traffic Control / 7.3:
Definition of Measured Characteristics / 7.4:
Sources of Measurement Data / 7.5:
Measurement interfaces / 7.5.1:
Measured characteristics / 7.5.2:
Measurement Methods / 7.6:
Obtaining performance data from network elements / 7.6.1:
Monitoring a link / 7.6.2:
Monitoring a route or node pair / 7.6.3:
Traffic Engineering Measurement Infrastructure / 7.7:
Measuring entity / 7.7.1:
Interface to measuring entity / 7.7.2:
Measurement control and analysis function / 7.7.3:
Internet Service Quality Measurement Architectures / 7.8:
QBone measurement architecture / 7.8.1:
Discussion / 7.8.1.1:
Nokia Research Center measurement architecture demonstrator / 7.8.2:
Previous Studies / 7.8.2.1:
Two-bit DiffServ architecture / 8.1.1:
Bandwidth broker in QBone architecture / 8.1.2:
Phase 0 Bandwidth Broker / 8.1.2.1:
Phase 1 Bandwidth Broker / 8.1.2.2:
QoS Agents / 8.1.3:
Generic Model / 8.2:
Service quality support instantiation control / 8.2.1:
Signalling interface / 8.2.1.1:
Internal bandwidth broker operation / 8.2.1.2:
Domain control / 8.2.2:
Link to traffic engineering / 8.2.2.1:
Means of maintaining information about resource availability / 8.2.2.2:
Inter-domain signalling / 8.2.3:
Link to service admission control / 8.2.4:
Motivation for Using IP-based Transport in Cellular RAN / 8.3:
IP RAN Transport Architecture / 9.2:
PLMN transport architecture / 9.2.1:
IP RAN transport architecture / 9.2.2:
Handover traffic / 9.2.3:
Service mapping in IP RAN / 9.2.4:
Traffic Engineering in All-IP RAN / 9.3:
Capacity planning / 9.3.1:
Capacity management / 9.3.2:
Traffic management / 9.3.3:
Enabling Technologies for Traffic Engineering in IP RAN / 9.4:
Inter-operation with IP-based Backbones and Roaming Networks / 9.4.1:
IP as the Convergence Network / 9.6:
DiffServ / 10.2:
Complementary technologies for DiffServ / 10.2.1:
Service Level Management / 10.3:
Potential Future Development Directions / 10.4:
Preface
Acknowledgements
List of Figures
38.

図書

図書
Stephen Marsland
出版情報: Boca Raton : Chapman & Hall/CRC, c2009  xvi, 390 p. ; 25 cm
シリーズ名: Chapman & Hall/CRC machine learning & pattern recognition series
所蔵情報: loading…
目次情報: 続きを見る
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
Learning / 1.2:
Machine Learning / 1.2.1:
Types of Machine Learning / 1.3:
Supervised Learning / 1.4:
Regression / 1.4.1:
Classification / 1.4.2:
The Brain and the Neuron / 1.5:
Hebb's Rule / 1.5.1:
McCulloch and Pitts Neurons / 1.5.2:
Limitations of the McCulloch and Pitt Neuronal Model / 1.5.3:
Further Reading
Linear Discriminants / 2:
Preliminaries / 2.1:
The Perceptron / 2.2:
The Learning Rate ? / 2.2.1:
The Bias Input / 2.2.2:
The Perceptron Learning Algorithm / 2.2.3:
An Example of Perceptron Learning / 2.2.4:
Implementation / 2.2.5:
Testing the Network / 2.2.6:
Linear Separability / 2.3:
The Exclusive Or (XOR) Function / 2.3.1:
A Useful Insight / 2.3.2:
Another Example: The Pima Indian Dataset / 2.3.3:
Linear Regression / 2.4:
Linear Regression Examples / 2.4.1:
Practice Questions
The Multi-Layer Perceptron / 3:
Going Forwards / 3.1:
Biases / 3.1.1:
Going Backwards: Back-Propagation of Error / 3.2:
The Multi-Layer Preceptron Algorithm / 3.2.1:
Initialising the Weights / 3.2.2:
Different Output Activation Functions / 3.2.3:
Sequential and Batch Training / 3.2.4:
Local Minima / 3.2.5:
Picking Up Momentum / 3.2.6:
Other Improvements / 3.2.7:
The Multi-Layer Perceptron in Practice / 3.3:
Data Preparation / 3.3.1:
Amount of Training Data / 3.3.2:
Number of Hidden Layers / 3.3.3:
Generalisation and Overfitting / 3.3.4:
Training, Testing, and Validation / 3.3.5:
When to Stop Learning / 3.3.6:
Computing and Evaluating the Results / 3.3.7:
Examples of Using the MLP / 3.4:
A Regression Problem / 3.4.1:
Classification with the MLP / 3.4.2:
A Classification Example / 3.4.3:
Time-Series Prediction / 3.4.4:
Data Compression: The Auto-Associative Network / 3.4.5:
Overview / 3.5:
Deriving Back-Propagation / 3.6:
The Network Output and the Error / 3.6.1:
The Error of the Network / 3.6.2:
A Suitable Activation Function / 3.6.3:
Back-Propagation of Error / 3.6.4:
Radial Basis Functions and Splines / 4:
Concepts / 4.1:
Weight Space / 4.1.1:
Receptive Fields / 4.1.2:
The Radial Basis Function (RBF) Network / 4.2:
Training the RBF Network / 4.2.1:
The Curse of Dimensionality / 4.3:
Interpolation and Basis Functions / 4.4:
Bases and Basis Functions / 4.4.1:
The Cubic Spline / 4.4.2:
Fitting the Spline to the Data / 4.4.3:
Smoothing Splines / 4.4.4:
Higher Dimensions / 4.4.5:
Beyond the Bounds / 4.4.6:
Support Vector Machines / 5:
Optimal Separation / 5.1:
Kernels / 5.2:
Example: XOR / 5.2.1:
Extensions to the Support Vector Machine / 5.2.2:
Learning with Trees / 6:
Using Decision Trees / 6.1:
Constructing Decision Trees / 6.2:
Quick Aside: Entropy in Information Theory / 6.2.1:
ID3 / 6.2.2:
Implementing Trees and Graphs in Python / 6.2.3:
Implementation of the Decision Tree / 6.2.4:
Dealing with Continuous Variables / 6.2.5:
Computational Complexity / 6.2.6:
Classification and Regression Trees (CART) / 6.3:
Gini Impurity / 6.3.1:
Regression in Trees / 6.3.2:
Classification Example / 6.4:
Decision by Committee: Ensemble Learning / 7:
Boosting / 7.1:
AdaBoost / 7.1.1:
Stumpting / 7.1.2:
Bagging / 7.2:
Subagging / 7.2.1:
Different Ways to Combine Classifiers / 7.3:
Probability and Learning / 8:
Turning Data into Probabilities / 8.1:
Minimising Risk / 8.1.1:
The Naive Bayes' Classifier / 8.1.2:
Some Basic Statistics / 8.2:
Averages / 8.2.1:
Variance and Covariance / 8.2.2:
The Gaussian / 8.2.3:
The Bias-Variance Tradeoff / 8.2.4:
Gaussian Mixture Models / 8.3:
The Expectation-Maximisation (EM) Algorithm / 8.3.1:
Nearest Neighbour Methods / 8.4:
Nearest Neighbour Smoothing / 8.4.1:
Efficient Distance Computations: the KD-Tree / 8.4.2:
Distance Measures / 8.4.3:
Unsupervised Learning / 9:
The ?-Means Algorithm / 9.1:
Dealing with Noise / 9.1.1:
The ?-Means Neural Network / 9.1.2:
Normalisation / 9.1.3:
A Better Weight Update Rule / 9.1.4:
Example: The Iris Dataset Again / 9.1.5:
Using Competitive Learning for Clustering / 9.1.6:
Vector Quantisation / 9.2:
The Self-Organising Feature Map / 9.3:
The SOM Algorithm / 9.3.1:
Neighbourhood Connections / 9.3.2:
Self-Organisation / 9.3.3:
Network Dimensionality and Boundary Conditions / 9.3.4:
Examples of Using the SOM / 9.3.5:
Dimensionality Reduction / 10:
Linear Discriminant Analysis (LDA) / 10.1:
Principal Components Analysis (PCA) / 10.2:
Relation with the Multi-Layer Perceptron / 10.2.1:
Kernel PCA / 10.2.2:
Factor Analysis / 10.3:
Independent Components Analysis (ICA) / 10.4:
Locally Linear Embedding / 10.5:
Isomap / 10.6:
Multi-Dimensional Scaling (MDS) / 10.6.1:
Optimisation and Search / 11:
Going Downhill / 11.1:
Least-Squares Optimisation / 11.2:
Taylor Expansion / 11.2.1:
The Levenberg-Marquardt Algorithm / 11.2.2:
Conjugate Gradients / 11.3:
Conjugate Gradients Example / 11.3.1:
Search: Three Basic Approaches / 11.4:
Exhaustive Search / 11.4.1:
Greedy Search / 11.4.2:
Hill Climbing / 11.4.3:
Exploitation and Exploration / 11.5:
Simulated Annealing / 11.6:
Comparison / 11.6.1:
Evolutionary Learning / 12:
The Genetic Algorithm (GA) / 12.1:
String Representation / 12.1.1:
Evaluating Fitness / 12.1.2:
Population / 12.1.3:
Generating Offspring: Parent Selection / 12.1.4:
Generating Offspring: Genetic Operators / 12.2:
Crossover / 12.2.1:
Mutation / 12.2.2:
Elitism, Tournaments, and Niching / 12.2.3:
Using Genetic Algorithms / 12.3:
Map Colouring / 12.3.1:
Punctuated Equilibrium / 12.3.2:
Example: The Knapsack Problem / 12.3.3:
Example: The Four Peaks Problem / 12.3.4:
Limitations of the GA / 12.3.5:
Training Neural Networks with Genetic Algorithms / 12.3.6:
Genetic Programming / 12.4:
Combining Sampling with Evolutionary Learning / 12.5:
Reinforcement Learning / 13:
Example: Getting Lost / 13.1:
State and Action Spaces / 13.2.1:
Carrots and Sticks: the Reward Function / 13.2.2:
Discounting / 13.2.3:
Action Selection / 13.2.4:
Policy / 13.2.5:
Markov Decision Processes / 13.3:
The Markov Property / 13.3.1:
Probabilities in Markov Decision Processes / 13.3.2:
Values / 13.4:
Back on Holiday: Using Reinforcement Learning / 13.5:
The Difference between Sarsa and Q-Learning / 13.6:
Uses of Reinforcement Learning / 13.7:
Markov Chain Monte Carlo (MCMC) Methods / 14:
Sampling / 14.1:
Random Numbers / 14.1.1:
Gaussian Random Numbers / 14.1.2:
Monte Carlo or Bust / 14.2:
The Proposal Distribution / 14.3:
Markov Chain Monte Carlo / 14.4:
Markov Chains / 14.4.1:
The Metropolis-Hastings Algorithm / 14.4.2:
Simulated Annealing (Again) / 14.4.3:
Gibbs Sampling / 14.4.4:
Graphical Models / 15:
Bayesian Networks / 15.1:
Example: Exam Panic / 15.1.1:
Approximate Inference / 15.1.2:
Making Bayesian Networks / 15.1.3:
Markov Random Fields / 15.2:
Hidden Markov Models (HMMs) / 15.3:
The Forward Algorithm / 15.3.1:
The Viterbi Algorithm / 15.3.2:
The Baum-Welch or Forward-Backward Algorithm / 15.3.3:
Tracking Methods / 15.4:
The Kalman Filter / 15.4.1:
The Particle Filter / 15.4.2:
Python / 16:
Installing Python and Other Packages / 16.1:
Getting Started / 16.2:
Python for MATLAB and R users / 16.2.1:
Code Basics / 16.3:
Writing and Importing Code / 16.3.1:
Control Flow / 16.3.2:
Functions / 16.3.3:
The doc String / 16.3.4:
map and lambda / 16.3.5:
Exceptions / 16.3.6:
Classes / 16.3.7:
Using NumPy and Matplotlib / 16.4:
Arrays / 16.4.1:
Linear Algebra / 16.4.2:
Plotting / 16.4.4:
Index
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
39.

