close
1.

図書

図書
American Institute of Chemical Engineers. Center for Chemical Process Safety
出版情報: New York : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1995  xxvii, 210 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
Preface
Acknowledgments
Glossary
List of Symbols
Introduction / Chapter 1:
General / 1.1:
Chemical Reactivity / 1.2:
Detonations, Deflagrations, and Runaways / 1.3:
Assessment and Testing Strategies / 1.4:
Identification of Hazardous Chemical Reactivity / Chapter 2:
Summary/Strategy / 2.1:
Hazard Identification Strategy / 2.1.1:
Exothermic Reactions / 2.1.3:
Experimental Thermal and Reactivity Measurements / 2.1.4:
Test Strategies / 2.1.5:
Overview of Thermal Stability Test methods / 2.1.6:
Examples of Interpretation and Application of Test Data / 2.1.7:
Technical Section / 2.2:
Identification of High Energy Substances / 2.2.2:
Hazard Prediction by Thermodynamic Calculations / 2.2.3:
Oxygen Balance / 2.2.3.1:
Calculation of the Reaction Enthalpy / 2.2.3.2:
Application of Computer Programs / 2.2.3.3:
Instability/Incompatibility Factors / 2.2.4:
Factors Influencing Stability / 2.2.4.1:
Redox Systems / 2.2.4.2:
Reactions with Water / 2.2.4.3:
Reactions between Halogenated Hydrocarbons and Metals / 2.2.4.4:
Practical Testing / 2.3:
Screening Tests / 2.3.1:
Thermal Analysis / 2.3.1.1:
Isoperibolic Calorimetry / 2.3.1.2:
Thermal Stability and Runaway Testing / 2.3.2:
Isothermal Storage Tests / 2.3.2.1:
Dewar Flask Testing and Adiabatic Storage Tests / 2.3.2.2:
Accelerating Rate Calorimeter (ARC) / 2.3.2.3:
Stability Tests for Powders / 2.3.2.4:
Explosibility Testing / 2.3.3:
.Detonation Testing / 2.3.3.1:
Deflagration Testing and Autoclave Testing / 2.3.3.2:
Mechanical Sensitivity Testing / 2.3.3.3:
Sensitivity to heating Under Confinement / 2.3.3.4:
Reactivity Testing / 2.3.4:
Pyrophoric Properties / 2.3.4.1:
Reactivity with Water / 2.3.4.2:
Oxidizing Properties / 2.3.4.3:
Flammability Testing / 2.3.5:
Chemical Reactivity Considerations in Process/Reactor Design and Operation / Chapter 3:
Thermal Hazards: Identification and Analysis / 3.1:
Cause, Definition, and Prevention of a Runaway / 3.1.1.1:
Some Simple Rules for Inherent Safety / 3.1.1.2:
Strategy for Inherent Safety in Design and Operation / 3.1.1.3:
Equipment to be Used for the Analysis of Hazards / 3.1.1.4:
Reactor, Heat and Mass Balance Considerations / 3.2:
Heat and Mass Balances, Kinetics, and Reaction Stability / 3.2.1:
Adiabatic Temperature Rise / 3.2.1.1:
The Reaction / 3.2.1.2:
Reaction Rate / 3.2.1.3:
Reaction Rate Constant / 3.2.1.4:
Concentration of Reactants / 3.2.1.5:
Effect of Surrounding Temperature on Stability / 3.2.1.6:
Effect of Agitation and Surface Fouling on Stability / 3.2.1.7:
Mass Balance / 3.2.1.8:
Choice of Reactor / 3.2.2:
Heat Transfer / 3.2.3:
Heat Transfer in Nonagitated Vessels / 3.2.3.1:
Heat Transfer in Agitated Vessels / 3.2.3.2:
Acquisition and Use of Process Design data / 3.3:
Bench-Scale Equipment for Batch/Tank Reactors / 3.3.1:
Reaction Calorimeter (RC1) / 3.3.2.1:
Contalab / 3.3.2.2:
CPA ThermoMetric Instruments / 3.3.2.3:
Quantitative Reaction Calorimeter / 3.3.2.4:
Specialized Rectors / 3.3.2.5:
Vent Size Package (VSP) / 3.3.2.6:
Reactive System Screening Tool (RSST) / 3.3.2.7:
Process Safety for Reactive Systems / 3.3.3:
Test Plan / 3.3.3.1:
System Under Investigation / 3.3.3.2:
Test Results / 3.3.3.3:
Malfunction and Process Deviation Testing / 3.3.3.4:
Pressure Effect / 3.3.3.5:
Results from the ARC, RSST, and VSP / 3.3.3.6:
Scale-up and Pilot Plants / 3.3.4:
General Remarks / 3.3.4.1:
Chemical Kinetics. 3 / 3.3.4.2:
List of Tables
List of Figures
Preface
2.

図書

図書
Ulrich Schubert, Nicola Hüsing
出版情報: Weinheim : Wiley-VCH, c2019  xviii, 404 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Abbreviations
Introduction / 1:
Solid-State Reactions / 2:
Reactions Between Solid Compounds / 2.1:
Ceramic Method / 2.1.1:
General Aspects of Solid-State Reactions / 2.1.1.1:
Facilitating Solid-State Reactions / 2.1.1.2:
Mechanochemical Synthesis / 2.1.2:
Carbothermal Reduction / 2.1.3:
Combustion Synthesis / 2.1.4:
Solution Combustion Synthesis / 2.1.4.1:
Solid-Gas Reactions / 2.2:
Ceramics Processing / 2.3:
Sintering / 2.3.1:
Intercalation Reactions / 2.4:
Mechanistic Aspects / 2.4.1:
Preparative Methods / 2.4.2:
Intercalation of Polymers in Layered Systems / 2.4.3:
Pillaring of Layered Compounds / 2.4.4:
Further Reading
Formation of Solids from the Gas Phase / 3:
Chemical Vapour Transport / 3.1:
Halogen Lamps / 3.1.1:
Transport Reactions / 3.1.2:
Chemical Vapour Deposition / 3.2:
General Aspects / 3.2.1:
Techniques / 3.2.2:
Metal CVD / 3.2.3:
Silicon and Aluminium / 3.2.3.1:
Tungsten / 3.2.3.2:
Copper / 3.2.3.3:
CVD of Carbon / 3.2.4:
CVD of Binary and Multinary Compounds / 3.2.5:
Metal Oxides / 3.2.5.1:
Metal Nitrides / 3.2.5.2:
Metal Chalcogenides and Pnictides / 3.2.5.3:
Aerosol-Assisted CVD / 3.2.6:
Chemical Vapour Infiltration / 3.2.7:
Gas-Phase Powder Syntheses / 3.3:
Formation of Solids from Solutions and Melts / 4:
Glass / 4.1:
The Structural Theory of Glass Formation / 4.1.1:
Crystallization Versus Glass Formation / 4.1.2:
Glass Melting / 4.1.3:
Phase Separation / 4.1.4:
Metallic Glasses / 4.1.5:
Crystallization from Solution / 4.2:
Monodispersity / 4.2.1:
Shape Control of Crystals / 4.2.2:
Non-classical Crystallization / 4.2.3:
Biomineralization / 4.2.4:
Biogenic Materials / 4.2.4.1:
Bioinspired Materials Chemistry / 4.2.4.2:
Electrodeposition / 4.3:
Colloids / 4.3.1:
Electrodeposition of Ceramics / 4.3.2:
Solvothermal Processes / 4.4:
Fundamentals / 4.4.1:
Growing Single Crystals / 4.4.2:
Solvothermal Synthesis / 4.4.3:
Synthetic Calcium Phosphate Biomaterials / 4.4.3.1:
Zeolites / 4.4.3.3:
Sol-Gel Processes / 4.5:
The Chemistry of Alkoxide Precursors / 4.5.1:
Hydrolysis and Condensation / 4.5.2:
Silica-Based Materials / 4.5.2.1:
Metal Oxide-Based Materials / 4.5.2.2:
The Sol-Gel Transition (Gelation) / 4.5.3:
Aging and Drying / 4.5.4:
Nonhydrolytic Sol-Gel Processes / 4.5.5:
Inorganic-Organic Hybrid Materials / 4.5.6:
Aerogels / 4.5.7:
Preparation and Modification of Inorganic Polymers / 5:
Synthesis and Crosslinking / 5.1:
Copolymers / 5.1.2:
Polysiloxanes (Silicones) / 5.2:
Properties and Applications / 5.2.1:
Structure / 5.2.2:
Preparation / 5.2.3:
Curing ('Vulcanizing') / 5.2.4:
Polyphosphazenes / 5.3:
Preparation and Modification / 5.3.1:
Polysilanes / 5.4:
Polycarbosilanes / 5.4.1:
Polysilazanes and Related Polymers / 5.6:
Polymers with B-N Backbones / 5.7:
Other Inorganic Polymers / 5.8:
Other Phosphorus-Containing Polymers / 5.8.1:
Polymers with S-N Backbones / 5.8.2:
Metallopolymers / 5.8.3:
Polymer-to-Ceramic Transformation / 5.9:
Self-Assembly / 6:
Self-Assembled Monolayers / 6.1:
Metal-Organic Frameworks / 6.2:
Modularity of the Structures / 6.2.1:
Synthesis and Modification / 6.2.2:
Supramolecular Arrangements of Surfactants and Block Copolymers / 6.3:
Layer-by-Layer Assembly / 6.4:
Templating / 7:
Introduction to Porosity and High Surface Area Materials / 7.1:
Infiltration and Coating of Templates / 7.2:
Replica Technique / 7.2.1:
Sacrificial Templates / 7.2.2:
Colloidal Crystals / 7.2.2.1:
Hollow Particles / 7.2.2.2:
Direct Foaming / 7.2.3:
Nanocasting / 7.2.4:
In Situ Formation of Templates / 7.3:
Breath Figures / 7.3.1:
Freeze Casting / 7.3.2:
Supramolecular Assemblies of Amphiphiles / 7.3.3:
Synthesis of Periodic Mesoporous Silicas / 7.3.3.1:
Evaporation-Induced Self-Assembly / 7.3.3.2:
Incorporation of Organic Groups / 7.3.3.3:
Reorganization and Transformation Processes / 7.4:
Pseudomorphic Transformation / 7.4.1:
Kirkendall Effect / 7.4.2:
Galvanic Replacement / 7.4.3:
Phase Separation and Leaching / 7.4.4:
Nanomaterials / 8:
Properties of Nanomaterials / 8.1:
Properties Due to Surface Effects / 8.1.1:
Properties of Nanocrystalline Materials / 8.1.2:
Catalytic Properties / 8.1.3:
Optical Properties / 8.1.4:
Electrical Properties / 8.1.5:
Magnetic Properties / 8.1.6:
Syntheses of Nanoparticles / 8.2:
Severe Plastic Deformation / 8.2.1:
Formation from Vapours / 8.2.2:
Formation from Solution / 8.2.3:
Surface Modification with Organic Groups / 8.2.4:
One-Dimensional Nanostructures / 8.3:
Nanowires and Nanorods / 8.3.1:
Nanotubes / 8.3.2:
Carbon Nanotubes / 8.3.2.1:
Titania Nanotubes / 8.3.2.2:
Two-Dimensional Nanomaterials / 8.4:
Graphene / 8.4.1:
Other 2D Nanomaterials / 8.4.2:
Heterostructures and Composites / 8.5:
Core-Shell Nanoparticles / 8.5.1:
Vertical 2D Heterostructures / 8.5.2:
Polymer-Matrix Nanocomposites / 8.5.3:
Supported Metal Nanoparticles / 8.5.4:
Glossary
Index
Preface
Acknowledgements
Abbreviations
3.

図書

図書
Charles E. Baukal, Jr.
出版情報: Boca Raton, Fla. : CRC Press, c2000  545 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
Research Needs / 1.1.2:
Literature Discussion / 1.2:
Heat Transfer / 1.2.1:
Combustion / 1.2.2:
Heat Transfer and Combustion / 1.2.3:
Combustion System Components / 1.3:
Burners / 1.3.1:
Competing Priorities / 1.3.1.1:
Design Factors / 1.3.1.2:
General Burner Types / 1.3.1.3:
Combustors / 1.3.2:
Design Considerations / 1.3.2.1:
General Classifications / 1.3.2.2:
Heat Load / 1.3.3:
Process Tubes / 1.3.3.1:
Moving Substrate / 1.3.3.2:
Opaque Materials / 1.3.3.3:
Transparent Materials / 1.3.3.4:
Heat Recovery Devices / 1.3.4:
Recuperators / 1.3.4.1:
Regenerators / 1.3.4.2:
References
Some Fundamentals of Combustion / Chapter 2:
Combustion Chemistry / 2.1:
Fuel Properties / 2.1.1:
Oxidizer Composition / 2.1.2:
Mixture Ratio / 2.1.3:
Operating Regimes / 2.1.4:
Combustion Properties / 2.2:
Combustion Products / 2.2.1:
Air and Fuel Preheat Temperature / 2.2.1.1:
Fuel Composition / 2.2.1.4:
Flame Temperature / 2.2.2:
Oxidizer and Fuel Composition / 2.2.2.1:
Oxidizer and Fuel Preheat Temperature / 2.2.2.2:
Available Heat / 2.2.3:
Flue Gas Volume / 2.2.4:
Exhaust Product Transport Properties / 2.3:
Density / 2.3.1:
Specific Heat / 2.3.2:
Thermal Conductivity / 2.3.3:
Viscosity / 2.3.4:
Prandtl Number / 2.3.5:
Lewis Number / 2.3.6:
Heat Transfer Modes / Chapter 3:
Convection / 3.1:
Forced Convection / 3.2.1:
Forced Convection from Flames / 3.2.1.1:
Forced Convection from Outside Combustor Wall / 3.2.1.2:
Forced Convection from Hot Gases to Tubes / 3.2.1.3:
Natural Convection / 3.2.2:
Natural Convection from Flames / 3.2.2.1:
Natural Convection from Outside Combustor Wall / 3.2.2.2:
Radiation / 3.3:
Surface Radiation / 3.3.1:
Nonluminous Radiation / 3.3.2:
Theory / 3.3.2.1:
Combustion Studies / 3.3.2.2:
Luminous Radiation / 3.3.3:
Conduction / 3.3.3.1:
Steady-State Conduction / 3.4.1:
Transient Conduction / 3.4.2:
Phase Change / 3.5:
Melting / 3.5.1:
Boiling / 3.5.2:
Internal Boiling / 3.5.2.1:
External Boiling / 3.5.2.2:
Condensation / 3.5.3:
Heat Sources and Sinks / Chapter 4:
Heat Sources / 4.1:
Combustibles / 4.1.1:
Fuel Combustion / 4.1.1.1:
Volatile Combustion / 4.1.1.2:
Thermochemical Heat Release / 4.1.2:
Equilibrium TCHR / 4.1.2.1:
Catalytic TCHR / 4.1.2.2:
Mixed TCHR / 4.1.2.3:
Heat Sinks / 4.2:
Load / 4.2.1:
Tubes / 4.2.1.1:
Substrate / 4.2.1.2:
Granular Solid / 4.2.1.3:
Molten Liquid / 4.2.1.4:
Surface Conditions / 4.2.1.5:
Wall Losses / 4.2.2:
Openings / 4.2.3:
Gas Flow Through Openings / 4.2.3.1:
Material Transport / 4.2.4:
Computer Modeling / Chapter 5:
Combustion Modeling / 5.1:
Modeling Approaches / 5.2:
Fluid Dynamics / 5.2.1:
Moment Averaging / 5.2.1.1:
Vortex Methods / 5.2.1.2:
Spectral Methods / 5.2.1.3:
Direct Numerical Simulation / 5.2.1.4:
Geometry / 5.2.2:
Zero-Dimensional Modeling / 5.2.2.1:
One-Dimensional Modeling / 5.2.2.2:
Multi-dimensional Modeling / 5.2.2.3:
Reaction Chemistry / 5.2.3:
Nonreacting Flows / 5.2.3.1:
Simplified Chemistry / 5.2.3.2:
Complex Chemistry / 5.2.3.3:
Nonradiating / 5.2.4:
Participating Media / 5.2.4.2:
Time Dependence / 5.2.5:
Steady State / 5.2.5.1:
Transient / 5.2.5.2:
Simplified Models / 5.3:
Computational Fluid Dynamic Modeling / 5.4:
Increasing Popularity of CFD / 5.4.1:
Potential Problems of CFD / 5.4.2:
Equations / 5.4.3:
Chemistry / 5.4.3.1:
Multiple Phases / 5.4.3.4:
Boundary and Initial Conditions / 5.4.4:
Inlets and Outlets / 5.4.4.1:
Surfaces / 5.4.4.2:
Symmetry / 5.4.4.3:
Discretization / 5.4.5:
Finite Difference Technique / 5.4.5.1:
Finite Volume Technique / 5.4.5.2:
Finite Element Technique / 5.4.5.3:
Mixed / 5.4.5.4:
None / 5.4.5.5:
Solution Methods / 5.4.6:
Model Validation / 5.4.7:
Industrial Combustion Examples / 5.4.8:
Modeling Burners / 5.4.8.1:
Modeling Combustors / 5.4.8.2:
Experimental Techniques / Chapter 6:
Heat Flux / 6.1:
Total Heat Flux / 6.2.1:
Steady-State Uncooled Solids / 6.2.1.1:
Steady-State Cooled Solids / 6.2.1.2:
Steady-State Cooled Gages / 6.2.1.3:
Transient Uncooled Targets / 6.2.1.4:
Transient Uncooled Gages / 6.2.1.5:
Radiant Heat Flux / 6.2.2:
Heat Flux Gage / 6.2.2.1:
Ellipsoidal Radiometer / 6.2.2.2:
Spectral Radiometer / 6.2.2.3:
Other Techniques / 6.2.2.4:
Convective Heat Flux / 6.2.3:
Temperature / 6.3:
Gas Temperature / 6.3.1:
Suction Pyrometer / 6.3.1.1:
Optical Techniques / 6.3.1.2:
Fine Wire Thermocouples / 6.3.1.3:
Line Reversal / 6.3.1.4:
Surface Temperature / 6.3.2:
Embedded Thermocouple / 6.3.2.1:
Infrared Detectors / 6.3.2.2:
Gas Flow / 6.4:
Gas Velocity / 6.4.1:
Pitot Tubes / 6.4.1.1:
Laser Doppler Velocimetry / 6.4.1.2:
Static Pressure Distribution / 6.4.1.3:
Stagnation Velocity Gradient / 6.4.2.1:
Stagnation Zone / 6.4.2.2:
Gas Species / 6.5:
Other Measurements / 6.6:
Physical Modeling / 6.7:
Flame Impingement / Chapter 7:
Experimental Conditions / 7.1:
Configurations / 7.2.1:
Flame Normal to a Cylinder in Crossflow / 7.2.1.1:
Flame Normal to a Hemispherically Nosed Cylinder / 7.2.1.2:
Flame Normal to a Plane Surface / 7.2.1.3:
Flame Parallel to a Plane Surface / 7.2.1.4:
Operating Conditions / 7.2.2:
Oxidizers / 7.2.2.1:
Fuels / 7.2.2.2:
Equivalence Ratios / 7.2.2.3:
Firing Rates / 7.2.2.4:
Reynolds Number / 7.2.2.5:
Nozzle Diameter / 7.2.2.6:
Location / 7.2.2.8:
Stagnation Targets / 7.2.3:
Size / 7.2.3.1:
Target Materials / 7.2.3.2:
Surface Preparation / 7.2.3.3:
Surface Temperatures / 7.2.3.4:
Measurements / 7.2.4:
Semianalytical Heat Transfer Solutions / 7.3:
Equation Parameters / 7.3.1:
Thermophysical Properties / 7.3.1.1:
Sibulkin Results / 7.3.1.2:
Fay and Riddell Results / 7.3.2.2:
Rosner Results / 7.3.2.3:
Comparisons With Experiments / 7.3.3:
Forced Convection (Negligible TCHR) / 7.3.3.1:
Forced Convection with TCHR / 7.3.3.2:
Sample Calculations / 7.3.4:
Laminar Flames Without TCHR / 7.3.4.1:
Turbulent Flames Without TCHR / 7.3.4.2:
Laminar Flames with TCHR
Summary / 7.3.5:
Empirical Heat Transfer Correlations / 7.4:
Flames Impinging Normal to a Cylinder / 7.4.1:
Local Convection Heat Transfer / 7.4.2.1:
Average Convection Heat Transfer / 7.4.2.2:
Average Convection Heat Transfer with TCHR / 7.4.2.3:
Average Radiation Heat Transfer / 7.4.2.4:
Maximum Convection and Radiation Heat Transfer / 7.4.2.5:
Flames Impining Normal to a Hemi-Nosed Cylinder / 7.4.3:
Local Convection Heat Transfer with TCHR / 7.4.3.1:
Flames Impinging Normal to a Plane Surface / 7.4.4:
Flames Parallel to a Plane Surface / 7.4.4.1:
Local Convection Heat Transfer With TCHR / 7.4.5.1:
Local Convection and Radiation Heat Transfer / 7.4.5.2:
Heat Transfer from Burners / Chapter 8:
Open-Flame Burners / 8.1:
Momentum Effects / 8.2.1:
Flame Luminosity / 8.2.2:
Firing Rate Effects / 8.2.3:
Flame Shape Effects / 8.2.4:
Radiant Burners / 8.3:
Perforated Ceramic or Wire Mesh Radiant Burners / 8.3.1:
Flame Impingement Radiant Burners / 8.3.2:
Porous Refractory Radiant Burners / 8.3.3:
Advanced Ceramic Radiant Burners / 8.3.4:
Radiant Wall Burners / 8.3.5:
Radiant Tube Burners / 8.3.6:
Effects on Heat Transfer / 8.4:
Fuel Effects / 8.4.1:
Solid Fuels / 8.4.1.1:
Liquid Fuels / 8.4.1.2:
Gaseous Fuels / 8.4.1.3:
Fuel Temperature / 8.4.1.4:
Oxidizer Effects / 8.4.2:
Oxidizer Temperature / 8.4.2.1:
Staging Effects / 8.4.3:
Fuel Staging / 8.4.3.1:
Oxidizer Staging / 8.4.3.2:
Burner Orientation / 8.4.4:
Hearth-Fired Burners / 8.4.4.1:
Wall-Fired Burners / 8.4.4.2:
Roof-Fired Burners / 8.4.4.3:
Side-Fired Burners / 8.4.4.4:
Heat Recuperation / 8.4.5:
Regenerative Burners / 8.4.5.1:
Recuperative Burners / 8.4.5.2:
Furnace or Flue Gas Recirculation / 8.4.5.3:
Pulse Combustion / 8.4.6:
In-Flame Treatment / 8.5:
Heat Transfer in Furnaces / Chapter 9:
Furnaces / 9.1:
Firing Method / 9.2.1:
Direct Firing / 9.2.1.1:
Indirect Firing / 9.2.1.2:
Heat Distribution / 9.2.1.3:
Load Processing Method / 9.2.2:
Batch Processing / 9.2.2.1:
Continuous Processing / 9.2.2.2:
Hybrid Processing / 9.2.2.3:
Heat Transfer Medium / 9.2.3:
Gaseous Medium / 9.2.3.1:
Vacuum / 9.2.3.2:
Liquid Medium / 9.2.3.3:
Solid Medium / 9.2.3.4:
Rotary Geometry / 9.2.4:
Rectangular Geometry / 9.2.4.2:
Ladle Geometry / 9.2.4.3:
Vertical Cylindrical Geometry / 9.2.4.4:
Furnace Types / 9.2.5:
Reverberatory Furnace / 9.2.5.1:
Shaft Kiln / 9.2.5.2:
Rotary Furnace / 9.2.5.3:
Heat Recovery / 9.3:
Gas Recirculation / 9.3.1:
Flue Gas Recirculation / 9.3.3.1:
Furnace Gas Recirculation / 9.3.3.2:
Lower Temperature Applications / Chapter 10:
Ovens and Dryers / 10.1:
Predryer / 10.2.1:
Dryer / 10.2.2:
Fired Heaters / 10.3:
Reformer / 10.3.1:
Process Heater / 10.3.2:
Heat Treating / 10.4:
Standard Atmosphere / 10.4.1:
Special Atmosphere / 10.4.2:
Higher Temperature Applications / Chapter 11:
Industries / 11.1:
Metals Industry / 11.2:
Ferrous Metal Production / 11.2.1:
Electric Arc Furnace / 11.2.1.1:
Smelting / 11.2.1.2:
Ladle Preheating / 11.2.1.3:
Reheating Furnace / 11.2.1.4:
Forging / 11.2.1.5:
Aluminum Metal Production / 11.2.2:
Minerals Industry / 11.3:
Glass / 11.3.1:
Types of Traditional Glass-Melting Furnaces / 11.3.1.1:
Unit Melter / 11.3.1.2:
Recuperative Melter / 11.3.1.3:
Regenerative or Siemens Furnace / 11.3.1.4:
Oxygen-Enhanced Combustion for Glass Production / 11.3.1.5:
Advanced Techniques for Glass Production / 11.3.1.6:
Cement and Lime / 11.3.2:
Bricks, Refractories, and Ceramics / 11.3.3:
Waste Incineration / 11.4:
Types of Incinerators / 11.4.1:
Municipal Waste Incinerators / 11.4.1.1:
Sludge Incinerators / 11.4.1.2:
Mobile Incinerators / 11.4.1.3:
Transportable Incinerators / 11.4.1.4:
Fixed Hazardous Waste Incinerators / 11.4.1.5:
Heat Transfer in Waste Incineration / 11.4.2:
Advanced Combustion Systems / Chapter 12:
Oxygen-Enhanced Combustion / 12.1:
Typical Use Methods / 12.2.1:
Air Enrichment / 12.2.1.1:
O[subscript 2] Lancing / 12.2.1.2:
Oxy/Fuel / 12.2.1.3:
Air-Oxy/Fuel / 12.2.1.4:
Heat Transfer Benefits / 12.2.2:
Increased Productivity / 12.2.3.1:
Higher Thermal Efficiencies / 12.2.3.2:
Higher Heat Transfer Efficiency / 12.2.3.3.:
Increased Flexibility / 12.2.3.4:
Potential Heat Transfer Problems / 12.2.4:
Refractory Damage / 12.2.4.1:
Nonuniform Heating / 12.2.4.2:
Industrial Heating Applications / 12.2.5:
Metals / 12.2.5.1:
Minerals / 12.2.5.2:
Incineration / 12.2.5.3:
Other / 12.2.5.4:
Submerged Combustion / 12.3:
Metals Production / 12.3.1:
Minerals Production / 12.3.2:
Liquid Heating / 12.3.3:
Miscellaneous / 12.4:
Surface Combustor-Heater / 12.4.1:
Direct-Fired Cylinder Dryer / 12.4.2:
Appendices
Reference Sources for Further Information / Appendix A:
Common Conversions / Appendix B:
Methods of Expressing Mixture Ratios for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] / Appendix C:
Properties for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] Flames / Appendix D:
Fluid Dynamics Equations / Appendix E:
Material Properties / Appendix F:
Author Index
Subject Index
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
4.

図書

図書
M. Hinze ... [et al.]
出版情報: [Dordrecht] : Springer, c2009  xi, 270 p. ; 24 cm
シリーズ名: Mathematical modelling : theory and applications ; v. 23
所蔵情報: loading…
目次情報: 続きを見る
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
Introduction and Examples / 1.1:
Introduction / 1.1.1:
Examples for Optimization Problems with PDEs / 1.1.2:
Optimization of a Stationary Heating Process / 1.1.3:
Optimization of an Unsteady Heating Processes / 1.1.4:
Optimal Design / 1.1.5:
Linear Functional Analysis and Sobolev Spaces / 1.2:
Banach and Hilbert Spaces / 1.2.1:
Sobolev Spaces / 1.2.2:
Weak Convergence / 1.2.3:
Weak Solutions of Elliptic and Parabolic PDEs / 1.3:
Weak Solutions of Elliptic PDEs / 1.3.1:
Weak Solutions of Parabolic PDEs / 1.3.2:
Gateaux- and Fréchet Differentiability / 1.4:
Basic Definitions / 1.4.1:
Implicit Function Theorem / 1.4.2:
Existence of Optimal Controls / 1.5:
Existence Result for a General Linear-Quadratic Problem / 1.5.1:
Existence Result for Nonlinear Problems / 1.5.2:
Applications / 1.5.3:
Reduced Problem, Sensitivities and Adjoints / 1.6:
Sensitivity Approach / 1.6.1:
Adjoint Approach / 1.6.2:
Application to a Linear-Quadratic Optimal Control Problem / 1.6.3:
A Lagrangian-Based View of the Adjoint Approach / 1.6.4:
Second Derivatives / 1.6.5:
Optimality Conditions / 1.7:
Optimality Conditions for Simply Constrained Problems / 1.7.1:
Optimality Conditions for Control-Constrained Problems / 1.7.2:
Optimality Conditions for Problems with General Constraints / 1.7.3:
Optimal Control of Instationary Incompressible Navier-Stokes Flow / 1.8:
Functional Analytic Setting / 1.8.1:
Analysis of the Flow Control Problem / 1.8.2:
Reduced Optimal Control Problem / 1.8.3:
Optimization Methods in Banach Spaces / 2:
Michael Ulbrich
Synopsis / 2.1:
Globally Convergent Methods in Banach Spaces / 2.2:
Unconstrained Optimization / 2.2.1:
Optimization on Closed Convex Sets / 2.2.2:
General Optimization Problems / 2.2.3:
Newton-Based Methods-A Preview / 2.3:
Unconstrained Problems-Newton's Method / 2.3.1:
Simple Constraints / 2.3.2:
General Inequality Constraints / 2.3.3:
Generalized Newton Methods / 2.4:
Motivation: Application to Optimal Control / 2.4.1:
A General Superlinear Convergence Result / 2.4.2:
The Classical Newton's Method / 2.4.3:
Generalized Differential and Semismoothness / 2.4.4:
Semismooth Newton Methods / 2.4.5:
Semismooth Newton Methods in Function Spaces / 2.5:
Semismoothness of Superposition Operators / 2.5.1:
Application to Optimal Control / 2.5.3:
Application to Elliptic Optimal Control Problems / 2.5.5:
Optimal Control of the Incompressible Navier-Stokes Equations / 2.5.7:
Sequential Quadratic Programming / 2.6:
Lagrange-Newton Methods for Equality Constrained Problems / 2.6.1:
The Josephy-Newton Method / 2.6.2:
SQP Methods for Inequality Constrained Problems / 2.6.3:
State-Constrained Problems / 2.7:
SQP Methods / 2.7.1:
Further Aspects / 2.7.2:
Mesh Independence / 2.8.1:
Application of Fast Solvers / 2.8.2:
Other Methods / 2.8.3:
Discrete Concepts in PDE Constrained Optimization / 3:
Michael Hinze
Control Constraints / 3.1:
Stationary Model Problem / 3.2.1:
First Discretize, Then Optimize / 3.2.2:
First Optimize, Then Discretize / 3.2.3:
Discussion and Implications / 3.2.4:
The Variational Discretization Concept / 3.2.5:
Error Estimates / 3.2.6:
Boundary Control / 3.2.7:
Some Literature Related to Control Constraints / 3.2.8:
Constraints on the State / 3.3:
Pointwise Bounds on the State / 3.3.1:
Pointwise Bounds on the Gradient of the State / 3.3.2:
Time Dependent Problem / 3.4:
Mathematical Model, State Equation / 3.4.1:
Optimization Problem / 3.4.2:
Discretization / 3.4.3:
Further Literature on Control of Time-Dependent Problems / 3.4.4:
Rene Pinnau / 4:
Optimal Semiconductor Design / 4.1:
Semiconductor Device Physics / 4.1.1:
The Optimization Problem / 4.1.2:
Numerical Results / 4.1.3:
Optimal Control of Glass Cooling / 4.2:
Modeling / 4.2.1:
Optimal Boundary Control / 4.2.2:
References / 4.2.3:
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
5.

図書

図書
Robert Haining
出版情報: Cambridge [England] ; New York : Cambridge University Press, 1993, c1990  xxi, 409 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
List of tables and displays
Preface
Acknowledgements
Introduction to issues in the analysis of spatially referenced data / Part A:
Introduction / 1:
Notes
Issues in analysing spatial data / 2:
Spatial data: sources, forms and storage / 2.1:
Sources: quality and quantity / 2.1.1:
Forms and attributes / 2.1.2:
Data storage / 2.1.3:
Spatial data analysis / 2.2:
The importance of space in the social and environmental sciences / 2.2.1:
Measurement error / 2.2.1 (a):
Continuity effects and spatial heterogeneity / 2.2.1 (b):
Spatial processes / 2.2.1 (c):
Types of analytical problems / 2.2.2:
Problems in spatial data analysis / 2.3:
Conceptual models and inference frameworks for spatial data / 2.3.1:
Modelling spatial variation / 2.3.2:
Statistical modelling of spatial data / 2.3.3:
Dependency in spatial data / 2.3.3 (a):
Spatial heterogeneity: regional subdivisions and parameter variation / 2.3.3 (b):
Spatial distribution of data points and boundary effects / 2.3.3 (c):
Assessing model fit / 2.3.3 (d):
Distributions / 2.3.3 (e):
Extreme data values / 2.3.3 (f):
Model sensitivity to the areal system / 2.3.3 (g):
Size-variance relationships in homogeneous aggregates / 2.3.3 (h):
A statistical framework for spatial data analysis / 2.4:
Data adaptive modelling / 2.4.1:
Robust and resistant parameter estimation / 2.4.2:
Robust estimation of the centre of a symmetric distribution / 2.4.2 (a):
Robust estimation of regression parameters / 2.4.2 (b):
Parametric models for spatial variation / Part B:
Statistical models for spatial populations / 3:
Models for spatial populations: preliminary considerations / 3.1:
Spatial stationarity and isotropy / 3.1.1:
Second order (weak) stationarity and isotropy / 3.1.1 (a):
Second order (weak) stationarity and isotropy of differences from the mean / 3.1.1 (b):
Second order (weak) stationarity and isotropy of increments / 3.1.1 (c):
Order relationships in one and two dimensions / 3.1.2:
Population models for continuous random variables / 3.2:
Models for the mean of a spatial population / 3.2.1:
Trend surface models / 3.2.1 (a):
Regression model / 3.2.1 (b):
Models for second order or stochastic variation of a spatial population / 3.2.2:
Interaction models for V of a MVN distribution / 3.2.2 (a):
Interaction models for other multivariate distributions / 3.2.2 (b):
Direct specification of V / 3.2.2 (c):
Intrinsic random functions / 3.2.2 (d):
Population models for discrete random variables / 3.3:
Boundary models for spatial populations / 3.4:
Edge structures, weighting schemes and the dispersion matrix / 3.5:
Conclusions: issues in representing spatial variation / 3.6:
Simulating spatial models / Appendix:
Statistical analysis of spatial populations / 4:
Model selection / 4.1:
Statistical inference with interaction schemes / 4.2:
Parameter estimation: maximum likelihood (ML) methods / 4.2.1:
[mu] unknown; V known / 4.2.1 (a):
[mu] known; V unknown / 4.2.1 (b):
[mu] and V unknown / 4.2.1 (c):
Models with non-constant variance / 4.2.1 (d):
Parameter estimation: other methods / 4.2.2:
Ordinary least squares and pseudo-likelihood estimators / 4.2.2 (a):
Coding estimators / 4.2.2 (b):
Moment estimators / 4.2.2 (c):
Parameter estimation: discrete valued interaction models / 4.2.3:
Properties of ML estimators / 4.2.4:
Large sample properties / 4.2.4 (a):
Small sample properties / 4.2.4 (b):
A note on boundary effects / 4.2.4 (c):
Hypothesis testing for interaction schemes / 4.2.5:
Likelihood ratio tests / 4.2.5 (a):
Lagrange multiplier tests / 4.2.5 (b):
Statistical inference with covariance functions and intrinsic random functions / 4.3:
Parameter estimation: maximum likelihood methods / 4.3.1:
Properties of estimators and hypothesis testing / 4.3.2:
Validation in spatial models / 4.4:
The consequences of ignoring spatial correlation in estimating the mean / 4.5:
Spatial data collection and preliminary analysis / Part C:
Sampling spatial populations / 5:
Spatial sampling designs / 5.1:
Point sampling / 5.2.1:
Quadrat and area sampling / 5.2.2:
Sampling spatial surfaces: estimating the mean / 5.3:
Fixed populations with trend or periodicity / 5.3.1:
Populations with second order variation / 5.3.2:
Results for one-dimensional series / 5.3.2 (a):
Results for two-dimensional surfaces / 5.3.2 (b):
Standard errors for confidence intervals and selecting sample size / 5.3.3:
Sampling spatial surfaces: second order variation / 5.4:
Kriging / 5.4.1:
Scales of variation / 5.4.2:
Sampling applications / 5.5:
Concluding comments / 5.6:
Preliminary analysis of spatial data / 6:
Preliminary data analysis: distributional properties and spatial arrangement / 6.1:
Univariate data analysis / 6.1.1:
General distributional properties / 6.1.1 (a):
Spatial outliers / 6.1.1 (b):
Spatial trends / 6.1.1 (c):
Second order non-stationarity / 6.1.1 (d):
Regional subdivisions / 6.1.1 (e):
Multivariate data analysis / 6.1.2:
Data transformations / 6.1.3:
Preliminary data analysis: detecting spatial pattern, testing for spatial autocorrelation / 6.2:
Available test statistics / 6.2.1:
Constructing a test / 6.2.2:
Interpretation / 6.2.3:
Choosing a test / 6.2.4:
Describing spatial variation: robust estimation of spatial variation / 6.3:
Robust estimators of the semi-variogram / 6.3.1:
Robust estimation of covariances / 6.3.2:
Concluding remarks / 6.4:
Modelling spatial data / Part D:
Analysing univariate data sets / 7:
Describing spatial variation / 7.1:
Non-stationary mean, stationary second order variation: trend surface models with correlated errors / 7.1.1:
Non-stationary mean, stationary increments: semi-variogram models and polynomial generalised covariance functions / 7.1.2:
Discrete data / 7.1.3:
Interpolation and estimating missing values / 7.2:
Ad hoc and cartographic techniques / 7.2.1:
Distribution based techniques / 7.2.2:
Sequential approaches (sampling a continuous surface) / 7.2.2 (a):
Simultaneous approaches / 7.2.2 (b):
Extensions / 7.2.3:
Obtaining areal properties / 7.2.3 (a):
Reconciling data sets on different areal frameworks / 7.2.3 (b):
Categorical data / 7.2.3 (c):
Other information for interpolation / 7.2.3 (d):
Analysing multivariate data sets / 8:
Measures of spatial correlation and spatial association / 8.1:
Correlation measures / 8.1.1:
Measures of association / 8.1.2:
Regression modelling / 8.2:
Problems due to the assumptions of least squares not being satisfied / 8.2.1:
Problems of model specification and analysis / 8.2.2:
Model discrimination / 8.2.2 (a):
Specifying W / 8.2.2 (b):
Parameter estimation and inference / 8.2.2 (c):
Model evaluation / 8.2.2 (d):
Interpretation problems / 8.2.3:
Problems due to data characteristics / 8.2.4:
Numerical problems / 8.2.5:
Regression applications / 8.3:
Model diagnostics and model revision (a) new explanatory variables / Example 8.1:
Model diagnostics and model revision (b) developing a spatial regression model / Example 8.2:
Regression modelling with census variables: Glasgow health data / Example 8.3:
Identifying spatial interaction and heterogeneity: Sheffield petrol price data / Example 8.4:
Robust estimation of the parameters of interaction schemes
Postscript
Glossary
References
Index
List of tables and displays
Preface
Acknowledgements
6.