図書

図書
Arvind Agarwal, Srinivasa Rao Bakshi, Debrupa Lahiri
出版情報: Boca Raton : CRC, c2011  xx, 305 p. ; 25 cm
シリーズ名: Nanomaterials and their applications
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Authors
List of Abbreviations
Introduction / 1:
Composite Materials / 1.1:
Development of Carbon Fibers / 1.2:
Carbon Nanotubes: Synthesis and Properties / 1.3:
Carbon Nanotube-Metal Matrix Composites / 1.4:
Chapter Highlights / 1.5:
References
Processing Techniques / 2:
Powder Metallurgy Routes / 2.1:
Conventional Sintering / 2.1.1:
Hot Pressing / 2.1.2:
Spark Plasma Sintering / 2.1.3:
Deformation Processing / 2.1.4:
Melt Processing / 2.2:
Casting / 2.2.1:
Melt Infiltration / 2.2.2:
Thermal Spraying / 2.3:
Plasma Spraying / 2.3.1:
High Velocity Oxy-Fuel Spraying / 2.3.2:
Cold Spraying / 2.3.3:
Electrochemical Routes / 2.4:
Novel Techniques / 2.5:
Molecular Level Mixing / 2.5.1:
Sputtering / 2.5.2:
Sandwich Processing / 2.5.3:
Torsion/Friction Processing / 2.5.4:
Chemical/Physical Vapor Deposition Techniques / 2.5.5:
Nanoscale Dispersion / 2.5.6:
Laser Deposition / 2.5.7:
Conclusion / 2.6:
Characterization of Metal Matrix-Carbon Nanotube Composites / 2.7:
X-Ray Diffraction / 3.1:
Raman Spectroscopy / 3.2:
Scanning Electron Microscopy with Energy Dispersive Spectroscopy / 3.3:
High Resolution Transmission Electron Microscopy / 3.4:
Electron Energy Loss Spectroscopy / 3.5:
X-Ray Photoelectron Spectroscopy / 3.6:
Mechanical Properties Evaluation / 3.7:
Nanoscale Mechanical Testing / 3.7.1:
Nano-Indentation / 3.7.1.1:
Nano Dynamic Modulus Analysis / 3.7.1.2:
Modulus Mapping / 3.7.1.3:
Nanoscratch / 3.7.1.4:
Macroscale/Bulk Mechanical Testing / 3.7.2:
Tensile/Compression Test / 3.7.2.1:
Tribological Property Evaluation / 3.7.2.2:
Thermal Properties / 3.8:
Electrical Properties / 3.9:
Electrochemical Properties / 3.10:
Metal-Carbon Nanotube Systems / 3.11:
Aluminum-Carbon Nanotube System / 4.1:
Copper-Carbon Nanotube System / 4.2:
Nickel-Carbon Nanotube System / 4.3:
Magnesium-Carbon Nanotube System / 4.4:
Other Metals-Carbon Nanotube Systems / 4.5:
Mechanics of Metal-Carbon Nanotube Systems / 4.6:
Elastic Modulus of Metal Matrix-Carbon Nanotube Composites / 5.1:
Modified Rule of Mixtures / 5.1.1:
Cox Model / 5.1.2:
Halpin-Tsai Model / 5.1.3:
Hashin-Shtrikman Model / 5.1.4:
Modified Eshelby Model / 5.1.5:
Dispersion-Based Model / 5.1.6:
Strengthening Mechanisms in Metal Matrix-Carbon Nanotube Composites / 5.2:
Shear Lag Models / 5.2.1:
Strengthening by Interphase / 5.2.2:
Strengthening by Carbon Nanotube Clusters / 5.2.3:
Halpin-Tsai Equations / 5.2.4:
Strengthening by Dislocations / 5.2.5:
Strengthening by Grain Refinement / 5.2.6:
Interfacial Phenomena in Carbon Nanotube Reinforced Metal Matrix Composites / 5.3:
Significance of Interfacial Phenomena / 6.1:
Energetics of Carbon Nanotube-Metal Interaction / 6.2:
Carbon Nanotube-Metal Interaction in Various Systems / 6.3:
Dispersion of Carbon Nanotubes in Metal Matrix / 6.4:
Significance of Carbon Nanotube Dispersion / 7.1:
Methods of Improving Carbon Nanotube Dispersion / 7.2:
Quantification of Carbon Nanotube Dispersion / 7.3:
Electrical, Thermal, Chemical, Hydrogen Storage, and Tribological Properties / 7.4:
Corrosion Properties / 8.1:
Hydrogen Storage Property / 8.4:
Sensors and Catalytic Properties / 8.5:
Tribological Properties / 8.6:
Computational Studies in Metal Matrix-Carbon Nanotube Composites / 8.7:
Thermodynamic Prediction of Carbon Nanotube-Metal Interface / 9.1:
Microstructure Simulation / 9.2:
Mechanical and Thermal Property Prediction by the Object-Oriented Finite Element Method / 9.3:
Summary and Future Directions / 9.4:
Summary of Research on MM-CNT Composites / 10.1:
Future Directions / 10.2:
Improvement in Quality of Carbon Nanotubes / 10.2.1:
Challenges Related to Processing / 10.2.2:
Aligned MM-CNT Composites / 10.2.3:
Understanding Mechanisms of Property Improvement / 10.2.4:
Environmental and Toxicity Aspects of MM-CNT Composites / 10.2.5:
Exploring Novel Applications / 10.2.6:
Index
Foreword
Preface
Authors
40.

図書

図書
Bernard Salanié
出版情報: Cambridge, Mass. : MIT Press, c1997  viii, 223 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword to the Second Edition
Foreword to the First Edition
Introduction / 1:
The Great Families of Models / 1.1:
The Principal-Agent Model / 1.2:
Overview of the Book / 1.3:
References
Adverse Selection: General Theory / 2:
Mechanism Design / 2.1:
General Mechanisms / 2.1.1:
Application to Adverse Selection Models / 2.1.2:
A Discrete Model of Price Discrimination / 2.2:
The Consumer / 2.2.1:
The Seller / 2.2.2:
The First-Best: Perfect Discrimination / 2.2.3:
Imperfect Information / 2.2.4:
The Standard Model / 2.3:
Analysis of the Incentive Constraints / 2.3.1:
Solving the Model / 2.3.2:
Exercises
Adverse Selection: Examples and Extensions / 3:
Examples of Applications / 3.1:
Regulating a Firm / 3.1.1:
Optimal Taxation / 3.1.2:
The Insurer as a Monopolist / 3.1.3:
Extensions / 3.2:
Perfect Competition in Contracts / 3.2.1:
Multiple Principals / 3.2.2:
The Theory of Auctions / 3.2.3:
Collusion / 3.2.4:
Risk-Averse Agents / 3.2.5:
Multidimensional Characteristics / 3.2.6:
Bilateral Private Information / 3.2.7:
Type-Dependent Reservation Utilities / 3.2.8:
Auditing the Agent / 3.2.9:
Signaling Models / 4:
The Market for Secondhand Cars / 4.1:
Costly Signals / 4.2:
Separating Equilibria / 4.2.1:
Pooling Equilibria / 4.2.2:
The Selection of an Equilibrium / 4.2.3:
Costless Signals / 4.3:
A Simple Example / 4.3.1:
The General Model / 4.3.2:
Other Examples / 4.4:
The Informed Principal / 4.5:
Moral Hazard / 5:
The Agent's Program / 5.1:
The Principal's Program / 5.2.2:
Properties of the Optimal Contract / 5.2.3:
Informativeness and Second-Best Loss / 5.3:
A Continuum of Actions / 5.3.2:
The Limited Liability Model / 5.3.3:
An Infinity of Outcomes / 5.3.4:
The Multisignal Case / 5.3.5:
Imperfect Performance Measurement / 5.3.6:
Models with Several Agents / 5.3.7:
Models with Several Principals / 5.3.8:
The Robustness of Contracts / 5.3.9:
The Multitask Model / 5.3.10:
Insurance / 5.4:
Wage Determination / 5.4.2:
The Dynamics of Complete Contracts / 6:
Commitment and Renegotiation / 6.1:
Strategic Commitment / 6.2:
Adverse Selection / 6.3:
Full Commitment / 6.3.1:
Long-Term Commitment / 6.3.2:
No Commitment / 6.3.3:
Short-Term Commitment / 6.3.4:
Conclusion / 6.3.5:
Renegotiation after Effort / 6.4:
Convergence to the First-Best / 6.4.2:
Finitely Repeated Moral Hazard / 6.4.3:
Incomplete Contracts / 7:
Property Rights, Holdup, and Underinvestment / 7.1:
The Buyer-Seller Model / 7.1.1:
The Complete Contract / 7.1.2:
Incomplete Contracts and Property Rights / 7.1.3:
The Irrelevance Theorems / 7.2:
Restoring Efficient Investment Incentives / 7.2.1:
Using Mechanism Design / 7.2.2:
Concluding Remarks / 7.3:
Some Empirical Work / 8:
Dealing with Unobserved Heterogeneity / 8.1:
Auctions / 8.2:
Tests of Asymmetric Information in Insurance Markets / 8.3:
Some Noncooperative Game Theory / Appendix:
Games of Perfect Information / A.1:
Nash Equilibrium / A.1.1:
Subgame-Perfect Equilibrium / A.1.2:
Games of Incomplete Information / A.2:
Bayesian Equilibrium / A.2.1:
Perfect Bayesian Equilibrium / A.2.2:
Refinements of Perfect Bayesian Equilibrium / A.2.3:
Name Index
Subject Index
Foreword to the Second Edition
Foreword to the First Edition
Introduction / 1:
41.

図書

図書
Paul Darbyshire and David Hampton
出版情報: Chichester, West Sussex : Wiley, 2011  xv, 261 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
The Structure of a Hedge Fund / 1.2:
Fund Administrators / 1.2.1:
Prime Brokers / 1.2.2:
Custodian, Auditors and Legal / 1.2.3:
The Global Hedge Fund Industry / 1.3:
North America / 1.3.1:
Europe / 1.3.2:
Asia / 1.3.3:
Specialist Investment Techniques / 1.4:
Short Selling / 1.4.1:
Leverage / 1.4.2:
Liquidity / 1.4.3:
New Developments for Hedge Funds / 1.5:
UCITS III Hedge Funds / 1.5.1:
The European Passport / 1.5.2:
Restrictions on Short Selling / 1.5.3:
Major Hedge Fund Strategies / 2:
Single and Multi Strategy Hedge Funds / 2.1:
Fund of Hedge Funds / 2.2:
Hedge Fund Strategies / 2.3:
Tactical Strategies / 2.3.1:
Global Macro / 2.3.1.1:
Managed Futures / 2.3.1.2:
Long/Short Equity / 2.3.1.3:
Pairs Trading / 2.3.1.4:
Event-Driven / 2.3.2:
Distressed Securities / 2.3.2.1:
Merger Arbitrage / 2.3.2.2:
Relative Value / 2.3.3:
Equity Market Neutral / 2.3.3.1:
Convertible Arbitrage / 2.3.3.2:
Fixed Income Arbitrage / 2.3.3.3:
Capital Structure Arbitrage / 2.3.3.3.1:
Swap-Spread Arbitrage / 2.3.3.3.2:
Yield CurveArbitrage / 2.3.3.3.3:
Hedge Fund Data Sources / 3:
Hedge Fund Databases / 3.1:
Major Hedge Fund Indices / 3.2:
Non investable and Investable Indices / 3.2.1:
Dow Jones Credit Suisse Hedge Fund Indexes / 3.2.2:
Liquid Alternative Betas / 3.2.2.1:
Hedge Fund Research / 3.2.3:
Hedge Fund net / 3.2.4:
FTSE Hedge / 3.2.5:
FTSE Hedge Momentum Index / 3.2.5.1:
Greenwich Alternative Investments / 3.2.6:
GAI Investable Indices / 3.2.6.1:
Morningstar Alternative Investment Center / 3.2.7:
MSCI Hedge Fund Classification Standard / 3.2.7.1:
MSCI Investable Indices / 3.2.7.2:
EDHEC Risk and Asset Management Research Centre (www.edhec-risk.com) / 3.2.8:
Database and Index Biases / 3.3:
Survivorship Bias / 3.3.1:
Instant History Bias / 3.3.2:
Benchmarking / 3.4:
Tracking Error / 3.4.1:
Weighting Schemes / Appendix A:
Statistical Analysis / 4:
Basic Performance Plots / 4.1:
Value Added Monthly Index / 4.1.1:
Histograms / 4.1.2:
Probability Distributions / 4.2:
Populations and Samples / 4.2.1:
Probability Density Function / 4.3:
Cumulative Distribution Function / 4.4:
The Normal Distribution / 4.5:
Standard Normal Distribution / 4.5.1:
Visual Tests for Normality / 4.6:
Inspection / 4.6.1:
Normal Q-Q Plot / 4.6.2:
Moments of a Distribution / 4.7:
Mean and Standard Deviation / 4.7.1:
Skewness / 4.7.2:
Excess Kurtosis / 4.7.3:
Data Analysis Tool: Descriptive Statistics / 4.7.4:
Geometric Brownian Motion / 4.8:
Uniform Random Numbers / 4.8.1:
Covariance and Correlation / 4.9:
Regression Analysis / 4.10:
Ordinary Least Squares / 4.10.1:
Coefficient of Determination / 4.10.1.1:
Residual Plots / 4.10.1.2:
Jarque-Bera Normality Test / 4.10.1.3:
Data Analysis Tool: Regression / 4.10.1.4:
Portfolio Theory / 4.11:
Mean Variance Analysis / 4.11.1:
Solver: Portfolio Optimisation / 4.11.2:
Efficient Portfolios / 4.11.3:
Risk-Adjusted Return Metrics / 5:
The Intuition behind Risk Adjusted Returns / 5.1:
Risk Adjusted Returns / 5.1.1:
Common Risk Adjusted Performance Ratios / 5.2:
The Sharpe Ratio / 5.2.1:
The Modified Sharpe Ratio / 5.2.2:
The Sortino Ratio / 5.2.3:
The Drawdown Ratio / 5.2.4:
Common Performance Measures in the Presence of a Market Benchmark / 5.3:
The Information Ratio / 5.3.1:
The M Squared Metric / 5.3.2:
The Treynor Ratio / 5.3.3:
Jensen's Alpha / 5.3.4:
The Omega Ratio / 5.4:
Asset Pricing Models / 6:
The Risk Adjusted Two Moment Capital Asset Pricing Model / 6.1:
Interpreting H / 6.1.1:
Static Alpha Analysis / 6.1.2:
Dynamic Rolling Alpha Analysis / 6.1.3:
Multi factor Models / 6.2:
The Choice of Factors / 6.3:
A Multi Factor Framework for a Risk Adjusted Hedge Fund Alpha League Table / 6.3.1:
Alpha and Beta Separation / 6.3.2:
Dynamic Style Based Return Analysis / 6.4:
The Markowitz Risk Adjusted Evaluation Method / 6.5:
Hedge Fund Market Risk Management / 7:
Value at Risk / 7.1:
Traditional Measures / 7.2:
Historical Simulation / 7.2.1:
Parametric Method / 7.2.2:
Monte Carlo Simulation / 7.2.3:
Modified Var / 7.3:
Expected Shortfall / 7.4:
Extreme Value Theory / 7.5:
Block Maxima / 7.5.1:
Peaks over Threshold / 7.5.2:
References
Important Legal Information
Index
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
42.