図書

図書
Oded Goldreich
出版情報: Cambridge : Cambridge University Press, 2008  xxiv, 606 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
Preface
Organization and Chapter Summaries
Acknowledgments
Introduction and Preliminaries / 1:
Introduction / 1.1:
A Brief Overview of Complexity Theory / 1.1.1:
Characteristics of Complexity Theory / 1.1.2:
Contents of This Book / 1.1.3:
Approach and Style of This Book / 1.1.4:
Standard Notations and Other Conventions / 1.1.5:
Computational Tasks and Models / 1.2:
Representation / 1.2.1:
Computational Tasks / 1.2.2:
Uniform Models (Algorithms) / 1.2.3:
Non-uniform Models (Circuits and Advice) / 1.2.4:
Complexity Classes / 1.2.5:
Chapter Notes
P, NP, and NP-Completeness / 2:
The P Versus NP Question / 2.1:
The Search Version: Finding Versus Checking / 2.1.1:
The Decision Version: Proving Versus Verifying / 2.1.2:
Equivalence of the Two Formulations / 2.1.3:
Two Technical Comments Regarding NP / 2.1.4:
The Traditional Definition of NP / 2.1.5:
In Support of P Different from NP / 2.1.6:
Philosophical Meditations / 2.1.7:
Polynomial-Time Reductions / 2.2:
The General Notion of a Reduction / 2.2.1:
Reducing Optimization Problems to Search Problems / 2.2.2:
Self-Reducibility of Search Problems / 2.2.3:
Digest and General Perspective / 2.2.4:
NP-Completeness / 2.3:
Definitions / 2.3.1:
The Existence of NP-Complete Problems / 2.3.2:
Some Natural NP-Complete Problems / 2.3.3:
NP Sets That Are Neither in P nor NP-Complete / 2.3.4:
Reflections on Complete Problems / 2.3.5:
Three Relatively Advanced Topics / 2.4:
Promise Problems / 2.4.1:
Optimal Search Algorithms for NP / 2.4.2:
The Class coNP and Its Intersection with NP / 2.4.3:
Exercises
Variations on P and NP / 3:
Non-uniform Polynomial Time (P/poly) / 3.1:
Boolean Circuits / 3.1.1:
Machines That Take Advice / 3.1.2:
The Polynomial-Time Hierarchy (PH) / 3.2:
Alternation of Quantifiers / 3.2.1:
Non-deterministic Oracle Machines / 3.2.2:
The P/poly Versus NP Question and PH / 3.2.3:
More Resources, More Power? / 4:
Non-uniform Complexity Hierarchies / 4.1:
Time Hierarchies and Gaps / 4.2:
Time Hierarchies / 4.2.1:
Time Gaps and Speedup / 4.2.2:
Space Hierarchies and Gaps / 4.3:
Space Complexity / 5:
General Preliminaries and Issues / 5.1:
Important Conventions / 5.1.1:
On the Minimal Amount of Useful Computation Space / 5.1.2:
Time Versus Space / 5.1.3:
Circuit Evaluation / 5.1.4:
Logarithmic Space / 5.2:
The Class L / 5.2.1:
Log-Space Reductions / 5.2.2:
Log-Space Uniformity and Stronger Notions / 5.2.3:
Undirected Connectivity / 5.2.4:
Non-deterministic Space Complexity / 5.3:
Two Models / 5.3.1:
NL and Directed Connectivity / 5.3.2:
A Retrospective Discussion / 5.3.3:
PSPACE and Games / 5.4:
Randomness and Counting / 6:
Probabilistic Polynomial Time / 6.1:
Basic Modeling Issues / 6.1.1:
Two-Sided Error: The Complexity Class BPP / 6.1.2:
One-Sided Error: The Complexity Classes RP and coRP / 6.1.3:
Zero-Sided Error: The Complexity Class ZPP / 6.1.4:
Randomized Log-Space / 6.1.5:
Counting / 6.2:
Exact Counting / 6.2.1:
Approximate Counting / 6.2.2:
Searching for Unique Solutions / 6.2.3:
Uniform Generation of Solutions / 6.2.4:
The Bright Side of Hardness / 7:
One-Way Functions / 7.1:
Generating Hard Instances and One-Way Functions / 7.1.1:
Amplification of Weak One-Way Functions / 7.1.2:
Hard-Core Preicates / 7.1.3:
Reflections on Hardness Amplification / 7.1.4:
Hard Problems in E / 7.2:
Amplification with Respect to Polynomial-Size Circuits / 7.2.1:
Amplification with Respect to Exponential-Size Circuits / 7.2.2:
Pseudorandom Generators / 8:
The General Paradigm / 8.1:
General-Purpose Pseudorandom Generators / 8.2:
The Basic Definition / 8.2.1:
The Archetypical Application / 8.2.2:
Computational Indistinguishability / 8.2.3:
Amplifying the Stretch Function / 8.2.4:
Constructions / 8.2.5:
Non-uniformly Strong Pseudorandom Generators / 8.2.6:
Stronger Notions and Conceptual Reflections / 8.2.7:
Derandomization of Time-Complexity Classes / 8.3:
Defining Canonical Derandomizers / 8.3.1:
Constructing Canonical Derandomizers / 8.3.2:
Technical Variations and Conceptual Reflections / 8.3.3:
Space-Bounded Distinguishers / 8.4:
Definitional Issues / 8.4.1:
Two Constructions / 8.4.2:
Special-Purpose Generators / 8.5:
Pairwise Independence Generators / 8.5.1:
Small-Bias Generators / 8.5.2:
Random Walks on Expanders / 8.5.3:
Probabilistic Proof Systems / 9:
Interactive Proof Systems / 9.1:
Motivation and Perspective / 9.1.1:
Definition / 9.1.2:
The Power of Interactive Proofs / 9.1.3:
Variants and Finer Structure: An Overview / 9.1.4:
On Computationally Bounded Provers: An Overview / 9.1.5:
Zero-Knowledge Proof Systems / 9.2:
The Power of Zero-Knowledge / 9.2.1:
Proofs of Knowledge - A Parenthetical Subsection / 9.2.3:
Probabilistically Checkable Proof Systems / 9.3:
The Power of Probabilistically Checkable Proofs / 9.3.1:
PCP and Approximation / 9.3.3:
More on PCP Itself: An Overview / 9.3.4:
Relaxing the Requirements / 10:
Approximation / 10.1:
Search or Optimization / 10.1.1:
Decision or Property Testing / 10.1.2:
Average-Case Complexity / 10.2:
The Basic Theory / 10.2.1:
Ramifications / 10.2.2:
Epilogue
Glossary of Complexity Classes / Appendix A:
Preliminaries / A.1:
Algorithm-Based Classes / A.2:
Time Complexity Classes / A.2.1:
Space Complexity Classes / A.2.2:
Circuit-Based Classes / A.3:
On the Quest for Lower Bounds / Appendix B:
Boolean Circuit Complexity / B.1:
Basic Results and Questions / B.2.1:
Monotone Circuits / B.2.2:
Bounded-Depth Circuits / B.2.3:
Formula Size / B.2.4:
Arithmetic Circuits / B.3:
Univariate Polynomials / B.3.1:
Multivariate Polynomials / B.3.2:
Proof Complexity / B.4:
Logical Proof Systems / B.4.1:
Algebraic Proof Systems / B.4.2:
Geometric Proof Systems / B.4.3:
On the Foundations of Modern Cryptography / Appendix C:
The Underlying Principles / C.1:
The Computational Model / C.1.2:
Organization and Beyond / C.1.3:
Computational Difficulty / C.2:
Hard-Core Predicates / C.2.1:
Pseudorandomness / C.3:
Pseudorandom Functions / C.3.1:
Zero-Knowledge / C.4:
The Simulation Paradigm / C.4.1:
The Actual Definition / C.4.2:
A General Result and a Generic Application / C.4.3:
Definitional Variations and Related Notions / C.4.4:
Encryption Schemes / C.5:
Beyond Eavesdropping Security / C.5.1:
Signatures and Message Authentication / C.6:
General Cryptographic Protocols / C.6.1:
The Definitional Approach and Some Models / C.7.1:
Some Known Results / C.7.2:
Construction Paradigms and Two Simple Protocols / C.7.3:
Concluding Remarks / C.7.4:
Probabilistic Preliminaries and Advanced Topics in Randomization / Appendix D:
Probabilistic Preliminaries / D.1:
Notational Conventions / D.1.1:
Three Inequalities / D.1.2:
Hashing / D.2:
The Leftover Hash Lemma / D.2.1:
Sampling / D.3:
Formal Setting / D.3.1:
Known Results / D.3.2:
Hitters / D.3.3:
Randomnes Extractors / D.4:
Definitions and Various Perspectives / D.4.1:
Explicit Constructions / D.4.2:
Error-Correcting Codes / E.1:
Basic Notions / E.1.1:
A Few Popular Codes / E.1.2:
Two Additional Computational Problems / E.1.3:
A List-Decoding Bound / E.1.4:
Expander Graphs / E.2:
Definitions and Properties / E.2.1:
Some Omitted Proofs / E.2.2:
Proving That PH Reduces to #P / F.1:
Proving That IP(f) [characters not reproducible] AM(O(f)) [characters not reproducible] AM(f) / F.2:
Emulating General Interactive Proofs by AM-Games / F.2.1:
Linear Speedup for AM / F.2.2:
Some Computational Problems / Appendix G:
Graphs / G.1:
Boolean Formulae / G.2:
Finite Fields, Polynomials, and Vector Spaces / G.3:
The Determinant and the Permanent / G.4:
Primes and Composite Numbers / G.5:
Bibliography
Index
List of Figures
Preface
Organization and Chapter Summaries
7.

図書

図書
Noboru Ono
出版情報: New York : Wiley-VCH, c2001  xvi, 372 p. ; 25 cm
シリーズ名: Organic nitro chemistry series
所蔵情報: loading…
目次情報: 続きを見る
Series Foreword
Preface
Acknowledgments
Abbreviations
Introduction / 1.:
Preparation of Nitro Compounds / 2.:
Nitration of Hydrocarbons / 2.1:
Aromatic Compounds / 2.1.1:
Alkanes / 2.1.2:
Activated C-H Compounds / 2.1.3:
Alkenes / 2.1.4:
Synthesis of [alpha]-Nitro Ketones / 2.1.5:
Nitration of Alkyl Halides / 2.1.6:
Synthesis of Nitro Compounds by Oxidation / 2.2:
Oxidation of Amines / 2.2.1:
Oxidation of Oximes / 2.2.2:
The Nitro-Aldol (Henry) Reaction / 3.:
Preparation of [beta]-Nitro Alcohols / 3.1:
Derivatives from [beta]-Nitro Alcohols / 3.2:
Nitroalkenes / 3.2.1:
Nitroalkanes / 3.2.2:
[alpha]-Nitro Ketones / 3.2.3:
[beta]-Amino Alcohols / 3.2.4:
Nitro Sugars and Amino Sugars / 3.2.5:
Stereoselective Henry Reactions and Applications to Organic Synthesis / 3.3:
Michael Addition / 4.:
Addition to Nitroalkenes / 4.1:
Conjugate Addition of Heteroatom-Centered Nucleophiles / 4.1.1:
Conjugate Addition of Heteroatom Nucleophiles and Subsequent Nef Reaction / 4.1.2:
Conjugate Addition of Carbon-Centered Nucleophiles / 4.1.3:
Addition and Elimination Reaction of [beta]-Heterosubstituted Nitroalkenes / 4.2:
Michael Addition of Nitroalkanes / 4.3:
Intermolecular Addition / 4.3.1:
Intramolecular Addition / 4.3.2:
Asymmetric Michael Addition / 4.4:
Chiral Alkenes and Chiral Nitro Compounds / 4.4.1:
Chiral Catalysts / 4.4.2:
Alkylation, Acylation, and Halogenation of Nitro Compounds / 5.:
Alkylation of Nitro Compounds / 5.1:
Acylation of Nitroalkanes / 5.2:
Ring Cleavage of Cyclic [alpha]-Nitro Ketones (Retro-Acylation) / 5.3:
Alkylation of Nitro Compounds via Alkyl Radicals / 5.4:
Alkylation of Nitro Compounds Using Transition Metal Catalysis / 5.5:
Butadiene Telomerization / 5.5.1:
Pd-Catalyzed Allylic C-Alkylation of Nitro Compounds / 5.5.2:
Arylation of Nitro Compounds / 5.6:
Introduction of Heteroatoms to Nitroalkanes / 5.7:
Conversion of Nitro Compounds into Other Compounds / 6.:
Nef Reaction (Aldehydes, Ketones, and Carboxylic Acids) / 6.1:
Treatment With Acid (Classical Procedure) / 6.1.1:
Oxidative Method / 6.1.2:
Reductive Method / 6.1.3:
Direct Conversion of Nitroalkenes to Carbonyl Compounds / 6.1.4:
Nitrile Oxides and Nitriles / 6.2:
Reduction of Nitro Compounds into Amines / 6.3:
Ar-NH[subscript 2] From Ar-NO[subscript 2] / 6.3.1:
R-NH[subscript 2] From R-NO[subscript 2] / 6.3.2:
Oximes, Hydroxylamines, and Other Nitrogen Derivatives / 6.3.3:
Substitution and Elimination of NO[subscript 2] in R-NO[subscript 2] / 7.:
R-Nu from R-NO[subscript 2] / 7.1:
Radical Reactions (S[subscript RN]1) / 7.1.1:
Ionic Process / 7.1.2:
Intramolecular Nucleophilic Substitution Reaction / 7.1.3:
Allylic Rearrangement / 7.1.4:
R-H from R-NO[subscript 2] / 7.2:
Radical Denitration / 7.2.1:
Ionic Denitration / 7.2.2:
Alkenes from R-NO[subscript 2] / 7.3:
Radical Elimination / 7.3.1:
Ionic Elimination of Nitro Compounds / 7.3.2:
Cycloaddition Chemistry of Nitro Compounds / 8.:
Diels-Alder Reactions / 8.1:
Nitroalkenes Using Dienophiles / 8.1.1:
Asymmetric Diels-Alder Reaction / 8.1.2:
1,3-Dipolar Cycloaddition / 8.2:
Nitrones / 8.2.1:
Nitrile Oxides / 8.2.2:
Nitronates / 8.2.3:
Nitroalkenes as Heterodienes in Tandem [4+2]/[3+2] Cycloaddition / 8.3:
Nitroalkenes as Heterodienes / 8.3.1:
Tandem [4+2]/[3+2] Cycloaddition of Nitroalkenes / 8.3.2:
Nucleophilic Aromatic Displacement / 9.:
S[subscript N]Ar / 9.1:
Nucleophilic Aromatic Substitution of Hydrogen (NASH) / 9.2:
Carbon Nucleophiles / 9.2.1:
Nitrogen and Other Heteroatom Nucleophiles / 9.2.2:
Applications to Synthesis of Heterocyclic Compounds / 9.2.3:
Synthesis of Heterocyclic Compounds / 10.:
Pyrroles / 10.1:
Synthesis of Indoles / 10.2:
Synthesis of Other Nitrogen Heterocycles / 10.3:
Three-Membered Ring / 10.3.1:
Five- and Six-Membered Saturated Rings / 10.3.2:
Miscellaneous / 10.3.3:
Index
Series Foreword
Preface
Acknowledgments
8.

図書

図書
Ulf Leonhardt
出版情報: Cambridge : Cambridge University Press, 2010  xii, 277 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
Quantum theory / 1.2:
Axioms / 1.2.1:
Quantum statistics / 1.2.2:
Schrödinger and Heisenberg pictures / 1.2.3:
On the questions and homework problems / 1.3:
Further reading / 1.4:
Quantum field theory of light / 2:
Light in media / 2.1:
Maxwell's equations / 2.1.1:
Quantum commutator / 2.1.2:
Light modes / 2.2:
Modes and their scalar product / 2.2.1:
Bose commutation relations / 2.2.2:
Interference / 2.2.3:
Monochromatic modes / 2.2.4:
Zero-point energy and Casimir force / 2.3:
An attractive cavity / 2.3.1:
Reflections / 2.3.2:
Questions / 2.4:
Homework problem / 2.5:
Simple quantum states of light / 2.6:
The electromagnetic oscillator / 3.1:
Single-mode states / 3.2:
Quadrature states / 3.2.1:
Fock states / 3.2.2:
Thermal states / 3.2.3:
Coherent states / 3.2.4:
Uncertainty and squeezing / 3.3:
Quasiprobability distributions / 3.4:
Wigner representation / 4.1:
Wigner's formula / 4.1.1:
Basic properties / 4.1.2:
Examples / 4.1.3:
Other quasiprobability distributions / 4.2:
Q function / 4.2.1:
P function / 4.2.2:
s-parameterized quasiprobability distributions / 4.2.3:
Simple optical instruments / 4.3:
Beam splitter / 5.1:
Heisenberg picture / 5.1.1:
Schrödinger picture / 5.1.2:
Fock representation and wave-particle dualism / 5.1.3:
Detection / 5.2:
Photodetector / 5.2.1:
Balanced homodyne detection / 5.2.2:
Quantum tomography / 5.2.3:
Simultaneous measurement of conjugate variables / 5.2.4:
Irrevesible processes / 5.3:
Lindblad's theorem / 6.1:
Irreversibility / 6.1.1:
Reversible dynamics / 6.1.2:
Irreversible dynamics / 6.1.3:
Loss and gain / 6.2:
Absorption and amplification / 6.2.1:
Absorber / 6.2.2:
Amplifier / 6.2.3:
Eavesdropper / 6.2.4:
Continuous quantum measurements / 6.3:
Entanglement / 6.4:
Parametric amplifier / 7.1:
Einstein-Podolski-Rosen state / 7.1.1:
Quantum teleportation / 7.1.4:
Polarization correlations / 7.2:
Singlet state / 7.2.1:
Polarization / 7.2.2:
Bell's theorem / 7.2.3:
Horizons / 7.3:
Minkowski space / 8.1:
Locality and relativity / 8.1.1:
Space-time geometry / 8.1.2:
Light / 8.1.3:
Accelerated observers / 8.2:
Rindler coordinates / 8.2.1:
Accelerated modes / 8.2.2:
Unruh effect / 8.2.3:
Moving media / 8.3:
Motivation / 8.3.1:
Trans-Planckian problem / 8.3.2:
Light in moving media / 8.3.3:
Geometry of light / 8.3.4:
Hawking radiation / 8.3.5:
Stress of the quantum vacuum / 8.4:
State reconstruction in quantum mechanics / Appendix B:
References
Index
Irreversible processes
Appendixes
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
9.

図書

図書
Nam-Trung Nguyen, Steven T. Wereley
出版情報: Boston : Artech House, c2002  xiii, 471 p. ; 24 cm
シリーズ名: MEMS--Microelectromechanical systems series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
Microfluidics--The Emerging Technology / 1.1:
What Is Microfluidics? / 1.1.1:
Commercial Aspects / 1.1.2:
Scientific Aspects / 1.1.3:
Milestones of Microfluidics / 1.2:
Device Development / 1.2.1:
Technology Development / 1.2.2:
Organization of the Book / 1.3:
References
Fluid Mechanics Theory / Chapter 2:
Intermolecular Forces / 2.1:
The Three States of Matter / 2.1.2:
Continuum Assumption / 2.1.3:
Continuum Fluid Mechanics at Small Scales / 2.2:
Gas Flows / 2.2.1:
Liquid Flows / 2.2.2:
Boundary Conditions / 2.2.3:
Parallel Flows / 2.2.4:
Low Reynolds Number Flows / 2.2.5:
Entrance Effects / 2.2.6:
Surface Tension / 2.2.7:
Molecular Approaches / 2.3:
MD / 2.3.1:
DSMC Technique / 2.3.2:
Electrokinetics / 2.4:
Electro-Osmosis / 2.4.1:
Electrophoresis / 2.4.2:
Dielectrophoresis / 2.4.3:
Conclusion / 2.5:
Problems
Fabrication Techniques for Microfluidics / Chapter 3:
Basic Microtechniques / 3.1:
Photolithography / 3.1.1:
Additive Techniques / 3.1.2:
Subtractive Techniques / 3.1.3:
Pattern Transfer Techniques / 3.1.4:
Silicon-Based Micromachining Techniques / 3.2:
Silicon Bulk Micromachining / 3.2.1:
Silicon Surface Micromachining / 3.2.2:
Polymer-Based Micromachining Techniques / 3.3:
Thick Resist Lithography / 3.3.1:
Polymeric Surface Micromachining / 3.3.2:
Soft Lithography / 3.3.3:
Microstereo Lithography / 3.3.4:
Micromolding / 3.3.5:
Other Micromachining Techniques / 3.4:
Assembly and Packaging of Microfluidic Devices / 3.4.1:
Wafer Level Assembly and Packaging / 3.5.1:
Device Level Packaging / 3.5.2:
Biocompatibility / 3.6:
Material Response / 3.6.1:
Tissue and Cellular Response / 3.6.2:
Biocompatibility Tests / 3.6.3:
Experimental Flow Characterization / Chapter 4:
Pointwise Methods / 4.1:
Full-Field Methods / 4.1.2:
Overview of Micro-PIV / 4.2:
Fundamental Physics Considerations of Micro-PIV / 4.2.1:
Special Processing Methods for Micro-PIV Recordings / 4.2.2:
Advanced Processing Methods Suitable for Both Micro/Macro-PIV Recordings / 4.2.3:
Micro-PIV Examples / 4.3:
Flow in a Microchannel / 4.3.1:
Flow in a Micronozzle / 4.3.2:
Flow Around a Blood Cell / 4.3.3:
Flow in Microfluidic Biochip / 4.3.4:
Conclusions / 4.3.5:
Extensions of the Micro-PIV technique / 4.4:
Microfluidic Nanoscope / 4.4.1:
Microparticle Image Thermometry / 4.4.2:
Infrared Micro-PIV / 4.4.3:
Particle Tracking Velocimetry / 4.4.4:
Microfluidics for External Flow Control / Chapter 5:
Velocity and Turbulence Measurement / 5.1:
Velocity Sensors / 5.1.1:
Shear Stress Sensors / 5.1.2:
Turbulence Control / 5.2:
Microflaps / 5.2.1:
Microballoon / 5.2.2:
Microsynthetic Jet / 5.2.3:
Microair Vehicles / 5.3:
Fixed-Wing MAV / 5.3.1:
Flapping-Wing MAV / 5.3.2:
Microrotorcraft / 5.3.3:
Microrockets / 5.3.4:
Microfluidics for Internal Flow Control: Microvalves / Chapter 6:
Design Considerations / 6.1:
Actuators / 6.1.1:
Valve Spring / 6.1.2:
Valve Seat / 6.1.3:
Pressure Compensation Design / 6.1.4:
Pneumatic Valves / 6.2:
Pneumatic Actuators / 6.2.1:
Design Examples / 6.2.2:
Thermopneumatic Valves / 6.3:
Thermopneumatic Actuators / 6.3.1:
Thermomechanical Valves / 6.3.2:
Solid-Expansion Valves / 6.4.1:
Bimetallic Valves / 6.4.2:
Shape-Memory Alloy Valves / 6.4.3:
Piezoelectric Valves / 6.5:
Piezoelectric Actuators / 6.5.1:
Electrostatic Valves / 6.5.2:
Electrostatic Actuators / 6.6.1:
Electromagnetic Valves / 6.6.2:
Electromagnetic Actuators / 6.7.1:
Electrochemical Valves / 6.7.2:
Capillary-Force Valves / 6.9:
Capillary-Force Actuators / 6.9.1:
Microfluidics for Internal Flow Control: Micropumps / 6.9.2:
Mechanical Pumps / 7.1:
Check-Valve Pumps / 7.1.1:
Peristaltic Pumps / 7.1.3:
Valveless Rectification Pumps / 7.1.4:
Rotary Pumps / 7.1.5:
Centrifugal Pumps / 7.1.6:
Ultrasonic Pumps / 7.1.7:
Nonmechanical Pumps / 7.2:
Electrical Pumps / 7.2.1:
Surface Tension Driven Pumps / 7.2.2:
Chemical Pumps / 7.2.3:
Magnetic Pumps / 7.2.4:
Scaling Law for Micropumps / 7.3:
Microfluidics for Internal Flow Control: Microflow Sensors / Chapter 8:
Nonthermal Flow Sensors / 8.1:
Differential Pressure Flow Sensors / 8.1.1:
Drag Force Flow Sensors / 8.1.2:
Lift Force Flow Sensors / 8.1.3:
Coriolis Flow Sensors / 8.1.4:
Electrohydrodynamic Flow Sensors / 8.1.5:
Thermal Flow Sensors / 8.2:
Thermoresistive Flow Sensors / 8.2.1:
Thermocapacitive Flow Sensors / 8.2.3:
Thermoelectric Flow Sensors / 8.2.4:
Thermoelectronic Flow Sensors / 8.2.5:
Pyroelectric Flow Sensors / 8.2.6:
Frequency Analog Sensors / 8.2.7:
Microfluidics for Life Sciences and Chemistry / Chapter 9:
Microfilters / 9.1:
Microneedles / 9.1.1:
Micromixers / 9.2.1:
Microreactors / 9.3.1:
Microdispensers / 9.4.1:
Microseparators / 9.5.1:
Gas Chromatography / 9.6.1:
Liquid Chromatography / 9.6.3:
List of Symbols / 9.6.4:
Resources for Microfluidics Research / Appendix B:
Abbreviations of Different Plastics / Appendix C:
Linear Elastic Deflection Models / Appendix D:
About the Authors
Index
Preface
Acknowledgments
Introduction / Chapter 1:
10.

図書

図書
Robert B. Grossman
出版情報: New York : Springer, c2003  xvi, 355 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Student
Preface to the Instructor
The Basics / 1:
Structure and Stability of Organic Compounds / 1.1:
Conventions of Drawing Structures; Grossman's Rule / 1.1.1:
Lewis Structures; Resonance Structures / 1.1.2:
Molecular Shape; Hybridization / 1.1.3:
Aromaticity / 1.1.4:
Bronsted Acidity and Basicity / 1.2:
pK[subscript a] Values / 1.2.1:
Tautomerism / 1.2.2:
Kinetics and Thermodynamics / 1.3:
Getting Started in Drawing a Mechanism / 1.4:
Classes of Overall Transformations / 1.5:
Classes of Mechanisms / 1.6:
Polar Mechanisms / 1.6.1:
Free-Radical Mechanisms / 1.6.2:
Pericyclic Mechanisms / 1.6.3:
Transition-Metal-Catalyzed and -Mediated Mechanisms / 1.6.4:
Summary / 1.7:
Problems
Polar Reactions under Basic Conditions / 2:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part I / 2.1:
Substitution by the S[subscript N]2 Mechanism / 2.1.1:
[beta]-Elimination by the E2 and Elcb Mechanisms / 2.1.2:
Predicting Substitution vs. Elimination / 2.1.3:
Addition of Nucleophiles to Electrophilic [pi] Bonds / 2.2:
Addition to Carbonyl Compounds / 2.2.1:
Conjugate Addition; The Michael Reaction / 2.2.2:
Substitution at C(sp[superscript 2])-X [sigma] Bonds / 2.3:
Substitution at Carbonyl C / 2.3.1:
Substitution at Alkenyl and Aryl C / 2.3.2:
Metal Insertion; Halogen-Metal Exchange / 2.3.3:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part II / 2.4:
Substitution by the S[subscript RN]1 Mechanism / 2.4.1:
Substitution by the Elimination-Addition Mechanism / 2.4.2:
Substitution by the One-Electron Transfer Mechanism / 2.4.3:
[alpha]-Elimination; Generation and Reactions of Carbenes / 2.4.4:
Base-Promoted Rearrangements / 2.5:
Migration from C to C / 2.5.1:
Migration from C to O or N / 2.5.2:
Migration from B to C or O / 2.5.3:
Two Multistep Reactions / 2.6:
The Swern Oxidation / 2.6.1:
The Mitsunobu Reaction / 2.6.2:
Polar Reactions Under Acidic Conditions / 2.7:
Carbocations / 3.1:
Carbocation Stability / 3.1.1:
Carbocation Generation; The Role of Protonation / 3.1.2:
Typical Reactions of Carbocations; Rearrangements / 3.1.3:
Substitution and [beta]-Elimination Reactions at C(sp[superscript 3])-X / 3.2:
Substitution by the S[subscript N]1 and S[subscript N]2 Mechanisms / 3.2.1:
[beta]-Elimination by the E1 Mechanism / 3.2.2:
Electrophilic Addition to Nucleophilic C=C [pi] Bonds / 3.2.3:
Substitution at Nucleophilic C=C [pi] Bonds / 3.4:
Electrophilic Aromatic Substitution / 3.4.1:
Aromatic Substitution of Anilines via Diazonium Salts / 3.4.2:
Electrophilic Aliphatic Substitution / 3.4.3:
Nucleophilic Addition to and Substitution at Electrophilic [pi] Bonds / 3.5:
Heteroatom Nucleophiles / 3.5.1:
Carbon Nucleophiles / 3.5.2:
Pericyclic Reactions / 3.6:
Introduction / 4.1:
Classes of Pericyclic Reactions / 4.1.1:
Polyene MOs / 4.1.2:
Electrocyclic Reactions / 4.2:
Typical Reactions / 4.2.1:
Stereospecificity / 4.2.2:
Stereoselectivity / 4.2.3:
Cycloadditions / 4.3:
Regioselectivity / 4.3.1:
Sigmatropic Rearrangements / 4.3.3:
Ene Reactions / 4.4.1:
Free-Radical Reactions / 4.6:
Free Radicals / 5.1:
Stability / 5.1.1:
Generation from Closed-Shell Species / 5.1.2:
Chain vs. Nonchain Mechanisms / 5.1.3:
Chain Free-Radical Reactions / 5.2:
Substitution Reactions / 5.2.1:
Addition and Fragmentation Reactions / 5.2.2:
Nonchain Free-Radical Reactions / 5.3:
Photochemical Reactions / 5.3.1:
Reductions and Oxidations with Metals / 5.3.2:
Cycloaromatizations / 5.3.3:
Miscellaneous Radical Reactions / 5.4:
1,2-Anionic Rearrangements; Lone-Pair Inversion / 5.4.1:
Triplet Carbenes and Nitrenes / 5.4.2:
Transition-Metal-Mediated and -Catalyzed Reactions / 5.5:
Introduction to the Chemistry of Transition Metals / 6.1:
Conventions of Drawing Structures / 6.1.1:
Counting Electrons / 6.1.2:
Stoichiometric vs. Catalytic Mechanisms / 6.1.3:
Addition Reactions / 6.2:
Late-Metal-Catalyzed Hydrogenation and Hydrometallation (Pd, Pt, Rh) / 6.2.1:
Hydroformylation (Co, Rh) / 6.2.2:
Hydrozirconation (Zr) / 6.2.3:
Alkene Polymerization (Ti, Zr, Sc, and others) / 6.2.4:
Cyclopropanation, Epoxidation, and Aziridination of Alkenes (Cu, Rh, Mn, Ti) / 6.2.5:
Dihydroxylation and Aminohydroxylation of Alkenes (Os) / 6.2.6:
Nucleophilic Addition to Alkenes and Alkynes (Hg, Pd) / 6.2.7:
Conjugate Addition Reactions (Cu) / 6.2.8:
Reductive Coupling Reactions (Ti, Zr) / 6.2.9:
Pauson-Khand Reaction (Co) / 6.2.10:
Dotz Reaction (Cr) / 6.2.11:
Metal-Catalyzed Cycloaddition and Cyclotrimerization (Co, Ni, Rh) / 6.2.12:
Hydrogenolysis (Pd) / 6.3:
Carbonylation of Alkyl Halides (Pd, Rh) / 6.3.2:
Heck Reaction (Pd) / 6.3.3:
Coupling Reactions Between Nucleophiles and C(sp[superscript 2])-X: Kumada, Stille, Suzuki, Negishi, Buchwald-Hartwig, Sonogashira, and Ullmann Reactions (Ni, Pd, Cu) / 6.3.4:
Allylic Substitution (Pd) / 6.3.5:
Pd-Catalyzed Nucleophilic Substitution of Alkenes; Wacker Oxidation / 6.3.6:
Tebbe Reaction (Ti) / 6.3.7:
Propargyl Substitution in Co-Alkyne Complexes / 6.3.8:
Rearrangement Reactions / 6.4:
Alkene Isomerization (Rh) / 6.4.1:
Olefin and Alkyne Metathesis (Ru, W, Mo, Ti) / 6.4.2:
Elimination Reactions / 6.5:
Oxidation of Alcohols (Cr, Ru) / 6.5.1:
Decarbonylation of Aldehydes (Rh) / 6.5.2:
Mixed-Mechanism Problems / 6.6:
A Final Word
Index
Preface to the Student
Preface to the Instructor
The Basics / 1:
11.

図書

図書
Iwao Teraoka
出版情報: New York : Wiley, c2002  xv, 338 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
Chain Architecture / 1.1.1:
Models of a Linear Polymer Chain / 1.1.2:
Real Chains and Ideal Chains / 1.1.3:
Ideal Chains / 1.2:
Random Walk in One Dimension / 1.2.1:
Random Walks in Two and Three Dimensions / 1.2.2:
Dimensions of Random-Walk Chains / 1.2.3:
Problems / 1.2.4:
Gaussian Chain / 1.3:
What is a Gaussian Chain? / 1.3.1:
Dimension of a Gaussian Chain / 1.3.2:
Entropy Elasticity / 1.3.3:
Real Chains / 1.3.4:
Excluded Volume / 1.4.1:
Dimension of a Real Chain / 1.4.2:
Self-Avoiding Walk / 1.4.3:
Semirigid Chains / 1.4.4:
Examples of Semirigid Chains / 1.5.1:
Wormlike Chain / 1.5.2:
Branched Chains / 1.5.3:
Architecture of Branched Chains / 1.6.1:
Dimension of Branched Chains / 1.6.2:
Molecular Weight Distribution / 1.6.3:
Average Molecular Weights / 1.7.1:
Typical Distributions / 1.7.2:
Concentration Regimes / 1.7.3:
Concentration Regimes for Linear Flexible Polymers / 1.8.1:
Concentration Regimes for Rodlike Molecules / 1.8.2:
Thermodynamics of Dilute Polymer Solutions / 1.8.3:
Polymer Solutions and Thermodynamics / 2.1:
Flory-Huggins Mean-Field Theory / 2.2:
Model / 2.2.1:
Free Energy, Chemical Potentials, and Osmotic Pressure / 2.2.2:
Dilute Solutions / 2.2.3:
Coexistence Curve and Stability / 2.2.4:
Polydisperse Polymer / 2.2.5:
Phase Diagram and Theta Solutions / 2.2.6:
Phase Diagram / 2.3.1:
Theta Solutions / 2.3.2:
Coil-Globule Transition / 2.3.3:
Solubility Parameter / 2.3.4:
Static Light Scattering / 2.3.5:
Sample Geometry in Light-Scattering Measurements / 2.4.1:
Scattering by a Small Particle / 2.4.2:
Scattering by a Polymer Chain / 2.4.3:
Scattering by Many Polymer Chains / 2.4.4:
Correlation Function and Structure Factor / 2.4.5:
Structure Factor of a Polymer Chain / 2.4.6:
Light Scattering of a Polymer Solution / 2.4.7:
Other Scattering Techniques / 2.4.8:
Size Exclusion Chromatography and Confinement / 2.4.9:
Separation System / 2.5.1:
Plate Theory / 2.5.2:
Partitioning of Polymer with a Pore / 2.5.3:
Calibration of SEC / 2.5.4:
SEC With an On-Line Light-Scattering Detector / 2.5.5:
Appendixes / 2.5.6:
Review of Thermodynamics for Colligative Properties in Nonideal Solutions / 2.A:
Osmotic Pressure / 2.A.1:
Vapor Pressure Osmometry / 2.A.2:
Another Approach to Thermodynamics of Polymer Solutions / 2.B:
Correlation Function of a Gaussian Chain / 2.C:
Dynamics of Dilute Polymer Solutions / 3:
Dynamics of Polymer Solutions / 3.1:
Dynamic Light Scattering and Diffusion of Polymers / 3.2:
Measurement System and Autocorrelation Function / 3.2.1:
Autocorrelation Function / 3.2.2:
Dynamic Structure Factor of Suspended Particles / 3.2.3:
Diffusion of Particles / 3.2.4:
Diffusion and DLS / 3.2.5:
Dynamic Structure Factor of a Polymer Solution / 3.2.6:
Hydrodynamic Radius / 3.2.7:
Particle Sizing / 3.2.8:
Diffusion From Equation of Motion / 3.2.9:
Diffusion as Kinetics / 3.2.10:
Concentration Effect on Diffusion / 3.2.11:
Diffusion in a Nonuniform System / 3.2.12:
Viscosity / 3.2.13:
Viscosity of Solutions / 3.3.1:
Measurement of Viscosity / 3.3.2:
Intrinsic Viscosity / 3.3.3:
Flow Field / 3.3.4:
Normal Modes / 3.3.5:
Rouse Model / 3.4.1:
Normal Coordinates / 3.4.2:
Equation of Motion for the Normal Coordinates in the Rouse Model / 3.4.3:
Results of the Normal-Coordinates / 3.4.4:
Results for the Rouse Model / 3.4.5:
Zimm Model / 3.4.6:
Dynamic Structure Factor / 3.4.7:
Motion of Monomers / 3.4.9:
Dynamics of Rodlike Molecules / 3.4.10:
Diffusion Coefficients / 3.5.1:
Rotational Diffusion / 3.5.2:
Dynamics of Wormlike Chains / 3.5.3:
Appendices / 3.5.6:
Evaluation of [left angle bracket]q[subscript i superscript 2 right angle bracket subscript eq] / 3.A:
Evaluation of [left angle bracket]exp[ik [middle dot] (Aq - Bp) right angle bracket] / 3.B:
Initial Slope of S[subscript 1](k,t) / 3.C:
Thermodynamics and Dynamics of Semidilute Solutions / 4:
Semidilute Polymer Solutions / 4.1:
Thermodynamics of Semidilute Polymer Solutions / 4.2:
Blob Model / 4.2.1:
Scaling Theory and Semidilute Solutions / 4.2.2:
Partitioning with a Pore / 4.2.3:
Dynamics of Semidilute Solutions / 4.2.4:
Cooperative Diffusion / 4.3.1:
Tube Model and Reptation Theory / 4.3.2:
References / 4.3.3:
Further Readings
Delta Function / A1:
Fourier Transform / A2:
Integrals / A3:
Series / A4:
Index
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
12.

図書

図書
Roel Prins ... [et al]
出版情報: Hackensack, New Jersey : World Scientific, c2022  xviii, 392 p. ; 24 cm
シリーズ名: Advanced textbooks in chemistry
所蔵情報: loading…
目次情報: 続きを見る
Preface
About the Authors
Introduction / 1:
Catalysis and Catalysts / 1.1:
Heterogeneous and Homogeneous Catalysis / 1.2:
Production of Ammonia / 1.3:
Kinetics and Thermodynamics / 1.3.1:
Activity, Selectivity and Stability / 1.3.2:
H2 Production / 1.3.3:
Ammonia Synthesis / 1.3.4:
Relevance of Catalysis / 1.4:
References
Questions
Catalyst Preparation and Characterisation / 2:
Supported Catalysts / 2.1:
Crystal Structures / 2.2:
Crystal Lattices / 2.2.1:
X-ray Diffraction / 2.2.2:
Aluminas / 2.3:
Aluminium Hydroxides and Oxyhydroxides / 2.3.1:
Transition Aluminas / 2.3.2:
¿-Al2O3 / 2.3.3:
Surface of ¿-Al2O3 / 2.3.4:
Lewis acid sites / 2.3.5.1:
Brønsted acid sites / 2.3.5.2:
Surface reconstruction / 2.3.5.3:
Silica / 2.4:
Preparation of Supported Catalysts / 2.5:
Adsorption / 3:
Physisorption / 3.1:
Adsorption on Surfaces / 3.1.1:
Langmuir Adsorption Isotherm / 3.1.2:
Multilayer Adsorption, BET / 3.1.3:
Surface Diffusion / 3.2:
Chemisorption / 3.3:
Chemical Bonding / 3.3.1:
Dissociative Chemisorption / 3.3.2:
Kinetics / 4:
Langmuir-Hinshelwood Model / 4.1:
Monomolecular Reaction / 4.1.1:
Surface reaction is rate-determining / 4.1.1.1:
Adsorption of the reactant or product is rate-determining / 4.1.1.2:
Bimolecular Reaction / 4.1.2:
Influence of Diffusion / 4.2:
Bifunctional Catalysis / 4.3:
Metal Surfaces / 5:
Surface Structures / 5.1:
Surface Analysis / 5.2:
X-ray Photoelectron Spectroscopy / 5.2.1:
Auger Electron Spectroscopy / 5.2.2:
Surface Sensitivity / 5.2.3:
Surface Enrichment / 5.3:
Metal Binding / 5.4:
Metal Catalysis / 6:
Dissociation of H2 / 6.1:
Hydrogenation of Ethene / 6.2:
Synthesis of CO and H2 / 6.3:
Hydrogenation of CO / 6.4:
CO Hydrogenation to Hydrocarbons / 6.4.1:
CO dissociation / 6.4.1.1:
Methanation / 6.4.1.2:
Fischer-Tropsch reaction / 6.4.1.3:
Hydrogenation of CO and CO2 to Methanol / 6.4.2:
CO hydrogenation to methanol / 6.4.2.1:
CO2 hydrogenation to methanol / 6.4.2.2:
Hydrogenation of N2 to Ammonia / 6.5:
Fe Catalyst / 6.5.1:
Ru Catalyst / 6.5.2:
Volcano Curves / 6.6:
Catalysis by Solid Acids / 7:
Solid Acid Catalysts / 7.1:
Zeolites / 7.1.1:
Amorphous Silica-Alumina / 7.1.2:
Reactions of Hydrocarbons / 7.2:
Reactions of Alkenes and Alkanes / 7.2.1:
Isomerisation of Pentane, Hexane and Butene / 7.2.2:
Alcohols from Alkenes / 7.3:
Alkylation of Aromatics / 7.4:
Ethylation and Propylation of Benzene / 7.4.1:
Methylation of Toluene / 7.4.2:
Isomerisation, Disproportionation, Transalkylation / 7.4.3:
Gasoline Production / 7.5:
Fluid Catalytic Cracking and Hydrocracking / 7.5.1:
Methanol to Hydrocarbons / 7.5.2:
Reforming of Hydrocarbons by Bifunctional Catalysis / 7.5.3:
Cleaning of Fuels by Hydrotreating / 8:
Hydrotreating / 8.1:
Hydrotreating Catalysts / 8.2:
Metal Sulfides / 8.2.1:
Structure of sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 / 8.2.1.1:
Active sites / 8.2.1.2:
Metal Phosphides / 8.2.2:
Reaction Mechanisms / 8.3:
Hydro desulfurisation / 8.3.1:
Hydrodenitrogenation / 8.3.2:
Hydrodeoxygenation / 8.3.3:
Hydrotreating of Mixtures / 8.3.4:
Hydrotreating Processes / 8.4:
Hydrodesulfurisation of Naphtha / 8.4.1:
Hydrotreating of Diesel / 8.4.2:
Residue Hydro conversion / 8.4.3:
Oxidation Catalysis / 9:
CO Oxidation / 9.1:
Mechanism / 9.1.1:
Three-way Catalysis / 9.1.2:
Production of Sulfuric and Nitric Acid / 9.2:
Sulfuric Acid / 9.2.1:
Nitric Acid / 9.2.2:
Selective Catalytic Reduction / 9.2.3:
Oxidation of Hydrocarbons / 9.3:
Oxidation by Oxygen / 9.3.1:
Oxidation by Hydroperoxide / 9.3.2:
Selective Partial Oxidation of Hydrocarbons / 9.3.3:
Oxidation of propene to acrylic acid and acrylonitrile / 9.3.3.1:
Oxidation of C4 and C6 molecules / 9.3.3.2:
Platform Chemicals / 9.4:
Electrocatalysis / 10:
Fundamental Aspects / 10.1:
Electrochemical Cells / 10.2.1:
Cell and Electrode Potentials / 10.2.2:
The Nernst Equation / 10.2.3:
Overpotential / 10.2.4:
Electrode Kinetics / 10.2.5:
Experimental Methods and Techniques / 10.3:
Three-Electrode Cell Configuration / 10.3.1:
Techniques for Electrocatalyst Evaluation / 10.3.2:
Linear Sweep Voltammetry and Cyclic Voltammetry / 10.3.3:
Electrochemical Impedance Spectroscopy / 10.3.4:
Rotating Disc Electrode / 10.3.5:
The Electro chemically Active Surface Area / 10.3.6:
Electrocatalysis for the Production of Sustainable Fuels and Chemicals / 10.4:
Development of Electrocatalysts / 10.4.1:
Hydrogen Evolution Reaction / 10.4.2:
Oxygen Evolution Reaction / 10.4.3:
CO2 Electroreduction / 10.4.4:
Other Electrochemical Processes / 10.4.5:
Answers
Index
Preface
About the Authors
Introduction / 1:
13.

図書

図書
K. Feyrer
出版情報: Berlin : Springer, c2007  IX, 322 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
Wire Manufacturing / 1.1.2:
Metallic Coating / 1.1.3:
Corrosion Resistant Wires / 1.1.4:
Wire Tensile Test / 1.1.5:
Wire Endurance and Fatigue Strength / 1.1.6:
Strands / 1.2:
Round Strands / 1.2.1:
Shaped Strands / 1.2.2:
Compacted Strands / 1.2.3:
Rope Cores / 1.3:
Lubrication / 1.4:
Lubricant / 1.4.1:
Lubricant Consumption / 1.4.2:
Rope Endurance / 1.4.3:
Wire Ropes / 1.5:
The Classification of Ropes According to Usage / 1.5.1:
Wire Rope Constructions / 1.5.2:
Designation of Wire Ropes / 1.5.3:
Symbols and Definitions / 1.5.4:
The Geometry of Wire Ropes / 1.6:
Round Strand with Round Wires / 1.6.1:
Round Strand with Any Kind of Profiled Wires / 1.6.2:
Fibre Core / 1.6.3:
Steel Core / 1.6.4:
References
Wire Ropes under Tensile Load / 2:
Stresses in Straight Wire Ropes / 2.1:
Basic Relation for the Wire Tensile Force in a Strand / 2.1.1:
Wire Tensile Stress in the Strand or Wire Rope / 2.1.2:
Additional Wire Stresses in the Straight Spiral Rope / 2.1.3:
Additional Wire Stresses in Straight Stranded Ropes / 2.1.4:
Wire Rope Elasticity Module / 2.2:
Definition / 2.2.1:
Rope Elasticity Module of Strands and Spiral Ropes, Calculation / 2.2.2:
Rope Elasticity Module of Stranded Wire Ropes / 2.2.3:
Waves and Vibrations / 2.2.4:
Reduction of the Rope Diameter due to Rope Tensile Force / 2.3:
Torque and Torsional Stiffness / 2.4:
Rope Torque from Geometric Data / 2.4.1:
Torque of Twisted Round Strand Ropes / 2.4.2:
Rotating of the Bottom Sheave / 2.4.3:
Rope Twist Caused by the Height-Stress / 2.4.4:
Change of the Rope Length by Twisting the Rope / 2.4.5:
Wire Stresses Caused by Twisting the Rope / 2.4.6:
Rope Endurance Under Fluctuating Twist / 2.4.7:
Wire Rope Breaking Force / 2.5:
Wire Ropes Under Fluctuating Tension / 2.6:
Conditions of Tension-Tension Tests / 2.6.1:
Evaluating Methods / 2.6.2:
Results of Tension Fatigue Test-Series / 2.6.3:
Further Results of Tension Fatigue Tests / 2.6.4:
Calculation of the Number of Load Cycles / 2.6.5:
Dimensioning Stay Wire Ropes / 2.7:
Extreme Forces / 2.7.1:
Fluctuating Forces / 2.7.2:
Discard Criteria / 2.7.3:
Wire Ropes Under Bending and Tensile Stresses / 3:
Stresses in Running Wire Ropes / 3.1:
Bending and Torsion Stress / 3.1.1:
Secondary Tensile Stress / 3.1.2:
Stresses from the Rope Ovalisation / 3.1.3:
Secondary Bending Stress / 3.1.4:
Sum of the Stresses / 3.1.5:
Force Between Rope and Sheave (Line Pressure) / 3.1.6:
Pressure Between Rope and Sheave / 3.1.7:
Force on the Outer Arcs of the Rope Wires / 3.1.8:
Rope Bending Tests / 3.2:
Bending-Fatigue-Machines, Test Procedures / 3.2.1:
Number of Bending Cycles / 3.2.2:
Further Influences on the Number of Bending Cycles / 3.2.3:
Reverse Bending / 3.2.4:
Fluctuating Tension and Bending / 3.2.5:
Palmgren-Miner Rule / 3.2.6:
Limiting Factors / 3.2.7:
Ropes during Bendings / 3.2.8:
Number of Wire Breaks / 3.2.9:
Rope Drive Requirements / 3.3:
General Requirements / 3.3.1:
Lifting Installations for Passengers / 3.3.2:
Cranes and Lifting Appliances / 3.3.3:
Calculation of Rope Drives / 3.4:
Analysis of Rope Drives / 3.4.1:
Tensile Rope Force / 3.4.2:
Limits / 3.4.3:
Rope Drive Calculations, Examples / 3.4.6:
Rope Efficiency / 3.5:
Single Sheave / 3.5.1:
Rope Drive / 3.5.2:
Lowering an Empty Hook Block / 3.5.3:
Index
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
14.

図書

図書
Kenneth V. Price, Rainer M. Storn, Jouni A. Lampinen
出版情報: Berlin : Springer, c2005  xix, 538 p. ; 24 cm.
シリーズ名: Natural computing series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
Introduction to Parameter Optimization / 1.1:
Overview / 1.1.1:
Single-Point, Derivative-Based Optimization / 1.1.2:
One-Point, Derivative-Free Optimization and the Step Size Problem / 1.1.3:
Local Versus Global Optimization / 1.2:
Simulated Annealing / 1.2.1:
Multi-Point, Derivative-Based Methods / 1.2.2:
Multi-Point, Derivative-Free Methods / 1.2.3:
Differential Evolution - A First Impression / 1.2.4:
References
The Differential Evolution Algorithm / 2:
Population Structure / 2.1:
Initialization / 2.1.2:
Mutation / 2.1.3:
Crossover / 2.1.4:
Selection / 2.1.5:
DE at a Glance / 2.1.6:
Visualizing DE / 2.1.7:
Notation / 2.1.8:
Parameter Representation / 2.2:
Bit Strings / 2.2.1:
Floating-Point / 2.2.2:
Floating-Point Constraints / 2.2.3:
Initial Bounds / 2.3:
Initial Distributions / 2.3.2:
Base Vector Selection / 2.4:
Choosing the Base Vector Index, r0 / 2.4.1:
One-to-One Base Vector Selection / 2.4.2:
A Comparison of Random Base Index Selection Methods / 2.4.3:
Degenerate Vector Combinations / 2.4.4:
Implementing Mutually Exclusive Indices / 2.4.5:
Gauging the Effects of Degenerate Combinations: The Sphere / 2.4.6:
Biased Base Vector Selection Schemes / 2.4.7:
Differential Mutation / 2.5:
The Mutation Scale Factor: F / 2.5.1:
Randomizing the Scale Factor / 2.5.2:
Recombination / 2.6:
The Role of Cr in Optimization / 2.6.1:
Arithmetic Recombination / 2.6.3:
Phase Portraits / 2.6.4:
The Either/Or Algorithm / 2.6.5:
Survival Criteria / 2.7:
Tournament Selection / 2.7.2:
One-to-One Survivor Selection / 2.7.3:
Local Versus Global Selection / 2.7.4:
Permutation Selection Invariance / 2.7.5:
Crossover-Dependent Selection Pressure / 2.7.6:
Parallel Performance / 2.7.7:
Extensions / 2.7.8:
Termination Criteria / 2.8:
Objective Met / 2.8.1:
Limit the Number of Generations / 2.8.2:
Population Statistics / 2.8.3:
Limited Time / 2.8.4:
Human Monitoring / 2.8.5:
Application Specific / 2.8.6:
Benchmarking Differential Evolution / 3:
About Testing / 3.1:
Performance Measures / 3.2:
DE Versus DE / 3.3:
The Algorithms / 3.3.1:
The Test Bed / 3.3.2:
Summary / 3.3.3:
DE Versus Other Optimizers / 3.4:
Comparative Performance: Thirty-Dimensional Functions / 3.4.1:
Comparative Studies: Unconstrained Optimization / 3.4.2:
Performance Comparisons from Other Problem Domains / 3.4.3:
Application-Based Performance Comparisons / 3.4.4:
Problem Domains / 3.5:
Function and Parameter Quantization / 4.1:
Uniform Quantization / 4.2.1:
Non-Uniform Quantization / 4.2.2:
Objective Function Quantization / 4.2.3:
Parameter Quantization / 4.2.4:
Mixed Variables / 4.2.5:
Optimization with Constraints / 4.3:
Boundary Constraints / 4.3.1:
Inequality Constraints / 4.3.2:
Equality Constraints / 4.3.3:
Combinatorial Problems / 4.4:
The Traveling Salesman Problem / 4.4.1:
The Permutation Matrix Approach / 4.4.2:
Relative Position Indexing / 4.4.3:
Onwubolu's Approach / 4.4.4:
Adjacency Matrix Approach / 4.4.5:
Design Centering / 4.4.6:
Divergence, Self-Steering and Pooling / 4.5.1:
Computing a Design Center / 4.5.2:
Multi-Objective Optimization / 4.6:
Weighted Sum of Objective Functions / 4.6.1:
Pareto Optimality / 4.6.2:
The Pareto-Front: Two Examples / 4.6.3:
Adapting DE for Multi-Objective Optimization / 4.6.4:
Dynamic Objective Functions / 4.7:
Stationary Optima / 4.7.1:
Non-Stationary Optima / 4.7.2:
Architectural Aspects and Computing Environments / 5:
DE on Parallel Processors / 5.1:
Background / 5.1.1:
Related Work / 5.1.2:
Drawbacks of the Standard Model / 5.1.3:
Modifying the Standard Model / 5.1.4:
The Master Process / 5.1.5:
DE on Limited Resource Devices / 5.2:
Random Numbers / 5.2.1:
Permutation Generators / 5.2.2:
Efficient Sorting / 5.2.3:
Memory-Saving DE Variants / 5.2.4:
Computer Code / 6:
DeMat - Differential Evolution for MATLAB / 6.1:
General Structure of DeMat / 6.1.1:
Naming and Coding Conventions / 6.1.2:
Data Flow Diagram / 6.1.3:
How to Use the Graphics / 6.1.4:
DeWin - DE for MS Windows: An Application in C / 6.2:
General Structure of DeWin / 6.2.1:
How To Use the Graphics / 6.2.2:
Functions of graphics.h / 6.2.5:
Software on the Accompanying CD / 6.3:
Applications / 7:
Genetic Algorithms and Related Techniques for Optimizing Si-H Clusters: A Merit Analysis for Differential Evolution / 7.1:
Introduction / 7.1.1:
The System Model / 7.1.2:
Computational Details / 7.1.3:
Results and Discussion / 7.1.4:
Concluding Remarks / 7.1.5:
Non-Imaging Optical Design Using Differential Evolution / 7.2:
Objective Function / 7.2.1:
A Reverse Engineering Approach to Testing / 7.2.3:
A More Difficult Problem: An Extended Source / 7.2.4:
Conclusion / 7.2.5:
Optimization of an Industrial Compressor Supply System / 7.3:
Background Information on the Test Problem / 7.3.1:
System Optimization / 7.3.3:
Demand Profiles / 7.3.4:
Modified Differential Evolution; Extending the Generality of DE / 7.3.5:
Component Selection from the Database / 7.3.6:
Crossover Approaches / 7.3.7:
Testing Procedures / 7.3.8:
Obtaining 100% Certainty of the Results / 7.3.9:
Results / 7.3.10:
Minimal Representation Multi-Sensor Fusion Using Differential Evolution / 7.3.11:
Minimal Representation Multi-Sensor Fusion / 7.4.1:
Differential Evolution for Multi-Sensor Fusion / 7.4.3:
Experimental Results / 7.4.4:
Comparison with a Binary Genetic Algorithm / 7.4.5:
Determination of the Earthquake Hypocenter: A Challenge for the Differential Evolution Algorithm / 7.4.6:
Brief Outline of Direct Problem Solution / 7.5.1:
Synthetic Location Test / 7.5.3:
Convergence Properties / 7.5.4:
Conclusions / 7.5.5:
Parallel Differential Evolution: Application to 3-D Medical Image Registration / 7.6:
Medical Image Registration Using Similarity Measures / 7.6.1:
Optimization by Differential Evolution / 7.6.3:
Parallelization of Differential Evolution / 7.6.4:
Acknowledgments / 7.6.5:
Design of Efficient Erasure Codes with Differential Evolution / 7.7:
Codes from Bipartite Graphs / 7.7.1:
Code Design / 7.7.3:
Differential Evolution / 7.7.4:
FIWIZ - A Versatile Program for the Design of Digital Filters Using Differential Evolution / 7.7.5:
Unconventional Design Tasks / 7.8.1:
Approach / 7.8.3:
Examples / 7.8.4:
Optimization of Radial Active Magnetic Bearings by Using Differential Evolution and the Finite Element Method / 7.8.5:
Radial Active Magnetic Bearings / 7.9.1:
Magnetic Field Distribution and Force Computed by the Two-Dimensional FEM / 7.9.3:
RAMB Design Optimized by DE and the FEM / 7.9.4:
Application of Differential Evolution to the Analysis of X-Ray Reflectivity Data / 7.9.5:
The Data-Fitting Procedure / 7.10.1:
The Model and Simulation / 7.10.3:
Inverse Fractal Problem / 7.10.4:
General Introduction / 7.11.1:
Active Compensation in RF-Driven Plasmas by Means of Differential Evolution / 7.11.2:
RF-Driven Plasmas / 7.12.1:
Langmuir Probes / 7.12.3:
Active Compensation in RF-Driven Plasmas / 7.12.4:
Automated Control System Structure and Fitness Function / 7.12.5:
Experimental Setup / 7.12.6:
Parameters and Experimental Design / 7.12.7:
Appendix / 7.12.8:
Unconstrained Uni-Modal Test Functions / A.1:
Sphere / A.1.1:
Hyper-Ellipsoid / A.1.2:
Generalized Rosenbrock / A.1.3:
Schwefel's Ridge / A.1.4:
Neumaier #3 / A.1.5:
Unconstrained Multi-Modal Test Functions / A.2:
Ackley / A.2.1:
Griewangk / A.2.2:
Rastrigin / A.2.3:
Salomon / A.2.4:
Whitley / A.2.5:
Storn's Chebyshev / A.2.6:
Lennard-Jones / A.2.7:
Hilbert / A.2.8:
Modified Langerman / A.2.9:
Shekel's Foxholes / A.2.10:
Odd Square / A.2.11:
Katsuura / A.2.12:
Bound-Constrained Test Functions / A.3:
Schwefel / A.3.1:
Epistatic Michalewicz / A.3.2:
Rana / A.3.3:
Index
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
15.

図書

図書
Gregory Falkovich
出版情報: Cambridge : Cambridge University Press, 2011  xii, 167 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Prologue
Basic equations and steady flows / 1:
Definitions and basic equations / 1.1:
Definitions / 1.1.1:
Equations of motion for an ideal fluid / 1.1.2:
Hydrostatics / 1.1.3:
Isentropic motion / 1.1.4:
Conservation laws and potential flows / 1.2:
Kinematics / 1.2.1:
Kelvin's theorem / 1.2.2:
Energy and momentum fluxes / 1.2.3:
Irrotational and incompressible flows / 1.2.4:
Flow past a body / 1.3:
Incompressible potential flow past a body / 1.3.1:
Moving sphere / 1.3.2:
Moving body of an arbitrary shape / 1.3.3:
Quasi-momentum and induced mass / 1.3.4:
Viscosity / 1.4:
Reversibility paradox / 1.4.1:
Viscous stress tensor / 1.4.2:
Navier-Stokes equation / 1.4.3:
Law of similarity / 1.4.4:
Stokes flow and the wake / 1.5:
Slow motion / 1.5.1:
The boundary layer and the separation phenomenon / 1.5.2:
Flow transformations / 1.5.3:
Drag and lift with a wake / 1.5.4:
Exercises
Unsteady flows / 2:
Instabilities / 2.1:
Kelvin-Helmholtz instability / 2.1.1:
Energetic estimate of the stability threshold / 2.1.2:
Landau's law / 2.1.3:
Turbulence / 2.2:
Cascade / 2.2.1:
Turbulent river and wake / 2.2.2:
Acoustics / 2.3:
Sound / 2.3.1:
Riemann wave / 2.3.2:
Burgers equation / 2.3.3:
Acoustic turbulence / 2.3.4:
Mach number / 2.3.5:
Dispersive waves / 3:
Linear waves / 3.1:
Surface gravity waves / 3.1.1:
Viscous dissipation / 3.1.2:
Capillary waves / 3.1.3:
Phase and group velocity / 3.1.4:
Weakly non-linear waves / 3.2:
Hamiltonian description / 3.2.1:
Hamiltonian normal forms / 3.2.2:
Wave instabilities / 3.2.3:
Non-linear Schrödinger equation (NSE) / 3.3:
Derivation of NSE / 3.3.1:
Modulational instability / 3.3.2:
Soliton, collapse and turbulence / 3.3.3:
Korteveg-de-Vries (KdV) equation / 3.4:
Waves in shallow water / 3.4.1:
The KdV equation and the soliton / 3.4.2:
Inverse scattering transform / 3.4.3:
Solutions to exercises / 4:
Chapter 1
Chapter 2
Chapter 3
Epilogue
Notes
References
Index
Preface
Prologue
Basic equations and steady flows / 1:
16.

図書

図書
Jesse M. Kinder and Philip Nelson
出版情報: Princeton : Princeton University Press, c2021  xiii, 223 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
Algorithmic thinking / 1.1.1:
States / 1.1.2:
What does a = a + 1 mean? / 1.1.3:
Symbolic versus numerical / 1.1.4:
Launch Python / 1.2:
IPython console / 1.2.1:
Error messages / 1.2.2:
Sources of help / 1.2.3:
Good practice: Keep a log / 1.2.4:
Python modules / 1.3:
Import / 1.3.1:
From … import / 1.3.2:
NumPy and PyPlot / 1.3.3:
Python expressions / 1.4:
Numbers / 1.4.1:
Arithmetic operations and predefined functions / 1.4.2:
Good practice: Variable names / 1.4.3:
More about functions / 1.4.4:
Organizing Data / 2:
Objects and their methods / 2.1:
Lists, tuples, and arrays / 2.2:
Creating a list or tuple / 2.2.1:
NumPy arrays / 2.2.2:
Filling an array with values / 2.2.3:
Concatenation of arrays / 2.2.4:
Accessing array elements / 2.2.5:
Arrays and assignments / 2.2.6:
Slicing / 2.2.7:
Flattening an array / 2.2.8:
Reshaping an array / 2.2.9:
T2 Lists and arrays as indices / 2.2.10:
Strings / 2.3:
Raw strings / 2.3.1:
Formatting strings with the format () method / 2.3.2:
T2 Formatting strings with % / 2.3.3:
Structure and Control / 3:
Loops / 3.1:
For loops / 3.1.1:
While loops / 3.1.2:
Very long loops / 3.1.3:
Infinite loops / 3.1.4:
Array operations / 3.2:
Vectorizing math / 3.2.1:
Matrix math / 3.2.2:
Reducing an array / 3.2.3:
Scripts / 3.3:
The Editor / 3.3.1:
T2 Other editors / 3.3.2:
First steps to debugging / 3.3.3:
Good practice: Commenting / 3.3.4:
Good practice: Using named parameters / 3.3.5:
Good practice: Units / 3.3.6:
Contingent behavior: Branching / 3.4:
The if statement / 3.4.1:
Testing equality of floats / 3.4.2:
Nesting / 3.5:
Data In, Results Out / 4:
Importing data / 4.1:
Obtaining data / 4.1.1:
Bringing data into Python / 4.1.2:
Exporting data / 4.2:
Data files / 4.2.1:
Visualizing data / 4.3:
The plot command and its relatives / 4.3.1:
Log axes / 4.3.2:
Manipulate and embellish / 4.3.3:
Replacing curves / 4.3.4:
T2 More about figures and their axes / 4.3.5:
T2 Error bars / 4.3.6:
3D graphs / 4.3.7:
Multiple plots / 4.3.8:
Subplots / 4.3.9:
Saving figures / 4.3.10:
T2 Using figures in other applications / 4.3.11:
First Computer Lab / 5:
HIV example / 5.1:
Explore the model / 5.1.1:
Fit experimental data / 5.1.2:
Bacterial example / 5.2:
Random Number Generation and Numerical Methods / 5.2.1:
Writing your own functions / 6.1:
Defining functions in Python / 6.1.1:
Updating functions / 6.1.2:
Arguments, keywords, and defaults / 6.1.3:
Return values / 6.1.4:
Functional programming / 6.1.5:
Random numbers and simulation / 6.2:
Simulating coin flips / 6.2.1:
Generating trajectories / 6.2.2:
Histograms and bar graphs / 6.3:
Creating histograms / 6.3.1:
Finer control / 6.3.2:
Contour plots, surface plots, and heat maps / 6.4:
Generating a grid of points / 6.4.1:
Contour plots / 6.4.2:
Surface plots / 6.4.3:
Heat maps / 6.4.4:
Numerical solution of nonlinear equations / 6.5:
General real functions / 6.5.1:
Complex roots of polynomials / 6.5.2:
Solving systems of linear equations / 6.6:
Numerical integration / 6.7:
Integrating a predefined function / 6.7.1:
Integrating your own function / 6.7.2:
Oscillatory integrands / 6.7.3:
T2 Parameter dependence / 6.7.4:
Numerical solution of differential equations / 6.8:
Reformulating the problem / 6.8.1:
Solving an ODE / 6.8.2:
Other ODE solvers / 6.8.3:
Vector fields and streamlines / 6.9:
Vector fields / 6.9.1:
Streamlines / 6.9.2:
Second Computer Lab / 7:
Generating and plotting trajectories / 7.1:
Plotting the displacement distribution / 7.2:
Rare events / 7.3:
The Poisson distribution / 7.3.1:
Waiting times / 7.3.2:
Images and Animation / 8:
Image processing / 8.1:
Images as NumPy arrays / 8.1.1:
Saving and displaying images / 8.1.2:
Manipulating images / 8.1.3:
Displaying data as an image / 8.2:
Animation / 8.3:
Creating animations / 8.3.1:
Saving animations / 8.3.2:
HTML movies
T2 Using an encoder
Conclusion / 8.3.3:
Third Computer Lab / 9:
Convolution / 9.1:
Python tools for image processing / 9.1.1:
Averaging / 9.1.2:
Smoothing with a Gaussian / 9.1.3:
Denoising an image / 9.2:
Emphasizing features / 9.3:
T2 Image files and arrays / 9.4:
Advanced Techniques / 10:
Dictionaries and generators / 10.1:
Dictionaries / 10.1.1:
Special function arguments / 10.1.2:
List comprehensions and generators / 10.1.3:
Tools for data science / 10.2:
Series and data frames with pandas / 10.2.1:
Machine learning with scikit-learn / 10.2.2:
Next steps / 10.2.3:
Symbolic computing / 10.3:
Wolfram Alpha / 10.3.1:
The SymPy library / 10.3.2:
Other alternatives / 10.3.3:
First passage revisited / 10.3.4:
Writing your own classes / 10.4:
A random walk class / 10.4.1:
When to use classes / 10.4.2:
Get Going
Installing Python / A:
Install Python and Spyder / A.1:
Graphical installation / A.1.1:
Command line installation / A.1.2:
Setting up Spyder / A.2:
Working directory / A.2.1:
Interactive graphics / A.2.2:
Script template / A.2.3:
Restart / A.2.4:
Keeping up to date / A.3:
Installing FFmpeg / A.4:
Installing ImageMagick / A.5:
Command Line Tools / B:
The command line / B.1:
Navigating your file system / B.1.1:
Creating, renaming, moving, and removing files / B.1.2:
Creating and removing directories / B.1.3:
Python and Conda / B.1.4:
Text editors / B.2:
Version control / B.3:
How Git works / B.3.1:
Installing and using Git / B.3.2:
Tracking changes and synchronizing repositories / B.3.3:
Summary of useful workflows / B.3.4:
Troubleshooting / B.3.5:
Jupyter Notebooks / B.4:
Getting started / C.1:
Launch Jupyter Notebooks / C.1.1:
Open a notebook / C.1.2:
Multiple notebooks / C.1.3:
Quitting Jupyter / C.1.4:
T2 Setting the default directory / C.1.5:
Cells / C.2:
Code cells / C.2.1:
Graphics / C.2.2:
Markdown cells / C.2.3:
Edit mode and command mode / C.2.4:
Sharing / C.3:
More details / C.4:
Pros and cons / C.5:
Errors and Error Messages / D:
Python errors in general / D.1:
Some common errors / D.2:
Python 2 versus Python 3 / E:
Division / E.1:
Print command / E.2:
User input / E.3:
More assistance / E.4:
Under the Hood / F:
Assignment statements / F.1:
Memory management / F.2:
Functions / F.3:
Scope / F.4:
Name collisions / F.4.1:
Variables passed as arguments / F.4.2:
Summary / F.5:
Answers to "Your Turn" Questions / G:
Acknowledgments
Recommended Reading
Index
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
17.

図書

図書
G. W. H. Cheeseman, R. F. Cookson
出版情報: New York : Wiley, c1979  xii, 835 p. ; 24 cm
シリーズ名: The chemistry of heterocyclic compounds : a series of monographs ; vol. 35
所蔵情報: loading…
目次情報: 続きを見る
General Introduction to Quinoxaline Chemistry
Quinoxaline--The Parent Heterocycle
Quinoxalines Unsubstituted in the Heteroring
Quinoxaline Mono- and Di-N-oxides
Quinoxaline-2-ones and Quinoxaline-2,3-diones
Quinoxaline-2-thiones and Quinoxaline-2,3-dithiones
Quinoxaline-2-carboxaldehydes and Quinoxaline-2,3 dicarboxaldehydes
Quinoxaline 2-Ketones and 2,3-Diketones
Quinoxaline-2-carboxylic Acids and Quinoxaline-2,3 dicarboxylic Acids
2-Halogenoquinoxalines and 2,3-Dihalogenoquinoxalines
2-Aminoquinoxalines and 2,3-Diaminoquinoxalines
2-Hydrazinoquinoxalines
2-Alkoxy-, 2-Aryloxy-, 2,3-Dialkoxy-,2-Alkoxy-, 3-aryloxy-, and 2,3-Diaryloxquinoxalines
2-Alkyl- and 2,3-Dialkylquinoxalines
2-Aryl(heteroaryl)- and 2,3-Diaryl(diheteroaryl)quinoxalines
2-Polyhydroxyalkylquinoxalines
Quinoxaline Quaternary Salts
Reduced Quinoxalines
Salts
Pyrrolo [1,2-a] pyrazines
Pyrrolo[b]pyrazines
Imidazopyrazines
Pyrazolopyrazines
Triazolo- and Tetrazolopyrazines
Furo-, Oxazolo-, Isoxazolo-, and Oxadiazolopyrazines
Thieno-, Thiazolo-, Isothiazolo-, and Thiadiazolopyrazines
Miscellaneous 5,6-Systems
Pyrido[1,2-a] pyrazines
Pyrido[2,3-b]pyrazines
Pyrido[3,4-b]pyrazines
Pyrazinopyrimidines
Pyrazinopyrazines
Pyrazinotriazines and Pyrazinotetrazines
Pyrazinooxazines
Pyrazinothiazines
Pyrroloquinoxalines
Imidazoquinoxalines
Pyrazoloquinoxaline
Benzo[f]quinoxalines
Benzo[g]quinoxalines
Pyridoquinoxalines
Author Index?
Subject Index
General Introduction to Quinoxaline Chemistry
Quinoxaline--The Parent Heterocycle
Quinoxalines Unsubstituted in the Heteroring
18.

図書

図書
Saeid Sanei and Jonathon Chambers
出版情報: Chichester : John Wiley & Sons, c2007  xxii, 289 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Abbreviations
List of Symbols
Introduction to EEG / 1:
History / 1.1:
Neural Activities / 1.2:
Action Potentials / 1.3:
EEG Generation / 1.4:
Brain Rhythms / 1.5:
EEG Recording and Measurement / 1.6:
Conventional Electrode Positioning / 1.6.1:
Conditioning the Signals / 1.6.2:
Abnormal EEG Patterns / 1.7:
Ageing / 1.8:
Mental Disorders / 1.9:
Dementia / 1.9.1:
Epileptic Seizure and Nonepileptic Attacks / 1.9.2:
Psychiatric Disorders / 1.9.3:
External Effects / 1.9.4:
Summary and Conclusions / 1.10:
References
Fundamentals of EEG Signal Processing / 2:
EEG Signal Modelling / 2.1:
Linear Models / 2.1.1:
Nonlinear Modelling / 2.1.2:
Generating EEG Signals Based on Modelling the Neuronal Activities / 2.1.3:
Nonlinearity of the Medium / 2.2:
Nonstationarity / 2.3:
Signal Segmentation / 2.4:
Signal Transforms and Joint Time-Frequency Analysis / 2.5:
Wavelet Transform / 2.5.1:
Ambiguity Function and the Wigner-Ville Distribution / 2.5.2:
Coherency, Multivariate Autoregressive (MVAR) Modelling, and Directed Transfer Function (DTF) / 2.6:
Chaos and Dynamical Analysis / 2.7:
Entropy / 2.7.1:
Kolmogorov Entropy / 2.7.2:
Lyapunov Exponents / 2.7.3:
Plotting the Attractor Dimensions from the Time Series / 2.7.4:
Estimation of Lyapunov Exponents from the Time Series / 2.7.5:
Approximate Entropy / 2.7.6:
Using the Prediction Order / 2.7.7:
Filtering and Denoising / 2.8:
Principal Component Analysis / 2.9:
Singular-Value Decomposition / 2.9.1:
Independent Component Analysis / 2.10:
Instantaneous BSS / 2.10.1:
Convolutive BSS / 2.10.2:
Sparse Component Analysis / 2.10.3:
Nonlinear BSS / 2.10.4:
Constrained BSS / 2.10.5:
Application of Constrained BSS: Example / 2.11:
Signal Parameter Estimation / 2.12:
Classification Algorithms / 2.13:
Support Vector Machines / 2.13.1:
The k-Means Algorithm / 2.13.2:
Matching Pursuits / 2.14:
Event-Related Potentials / 2.15:
Detection, Separation, Localization, and Classification of P300 Signals / 3.1:
Using ICA / 3.1.1:
Estimating Single Brain Potential Components by Modelling ERP Waveforms / 3.1.2:
Source Tracking / 3.1.3:
Localization of the ERP / 3.1.4:
Time-Frequency Domain Analysis / 3.1.5:
Adaptive Filtering Approach / 3.1.6:
Prony's Approach for Detection of P300 Signals / 3.1.7:
Adaptive Time-Frequency Methods / 3.1.8:
Brain Activity Assessment Using ERP / 3.2:
Application of P300 to BCI / 3.3:
Seizure Signal Analysis / 3.4:
Seizure Detection / 4.1:
Adult Seizure Detection / 4.1.1:
Detection of Neonate Seizure / 4.1.2:
Chaotic Behaviour of EEG Sources / 4.2:
Predictability of Seizure from the EEGs / 4.3:
Fusion of EEG-fMRI Data for Seizure Prediction / 4.4:
EEG Source Localization / 4.5:
Introduction / 5.1:
General Approaches to Source Localization / 5.1.1:
Dipole Assumption / 5.1.2:
Overview of the Traditional Approaches / 5.2:
ICA Method / 5.2.1:
MUSIC Algorithm / 5.2.2:
LORETA Algorithm / 5.2.3:
FOCUSS Algorithm / 5.2.4:
Standardized LORETA / 5.2.5:
Other Weighted Minimum Norm Solutions / 5.2.6:
Evaluation Indices / 5.2.7:
Joint ICA-LORETA Approach / 5.2.8:
Partially Constrained BSS Method / 5.2.9:
Determination of the Number of Sources / 5.3:
Sleep EEG / 5.4:
Stages of Sleep / 6.1:
NREM Sleep / 6.1.1:
REM Sleep / 6.1.2:
The Influence of Circadian Rhythms / 6.2:
Sleep Deprivation / 6.3:
Preface
List of Abbreviations
List of Symbols
19.

図書

図書
edited by Xin-bo Zhang
出版情報: Weinheim : Wiley-VCH, c2018  xiv, 417 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
Sodium-O2 Battery / 1.2:
References
Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries / Bin Liu and Wu Xu and Ji-Guang Zhang2:
Introduction / 2.1:
Recent Progresses in Li Metal Protection for Li-O2 Batteries / 2.2:
Design of Composite Protective Layers / 2.2.1:
New Insights on the Use of Electrolyte / 2.2.2:
Functional Separators / 2.2.3:
Solid-State Electrolytes / 2.2.4:
Alternative Anodes / 2.2.5:
Challenges and Perspectives / 2.3:
Acknowledgment
Li-Air Batteries: Discharge Products / Xuanxuan Bi and Rongyue Wang and Jun Lu3:
Discharge Products in Aprotic Li-O2 Batteries / 3.1:
Peroxide-based Li-O2 Batteries / 3.2.1:
Electrochemical Reactions / 3.2.1.1:
Crystalline and Electronic Band Structure of Li2O2 / 3.2.1.2:
Reaction Mechanism and the Coexistence of Li2O2 and LiO2 / 3.2.1.3:
Super oxide-based Li-02 Batteries / 3.2.2:
Problems and Challenges in Aprotic Li-O2 Batteries / 3.2.3:
Decomposition of the Electrolyte / 3.2.3.1:
Degradation of the Carbon Cathode / 3.2.3.2:
Discharge Products in Li-Air Batteries / 3.3:
Challenges to Exchanging O2 to Air / 3.3.1:
Effect of Water on Discharge Products / 3.3.2:
Effect of Small Amount of Water / 3.3.2.1:
Aqueous Li-O2 Batteries / 3.3.2.2:
Effect of C02 on Discharge Products / 3.3.3:
Current Li-Air Batteries and Perspectives / 3.3.4:
Electrolytes for Li-O2 Batteries / Alex R. Neale and Peter Goodrich and Christopher Hardacre and Johan Jacquemin4:
General Li-O2 Battery Electrolyte Requirements and Considerations / 4.1:
Electrolyte Salts / 4.1.1:
Ethers and Glymes / 4.1.2:
Dimethyl Sulfoxide (DMSO) and Sulfones / 4.1.3:
Nitriles / 4.1.4:
Amides / 4.1.5:
Ionic Liquids / 4.1.6:
Future Outlook / 4.1.7:
Li-Oxygen Battery: Parasitic Reactions / Xiahui Yao and Qi Dong and Qingmei Cheng and Dunwei Wang5:
The Desired and Parasitic Chemical Reactions for Li-Oxygen Batteries / 5.1:
Parasitic Reactions of the Electrolyte / 5.2:
Nucleophilic Attack / 5.2.1:
Autoxidation Reaction / 5.2.2:
Acid-Base Reaction / 5.2.3:
Proton-mediated Parasitic Reaction / 5.2.4:
Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction / 5.2.5:
Parasitic Reactions at the Cathode / 5.3:
The Corrosion of Carbon in the Discharge Process / 5.3.1:
The Corrosion of Carbon in the Recharge Process / 5.3.2:
Catalyst-induced Parasitic Chemical Reactions / 5.3.3:
Alternative Cathode Materials and Corresponding Parasitic Chemistries / 5.3.4:
Additives and Binders / 5.3.5:
Contaminations / 5.3.6:
Parasitic Reactions on the Anode / 5.4:
Corrosion of the Li Metal / 5.4.1:
SEI in the Oxygenated Atmosphere / 5.4.2:
Alternative Anodes and Associated Parasitic Chemistries / 5.4.3:
New Opportunities from the Parasitic Reactions / 5.5:
Summary and Outlook / 5.6:
Li-Air Battery: Electrocatalysts / 6:
Types of ELectrocatalyst / 6.1:
Carbonaceous Materials / 6.2.1:
Commercial Carbon Powders / 6.2.1.1:
Carbon Nanotubes (CNTs) / 6.2.1.2:
Graphene / 6.2.1.3:
Doped Carbonaceous Material / 6.2.1.4:
Noble Metal and Metal Oxides / 6.2.2:
Transition Metal Oxides / 6.2.3:
Perovskite Catalyst / 6.2.3.1:
Redox Mediator / 6.2.3.2:
Research of Catalyst / 6.3:
Reaction Mechanism / 6.4:
Summary / 6.5:
Lithium-Air Battery Mediator / Zhuojion Liang and Guangtao Cong and Yu Wang and Yi-Chun Lu7:
Redox Mediators in Lithium Batteries / 7.1:
Redox Mediators in Li-Air Batteries / 7.1.1:
Redox Mediators in Li-ion and Lithium-flow Batteries / 7.1.2:
Overcharge Protection in Li-ion Batteries / 7.1.2.1:
Redox Targeting Reactions in Lithium-flow Batteries / 7.1.2.2:
Selection Criteria and Evaluation of Redox Mediators for Li-O2 Batteries / 7.2:
Redox Potential / 7.2.1:
Stability / 7.2.2:
Reaction Kinetics and Mass Transport Properties / 7.2.3:
Catalytic Shuttle vs Parasitic Shuttle / 7.2.4:
Charge Mediators / 7.3:
Lil (Lithium Iodide) / 7.3.1:
LiBr (Lithium Bromide) / 7.3.2:
Nitroxides: TEMPO (2,2,6,6-TetramethyIpiperidinyioxyl) and Others / 7.3.3:
TTF (Tetrathiafulvalene) / 7.3.4:
Tris[4-(diethylamino)phenyl]amine (TDPA) / 7.3.5:
Comparison of the Reported Charge Mediators / 7.3.6:
Discharge Mediator / 7.4:
Iron Phthalocyanine (FePc) / 7.4.1:
2,5-Di-tert'butyl-l,4-benzoquinone (DBBQ) / 7.4.2:
Conclusion and Perspective / 7.5:
Spatiotemporal Operando X-ray Diffraction Study on Li-Air Battery / Di-Jia Liu and Jiang-Lan Shui8:
Microfocused X-ray Diffraction (¿-XRD) and Li-O2 Cell Experimental Setup / 8.1:
Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB / 8.2:
Study on Separator: Impact of Precipitates to LAB Performance / 8.3:
Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox Reaction / 8.4:
Metal-Air Battery: In Situ Spectroelectrochemical Techniquesx / lain M. Aldous and Laurence J. Hardwick and Richard J. Nichols and J. Padmanabhan Vivek9:
Raman Spectroscopy / 9.1:
In Situ Raman Spectroscopy for Metal-O2 Batteries / 9.1.1:
Background Theory / 9.1.2:
Practical Considerations / 9.1.3:
Electrochemical Roughening / 9.1.3.1:
Addressing Inhomogeneous SERS Enhancement / 9.1.3.2:
In Situ Raman Setup / 9.1.4:
Determination of Oxygen Reduction and Evolution Reaction Mechanisms Within Metal-O2 Batteries / 9.1.5:
Infrared Spectroscopy / 9.2:
Background / 9.2.1:
IR Studies of Electrochemical Interfaces / 9.2.2:
Infrared Spectroscopy for Metal-O2 Battery Studies / 9.2.3:
UV/Visible Spectroscopic Studies / 9.3:
UV/Vis Spectroscopy / 9.3.1:
UV/Vis Spectroscopy for Metal-O2 Battery Studies / 9.3.2:
Electron Spin Resonance / 9.4:
Cell Setup / 9.4.1:
Deployment of Electrochemical ESR in Battery Research / 9.4.2:
Zn-Air Batteries / Tong wen Yu and Rui Cai and Zhongwei Chen9.5:
Zinc Electrode / 10.1:
Electrolyte / 10.3:
Separator / 10.4:
Air Electrode / 10.5:
Structure of Air Electrode / 10.5.1:
Oxygen Reduction Reaction / 10.5.2:
Oxygen Evolution Reaction / 10.5.3:
Electrocatalyst / 10.5.4:
Noble Metals and Alloys / 10.5.4.1:
Inorganic-Organic Hybrid Materials / 10.5.4.2:
Meta-free Materials / 10.5.4.4:
Conclusions and Outlook / 10.6:
Experimental and Computational investigation of Nonaqueous Mg/O2 Batteries / Jeffrey G. Smith and Güiin Vardar and Charles W. Monroe and Donald J. Siegel11:
Experimental Studies of Magnesium/Air Batteries and Electrolytes / 11.1:
Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries / 11.2.1:
Modified Grignard Electrolytes for Mg/O2 Batteries / 11.2.2:
All-inorganic Electrolytes for Mg/O2 Batteries / 11.2.3:
Electrochemical Impedance Spectroscopy / 11.2.4:
Computational Studies of Mg/O2 Batteries / 11.3:
Calculation of Thermodynamic Overpotentials / 11.3.1:
Charge Transport in Mg/O2 Discharge Products / 11.3.2:
Concluding Remarks / 11.4:
Novel Methodologies to Model Charge Transport In Metal-Air Batteries / Nicoiai Rask Mathiesen and Marko Melander and Mikael Kuisma and Pablo García-Fernandez and Juan Maria García Lastra12:
Modeling Electrochemical Systems with GPAW / 12.1:
Density Functional Theory / 12.2.1:
Conductivity from DFT Data / 12.2.2:
The GPAW Code / 12.2.3:
Charge Transfer Rates with Constrained DFT / 12.2.4:
Marcus Theory of Charge Transfer / 12.2.4.1:
Constrained DFT / 12.2.4.2:
Polaronic Charge Transport at the Cathode / 12.2.4.3:
Electrochemistry at Solid-Liquid Interfaces / 12.2.5:
Modeling the Electrochemical Interface / 12.2.5.1:
Implicit Solvation at the Electrochemical Interface / 12.2.5.2:
Generalized Poisson-Boltzmann Equation for the Electric Double Layer / 12.2.5.3:
A Electrode Potential Within the Poisson-Boltzmann Model
Calculations at Constant Electrode Potential / 12.2.6:
The Need for a Constant Potential Presentation / 12.2.6.1:
Grand Canonical Ensemble for Electrons / 12.2.6.2:
Fictitious Charge Dynamics / 12.2.6.3:
Model in Practice / 12.2.6.4:
Conclusions / 12.2.7:
Second Principles for Material Modeling / 12.3:
The Energy in SP-DET / 12.3.1:
The Lattice Term (E(0)) / 12.3.2:
Electronic Degrees of Freedom / 12.3.3:
Model Construction / 12.3.4:
Perspectives on SP-DFT / 12.3.5:
Acknowledgments
Flexible Metal-Air Batteries / Huisheng Peng and Yifan Xu and Jian Pan and Yang Zhao and Lie Wang and Xiang Shi13:
Flexible Electrolytes / 13.1:
Aqueous Electrolytes / 13.2.1:
PAA-based Gel Polymer Electrolyte / 13.2.1.1:
PEO-based Gel Polymer Electrolyte / 13.2.1.2:
PVA-based Gel Polymer Electrolyte / 13.2.1.3:
Nonaqueous Electrolytes / 13.2.2:
PEO-based Polymer Electrolyte / 13.2.2.1:
PVDF-HFP-based Polymer Electrolyte / 13.2.2.2:
Ionic Liquid Electrolyte / 13.2.2.3:
Flexible Anodes / 13.3:
Flexible Cathodes / 13.4:
Modified Stainless Steel Mesh / 13.4.1:
Modified Carbon Textile / 13.4.2:
Carbon Nanotube / 13.4.3:
Graphene-based Cathode / 13.4.4:
Other Composite Electrode / 13.4.5:
Prototype Devices / 13.5:
Sandwich Structure / 13.5.1:
Fiber Structure / 13.5.2:
Perspectives on the Development of Metal-Air Batteries / 13.6:
Lithium Anode / 14.1:
Cathode / 14.1.2:
The Reaction Mechanisms / 14.1.4:
The Development of Solid-state Li-O2 Battery / 14.1.5:
The Development of Flexible Li-O2 Battery / 14.1.6:
Na-O2 Battery / 14.2:
Zn-air Battery / 14.3:
Index
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
20.