図書

図書
Nobuyasu Kanekawa ... [et al.]
出版情報: New York : Springer, c2011  xxv, 204 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
For the Best Result / 1.3:
References
Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques / 2:
SER in Memory Devices / 2.1:
MCU in Memory Devices / 2.1.2:
SET and MNU in Logic Devices / 2.1.3:
Chip/System-Level SER Problem: SER Estimation and Mitigation / 2.1.4:
Scope of This Chapter / 2.1.5:
Basic Knowledge on Terrestrial Neutron-Induced Soft-Error in MOSFET Devices / 2.2:
Cosmic Rays from the Outer Space / 2.2.1:
Nuclear Spallation Reaction and Charge Collection in CMOSFET Device / 2.2.2:
Experimental Techniques to Quantify Soft-Error Rate (SER) and Their Standardization / 2.3:
The System to Quantify SER - SECIS / 2.3.1:
Basic Method in JESD89A / 2.3.2:
SEE Classification Techniques in Time Domain / 2.3.3:
MCU Classification Techniques in Topological Space Domain / 2.3.4:
Evolution of Multi-node Upset Problem / 2.4:
MCU Characterization by Accelerator-Based Experiments / 2.4.1:
Multi-coupled Bipolar Interaction (MCBI) / 2.4.2:
Simulation Techniques for Neutron-Induced Soft Error / 2.5:
Overall Microscopic Soft-Error Model / 2.5.1:
Nuclear Spallation Reaction Models / 2.5.2:
Charge Deposition Model / 2.5.3:
SRAM Device Model / 2.5.4:
Cell Matrix Model / 2.5.5:
Recycle Simulation Method / 2.5.6:
Validation of SRAM Model / 2.5.7:
Prediction for Scaling Effects Down to 22 nm Design Rule in SRAMs / 2.6:
Roadmap Assumption / 2.6.1:
Results and Discussions / 2.6.2:
Validity of Simulated Results / 2.6.3:
SER Estimation in Devices/Components/System / 2.7:
Standards for SER Measurement for Memories / 2.7.1:
Revisions Needed for the Standards / 2.7.2:
Quantification of SER in Logic Devices and Related Issues / 2.7.3:
An Example of Chip/Board-Level SER Measurement and Architectural Mitigation Techniques / 2.8:
SER Test Procedures for Network Components / 2.8.1:
Hierarchical Mitigation Strategies / 2.8.2:
Basic Three Approaches / 2.9.1:
Design on the Upper Bound (DOUB) / 2.9.2:
Inter Layer Built-in Reliability (LABIR) / 2.10:
Summary / 2.11:
Electromagnetic Compatibility / 3:
Quantitative Estimation of the EMI Radiation Based on the Measured Near-Field Magnetic Distribution / 3.1:
Measurement of the Magnetic Field Distribution Near the Circuit Board / 3.2.1:
Calculation of the Electric Current Distribution on the Circuit Board / 3.2.2:
Calculation of the Far-Field Radiated EMI / 3.2.3:
Development of a Non-contact Current Distribution Measurement Technique for LSI Packaging on PCBs / 3.3:
Electric Current Distribution Detection / 3.3.1:
The Current Detection Result and Its Verification / 3.3.2:
Reduction Technique of Radiated Emission from Chassis with PCB / 3.4:
Far-Field Measurement of Chassis with PCB / 3.4.1:
Measurements of Junction Current / 3.4.2:
PSPICE Modeling / 3.4.3:
Experimental Validation / 3.4.4:
Chapter Summary / 3.5:
Power Integrity / 4:
Detrimental Effect and Technical Trends of Power Integrity Design of Electronic Systems and Devices / 4.1:
Detrimental Effect by Power Supply Noise on Semiconducting Devices / 4.2.1:
Trends of Power Supply Voltage and Power Supply Current for CMOS Semiconducting Devices / 4.2.2:
Trend of Power Distribution Network Design for Electronic Systems / 4.2.3:
Design Methodology of Power Integrity / 4.3:
Definition of Power Supply Noise in Electric System / 4.3.1:
Time-Domain and Frequency-Domain Design Methodology / 4.3.2:
Modeling and Design Methodologies of PDS / 4.4:
Modeling of Electrical Circuit Parameters / 4.4.1:
Design Strategies of PDS / 4.4.2:
Simultaneous Switching Noise (SSN) / 4.5:
Principle of SSN / 4.5.1:
S-G loop SSN / 4.5.2:
P-G loop SSN / 4.5.3:
Measurement of Power Distribution System Performance / 4.6:
On-Chip Voltage Waveform Measurement / 4.6.1:
On-Chip Power Supply Impedance Measurement / 4.6.2:
Fault-Tolerant System Technology / 4.7:
Metrics for Dependability / 5.1:
Reliability / 5.2.1:
Availability / 5.2.2:
Safety / 5.2.3:
Reliability Paradox / 5.3:
Survey on Fault-Tolerant Systems / 5.4:
Technical Issues / 5.5:
High Performance / 5.5.1:
Transparency / 5.5.2:
Physical Transparency / 5.5.3:
Fault Tolerance of Fault Tolerance for Ultimate Safety / 5.5.4:
Reliability of Software / 5.5.5:
Industrial Approach / 5.6:
Autonomous Decentralized Systems / 5.6.1:
Space Application / 5.6.2:
Commercial Fault-Tolerant Systems / 5.6.3:
Ultra-Safe System / 5.6.4:
Availability Improvement vs. Coverage Improvement / 5.7:
Trade-Off Between Availability and Coverage - Stepwise Negotiating Voting / 5.8:
Basic Concept / 5.8.1:
Hiten Onboard Computer / 5.8.2:
Fault-Tolerance Experiments / 5.8.3:
Extension of SNV - Redundancy Management / 5.8.4:
Coverage Improvement / 5.9:
Self-Checking Comparator / 5.9.1:
Optimal Time Diversity / 5.9.2:
On-Chip Redundancy / 5.10:
High Performance (Commercial Fault-Tolerant Computer) / 5.11:
Basic Concepts of TPR Architecture / 5.11.1:
System Configuration / 5.11.2:
System Reconfiguration on Fault Occurrence / 5.11.3:
Processing Take-Over on Fault Occurrence / 5.11.4:
Fault Tolerance of Fault Tolerance / 5.11.5:
Commercial Product Model / 5.11.6:
Current Application Field: X-by-Wire / 5.12:
Challenges in the Future / 6:
Index
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
43.

図書

図書
by Man Leung Wong, Kwong Sak Leung
出版情報: Boston : Kluwer Academic, c2000  xiv, 213 p. ; 25 cm
シリーズ名: Genetic programming series ; GPEM 3
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Introduction / Chapter 1:
Data Mining / 1.1.:
Motivation / 1.2.:
Contributions of the Book / 1.3.:
Outline of the Book / 1.4.:
An Overview of Data Mining / Chapter 2:
Decision Tree Approach / 2.1.:
ID3 / 2.1.1.:
C4.5 / 2.1.2.:
Classification Rule / 2.2.:
AQ Algorithm / 2.2.1.:
CN2 / 2.2.2.:
C4.5RULES / 2.2.3.:
Association Rule Mining / 2.3.:
Apriori / 2.3.1.:
Quantitative Association Rule Mining / 2.3.2.:
Statistical Approach / 2.4.:
Bayesian Classifier / 2.4.1.:
Forty-Niner / 2.4.2.:
Explora / 2.4.3.:
Bayesian Network Learning / 2.5.:
Other Approaches / 2.6.:
An Overview on Evolutionary Algorithms / Chapter 3:
Evolutionary Algorithms / 3.1.:
Genetic Algorithms (GAs) / 3.2.:
The Canonical Genetic Algorithm / 3.2.1.:
Selection Methods / 3.2.1.1.:
Recombination Methods / 3.2.1.2.:
Inversion and Reordering / 3.2.1.3.:
Steady State Genetic Algorithms / 3.2.2.:
Hybrid Algorithms / 3.2.3.:
Genetic Programming (GP) / 3.3.:
Introduction to the Traditional GP / 3.3.1.:
Strongly Typed Genetic Programming (STGP) / 3.3.2.:
Evolution Strategies (ES) / 3.4.:
Evolutionary Programming (EP) / 3.5.:
Inductive Logic Programming / Chapter 4:
Inductive Concept Learning / 4.1.:
Inductive Logic Programming (ILP) / 4.2.:
Interactive ILP / 4.2.1.:
Empirical ILP / 4.2.2.:
Techniques And Methods of ILP / 4.3.:
Bottom-up ILP Systems / 4.3.1.:
Top-down ILP Systems / 4.3.2.:
Foil / 4.3.2.1.:
mFOIL / 4.3.2.2.:
The Logic Grammars Based Genetic Programming System (Logenpro) / Chapter 5:
Logic Grammars / 5.1.:
Representations of Programs / 5.2.:
Crossover of Programs / 5.3.:
Mutation of Programs / 5.4.:
The Evolution Process of LOGENPRO / 5.5.:
Discussion / 5.6.:
Data Mining Applications Using Logenpro / Chapter 6:
Learning Functional Programs / 6.1.:
Learning S-expressions Using LOGENPRO / 6.1.1.:
The DOT PRODUCT Problem / 6.1.2.:
Learning Sub-functions Using Explicit Knowledge / 6.1.3.:
Inducing Decision Trees Using LOGENPRO / 6.2.:
Representing Decision Trees as S-expressions / 6.2.1.:
The Credit Screening Problem / 6.2.2.:
The Experiment / 6.2.3.:
Learning Logic Program From Imperfect Data / 6.3.:
The Chess Endgame Problem / 6.3.1.:
The Setup of Experiments / 6.3.2.:
Comparison of LOGENPRO With FOIL / 6.3.3.:
Comparison of LOGENPRO With BEAM-FOIL / 6.3.4.:
Comparison of LOGENPRO With mFOIL1 / 6.3.5.:
Comparison of LOGENPRO With mFOIL2 / 6.3.6.:
Comparison of LOGENPRO With mFOIL3 / 6.3.7.:
Comparison of LOGENPRO With mFOIL4 / 6.3.8.:
Applying Logenpro for Rule Learning / 6.3.9.:
Grammar / 7.1.:
Genetic Operators / 7.2.:
Evaluation of Rules / 7.3.:
Learning Multiple Rules From Data / 7.4.:
Previous Approaches / 7.4.1.:
Pre-selection / 7.4.1.1.:
Crowding / 7.4.1.2.:
Deterministic Crowding / 7.4.1.3.:
Fitness Sharing / 7.4.1.4.:
Token Competition / 7.4.2.:
The Complete Rule Learning Approach / 7.4.3.:
Experiments With Machine Learning Databases / 7.4.4.:
Experimental Results on the Iris Plant Database / 7.4.4.1.:
Experimental Results on the Monk Database / 7.4.4.2.:
Medical Data Mining / Chapter 8:
A Case Study on the Fracture Database / 8.1.:
A Case Study on the Scoliosis Database / 8.2.:
Rules for Scoliosis Classification / 8.2.1.:
Rules About Treatment / 8.2.2.:
Conclusion and Future Work / Chapter 9:
Conclusion / 9.1.:
Future Work / 9.2.:
The Rule Sets Discovered / Appendix A:
The Best Rule Set Learned from the Iris Database / A.1.:
The Best Rule Set Learned from the Monk Database / A.2.:
Monk1 / A.2.1.:
Monk2 / A.2.2.:
Monk3 / A.2.3.:
The Best Rule Set Learned from the Fracture Database / A.3.:
Type I rules: About Diagnosis / A.3.1.:
Type II Rules: About Operation/Surgeon / A.3.2.:
Type III Rules: About Stay / A.3.3.:
The Best Rule Set Learned from the Scoliosis Database / A.4.:
Rules for Classification / A.4.1.:
King-I / A.4.1.1.:
King-II / A.4.1.2.:
King-III / A.4.1.3.:
King-IV / A.4.1.4.:
King-V / A.4.1.5.:
TL / A.4.1.6.:
L / A.4.1.7.:
Rules for Treatment / A.4.2.:
Observation / A.4.2.1.:
Bracing / A.4.2.2.:
The Grammar Used for the Fracture and Scoliosis Databases / Appendix B:
The Grammar for the Fracture Database / B.1.:
The Grammar for the Scoliosis Database / B.2.:
References
Index
List of Figures
List of Tables
Preface
44.

図書

図書
M. Shimoseki, T. Hamano, T. Imaizumi (eds.) ; organized by T. Kuwabara
出版情報: Berlin : Springer, c2003  xiii, 233 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
Tangential Gradient / 1.1.2:
System of Multiple Degrees of Freedom / 1.1.3:
Elastic Component in a Vibration System / 1.2:
Vibration Equations / 1.2.1:
Chords of a Guitar / 1.2.2:
Wave Equation / 1.2.3:
First Stages of Analysis / 1.3:
Orientation / 1.3.1:
Steps of Analysis / 1.3.2:
A Pitfall in the Approximate Solution / 1.3.3:
Element Stiffness of Elastic Component / 1.3.4:
One-Dimensional Combination of Components / 1.4:
Coupling Between Components / 1.4.1:
Generalized Matrix Equation for Coupled Elastic Components / 1.4.2:
Verification of Boundary Condition Type / 1.4.3:
Parallel Coupling of Elastic Components / 1.4.4:
Transverse Stiffness of Elastic Components / 1.4.5:
Plane Structures / 1.5:
Transformation of Coordinates / 1.5.1:
Obliquely Connected Components / 1.5.2:
From Components to Finite Elements / 1.5.3:
Outline of Finite Element Method (FEM) / 2:
Fundamentals of Elasto-Plasticity Dynamics / 2.1:
Viewpoint of Continuum Dynamics / 2.1.1:
General Equations / 2.1.2:
Basic Equations for Linear Elastic Body / 2.1.3:
Principle of Virtual Work / 2.1.4:
Expansion to Nonlinear Problems / 2.2:
Geometrical Nonlinearity / 2.2.1:
Material Nonlinearity / 2.2.2:
Expansion to Dynamic Problems / 2.3:
Mass and Damping Matrix / 2.3.1:
Natural Frequency / 2.3.2:
Simulation / 2.3.3:
Spatial Discretization / 2.4:
Derivating Procedure of Element Stiffness / 2.4.1:
Stiffness of Truss Elements / 2.4.2:
Element Stiffness of Plane Stress / 2.4.3:
Element Stiffness of a Three-dimensional Elastic Body / 2.4.4:
Role of Fem in Spring Analysis / 3:
Comparison Of Fem With Conventional Design Meth- ODS / 3.1:
Assumption in Model Construction / 3.1.1:
From Linear to Nonlinear / 3.1.2:
The Utilization of Fem Software / 3.2:
Use of Commercial Software / 3.2.1:
Selection of Commercial Software / 3.2.2:
Development of Dedicated Programs / 3.2.3:
Effectiveness in Design Practice / 3.3:
Single Spring and Peripheral Parts / 3.3.1:
Simulation of the Manufacturing Process / 3.3.2:
Prospect of Future Application / 3.4:
Optimum Design / 3.4.1:
Nonlinear Problems in Manufacturing Simulation / 3.4.2:
Necessity of Material Data / 3.4.3:
Classification and Application of Element / 4:
Introduction of Various Elements / 4.1:
Beam Elements / 4.1.1:
Plate Elements / 4.1.2:
Axisymmetric Elements / 4.1.3:
Cubic Elements (Solid Elements) / 4.1.4:
Contact Elements / 4.1.5:
Selection of Element and Discretizing Practice / 4.2:
Selection of Elements / 4.2.1:
Tips on Discretization / 4.2.2:
Elementary Analysis / 5:
Formed Wire Springs / 5.1:
Stabilizer Bars / 5.2:
Helical Compression Springs / 5.3:
Static Analysis / 5.3.1:
Analysis of Eigenvalue / 5.3.2:
Helical Extension Springs / 5.4:
Helical Torsion Springs / 5.5:
Spiral Springs / 5.6:
Leaf Springs / 5.7:
Flat Springs / 5.8:
Stress Concentration / 5.9:
Stress Concentration on the Periphery of a Center Bolt Hole for Leaf Springs / 5.9.1:
Stress Concentration at the Slit Bottom of a Disc Spring / 5.9.2:
Stress Concentration at the End of a Torsion Bar Spring / 5.9.3:
Expansion of Analytical Handling / 6:
Tubular Stabilizer Bars / 6.1:
Effect of Bush / 6.1.2:
Problem of Contact / 6.2:
Non-circular Cross Section / 6.2.2:
Presetting / 6.2.3:
Surging / 6.2.4:
RBA Type Leaf Springs / 6.3:
Effect of Shackle and Contact Plate / 6.3.2:
Hysteresis Characteristic / 6.3.3:
Wind-up / 6.3.4:
Disc Springs, Ring Springs / 6.3.5:
Disc Springs / 6.4.1:
Ring Springs / 6.4.2:
Index
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
45.