図書

図書
Kenneth A. Small and Erik T. Verhoef
出版情報: London : Routledge, 2007  xvi, 276 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of tables
List of figures
Acknowledgments
Selected symbols and abbreviations
Introduction / 1:
Travel demand / 2:
Aggregate tabulations and models / 2.1:
Aggregate demand models / 2.1.1:
Cross-sectional studies of metropolitan areas / 2.1.2:
Cross-sectional studies within a metropolitan area / 2.1.3:
Studies using time-series data / 2.1.4:
Summary of key results of aggregate studies / 2.1.5:
Transportation and land use / 2.1.6:
Disaggregate models: methods / 2.2:
Basic discrete-choice models / 2.2.1:
Estimation / 2.2.2:
Interpreting coefficient estimates / 2.2.3:
Data / 2.2.4:
Randomness, scale of utility, and measures of benefit / 2.2.5:
Aggregation and forecasting / 2.2.6:
Specification / 2.2.7:
Ordered and rank-ordered models / 2.2.8:
Disaggregate models: examples / 2.3:
Mode choice / 2.3.1:
Trip-scheduling choice / 2.3.2:
Choice of free or express lanes / 2.3.3:
Advanced discrete-choice modeling / 2.4:
Generalized extreme value models / 2.4.1:
Combined discrete and continuous choice / 2.4.2:
Disaggregate panel data / 2.4.3:
Random parameters and mixed logit / 2.4.4:
Endogenous prices / 2.4.5:
Activity patterns and trip chaining / 2.5:
Value of time and reliability / 2.6:
Value of time: basic theory / 2.6.1:
Empirical specifications / 2.6.2:
Extensions / 2.6.3:
Value of reliability: theory / 2.6.4:
Empirical results / 2.6.5:
Conclusions / 2.7:
Costs / 3:
The nature of cost functions / 3.1:
Cost functions for public transit / 3.2:
Accounting cost studies / 3.2.1:
Engineering cost studies / 3.2.2:
Statistical cost studies / 3.2.3:
Cost functions including user inputs / 3.2.4:
Highway travel: congestion technology / 3.3:
Fundamentals of congestion / 3.3.1:
Empirical speed-flow relationships / 3.3.2:
Dynamic congestion models / 3.3.3:
Congestion modeling: a conclusion / 3.3.4:
Highway travel: short-run cost functions and equilibrium / 3.4:
Stationary-state congestion on a homogeneous road / 3.4.1:
Time-averaged models / 3.4.2:
Dynamic models with endogenous scheduling / 3.4.3:
Network equilibrium / 3.4.4:
Parking search / 3.4.5:
Empirical evidence on short-run variable costs / 3.4.6:
Highway travel: long-run cost functions / 3.5:
Analytic long-run cost functions / 3.5.1:
The role of information technology / 3.5.2:
Empirical evidence on capital costs / 3.5.3:
Is highway travel subsidized? / 3.5.4:
Intermodal cost comparisons / 3.6:
Pricing / 3.7:
First-best congestion pricing of highways / 4.1:
Static congestion / 4.1.1:
Dynamic congestion / 4.1.2:
Second-best pricing / 4.2:
Network aspects / 4.2.1:
Time-of-day aspects / 4.2.2:
User heterogeneity / 4.2.3:
Stochastic congestion and information / 4.2.4:
Interactions with other distorted markets / 4.2.5:
Second-best pricing: a conclusion / 4.2.6:
Congestion pricing in practice / 4.3:
Singapore / 4.3.1:
Norwegian toll rings / 4.3.2:
Value pricing in the US / 4.3.3:
London congestion charging / 4.3.4:
Other applications / 4.3.5:
Technology of road pricing / 4.3.6:
Pricing of parking / 4.4:
Pricing of public transit / 4.5:
Fare level / 4.5.1:
Fare structure / 4.5.2:
Incentive effects of subsidies / 4.5.3:
Political considerations / 4.5.4:
Investment / 4.6:
Capacity choice for highways / 5.1:
Basic results: capacity choice with first-best pricing and static congestion / 5.1.1:
Self-financing in more complex settings / 5.1.2:
Second-best highway capacity / 5.1.3:
Naive investment rules / 5.1.4:
Cost-benefit analysis / 5.2:
Willingness to pay / 5.2.1:
Demand and cost forecasts / 5.2.2:
Discounting future costs and benefits / 5.2.3:
Shifting of costs and benefits / 5.2.4:
External benefits and network effects / 5.2.5:
Conclusion: the use and misuse of cost-benefit analysis / 5.2.6:
Industrial organization of transportation providers / 5.3:
Private highways / 6.1:
Single road with static congestion / 6.1.1:
Single road with dynamic congestion / 6.1.2:
Heterogeneous users / 6.1.3:
Private toll lanes: the two-route problem revisited / 6.1.4:
Competition in networks / 6.1.5:
Regulation and franchising of private roads / 6.2:
Privately provided transit services / 6.3:
Forms of privatization / 6.3.1:
Market structure and competitive practices / 6.3.2:
Efficiency of public and private providers / 6.3.3:
Experience with privatization and deregulation / 6.3.4:
Paratransit / 6.3.5:
Conventional taxi service / 6.3.6:
Conclusion / 6.4:
Emerging themes / 7.1:
Implications for transportation research / 7.2:
Notes
References
Index
List of tables
List of figures
Acknowledgments
21.

図書

図書
Daniel Minoli
出版情報: Boca Raton, Fla. : CRC Press, c2011  xiv, 302 p., [24] p. of plates ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Author
Introduction / Chapter 1:
Overview / 1.1:
Background and Opportunities / 1.2:
Course of Investigation / 1.3:
References
Bibliography
Some Basic Fundamentals of Visual Science / Chapter 2:
Stereo Vision Concepts / 2.1:
Stereoscopy / 2.1.1:
Binocular Depth Perception and Convergence / 2.1.2:
Cyclopean Image / 2.1.3:
Accommodation / 2.1.4:
Parallax Concepts / 2.2:
Parallax / 2.2.1:
Parallax Barrier and Lenticular Lenses / 2.2.2:
Other Concepts / 2.3:
Polarization / 2.3.1:
Chromostereopsis / 2.3.2:
3D Imaging / 2.3.3:
Occlusion and Scene Reconstruction / 2.3.4:
Conclusion / 2.4:
Analytical 3D Aspects of the Human Visual System / Appendix 2A:
Theory of Stereo Reproduction / 2A.1:
Analytics / 2A.2:
Depth Perception / 2A.2.1:
Geometry of Stereoscopic 3D Displays / 2A.2.2:
Geometry of Stereo Capturing / 2A.2.3:
Stereoscopic 3D Distortions / 2A.2.4:
Workflow of Conventional Stereo Production / 2A.3:
Basic Rules and Production Grammar / 2A.3.1:
Example / 2A.3.2:
Application of Visual Science Fundamentals to 3DTV / Chapter 3:
Application of the Science to 3D Projection/3DTV / 3.1:
Common Video Treatment Approaches / 3.1.1:
Projections Methods for Presenting Stereopairs / 3.1.2:
Polarization, Synchronization, and Colorimetrics / 3.1.3:
Autostereoscopic Viewing / 3.2:
Lenticular Lenses / 3.2.1:
Parallax Barriers / 3.2.2:
Other Longer-Term Systems / 3.3:
Multi-Viewpoint 3D Systems / 3.3.1:
Integral Imaging/Holoscopic Imaging / 3.3.2:
Holographic Approaches / 3.3.3:
Volumetric Displays/Hybrid Holographic / 3.3.4:
Viewer Physiological Issues with 3D Content / 3.4:
The Accommodation Problem / 3.4.1:
Infinity Separation / 3.4.2:
Conclusion and Requirements of Future 3DTV / 3.5:
Basic 3DTV Approaches for Content Capture and Mastering / Chapter 4:
General Capture, Mastering, and Distribution Process / 4.1:
3D Capture, Mastering, and Distribution Process / 4.2:
Content Acquisition / 4.2.1:
3D Mastering / 4.2.2:
Spatial Compression / 4.2.2.1:
Temporal Multiplexing / 4.2.2.2:
2D in Conjunction with Metadata (2D+M) / 4.2.2.3:
Color Encoding / 4.2.2.4:
Overview of Network Transport Approaches / 4.3:
MPEG Standardization Efforts / 4.4:
Additional Details on 3D Video Formats / Appendix 4A:
Conventional Stereo Video (CSV) / 4A.1:
Video plus Depth (V+D) / 4A.2:
Multiview Video plus Depth (MV+D) / 4A.3:
Layered Depth Video (LDV) / 4A.4:
3D Basic 3DTV Approaches and Technologies for In-Home Display of Content / Chapter 5:
Connecting the In-Home Source to the Display / 5.1:
3DTV Display Technology / 5.2:
Commercial Displays Based on Projection / 5.2.1:
Commercial Displays Based on LCD and PDP Technologies / 5.2.2:
LCD 3DTV Polarized Display / 5.2.3:
Summary of 3DTV Polarized Displays / 5.2.4:
Glasses Accessories / 5.2.5:
Other Display Technologies / 5.3:
Autostereoscopic Systems with Parallax Support in the Vertical and Horizontal Axes / 5.3.1:
Autostereoscopic Systems for PDAs / 5.3.2:
Primer on Cables/Connectivity for High-End Video / 5.4:
In-Home Connectivity Using Cables / 5A.1:
Digital Visual Interface (DVI) / 5A.1.1:
High-Definition Multimedia Interface" (HDMI") / 5A.1.2:
DisplayPort / 5A.1.3:
In-Home Connectivity Using Wireless Technology / 5A.2:
Wireless Gigabit Alliance / 5A.2.1:
WirelessHD / 5A.2.2:
Other Wireless / 5A.2.3:
3DTV Advocacy and System-Level Research Initiatives / Chapter 6:
3D Consortium (3DC) / 6.1:
3D@Home Consortium / 6.2:
3D Media Cluster / 6.3:
3DTV / 6.4:
Challenges and Players in the 3DTV Universe / 6.5:
European Information Society Technologies (IST) Project "Advanced Three-Dimensional Television System Technologies" (ATTEST) / 6.5.1:
3D Content Creation / 6.5.1.1:
3D Video Coding / 6.5.1.2:
Transmission / 6.5.1.3:
Virtual-View Generation and 3D Display / 6.5.1.4:
3DPhone / 6.5.2:
Mobile3DTV / 6.5.3:
Real3D / 6.5.4:
HELIUM3D (High Efficiency Laser Based Multi User Multi Modal 3D Display) / 6.5.5:
The MultiUser 3D Television Display (MUTED) / 6.5.6:
3D4YOU / 6.5.7:
3DPresence / 6.5.8:
Audio-Visual Content Search and Retrieval in a Distributed P2P Repository (Victory) / 6.5.9:
Victory in Automotive Industry / 6.5.9.1:
Victory in Game Industry / 6.5.9.2:
2020 3D Media / 6.5.10:
i3DPost / 6.5.11:
Glossary
Index
Preface
The Author
Introduction / Chapter 1:
22.

図書

図書
edited by Caitlin H. Bell ... [et al.]
出版情報: Boca Raton : CRC Press, c2019  xxix, 439 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Foreword
Acknowledgments
Editors
Contributors
Introduction to Emerging Contaminants / Chapter 1:
Introduction / 1.1:
Who Identifies Emerging Contaminants? / 1.2:
United States Environmental Protection Agency / 1.2.1:
United States Department of Defense / 1.2.2:
United States Geologic Survey / 1.2.3:
State Agencies in the United States / 1.2.4:
Stockholm Convention on Persistent Organic Pollutants / 1.2.5:
European Union / 1.2.6:
Australian National Environment Protection Council / 1.2.7:
What is the Life Cycle of an Emerging Contaminant? / 1.3:
What are the Key Challenges Associated with Emerging Contaminants? / 1.4:
The Need for Balance / 1.5:
This Book / 1.6:
Acronyms
1,4-Dioxane / Chapter 2:
Basic Information / 2.1:
Toxicity and Risk Assessment / 2.3:
Potential Noncancer Effects / 2.3.1:
Potential Cancer Effects / 2.3.2:
Regulatory Status / 2.4:
Site Characterization / 2.5:
Investigation Approaches / 2.5.1:
Analytical Methods / 2.5.2:
Advanced Investigation Techniques / 2.5.3:
Soil Treatment / 2.6:
Groundwater Treatment / 2.7:
In Situ Treatment / 2.7.1:
In Situ Chemical Oxidation / 2.7.1.1:
Bioremediation / 2.7.1.2:
Phytoremediation / 2.7.1.3:
Thermal Treatment / 2.7.1.4:
Ex Situ Treatment and Dynamic Groundwater Recirculation / 2.7.2:
Natural Attenuation / 2.7.3:
Drinking Water and Wastewater Treatment / 2.8:
Point-of-Use and Point-of-Entry Treatment / 2.8.1:
1.4-Dioxane Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 2.9:
Advanced Oxidation Processes / 2.9.1:
Bioreaetors / 2.9.2:
Granular Activated Carbon and Other Sorbenl Media / 2.9.3:
Electrochemical Oxidation / 2.9.4:
Conclusion / 2.10:
Per- and Polyfluoroalkyl Substances / Chapter 3:
PFASs Chemistry / 3.1:
Ionic State / 3.2.1:
Linear and Branched Isomers / 3.2.2:
Perfluoroalkyl Substances / 3.2.3:
Perfluoroalkyl Sulfonic Acids / 3.2.3.1:
Perfluoroalkyl Carboxylic Acids / 3.2.3.2:
Perfluoroalkyl Phosphonic and Phosphinic Acids / 3.2.3.3:
Perfluoroalkyl Ether Carboxylates and Perfluoroalkyl Ether Sulfonates / 3.2.3.4:
Polyfluoroalkyl Substances / 3.2.4:
ECF-Derived Polyfluoroalkyl Substances / 3.2.4.1:
Fluorotelomerizat ion-Derived Polyfluoroalkyl Substances / 3.2.4.2:
Long- and Short-Chain PFASs / 3.2.5:
Polymeric PFASs / 3.2.6:
Replacement PFASs / 3.2.7:
Chemistry of PFASs in Class B Firefighting Foams / 3.2.8:
Physical, Chemical, and Biological Properties / 3.3:
Biological Activity Towards PFASs / 3.3.1:
Transformation of Polyfluoroalkyl Substances / 3.3.2:
Abiotic Transformation / 3.3.2.1:
Biotic Transformation / 3.3.2.2:
PFASs Production and Use / 3.4:
Manufacturing Processes and Uses / 3.4.1:
Electrochemical Fluorination / 3.4.2:
Fluorotelomerization / 3.4.3:
Oligomerization / 3.4.4:
Uses / 3.4.5:
Use as Surfactants / 3.4.5.1:
Use as Surface Coatings / 3.4.5.2:
Other Uses / 3.4.5.3:
Sampling and Analysis / 3.5:
General Sampling Guidelines / 3.5.1:
Soil and Sediment Sampling / 3.5.1.1:
Surface Water and Groundwater Sampling / 3.5.1.2:
Storage and Hold Times / 3.5.1.3:
Chemical Analysis Methods / 3.5.2:
Overview of Standard Methods / 3.5.2.1:
Advanced Analytical Techniques / 3.5.2.2:
Health Considerations / 3.6:
Exposure Routes / 3.6.1:
Distribution in Tissue / 3.6.2:
Bioaccumulation / 3.6.3:
Elimination / 3.6.4:
Toxicologic and Epidemiological Studies / 3.6.5:
Acute Toxicity / 3.6.5.1:
(Sub)Chronic Toxicity / 3.6.5.2:
Epidemiological Studies / 3.6.5.3:
Polyfluoroalkyl Substance Toxicity / 3.6.5.4:
Derivation of Reference Doses/Tolerable Daily Intakes / 3.6.5.5:
Carcinogenic Effects / 3.6.5.6:
Regulation / 3.7:
Regulation of PFASs / 3.7.1:
Global Treaties and Conventions / 3.7.1.1:
United States of America / 3.7.1.2:
Europe / 3.7.1.3:
Australia / 3.7.1.4:
Regulation of Perfluoroalkyl Ethers / 3.7.2:
Fate and Transport / 3.8:
PFAS Distribution in Environmental Matrices / 3.8.1:
PFASs in Soils / 3.8.1.1:
Leaching / 3.8.1.2:
Transport and Retardation in Groundwater / 3.8.1.3:
Surface Waters and Sediments / 3.8.1.4:
Vapor Migration / 3.8.1.5:
Atmospheric Deposition / 3.8.1.6:
Detections and Background Levels in the Environment / 3.8.2:
Sites of Concern / 3.8.3:
CSM for Industrial Facilities / 3.8.3.1:
CSM for Fire Training Areas and Class B Fire Response Areas / 3.8.3.2:
CSM for WWTPs and Biosolid Application Areas / 3.8.3.3:
CSM for Landfills / 3.8.3.4:
PFAS-Relevant Treatment Technologies / 3.9:
Biological Treatment / 3.9.1:
Soil and Sediment Treatment / 3.9.2:
Incineration / 3.9.2.1:
Stabilization/Solidification / 3.9.2.2:
Vapor Energy Generator Technology / 3.9.2.3:
Soil/Sediment Washing / 3.9.2.4:
High-Energy Electron Beam / 3.9.2.5:
Mechanochemical Destruction / 3.9.2.6:
Water Treatment / 3.9.3:
Mature Water Treatment Technologies / 3.9.3.1:
Developing Treatment Technologies / 3.9.3.2:
Experimental Treatment Technologies / 3.9.3.3:
Conclusions / 3.10:
Hexavalent Chromium / Chapter 4:
Geochemistry of Chromium / 4.1:
Sources of Cr(VI) / 4.1.2:
U.S. Federal Regulations / 4.2:
U.S. State Regulations / 4.3.2:
California / 4.3.2.1:
North Carolina / 4.3.2.2:
New Jersey / 4.3.2.3:
Other Countries / 4.3.3:
Occurrence of Cr(VI) / 4.4:
Naturally Occurring (Background) Cr(VI) in Groundwater / 4.4.1:
Cr(VI) in Drinking Water / 4.4.2:
Investigation of Cr(VI) in Groundwater / 4.5:
Chromium Isotopes / 4.5.2:
Mineralogical Analyses / 4.5.3.2:
In Situ Reduction / 4.6:
In Situ Chemical Reduction / 4.6.1.1:
In Situ Biological Reduction / 4.6.1.2:
Permeable Reactive Barriers / 4.6.1.3:
Reoxidation of Cr(III) Formed by In Situ Reduction / 4.6.1.4:
Ex Situ Treatment / 4.6.2:
Dynamic Groundwater Recirculation
Tier I / 4.6.4:
Tier II / 4.6.4.2:
Tier III / 4.6.4.3:
Tier IV / 4.6.4.4:
Drinking Water Treatment / 4.7:
Point-of-Entry and Point-of-Use Treatment / 4.7.1:
Cr(VI) Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 4.8:
Reduction/Coagulation/Filtration with Ferrous Iron / 4.8.1:
Ion Exchange / 4.8.2:
Weak Base Anion Resins / 4.8.2.1:
Strong Base Anion Resins / 4.8.2.2:
Reverse Osmosis / 4.8.3:
Bioreactors / 4.8.4:
Phytostabilization / 4.8.4.1:
Iron Media / 4.8.4.2:
Reduction/Filtration via Stannous Chloride (RF-Sn[II]) / 4.8.5:
1,2,3-Trichloropropane / 4.9:
International Guidance / 5.1:
Investigation / 5.4:
Groundwater Remediation Technologies / 5.4.2:
In Situ Hydrolysis / 5.5.1:
In Situ Biological Treatment / 5.5.1.2:
TCP Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 5.5.1.3:
Granular Activated Carbon / 5.7.1:
Air Stripping / 5.7.2:
Other Processes / 5.7.4:
Considerations for Future Contaminants of Emerging Concern / 5.8:
Categorizing Future Emerging Contaminants / 6.1:
The Challenges Posed in Emerging Contaminant Management / 6.3:
Challenges Associated with Release to the Environment / 6.3.1:
Challenges Associated with Assessing Toxicological Risk / 6.3.2:
Challenges Associated with Regulation / 6.3.3:
Challenges Associated with Characterization and Analysis / 6.3.4:
Challenges Associated with Treatment / 6.3.5:
The Future of Emerging Contaminants / 6.4:
Appendices
USEPA Candidate Contaminant List / Appendix A:
REACH Candidate List / Appendix B:
Emerging Contaminants and Their Physical and Chemical Properties / Appendix C:
NGI Preliminary List of Substances That Could Be Considered to Meet the PMT or vPvM Criteria / Appendix D:
Summary of PFAS Environmental Standards: Soil / Appendix E.1:
Summary of PFAS Environmental Standards: Groundwater / Appendix E.2:
Summary of PFAS Environmental Standards: Surface Water / Appendix E.3:
Summary of PFAS Environmental Standards: Drinking Water / Appendix E.4:
Notes / Appendix E.5:
Index
List of Figures
List of Tables
Foreword
23.

図書

図書
Shiping Liu, Gang (Sheng) Chen
出版情報: Hoboken, NJ : Wiley, 2019  xii, 254 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
Contact Perception in Virtual Environment / 1.2:
Organization of This Book / 1.3:
References
Fundamentals of Robot Dynamics and Control / 2:
Robot Kinematics / 2.1:
Matrix Description of Robot Kinematics / 2.1.1:
Homogeneous Transformation Matrices / 2.1.2:
Forward Kinematics / 2.1.3:
Inverse Kinematics / 2.1.4:
Velocity Kinematics / 2.1.5:
Robot Dynamics / 2.2:
Robot Control / 2.3:
Trajectory Control / 2.3.1:
Point-to-point Control / 2.3.2.1:
Trajectories for Paths Specified by Points / 2.3.2.2:
Interaction Control / 2.3.3:
Impedance Control / 2.3.3.1:
Hybrid Force-Position Control 38 References / 2.3.3.2:
Friction and Contact of Solid Interfaces / 3:
Contact Between Two Solid Surfaces / 3.1:
Description of Surfaces / 3.2.1:
Contact Mechanics of Two Solid Surfaces / 3.2.2:
Friction Between Two Solid Surfaces / 3.3:
Adhesion / 3.3.1:
Dry Friction / 3.3.2:
Friction Mechanisms / 3.3.2.1:
Friction Transitions and Wear / 3.3.2.2:
Static Friction, Hysteresis, Time, and Displacement Dependence / 3.3.2.3:
Effects of Environmental and Operational Condition on Friction / 3.3.2.4:
Liquid Mediated Friction / 3.3.3:
Stribeck Curve / 3.3.3.1:
Unsteady Liquid-Mediated Friction / 3.3.3.2:
Negative Slope of Friction-Velocity Curve / 3.3.3.3:
Friction Models / 3.3.4:
Friction Dynamics of Manipulators / 4:
Friction Models of Robot Manipulator Joints / 4.1:
Modeling Friction with Varied Effects / 4.2:
The Motion Equations of Dynamics of Robot Manipulators with Friction / 4.3:
The General Motion Equation of Robot Manipulators / 4.3.1:
The Motion Equation of Two-Link Robot Manipulators / 4.3.2:
Nonlinear Dynamics and Chaos of Manipulators / 4.4:
Parameters Identification / 4.5:
Identification of Dynamic Parameters / 4.5.1:
Identification of Parameters of Friction Models / 4.5.2:
Uncertainty Analysis / 4.5.3:
Friction Compensation and Control of Robot Manipulator Dynamics / 4.6:
Force Feedback and Haptic Rendering / 5:
Overview of Robot Force Feedback / 5.1:
Generating Methods of Feedback Force / 5.2:
Serial Mechanism / 5.2.1:
Kinematics / 5.2.1.1:
Dynamics / 5.2.1.2:
Parallel Mechanism / 5.2.2:
Kinematics Model / 5.2.2.1:
Dynamics Based on Virtual Work / 5.2.2.2:
Friction Compensation / 5.2.3:
Calculation of Virtual Force / 5.3:
Collision Detection / 5.3.1:
The Construction of the Bounding Box / 5.3.1.1:
Calculation of Distance between Bounding Boxes / 5.3.1.2:
Calculating the Model of Virtual Force / 5.3.2:
1-DoF Interaction / 5.3.2.1:
2-DoF Interaction / 5.3.2.2:
3-DoF Interaction / 5.3.2.3:
6-DoF Interaction / 5.3.2.4:
Haptic Display Based on Point Haptic Device / 5.4:
Human Tactile Perception / 5.4.1:
Haptic Texture Display Methods / 5.4.2:
Virtual Simulation of Robot Control / 6:
Overview of Robot Simulation / 6.1:
3D Graphic Environment / 6.2:
Virtual Reality-Based Robot Control / 6.3:
Overview of Virtual Reality / 6.3.1:
Overview of Teleoperation / 6.3.2:
Virtual Reality-Based Teleoperation / 6.3.3:
Augmented Reality-Based Tele operation / 6.4:
Overview of Augmented Reality / 6.4.1:
Augmented Reality-Based Teleoperation / 6.4.2:
Task Planning Methods in Virtual Environment / 6.5:
Overview / 6.5.1:
Interactive Graphic Mode / 6.5.2:
Index
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
24.

図書

図書
by Robert J. Hilderman, Howard J. Hamilton
出版情報: Boston, MA : Kluwer Academic Publishers, c2001  xvii, 162 p. ; 25 cm
シリーズ名: The Kluwer international series in engineering and computer science ; SECS 638
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Acknowledgments
Introduction / 1.:
KDD in a Nutshell / 1.1:
The Mining Step / 1.1.1:
The Interpretation and Evaluation Step / 1.1.2:
Objective of the Book / 1.2:
Background and Related Work / 2.:
Data Mining Techniques / 2.1:
Classification / 2.1.1:
Association / 2.1.2:
Clustering / 2.1.3:
Correlation / 2.1.4:
Other Techniques / 2.1.5:
Interestingness Measures / 2.2:
Rule Interest Function / 2.2.1:
J-Measure / 2.2.2:
Itemset Measures / 2.2.3:
Rule Templates / 2.2.4:
Projected Savings / 2.2.5:
I-Measures / 2.2.6:
Silbershatz and Tuzhilin's Interestingness / 2.2.7:
Kamber and Shinghal's Interestingness / 2.2.8:
Credibility / 2.2.9:
General Impressions / 2.2.10:
Distance Metric / 2.2.11:
Surprisingness / 2.2.12:
Gray and Orlowska's Interestingness / 2.2.13:
Dong and Li's Interestingness / 2.2.14:
Reliable Exceptions / 2.2.15:
Peculiarity / 2.2.16:
A Data Mining Technique / 3.:
Definitions / 3.1:
The Serial Algorithm / 3.2:
General Overview / 3.2.1:
Detailed Walkthrough / 3.2.2:
The Parallel Algorithm / 3.3:
Complexity Analysis / 3.3.1:
Attribute-Oriented Generalization / 3.4.1:
The All_Gen Algorithm / 3.4.2:
A Comparison with Commercial OLAP Systems / 3.5:
Heuristic Measures of Interestingness / 4.:
Diversity / 4.1:
Notation / 4.2:
The Sixteen Diversity Measures / 4.3:
The I[subscript Variance] Measure / 4.3.1:
The I[subscript Simpson] Measure / 4.3.2:
The I[subscript Shannon] Measure / 4.3.3:
The I[subscript Total] Measure / 4.3.4:
The I[subscript Max] Measure / 4.3.5:
The I[subscript McIntosh] Measure / 4.3.6:
The I[subscript Lorenz] Measure / 4.3.7:
The I[subscript Gini] Measure / 4.3.8:
The I[subscript Berger] Measure / 4.3.9:
The I[subscript Schutz] Measure / 4.3.10:
The I[subscript Bray] Measure / 4.3.11:
The I[subscript Whittaker] Measure / 4.3.12:
The I[subscript Kullback] Measure / 4.3.13:
The I[subscript MacArthur] Measure / 4.3.14:
The I[subscript Theil] Measure / 4.3.15:
The I[subscript Atkinson] Measure / 4.3.16:
An Interestingness Framework / 5.:
Interestingness Principles / 5.1:
Summary / 5.2:
Theorems and Proofs / 5.3:
Minimum Value Principle / 5.3.1:
Maximum Value Principle / 5.3.2:
Skewness Principle / 5.3.3:
Permutation Invariance Principle / 5.3.4:
Transfer Principle / 5.3.5:
Experimental Analyses / 6.:
Evaluation of the All_Gen Algorithm / 6.1:
Serial vs Parallel Performance / 6.1.1:
Speedup and Efficiency Improvements / 6.1.2:
Evaluation of the Sixteen Diversity Measures / 6.2:
Comparison of Assigned Ranks / 6.2.1:
Analysis of Ranking Similarities / 6.2.2:
Analysis of Summary Complexity / 6.2.3:
Distribution of Index Values / 6.2.4:
Conclusion / 7.:
Areas for Future Research / 7.1:
Appendices
Ranking Similarities
Summary Complexity
Index
List of Figures
List of Tables
Preface
25.

図書

図書
V. L. Cherginets
出版情報: Amsterdam ; Tokyo : Elsevier, 2005  xix, 382 p. ; 25 cm
シリーズ名: Comprehensive chemical kinetics ; v. 41
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
Definitions of acids and bases / Part 1:
Definitions of particles possessing acid or base properties / 1.1.1:
Definitions of solvents system / 1.1.2:
Hard and soft acids and bases (Pearson's concept) / 1.1.3:
Generalized definition of solvent system. Solvents of kinds I and II / 1.1.4:
Studies of homogeneous acid-base reactions in ionic melts / Part 2:
Features of high-temperature ionic solvents as media for Lux acid-base interactions / 1.2.1:
Methods of investigations / 1.2.2:
Ionic solvents based on alkali metal nitrates / 1.2.3:
Molten alkali metal sulfates / 1.2.4:
Silicate melts / 1.2.5:
KCl-NaCl equimolar mixture / 1.2.6:
Oxocompounds of chromium(VI) / 1.2.6.1:
Oxoacids of molybdenum(VI) / 1.2.6.2:
Oxocompounds of tungsten(VI) / 1.2.6.3:
Oxoacidic properties of phosphates / 1.2.6.4:
Oxoacids of vanadium(V) / 1.2.6.5:
Oxoacids of boron(III) / 1.2.6.6:
Acidic properties of Ge(IV) and Nb(V) oxocompounds / 1.2.6.7:
Molten KCl-LiCl (0.41:0.59) EUTECTIC / 1.2.7:
Molten NaI / 1.2.8:
Other alkaline-metal halides / 1.2.9:
Conclusion / 1.2.10:
Acid-base ranges in ionic melts. Estimation of relative acidic properties of ionic melts / Part 3:
The oxobasicity index as a measure of relative oxoacidic properties of high-temperature ionic solvents / 1.3.1:
Oxoacidity scales for melts based on alkali- and alkaline-earth metal halides / 1.3.2:
Oxygen electrodes in ionic melts. Oxide ion donors / 1.3.3:
Oxygen electrode reversibility in ionic melts / Part 4:
Potentiometric method of study of oxygen electrode reversibility / 2.4.1:
Direct calibration / 2.4.1.1:
Indirect calibration of oxygen electrodes / 2.4.1.2:
Experimental results / 2.4.2:
Oxygen-containing melts / 2.4.2.1:
Melts based on alkali metal halides / 2.4.2.2:
Melts based on alkali- and alkaline-earth halides / 2.4.2.3:
KCl-NaCl-NaF eutectic / 2.4.2.4:
Conclusions / 2.4.3:
Investigations of dissociation of Lux bases in ionic melts / Part 5:
Reactions of ionic melts with gases of acidic or base character / 2.5.1:
High-temperature hydrolysis of melts based on alkali metal halides / 2.5.1.1:
Purification of halide ionic melts from oxide-ion admixtures / 2.5.1.2:
Behaviour of Lux bases in ionic melts / 2.5.2:
Sodium peroxide, Na[subscript 2]O[subscript 2] / 2.5.2.1:
Alkali metal carbonates, Me[subscript 2]CO[subscript 3] / 2.5.2.2:
Alkali metal hydroxides, MeOH / 2.5.2.3:
Equilibria in "solid oxide-ionic melt" systems / 3:
Characteristics of oxide solubilities and methods of their determination / Part 6:
Parameters describing solubilities of solid substances in ionic solvents / 3.6.1:
Methods of oxide solubility determination / 3.6.2:
Isothermal saturation method / 3.6.2.1:
Potentiometric titration method / 3.6.2.2:
Sequential addition method / 3.6.2.3:
Regularities of oxide solubilities in melts based on alkali and alkaline-earth metal halides / Part 7:
Molten alkali-metal halides and their mixtures / 3.7.1:
KCl-LiCl (0.41:0.59) eutectic mixture / 3.7.1.1:
KCl-NaCl (0.50:0.50) equimolar mixture / 3.7.1.2:
CsCl-KCl-NaCl (0.455:0.245:0.30) eutectic / 3.7.1.3:
CsBr-KBr (0.66:0.34) melt / 3.7.1.4:
Molten CsI, 700[degree]C / 3.7.1.5:
Molten potassium halides / 3.7.1.6:
Other solvents based on alkali-metal halides / 3.7.1.7:
Oxide solubilities in melts based on alkali- and alkaline-earth metal halides / 3.7.2:
Solubilities of alkali earth metal carbonates in KCl-NaCl eutectic / 3.7.3:
Afterword / 3.7.4:
References
Formula Index
Subject Index
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
26.

図書

図書
Brendan J. Frey
出版情報: Cambridge, Mass : The MIT Press, c1998  xiii, 195 p. ; 24 cm
シリーズ名: Adaptive computation and machine learning
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
A probabilistic perspective / 1.1:
Pattern classification / 1.1.1:
Unsupervised learning / 1.1.2:
Data compression / 1.1.3:
Channel coding / 1.1.4:
Probabilistic inference / 1.1.5:
Graphical models: Factor graphs, Markov random fields and Bayesian belief networks / 1.2:
Factor graphs / 1.2.1:
Markov random fields / 1.2.2:
Bayesian networks / 1.2.3:
Ancestral simulation in Bayesian networks / 1.2.4:
Dependency separation in Bayesian networks / 1.2.5:
Example 1: Recursive convolutional codes and turbocodes / 1.2.6:
Parameterized Bayesian networks / 1.2.7:
Example 2: The bars problem / 1.2.8:
Organization of this book / 1.3:
Probabilistic Inference in Graphical Models / 2:
Exact inference using probability propagation (the sum-product algorithm) / 2.1:
The generalized forward-backward algorithm / 2.1.1:
The burglar alarm problem / 2.1.2:
Probability propagation (the sum-product algorithm) / 2.1.3:
Grouping and duplicating variables in Bayesian networks / 2.1.4:
Exact inference in multiply-connected networks is NP-hard / 2.1.5:
Monte Carlo inference: Gibbs sampling and slice sampling / 2.2:
Inference by ancestral simulation in Bayesian networks / 2.2.1:
Gibbs sampling / 2.2.2:
Gibbs sampling for the burglar alarm problem / 2.2.3:
Slice sampling for continuous variables / 2.2.4:
Variational inference / 2.3:
Choosing the distance measure / 2.3.1:
Choosing the form of the variational distribution / 2.3.2:
Variational inference for the burglar alarm problem / 2.3.3:
Bounds and extended representations / 2.3.4:
Helmholtz machines / 2.4:
Factorial recognition networks / 2.4.1:
Nonfactorial recognition networks / 2.4.2:
The stochastic Helmholtz machine / 2.4.3:
A recognition network that solves the burglar alarm problem / 2.4.4:
Pattern Classification / 3:
Bayesian networks for pattern classification / 3.1:
Autoregressive networks / 3.2:
The logistic autoregressive network / 3.2.1:
MAP estimation for autoregressive networks / 3.2.2:
Scaled priors in logistic autoregressive networks / 3.2.3:
Ensembles of autoregressive networks / 3.2.4:
Estimating latent variable models using the EM algorithm / 3.3:
The expectation maximization (EM) algorithm / 3.3.1:
The generalized expectation maximization algorithm / 3.3.2:
Multiple-cause networks / 3.4:
Estimation by iterative probability propagation / 3.4.1:
Estimation by Gibbs sampling / 3.4.2:
Generalized EM using variational inference / 3.4.3:
Hierarchical networks / 3.4.4:
Ensembles of networks / 3.4.6:
Classification of handwritten digits / 3.5:
Logistic autoregressive classifiers: LARC-1,ELARC-1 / 3.5.1:
The Gibbs machine: GM-1 / 3.5.2:
The mean field Bayesian network: MFBN-1 / 3.5.3:
Stochastic Helmholtz machines: SHM-1, SHM-2, ESHM-1 / 3.5.4:
The classification and regression tree: CART-1 / 3.5.5:
The naive Bayes classifier: NBAYESC-1 / 3.5.6:
The k-nearest neighbor classifier: KNN-CLASS-1 / 3.5.7:
Results / 3.5.8:
Unsupervised Learning / 4:
Extracting structure from images using the wake-sleep algorithm / 4.1:
Wake-sleep parameter estimation / 4.1.1:
Automatic clean-up of noisy images / 4.1.2:
Wake-sleep estimation without positive parameter constraints / 4.1.3:
How hard is the bars problem? / 4.1.4:
Simultaneous extraction of continuous and categorical structure / 4.2:
Continuous sigmoidal Bayesian networks / 4.2.1:
Inference using slice sampling / 4.2.2:
Parameter estimation using slice sampling / 4.2.3:
Nonlinear Gaussian Bayesian networks (NLGBNs) / 4.3:
The model / 4.3.1:
Variational inference and learning / 4.3.2:
Results on the continuous stereo disparity problem / 4.3.3:
Pattern classification using the variational bound / 4.3.4:
Data Compression / 5:
Fast compression with Bayesian networks / 5.1:
Communicating extra information through the codeword choice / 5.2:
Example: A simple mixture model / 5.2.1:
The optimal bits-back coding rate / 5.2.2:
Suboptimal bits-back coding / 5.2.3:
Relationship to maximum likelihood estimation / 5.3:
The "bits-back" coding algorithm / 5.4:
The bits-back coding algorithm with feedback / 5.4.1:
Queue drought in feedback encoders / 5.4.2:
Experimental results / 5.5:
Bits-back coding with a multiple-cause model / 5.5.1:
Compressing handwritten digits / 5.5.2:
Integrating over model parameters using bits-back coding / 5.6:
Channel Coding / 6:
Review: Simplifying the playing field / 6.1:
Additive white Gaussian noise (AWGN) / 6.1.1:
Capacity of an AWGN channel / 6.1.2:
Signal constellations / 6.1.3:
Linear binary codes can get us to capacity / 6.1.4:
Bit error rate (BER) and signal-to-noise ratio (Eb/N0) / 6.1.5:
Capacity of an AWGN channel with binary signalling / 6.1.6:
Achievable BER for an AWGN channel with binary signalling / 6.1.7:
Graphical models for error correction: Turbocodes, low-density parity-check codes and more / 6.2:
Hamming codes / 6.2.1:
Convolutional codes / 6.2.2:
Decoding convolutional codes by probability propagation / 6.2.3:
Turbocodes: parallel concatenated convolutional codes / 6.2.4:
Serially-concatenated convolutional codes, low-density parity-check codes, and product codes / 6.2.5:
"A code by any other network would not decode as sweetly" / 6.3:
Trellis-constrained codes (TCCs) / 6.4:
Homogeneous trellis-constrained codes / 6.4.1:
Ring-connected trellis-constrained codes / 6.4.2:
Decoding complexity of iterative decoders / 6.5:
Parallel iterative decoding / 6.6:
Concurrent turbodecoding / 6.6.1:
Speeding up iterative decoding by detecting variables early / 6.6.2:
Early detection / 6.7.1:
Early detection for turbocodes: Trellis splicing / 6.7.2:
Future Research Directions / 6.7.3:
Modularity and abstraction / 7.1:
Faster inference and learning / 7.2:
Scaling up to the brain / 7.3:
Improving model structures / 7.4:
Iterative decoding / 7.5:
Iterative decoding in the real world / 7.6:
Unification / 7.7:
References
Index
Preface
Introduction / 1:
A probabilistic perspective / 1.1:
27.

図書

図書
Gary E. Bowman
出版情報: Oxford : Oxford University Press, 2008  xi, 208 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
World 3 / 1.2:
Problems / 1.3:
The Quantum Postulates / 2:
Postulate 1: The Quantum State / 2.1:
Postulate 2: Observables, Operators, and Eigenstates / 2.2:
Postulate 3: Quantum Superpositions / 2.3:
Discrete Eigenvalues / 2.3.1:
Continuous Eigenvalues / 2.3.2:
Closing Comments / 2.4:
What Is a Quantum State? / 2.5:
Probabilities, Averages, and Uncertainties / 3.1:
Probabilities / 3.1.1:
Averages / 3.1.2:
Uncertainties / 3.1.3:
The Statistical Interpretation / 3.2:
Bohr, Einstein, and Hidden Variables / 3.3:
Background / 3.3.1:
Fundamental Issues / 3.3.2:
Einstein Revisited / 3.3.3:
The Structure of Quantum States / 3.4:
Mathematical Preliminaries / 4.1:
Vector Spaces / 4.1.1:
Function Spaces / 4.1.2:
Dirac's Bra-ket Notation / 4.2:
Bras and Kets / 4.2.1:
Labeling States / 4.2.2:
The Scalar Product / 4.3:
Quantum Scalar Products / 4.3.1:
Discussion / 4.3.2:
Representations / 4.4:
Basics / 4.4.1:
Superpositions and Representations / 4.4.2:
Representational Freedom / 4.4.3:
Operators / 4.5:
Introductory Comments / 5.1:
Hermitian Operators / 5.2:
Adjoint Operators / 5.2.1:
Hermitian Operators: Definition and Properties / 5.2.2:
Wavefunctions and Hermitian Operators / 5.2.3:
Projection and Identity Operators / 5.3:
Projection Operators / 5.3.1:
The Identity Operator / 5.3.2:
Unitary Operators / 5.4:
Matrix Mechanics / 5.5:
Elementary Matrix Operations / 6.1:
Vectors and Scalar Products / 6.1.1:
Matrices and Matrix Multiplication / 6.1.2:
Vector Transformations / 6.1.3:
States as Vectors / 6.2:
Operators as Matrices / 6.3:
An Operator in Its Eigenbasis / 6.3.1:
Matrix Elements and Alternative Bases / 6.3.2:
Change of Basis / 6.3.3:
Adjoint, Hermitian, and Unitary Operators / 6.3.4:
Eigenvalue Equations / 6.4:
Commutators and Uncertainty Relations / 6.5:
The Commutator / 7.1:
Definition and Characteristics / 7.1.1:
Commutators in Matrix Mechanics / 7.1.2:
The Uncertainty Relations / 7.2:
Uncertainty Products / 7.2.1:
General Form of the Uncertainty Relations / 7.2.2:
Interpretations / 7.2.3:
Reflections / 7.2.4:
Angular Momentum / 7.3:
Angular Momentum in Classical Mechanics / 8.1:
Basics of Quantum Angular Momentum / 8.2:
Operators and Commutation Relations / 8.2.1:
Eigenstates and Eigenvalues / 8.2.2:
Raising and Lowering Operators / 8.2.3:
Physical Interpretation / 8.3:
Measurements / 8.3.1:
Relating L[superscript 2] and L[subscript z] / 8.3.2:
Orbital and Spin Angular Momentum / 8.4:
Orbital Angular Momentum / 8.4.1:
Spin Angular Momentum / 8.4.2:
Review / 8.5:
The Time-Independent Schrodinger Equation / 8.6:
An Eigenvalue Equation for Energy / 9.1:
Using the Schrodinger Equation / 9.2:
Conditions on Wavefunctions / 9.2.1:
An Example: the Infinite Potential Well / 9.2.2:
Interpretation / 9.3:
Energy Eigenstates in Position Space / 9.3.1:
Overall and Relative Phases / 9.3.2:
Potential Barriers and Tunneling / 9.4:
The Step Potential / 9.4.1:
The Step Potential and Scattering / 9.4.2:
Tunneling / 9.4.3:
What's Wrong with This Picture? / 9.5:
Why Is the State Complex? / 9.6:
Complex Numbers / 10.1:
Polar Form / 10.1.1:
Argand Diagrams and the Role of the Phase / 10.1.3:
The Phase in Quantum Mechanics / 10.2:
Phases and the Description of States / 10.2.1:
Phase Changes and Probabilities / 10.2.2:
Unitary Operators Revisited / 10.2.3:
Unitary Operators, Phases, and Probabilities / 10.2.4:
Example: A Spin 1/2 System / 10.2.5:
Wavefunctions / 10.3:
Time Evolution / 10.4:
The Time-Dependent Schrodinger Equation / 11.1:
How Time Evolution Works / 11.2:
Time Evolving a Quantum State / 11.2.1:
Unitarity and Phases Revisited / 11.2.2:
Expectation Values / 11.3:
Time Derivatives / 11.3.1:
Constants of the Motion / 11.3.2:
Energy-Time Uncertainty Relations / 11.4:
Conceptual Basis / 11.4.1:
Spin 1/2: An Example / 11.4.2:
What is a Wavefunction? / 11.5:
Eigenstates and Coefficients / 12.1.1:
Representations and Operators / 12.1.2:
Changing Representations / 12.2:
Change of Basis Revisited / 12.2.1:
From x to p and Back Again / 12.2.2:
Gaussians and Beyond / 12.2.3:
Phases and Time Evolution / 12.3:
Free Particle Evolution / 12.3.1:
Wavepackets / 12.3.2:
Bra-ket Notation / 12.4:
Quantum States / 12.4.1:
Eigenstates and Transformations / 12.4.2:
Epilogue / 12.5:
Mathematical Concepts / 12.6:
Complex Numbers and Functions / A.1:
Differentiation / A.2:
Integration / A.3:
Differential Equations / A.4:
Quantum Measurement / B:
The Harmonic Oscillator / C:
Energy Eigenstates and Eigenvalues / C.1:
The Number Operator and its Cousins / C.2:
Photons as Oscillators / C.3:
Unitary Transformations / D:
Finite Transformations and Generators / D.1:
Continuous Symmetries / D.3:
Symmetry Transformations / D.3.1:
Symmetries of Physical Law / D.3.2:
System Symmetries / D.3.3:
Bibliography
Index
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
28.

図書

図書
Rance D. Necaise
出版情報: Hoboken, N.J. : Wiley, c2011  xviii, 520 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
Data Structures / 1.1.2:
The Date ADT / 1.2:
Preconditions and Postconditions / 1.2.1:
Using the ADT / 1.2.2:
Implementing the ADT / 1.2.3:
The Bag ADT / 1.3:
Selecting a Data Structure / 1.3.1:
The Class Definition / 1.3.3:
Iterators / 1.4:
The Set ADT / 1.5:
The Map ADT / 1.5.1:
Defining the ADT / 1.6.1:
Implementing the Map ADT / 1.6.2:
Alternate Implementation / 1.6.3:
Application: Histograms / 1.7:
Building a Histogram / 1.7.1:
Implementing the Histogram ADT / 1.7.2:
Programming Problems
Arrays and Vectors / Chapter 2:
The Array Structure / 2.1:
Simulating an Array / 2.1.1:
The Array ADT / 2.1.2:
The Python List (Vector) / 2.1.3:
Multi-Dimensional Arrays / 2.3:
The MultiArray ADT / 2.3.1:
Data Organization / 2.3.2:
Variable Length Arguments / 2.3.3:
MultiArray Implementation / 2.3.4:
The Matrix ADT / 2.4:
Matrix Operations / 2.4.1:
Application: The Game of Life / 2.4.2:
Rules of the Game / 2.5.1:
Designing a Solution / 2.5.2:
ADT Implementation / 2.5.3:
Exercises
Algorithm Analysis / Chapter 3:
Complexity Analysis / 3.1:
Big-O Notation / 3.1.1:
Classes of Algorithms / 3.1.2:
Empirical Analysis / 3.1.3:
Evaluating ADT Implementations / 3.2:
Evaluating the Python List / 3.2.1:
Evaluating the Set ADT / 3.2.2:
Searching / 3.3:
Linear Search / 3.3.1:
Binary Search / 3.3.2:
Working with Ordered Lists / 3.4:
Building An Ordered List / 3.4.1:
Merging Ordered Lists / 3.4.2:
The Set ADT Revisited / 3.5:
Application: The Sparse Matrix / 3.6:
Implementation / 3.6.1:
Analysis / 3.6.2:
The Linked List / Chapter 4:
A Linked Structure / 4.1:
The Singly-Linked List / 4.2:
Basic Operations / 4.2.1:
Evaluating the Linked List / 4.2.2:
The Bag ADT Revisited / 4.3:
Implementation Details / 4.3.1:
Linked List Iterator / 4.3.2:
Using a Tail Pointer / 4.4:
The Ordered Linked List / 4.5:
The Sparse Matrix Revisited / 4.6:
The New Implementation / 4.6.1:
Comparing Implementations / 4.6.2:
Application: Polynomials / 4.7:
Polynomial Operations / 4.7.1:
The Polynomial ADT / 4.7.2:
Advanced Linked Lists / 4.7.3:
Doubly-Linked List / 5.1:
Organization / 5.1.1:
List Operations / 5.1.2:
Circular Linked List / 5.2:
Multi-Linked Lists / 5.2.1:
Multiple Chains / 5.3.1:
The Sparse Matrix / 5.3.2:
Complex Iterators / 5.4:
Application: Text Editor / 5.5:
Typical Editor Operations / 5.5.1:
The Edit Buffer ADT / 5.5.2:
Stacks / 5.5.3:
The Stack ADT / 6.1:
Implementing the Stack / 6.2:
Vector Based / 6.2.1:
Linked List Version / 6.2.2:
Stack Applications / 6.3:
Balanced Delimiters / 6.3.1:
Evaluating Postfix Expressions / 6.3.2:
Application: Solving a Maze / 6.4:
Backtracking / 6.4.1:
The Maze ADT / 6.4.2:
Queues / 6.4.4:
The Queue ADT / 7.1:
Implementing the Queue / 7.2:
Circular Array / 7.2.1:
The Priority Queue / 7.2.3:
Application: Computer Simulations / 7.4:
Airline Ticket Counter / 7.4.1:
Class Specifications / 7.4.2:
Hash Tables / Chapter 8:
Hash Functions / 8.1:
Open Addressing / 8.3:
Linear Probing / 8.3.1:
Collision Resolution / 8.3.2:
Bucket Hashing / 8.4:
Hashing Efficiency / 8.5:
The Map ADT Revisited / 8.6:
Application: The Color Histogram / 8.7:
Recursion / Chapter 9:
Recursive Functions / 9.1:
Properties of Recursion / 9.2:
Classic Example: The Factorial Function / 9.2.1:
Greatest Common Divisor / 9.2.2:
Recursion and Stacks / 9.3:
The Towers of Hanoi / 9.4:
Backtracking Revisited / 9.5:
The Eight-Queens Problem / 9.5.1:
Solving the Four-Queens / 9.5.2:
Recursive Solution / 9.5.3:
Application: Sudoku Puzzles / 9.6:
Binary Trees and Heaps / Chapter 10:
Tree Structure / 10.1:
The Binary Tree / 10.2:
Traversals / 10.2.1:
Arithmetic Expresssions / 10.2.2:
Tree Threading / 10.3:
Heaps / 10.4:
Insertions / 10.4.1:
Removals / 10.4.2:
Evaluating the Heap / 10.4.3:
The Priority Queue Revisited / 10.4.4:
Application: Morse Code / 10.5:
Advanced Search Trees / Chapter 11:
The Binary Search Tree / 11.1:
Deletions / 11.1.1:
Evaluating the BST / 11.1.4:
AVL Trees / 11.2:
Evaluating the AVL Tree / 11.2.1:
2-3 Trees / 11.3:
Splay Trees / 11.4:
Application: Improved Map ADT / 11.5:
Sorting Algorithms / Chapter 12:
The Simple Algorithms / 12.1:
Bubble Sort / 12.1.1:
Selection Sort / 12.1.2:
Insertion Sort / 12.1.3:
Radix Sort / 12.2:
Basic Algorithm / 12.2.1:
Bucket Sorting / 12.2.2:
Divide and Conquer / 12.3:
Merge Sort / 12.3.1:
Quick Sort / 12.3.2:
Heap Sort / 12.4:
Application: Empirical Analysis / 12.5:
Python Review / Appendix A:
Basic Concepts / A.1:
Functions / A.2:
Sequence Types / A.3:
Classes / A.4:
Copying Objects / A.5:
Exceptions / A.6:
Object-Oriented Programming / Appendix B:
Encapsulation / B.1:
Inheritance / B.3:
Polymorphism / B.4:
Abstract Data Types / Chapter 1:
Introduction / 1.1:
Abstractions / 1.1.1:
29.

図書

図書
G. Ausiello ... [et al.]
出版情報: Berlin : Springer, c1999  xix, 524 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
The Complexity of Optimization Problems / 1:
Analysis of algorithms and complexity of problems / 1.1:
Complexity analysis of computer programs / 1.1.1:
Upper and lower bounds on the complexity of problems / 1.1.2:
Complexity classes of decision problems / 1.2:
The class NP / 1.2.1:
Reducibility among problems / 1.3:
Karp and Turing reducibility / 1.3.1:
NP-complete problems / 1.3.2:
Complexity of optimization problems / 1.4:
Optimization problems / 1.4.1:
PO and NPO problems / 1.4.2:
NP-hard optimization problems / 1.4.3:
Optimization problems and evaluation problems / 1.4.4:
Exercises / 1.5:
Bibliographical notes / 1.6:
Design Techniques for Approximation Algorithms / 2:
The greedy method / 2.1:
Greedy algorithm for the knapsack problem / 2.1.1:
Greedy algorithm for the independent set problem / 2.1.2:
Greedy algorithm for the salesperson problem / 2.1.3:
Sequential algorithms for partitioning problems / 2.2:
Scheduling jobs on identical machines / 2.2.1:
Sequential algorithms for bin packing / 2.2.2:
Sequential algorithms for the graph coloring problem / 2.2.3:
Local search / 2.3:
Local search algorithms for the cut problem / 2.3.1:
Local search algorithms for the salesperson problem / 2.3.2:
Linear programming based algorithms / 2.4:
Rounding the solution of a linear program / 2.4.1:
Primal-dual algorithms / 2.4.2:
Dynamic programming / 2.5:
Randomized algorithms / 2.6:
Approaches to the approximate solution of problems / 2.7:
Performance guarantee: chapters 3 and 4 / 2.7.1:
Randomized algorithms: chapter 5 / 2.7.2:
Probabilistic analysis: chapter 9 / 2.7.3:
Heuristics: chapter 10 / 2.7.4:
Final remarks / 2.7.5:
Approximation Classes / 2.8:
Approximate solutions with guaranteed performance / 3.1:
Absolute approximation / 3.1.1:
Relative approximation / 3.1.2:
Approximability and non-approximability of TSP / 3.1.3:
Limits to approximability: The gap technique / 3.1.4:
Polynomial-time approximation schemes / 3.2:
The class PTAS / 3.2.1:
APX versus PTAS / 3.2.2:
Fully polynomial-time approximation schemes / 3.3:
The class FPTAS / 3.3.1:
The variable partitioning technique / 3.3.2:
Negative results for the class FPTAS / 3.3.3:
Strong NP-completeness and pseudo-polynomiality / 3.3.4:
Input-Dependent and Asymptotic Approximation / 3.4:
Between APX and NPO / 4.1:
Approximating the set cover problem / 4.1.1:
Approximating the graph coloring problem / 4.1.2:
Approximating the minimum multi-cut problem / 4.1.3:
Between APX and PTAS / 4.2:
Approximating the edge coloring problem / 4.2.1:
Approximating the bin packing problem / 4.2.2:
Approximation through Randomization / 4.3:
Randomized algorithms for weighted vertex cover / 5.1:
Randomized algorithms for weighted satisfiability / 5.2:
A new randomized approximation algorithm / 5.2.1:
A 4/3-approximation randomized algorithm / 5.2.2:
Algorithms based on semidefinite programming / 5.3:
Improved algorithms for weighted 2-satisfiability / 5.3.1:
The method of the conditional probabilities / 5.4:
NP, PCP and Non-approximability Results / 5.5:
Formal complexity theory / 6.1:
Turing machines / 6.1.1:
Deterministic Turing machines / 6.1.2:
Nondeterministic Turing machines / 6.1.3:
Time and space complexity / 6.1.4:
NP-completeness and Cook-Levin theorem / 6.1.5:
Oracles / 6.2:
Oracle Turing machines / 6.2.1:
The PCP model / 6.3:
Membership proofs / 6.3.1:
Probabilistic Turing machines / 6.3.2:
Verifiers and PCP / 6.3.3:
A different view of NP / 6.3.4:
Using PCP to prove non-approximability results / 6.4:
The maximum satisfiability problem / 6.4.1:
The maximum clique problem / 6.4.2:
The PCP theorem / 6.5:
Transparent long proofs / 7.1:
Linear functions / 7.1.1:
Arithmetization / 7.1.2:
The first PCP result / 7.1.3:
Almost transparent short proofs / 7.2:
Low-degree polynomials / 7.2.1:
Arithmetization (revisited) / 7.2.2:
The second PCP result / 7.2.3:
The final proof / 7.3:
Normal form verifiers / 7.3.1:
The composition lemma / 7.3.2:
Approximation Preserving Reductions / 7.4:
The World of NPO Problems / 8.1:
AP-reducibility / 8.2:
Complete problems / 8.2.1:
NPO-completeness / 8.3:
Other NPO-complete problems / 8.3.1:
Completeness in exp-APX / 8.3.2:
APX-completeness / 8.4:
Other APX-complete problems / 8.4.1:
Probabilistic analysis of approximation algorithms / 8.5:
Introduction / 9.1:
Goals of probabilistic analysis / 9.1.1:
Techniques forthe probabilistic analysis of algorithms / 9.2:
Conditioning in the analysis of algorithms / 9.2.1:
The first and the second moment methods / 9.2.2:
Convergence of random variables / 9.2.3:
Probabilistic analysis and multiprocessor scheduling / 9.3:
Probabilistic analysis and bin packing / 9.4:
Probabilistic analysis and maximum clique / 9.5:
Probabilistic analysis and graph coloring / 9.6:
Probabilistic analysis and Euclidean TSP / 9.7:
Heuristic methods / 9.8:
Types of heuristics / 10.1:
Construction heuristics / 10.2:
Local search heuristics / 10.3:
Fixed-depth local search heuristics / 10.3.1:
Variable-depth local search heuristics / 10.3.2:
Heuristics based on local search / 10.4:
Simulated annealing / 10.4.1:
Genetic algorithms / 10.4.2:
Tabu search / 10.4.3:
Mathematical preliminaries / 10.5:
Sets / A.1:
Sequences, tuples and matrices / A.1.1:
Functions and relations / A.2:
Graphs / A.3:
Strings and languages / A.4:
Booleanlogic / A.5:
Probability / A.6:
Random variables / A.6.1:
Linear programming / A.7:
Two famous formulas / A.8:
A List of NP Optimization Problems / B:
Bibliography
Index
The Complexity of Optimization Problems / 1:
Analysis of algorithms and complexity of problems / 1.1:
Complexity analysis of computer programs / 1.1.1:
30.

図書

図書
Boris Mirkin
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, Taylor & Francis, 2005  xxiii, 266 p. ; 25 cm
シリーズ名: Series in computer science and data analysis ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Denotations
Introduction: Historical Remarks
What Is Clustering / 1:
Base words
Exemplary problems / 1.1:
Structuring / 1.1.1:
Description / 1.1.2:
Association / 1.1.3:
Generalization / 1.1.4:
Visualization of data structure / 1.1.5:
Bird's-eye view / 1.2:
Definition: data and cluster structure / 1.2.1:
Criteria for revealing a cluster structure / 1.2.2:
Three types of cluster description / 1.2.3:
Stages of a clustering application / 1.2.4:
Clustering and other disciplines / 1.2.5:
Different perspectives of clustering / 1.2.6:
What Is Data / 2:
Feature characteristics / 2.1:
Feature scale types / 2.1.1:
Quantitative case / 2.1.2:
Categorical case / 2.1.3:
Bivariate analysis / 2.2:
Two quantitative variables / 2.2.1:
Nominal and quantitative variables / 2.2.2:
Two nominal variables cross-classified / 2.2.3:
Relation between correlation and contingency / 2.2.4:
Meaning of correlation / 2.2.5:
Feature space and data scatter / 2.3:
Data matrix / 2.3.1:
Feature space: distance and inner product / 2.3.2:
Data scatter / 2.3.3:
Pre-processing and standardizing mixed data / 2.4:
Other table data types / 2.5:
Dissimilarity and similarity data / 2.5.1:
Contingency and flow data / 2.5.2:
K-Means Clustering / 3:
Conventional K-Means / 3.1:
Straight K-Means / 3.1.1:
Square error criterion / 3.1.2:
Incremental versions of K-Means / 3.1.3:
Initialization of K-Means / 3.2:
Traditional approaches to initial setting / 3.2.1:
MaxMin for producing deviate centroids / 3.2.2:
Deviate centroids with Anomalous pattern / 3.2.3:
Intelligent K-Means / 3.3:
Iterated Anomalous pattern for iK-Means / 3.3.1:
Cross validation of iK-Means results / 3.3.2:
Interpretation aids / 3.4:
Conventional interpretation aids / 3.4.1:
Contribution and relative contribution tables / 3.4.2:
Cluster representatives / 3.4.3:
Measures of association from ScaD tables / 3.4.4:
Overall assessment / 3.5:
Ward Hierarchical Clustering / 4:
Agglomeration: Ward algorithm / 4.1:
Divisive clustering with Ward criterion / 4.2:
2-Means splitting / 4.2.1:
Splitting by separating / 4.2.2:
Interpretation aids for upper cluster hierarchies / 4.2.3:
Conceptual clustering / 4.3:
Extensions of Ward clustering / 4.4:
Agglomerative clustering with dissimilarity data / 4.4.1:
Hierarchical clustering for contingency and flow data / 4.4.2:
Data Recovery Models / 4.5:
Statistics modeling as data recovery / 5.1:
Averaging / 5.1.1:
Linear regression / 5.1.2:
Principal component analysis / 5.1.3:
Correspondence factor analysis / 5.1.4:
Data recovery model for K-Means / 5.2:
Equation and data scatter decomposition / 5.2.1:
Contributions of clusters, features, and individual entities / 5.2.2:
Correlation ratio as contribution / 5.2.3:
Partition contingency coefficients / 5.2.4:
Data recovery models for Ward criterion / 5.3:
Data recovery models with cluster hierarchies / 5.3.1:
Covariances, variances and data scatter decomposed / 5.3.2:
Direct proof of the equivalence between 2-Means and Ward criteria / 5.3.3:
Gower's controversy / 5.3.4:
Extensions to other data types / 5.4:
Similarity and attraction measures compatible with K-Means and Ward criteria / 5.4.1:
Application to binary data / 5.4.2:
Agglomeration and aggregation of contingency data / 5.4.3:
Extension to multiple data / 5.4.4:
One-by-one clustering / 5.5:
PCA and data recovery clustering / 5.5.1:
Divisive Ward-like clustering / 5.5.2:
Iterated Anomalous pattern / 5.5.3:
Anomalous pattern versus Splitting / 5.5.4:
One-by-one clusters for similarity data / 5.5.5:
Different Clustering Approaches / 5.6:
Extensions of K-Means clustering / 6.1:
Clustering criteria and implementation / 6.1.1:
Partitioning around medoids PAM / 6.1.2:
Fuzzy clustering / 6.1.3:
Regression-wise clustering / 6.1.4:
Mixture of distributions and EM algorithm / 6.1.5:
Kohonen self-organizing maps SOM / 6.1.6:
Graph-theoretic approaches / 6.2:
Single linkage, minimum spanning tree and connected components / 6.2.1:
Finding a core / 6.2.2:
Conceptual description of clusters / 6.3:
False positives and negatives / 6.3.1:
Conceptually describing a partition / 6.3.2:
Describing a cluster with production rules / 6.3.3:
Comprehensive conjunctive description of a cluster / 6.3.4:
General Issues / 6.4:
Feature selection and extraction / 7.1:
A review / 7.1.1:
Comprehensive description as a feature selector / 7.1.2:
Comprehensive description as a feature extractor / 7.1.3:
Data pre-processing and standardization / 7.2:
Dis/similarity between entities / 7.2.1:
Pre-processing feature based data / 7.2.2:
Data standardization / 7.2.3:
Similarity on subsets and partitions / 7.3:
Dis/similarity between binary entities or subsets / 7.3.1:
Dis/similarity between partitions / 7.3.2:
Dealing with missing data / 7.4:
Imputation as part of pre-processing / 7.4.1:
Conditional mean / 7.4.2:
Maximum likelihood / 7.4.3:
Least-squares approximation / 7.4.4:
Validity and reliability / 7.5:
Index based validation / 7.5.1:
Resampling for validation and selection / 7.5.2:
Model selection with resampling / 7.5.3:
Conclusion: Data Recovery Approach in Clustering / 7.6:
Bibliography
Index
Preface
List of Denotations
Introduction: Historical Remarks
31.

図書

図書
S.W.S. McKeever
出版情報: Cambridge : Cambridge University Press, 1985  xiv, 376 p. ; 22 cm
シリーズ名: Cambridge solid state science series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
Luminescence / 1.2:
Early observations of thermoluminescence (pre-1948) / 1.3:
Applications / 1.4:
Radiation dosimetry / 1.4.1.:
Age determination / 1.4.2.:
Geology / 1.4.3.:
Defects in solids / 1.4.4.:
Other applications / 1.4.5.:
This book / 1.5:
Theoretical background / 2:
Elementary concepts / 2.1:
Energy bands and localized levels: crystalline materials / 2.1.1.:
Non-crystalline materials / 2.1.2.:
Traps and recombination centres / 2.1.3.:
Transitions not involving the delocalized bands / 2.1.4.:
Recombination processes / 2.2:
Direct and indirect recombination / 2.2.1.:
Radiative and non-radiative recombination / 2.2.2.:
Models for thermoluminescence / 2.3:
Simple model / 2.3.1.:
Additions to the simple model / 2.3.2.:
An alternative model / 2.3.3.:
More complex models / 2.3.4.:
Thermoluminescence analysis / 3:
Trap emptying / 3.1:
Equations for the simple model: order of kinetics / 3.2.1.:
Equations for other models / 3.2.2.:
Methods of analysis / 3.3:
Partial and whole curve analyses / 3.3.1.:
Peak shape methods / 3.3.2.:
Peak position methods / 3.3.3.:
Curve-fitting / 3.3.4.:
Isothermal analysis / 3.3.5.:
Energy distributions / 3.3.6.:
Calculation of the frequency factor, s / 3.3.7.:
Summary / 3.3.8.:
Trap filling / 3.4:
The simple model / 3.4.1.:
Additional factors governing thermoluminescence / 3.4.2.:
Further discussions of supralinearity / 4.1:
Multi-stage reaction models / 4.1.1.:
More on competition models / 4.1.2.:
Trap creation models / 4.1.3.:
Sensitization / 4.2:
Competing trap models / 4.2.1.:
Centre conversion models / 4.2.2.:
Trap creation models (radiation and thermal) / 4.2.3.:
Optical effects / 4.3:
Optical stimulation / 4.3.1.:
Phototransfer / 4.3.2.:
Tunnelling and anomalous fading / 4.4:
Quenching effects / 4.5:
Thermal quenching / 4.5.1.:
Concentration quenching / 4.5.2.:
Impurity quenching / 4.5.3.:
Defects and thermoluminescence / 5:
General introduction / 5.1:
The alkali halides / 5.2:
Structure and defects / 5.2.1.:
Irradiation effects / 5.2.2.:
Thermoluminescence from KCl, KBr, KI and NaCl, irradiated at 4K / 5.2.3.:
Samples irradiated at 80K / 5.2.4.:
Samples irradiated at room temperature / 5.2.5.:
Thermoluminescence from LiF / 5.2.6.:
Quartz and silica / 5.3:
Structure / 5.3.1.:
Defects / 5.3.2.:
Thermoluminescence; samples irradiated below room temperature / 5.3.3.:
Thermoluminescence dosimetry (TLD) / 5.3.5.:
General requirements for TLD materials / 6.1:
Dose response / 6.1.1.:
Energy response / 6.1.2.:
Fading and stability / 6.1.3.:
Annealing procedures / 6.1.4.:
Other factors / 6.1.5.:
Specific examples / 6.2:
Lithium fluoride, LiF / 6.2.1.:
Lithium borate, Li[subscript 2]B[subscript 4]O[subscript 7] / 6.2.2.:
Magnesium borate, MgB[subscript 4]O[subscript 7] / 6.2.3.:
Magnesium orthosilicate, Mg[subscript 2]SiO[subscript 4] / 6.2.4.:
Calcium sulphate, CaSO[subscript 4] / 6.2.5.:
Calcium fluoride, CaF[subscript 2] / 6.2.6.:
Beryllium oxide, BeO / 6.2.7.:
Aluminium oxide, Al[subscript 2]O[subscript 3] / 6.2.8.:
Ultra-violet effects and dose re-estimation / 6.3:
Personal dosimetry / 6.4:
Materials / 6.4.1.:
Practical application / 6.4.3.:
Environmental monitoring / 6.5:
Medical applications / 6.5.1.:
Thermoluminescence dating / 6.6.1.:
General / 7.1:
Techniques in pottery dating / 7.2:
Fine-grain dating / 7.2.1.:
Inclusion dating / 7.2.3.:
Pre-dose dating / 7.2.4.:
Phototransfer dating / 7.2.5.:
General problems / 7.3:
Fading / 7.3.1.:
Spurious thermoluminescence / 7.3.2.:
Sensitization and supralinearity / 7.3.3.:
Dose rate evaluation / 7.4:
Thermoluminescence dosimetry / 7.4.1.:
Alpha-counting and K-analysis / 7.4.3.:
Other techniques / 7.4.4.:
Special dating applications / 7.5:
Sediments / 7.5.1.:
Stones and rocks / 7.5.2.:
Shells, bones and teeth / 7.5.3.:
Authenticity testing / 7.5.4.:
Geological applications / 8:
Meteorites / 8.1:
Mineralogy / 8.2.1.:
Thermoluminescence / 8.2.2.:
The use of the natural glow-curve / 8.2.3.:
The use of the artificial glow-curve / 8.2.4.:
Lunar material / 8.3:
Mineralogy and ages / 8.3.1.:
Terrestrial geology / 8.3.2.:
Shock detection / 8.4.1.:
Geo- and palaeothermometry / 8.4.2.:
Prospecting / 8.4.3.:
Miscellaneous applications / 8.4.4.:
Concluding remarks / 8.5:
Instrumentation / 9:
Cryostat design / 9.1:
High temperature (] room temperature) / 9.2.1.:
Low temperature ([ room temperature) / 9.2.2.:
Heater design and temperature control / 9.3:
Heater design / 9.3.1.:
Temperature control / 9.3.2.:
Light detection / 9.4:
Photomultiplier tube: d.c. current mode / 9.4.1.:
Photon counting / 9.4.2.:
Special considerations / 9.5:
Background subtraction / 9.5.1.:
Emission spectra / 9.5.2.:
Commercial systems / 9.6:
Minerals / Appendix A:
Commercial thermoluminescence systems / Appendix B:
References
Index
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
32.

図書

図書
Raphael D. Levine
出版情報: Oxford : Clarendon Press, 1969  xi, 335 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
The Formulation of Quantum Mechanics / Part 1:
Introduction
States and observables / 1.1.:
The equations of motion / 1.2.:
The Green's operator for the Schrodinger equation / 1.2.1.:
The two-body problem and the addition of angular momentum / Appendix 1.A.:
Collision Theory / Part 2:
Stationary collision theory--the Lippmann-Schwinger equation / 2.1.:
The Lippmann-Schwinger equation for 'structureless' molecules / 2.2.:
The cross-section / 2.2.1.:
Separable interactions / 2.2.2.:
Partial wave analysis / 2.2.3.:
The Born approximation / 2.2.4.:
Internal excitation in collisions / 2.3.:
The theory of rotational excitation / 2.3.1.:
The rate of change of observables / 2.3.2.:
Collision rates and cross-sections / 2.4.1.:
Collision rates in ensembles / 2.4.2.:
The relaxation equation / 2.4.3.:
Formal collision theory / 2.5.:
The S matrix / 2.5.1.:
Scattering by two potentials / 2.5.2.:
The density of states / 2.5.3.:
Multiple-scattering theory / 2.5.4.:
Reactive collisions / 2.6.:
Reaction rates / 2.6.1.:
Operator formulation of the theory of reactive collisions / 2.6.2.:
The yield function--absolute rate theory / 2.6.3.:
The theory of reactive collisions in the coordinate representation / 2.6.4.:
Time-dependent collision theory / 2.7.:
The time evolution / 2.7.1.:
The wave operator / 2.7.2.:
The change in observables / 2.7.3.:
Formal theory of reactive collisions--the Jauch resolution / 2.7.4.:
Symmetry / 2.8.:
Time reversal / 2.8.1.:
Reciprocity and microscopic reversibility / 2.8.2.:
Constants of motion / 2.8.3.:
Permutation symmetry in collisions / 2.8.4.:
Normalization of the solution of the L.S. equation / Appendix 2.A.:
On the convolution theorem and linear systems / Appendix 2.B.:
Intertwinning and the S operator for reactive collisions / Appendix 2.C.:
On the long-time behaviour and adiabatic switching in collisions / Appendix 2.D.:
The transition amplitude density method / Appendix 2.E.:
Molecular Rate Processes / Part 3:
The partitioning technique / 3.1.:
Molecular encounters / 3.2.:
The adiabatic approximation / 3.2.1.:
Theories of direct reactions / 3.2.2.:
Operator partitioning theory / 3.3.:
Variational principles / 3.3.1.:
Models in collision theory / 3.4.:
The opacity function--the optical model / 3.4.1.:
The impact parameter method / 3.4.2.:
The adiabatic theory of reactive collisions / 3.4.3.:
Statistical theories / 3.5.:
The statistical approximation / 3.5.1.:
The optical potential / 3.5.2.:
Statistical theory for overlapping resonances / 3.5.3.:
Unimolecular reactions / 3.6.:
Unimolecular breakdown / 3.6.1.:
Collision theory in ensembles / 3.6.2.:
Excitation processes / 3.6.3.:
The time-correlation method / 3.7.:
Time-correlation functions / 3.7.1.:
Linear response theory / 3.7.2.:
The Liouville operator / 3.7.3.:
References
Author index
Subject index
The Formulation of Quantum Mechanics / Part 1:
Introduction
States and observables / 1.1.:
33.

図書

図書
Vladimir M. Zatsiorsky
出版情報: Champaign, Ill. : Human Kinetics, c1998  xi, 419 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Notations and Conventions
Kinematic Geometry of Human Motion: Body Position and Displacement / Chapter 1:
Defining body location / 1.1:
The coordinate method / 1.1.1:
Cartesian versus oblique coordinates / 1.1.2:
Defining body orientation / 1.2:
Fixation of a local system with a rigid body / 1.2.1:
Fixation of a somatic system with a human body / 1.2.2:
Indirect method of defining body orientation / 1.2.3:
What is ""body rotation""? / 1.2.4:
Describing position and displacement / 1.2.5:
Advantages and disadvantages of the various angular conventions / 1.2.6:
Determining body position from experimental recordings / 1.2.7:
Three-dimensional representation of human movement: Eye movement / 1.3:
Eye orientation / 1.3.1:
Motions actually made by the human eye (Donders' law and Listing's law) / 1.3.2:
Rotation surfaces. The laws obeyed by the pointing head and arm movements / 1.3.3:
Summary / 1.4:
Questions for Review / 1.5:
Bibliography / 1.6:
Kinematic Geometry of Human Motion: Body Posture / Chapter 2:
Joint configuration / 2.1:
Technical and somatic systems / 2.1.1:
The clinical reference system / 2.1.2:
Globographic representation / 2.1.3:
Segment coordinate systems / 2.1.4:
Joint rotation convention / 2.1.5:
Kinematic chains / 2.2:
Degrees of freedom. Mobility of kinematic chains / 2.2.1:
Open kinematic chains: The end-effector mobility / 2.2.2:
Kinematics models and mobility of the human body / 2.2.3:
Constraints on human movements / 2.2.4:
Position analysis of kinematic chains / 2.2.5:
Biological solutions to kinematic problems / 2.3:
Internal representation of the immediate extrapersonal space / 2.3.1:
Internal representation of the body posture / 2.3.2:
Differential Kinematics of Human Movement / 2.4:
Velocity of a kinematic chain / 3.1:
Planar movement / 3.1.1:
Motion in three dimensions / 3.1.2:
Acceleration of a kinematic chain / 3.2:
Acceleration of a planar two-link chain / 3.2.1:
Acceleration of a two-link chain in three dimensions / 3.2.2:
Acceleration of a multi-link chain / 3.2.3:
Jerk and snap / 3.2.4:
Biological solutions to the problems of differential kinematics: Control of movement velocity / 3.3:
Control of approach: The tau hypothesis / 3.3.1:
Control of velocity in reaching movement / 3.3.2:
Joint Geometry and Joint Kinematics / 3.4:
Intrajoint kinematics / 4.1:
Articular surfaces and types of joints / 4.1.1:
Movement of articular surfaces / 4.1.2:
Geometry and algebra of intra-articular motion / 4.1.3:
Ligaments and joint motion: A joint as a mechanical linkage / 4.1.4:
Centers and axes of rotation / 4.2:
Planar joint movement / 4.2.1:
Three-dimensional joint movement / 4.2.2:
Kinematics of Individual Joints / 4.3:
Nominal joint axes / 5.1:
The joints of the foot / 5.2:
Metatarsophalangeal joints. The foot as a two-speed construction / 5.2.1:
The joints of the midfoot / 5.2.2:
The ankle joint complex / 5.3:
The talocrural joint / 5.3.1:
The subtalar joint / 5.3.2:
The knee / 5.4:
The tibiofemoral joint / 5.4.1:
The patellofemoral joint / 5.4.2:
The hip joint and the pelvic girdle / 5.5:
The spine / 5.6:
Movement in synarthroses / 5.6.1:
The lumbar and thoracic spine / 5.6.2:
The cervical region: Head and neck movement / 5.6.3:
The rib cage / 5.6.4:
The shoulder complex / 5.7:
Individual joints / 5.7.1:
Movement of the shoulder complex: The scapulohumeral rhythm / 5.7.2:
The elbow complex / 5.8:
Flexion and extension / 5.8.1:
Supination and pronation / 5.8.2:
The wrist / 5.9:
The joints of the hand / 5.10:
The joints of the thumb / 5.10.1:
The joints of the fingers / 5.10.2:
The temporomandibular joint / 5.11:
Glossary / 5.12:
Index
About the Author"
Preface
Acknowledgments
Notations and Conventions
34.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
35.

図書

図書
Katsunori Muraoka, Mitsuo Maeda ; [English translation by Mark Bowden]
出版情報: Philadelphia : Institute of Physics Pub., c2001  x, 295 p. ; 24 cm
シリーズ名: Plasma physics series
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
Properties of Gases / 1.1:
Classification of Gaseous States / 1.1.1:
Fundamental Parameters used to describe Gases / 1.1.2:
Properties of Plasmas / 1.2:
Different Areas of Plasma Applications / 1.2.1:
Fundamental Parameters used to describe Plasmas / 1.2.2:
Summary / 1.2.3:
Different States of Matter and their Kinetic Properties / 1.3:
Characteristics of Laser Light / 1.4:
Coherence / 1.4.1:
Short Pulse Generation / 1.4.2:
Advantages of Laser-Aided Measurement Methods / 1.5:
References
Basic Principles of Different Laser-Aided Measurement Techniques / 2:
Interaction of Electromagnetic Waves with Single Particles / 2.1:
Thomson Scattering by Charged Particles / 2.1.1:
Mie and Rayleigh Scattering / 2.1.2:
Raman Scattering / 2.1.3:
Resonant Absorption / 2.1.4:
Photo-Ionization / 2.1.5:
Laser Propagation through Gases and Plasmas / 2.2:
Reflection / 2.2.1:
Transmission / 2.2.2:
Refraction / 2.2.3:
Scattering / 2.2.4:
Spectral Profile Measurements / 2.2.5:
Summary of Line Broadening Mechanisms / 2.3.1:
Examples of Spectral Widths / 2.3.2:
Spectral Profile Measurement Techniques / 2.3.3:
Hardware for Laser Measurements / 3:
Lasers / 3.1:
Overview of Laser Systems / 3.1.1:
Control of Laser Light / 3.1.2:
Gas Lasers / 3.1.3:
Solid-State and Semiconductor Diode Lasers / 3.1.4:
Tunable Lasers / 3.1.5:
Nonlinear Wavelength Conversion Devices / 3.2:
Nonlinear Optical Effects / 3.2.1:
Higher Harmonic Generation and Frequency Mixing / 3.2.2:
Optical Parametric Oscillators / 3.2.3:
Stimulated Scattering / 3.2.4:
Optical Elements and Optical Instruments / 3.3:
Dispersion Elements and Spectrometers / 3.3.1:
Interferometers / 3.3.2:
Optical Waveguides / 3.3.3:
Other Optical Elements / 3.3.4:
Detectors and Signal Processing / 3.4:
Light Detectors / 3.4.1:
Imaging Detectors / 3.4.2:
Noise Sources and Signal Recovery / 3.4.3:
Observation of Fast Waveforms / 3.4.4:
Applications and Measurements / Part II:
Plasma Measurements / 4:
Overview of Plasma Spectroscopic Methods / 4.1:
Laser-Aided Measurements in High-Temperature Plasmas / 4.2:
Measurement of Plasma Density and Temperature / 4.2.1:
Measurement of Density and Temperature of Neutral and Impurity Species / 4.2.2:
Measurement of Electric and Magnetic Fields and Plasma Fluctuations / 4.2.3:
Laser-Aided Measurements in Discharge Plasmas / 4.3:
Measurement of Electric Field / 4.3.1:
Measurement of Electron Density and Temperature / 4.3.2:
Measurement of Reaction Products / 4.3.3:
Combustion Measurements / 5:
Combustion Fields and Laser-Aided Measurements / 5.1:
Measurement of Particle Densities / 5.1.1:
Measurement of Temperature / 5.1.2:
Measurement of Velocity / 5.1.3:
Examples of Combustion Measurements / 5.2:
Measurements by Laser-Induced Fluorescence Spectroscopy / 5.2.1:
Measurements by Coherent Anti-Stokes Raman Spectroscopy / 5.2.2:
Measurements by Degenerate Four-Wave Mixing / 5.2.3:
Measurements in Gas Flow Systems / 6:
Measurement of Refractive Index Changes (Density Measurements) / 6.1:
Schlieren Method / 6.1.1:
Shadowgraphy / 6.1.2:
Interferometry / 6.1.3:
Holography / 6.1.4:
Measurement of Flow Velocity / 6.2:
Measurement Techniques / 6.2.1:
Examples of Measurements / 6.2.2:
Imaging of Gas Flows by Laser-Induced Fluorescence / 6.3:
Measurement of Density Distributions / 6.3.1:
Measurement of Temperature Distributions / 6.3.2:
Laser Processing Measurements / 7:
Laser Processing / 7.1:
Measurement Methods in Laser Processing / 7.2:
Different Methods and their Advantages / 7.2.1:
Detection of Atomic and Molecular Species / 7.2.2:
Examples of Laser Processing Measurements / 7.3:
Measurements of Laser CVD Processes / 7.3.1:
Measurements of Laser Ablation Processes / 7.3.2:
Analytical Chemistry / 8:
Analytical Chemistry and Laser Spectroscopy / 8.1:
Examples of Analysis using Laser Spectroscopic Techniques / 8.2:
Analysis using Laser Raman Spectroscopy / 8.2.1:
Analysis using Laser-Induced Emission Spectroscopy / 8.2.2:
Analysis using Laser-Induced Fluorescence Spectroscopy / 8.2.3:
Analysis using Laser Ionization Spectroscopy / 8.2.4:
Analysis using Laser Photothermal Spectroscopy / 8.2.5:
Remote Sensing / 9:
LIDAR and Monitoring of the Atmosphere / 9.1:
LIDAR Theory / 9.1.1:
Different LIDAR Techniques / 9.1.2:
Representative LIDAR Experiments / 9.2:
Mie Scattering LIDAR / 9.2.1:
Rayleigh Scattering LIDAR / 9.2.2:
Differential Absorption LIDAR (DIAL) / 9.2.3:
Raman LIDAR / 9.2.4:
Index
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
36.

図書

図書
Igor Nikolaev
出版情報: Berlin ; Heiderlberg : Springer, c2001  xxvi, 450 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 41
所蔵情報: loading…
目次情報: 続きを見る
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
Examples / 0.2:
Smooth Functions / 0.2.1:
1-Forms / 0.2.2:
Line Elements / 0.2.3:
Curvature Lines / 0.2.4:
A-Diffeomorphisms / 0.2.5:
Constructions / 0.3:
Suspension / 0.3.1:
Measured Foliations / 0.3.2:
Affine Foliations / 0.3.3:
Labyrinths / 0.3.4:
Gluing Together / 0.3.5:
General Theory / Part I:
Local Theory / 1:
Introduction / 1.1:
Symmetry / 1.2:
Normal Forms / 1.3:
Typical Normal Forms / 1.3.1:
Degenerate Normal Forms / 1.3.2:
Structurally Stable Singularities / 1.4:
Blowing-up Method / 1.4.1:
Fundamental Lemma / 1.4.2:
Classification / 1.4.3:
Bifurcations / 1.5:
Morse-Smale Foliations / 2:
Rough Foliations / 2.1:
Main Theorem / 2.1.1:
Structural Stability / 2.1.2:
Density / 2.1.3:
Classification of Morse-Smale Foliations / 2.2:
Rotation Systems / 2.2.1:
Equivalence Criterion / 2.2.2:
Realization of the Graphs / 2.2.3:
Example / 2.2.4:
Gradient-like Foliations / 2.3:
Lyapunov Function / 2.3.1:
Lyapunov Graph / 2.3.2:
Connected Components of Morse-Smale Foliations / 2.4:
Degrees of Stability / 2.5:
Foliations Without Holonomy / 3:
Periodic Components / 3.1:
Quasiminimal Sets / 3.2:
Structure of a Quasiminimal Set / 3.2.1:
Blowing-Down / 3.2.2:
Decomposition / 3.3:
Surgery / 3.4:
Surgery of Labyrinths / 3.4.1:
Surgery of Measured Foliations / 3.4.2:
Number of Quasiminimal Sets / 3.5:
Application: Smoothing Theorem / 3.6:
Invariants of Foliations / 4:
Torus / 4.1:
Minimal Foliations / 4.1.1:
Foliations With a Cantor Minimal Set / 4.1.2:
Foliations With Cherry Cells / 4.1.3:
Analytic Classification / 4.1.4:
Homotopy Rotation Class / 4.2:
Surfaces of Genus g ≥ 2 / 4.2.1:
Properties of the Homotopy Rotation Class / 4.2.2:
Non Orientable Surfaces / 4.3:
Torus With the Cross-Cap / 4.3.1:
Surfaces of Genus p ≥ 4 / 4.3.2:
Discrete Invariants / 4.4:
Regular Foliations on the Sphere / 4.4.1:
Orbit Complex / 4.4.2:
Cells / 4.5:
Classification of Elementary Cells / 4.5.2:
Amalgamation of Elementary Cells / 4.5.3:
Conley-Lyapunov-Peixoto Graph / 4.5.4:
Foliations With Symmetry / 4.5.5:
Cayley Graph / 4.6.1:
Isomorphism / 4.6.2:
Realization / 4.6.3:
Homology and Cohomology Invariants / 4.7:
Asymptotic Cycles / 4.7.1:
Fundamental Class / 4.7.2:
Cycles of A. Zorich / 4.7.3:
Smooth Classification / 4.8:
Torus and Klein Bottle / 4.8.1:
Surfaces of Genus g ≥ 2 / 4.8.2:
Curves on Surfaces / 5:
Curves and the Absolute / 5.1:
Background / 5.1.1:
Proof of Weil's Conjectures / 5.1.3:
Theorems of D. V. Anosov / 5.1.4:
Asymptotic Directions / 5.2:
Of Recurrent Semi-Trajectory / 5.2.1:
Of Analytic Flow / 5.2.2:
Of Foliation / 5.2.3:
Of Curves With Restriction on the Geodesic Curvature / 5.2.4:
Approximation of a Curve / 5.3:
Limit Sets at the Absolute / 5.4:
Geodesic Deviation / 5.5:
Deviation Property of Trajectories / 5.5.1:
Deviation From the Geodesic Framework / 5.5.2:
Ramified Coverings / 5.5.3:
Swing of Trajectories / 5.5.4:
Unbounded Deviation / 5.6:
Irrational Direction on Torus / 5.6.1:
Rational Direction on Torus / 5.6.3:
Family of Curves / 5.7:
Non-compact Surfaces / 6:
Foliations in the Plane / 6.1:
Non Singular Case / 6.1.1:
Singular Case / 6.1.2:
Level Set of Harmonic Functions / 6.1.3:
Depth of the Centre / 6.2:
Minimal Sets / 6.3.2:
Minimal Flows / 6.3.3:
Transitive Flows / 6.3.4:
Applications / Part II:
Ergodic Theory / 7:
Existence of Invariant Measures / 7.1:
Liouville's Theorem / 7.2.1:
Ergodicity / 7.2.2:
Mixing / 7.3.1:
Entropy / 7.4.1:
Homeomorphisms of the Unit Circle / 8:
Denjoy Flow / 8.1:
Cherry Class / 8.2:
Cherry Example / 8.2.1:
Flows With One Cell / 8.2.2:
Flows With Several Cells / 8.2.3:
Foliations on the Sphere / 8.3:
Main Result / 8.3.1:
Application to the Labyrinths / 8.3.3:
Appendix: The Dulac Functions / 8.3.4:
Addendum: Bendixson's Theorem / 8.4:
Diffeomorphisms of Surfaces / 9:
A-diffeomorphisms / 9.1:
Attractors of R. V. Plykin / 9.1.1:
One-Dimensional Basic Sets on the Sphere / 9.1.2:
Surfaces of Genus g ≥ 1 / 9.1.3:
Singularity Data / 9.2:
Isotopy Classes of Diffeomorphisms / 9.3:
C*-Algebras / 10:
Irrational Rotation Algebra / 10.1:
Dimension Groups / 10.1.1:
Continued Fractions / 10.1.2:
Effros-Shen's Theorem / 10.1.3:
Projections of Aα / 10.1.4:
Morita Equivalence / 10.1.5:
Embedding of Aα / 10.1.6:
Artin Rotation Algebra / 10.2:
Approximationssatz / 10.2.1:
Artin Numbers / 10.2.2:
K Theory / 10.2.3:
Foliation With Reeb Components / 10.3.1:
Baum-Connes Conjecture / 10.3.2:
C*-Algebras of Morse-Smale Flows / 10.4:
Quadratic Differentials / 11:
Finite Critical Points / 11.1:
Pole of Order 2 / 11.2.3:
Higher Order Poles / 11.2.4:
Global Behaviour of the Trajectories / 11.3:
Flat Structures / 12:
Flat Metric With Cone Singularities / 12.1:
Classification of Closed Flat Surfaces / 12.1.1:
Connection With Quadratic Differentials and Measured Foliations / 12.2:
Rational Billiards / 12.3:
Veech Dichotomy / 12.4:
Principal Curvature Lines / 13:
Invariants of the 2-Jets / 13.1:
Stability Lemma / 13.1.3:
Classification of Simple Umbilics / 13.1.4:
Carathéodory Conjecture / 13.2:
ϕ-Geodesics / 13.2.1:
CMC-Surfaces / 13.2.3:
Proof of Theorem 13.2.1 / 13.2.4:
Elements of Global Theory / 13.3:
Bifurcation of Umbilical Connections / 13.3.1:
Differential Equations / 14:
Characteristic Curve / 14.1:
Background and Notations / 14.1.1:
Theorem of Hartman and Wintner / 14.1.2:
Generic Singularities / 14.2:
Theorem of A. G. Kuzmin / 14.2.2:
Positive Differential 2-Forms / 15:
Space of Forms / 15.1:
Stable Subspace / 15.3.1:
Theorem of V. Guinez / 15.3.2:
Control Theory / B. Piccoli16:
Optimal Control / 16.1:
Optimal Flows / 16.3:
Generic Optimal Flows on the Plane / 16.4:
Optimal Flows on 2 Manifolds / 16.5:
Appendix / Part III:
Riemann Surfaces / 17:
Uniformization Theorem / 17.1:
Discrete Groups / 17.2:
Möbius Transformations / 17.2.1:
Fuchsian Group / 17.2.2:
Limit Set of Fuchsian Groups / 17.2.3:
Modular Group / 17.2.4:
Teichmuller Space / 17.2.5:
Conformal Invariants / 17.3.1:
Quasiconformal Mappings / 17.3.2:
Beltrami Equation / 17.3.3:
Ahlfors-Bers' Theorem / 17.3.4:
Geometry of Quadratic Differentials / 17.3.5:
Associated Metric / 17.3.6:
Isothermal Coordinates / 17.3.7:
Complex Curves / 17.4:
Projective Curves / 17.4.1:
Degree-Genus Formula / 17.4.2:
Elliptic Curves / 17.4.3:
Divisors and the Riemann-Roch Theorem / 17.4.4:
Application: Dimension of the Teichmuller Space / 17.4.5:
Bibliography
Index
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
37.