図書

図書
by Pratul Bandyopadhyay
出版情報: Dordrecht : Kluwer Academic, c2003  xi, 217 p. ; 25 cm
シリーズ名: Fundamental theories of physics ; v. 130
所蔵情報: loading…
目次情報: 続きを見る
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
Spinor space and Spinor Algebra / 1.1.1:
Spinors and Tensors / 1.1.2:
Universal Covering space / 1.1.3:
Spinor structure / 1.1.4:
Spinors in Different Dimensions / 1.2:
Simple Spinor Geometry / 1.2.1:
Conformal Spinors / 1.2.2:
Twistors and Cartan Semispinors / 1.2.3:
Supersymmetry and Superspace / 1.3:
Supersymmetry algebra / 1.3.1:
Superspace / 1.3.2:
Spinor structure and superspace / 1.3.3:
Fermions and Topology / 2:
Fermi Field and Nonlinear Sigma Model / 2.1:
Quantization of a Fermi Field and Sympletic Structure / 2.1.1:
Gauge Theorctic Extension of a Fermion and Nonlinear Sigma Model / 2.1.2:
Boson-Fermion Transformation / 2.1.3:
Vortex Line, Magnetic Flux and Fermion Quantization / 2.1.4:
Quantization and Anomaly / 2.2:
Quantum Mechanical Symmetry Breaking and Anomaly / 2.2.1:
Path Integral Formalism and Chiral Anomaly / 2.2.2:
Quantization of a Fermion and Chiral Anomaly / 2.2.3:
Anomaly and Topology / 2.3:
Topological Aspects of Anomaly / 2.3.1:
Chiral Anomaly and Berry Phase / 2.3.2:
Berry Phase and Fermion Number / 2.3.3:
Electroweak Theory / 3:
Weinberg - Salam Theory / 3.1:
Spontaneous Symmetry Breaking and the Nature of Vacuum / 3.1.1:
Weinberg-Salam Theory of Electroweak Interaction / 3.1.2:
Renormalization of Yang-Mills Theory with Spontaneous Symmetry Breaking / 3.1.3:
Topological Features in Field Theory / 3.2:
The Sine-Gordon Model / 3.2.1:
Vortex Lines / 3.2.2:
The Dirac Monopole / 3.2.3:
The't Hooft Polyakov Monopole / 3.2.4:
Instantons / 3.2.5:
Topological Origin of Mass / 3.3:
Topological Aspects of Chiral Anomaly and Origin of Mass / 3.3.1:
Weak Interaction Gauge Bosons and Topological Origin of Mass / 3.3.2:
Topological Features and Some Aspects of Weak Interaction Phenomenology / 3.3.3:
Skyrme Model / 4:
Nonlinear Sigma Model / 4.1:
Chiral Symmetry Breaking and Nonlinear Sigma Model / 4.1.1:
Nonlinear Sigma Model in Different Dimensions / 4.1.2:
Topological Term in Nonlinear Sigma Model / 4.1.3:
Skyrme Model for Nucleons / 4.2:
Skyrme's Approach: Mesonic Fluid Model / 4.2.1:
Nucleons as Topological Skyrmions / 4.2.2:
Static Properties of Nucleons / 4.2.3:
Baryons as Three Flavor Solitons / 4.3:
Extension of Nuclenoic Model to SU(3) Symmetry / 4.3.1:
Skyrmions and Quantum Chromodynamics / 4.3.2:
Skyrmion Statistics / 4.3.3:
Geometrical Aspects of a Skyrmion / 5:
Microlocal Space Time and Fermions / 5.1:
Microlocal Space Time and Massive Fermions as Solitons / 5.1.1:
Bosonic Degrees of Freedom and Fermion / 5.1.2:
Geometric Phase and [theta]-term / 5.1.3:
Internal Symmetry of Hadrons / 5.2:
Geometrical Aspects of Conformal Spinors / 5.2.1:
Reflection Group and the Internal Symmetry of Hadrons / 5.2.2:
Composite State of Skyrmions and Static Properties of Baryons / 5.2.3:
Supersymmetry and Internal Symmetry / 5.3:
Conformal Spinors and Supersymmetry / 5.3.1:
Reflection Group, Supersymmetry and Internal Symmetry / 5.3.2:
Conformal Spinors and Symmetry Group of Interactions / 5.3.3:
Noncommutative Geometry / 6:
Quantum Space Time / 6.1:
Noncommutative Geometry: Physical Perspective / 6.1.1:
Noncommutative Geometry and Quantum Phase space / 6.1.2:
Noncommutative Geometry and Quantum Group / 6.1.3:
Noncommutative Geometry and Particle Physics / 6.2:
Noncommutative Geometry and Electroweak Theory / 6.2.1:
Noncommutative Geometry and Standard Model / 6.2.2:
Noncommutative Generalization of Gauge Theory / 6.2.3:
Discrete Space as the Internal Space / 6.3:
Noncommutative Geometry and Quantization of a Fermion / 6.3.1:
Noncommutative Geometry, Disconnected Gauge Group and Chiral Anomaly / 6.3.2:
Noncommutative Geometry, Geometrical Aspects of a Skyrmion and Polyakov String / 6.3.3:
References
Subject Index
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
46.

図書

図書
Zhen-Gang Ji
出版情報: Hoboken, N.J. : Wiley-Interscience, c2008  xxii, 676 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Acknowledgments
Introduction / 1:
Overview / 1.1:
Understanding Surface Waters / 1.2:
Modeling of Surface Waters / 1.3:
About This Book / 1.4:
Hydrodynamics / 2:
Hydrodynamic Processes / 2.1:
Water Density / 2.1.1:
Conservation Laws / 2.1.2:
Advection and Dispersion / 2.1.3:
Mass Balance Equation / 2.1.4:
Atmospheric Forcings / 2.1.5:
Coriolis Force and Geostrophic Flow / 2.1.6:
Governing Equations / 2.2:
Basic Approximations / 2.2.1:
Equations in Cartesian Coordinates / 2.2.2:
Vertical Mixing and Turbulence Models / 2.2.3:
Equations in Curvilinear Coordinates / 2.2.4:
Initial Conditions and Boundary Conditions / 2.2.5:
Temperature / 2.3:
Heatflux Components / 2.3.1:
Temperature Formulations / 2.3.2:
Hydrodynamic Modeling / 2.4:
Hydrodynamic Parameters and Data Requirements / 2.4.1:
Case Study I: Lake Okeechobee / 2.4.2:
Case Study II: St. Lucie Estuary and Indian River Lagoon / 2.4.3:
Sediment Transport / 3:
Properties of Sediment / 3.1:
Problems Associated with Sediment / 3.1.2:
Sediment Processes / 3.2:
Particle Settling / 3.2.1:
Horizontal Transport of Sediment / 3.2.2:
Resuspension and Deposition / 3.2.3:
Equations for Sediment Transport / 3.2.4:
Turbidity and Secchi Depth / 3.2.5:
Cohesive Sediment / 3.3:
Vertical Profiles of Cohesive Sediment Concentrations / 3.3.1:
Flocculation / 3.3.2:
Settling of Cohesive Sediment / 3.3.3:
Deposition of Cohesive Sediment / 3.3.4:
Resuspension of Cohesive Sediment / 3.3.5:
Noncohesive Sediment / 3.4:
Shields Diagram / 3.4.1:
Settling and Equilibrium Concentration / 3.4.2:
Bed Load Transport / 3.4.3:
Sediment Bed / 3.5:
Characteristics of Sediment Bed / 3.5.1:
A Model for Sediment Bed / 3.5.2:
Wind Waves / 3.6:
Wave Processes / 3.6.1:
Wind Wave Characteristics / 3.6.2:
Wind Wave Models / 3.6.3:
Combined Flows of Wind Waves and Currents / 3.6.4:
Case Study: Wind Wave Modeling in Lake Okeechobee / 3.6.5:
Sediment Transport Modeling / 3.7:
Sediment Parameters and Data Requirements / 3.7.1:
Case Study II: Blackstone River / 3.7.2:
Pathogens and Toxics / 4:
Pathogens / 4.1:
Bacteria, Viruses, and Protozoa / 4.2.1:
Pathogen Indicators / 4.2.2:
Processes Affecting Pathogens / 4.2.3:
Toxic Substances / 4.3:
Toxic Organic Chemicals / 4.3.1:
Metals / 4.3.2:
Sorption and Desorption / 4.3.3:
Fate and Transport Processes / 4.4:
Mathematical Formulations / 4.4.1:
Processes Affecting Fate and Decay / 4.4.2:
Contaminant Modeling / 4.5:
Case Study I: St. Lucie Estuary and Indian River Lagoon / 4.5.1:
Case Study II: Rockford Lake / 4.5.2:
Water Quality and Eutrophication / 5:
Eutrophication / 5.1:
Algae / 5.1.2:
Nutrients / 5.1.3:
Dissolved Oxygen / 5.1.4:
Governing Equations for Water Quality Processes / 5.1.5:
Algal Biomass and Chlorophyll / 5.2:
Equations for Algal Processes / 5.2.2:
Algal Growth / 5.2.3:
Algal Reduction / 5.2.4:
Silica and Diatom / 5.2.5:
Periphyton / 5.2.6:
Organic Carbon / 5.3:
Decomposition of Organic Carbon / 5.3.1:
Equations for Organic Carbon / 5.3.2:
Heterotrophic Respiration and Dissolution / 5.3.3:
Phosphorus / 5.4:
Equations for Phosphorus State Variables / 5.4.1:
Phosphorus Processes / 5.4.2:
Nitrogen / 5.5:
Forms of Nitrogen / 5.5.1:
Equations for Nitrogen State Variables / 5.5.2:
Nitrogen Processes / 5.5.3:
Biochemical Oxygen Demand / 5.6:
Processes and Equations of Dissolved Oxygen / 5.6.2:
Effects of Photosynthesis and Respiration / 5.6.3:
Reaeration / 5.6.4:
Chemical Oxygen Demand / 5.6.5:
Sediment Fluxes / 5.7:
Sediment Diagenesis Model / 5.7.1:
Depositional Fluxes / 5.7.2:
Diagenesis Fluxes / 5.7.3:
Silica / 5.7.4:
Coupling with Sediment Resuspension / 5.7.6:
Submerged Aquatic Vegetation / 5.8:
Equations for a SAV Model / 5.8.1:
Coupling with the Water Quality Model / 5.8.3:
Water Quality Modeling / 5.9:
Model Parameters and Data Requirements / 5.9.1:
External Sources and TMDL / 5.9.2:
Point Sources and Nonpoint Sources / 6.1:
Atmospheric Deposition / 6.2:
Wetlands and Groundwater / 6.3:
Wetlands / 6.3.1:
Groundwater / 6.3.2:
Watershed Processes and TMDL Development / 6.4:
Watershed Processes / 6.4.1:
Total Maximum Daily Load (TMDL) / 6.4.2:
Mathematical Modeling and Statistical Analyses / 7:
Mathematical Models / 7.1:
Numerical Models / 7.1.1:
Model Selection / 7.1.2:
Spatial Resolution and Temporal Resolution / 7.1.3:
Statistical Analyses / 7.2:
Statistics for Model Performance Evaluation / 7.2.1:
Correlation and Regression / 7.2.2:
Spectral Analysis / 7.2.3:
Empirical Orthogonal Function (EOF) / 7.2.4:
EOF Case Study / 7.2.5:
Model Calibration and Verification / 7.3:
Model Calibration / 7.3.1:
Model Verification and Validation / 7.3.2:
Sensitivity Analysis / 7.3.3:
Rivers / 8:
Characteristics of Rivers / 8.1:
Hydrodynamic Processes in Rivers / 8.2:
River Flow and the Manning Equation / 8.2.1:
Advection and Dispersion in Rivers / 8.2.2:
Flow over Dams / 8.2.3:
Sediment and Water Quality Processes in Rivers / 8.3:
Sediment and Contaminants in Rivers / 8.3.1:
Impacts of River Flow on Water Quality / 8.3.2:
Eutrophication and Periphyton in Rivers / 8.3.3:
Dissolved Oxygen in Rivers / 8.3.4:
River Modeling / 8.4:
Case Study I: Blackstone River / 8.4.1:
Case Study II: Susquehanna River / 8.4.2:
Lakes and Reservoirs / 9:
Characteristics of Lakes and Reservoirs / 9.1:
Key Factors Controlling a Lake / 9.1.1:
Vertical Stratification / 9.1.2:
Biological Zones in Lakes / 9.1.3:
Characteristics of Reservoirs / 9.1.4:
Lake Pollution and Eutrophication / 9.1.5:
Inflow, Outflow, and Water Budget / 9.2:
Wind Forcing and Vertical Circulations / 9.2.2:
Seasonal Variations of Stratification / 9.2.3:
Gyres / 9.2.4:
Seiches / 9.2.5:
Sediment and Water Quality Processes in Lakes / 9.3:
Sediment Deposition in Reservoirs and Lakes / 9.3.1:
Algae and Nutrient Stratifications / 9.3.2:
Dissolved Oxygen Stratifications / 9.3.3:
Internal Cycling and Limiting Functions in Shallow Lakes / 9.3.4:
Lake Modeling / 9.4:
Case Study I: Lake Tenkiller / 9.4.1:
Case Study II: Lake Okeechobee / 9.4.2:
Estuaries and Coastal Waters / 10:
Tidal Processes / 10.1:
Tides / 10.2.1:
Tidal Currents / 10.2.2:
Harmonic Analysis / 10.2.3:
Hydrodynamic Processes in Estuaries / 10.3:
Salinity / 10.3.1:
Estuarine Circulation / 10.3.2:
Stratifications of Estuaries / 10.3.3:
Flushing Time / 10.3.4:
Sediment and Water Quality Processes in Estuaries / 10.4:
Sediment Transport under Tidal Forcing / 10.4.1:
Flocculation of Cohesive Sediment and Sediment Trapping / 10.4.2:
Eutrophication in Estuaries / 10.4.3:
Estuarine and Coastal Modeling / 10.5:
Open Boundary Conditions / 10.5.1:
Case Study I: Morro Bay / 10.5.2:
Environmental Fluid Dynamics Code / 10.5.3:
Toxic Chemical Transport and Fate / A1:
Numerical Schemes / A5:
Documentation and Application Aids / A7:
Conversion Factors / Appendix B:
Contents of Electronic Files / Appendix C:
Channel Model / C1:
St. Lucie Estuary and Indian River Lagoon Model / C2:
Lake Okeechobee Environmental Model / C3:
Documentation and Utility Programs / C4:
Bibliography
Index
Foreword
Preface
Acknowledgments
47.