図書

図書
Vilho Räisänen
出版情報: Chichester, England : Wiley, c2003  xxvii, 325 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
List of Figures
List of Tables
Abbreviations
Drivers for the Adoption of Multi-service Networks
Service Quality Requirements
Network Mechanisms for Multi-service Quality Support
Traffic Engineering for Multi-service IP Networks / 1:
Mapping Service Requirements to Network Resources
Service Level Management Techniques
Measurements / 1.1:
Mechanisms for Dynamic Service Quality Control
Customer Perspective
Case Study: Service Quality Support in an IP-based Cellular RAN
Conclusion / 1.2:
References
Network Operator Perspective
Index
Service Provider Perspective / 1.3:
Summary / 1.4:
Services on the Internet / 2:
Definition of a Service / 2.2:
End user service versus provider-level services / 2.2.1:
About service instances and service events / 2.2.2:
Reference model for this section / 2.2.3:
Service Quality Estimation / 2.3:
Measures of end user experienced service quality / 2.3.1:
Recency effect / 2.3.2:
Psychological factors / 2.3.3:
Service Implementation Aspects / 2.3.4:
Choice of transport protocols / 2.4.1:
Throughput adaptability of services / 2.4.2:
Inherent Service Quality Requirements / 2.5:
Service quality characterizations in standards / 2.5.1:
Availability of service / 2.5.2:
Continuity of service / 2.5.3:
Delivery time end-to-end / 2.5.4:
Throughput / 2.5.5:
Support for continuous service data unit transmission / 2.5.6:
Reliability of service delivery / 2.5.7:
Support for variable transfer rate / 2.5.8:
Generic considerations related to service requirements / 2.5.9:
Service Quality Descriptors / 2.6:
Measurement-based determination of traffic profile / 2.6.1:
Introduction to Network Quality Support / 2.7:
Policing of Traffic at Ingress / 3.2:
About Layers / 3.3:
Types of Network Support for Service Quality / 3.4:
Capacity reservation / 3.4.1:
Differentiated treatment / 3.4.2:
Differentiation of service quality instantiation / 3.4.3:
Summary of generic network service quality support mechanisms / 3.4.4:
Service Support in ATM / 3.5:
ATM service models / 3.5.1:
Summary of ATM service support / 3.5.2:
Service Support Models in Internet Protocol / 3.6:
Best effort service model / 3.6.1:
Controlled-load service support / 3.6.2:
Guaranteed QoS support / 3.6.3:
RSVP / 3.6.4:
Statistical QoS: DiffServ model / 3.6.5:
EF PHB / 3.6.5.1:
AF PHB group / 3.6.5.2:
Other PHBs / 3.6.5.3:
Functions of a DiffServ router / 3.6.5.4:
Summary of DiffServ / 3.6.5.5:
Summary of IP QoS service models / 3.6.6:
Routing in IP Networks / 3.7:
On addressing / 3.7.1:
IP routing protocol-based methods / 3.7.2:
ATM overlays / 3.7.3:
Lower layer tunnels: MPLS / 3.7.4:
Link Layer Issues / 3.8:
Performance / 3.8.1:
A note on scheduling / 3.8.2:
Traffic Engineering / 3.9:
Context of traffic engineering / 4.1.1:
The traffic engineering process / 4.1.2:
Obtaining performance data from the network and analysing it / 4.1.3:
Traffic aggregate performance measurements / 4.1.3.1:
Obtaining data relevant for routing control / 4.1.3.2:
Performance enhancement / 4.1.4:
Scope of network optimization / 4.1.5:
IP Routing Control and Traffic Engineering / 4.2:
Optimizing routing based on service quality characteristics / 4.2.1:
Traffic engineering using MPLS / 4.2.2:
DiffServ over MPLS / 4.2.2.1:
Traffic engineering using IP routing protocols / 4.2.3:
Configuration / 4.2.4:
Policy-based management / 4.3.1:
Policy-based management of DiffServ / 4.3.2:
Case study of policy-based management of DiffServ / 4.3.2.1:
Scope of this Chapter / 4.4:
ETSI EP TIPHON Reference Model / 5.2:
Architecture / 5.2.1:
QoS model / 5.2.2:
QBONE / 5.2.3:
Service support models / 5.3.1:
3GPP QoS Model / 5.3.2:
Other Models / 5.4.1:
Utility-based Allocation of Resources / 5.6:
Generic Resource Allocation Framework / 5.6.1:
Signalling / 5.7.1:
Mapping of services onto network resources / 5.7.2:
Network quality support configuration for DiffServ / 5.7.3:
End-to-end service quality budgets / 5.7.4:
Delay / 5.7.4.1:
Delay variation / 5.7.4.2:
Packet loss rate / 5.7.4.3:
Packet loss correlation / 5.7.4.4:
Optimization of resource allocation / 5.7.4.5:
Models for Service Level Management / 5.8:
Areas of service level management / 6.1.1:
Layers of service level management / 6.1.2:
Models for managed data / 6.1.3:
Service Planning and Creation Process / 6.2:
Interests of the customer / 6.2.1:
Network operator viewpoint / 6.2.2:
Service definition / 6.2.3:
Reporting / 6.2.4:
Service Level Agreements / 6.3:
SLA and DiffServ / 6.3.1:
SLA contents / 6.3.2:
End user SLAs / 6.3.3:
End-to-end Services / 6.4:
Assumptions about connection endpoints / 6.4.1:
Assumptions about per-domain service management / 6.4.2:
Requirements for end-to-end service management / 6.4.3:
Service Brokers and Charging / 6.5:
Traffic Characterization / 6.6:
Network Monitoring / 7.2:
Troubleshooting measurements for services / 7.2.1:
Traffic Control / 7.3:
Definition of Measured Characteristics / 7.4:
Sources of Measurement Data / 7.5:
Measurement interfaces / 7.5.1:
Measured characteristics / 7.5.2:
Measurement Methods / 7.6:
Obtaining performance data from network elements / 7.6.1:
Monitoring a link / 7.6.2:
Monitoring a route or node pair / 7.6.3:
Traffic Engineering Measurement Infrastructure / 7.7:
Measuring entity / 7.7.1:
Interface to measuring entity / 7.7.2:
Measurement control and analysis function / 7.7.3:
Internet Service Quality Measurement Architectures / 7.8:
QBone measurement architecture / 7.8.1:
Discussion / 7.8.1.1:
Nokia Research Center measurement architecture demonstrator / 7.8.2:
Previous Studies / 7.8.2.1:
Two-bit DiffServ architecture / 8.1.1:
Bandwidth broker in QBone architecture / 8.1.2:
Phase 0 Bandwidth Broker / 8.1.2.1:
Phase 1 Bandwidth Broker / 8.1.2.2:
QoS Agents / 8.1.3:
Generic Model / 8.2:
Service quality support instantiation control / 8.2.1:
Signalling interface / 8.2.1.1:
Internal bandwidth broker operation / 8.2.1.2:
Domain control / 8.2.2:
Link to traffic engineering / 8.2.2.1:
Means of maintaining information about resource availability / 8.2.2.2:
Inter-domain signalling / 8.2.3:
Link to service admission control / 8.2.4:
Motivation for Using IP-based Transport in Cellular RAN / 8.3:
IP RAN Transport Architecture / 9.2:
PLMN transport architecture / 9.2.1:
IP RAN transport architecture / 9.2.2:
Handover traffic / 9.2.3:
Service mapping in IP RAN / 9.2.4:
Traffic Engineering in All-IP RAN / 9.3:
Capacity planning / 9.3.1:
Capacity management / 9.3.2:
Traffic management / 9.3.3:
Enabling Technologies for Traffic Engineering in IP RAN / 9.4:
Inter-operation with IP-based Backbones and Roaming Networks / 9.4.1:
IP as the Convergence Network / 9.6:
DiffServ / 10.2:
Complementary technologies for DiffServ / 10.2.1:
Service Level Management / 10.3:
Potential Future Development Directions / 10.4:
Preface
Acknowledgements
List of Figures
38.

図書

図書
Stephen Marsland
出版情報: Boca Raton : Chapman & Hall/CRC, c2009  xvi, 390 p. ; 25 cm
シリーズ名: Chapman & Hall/CRC machine learning & pattern recognition series
所蔵情報: loading…
目次情報: 続きを見る
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
Learning / 1.2:
Machine Learning / 1.2.1:
Types of Machine Learning / 1.3:
Supervised Learning / 1.4:
Regression / 1.4.1:
Classification / 1.4.2:
The Brain and the Neuron / 1.5:
Hebb's Rule / 1.5.1:
McCulloch and Pitts Neurons / 1.5.2:
Limitations of the McCulloch and Pitt Neuronal Model / 1.5.3:
Further Reading
Linear Discriminants / 2:
Preliminaries / 2.1:
The Perceptron / 2.2:
The Learning Rate ? / 2.2.1:
The Bias Input / 2.2.2:
The Perceptron Learning Algorithm / 2.2.3:
An Example of Perceptron Learning / 2.2.4:
Implementation / 2.2.5:
Testing the Network / 2.2.6:
Linear Separability / 2.3:
The Exclusive Or (XOR) Function / 2.3.1:
A Useful Insight / 2.3.2:
Another Example: The Pima Indian Dataset / 2.3.3:
Linear Regression / 2.4:
Linear Regression Examples / 2.4.1:
Practice Questions
The Multi-Layer Perceptron / 3:
Going Forwards / 3.1:
Biases / 3.1.1:
Going Backwards: Back-Propagation of Error / 3.2:
The Multi-Layer Preceptron Algorithm / 3.2.1:
Initialising the Weights / 3.2.2:
Different Output Activation Functions / 3.2.3:
Sequential and Batch Training / 3.2.4:
Local Minima / 3.2.5:
Picking Up Momentum / 3.2.6:
Other Improvements / 3.2.7:
The Multi-Layer Perceptron in Practice / 3.3:
Data Preparation / 3.3.1:
Amount of Training Data / 3.3.2:
Number of Hidden Layers / 3.3.3:
Generalisation and Overfitting / 3.3.4:
Training, Testing, and Validation / 3.3.5:
When to Stop Learning / 3.3.6:
Computing and Evaluating the Results / 3.3.7:
Examples of Using the MLP / 3.4:
A Regression Problem / 3.4.1:
Classification with the MLP / 3.4.2:
A Classification Example / 3.4.3:
Time-Series Prediction / 3.4.4:
Data Compression: The Auto-Associative Network / 3.4.5:
Overview / 3.5:
Deriving Back-Propagation / 3.6:
The Network Output and the Error / 3.6.1:
The Error of the Network / 3.6.2:
A Suitable Activation Function / 3.6.3:
Back-Propagation of Error / 3.6.4:
Radial Basis Functions and Splines / 4:
Concepts / 4.1:
Weight Space / 4.1.1:
Receptive Fields / 4.1.2:
The Radial Basis Function (RBF) Network / 4.2:
Training the RBF Network / 4.2.1:
The Curse of Dimensionality / 4.3:
Interpolation and Basis Functions / 4.4:
Bases and Basis Functions / 4.4.1:
The Cubic Spline / 4.4.2:
Fitting the Spline to the Data / 4.4.3:
Smoothing Splines / 4.4.4:
Higher Dimensions / 4.4.5:
Beyond the Bounds / 4.4.6:
Support Vector Machines / 5:
Optimal Separation / 5.1:
Kernels / 5.2:
Example: XOR / 5.2.1:
Extensions to the Support Vector Machine / 5.2.2:
Learning with Trees / 6:
Using Decision Trees / 6.1:
Constructing Decision Trees / 6.2:
Quick Aside: Entropy in Information Theory / 6.2.1:
ID3 / 6.2.2:
Implementing Trees and Graphs in Python / 6.2.3:
Implementation of the Decision Tree / 6.2.4:
Dealing with Continuous Variables / 6.2.5:
Computational Complexity / 6.2.6:
Classification and Regression Trees (CART) / 6.3:
Gini Impurity / 6.3.1:
Regression in Trees / 6.3.2:
Classification Example / 6.4:
Decision by Committee: Ensemble Learning / 7:
Boosting / 7.1:
AdaBoost / 7.1.1:
Stumpting / 7.1.2:
Bagging / 7.2:
Subagging / 7.2.1:
Different Ways to Combine Classifiers / 7.3:
Probability and Learning / 8:
Turning Data into Probabilities / 8.1:
Minimising Risk / 8.1.1:
The Naive Bayes' Classifier / 8.1.2:
Some Basic Statistics / 8.2:
Averages / 8.2.1:
Variance and Covariance / 8.2.2:
The Gaussian / 8.2.3:
The Bias-Variance Tradeoff / 8.2.4:
Gaussian Mixture Models / 8.3:
The Expectation-Maximisation (EM) Algorithm / 8.3.1:
Nearest Neighbour Methods / 8.4:
Nearest Neighbour Smoothing / 8.4.1:
Efficient Distance Computations: the KD-Tree / 8.4.2:
Distance Measures / 8.4.3:
Unsupervised Learning / 9:
The ?-Means Algorithm / 9.1:
Dealing with Noise / 9.1.1:
The ?-Means Neural Network / 9.1.2:
Normalisation / 9.1.3:
A Better Weight Update Rule / 9.1.4:
Example: The Iris Dataset Again / 9.1.5:
Using Competitive Learning for Clustering / 9.1.6:
Vector Quantisation / 9.2:
The Self-Organising Feature Map / 9.3:
The SOM Algorithm / 9.3.1:
Neighbourhood Connections / 9.3.2:
Self-Organisation / 9.3.3:
Network Dimensionality and Boundary Conditions / 9.3.4:
Examples of Using the SOM / 9.3.5:
Dimensionality Reduction / 10:
Linear Discriminant Analysis (LDA) / 10.1:
Principal Components Analysis (PCA) / 10.2:
Relation with the Multi-Layer Perceptron / 10.2.1:
Kernel PCA / 10.2.2:
Factor Analysis / 10.3:
Independent Components Analysis (ICA) / 10.4:
Locally Linear Embedding / 10.5:
Isomap / 10.6:
Multi-Dimensional Scaling (MDS) / 10.6.1:
Optimisation and Search / 11:
Going Downhill / 11.1:
Least-Squares Optimisation / 11.2:
Taylor Expansion / 11.2.1:
The Levenberg-Marquardt Algorithm / 11.2.2:
Conjugate Gradients / 11.3:
Conjugate Gradients Example / 11.3.1:
Search: Three Basic Approaches / 11.4:
Exhaustive Search / 11.4.1:
Greedy Search / 11.4.2:
Hill Climbing / 11.4.3:
Exploitation and Exploration / 11.5:
Simulated Annealing / 11.6:
Comparison / 11.6.1:
Evolutionary Learning / 12:
The Genetic Algorithm (GA) / 12.1:
String Representation / 12.1.1:
Evaluating Fitness / 12.1.2:
Population / 12.1.3:
Generating Offspring: Parent Selection / 12.1.4:
Generating Offspring: Genetic Operators / 12.2:
Crossover / 12.2.1:
Mutation / 12.2.2:
Elitism, Tournaments, and Niching / 12.2.3:
Using Genetic Algorithms / 12.3:
Map Colouring / 12.3.1:
Punctuated Equilibrium / 12.3.2:
Example: The Knapsack Problem / 12.3.3:
Example: The Four Peaks Problem / 12.3.4:
Limitations of the GA / 12.3.5:
Training Neural Networks with Genetic Algorithms / 12.3.6:
Genetic Programming / 12.4:
Combining Sampling with Evolutionary Learning / 12.5:
Reinforcement Learning / 13:
Example: Getting Lost / 13.1:
State and Action Spaces / 13.2.1:
Carrots and Sticks: the Reward Function / 13.2.2:
Discounting / 13.2.3:
Action Selection / 13.2.4:
Policy / 13.2.5:
Markov Decision Processes / 13.3:
The Markov Property / 13.3.1:
Probabilities in Markov Decision Processes / 13.3.2:
Values / 13.4:
Back on Holiday: Using Reinforcement Learning / 13.5:
The Difference between Sarsa and Q-Learning / 13.6:
Uses of Reinforcement Learning / 13.7:
Markov Chain Monte Carlo (MCMC) Methods / 14:
Sampling / 14.1:
Random Numbers / 14.1.1:
Gaussian Random Numbers / 14.1.2:
Monte Carlo or Bust / 14.2:
The Proposal Distribution / 14.3:
Markov Chain Monte Carlo / 14.4:
Markov Chains / 14.4.1:
The Metropolis-Hastings Algorithm / 14.4.2:
Simulated Annealing (Again) / 14.4.3:
Gibbs Sampling / 14.4.4:
Graphical Models / 15:
Bayesian Networks / 15.1:
Example: Exam Panic / 15.1.1:
Approximate Inference / 15.1.2:
Making Bayesian Networks / 15.1.3:
Markov Random Fields / 15.2:
Hidden Markov Models (HMMs) / 15.3:
The Forward Algorithm / 15.3.1:
The Viterbi Algorithm / 15.3.2:
The Baum-Welch or Forward-Backward Algorithm / 15.3.3:
Tracking Methods / 15.4:
The Kalman Filter / 15.4.1:
The Particle Filter / 15.4.2:
Python / 16:
Installing Python and Other Packages / 16.1:
Getting Started / 16.2:
Python for MATLAB and R users / 16.2.1:
Code Basics / 16.3:
Writing and Importing Code / 16.3.1:
Control Flow / 16.3.2:
Functions / 16.3.3:
The doc String / 16.3.4:
map and lambda / 16.3.5:
Exceptions / 16.3.6:
Classes / 16.3.7:
Using NumPy and Matplotlib / 16.4:
Arrays / 16.4.1:
Linear Algebra / 16.4.2:
Plotting / 16.4.4:
Index
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
39.

図書

図書
Arvind Agarwal, Srinivasa Rao Bakshi, Debrupa Lahiri
出版情報: Boca Raton : CRC, c2011  xx, 305 p. ; 25 cm
シリーズ名: Nanomaterials and their applications
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Authors
List of Abbreviations
Introduction / 1:
Composite Materials / 1.1:
Development of Carbon Fibers / 1.2:
Carbon Nanotubes: Synthesis and Properties / 1.3:
Carbon Nanotube-Metal Matrix Composites / 1.4:
Chapter Highlights / 1.5:
References
Processing Techniques / 2:
Powder Metallurgy Routes / 2.1:
Conventional Sintering / 2.1.1:
Hot Pressing / 2.1.2:
Spark Plasma Sintering / 2.1.3:
Deformation Processing / 2.1.4:
Melt Processing / 2.2:
Casting / 2.2.1:
Melt Infiltration / 2.2.2:
Thermal Spraying / 2.3:
Plasma Spraying / 2.3.1:
High Velocity Oxy-Fuel Spraying / 2.3.2:
Cold Spraying / 2.3.3:
Electrochemical Routes / 2.4:
Novel Techniques / 2.5:
Molecular Level Mixing / 2.5.1:
Sputtering / 2.5.2:
Sandwich Processing / 2.5.3:
Torsion/Friction Processing / 2.5.4:
Chemical/Physical Vapor Deposition Techniques / 2.5.5:
Nanoscale Dispersion / 2.5.6:
Laser Deposition / 2.5.7:
Conclusion / 2.6:
Characterization of Metal Matrix-Carbon Nanotube Composites / 2.7:
X-Ray Diffraction / 3.1:
Raman Spectroscopy / 3.2:
Scanning Electron Microscopy with Energy Dispersive Spectroscopy / 3.3:
High Resolution Transmission Electron Microscopy / 3.4:
Electron Energy Loss Spectroscopy / 3.5:
X-Ray Photoelectron Spectroscopy / 3.6:
Mechanical Properties Evaluation / 3.7:
Nanoscale Mechanical Testing / 3.7.1:
Nano-Indentation / 3.7.1.1:
Nano Dynamic Modulus Analysis / 3.7.1.2:
Modulus Mapping / 3.7.1.3:
Nanoscratch / 3.7.1.4:
Macroscale/Bulk Mechanical Testing / 3.7.2:
Tensile/Compression Test / 3.7.2.1:
Tribological Property Evaluation / 3.7.2.2:
Thermal Properties / 3.8:
Electrical Properties / 3.9:
Electrochemical Properties / 3.10:
Metal-Carbon Nanotube Systems / 3.11:
Aluminum-Carbon Nanotube System / 4.1:
Copper-Carbon Nanotube System / 4.2:
Nickel-Carbon Nanotube System / 4.3:
Magnesium-Carbon Nanotube System / 4.4:
Other Metals-Carbon Nanotube Systems / 4.5:
Mechanics of Metal-Carbon Nanotube Systems / 4.6:
Elastic Modulus of Metal Matrix-Carbon Nanotube Composites / 5.1:
Modified Rule of Mixtures / 5.1.1:
Cox Model / 5.1.2:
Halpin-Tsai Model / 5.1.3:
Hashin-Shtrikman Model / 5.1.4:
Modified Eshelby Model / 5.1.5:
Dispersion-Based Model / 5.1.6:
Strengthening Mechanisms in Metal Matrix-Carbon Nanotube Composites / 5.2:
Shear Lag Models / 5.2.1:
Strengthening by Interphase / 5.2.2:
Strengthening by Carbon Nanotube Clusters / 5.2.3:
Halpin-Tsai Equations / 5.2.4:
Strengthening by Dislocations / 5.2.5:
Strengthening by Grain Refinement / 5.2.6:
Interfacial Phenomena in Carbon Nanotube Reinforced Metal Matrix Composites / 5.3:
Significance of Interfacial Phenomena / 6.1:
Energetics of Carbon Nanotube-Metal Interaction / 6.2:
Carbon Nanotube-Metal Interaction in Various Systems / 6.3:
Dispersion of Carbon Nanotubes in Metal Matrix / 6.4:
Significance of Carbon Nanotube Dispersion / 7.1:
Methods of Improving Carbon Nanotube Dispersion / 7.2:
Quantification of Carbon Nanotube Dispersion / 7.3:
Electrical, Thermal, Chemical, Hydrogen Storage, and Tribological Properties / 7.4:
Corrosion Properties / 8.1:
Hydrogen Storage Property / 8.4:
Sensors and Catalytic Properties / 8.5:
Tribological Properties / 8.6:
Computational Studies in Metal Matrix-Carbon Nanotube Composites / 8.7:
Thermodynamic Prediction of Carbon Nanotube-Metal Interface / 9.1:
Microstructure Simulation / 9.2:
Mechanical and Thermal Property Prediction by the Object-Oriented Finite Element Method / 9.3:
Summary and Future Directions / 9.4:
Summary of Research on MM-CNT Composites / 10.1:
Future Directions / 10.2:
Improvement in Quality of Carbon Nanotubes / 10.2.1:
Challenges Related to Processing / 10.2.2:
Aligned MM-CNT Composites / 10.2.3:
Understanding Mechanisms of Property Improvement / 10.2.4:
Environmental and Toxicity Aspects of MM-CNT Composites / 10.2.5:
Exploring Novel Applications / 10.2.6:
Index
Foreword
Preface
Authors
40.

図書

図書
Bernard Salanié
出版情報: Cambridge, Mass. : MIT Press, c1997  viii, 223 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword to the Second Edition
Foreword to the First Edition
Introduction / 1:
The Great Families of Models / 1.1:
The Principal-Agent Model / 1.2:
Overview of the Book / 1.3:
References
Adverse Selection: General Theory / 2:
Mechanism Design / 2.1:
General Mechanisms / 2.1.1:
Application to Adverse Selection Models / 2.1.2:
A Discrete Model of Price Discrimination / 2.2:
The Consumer / 2.2.1:
The Seller / 2.2.2:
The First-Best: Perfect Discrimination / 2.2.3:
Imperfect Information / 2.2.4:
The Standard Model / 2.3:
Analysis of the Incentive Constraints / 2.3.1:
Solving the Model / 2.3.2:
Exercises
Adverse Selection: Examples and Extensions / 3:
Examples of Applications / 3.1:
Regulating a Firm / 3.1.1:
Optimal Taxation / 3.1.2:
The Insurer as a Monopolist / 3.1.3:
Extensions / 3.2:
Perfect Competition in Contracts / 3.2.1:
Multiple Principals / 3.2.2:
The Theory of Auctions / 3.2.3:
Collusion / 3.2.4:
Risk-Averse Agents / 3.2.5:
Multidimensional Characteristics / 3.2.6:
Bilateral Private Information / 3.2.7:
Type-Dependent Reservation Utilities / 3.2.8:
Auditing the Agent / 3.2.9:
Signaling Models / 4:
The Market for Secondhand Cars / 4.1:
Costly Signals / 4.2:
Separating Equilibria / 4.2.1:
Pooling Equilibria / 4.2.2:
The Selection of an Equilibrium / 4.2.3:
Costless Signals / 4.3:
A Simple Example / 4.3.1:
The General Model / 4.3.2:
Other Examples / 4.4:
The Informed Principal / 4.5:
Moral Hazard / 5:
The Agent's Program / 5.1:
The Principal's Program / 5.2.2:
Properties of the Optimal Contract / 5.2.3:
Informativeness and Second-Best Loss / 5.3:
A Continuum of Actions / 5.3.2:
The Limited Liability Model / 5.3.3:
An Infinity of Outcomes / 5.3.4:
The Multisignal Case / 5.3.5:
Imperfect Performance Measurement / 5.3.6:
Models with Several Agents / 5.3.7:
Models with Several Principals / 5.3.8:
The Robustness of Contracts / 5.3.9:
The Multitask Model / 5.3.10:
Insurance / 5.4:
Wage Determination / 5.4.2:
The Dynamics of Complete Contracts / 6:
Commitment and Renegotiation / 6.1:
Strategic Commitment / 6.2:
Adverse Selection / 6.3:
Full Commitment / 6.3.1:
Long-Term Commitment / 6.3.2:
No Commitment / 6.3.3:
Short-Term Commitment / 6.3.4:
Conclusion / 6.3.5:
Renegotiation after Effort / 6.4:
Convergence to the First-Best / 6.4.2:
Finitely Repeated Moral Hazard / 6.4.3:
Incomplete Contracts / 7:
Property Rights, Holdup, and Underinvestment / 7.1:
The Buyer-Seller Model / 7.1.1:
The Complete Contract / 7.1.2:
Incomplete Contracts and Property Rights / 7.1.3:
The Irrelevance Theorems / 7.2:
Restoring Efficient Investment Incentives / 7.2.1:
Using Mechanism Design / 7.2.2:
Concluding Remarks / 7.3:
Some Empirical Work / 8:
Dealing with Unobserved Heterogeneity / 8.1:
Auctions / 8.2:
Tests of Asymmetric Information in Insurance Markets / 8.3:
Some Noncooperative Game Theory / Appendix:
Games of Perfect Information / A.1:
Nash Equilibrium / A.1.1:
Subgame-Perfect Equilibrium / A.1.2:
Games of Incomplete Information / A.2:
Bayesian Equilibrium / A.2.1:
Perfect Bayesian Equilibrium / A.2.2:
Refinements of Perfect Bayesian Equilibrium / A.2.3:
Name Index
Subject Index
Foreword to the Second Edition
Foreword to the First Edition
Introduction / 1:
41.

図書

図書
Paul Darbyshire and David Hampton
出版情報: Chichester, West Sussex : Wiley, 2011  xv, 261 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
The Structure of a Hedge Fund / 1.2:
Fund Administrators / 1.2.1:
Prime Brokers / 1.2.2:
Custodian, Auditors and Legal / 1.2.3:
The Global Hedge Fund Industry / 1.3:
North America / 1.3.1:
Europe / 1.3.2:
Asia / 1.3.3:
Specialist Investment Techniques / 1.4:
Short Selling / 1.4.1:
Leverage / 1.4.2:
Liquidity / 1.4.3:
New Developments for Hedge Funds / 1.5:
UCITS III Hedge Funds / 1.5.1:
The European Passport / 1.5.2:
Restrictions on Short Selling / 1.5.3:
Major Hedge Fund Strategies / 2:
Single and Multi Strategy Hedge Funds / 2.1:
Fund of Hedge Funds / 2.2:
Hedge Fund Strategies / 2.3:
Tactical Strategies / 2.3.1:
Global Macro / 2.3.1.1:
Managed Futures / 2.3.1.2:
Long/Short Equity / 2.3.1.3:
Pairs Trading / 2.3.1.4:
Event-Driven / 2.3.2:
Distressed Securities / 2.3.2.1:
Merger Arbitrage / 2.3.2.2:
Relative Value / 2.3.3:
Equity Market Neutral / 2.3.3.1:
Convertible Arbitrage / 2.3.3.2:
Fixed Income Arbitrage / 2.3.3.3:
Capital Structure Arbitrage / 2.3.3.3.1:
Swap-Spread Arbitrage / 2.3.3.3.2:
Yield CurveArbitrage / 2.3.3.3.3:
Hedge Fund Data Sources / 3:
Hedge Fund Databases / 3.1:
Major Hedge Fund Indices / 3.2:
Non investable and Investable Indices / 3.2.1:
Dow Jones Credit Suisse Hedge Fund Indexes / 3.2.2:
Liquid Alternative Betas / 3.2.2.1:
Hedge Fund Research / 3.2.3:
Hedge Fund net / 3.2.4:
FTSE Hedge / 3.2.5:
FTSE Hedge Momentum Index / 3.2.5.1:
Greenwich Alternative Investments / 3.2.6:
GAI Investable Indices / 3.2.6.1:
Morningstar Alternative Investment Center / 3.2.7:
MSCI Hedge Fund Classification Standard / 3.2.7.1:
MSCI Investable Indices / 3.2.7.2:
EDHEC Risk and Asset Management Research Centre (www.edhec-risk.com) / 3.2.8:
Database and Index Biases / 3.3:
Survivorship Bias / 3.3.1:
Instant History Bias / 3.3.2:
Benchmarking / 3.4:
Tracking Error / 3.4.1:
Weighting Schemes / Appendix A:
Statistical Analysis / 4:
Basic Performance Plots / 4.1:
Value Added Monthly Index / 4.1.1:
Histograms / 4.1.2:
Probability Distributions / 4.2:
Populations and Samples / 4.2.1:
Probability Density Function / 4.3:
Cumulative Distribution Function / 4.4:
The Normal Distribution / 4.5:
Standard Normal Distribution / 4.5.1:
Visual Tests for Normality / 4.6:
Inspection / 4.6.1:
Normal Q-Q Plot / 4.6.2:
Moments of a Distribution / 4.7:
Mean and Standard Deviation / 4.7.1:
Skewness / 4.7.2:
Excess Kurtosis / 4.7.3:
Data Analysis Tool: Descriptive Statistics / 4.7.4:
Geometric Brownian Motion / 4.8:
Uniform Random Numbers / 4.8.1:
Covariance and Correlation / 4.9:
Regression Analysis / 4.10:
Ordinary Least Squares / 4.10.1:
Coefficient of Determination / 4.10.1.1:
Residual Plots / 4.10.1.2:
Jarque-Bera Normality Test / 4.10.1.3:
Data Analysis Tool: Regression / 4.10.1.4:
Portfolio Theory / 4.11:
Mean Variance Analysis / 4.11.1:
Solver: Portfolio Optimisation / 4.11.2:
Efficient Portfolios / 4.11.3:
Risk-Adjusted Return Metrics / 5:
The Intuition behind Risk Adjusted Returns / 5.1:
Risk Adjusted Returns / 5.1.1:
Common Risk Adjusted Performance Ratios / 5.2:
The Sharpe Ratio / 5.2.1:
The Modified Sharpe Ratio / 5.2.2:
The Sortino Ratio / 5.2.3:
The Drawdown Ratio / 5.2.4:
Common Performance Measures in the Presence of a Market Benchmark / 5.3:
The Information Ratio / 5.3.1:
The M Squared Metric / 5.3.2:
The Treynor Ratio / 5.3.3:
Jensen's Alpha / 5.3.4:
The Omega Ratio / 5.4:
Asset Pricing Models / 6:
The Risk Adjusted Two Moment Capital Asset Pricing Model / 6.1:
Interpreting H / 6.1.1:
Static Alpha Analysis / 6.1.2:
Dynamic Rolling Alpha Analysis / 6.1.3:
Multi factor Models / 6.2:
The Choice of Factors / 6.3:
A Multi Factor Framework for a Risk Adjusted Hedge Fund Alpha League Table / 6.3.1:
Alpha and Beta Separation / 6.3.2:
Dynamic Style Based Return Analysis / 6.4:
The Markowitz Risk Adjusted Evaluation Method / 6.5:
Hedge Fund Market Risk Management / 7:
Value at Risk / 7.1:
Traditional Measures / 7.2:
Historical Simulation / 7.2.1:
Parametric Method / 7.2.2:
Monte Carlo Simulation / 7.2.3:
Modified Var / 7.3:
Expected Shortfall / 7.4:
Extreme Value Theory / 7.5:
Block Maxima / 7.5.1:
Peaks over Threshold / 7.5.2:
References
Important Legal Information
Index
Preface
The Hedge Fund Industry / 1:
What Are Hedge Funds? / 1.1:
42.

図書

図書
Nobuyasu Kanekawa ... [et al.]
出版情報: New York : Springer, c2011  xxv, 204 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
For the Best Result / 1.3:
References
Terrestrial Neutron-Induced Failures in Semiconductor Devices and Relevant Systems and Their Mitigation Techniques / 2:
SER in Memory Devices / 2.1:
MCU in Memory Devices / 2.1.2:
SET and MNU in Logic Devices / 2.1.3:
Chip/System-Level SER Problem: SER Estimation and Mitigation / 2.1.4:
Scope of This Chapter / 2.1.5:
Basic Knowledge on Terrestrial Neutron-Induced Soft-Error in MOSFET Devices / 2.2:
Cosmic Rays from the Outer Space / 2.2.1:
Nuclear Spallation Reaction and Charge Collection in CMOSFET Device / 2.2.2:
Experimental Techniques to Quantify Soft-Error Rate (SER) and Their Standardization / 2.3:
The System to Quantify SER - SECIS / 2.3.1:
Basic Method in JESD89A / 2.3.2:
SEE Classification Techniques in Time Domain / 2.3.3:
MCU Classification Techniques in Topological Space Domain / 2.3.4:
Evolution of Multi-node Upset Problem / 2.4:
MCU Characterization by Accelerator-Based Experiments / 2.4.1:
Multi-coupled Bipolar Interaction (MCBI) / 2.4.2:
Simulation Techniques for Neutron-Induced Soft Error / 2.5:
Overall Microscopic Soft-Error Model / 2.5.1:
Nuclear Spallation Reaction Models / 2.5.2:
Charge Deposition Model / 2.5.3:
SRAM Device Model / 2.5.4:
Cell Matrix Model / 2.5.5:
Recycle Simulation Method / 2.5.6:
Validation of SRAM Model / 2.5.7:
Prediction for Scaling Effects Down to 22 nm Design Rule in SRAMs / 2.6:
Roadmap Assumption / 2.6.1:
Results and Discussions / 2.6.2:
Validity of Simulated Results / 2.6.3:
SER Estimation in Devices/Components/System / 2.7:
Standards for SER Measurement for Memories / 2.7.1:
Revisions Needed for the Standards / 2.7.2:
Quantification of SER in Logic Devices and Related Issues / 2.7.3:
An Example of Chip/Board-Level SER Measurement and Architectural Mitigation Techniques / 2.8:
SER Test Procedures for Network Components / 2.8.1:
Hierarchical Mitigation Strategies / 2.8.2:
Basic Three Approaches / 2.9.1:
Design on the Upper Bound (DOUB) / 2.9.2:
Inter Layer Built-in Reliability (LABIR) / 2.10:
Summary / 2.11:
Electromagnetic Compatibility / 3:
Quantitative Estimation of the EMI Radiation Based on the Measured Near-Field Magnetic Distribution / 3.1:
Measurement of the Magnetic Field Distribution Near the Circuit Board / 3.2.1:
Calculation of the Electric Current Distribution on the Circuit Board / 3.2.2:
Calculation of the Far-Field Radiated EMI / 3.2.3:
Development of a Non-contact Current Distribution Measurement Technique for LSI Packaging on PCBs / 3.3:
Electric Current Distribution Detection / 3.3.1:
The Current Detection Result and Its Verification / 3.3.2:
Reduction Technique of Radiated Emission from Chassis with PCB / 3.4:
Far-Field Measurement of Chassis with PCB / 3.4.1:
Measurements of Junction Current / 3.4.2:
PSPICE Modeling / 3.4.3:
Experimental Validation / 3.4.4:
Chapter Summary / 3.5:
Power Integrity / 4:
Detrimental Effect and Technical Trends of Power Integrity Design of Electronic Systems and Devices / 4.1:
Detrimental Effect by Power Supply Noise on Semiconducting Devices / 4.2.1:
Trends of Power Supply Voltage and Power Supply Current for CMOS Semiconducting Devices / 4.2.2:
Trend of Power Distribution Network Design for Electronic Systems / 4.2.3:
Design Methodology of Power Integrity / 4.3:
Definition of Power Supply Noise in Electric System / 4.3.1:
Time-Domain and Frequency-Domain Design Methodology / 4.3.2:
Modeling and Design Methodologies of PDS / 4.4:
Modeling of Electrical Circuit Parameters / 4.4.1:
Design Strategies of PDS / 4.4.2:
Simultaneous Switching Noise (SSN) / 4.5:
Principle of SSN / 4.5.1:
S-G loop SSN / 4.5.2:
P-G loop SSN / 4.5.3:
Measurement of Power Distribution System Performance / 4.6:
On-Chip Voltage Waveform Measurement / 4.6.1:
On-Chip Power Supply Impedance Measurement / 4.6.2:
Fault-Tolerant System Technology / 4.7:
Metrics for Dependability / 5.1:
Reliability / 5.2.1:
Availability / 5.2.2:
Safety / 5.2.3:
Reliability Paradox / 5.3:
Survey on Fault-Tolerant Systems / 5.4:
Technical Issues / 5.5:
High Performance / 5.5.1:
Transparency / 5.5.2:
Physical Transparency / 5.5.3:
Fault Tolerance of Fault Tolerance for Ultimate Safety / 5.5.4:
Reliability of Software / 5.5.5:
Industrial Approach / 5.6:
Autonomous Decentralized Systems / 5.6.1:
Space Application / 5.6.2:
Commercial Fault-Tolerant Systems / 5.6.3:
Ultra-Safe System / 5.6.4:
Availability Improvement vs. Coverage Improvement / 5.7:
Trade-Off Between Availability and Coverage - Stepwise Negotiating Voting / 5.8:
Basic Concept / 5.8.1:
Hiten Onboard Computer / 5.8.2:
Fault-Tolerance Experiments / 5.8.3:
Extension of SNV - Redundancy Management / 5.8.4:
Coverage Improvement / 5.9:
Self-Checking Comparator / 5.9.1:
Optimal Time Diversity / 5.9.2:
On-Chip Redundancy / 5.10:
High Performance (Commercial Fault-Tolerant Computer) / 5.11:
Basic Concepts of TPR Architecture / 5.11.1:
System Configuration / 5.11.2:
System Reconfiguration on Fault Occurrence / 5.11.3:
Processing Take-Over on Fault Occurrence / 5.11.4:
Fault Tolerance of Fault Tolerance / 5.11.5:
Commercial Product Model / 5.11.6:
Current Application Field: X-by-Wire / 5.12:
Challenges in the Future / 6:
Index
Introduction / 1:
Trends in Failure Cause and Countermeasure / 1.1:
Contents and Organization of This Book / 1.2:
43.