図書

図書
Paolo Milani, Salvatore Iannotta
出版情報: New York : Springer, c1999  viii, 190 p. ; 24 cm
シリーズ名: Springer series in cluster physics
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Molecular Beams and Cluster Nucleation / 2:
Molecular Beams / 2.1:
Continuous Effusive Beams / 2.1.1:
Continuous Supersonic Beams / 2.1.2:
Pulsed Beams / 2.1.3:
Nucleation and Aggregation Processes / 2.2:
Classical Theory / 2.2.1:
Homogeneous Nucleation by Monomer Addition / 2.2.2:
Homogeneous Nucleation by Aggregation / 2.2.3:
Nucleation of Clusters in Beams / 2.2.4:
Semi-empirical Approach to Clustering in Free Jets / 2.2.5:
Cluster Sources / 3:
Vaporization Methods / 3.1:
Joule Heating / 3.1.1:
Plasma Generation for Cluster Production / 3.1.2:
Laser Vaporization / 3.1.3:
Glow and Arc Discharges / 3.1.4:
Continuous Sources / 3.2:
Effusive Joule-Heated Gas Aggregation Sources / 3.2.1:
Magnetron Plasma Sources / 3.2.2:
Supersonic Sources / 3.2.3:
Pulsed Sources / 3.3:
Pulsed Valves / 3.3.1:
Laser Vaporization Sources / 3.3.2:
Arc Pulsed Sources / 3.3.3:
Characterization and Manipulation of Cluster Beams / 4:
Mass Spectrometry / 4.1:
Quadrupole Mass Spectrometry / 4.1.1:
Time-of-Flight Mass Spectrometry / 4.1.2:
Retarding Potential Mass Spectrometry / 4.1.3:
Detection Methods / 4.2:
Ionization of Clusters / 4.2.1:
Charged Cluster Detection / 4.2.2:
Cluster Beam Characterization / 4.2.3:
Cluster Selection and Manipulation / 4.3:
Size and Energy Selection / 4.3.1:
Quadrupole Filter / 4.3.2:
Separation of Gas Mixtures in Supersonic Beams / 4.3.3:
Thin Film Deposition and Surface Modification by Cluster Beams / 5:
Kinetic Energy Regimes / 5.1:
Diffusion and Coalescence of Clusters on Surfaces / 5.2:
Low-Energy Deposition / 5.3:
Cluster Networks and Porous Films / 5.3.1:
Composite Nanocrystalline Materials / 5.3.2:
High-Energy Deposition / 5.4:
Implantation, Sputtering, Etching / 5.4.1:
Thin Film Formation / 5.4.2:
Outlook and Perspectives / 6:
Cluster Beam Processing of Surfaces / 6.1:
Nanostructured Materials Synthesis / 6.2:
Perspectives / 6.3:
Appendix
References
Introduction / 1:
Molecular Beams and Cluster Nucleation / 2:
Molecular Beams / 2.1:
48.

図書

図書
Richard J. Brown
出版情報: Oxford : Oxford University Press, 2018  xvi, 408 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
Maps / 1.1.2:
Symbolic Dynamics / 1.1.3:
Billiards / 1.1.4:
Higher-Order Recursions / 1.1.5:
The Viewpoint / 1.2:
Simple Dynamics / 2:
Preliminaries / 2.1:
A Simple System / 2.1.1:
The Time-t Map / 2.1.2:
Metrics on Sets / 2.1.3:
Lipschitz Continuity / 2.1.4:
The Contraction Principle / 2.2:
Contractions on Intervals / 2.2.1:
Contractions in Several Variables / 2.2.2:
Application: The Newton-Raphson Method / 2.2.3:
Application: Existence and Uniqueness of ODE Solutions / 2.2.4:
Application: Heron of Alexandria / 2.2.5:
Interval Maps / 2.3:
Cobwebbing / 2.3.1:
Fixed-Point Stability / 2.3.2:
Monotonic Maps / 2.3.3:
Homochnic/Heteroclinic Points / 2.3.4:
Bifurcations of Interval Maps / 2.4:
Saddle-Node Bifurcation / 2.4.1:
Transcritical Bifurcation / 2.4.2:
Pitchfork Bifurcation / 2.4.3:
First Return Maps / 2.5:
A Quadratic Interval Map; The Logistic Map / 2.6:
The Objects of Dynamics / 3:
Topology on Sets / 3.1:
More on Metrics / 3.2:
More on Lipschitz Continuity / 3.2.1:
Metric Equivalence / 3.2.2:
Fixed-Point Theorems / 3.2.3:
Some Non-Euclidean Metric Spaces / 3.3:
The n-Sphere / 3.3.1:
The Unit Circle / 3.3.2:
The Cylinder / 3.3.3:
The 2-Torus / 3.3.4:
A Cantor Set / 3.4:
The Koch Curve / 3.4.1:
Sierpinski Carpet / 3.4.2:
The Sponges / 3.4.3:
Flows and Maps of Euclidean Space / 4:
Linear, First-order ODE Systems in the Plane / 4.1:
General Homogeneous, Linear Systems in Euclidean Space / 4.1.1:
Autonomous Linear Systems / 4.1.2:
The Matrix Exponential / 4.1.3:
Two-Dimensional Classification / 4.1.4:
Bifurcations in Linear Planar Systems / 4.2:
Linearized Poincaré-Andronov-Hopf Bifurcation / 4.2.1:
Linear Planar Maps / 4.2.2:
Nodes: Sinks and Sources / 4.3.1:
Star or Proper Nodes / 4.3.2:
Degenerate or Improper Nodes / 4.3.3:
Spirals and Centers / 4.3.4:
Saddle Points / 4.3.5:
Linear Flows versus Linear Maps / 4.4:
Local Linearization and Stability of Equilibria / 4.5:
Isolated Periodic Orbit Stability / 4.6:
The Poincaré-Bendixson Theorem / 4.6.1:
Limit Sets of Flows / 4.6.2:
Flows in the Plane / 4.6.3:
Application: The van der Pol Oscillator / 4.6.4:
The Poincaré-Andronov-Hopf Bifurcation / 4.6.5:
Application: Competing Species / 4.7:
The Fixed Points / 4.7.1:
Type and Stability / 4.7.2:
Recurrence / 5:
Rotations of the circle / 5.1:
Continued Fraction Representation / 5.1.1:
Equidistribution and Weyl's Theorem / 5.2:
Application: Periodic Function Reconstruction via Sampling / 5.2.1:
Linear Flows on the Torus / 5.3:
Application: Lissajous Figures / 5.3.1:
Application: A Polygonal Billiard / 5.3.2:
Toral Translations / 5.4:
Invertible Circle Maps / 5.5:
Phase Volume Preservation / 6:
In compressibility / 6.1:
Newtonian Systems of Classical Mechanics / 6.2:
Generating Flows from Functions: Lagrange / 6.2.1:
Generating Flows from Functions: Hamilton / 6.2.2:
Exact Differential Equations / 6.2.3:
Application: The Planar Pendulum / 6.2.4:
First Integrals / 6.2.5:
Application: The Spherical Pendulum / 6.2.6:
Poincaré Recurrence / 6.3:
Non-Wandering Points / 6.3.1:
The Poincaré Recurrence Theorem / 6.3.2:
Circular Billiards / 6.4:
Elliptic Billiards / 6.4.2:
General Convex Billiards / 6.4.3:
Poincaré's Last Geometric Theorem / 6.4.4:
Application: Pitcher Problems / 6.4.5:
Complicated Orbit Structure / 7:
Counting Periodic Orbits / 7.1:
The Quadratic Map: Beyond 4 / 7.1.1:
Hyperbolic Toral Automorphisms / 7.1.2:
Application: Image Restoration / 7.1.3:
Inverse Limit Spaces / 7.1.4:
Shift Spaces / 7.1.5:
Markov Partitions / 7.1.6:
Application: The Baker's Transformation / 7.1.7:
Two-Dimensional Markov Partitions: Arnol'd's Cat Map / 7.2:
Chaos and Mixing / 7.3:
Sensitive Dependence on Initial Conditions / 7.4:
Quadratic Maps: The Final interval / 7.5:
Period-Doubling Bifurcation / 7.5.1:
Trie Schwarzian Derivative / 7.5.2:
Sharkovskii's Theorem / 7.5.3:
Two More Examples of Complicated Dynamical Systems / 7.6:
Complex Dynamics / 7.6.1:
Smale Horseshoe / 7.6.2:
Dynamical Invariants / 8:
Topological Conjugacy / 8.1:
Conjugate Maps / 8.1.1:
Conjugate Hows / 8.1.2:
Conjugacy as Classification / 8.1.3:
Topological Entropy / 8.2:
Lyapunov Exponents / 8.2.1:
Capacity / 8.2.2:
Box Dimension / 8.2.3:
Bowen-Dinaburg (Metric) Topological Entropy / 8.2.4:
Bibliography
Index
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
49.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
50.