図書

図書
by Man Leung Wong, Kwong Sak Leung
出版情報: Boston : Kluwer Academic, c2000  xiv, 213 p. ; 25 cm
シリーズ名: Genetic programming series ; GPEM 3
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Introduction / Chapter 1:
Data Mining / 1.1.:
Motivation / 1.2.:
Contributions of the Book / 1.3.:
Outline of the Book / 1.4.:
An Overview of Data Mining / Chapter 2:
Decision Tree Approach / 2.1.:
ID3 / 2.1.1.:
C4.5 / 2.1.2.:
Classification Rule / 2.2.:
AQ Algorithm / 2.2.1.:
CN2 / 2.2.2.:
C4.5RULES / 2.2.3.:
Association Rule Mining / 2.3.:
Apriori / 2.3.1.:
Quantitative Association Rule Mining / 2.3.2.:
Statistical Approach / 2.4.:
Bayesian Classifier / 2.4.1.:
Forty-Niner / 2.4.2.:
Explora / 2.4.3.:
Bayesian Network Learning / 2.5.:
Other Approaches / 2.6.:
An Overview on Evolutionary Algorithms / Chapter 3:
Evolutionary Algorithms / 3.1.:
Genetic Algorithms (GAs) / 3.2.:
The Canonical Genetic Algorithm / 3.2.1.:
Selection Methods / 3.2.1.1.:
Recombination Methods / 3.2.1.2.:
Inversion and Reordering / 3.2.1.3.:
Steady State Genetic Algorithms / 3.2.2.:
Hybrid Algorithms / 3.2.3.:
Genetic Programming (GP) / 3.3.:
Introduction to the Traditional GP / 3.3.1.:
Strongly Typed Genetic Programming (STGP) / 3.3.2.:
Evolution Strategies (ES) / 3.4.:
Evolutionary Programming (EP) / 3.5.:
Inductive Logic Programming / Chapter 4:
Inductive Concept Learning / 4.1.:
Inductive Logic Programming (ILP) / 4.2.:
Interactive ILP / 4.2.1.:
Empirical ILP / 4.2.2.:
Techniques And Methods of ILP / 4.3.:
Bottom-up ILP Systems / 4.3.1.:
Top-down ILP Systems / 4.3.2.:
Foil / 4.3.2.1.:
mFOIL / 4.3.2.2.:
The Logic Grammars Based Genetic Programming System (Logenpro) / Chapter 5:
Logic Grammars / 5.1.:
Representations of Programs / 5.2.:
Crossover of Programs / 5.3.:
Mutation of Programs / 5.4.:
The Evolution Process of LOGENPRO / 5.5.:
Discussion / 5.6.:
Data Mining Applications Using Logenpro / Chapter 6:
Learning Functional Programs / 6.1.:
Learning S-expressions Using LOGENPRO / 6.1.1.:
The DOT PRODUCT Problem / 6.1.2.:
Learning Sub-functions Using Explicit Knowledge / 6.1.3.:
Inducing Decision Trees Using LOGENPRO / 6.2.:
Representing Decision Trees as S-expressions / 6.2.1.:
The Credit Screening Problem / 6.2.2.:
The Experiment / 6.2.3.:
Learning Logic Program From Imperfect Data / 6.3.:
The Chess Endgame Problem / 6.3.1.:
The Setup of Experiments / 6.3.2.:
Comparison of LOGENPRO With FOIL / 6.3.3.:
Comparison of LOGENPRO With BEAM-FOIL / 6.3.4.:
Comparison of LOGENPRO With mFOIL1 / 6.3.5.:
Comparison of LOGENPRO With mFOIL2 / 6.3.6.:
Comparison of LOGENPRO With mFOIL3 / 6.3.7.:
Comparison of LOGENPRO With mFOIL4 / 6.3.8.:
Applying Logenpro for Rule Learning / 6.3.9.:
Grammar / 7.1.:
Genetic Operators / 7.2.:
Evaluation of Rules / 7.3.:
Learning Multiple Rules From Data / 7.4.:
Previous Approaches / 7.4.1.:
Pre-selection / 7.4.1.1.:
Crowding / 7.4.1.2.:
Deterministic Crowding / 7.4.1.3.:
Fitness Sharing / 7.4.1.4.:
Token Competition / 7.4.2.:
The Complete Rule Learning Approach / 7.4.3.:
Experiments With Machine Learning Databases / 7.4.4.:
Experimental Results on the Iris Plant Database / 7.4.4.1.:
Experimental Results on the Monk Database / 7.4.4.2.:
Medical Data Mining / Chapter 8:
A Case Study on the Fracture Database / 8.1.:
A Case Study on the Scoliosis Database / 8.2.:
Rules for Scoliosis Classification / 8.2.1.:
Rules About Treatment / 8.2.2.:
Conclusion and Future Work / Chapter 9:
Conclusion / 9.1.:
Future Work / 9.2.:
The Rule Sets Discovered / Appendix A:
The Best Rule Set Learned from the Iris Database / A.1.:
The Best Rule Set Learned from the Monk Database / A.2.:
Monk1 / A.2.1.:
Monk2 / A.2.2.:
Monk3 / A.2.3.:
The Best Rule Set Learned from the Fracture Database / A.3.:
Type I rules: About Diagnosis / A.3.1.:
Type II Rules: About Operation/Surgeon / A.3.2.:
Type III Rules: About Stay / A.3.3.:
The Best Rule Set Learned from the Scoliosis Database / A.4.:
Rules for Classification / A.4.1.:
King-I / A.4.1.1.:
King-II / A.4.1.2.:
King-III / A.4.1.3.:
King-IV / A.4.1.4.:
King-V / A.4.1.5.:
TL / A.4.1.6.:
L / A.4.1.7.:
Rules for Treatment / A.4.2.:
Observation / A.4.2.1.:
Bracing / A.4.2.2.:
The Grammar Used for the Fracture and Scoliosis Databases / Appendix B:
The Grammar for the Fracture Database / B.1.:
The Grammar for the Scoliosis Database / B.2.:
References
Index
List of Figures
List of Tables
Preface
44.

図書

図書
M. Shimoseki, T. Hamano, T. Imaizumi (eds.) ; organized by T. Kuwabara
出版情報: Berlin : Springer, c2003  xiii, 233 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
Tangential Gradient / 1.1.2:
System of Multiple Degrees of Freedom / 1.1.3:
Elastic Component in a Vibration System / 1.2:
Vibration Equations / 1.2.1:
Chords of a Guitar / 1.2.2:
Wave Equation / 1.2.3:
First Stages of Analysis / 1.3:
Orientation / 1.3.1:
Steps of Analysis / 1.3.2:
A Pitfall in the Approximate Solution / 1.3.3:
Element Stiffness of Elastic Component / 1.3.4:
One-Dimensional Combination of Components / 1.4:
Coupling Between Components / 1.4.1:
Generalized Matrix Equation for Coupled Elastic Components / 1.4.2:
Verification of Boundary Condition Type / 1.4.3:
Parallel Coupling of Elastic Components / 1.4.4:
Transverse Stiffness of Elastic Components / 1.4.5:
Plane Structures / 1.5:
Transformation of Coordinates / 1.5.1:
Obliquely Connected Components / 1.5.2:
From Components to Finite Elements / 1.5.3:
Outline of Finite Element Method (FEM) / 2:
Fundamentals of Elasto-Plasticity Dynamics / 2.1:
Viewpoint of Continuum Dynamics / 2.1.1:
General Equations / 2.1.2:
Basic Equations for Linear Elastic Body / 2.1.3:
Principle of Virtual Work / 2.1.4:
Expansion to Nonlinear Problems / 2.2:
Geometrical Nonlinearity / 2.2.1:
Material Nonlinearity / 2.2.2:
Expansion to Dynamic Problems / 2.3:
Mass and Damping Matrix / 2.3.1:
Natural Frequency / 2.3.2:
Simulation / 2.3.3:
Spatial Discretization / 2.4:
Derivating Procedure of Element Stiffness / 2.4.1:
Stiffness of Truss Elements / 2.4.2:
Element Stiffness of Plane Stress / 2.4.3:
Element Stiffness of a Three-dimensional Elastic Body / 2.4.4:
Role of Fem in Spring Analysis / 3:
Comparison Of Fem With Conventional Design Meth- ODS / 3.1:
Assumption in Model Construction / 3.1.1:
From Linear to Nonlinear / 3.1.2:
The Utilization of Fem Software / 3.2:
Use of Commercial Software / 3.2.1:
Selection of Commercial Software / 3.2.2:
Development of Dedicated Programs / 3.2.3:
Effectiveness in Design Practice / 3.3:
Single Spring and Peripheral Parts / 3.3.1:
Simulation of the Manufacturing Process / 3.3.2:
Prospect of Future Application / 3.4:
Optimum Design / 3.4.1:
Nonlinear Problems in Manufacturing Simulation / 3.4.2:
Necessity of Material Data / 3.4.3:
Classification and Application of Element / 4:
Introduction of Various Elements / 4.1:
Beam Elements / 4.1.1:
Plate Elements / 4.1.2:
Axisymmetric Elements / 4.1.3:
Cubic Elements (Solid Elements) / 4.1.4:
Contact Elements / 4.1.5:
Selection of Element and Discretizing Practice / 4.2:
Selection of Elements / 4.2.1:
Tips on Discretization / 4.2.2:
Elementary Analysis / 5:
Formed Wire Springs / 5.1:
Stabilizer Bars / 5.2:
Helical Compression Springs / 5.3:
Static Analysis / 5.3.1:
Analysis of Eigenvalue / 5.3.2:
Helical Extension Springs / 5.4:
Helical Torsion Springs / 5.5:
Spiral Springs / 5.6:
Leaf Springs / 5.7:
Flat Springs / 5.8:
Stress Concentration / 5.9:
Stress Concentration on the Periphery of a Center Bolt Hole for Leaf Springs / 5.9.1:
Stress Concentration at the Slit Bottom of a Disc Spring / 5.9.2:
Stress Concentration at the End of a Torsion Bar Spring / 5.9.3:
Expansion of Analytical Handling / 6:
Tubular Stabilizer Bars / 6.1:
Effect of Bush / 6.1.2:
Problem of Contact / 6.2:
Non-circular Cross Section / 6.2.2:
Presetting / 6.2.3:
Surging / 6.2.4:
RBA Type Leaf Springs / 6.3:
Effect of Shackle and Contact Plate / 6.3.2:
Hysteresis Characteristic / 6.3.3:
Wind-up / 6.3.4:
Disc Springs, Ring Springs / 6.3.5:
Disc Springs / 6.4.1:
Ring Springs / 6.4.2:
Index
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
45.

図書

図書
by Pratul Bandyopadhyay
出版情報: Dordrecht : Kluwer Academic, c2003  xi, 217 p. ; 25 cm
シリーズ名: Fundamental theories of physics ; v. 130
所蔵情報: loading…
目次情報: 続きを見る
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
Spinor space and Spinor Algebra / 1.1.1:
Spinors and Tensors / 1.1.2:
Universal Covering space / 1.1.3:
Spinor structure / 1.1.4:
Spinors in Different Dimensions / 1.2:
Simple Spinor Geometry / 1.2.1:
Conformal Spinors / 1.2.2:
Twistors and Cartan Semispinors / 1.2.3:
Supersymmetry and Superspace / 1.3:
Supersymmetry algebra / 1.3.1:
Superspace / 1.3.2:
Spinor structure and superspace / 1.3.3:
Fermions and Topology / 2:
Fermi Field and Nonlinear Sigma Model / 2.1:
Quantization of a Fermi Field and Sympletic Structure / 2.1.1:
Gauge Theorctic Extension of a Fermion and Nonlinear Sigma Model / 2.1.2:
Boson-Fermion Transformation / 2.1.3:
Vortex Line, Magnetic Flux and Fermion Quantization / 2.1.4:
Quantization and Anomaly / 2.2:
Quantum Mechanical Symmetry Breaking and Anomaly / 2.2.1:
Path Integral Formalism and Chiral Anomaly / 2.2.2:
Quantization of a Fermion and Chiral Anomaly / 2.2.3:
Anomaly and Topology / 2.3:
Topological Aspects of Anomaly / 2.3.1:
Chiral Anomaly and Berry Phase / 2.3.2:
Berry Phase and Fermion Number / 2.3.3:
Electroweak Theory / 3:
Weinberg - Salam Theory / 3.1:
Spontaneous Symmetry Breaking and the Nature of Vacuum / 3.1.1:
Weinberg-Salam Theory of Electroweak Interaction / 3.1.2:
Renormalization of Yang-Mills Theory with Spontaneous Symmetry Breaking / 3.1.3:
Topological Features in Field Theory / 3.2:
The Sine-Gordon Model / 3.2.1:
Vortex Lines / 3.2.2:
The Dirac Monopole / 3.2.3:
The't Hooft Polyakov Monopole / 3.2.4:
Instantons / 3.2.5:
Topological Origin of Mass / 3.3:
Topological Aspects of Chiral Anomaly and Origin of Mass / 3.3.1:
Weak Interaction Gauge Bosons and Topological Origin of Mass / 3.3.2:
Topological Features and Some Aspects of Weak Interaction Phenomenology / 3.3.3:
Skyrme Model / 4:
Nonlinear Sigma Model / 4.1:
Chiral Symmetry Breaking and Nonlinear Sigma Model / 4.1.1:
Nonlinear Sigma Model in Different Dimensions / 4.1.2:
Topological Term in Nonlinear Sigma Model / 4.1.3:
Skyrme Model for Nucleons / 4.2:
Skyrme's Approach: Mesonic Fluid Model / 4.2.1:
Nucleons as Topological Skyrmions / 4.2.2:
Static Properties of Nucleons / 4.2.3:
Baryons as Three Flavor Solitons / 4.3:
Extension of Nuclenoic Model to SU(3) Symmetry / 4.3.1:
Skyrmions and Quantum Chromodynamics / 4.3.2:
Skyrmion Statistics / 4.3.3:
Geometrical Aspects of a Skyrmion / 5:
Microlocal Space Time and Fermions / 5.1:
Microlocal Space Time and Massive Fermions as Solitons / 5.1.1:
Bosonic Degrees of Freedom and Fermion / 5.1.2:
Geometric Phase and [theta]-term / 5.1.3:
Internal Symmetry of Hadrons / 5.2:
Geometrical Aspects of Conformal Spinors / 5.2.1:
Reflection Group and the Internal Symmetry of Hadrons / 5.2.2:
Composite State of Skyrmions and Static Properties of Baryons / 5.2.3:
Supersymmetry and Internal Symmetry / 5.3:
Conformal Spinors and Supersymmetry / 5.3.1:
Reflection Group, Supersymmetry and Internal Symmetry / 5.3.2:
Conformal Spinors and Symmetry Group of Interactions / 5.3.3:
Noncommutative Geometry / 6:
Quantum Space Time / 6.1:
Noncommutative Geometry: Physical Perspective / 6.1.1:
Noncommutative Geometry and Quantum Phase space / 6.1.2:
Noncommutative Geometry and Quantum Group / 6.1.3:
Noncommutative Geometry and Particle Physics / 6.2:
Noncommutative Geometry and Electroweak Theory / 6.2.1:
Noncommutative Geometry and Standard Model / 6.2.2:
Noncommutative Generalization of Gauge Theory / 6.2.3:
Discrete Space as the Internal Space / 6.3:
Noncommutative Geometry and Quantization of a Fermion / 6.3.1:
Noncommutative Geometry, Disconnected Gauge Group and Chiral Anomaly / 6.3.2:
Noncommutative Geometry, Geometrical Aspects of a Skyrmion and Polyakov String / 6.3.3:
References
Subject Index
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
46.

図書

図書
Zhen-Gang Ji
出版情報: Hoboken, N.J. : Wiley-Interscience, c2008  xxii, 676 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Acknowledgments
Introduction / 1:
Overview / 1.1:
Understanding Surface Waters / 1.2:
Modeling of Surface Waters / 1.3:
About This Book / 1.4:
Hydrodynamics / 2:
Hydrodynamic Processes / 2.1:
Water Density / 2.1.1:
Conservation Laws / 2.1.2:
Advection and Dispersion / 2.1.3:
Mass Balance Equation / 2.1.4:
Atmospheric Forcings / 2.1.5:
Coriolis Force and Geostrophic Flow / 2.1.6:
Governing Equations / 2.2:
Basic Approximations / 2.2.1:
Equations in Cartesian Coordinates / 2.2.2:
Vertical Mixing and Turbulence Models / 2.2.3:
Equations in Curvilinear Coordinates / 2.2.4:
Initial Conditions and Boundary Conditions / 2.2.5:
Temperature / 2.3:
Heatflux Components / 2.3.1:
Temperature Formulations / 2.3.2:
Hydrodynamic Modeling / 2.4:
Hydrodynamic Parameters and Data Requirements / 2.4.1:
Case Study I: Lake Okeechobee / 2.4.2:
Case Study II: St. Lucie Estuary and Indian River Lagoon / 2.4.3:
Sediment Transport / 3:
Properties of Sediment / 3.1:
Problems Associated with Sediment / 3.1.2:
Sediment Processes / 3.2:
Particle Settling / 3.2.1:
Horizontal Transport of Sediment / 3.2.2:
Resuspension and Deposition / 3.2.3:
Equations for Sediment Transport / 3.2.4:
Turbidity and Secchi Depth / 3.2.5:
Cohesive Sediment / 3.3:
Vertical Profiles of Cohesive Sediment Concentrations / 3.3.1:
Flocculation / 3.3.2:
Settling of Cohesive Sediment / 3.3.3:
Deposition of Cohesive Sediment / 3.3.4:
Resuspension of Cohesive Sediment / 3.3.5:
Noncohesive Sediment / 3.4:
Shields Diagram / 3.4.1:
Settling and Equilibrium Concentration / 3.4.2:
Bed Load Transport / 3.4.3:
Sediment Bed / 3.5:
Characteristics of Sediment Bed / 3.5.1:
A Model for Sediment Bed / 3.5.2:
Wind Waves / 3.6:
Wave Processes / 3.6.1:
Wind Wave Characteristics / 3.6.2:
Wind Wave Models / 3.6.3:
Combined Flows of Wind Waves and Currents / 3.6.4:
Case Study: Wind Wave Modeling in Lake Okeechobee / 3.6.5:
Sediment Transport Modeling / 3.7:
Sediment Parameters and Data Requirements / 3.7.1:
Case Study II: Blackstone River / 3.7.2:
Pathogens and Toxics / 4:
Pathogens / 4.1:
Bacteria, Viruses, and Protozoa / 4.2.1:
Pathogen Indicators / 4.2.2:
Processes Affecting Pathogens / 4.2.3:
Toxic Substances / 4.3:
Toxic Organic Chemicals / 4.3.1:
Metals / 4.3.2:
Sorption and Desorption / 4.3.3:
Fate and Transport Processes / 4.4:
Mathematical Formulations / 4.4.1:
Processes Affecting Fate and Decay / 4.4.2:
Contaminant Modeling / 4.5:
Case Study I: St. Lucie Estuary and Indian River Lagoon / 4.5.1:
Case Study II: Rockford Lake / 4.5.2:
Water Quality and Eutrophication / 5:
Eutrophication / 5.1:
Algae / 5.1.2:
Nutrients / 5.1.3:
Dissolved Oxygen / 5.1.4:
Governing Equations for Water Quality Processes / 5.1.5:
Algal Biomass and Chlorophyll / 5.2:
Equations for Algal Processes / 5.2.2:
Algal Growth / 5.2.3:
Algal Reduction / 5.2.4:
Silica and Diatom / 5.2.5:
Periphyton / 5.2.6:
Organic Carbon / 5.3:
Decomposition of Organic Carbon / 5.3.1:
Equations for Organic Carbon / 5.3.2:
Heterotrophic Respiration and Dissolution / 5.3.3:
Phosphorus / 5.4:
Equations for Phosphorus State Variables / 5.4.1:
Phosphorus Processes / 5.4.2:
Nitrogen / 5.5:
Forms of Nitrogen / 5.5.1:
Equations for Nitrogen State Variables / 5.5.2:
Nitrogen Processes / 5.5.3:
Biochemical Oxygen Demand / 5.6:
Processes and Equations of Dissolved Oxygen / 5.6.2:
Effects of Photosynthesis and Respiration / 5.6.3:
Reaeration / 5.6.4:
Chemical Oxygen Demand / 5.6.5:
Sediment Fluxes / 5.7:
Sediment Diagenesis Model / 5.7.1:
Depositional Fluxes / 5.7.2:
Diagenesis Fluxes / 5.7.3:
Silica / 5.7.4:
Coupling with Sediment Resuspension / 5.7.6:
Submerged Aquatic Vegetation / 5.8:
Equations for a SAV Model / 5.8.1:
Coupling with the Water Quality Model / 5.8.3:
Water Quality Modeling / 5.9:
Model Parameters and Data Requirements / 5.9.1:
External Sources and TMDL / 5.9.2:
Point Sources and Nonpoint Sources / 6.1:
Atmospheric Deposition / 6.2:
Wetlands and Groundwater / 6.3:
Wetlands / 6.3.1:
Groundwater / 6.3.2:
Watershed Processes and TMDL Development / 6.4:
Watershed Processes / 6.4.1:
Total Maximum Daily Load (TMDL) / 6.4.2:
Mathematical Modeling and Statistical Analyses / 7:
Mathematical Models / 7.1:
Numerical Models / 7.1.1:
Model Selection / 7.1.2:
Spatial Resolution and Temporal Resolution / 7.1.3:
Statistical Analyses / 7.2:
Statistics for Model Performance Evaluation / 7.2.1:
Correlation and Regression / 7.2.2:
Spectral Analysis / 7.2.3:
Empirical Orthogonal Function (EOF) / 7.2.4:
EOF Case Study / 7.2.5:
Model Calibration and Verification / 7.3:
Model Calibration / 7.3.1:
Model Verification and Validation / 7.3.2:
Sensitivity Analysis / 7.3.3:
Rivers / 8:
Characteristics of Rivers / 8.1:
Hydrodynamic Processes in Rivers / 8.2:
River Flow and the Manning Equation / 8.2.1:
Advection and Dispersion in Rivers / 8.2.2:
Flow over Dams / 8.2.3:
Sediment and Water Quality Processes in Rivers / 8.3:
Sediment and Contaminants in Rivers / 8.3.1:
Impacts of River Flow on Water Quality / 8.3.2:
Eutrophication and Periphyton in Rivers / 8.3.3:
Dissolved Oxygen in Rivers / 8.3.4:
River Modeling / 8.4:
Case Study I: Blackstone River / 8.4.1:
Case Study II: Susquehanna River / 8.4.2:
Lakes and Reservoirs / 9:
Characteristics of Lakes and Reservoirs / 9.1:
Key Factors Controlling a Lake / 9.1.1:
Vertical Stratification / 9.1.2:
Biological Zones in Lakes / 9.1.3:
Characteristics of Reservoirs / 9.1.4:
Lake Pollution and Eutrophication / 9.1.5:
Inflow, Outflow, and Water Budget / 9.2:
Wind Forcing and Vertical Circulations / 9.2.2:
Seasonal Variations of Stratification / 9.2.3:
Gyres / 9.2.4:
Seiches / 9.2.5:
Sediment and Water Quality Processes in Lakes / 9.3:
Sediment Deposition in Reservoirs and Lakes / 9.3.1:
Algae and Nutrient Stratifications / 9.3.2:
Dissolved Oxygen Stratifications / 9.3.3:
Internal Cycling and Limiting Functions in Shallow Lakes / 9.3.4:
Lake Modeling / 9.4:
Case Study I: Lake Tenkiller / 9.4.1:
Case Study II: Lake Okeechobee / 9.4.2:
Estuaries and Coastal Waters / 10:
Tidal Processes / 10.1:
Tides / 10.2.1:
Tidal Currents / 10.2.2:
Harmonic Analysis / 10.2.3:
Hydrodynamic Processes in Estuaries / 10.3:
Salinity / 10.3.1:
Estuarine Circulation / 10.3.2:
Stratifications of Estuaries / 10.3.3:
Flushing Time / 10.3.4:
Sediment and Water Quality Processes in Estuaries / 10.4:
Sediment Transport under Tidal Forcing / 10.4.1:
Flocculation of Cohesive Sediment and Sediment Trapping / 10.4.2:
Eutrophication in Estuaries / 10.4.3:
Estuarine and Coastal Modeling / 10.5:
Open Boundary Conditions / 10.5.1:
Case Study I: Morro Bay / 10.5.2:
Environmental Fluid Dynamics Code / 10.5.3:
Toxic Chemical Transport and Fate / A1:
Numerical Schemes / A5:
Documentation and Application Aids / A7:
Conversion Factors / Appendix B:
Contents of Electronic Files / Appendix C:
Channel Model / C1:
St. Lucie Estuary and Indian River Lagoon Model / C2:
Lake Okeechobee Environmental Model / C3:
Documentation and Utility Programs / C4:
Bibliography
Index
Foreword
Preface
Acknowledgments
47.

図書

図書
Paolo Milani, Salvatore Iannotta
出版情報: New York : Springer, c1999  viii, 190 p. ; 24 cm
シリーズ名: Springer series in cluster physics
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Molecular Beams and Cluster Nucleation / 2:
Molecular Beams / 2.1:
Continuous Effusive Beams / 2.1.1:
Continuous Supersonic Beams / 2.1.2:
Pulsed Beams / 2.1.3:
Nucleation and Aggregation Processes / 2.2:
Classical Theory / 2.2.1:
Homogeneous Nucleation by Monomer Addition / 2.2.2:
Homogeneous Nucleation by Aggregation / 2.2.3:
Nucleation of Clusters in Beams / 2.2.4:
Semi-empirical Approach to Clustering in Free Jets / 2.2.5:
Cluster Sources / 3:
Vaporization Methods / 3.1:
Joule Heating / 3.1.1:
Plasma Generation for Cluster Production / 3.1.2:
Laser Vaporization / 3.1.3:
Glow and Arc Discharges / 3.1.4:
Continuous Sources / 3.2:
Effusive Joule-Heated Gas Aggregation Sources / 3.2.1:
Magnetron Plasma Sources / 3.2.2:
Supersonic Sources / 3.2.3:
Pulsed Sources / 3.3:
Pulsed Valves / 3.3.1:
Laser Vaporization Sources / 3.3.2:
Arc Pulsed Sources / 3.3.3:
Characterization and Manipulation of Cluster Beams / 4:
Mass Spectrometry / 4.1:
Quadrupole Mass Spectrometry / 4.1.1:
Time-of-Flight Mass Spectrometry / 4.1.2:
Retarding Potential Mass Spectrometry / 4.1.3:
Detection Methods / 4.2:
Ionization of Clusters / 4.2.1:
Charged Cluster Detection / 4.2.2:
Cluster Beam Characterization / 4.2.3:
Cluster Selection and Manipulation / 4.3:
Size and Energy Selection / 4.3.1:
Quadrupole Filter / 4.3.2:
Separation of Gas Mixtures in Supersonic Beams / 4.3.3:
Thin Film Deposition and Surface Modification by Cluster Beams / 5:
Kinetic Energy Regimes / 5.1:
Diffusion and Coalescence of Clusters on Surfaces / 5.2:
Low-Energy Deposition / 5.3:
Cluster Networks and Porous Films / 5.3.1:
Composite Nanocrystalline Materials / 5.3.2:
High-Energy Deposition / 5.4:
Implantation, Sputtering, Etching / 5.4.1:
Thin Film Formation / 5.4.2:
Outlook and Perspectives / 6:
Cluster Beam Processing of Surfaces / 6.1:
Nanostructured Materials Synthesis / 6.2:
Perspectives / 6.3:
Appendix
References
Introduction / 1:
Molecular Beams and Cluster Nucleation / 2:
Molecular Beams / 2.1:
48.

図書

図書
Richard J. Brown
出版情報: Oxford : Oxford University Press, 2018  xvi, 408 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
Maps / 1.1.2:
Symbolic Dynamics / 1.1.3:
Billiards / 1.1.4:
Higher-Order Recursions / 1.1.5:
The Viewpoint / 1.2:
Simple Dynamics / 2:
Preliminaries / 2.1:
A Simple System / 2.1.1:
The Time-t Map / 2.1.2:
Metrics on Sets / 2.1.3:
Lipschitz Continuity / 2.1.4:
The Contraction Principle / 2.2:
Contractions on Intervals / 2.2.1:
Contractions in Several Variables / 2.2.2:
Application: The Newton-Raphson Method / 2.2.3:
Application: Existence and Uniqueness of ODE Solutions / 2.2.4:
Application: Heron of Alexandria / 2.2.5:
Interval Maps / 2.3:
Cobwebbing / 2.3.1:
Fixed-Point Stability / 2.3.2:
Monotonic Maps / 2.3.3:
Homochnic/Heteroclinic Points / 2.3.4:
Bifurcations of Interval Maps / 2.4:
Saddle-Node Bifurcation / 2.4.1:
Transcritical Bifurcation / 2.4.2:
Pitchfork Bifurcation / 2.4.3:
First Return Maps / 2.5:
A Quadratic Interval Map; The Logistic Map / 2.6:
The Objects of Dynamics / 3:
Topology on Sets / 3.1:
More on Metrics / 3.2:
More on Lipschitz Continuity / 3.2.1:
Metric Equivalence / 3.2.2:
Fixed-Point Theorems / 3.2.3:
Some Non-Euclidean Metric Spaces / 3.3:
The n-Sphere / 3.3.1:
The Unit Circle / 3.3.2:
The Cylinder / 3.3.3:
The 2-Torus / 3.3.4:
A Cantor Set / 3.4:
The Koch Curve / 3.4.1:
Sierpinski Carpet / 3.4.2:
The Sponges / 3.4.3:
Flows and Maps of Euclidean Space / 4:
Linear, First-order ODE Systems in the Plane / 4.1:
General Homogeneous, Linear Systems in Euclidean Space / 4.1.1:
Autonomous Linear Systems / 4.1.2:
The Matrix Exponential / 4.1.3:
Two-Dimensional Classification / 4.1.4:
Bifurcations in Linear Planar Systems / 4.2:
Linearized Poincaré-Andronov-Hopf Bifurcation / 4.2.1:
Linear Planar Maps / 4.2.2:
Nodes: Sinks and Sources / 4.3.1:
Star or Proper Nodes / 4.3.2:
Degenerate or Improper Nodes / 4.3.3:
Spirals and Centers / 4.3.4:
Saddle Points / 4.3.5:
Linear Flows versus Linear Maps / 4.4:
Local Linearization and Stability of Equilibria / 4.5:
Isolated Periodic Orbit Stability / 4.6:
The Poincaré-Bendixson Theorem / 4.6.1:
Limit Sets of Flows / 4.6.2:
Flows in the Plane / 4.6.3:
Application: The van der Pol Oscillator / 4.6.4:
The Poincaré-Andronov-Hopf Bifurcation / 4.6.5:
Application: Competing Species / 4.7:
The Fixed Points / 4.7.1:
Type and Stability / 4.7.2:
Recurrence / 5:
Rotations of the circle / 5.1:
Continued Fraction Representation / 5.1.1:
Equidistribution and Weyl's Theorem / 5.2:
Application: Periodic Function Reconstruction via Sampling / 5.2.1:
Linear Flows on the Torus / 5.3:
Application: Lissajous Figures / 5.3.1:
Application: A Polygonal Billiard / 5.3.2:
Toral Translations / 5.4:
Invertible Circle Maps / 5.5:
Phase Volume Preservation / 6:
In compressibility / 6.1:
Newtonian Systems of Classical Mechanics / 6.2:
Generating Flows from Functions: Lagrange / 6.2.1:
Generating Flows from Functions: Hamilton / 6.2.2:
Exact Differential Equations / 6.2.3:
Application: The Planar Pendulum / 6.2.4:
First Integrals / 6.2.5:
Application: The Spherical Pendulum / 6.2.6:
Poincaré Recurrence / 6.3:
Non-Wandering Points / 6.3.1:
The Poincaré Recurrence Theorem / 6.3.2:
Circular Billiards / 6.4:
Elliptic Billiards / 6.4.2:
General Convex Billiards / 6.4.3:
Poincaré's Last Geometric Theorem / 6.4.4:
Application: Pitcher Problems / 6.4.5:
Complicated Orbit Structure / 7:
Counting Periodic Orbits / 7.1:
The Quadratic Map: Beyond 4 / 7.1.1:
Hyperbolic Toral Automorphisms / 7.1.2:
Application: Image Restoration / 7.1.3:
Inverse Limit Spaces / 7.1.4:
Shift Spaces / 7.1.5:
Markov Partitions / 7.1.6:
Application: The Baker's Transformation / 7.1.7:
Two-Dimensional Markov Partitions: Arnol'd's Cat Map / 7.2:
Chaos and Mixing / 7.3:
Sensitive Dependence on Initial Conditions / 7.4:
Quadratic Maps: The Final interval / 7.5:
Period-Doubling Bifurcation / 7.5.1:
Trie Schwarzian Derivative / 7.5.2:
Sharkovskii's Theorem / 7.5.3:
Two More Examples of Complicated Dynamical Systems / 7.6:
Complex Dynamics / 7.6.1:
Smale Horseshoe / 7.6.2:
Dynamical Invariants / 8:
Topological Conjugacy / 8.1:
Conjugate Maps / 8.1.1:
Conjugate Hows / 8.1.2:
Conjugacy as Classification / 8.1.3:
Topological Entropy / 8.2:
Lyapunov Exponents / 8.2.1:
Capacity / 8.2.2:
Box Dimension / 8.2.3:
Bowen-Dinaburg (Metric) Topological Entropy / 8.2.4:
Bibliography
Index
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
49.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
50.

図書

図書
Tod A. Laursen
出版情報: Berlin ; Tokyo : Springer, c2002  xv, 454 p. ; 24 cm
シリーズ名: Engineering online library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
Useful Background for this Presentation / 1.2:
Overview / 1.3:
Finite Element Formulations in Nonlinear Solid Mechanics / 2:
Initial/Boundary Value Problems in the Kinematically Lin-ear Regime / 2.1:
Strong Form of the EBVP / 2.1.1:
Weak Form of the IBVP / 2.1.2:
The IBVP in the Finite Strain Case / 2.2:
Notation and Problem Formulation / 2.2.1:
Finite Strain Kinematics / 2.2.2:
Stress Definitions Appropriate for Large Deformations / 2.2.3:
Frame Indifference / 2.2.4:
The Strong Form in Finite Strains / 2.2.5:
The Weak Form in Finite Strains / 2.2.6:
Finite Element Discretization / 2.3:
Discretized Weak Form; Generation of Discrete Non-linear Equations / 2.3.1:
Discrete Nonlinear Equations for the Kinematically Linear Case / 2.3.2:
Solution Strategies for Spatially Discrete Systems / 2.4:
Quasistatics and Incremental Load Methods / 2.4.1:
Dynamics and Global Time Stepping Procedures / 2.4.2:
Local (Constitutive) Time Stepping Procedures / 2.4.3:
Nonlinear Equation Solving / 2.4.4:
Consistent Algorithmic Linearization of Material Re-sponse / 2.4.5:
The Kinematically Linear Contact Problem / 3:
Strong Forms in Linearized Frictionless Contact / 3.1:
The Signorini Problem: Contact with a Rigid Obstacle / 3.1.1:
The Two Body Contact Problem / 3.1.2:
Weak Statements of the Contact Problem / 3.2:
Variational Inequalities / 3.2.1:
The Quasistatic Elastic Case: Contact as a Problem of Constrained Optimization / 3.2.2:
Methods of Constraint Enforcement / 3.3:
Classical Lagrange Multiplier Methods / 3.3.1:
Penalty Methods / 3.3.2:
Augmented Lagrangian Methods / 3.3.3:
Inclusion of Friction into the Problem Description / 3.4:
Friction Kinematics and Traction Measures / 3.4.1:
Unregularized Coulomb Friction Laws / 3.4.2:
Regularization of Friction / 3.4.3:
Variational Statements Including Friction / 3.4.4:
Nonlocal Frictional Descriptions / 3.4.5:
Continuum Mechanics of Large Deformation Contact / 4:
Two Body Contact Problem Definition / 4.1:
Local Momentum Balances / 4.1.1:
Initial and Boundary Conditions / 4.1.2:
Contact Constraints in Large Deformations / 4.2:
The Gap Function as Defined by Closest Point Projection / 4.2.1:
Frictional Kinematics on Interfaces / 4.2.2:
Frame Indifference of Contact Rate Variables / 4.2.3:
Coulomb Friction in Large Sliding / 4.2.4:
Summary: Strong Form of the Large Deformation Contact Problem / 4.3:
Virtual Work Expressions Incorporating Contact / 4.4:
Contact Virtual Work: The Contact Integral / 4.4.1:
Linearization of Contact Virtual Work / 4.4.2:
Summary: Weak Form of the Large Deformation Con-tact Problem / 4.4.3:
Finite Element Implementation of Contact Interaction / 5:
Finite Dimensional Representation of Contact Interaction / 5.1:
Contact Surface Discretization / 5.1.1:
Numerical Integration of the Contact Integral / 5.1.2:
Contact Detection (Searching) / 5.1.3:
Time Discretization / 5.2:
Global time integration schemes / 5.2.1:
Temporally Discrete Frictional Laws for the Penalty Regularized Case / 5.2.2:
Contact Stiffness and Residual: Penalty Regularized Case / 5.3:
Three dimensional matrix expressions / 5.3.1:
Two dimensional matrix expressions / 5.3.2:
Augmented Lagrangian Constraint Enforcement Algorithms / 5.4:
Uzawa's Method (Method of Multipliers) / 5.4.1:
Algorithmic Symmetrization Using Augmented La-grangians / 5.4.2:
Augmented Lagrangian Discrete Force and Stiffness Expressions / 5.4.3:
Numerical Examples / 5.5:
General Demonstrations of the Computational Frame-work / 5.5.1:
Demonstrations of Augmented Lagrangian Algorith-mic Performance / 5.5.2:
Tribological Complexity in Interface Constitutive Models / 6:
Rate and State Dependent Friction / 6.1:
Motivation / 6.1.1:
One Dimensional Model Development / 6.1.2:
Model Incorporation into Convective Slip Advected Frame / 6.1.3:
Local Time Stepping Algorithm / 6.1.4:
Contact Force Vector and Stiffness Matrix / 6.1.5:
Thermomechanically Coupled Friction on Interfaces / 6.1.6:
Thermally Coupled Problem Definition / 6.2.1:
A Thermodynamically Consistent Friction Model / 6.2.3:
Variational Principle and Finite Element Implemen-tation / 6.2.4:
Thermodynamical Algorithmic Consistency / 6.2.5:
Constitutive Framework for Bulk Continua / 6.3.1:
Thermomechanical Interface Model Framework / 6.3.2:
A Priori Stability Estimates for Dynamic Frictional Contact / 6.3.3:
A New Partitioned Scheme for Thermomechanical Contact / 6.3.4:
Algorithmic Treatment of Contact Conditions According to the Adiabatic Split / 6.3.5:
Energy-Momentum Approaches to Impact Mechanics / 7:
Energy Stability of Traditional Schemes / 7.1:
A Model System / 7.1.1:
The Concept of Energy Stability / 7.1.2:
Influence of Contact Constraints on System Energy / 7.1.3:
Energy-Momentum Methods for Elastodynamics / 7.2:
Conservation Laws / 7.2.1:
Conservative Discretization Schemes / 7.2.2:
Energy-Momentum Algorithmic Treatment of Prictionless Impact / 7.3:
Discrete Contact Constraints / 7.3.1:
Spatial Discretization and Implementation / 7.3.2:
Introduction of Frictional and Bulk Dissipation: Energy Con-sistency / 7.3.3:
Coulomb Friction Model Formulation / 7.4.1:
Local Split of the Coulomb Model / 7.4.2:
Algorithmic Formulation / 7.4.3:
Energy Consistent Treatment of Bulk Inelasticity / 7.4.4:
Numerical Examples With Friction and Inelasticity / 7.4.5:
EM Algorithms Involving a Discontinuous Velocity Update / 7.5:
Temporally Discontinuous Velocity Update / 7.5.1:
Reexamination of Conservation Conditions / 7.5.2:
Contact Constraints / 7.5.3:
Summary of the Algorithm / 7.5.4:
Emerging Paradigms for Contact Surface Discretization / 7.5.5:
Contact Smoothing / 8.1:
An Alternative Variational Framework / 8.1.1:
Smoothing Strategies in Two Dimensions / 8.1.2:
Smoothing Strategies in Three Dimensions / 8.1.3:
Mortar-Finite Element Methods for Contact Description / 8.1.4:
Tied Contact and the Role of Mortar Formulations in Convergence / 8.2.1:
A Mortar-Finite Element Formulation of Frictional Contact / 8.2.2:
Numerical Examples of Mortar Treatment of Frictional Contact / 8.2.3:
References
Index
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
51.