図書

図書
Tod A. Laursen
出版情報: Berlin ; Tokyo : Springer, c2002  xv, 454 p. ; 24 cm
シリーズ名: Engineering online library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
Useful Background for this Presentation / 1.2:
Overview / 1.3:
Finite Element Formulations in Nonlinear Solid Mechanics / 2:
Initial/Boundary Value Problems in the Kinematically Lin-ear Regime / 2.1:
Strong Form of the EBVP / 2.1.1:
Weak Form of the IBVP / 2.1.2:
The IBVP in the Finite Strain Case / 2.2:
Notation and Problem Formulation / 2.2.1:
Finite Strain Kinematics / 2.2.2:
Stress Definitions Appropriate for Large Deformations / 2.2.3:
Frame Indifference / 2.2.4:
The Strong Form in Finite Strains / 2.2.5:
The Weak Form in Finite Strains / 2.2.6:
Finite Element Discretization / 2.3:
Discretized Weak Form; Generation of Discrete Non-linear Equations / 2.3.1:
Discrete Nonlinear Equations for the Kinematically Linear Case / 2.3.2:
Solution Strategies for Spatially Discrete Systems / 2.4:
Quasistatics and Incremental Load Methods / 2.4.1:
Dynamics and Global Time Stepping Procedures / 2.4.2:
Local (Constitutive) Time Stepping Procedures / 2.4.3:
Nonlinear Equation Solving / 2.4.4:
Consistent Algorithmic Linearization of Material Re-sponse / 2.4.5:
The Kinematically Linear Contact Problem / 3:
Strong Forms in Linearized Frictionless Contact / 3.1:
The Signorini Problem: Contact with a Rigid Obstacle / 3.1.1:
The Two Body Contact Problem / 3.1.2:
Weak Statements of the Contact Problem / 3.2:
Variational Inequalities / 3.2.1:
The Quasistatic Elastic Case: Contact as a Problem of Constrained Optimization / 3.2.2:
Methods of Constraint Enforcement / 3.3:
Classical Lagrange Multiplier Methods / 3.3.1:
Penalty Methods / 3.3.2:
Augmented Lagrangian Methods / 3.3.3:
Inclusion of Friction into the Problem Description / 3.4:
Friction Kinematics and Traction Measures / 3.4.1:
Unregularized Coulomb Friction Laws / 3.4.2:
Regularization of Friction / 3.4.3:
Variational Statements Including Friction / 3.4.4:
Nonlocal Frictional Descriptions / 3.4.5:
Continuum Mechanics of Large Deformation Contact / 4:
Two Body Contact Problem Definition / 4.1:
Local Momentum Balances / 4.1.1:
Initial and Boundary Conditions / 4.1.2:
Contact Constraints in Large Deformations / 4.2:
The Gap Function as Defined by Closest Point Projection / 4.2.1:
Frictional Kinematics on Interfaces / 4.2.2:
Frame Indifference of Contact Rate Variables / 4.2.3:
Coulomb Friction in Large Sliding / 4.2.4:
Summary: Strong Form of the Large Deformation Contact Problem / 4.3:
Virtual Work Expressions Incorporating Contact / 4.4:
Contact Virtual Work: The Contact Integral / 4.4.1:
Linearization of Contact Virtual Work / 4.4.2:
Summary: Weak Form of the Large Deformation Con-tact Problem / 4.4.3:
Finite Element Implementation of Contact Interaction / 5:
Finite Dimensional Representation of Contact Interaction / 5.1:
Contact Surface Discretization / 5.1.1:
Numerical Integration of the Contact Integral / 5.1.2:
Contact Detection (Searching) / 5.1.3:
Time Discretization / 5.2:
Global time integration schemes / 5.2.1:
Temporally Discrete Frictional Laws for the Penalty Regularized Case / 5.2.2:
Contact Stiffness and Residual: Penalty Regularized Case / 5.3:
Three dimensional matrix expressions / 5.3.1:
Two dimensional matrix expressions / 5.3.2:
Augmented Lagrangian Constraint Enforcement Algorithms / 5.4:
Uzawa's Method (Method of Multipliers) / 5.4.1:
Algorithmic Symmetrization Using Augmented La-grangians / 5.4.2:
Augmented Lagrangian Discrete Force and Stiffness Expressions / 5.4.3:
Numerical Examples / 5.5:
General Demonstrations of the Computational Frame-work / 5.5.1:
Demonstrations of Augmented Lagrangian Algorith-mic Performance / 5.5.2:
Tribological Complexity in Interface Constitutive Models / 6:
Rate and State Dependent Friction / 6.1:
Motivation / 6.1.1:
One Dimensional Model Development / 6.1.2:
Model Incorporation into Convective Slip Advected Frame / 6.1.3:
Local Time Stepping Algorithm / 6.1.4:
Contact Force Vector and Stiffness Matrix / 6.1.5:
Thermomechanically Coupled Friction on Interfaces / 6.1.6:
Thermally Coupled Problem Definition / 6.2.1:
A Thermodynamically Consistent Friction Model / 6.2.3:
Variational Principle and Finite Element Implemen-tation / 6.2.4:
Thermodynamical Algorithmic Consistency / 6.2.5:
Constitutive Framework for Bulk Continua / 6.3.1:
Thermomechanical Interface Model Framework / 6.3.2:
A Priori Stability Estimates for Dynamic Frictional Contact / 6.3.3:
A New Partitioned Scheme for Thermomechanical Contact / 6.3.4:
Algorithmic Treatment of Contact Conditions According to the Adiabatic Split / 6.3.5:
Energy-Momentum Approaches to Impact Mechanics / 7:
Energy Stability of Traditional Schemes / 7.1:
A Model System / 7.1.1:
The Concept of Energy Stability / 7.1.2:
Influence of Contact Constraints on System Energy / 7.1.3:
Energy-Momentum Methods for Elastodynamics / 7.2:
Conservation Laws / 7.2.1:
Conservative Discretization Schemes / 7.2.2:
Energy-Momentum Algorithmic Treatment of Prictionless Impact / 7.3:
Discrete Contact Constraints / 7.3.1:
Spatial Discretization and Implementation / 7.3.2:
Introduction of Frictional and Bulk Dissipation: Energy Con-sistency / 7.3.3:
Coulomb Friction Model Formulation / 7.4.1:
Local Split of the Coulomb Model / 7.4.2:
Algorithmic Formulation / 7.4.3:
Energy Consistent Treatment of Bulk Inelasticity / 7.4.4:
Numerical Examples With Friction and Inelasticity / 7.4.5:
EM Algorithms Involving a Discontinuous Velocity Update / 7.5:
Temporally Discontinuous Velocity Update / 7.5.1:
Reexamination of Conservation Conditions / 7.5.2:
Contact Constraints / 7.5.3:
Summary of the Algorithm / 7.5.4:
Emerging Paradigms for Contact Surface Discretization / 7.5.5:
Contact Smoothing / 8.1:
An Alternative Variational Framework / 8.1.1:
Smoothing Strategies in Two Dimensions / 8.1.2:
Smoothing Strategies in Three Dimensions / 8.1.3:
Mortar-Finite Element Methods for Contact Description / 8.1.4:
Tied Contact and the Role of Mortar Formulations in Convergence / 8.2.1:
A Mortar-Finite Element Formulation of Frictional Contact / 8.2.2:
Numerical Examples of Mortar Treatment of Frictional Contact / 8.2.3:
References
Index
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