図書

図書
Yoshihito Osada, Danilo E. De Rossi (eds.)
出版情報: Berlin ; New York : Springer, c2000  xix, 419 p. ; 24 cm
シリーズ名: Macromolecular systems, materials approach
所蔵情報: loading…
目次情報: 続きを見る
Ion Conducting Polymer Sensors / Y. SakaiChapter 1:
Introduction / 1.1:
Humidity Sensors / 1.2:
Humidity Sensors Using Polymers Containing Inorganic Salts / 1.2.1:
Humidity Sensors Using Polymer Electrolytes / 1.2.2:
Electrolyte Homopolymers / 1.2.2.1:
Copolymers / 1.2.2.2:
Graft Copolymers / 1.2.2.3:
Hydrophobic Polymers With Added Ionic Groups / 1.2.2.4:
Crosslinked Polymer Electrolytes / 1.2.2.5:
Gas Sensors / 1.3:
References
Ultrathin Films for Sensorics and Molecular Electronics / L. BrehmerChapter 2:
Molecular Electronics and Nanosensorics / 2.1:
Ultrathin Films and Supramolecular Architectures / 2.2:
State of the Art / 2.2.1:
Langmuir- and Langmuir-Blodgett Films: Formation and Structure Investigation / 2.2.2:
Langmuir Films / 2.2.2.1:
Formation of Langmuir-Blodgett Films / 2.2.2.2:
Structure Investigation of LB-Films / 2.2.2.3:
Thin Film Sensorics / 2.3:
Advantages of Ultrathin Films for Sensorics / 2.3.1:
Ultrathin Pyrosensors / 2.3.2:
Definitions and Measurements / 2.3.2.1:
Rationale for Using Thin Organic Films for Pyroelectric Devices / 2.3.2.3:
Pyroelectric Cells and Measuring Techniques / 2.3.2.4:
Pyroelectricity of Organic Thin Films / 2.3.2.5:
Polymer Thin Film Pyroelectricity / 2.3.2.6:
Pyroelectric Measurements / 2.3.2.7:
Materials and Experimental Set-Up / 2.3.2.8:
Sample Preparation and Experimental Procedure / 2.3.2.9:
Pyroelectric Response and Long-Term Stability / 2.3.2.10:
Control of Pyroelectric Response / 2.3.2.11:
Humidity LB Polyelectrolyte Sensors / 2.3.3:
Commercial Application of LB Film Devices / 2.3.4:
Molecular Electronic Devices / 2.4:
Problems and Opportunities / 2.4.1:
Optically Switchable Thin Films / 2.4.2:
E-Z-Switching of Azo-Compounds / 2.4.2.1:
Molecular Rectifier / 2.4.3:
Electroluminescence of Organic Thin Films / 2.4.4:
Ultrathin Films as Electron beam Resists / 2.4.5:
Outlook / 2.5:
List of Abbreviations
Polymers for Optical Fiber Sensors / F. Baldini ; S. BracciChapter 3:
The Optical Fiber Sensor / 3.1:
The Optoelectronic System / 3.2.1:
The Optical Link / 3.2.2:
The Optode / 3.2.3:
Polymers in Optical Fiber Chemical Sensors / 3.3:
Polymer Functions / 3.4:
Polymers as Solid Supports / 3.4.1:
Polymers as Selective Elements / 3.4.2:
Polymers as Chemical Transducers / 3.4.3:
Conclusions / 3.5:
List of Symbols and Abbreviations
Smart Ferroelectric Ceramic/Polymer Composite Sensors / D.-K. Das-GuptaChapter 4:
Basic Concepts / 4.1:
Piezoelectricity / 4.2.1:
Pyroelectricity / 4.2.2:
Ferroelectric Ceramics / 4.2.3:
Ferroelectric Polymers / 4.2.4:
Ferroelectric Ceramic/Polymer Composites / 4.3:
Connectivity / 4.3.1:
0-3 Connectivity Composites and their Fabrication / 4.3.2:
1-3 Connectivity Composite Fabrication / 4.3.3:
3-3 Connectivity Composite Preparation / 4.3.4:
Preparation of Composites with Mixed Connectivity (0-3 and 1-3) / 4.3.5:
Poling Methods of Ceramic/Polymer Composites / 4.4:
D.C. Poling / 4.4.1:
A.C. Poling / 4.4.2:
Piezoelectric Properties of Ceramic/Polymer Composites / 4.5:
Pyroelectric Properties of Ceramic/Polymer Composites with 0-3 Connectivities / 4.6:
Models of 0-3 and Mixed Connectivity Composites / 4.7:
Yamada Model for 0-3 Composites / 4.7.1:
Furukaura Model for 0-3 Composites / 4.7.2:
Parallel and Series Connected Two-Dimensional Structure / 4.7.3:
Applications of Ceramic/Polymer Composite Sensors / 4.8:
Composite Transducers with 1-3 Connectivity / 4.8.1:
Composite Transducers with 0-3 and Mixed Connectivity / 4.8.2:
Sensing Volatile Chemicals Using Conducting Polymer Arrays / R. A. Bailey ; K. C. PersaudChapter 5:
Gas Sensor Technologies / 5.1:
Metal Oxide Semiconductor (MOS) Sensors / 5.1.1.1:
Quartz Crystal Microbalance (QCM) Sensors / 5.1.1.2:
Surface Acoustic Wave (SAW) Sensors / 5.1.1.3:
Amperometric Sensors / 5.1.1.4:
Pellistor Sensors / 5.1.1.5:
Metal-Substituted Phthalocyanine Sensors / 5.1.1.6:
Organic Conducting Polymer (OCP) Gas Sensors / 5.1.1.7:
Other Sensor Technologies / 5.1.1.8:
Combination Gas Sensors / 5.1.1.9:
Implementation of a Conducting Polymer Sensor Array / 5.2:
Conducting Polymer Sensors / 5.2.1:
Preparation of Polypyrrole / 5.2.1.1:
Electrochemical Synthesis / 5.2.1.1.1:
Chemical Synthesis / 5.2.1.1.2:
Polymerisation Mechanism / 5.2.1.2:
Factors Affecting the Polymerisation Process / 5.2.1.2.1:
Electrochemical Conditions / 5.2.1.2.1.1:
Counterion Effects / 5.2.1.2.1.2:
Other Effects / 5.2.1.2.1.3:
Structure of Polypyrrole / 5.2.2:
Conductance Mechanism / 5.2.3:
Classical Band Theory / 5.2.3.1:
Conducting Polymer Mechanisms / 5.2.3.2:
Composite Polymers / 5.2.4:
Gas Sensing / 5.3:
Gas Sampling System / 5.3.1:
Data Acquisition Hardware / 5.3.2:
Data Acquisition and Manipulation Software / 5.3.3:
Pattern Recognition Techniques / 5.3.4:
Linear Solvation Energy Relationships (LSER) and the Investigation of Gas Sensor Responses / 5.4:
Conclusion / 5.5:
Molecular Machines Useful for the Design of Chemosensors / S. Shinkai ; M. Takeuchi ; A. IkedaChapter 6:
Chromogenic Crown Ethers / 6.1:
Photoresponsive Crown Actuators in Action for Ion and Molecule Recognition / 6.3:
Cyclodextrins Modified as Molecule Sensors / 6.4:
Calixarenes Modified as Ion and Molecule Sensors / 6.5:
New Artificial Sugar Sensing Systems in which the Boronic Acid-Diol Interaction is Combined with Photoinduced Electron-Transfer (PET) / 6.6:
Conducting Polymer Actuators: Properties and Modeling / A. Mazzoldi ; A. Della Santa ; D. De Rossi6.7:
Working Principles and Actuator Configurations / 7.1:
Figures of Merit of a CP Actuator / 7.3:
Actuators in the Literature / 7.4:
Materials and Techniques for Fabrication / 7.5:
Films / 7.5.1:
Film Electrochemical Deposition / 7.5.1.1:
Film Preparation by Casting / 7.5.1.2:
Fibers / 7.5.2:
All Polymer Actuators / 7.5.3:
Dry PANi Fiber Actuator / 7.5.3.1:
Dry PPyClO4 Film Actuator / 7.5.3.2:
Continuum Electromechanics of CP Actuators / 7.6:
Introduction to the Continuum Model / 7.6.1:
The Continuum Approach / 7.6.2:
Configuration of Study / 7.6.3:
Mechanical Equations / 7.6.4:
Electrochemical Equations / 7.6.5:
Relations Between the Charges and Equations for the Redox Reactions / 7.6.5.1:
Motion Equations of Ionic Charges / 7.6.5.2:
Relation Between Current and Potential in the Solid Matrix / 7.6.5.3:
Continuity Equations / 7.6.5.4:
Resolvability / 7.6.5.5:
Resolution and Validation of the Model in the Passive Case / 7.6.6:
Model Resolution / 7.6.6.1:
Experimental Determination of the Parameters Considered in the Passive Case / 7.6.6.2:
Passive Continuum Model Testing / 7.6.6.3:
Empirical Corrections / 7.6.6.3.1:
Lumped Parameter Description of a PC Actuator / 7.7:
Model / 7.7.1:
Parameters Estimation and Validation / 7.7.2:
Passive Condition / 7.7.2.1:
Active Condition / 7.7.2.2:
Electrically Induced Strain in Polymer Gels Swollenwith Non-Ionic Organic Solvents / T. Hirai ; M. Hirai7.8:
Electrically Induced Strain in PVA-DMSO Gel / 8.1:
Electrostrictive Motion of PVA-DMSO Gel / 8.2.1:
Detailed Feature of the Electrically Induced Action of the PVA-DMSO Gel / 8.2.2:
Comparison with PAAM-DMSO Gel / 8.2.3:
Effect of Crosslinks on the Electrostrictive Strain / 8.3:
Preparation Method of the DMSO Gel / 8.3.1:
Effect of Solvent Content on the Performance of the Actuation / 8.3.2:
Structural Change in PVA-DMSO Gel Induced by Electric Field / 8.4:
Orientation of DMSO by Electric Field / 8.4.1:
In PVA-DMSO Gel / 8.4.1.1:
Comparison with PVC-DMSO Gel / 8.4.1.2:
Electrically Induced Structure Change Observed by Small Angle X-Ray Scattering (SAXS) / 8.4.2:
Scattering Functions / 8.4.2.1:
Distance Distribution Functions / 8.4.2.2:
Persistence Length and Correlation Length / 8.4.2.3:
On the Mechanism of the Electrostrictive Action and Concluding Remarks (for Future Development) / 8.5:
Actuating Devices of Liquid-Crystalline Polymers / R. KishiChapter 9:
Lyotropic Liquid-Crystalline Polymer Gels / 9.1:
Poly(?-benzyl L-glutamate) Gels Having Cholesteric Liquid-Crystalline Order / 9.2.1:
Poly(?-benzyl L-glutamate) Gels Having Nematic Liquid-Crystalline Order / 9.2.2:
Optical Anisotropy of Poly(?-benzyl L-glutamate) Gels Having Cholesteric Liquid-Crystalline Order / 9.2.3:
Poly(L-glutamic acid) Hydrogels Having Liquid-Crystalline Order / 9.2.4:
Thermotropic Liquid-Crystalline Polymer Gels / 9.3:
Electrical Deformation of Side-Chain Type Liquid-Crystalline Polymer Gels / 9.3.1:
Electrorheological Properties of Thermotropic Liquid-Crystalline Materials / 9.3.2:
Gel Actuators / J. P. Gong ; Y. Osada9.4:
Shape Memory Gel / 10.1:
Spontaneous Motion of Polymer Gels on Water / 10.3:
Electrical Contraction and Tactile-Sensing System / 10.4:
Gel Actuator Based on Molecular Assembly Reactions / 10.5:
Gel Pendulum / 10.5.1:
Gel Looper / 10.5.2:
Gel-Eel / 10.5.3:
Future Prospects / 10.6:
Electrochemomechanical Devices Based on Conducting Polymers / T. F. OteroChapter 11:
Approach Through Electrochemical Systems / 11.1:
Artificial Molecular Muscles in the Literature / 11.3:
Conducting Polymers: a Short Introduction / 11.4:
Redox Processes in Conducting Polymers and Related Properties / 11.5:
Artificial Muscles from Conducting Polymers / 11.6:
Bilayer Devices / 11.7:
Electrochemopositioning Devices / 11.8:
The Working Muscle / 11.9:
Triple Layer Devices / 11.10:
Movement Rate Control / 11.11:
Actuator and Sensor / 11.12:
Lifetime and Degradation Processes / 11.13:
Three-Dimensional Electrochemical Processes and Biological Mimicking / 11.14:
Hydro-Organic Batteries / 11.14.1:
Color Mimicking / 11.14.2:
Nerve Interfaces / 11.14.3:
Smart Membranes / 11.14.4:
Mechanochemoelectrical Devices / 11.14.5:
Theoretical Approaches / 11.15:
Similarities with Natural Muscles / 11.16:
The Future / 11.17:
Ion-Exchange Polymer-Metal Composites as Biomimetic Sensors and Actuators / M. ShahinpoorChapter 12:
Biomimetic Sensing Capability of IPMC / 12.1:
General Considerations / 12.2.1:
Theoretical Analysis / 12.2.2:
Experimental Procedures, Results, and Discussion / 12.2.3:
Dynamic Sensing / 12.2.4:
Biomimetic Actuation Properties of IPMCs / 12.2.5:
Development of Muscle Actuators / 12.3.1:
Muscle Actuator for Robotic Applications / 12.3.3:
Design of Linear and Platform Type Actuators / 12.3.4:
Large Amplitude Vibrational Response of IPMCs / 12.3.5:
Theoretical Model / 12.4.1:
Experimental Observations / 12.4.3:
Ion Conducting Polymer Sensors / Y. SakaiChapter 1:
Introduction / 1.1:
Humidity Sensors / 1.2:
52.

図書

図書
Sushmita Mitra, Tinku Acharya
出版情報: Hoboken, N.J. : John Wiley, c2003  xviii, 401 p., [2] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Data Mining / 1:
Introduction / 1.1:
Knowledge Discovery and Data Mining / 1.2:
Data Compression / 1.3:
Information Retrieval / 1.4:
Text Mining / 1.5:
Web Mining / 1.6:
Image Mining / 1.7:
Classification / 1.8:
Clustering / 1.9:
Rule Mining / 1.10:
String Matching / 1.11:
Bioinformatics / 1.12:
Data Warehousing / 1.13:
Applications and Challenges / 1.14:
Conclusions and Discussion / 1.15:
References
Soft Computing / 2:
What is Soft Computing? / 2.1:
Relevance / 2.2.1:
Fuzzy sets / 2.2.2:
Neural networks / 2.2.3:
Neuro-fuzzy computing / 2.2.4:
Genetic algorithms / 2.2.5:
Rough sets / 2.2.6:
Wavelets / 2.2.7:
Role of Fuzzy Sets in Data Mining / 2.3:
Granular computing / 2.3.1:
Association rules / 2.3.3:
Functional dependencies / 2.3.4:
Data summarization / 2.3.5:
Image mining / 2.3.6:
Role of Neural Networks in Data Mining / 2.4:
Rule extraction / 2.4.1:
Rule evaluation / 2.4.2:
Clustering and self-organization / 2.4.3:
Regression / 2.4.4:
Information retrieval / 2.4.5:
Role of Genetic Algorithms in Data Mining / 2.5:
Role of Rough Sets in Data Mining / 2.5.1:
Role of Wavelets in Data Mining / 2.7:
Role of Hybridizations in Data Mining / 2.8:
Multimedia Data Compression / 2.9:
Information Theory Concepts / 3.1:
Discrete memoryless model and entropy / 3.2.1:
Noiseless Source Coding Theorem / 3.2.2:
Classification of Compression Algorithms / 3.3:
A Data Compression Model / 3.4:
Measures of Compression Performance / 3.5:
Compression ratio and bits per sample / 3.5.1:
Quality metric / 3.5.2:
Coding complexity / 3.5.3:
Source Coding Algorithms / 3.6:
Run-length coding / 3.6.1:
Huffman coding / 3.6.2:
Principal Component Analysis for Data Compression / 3.7:
Principles of Still Image Compression / 3.8:
Predictive coding / 3.8.1:
Transform coding / 3.8.2:
Wavelet coding / 3.8.3:
Image Compression Standard: JPEG / 3.9:
The JPEG Lossless Coding Algorithm / 3.10:
Baseline JPEG Compression / 3.11:
Color space conversion / 3.11.1:
Source image data arrangement / 3.11.2:
The baseline compression algorithm / 3.11.3:
Decompression process in baseline JPEG / 3.11.4:
JPEG2000: Next generation still picture coding standard / 3.11.5:
Text Compression / 3.12:
The LZ77 algorithm / 3.12.1:
The LZ78 algorithm / 3.12.2:
The LZW algorithm / 3.12.3:
Other applications of Lempel-Ziv coding / 3.12.4:
Some definitions and preliminaries / 3.13:
String matching problem / 4.1.2:
Brute force string matching / 4.1.3:
Linear-Order String Matching Algorithms / 4.2:
String matching with finite automata / 4.2.1:
Knuth-Morris-Pratt algorithm / 4.2.2:
Boyer-Moore algorithm / 4.2.3:
Boyer-Moore-Horspool algorithm / 4.2.4:
Karp-Rabin algorithm / 4.2.5:
String Matching in Bioinformatics / 4.3:
Approximate String Matching / 4.4:
Basic definitions / 4.4.1:
Wagner-Fischer algorithm for computation of string distance / 4.4.2:
Text search with k-differences / 4.4.3:
Compressed Pattern Matching / 4.5:
Classification in Data Mining / 4.6:
Decision Tree Classifiers / 5.1:
ID3 / 5.2.1:
IBM IntelligentMiner / 5.2.2:
Serial PaRallelizable INduction of decision Trees (SPRINT) / 5.2.3:
RainForest / 5.2.4:
Overfitting / 5.2.5:
PrUning and BuiLding Integrated in Classification (PUBLIC) / 5.2.6:
Extracting classification rules from trees / 5.2.7:
Fusion with neural networks / 5.2.8:
Bayesian Classifiers / 5.3:
Bayesian rule for minimum risk / 5.3.1:
Naive Bayesian classifier / 5.3.2:
Bayesian belief network / 5.3.3:
Instance-Based Learners / 5.4:
Minimum distance classifiers / 5.4.1:
k-nearest neighbor (k-NN) classifier / 5.4.2:
Locally weighted regression / 5.4.3:
Radial basis functions (RBFs) / 5.4.4:
Case-based reasoning (CBR) / 5.4.5:
Granular computing and CBR / 5.4.6:
Support Vector Machines / 5.5:
Fuzzy Decision Trees / 5.6:
Rule generation and evaluation / 5.6.1:
Mapping of rules to fuzzy neural network / 5.6.3:
Results / 5.6.4:
Clustering in Data Mining / 5.7:
Distance Measures and Symbolic Objects / 6.1:
Numeric objects / 6.2.1:
Binary objects / 6.2.2:
Categorical objects / 6.2.3:
Symbolic objects / 6.2.4:
Clustering Categories / 6.3:
Partitional clustering / 6.3.1:
Hierarchical clustering / 6.3.2:
Leader clustering / 6.3.3:
Scalable Clustering Algorithms / 6.4:
Clustering large applications / 6.4.1:
Density-based clustering / 6.4.2:
Grid-based methods / 6.4.3:
Other variants / 6.4.5:
Soft Computing-Based Approaches / 6.5:
Evolutionary algorithms / 6.5.1:
Clustering with Categorical Attributes / 6.6:
Sieving Through Iterated Relational Reinforcements (STIRR) / 6.6.1:
Robust Hierarchical Clustering with Links (ROCK) / 6.6.2:
c-modes algorithm / 6.6.3:
Hierarchical Symbolic Clustering / 6.7:
Conceptual clustering / 6.7.1:
Agglomerative symbolic clustering / 6.7.2:
Cluster validity indices / 6.7.3:
Association Rules / 6.7.4:
Candidate Generation and Test Methods / 7.1:
A priori algorithm / 7.2.1:
Partition algorithm / 7.2.2:
Some extensions / 7.2.3:
Depth-First Search Methods / 7.3:
Interesting Rules / 7.4:
Multilevel Rules / 7.5:
Online Generation of Rules / 7.6:
Generalized Rules / 7.7:
Scalable Mining of Rules / 7.8:
Other Variants / 7.9:
Quantitative association rules / 7.9.1:
Temporal association rules / 7.9.2:
Correlation rules / 7.9.3:
Localized associations / 7.9.4:
Optimized association rules / 7.9.5:
Fuzzy Association Rules / 7.10:
Rule Mining with Soft Computing / 7.11:
Connectionist Rule Generation / 8.1:
Neural models / 8.2.1:
Neuro-fuzzy models / 8.2.2:
Using knowledge-based networks / 8.2.3:
Modular Hybridization / 8.3:
Rough fuzzy MLP / 8.3.1:
Modular knowledge-based network / 8.3.2:
Evolutionary design / 8.3.3:
Multimedia Data Mining / 8.3.4:
Keyword-based search and mining / 9.1:
Text analysis and retrieval / 9.2.2:
Mathematical modeling of documents / 9.2.3:
Similarity-based matching for documents and queries / 9.2.4:
Latent semantic analysis / 9.2.5:
Soft computing approaches / 9.2.6:
Content-Based Image Retrieval / 9.3:
Color features / 9.3.2:
Texture features / 9.3.3:
Shape features / 9.3.4:
Topology / 9.3.5:
Multidimensional indexing / 9.3.6:
Results of a simple CBIR system / 9.3.7:
Video Mining / 9.4:
MPEG-7: Multimedia content description interface / 9.4.1:
Content-based video retrieval system / 9.4.2:
Search engines / 9.5:
Bioinformatics: An Application / 9.5.2:
Preliminaries from Biology / 10.1:
Deoxyribonucleic acid / 10.2.1:
Amino acids / 10.2.2:
Proteins / 10.2.3:
Microarray and gene expression / 10.2.4:
Information Science Aspects / 10.3:
Protein folding / 10.3.1:
Protein structure modeling / 10.3.2:
Genomic sequence analysis / 10.3.3:
Homology search / 10.3.4:
Clustering of Microarray Data / 10.4:
First-generation algorithms / 10.4.1:
Second-generation algorithms / 10.4.2:
Role of Soft Computing / 10.5:
Predicting protein secondary structure / 10.6.1:
Predicting protein tertiary structure / 10.6.2:
Determining binding sites / 10.6.3:
Classifying gene expression data / 10.6.4:
Index / 10.7:
About the Authors
Preface
Introduction to Data Mining / 1:
Introduction / 1.1:
53.

図書

図書
[edited by] Mahdi Abdelguerfi, Kam-Fai Wong
出版情報: Los Alamitos, CA : IEEE Computer Society, c1998  vii, 222 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Background / 1.1:
Parallel Database Systems / 1.2:
Computation Model / 1.2.1:
Engineering Model / 1.2.2:
About this Manuscript / 1.3:
Bibliography
Request Manager / I:
Designing an Optimizer for Parallel Relational Systems / 2:
Overall Design Issues / 2.1:
Design a Simple Parallel Execution Model / 2.2.1:
The Two-Phase Approach / 2.2.2:
Parallelizing is Adding Information! / 2.2.3:
Two-Phase versus Parallel Approaches / 2.2.4:
Parallelization / 2.3:
Kinds of Parallelism / 2.3.1:
Specifying Parallel Execution / 2.3.2:
Search Space / 2.4:
Slicing Hash Join Trees / 2.4.1:
Search Space Size / 2.4.2:
Heuristics / 2.4.3:
The Two-Phase Heuristics / 2.4.4:
Cost Model / 2.5:
Exceptions to the Principle of Optimality / 2.5.1:
Resources / 2.5.2:
Skew and Size Model / 2.5.3:
The Cost Function / 2.5.4:
Search Strategies / 2.6:
Deterministic Search Strategies / 2.6.1:
Randomized Strategies / 2.6.2:
Conclusion / 2.7:
New Approaches to Parallel Join Utilizing Page Connectivity Information / 3:
The Environment and a Motivating Example / 3.1:
The Methodology / 3.3:
Definition of Parameters / 3.3.1:
The Balancing Algorithm / 3.3.2:
Schedules for Reading Join Components and Data Pages / 3.3.3:
Performance Analysis / 3.4:
The Evaluation Method / 3.4.1:
Evaluation Results / 3.4.2:
Concluding Remarks and Future Work / 3.5:
A Performance Evaluation Tool for Parallel Database Systems / 4:
Performance Evaluation Methods / 4.1:
Analytical Modeling / 4.2.1:
Benchmarks / 4.2.2:
Observations / 4.2.3:
The Software Testpilot / 4.3:
The Experiment Specification / 4.3.1:
The Performance Assessment Cycle / 4.3.2:
The System Interface / 4.3.3:
The Software Testpilot and Oracle/Ncube / 4.4:
Database System Performance Assessment / 4.4.1:
The Oracle/Ncube Interface / 4.4.2:
Preliminary Results / 4.5:
Load Placement in Distributed High-Performance Database Systems / 4.6:
Investigated System / 5.1:
System Architecture / 5.2.1:
Load Scenarios / 5.2.2:
Trace Analysis / 5.2.3:
Load Setup / 5.2.4:
Load Placement Strategies Investigated / 5.3:
Scheduling Strategies for Transactions / 5.4:
Simulation Results / 5.5:
Influence of Scheduling / 5.5.1:
Evaluation of the Load Placement Strategies / 5.5.2:
Lessons Learned / 5.5.3:
Decision Parameters Used / 5.5.4:
Conclusion and Open Issues / 5.6:
Parallel Machine Architecture / II:
Modeling Recovery in Client-Server Database Systems / 6:
Uniprocessor Recovery and Formal Approach to Modeling Recovery / 6.1:
Basic Formal Concepts / 6.2.1:
Logging Mechanisms / 6.2.2:
Runtime Policies for Ensuring Correctness / 6.2.3:
Data Structures Maintained for Efficient Recovery / 6.2.4:
Restart Recovery--The ARIES Approach / 6.2.5:
LSN Sequencing Techniques for Multinode Systems / 6.3:
Recovery in Client-Server Database Systems / 6.4:
Client-Server EXODUS (ESM-CS) / 6.4.1:
Client-Server ARIES (ARIES/CSA) / 6.4.2:
Shared Nothing Clients with Disks (CD) / 6.4.3:
Summary of Recovery Approaches in Client-Server Architectures / 6.4.4:
Parallel Strategies for a Petabyte Multimedia Database Computer / 6.5:
Multimedia Data Warehouse, Databases, and Applications / 7.1:
Three Waves of Multimedia Database Development / 7.2.1:
National Medical Practice Knowledge Bank Application / 7.2.2:
Massively Parallel Architecture, Infrastructure, and Technology / 7.3:
Parallelism / 7.3.1:
Teradata-MM Architecture, Framework, and New Concepts / 7.4:
Teradata-MM Architecture / 7.4.1:
Key New Concepts / 7.4.2:
SQL3 / 7.4.3:
Federated Coordinator / 7.4.4:
Teradata Multimedia Object Server / 7.4.5:
Parallel UDF Execution Analysis / 7.5:
UDF Optimizations / 7.5.1:
PRAGMA Facility / 7.5.2:
UDF Value Persistence Facility / 7.5.3:
Spatial Indices for Content-Based Querying / 7.5.4:
The MEDUSA Project / 7.6:
Indexing and Data Partitioning / 8.1:
Standard Systems / 8.2.1:
Grid Files / 8.2.2:
Dynamic Load Balancing / 8.3:
Data Access Frequency / 8.3.1:
Data Distribution / 8.3.2:
Query Partitioning / 8.3.3:
The MEDUSA Architecture / 8.4:
Software / 8.4.2:
Grid File Implementation / 8.4.3:
Load Balancing Strategy / 8.4.4:
MEDUSA Performance Results / 8.5:
Test Configuration / 8.5.1:
Transaction Throughput / 8.5.2:
Speedup / 8.5.3:
Load Balancing Test Results / 8.5.4:
Conclusions / 8.6:
Partitioned Data Store / III:
System Software of the Super Database Computer SDC-II / 9:
Architectural Overview of the SDC-II / 9.1:
Design and Organization of the SDC-II System Software / 9.3:
Parallel Execution Model / 9.3.1:
I/O Model and Buffer Management Strategy for Bulk Data Transfer / 9.3.2:
Process Model and Efficient Flow Control Mechanism / 9.3.3:
Structure of the System Software Components / 9.3.4:
Evaluation of the SDC-II System / 9.4:
Details of a Sample Query Processing / 9.4.1:
Comparison with Commercial Systems / 9.4.2:
Data Placement in Parallel Database Systems / 9.5:
Overview of Data Placement Strategies / 10.1:
Declustering and Redistribution / 10.2.1:
Placement / 10.2.2:
Effects of Data Placement / 10.3:
STEADY and TPC-C / 10.3.1:
Dependence on Number of Processing Elements / 10.3.2:
Dependence on Database Size / 10.3.3:
Contributors / 10.4:
Introduction / 1:
Background / 1.1:
Parallel Database Systems / 1.2:
54.

図書

図書
Song Y. Yan ; foreword by Martin E. Hellman
出版情報: Berlin : Springer-Verlag, c2002  xxii, 435 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
Algebraic Preliminaries / 1.1.2:
Theory of Divisibility / 1.2:
Basic Properties of Divisibility / 1.2.1:
Fundamental Theorem of Arithmetic / 1.2.2:
Mersenne Primes and Fermat Numbers / 1.2.3:
Euclid's Algorithm / 1.2.4:
Continued Fractions / 1.2.5:
Diophantine Equations / 1.3:
Basic Concepts of Diophantine Equations / 1.3.1:
Linear Diophantine Equations / 1.3.2:
Pell's Equations / 1.3.3:
Arithmetic Functions / 1.4:
Multiplicative Functions / 1.4.1:
Functions ?(n), ?(n) and s(n) / 1.4.2:
Perfect, Amicable and Sociable Numbers / 1.4.3:
Functions ?(n), ?(n) and ?(n) / 1.4.4:
Distribution of Prime Numbers / 1.5:
Prime Distribution Function ?(x) / 1.5.1:
Approximations of ?(x) by x/ ln x / 1.5.2:
Approximations of ?(x) by Li(x) / 1.5.3:
The Riemann ?-Function ?(s) / 1.5.4:
The nth Prime / 1.5.5:
Distribution of Twin Primes / 1.5.6:
The Arithmetic Progression of Primes / 1.5.7:
Theory of Congruences / 1.6:
Basic Properties of Congruences / 1.6.1:
Modular Arithmetic / 1.6.2:
Linear Congruences / 1.6.3:
The Chinese Remainder Theorem / 1.6.4:
High-Order Congruences / 1.6.5:
Legendre and Jacobi Symbols / 1.6.6:
Orders and Primitive Roots / 1.6.7:
Indices and kth Power Residues / 1.6.8:
Arithmetic of Elliptic Curves / 1.7:
Basic Concepts of Elliptic Curves / 1.7.1:
Geometric Composition Laws of Elliptic Curves / 1.7.2:
Algebraic Computation Laws for Elliptic Curves / 1.7.3:
Group Laws on Elliptic Curves / 1.7.4:
Number of Points on Elliptic Curves / 1.7.5:
Bibliographic Notes and Further Reading / 1.8:
Algorithmic Number Theory / 2:
What is Algorithmic Number Theory? / 2.1:
E ective Computability / 2.1.2:
Computational Complexity / 2.1.3:
Complexity of Number-Theoretic Algorithms / 2.1.4:
Fast Modular Exponentiations / 2.1.5:
Fast Group Operations on Elliptic Curves / 2.1.6:
Algorithms for Primality Testing / 2.2:
Deterministic and Rigorous Primality Tests / 2.2.1:
Fermat's Pseudoprimality Test / 2.2.2:
Strong Pseudoprimality Test / 2.2.3:
Lucas Pseudoprimality Test / 2.2.4:
Elliptic Curve Test / 2.2.5:
Historical Notes on Primality Testing / 2.2.6:
Algorithms for Integer Factorization / 2.3:
Complexity of Integer Factorization / 2.3.1:
Trial Division and Fermat Method / 2.3.2:
Legendre's Congruence / 2.3.3:
Continued FRACtion Method (CFRAC) / 2.3.4:
Quadratic and Number Field Sieves (QS/NFS) / 2.3.5:
Polland's "rho" and "p - 1" Methods / 2.3.6:
Lenstra's Elliptic Curve Method (ECM) / 2.3.7:
Algorithms for Discrete Logarithms / 2.4:
Shanks' Baby-Step Giant-Step Algorithm / 2.4.1:
Silver{Pohlig{Hellman Algorithm / 2.4.2:
Subexponential Algorithms / 2.4.3:
Algorithm for the Root Finding Problem / 2.4.4:
Quantum Number-Theoretic Algorithms / 2.5:
Quantum Information and Computation / 2.5.1:
Quantum Computability and Complexity / 2.5.2:
Quantum Algorithm for Integer Factorization / 2.5.3:
Quantum Algorithms for Discrete Logarithms / 2.5.4:
Miscellaneous Algorithms in Number Theory / 2.6:
Algorithms for Computing ?(x) / 2.6.1:
Algorithms for Generating Amicable Pairs / 2.6.2:
Algorithms for Verifying Goldbach's Conjecture / 2.6.3:
Algorithm for Finding Odd Perfect Numbers / 2.6.4:
Applied Number Theory / 2.7:
Why Applied Number Theory? / 3.1:
Computer Systems Design / 3.2:
Representing Numbers in Residue Number Systems / 3.2.1:
Fast Computations in Residue Number Systems / 3.2.2:
Residue Computers / 3.2.3:
Complementary Arithmetic / 3.2.4:
Hashing Functions / 3.2.5:
Error Detection and Correction Methods / 3.2.6:
Random Number Generation / 3.2.7:
Cryptography and Information Security / 3.3:
Secret-Key Cryptography / 3.3.1:
Data/Advanced Encryption Standard (DES/AES) / 3.3.3:
Public-Key Cryptography / 3.3.4:
Discrete Logarithm Based Cryptosystems / 3.3.5:
RSA Public-Key Cryptosystem / 3.3.6:
Quadratic Residuosity Cryptosystems / 3.3.7:
Elliptic Curve Public-Key Cryptosystems / 3.3.8:
Digital Signatures / 3.3.9:
Digital Signature Algorithm/Standard (DSA/DSS) / 3.3.10:
Database Security / 3.3.11:
Secret Sharing / 3.3.12:
Internet/Web Security and Electronic Commerce / 3.3.13:
Steganography / 3.3.14:
Quantum Cryptography / 3.3.15:
Bibliography / 3.4:
Index
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
55.

図書

図書
George Greaves
出版情報: Berlin ; Tokyo : Springer, c2001  xii, 304 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 43
所蔵情報: loading…
目次情報: 続きを見る
Introduction
The Structure of Sifting Arguments / 1:
The Sieves of Eratosthenes and Legendre / 1.1:
The Contribution of Eratosthenes / 1.1.1:
Legendre's Sieve / 1.1.2:
An Estimate for n(X) / 1.1.3:
The Distribution of Primes / 1.1.4:
Examples of Sifting Situations / 1.2:
Notations / 1.2.1:
The Integers in an Interval (Y - X, Y ) / 1.2.2:
Numbers Given by Polynomial Expressions / 1.2.3:
Arithmetic Progressions / 1.2.4:
Sums of Two Squares / 1.2.5:
Polynomials with Prime Arguments / 1.2.6:
A General Formulation of a Sifting Situation / 1.3:
The Basic Formulation / 1.3.1:
Legendre's Sieve in a General Setting / 1.3.2:
A Generalised Formulation / 1.3.3:
A Further Generalisation / 1.3.4:
Sifting Density / 1.3.5:
The Sifting Limit Β(k) / 1.3.6:
Composition of Sieves / 1.3.7:
Notes on Chapter 1 / 1.4:
Selberg's Upper Bound Method / 2:
The Sifting Apparatus / 2.1:
Selberg's Theorem / 2.1.1:
The Numbers (lambda)(d) / 2.1.2:
A Simple Application / 2.1.3:
General Estimates of G(x) and E(D, P) / 2.2:
An Estimate by Rankin's Device / 2.2.1:
Asymptotic Formulas / 2.2.2:
The Error Term / 2.2.3:
Applications / 2.3:
Prime Twins and Goldbach's Problem / 2.3.1:
Polynomial Sequences / 2.3.3:
Notes on Chapter 2 / 2.4:
Combinatorial Methods / 3:
The Construction of Combinatorial Sieves / 3.1:
Preliminary Discussion of Brun's Ideas / 3.1.1:
Fundamental Inequalities and Identities / 3.1.2:
Buchstab's Identity / 3.1.3:
The Combinatorial Sieve Lemma / 3.1.4:
Brun's Pure Sieve / 3.2:
Inequalities and Identities / 3.2.1:
The "Pure Sieve" Theorem / 3.2.2:
A Corollary / 3.2.3:
Prime Twins / 3.2.4:
A Modern Edition of Brun's Sieve / 3.3:
Rosser's Choice of X / 3.3.1:
A Technical Estimate / 3.3.2:
A Simplifying Approximation / 3.3.3:
A Combinatorial Sieve Theorem / 3.3.4:
Brun's Version of his Method / 3.3.5:
Brun's Choice of x / 3.4.1:
The Estimations / 3.4.2:
The Result / 3.4.3:
Notes on Chapter 3 / 3.5:
Rosser's Sieve / 4:
Approximations by Continuous Functions / 4.1:
The Recurrence Relations / 4.1.1:
Partial Summation / 4.1.2:
The Leading Terms / 4.1.3:
The Functions F and f / 4.2:
The Difference-Differential Equations / 4.2.1:
The Adjoint Equation and the Inner Product / 4.2.2:
Solutions of the Adjoint Equation / 4.2.3:
Particular Values of F(s) and f(s) / 4.2.4:
Asymptotic Analysis as k -> $(infinity$) / 4.2.5:
The Convergence Problem / 4.3:
The Auxiliary Functions / 4.3.1:
Adjoints and Inner Products / 4.3.2:
The Case k
A Sieve Theorem Following Rosser / 4.4:
The Case k >/= 1/2: a First Result / 4.4.1:
Theorem 1 when k
An Improved Version of Proposition 1 / 4.4.3:
A Two-Sided Estimate / 4.4.4:
Extremal Examples / 4.5:
The Linear Case / 4.5.1:
The Case k=1/2 / 4.5.2:
Notes on Chapter 4 / 4.6:
The Sieve with Weights / 5:
Simpler Weighting Devices / 5.1:
Logarithmic Weights / 5.1.1:
Modified Logarithmic Weights / 5.1.2:
Some Applications / 5.1.3:
More Elaborate Weighted Sieves / 5.2:
An Improved Weighting Device / 5.2.1:
Buchstab's Weights / 5.2.2:
A Weighted Sieve Following Rosser / 5.3:
Combining Sieving and Weighting / 5.3.1:
The Reduction Identities / 5.3.2:
An Identity for the Main Term / 5.3.3:
The Estimate for the Main Term / 5.3.4:
Notes on Chapter 5 / 5.4:
The Remainder Term in the Linear Sieve / 6:
The Bilinear Nature of Rosser's Construction / 6.1:
The Factorisation of x.d / 6.1.1:
Discretisations of Rosser's Sieve / 6.1.2:
Specification of Details / 6.1.3:
The Leading Contributions to the Main Term / 6.1.4:
The Remainder Term / 6.1.5:
Sifting Short Intervals / 6.2:
The Smoothed Formulation / 6.2.1:
The Remainder Sums / 6.2.2:
Trigonometrical Sums / 6.2.3:
Notes on Chapter 6 / 6.3:
Lower Bound Sieves when k > 1 / 7:
An Extension of Selberg's Upper Bound / 7.1:
The Integral Equation and the Function $(sigma$) (s) / 7.1.1:
The Estimation of G(s) / 7.1.2:
A Lower Bound Sieve via Buchstab's Identity / 7.2:
Buchstab's Iterations / 7.2.1:
The Buchstab Transform of the $(lambda$)2 Method / 7.2.2:
The Sifting Limit as k -> $(infinity$) / 7.2.3:
Selberg's a2 a" Method / 7.3:
The Improved Sifting Limit for Large k / 7.3.1:
Notes on Chapter 7 / 7.4:
References
Index
Introduction
The Structure of Sifting Arguments / 1:
The Sieves of Eratosthenes and Legendre / 1.1:
56.

図書

図書
Clarence W. de Silva
出版情報: Boca Raton, Fla. : CRC Press, c2007  671 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
Instrumentation and Design / 1.2.1:
Modeling and Design / 1.2.2:
Control System Architectures / 1.3:
Feedback Control with PID Action / 1.3.1:
Digital Control / 1.3.2:
Feed-Forward Control / 1.3.3:
Programmable Logic Controllers / 1.3.4:
PLC Hardware / 1.3.4.1:
Distributed Control / 1.3.5:
A Networked Application / 1.3.5.1:
Hierarchical Control / 1.3.6:
Organization of the Book / 1.4:
Problems
Component Interconnection and Signal Conditioning / 2:
Component Interconnection / 2.1:
Impedance Characteristics / 2.2:
Cascade Connection of Devices / 2.2.1:
Impedance Matching / 2.2.2:
Impedance Matching in Mechanical Systems / 2.2.3:
Amplifiers / 2.3:
Operational Amplifier / 2.3.1:
Use of Feedback in Op-Amps / 2.3.1.1:
Voltage, Current, and Power Amplifiers / 2.3.2:
Instrumentation Amplifiers / 2.3.3:
Differential Amplifier / 2.3.3.1:
Common Mode / 2.3.3.2:
Amplifier Performance Ratings / 2.3.4:
Common-Mode Rejection Ratio / 2.3.4.1:
AC-Coupled Amplifiers / 2.3.4.2:
Ground-Loop Noise / 2.3.5:
Analog Filters / 2.4:
Passive Filters and Active Filters / 2.4.1:
Number of Poles / 2.4.1.1:
Low-Pass Filters / 2.4.2:
Low-Pass Butterworth Filter / 2.4.2.1:
High-Pass Filters / 2.4.3:
Band-Pass Filters / 2.4.4:
Resonance-Type Band-Pass Filters / 2.4.4.1:
Band-Reject Filters / 2.4.5:
Modulators and Demodulators / 2.5:
Amplitude Modulation / 2.5.1:
Modulation Theorem / 2.5.1.1:
Side Frequencies and Side Bands / 2.5.1.2:
Application of Amplitude Modulation / 2.5.2:
Fault Detection and Diagnosis / 2.5.2.1:
Demodulation / 2.5.3:
Analog-Digital Conversion / 2.6:
Digital to Analog Conversion / 2.6.1:
Weighted Resistor DAC / 2.6.1.1:
Ladder DAC / 2.6.1.2:
DAC Error Sources / 2.6.1.3:
Analog to Digital Conversion / 2.6.2:
Successive Approximation ADC / 2.6.2.1:
Dual-Slope ADC / 2.6.2.2:
Counter ADC / 2.6.2.3:
ADC Performance Characteristics / 2.6.2.4:
Sample-and-Hold Circuitry / 2.7:
Multiplexers / 2.8:
Analog Multiplexers / 2.8.1:
Digital Multiplexers / 2.8.2:
Digital Filters / 2.9:
Software Implementation and Hardware Implementation / 2.9.1:
Bridge Circuits / 2.10:
Wheatstone Bridge / 2.10.1:
Constant-Current Bridge / 2.10.2:
Hardware Linearization of Bridge Outputs / 2.10.3:
Bridge Amplifiers / 2.10.4:
Half-Bridge Circuits / 2.10.5:
Impedance Bridges / 2.10.6:
Owen Bridge / 2.10.6.1:
Wien-Bridge Oscillator / 2.10.6.2:
Linearizing Devices / 2.11:
Linearization by Software / 2.11.1:
Linearization by Hardware Logic / 2.11.2:
Analog Linearizing Circuitry / 2.11.3:
Offsetting Circuitry / 2.11.4:
Proportional-Output Circuitry / 2.11.5:
Curve-Shaping Circuitry / 2.11.6:
Miscellaneous Signal-Modification Circuitry / 2.12:
Phase Shifters / 2.12.1:
Voltage-to-Frequency Converters / 2.12.2:
Frequency-to-Voltage Converter / 2.12.3:
Voltage-to-Current Converter / 2.12.4:
Peak-Hold Circuits / 2.12.5:
Signal Analyzers and Display Devices / 2.13:
Signal Analyzers / 2.13.1:
Oscilloscopes / 2.13.2:
Triggering / 2.13.2.1:
Lissajous Patterns / 2.13.2.2:
Digital Oscilloscopes / 2.13.2.3:
Performance Specification and Analysis / 3:
Parameters for Performance Specification / 3.1:
Perfect Measurement Device / 3.1.1:
Time-Domain Specifications / 3.2:
Rise Time / 3.2.1:
Delay Time / 3.2.2:
Peak Time / 3.2.3:
Settling Time / 3.2.4:
Percentage Overshoot / 3.2.5:
Steady-State Error / 3.2.6:
Simple Oscillator Model / 3.2.7:
Stability and Speed of Response / 3.2.8:
Frequency-Domain Specifications / 3.3:
Gain Margin and Phase Margin / 3.3.1:
Linearity / 3.3.2:
Saturation / 3.4.1:
Dead Zone / 3.4.2:
Hysteresis / 3.4.3:
The Jump Phenomenon / 3.4.4:
Limit Cycles / 3.4.5:
Frequency Creation / 3.4.6:
Instrument Ratings / 3.5:
Rating Parameters / 3.5.1:
Bandwidth Design / 3.6:
Bandwidth / 3.6.1:
Transmission Level of a Band-Pass Filter / 3.6.1.1:
Effective Noise Bandwidth / 3.6.1.2:
Half-Power (or 3dB) Bandwidth / 3.6.1.3:
Fourier Analysis Bandwidth / 3.6.1.4:
Useful Frequency Range / 3.6.1.5:
Instrument Bandwidth / 3.6.1.6:
Control Bandwidth / 3.6.1.7:
Static Gain / 3.6.2:
Aliasing Distortion due to Signal Sampling / 3.7:
Sampling Theorem / 3.7.1:
Antialiasing Filter / 3.7.2:
Another Illustration of Aliasing / 3.7.3:
Bandwidth Design of a Control System / 3.8:
Comment about Control Cycle Time / 3.8.1:
Instrument Error Analysis / 3.9:
Statistical Representation / 3.9.1:
Accuracy and Precision / 3.9.2:
Error Combination / 3.9.3:
Absolute Error / 3.9.3.1:
SRSS Error / 3.9.3.2:
Statistical Process Control / 3.10:
Control Limits or Action Lines / 3.10.1:
Steps of SPC / 3.10.2:
Analog Sensors and Transducers / 4:
Terminology / 4.1:
Motion Transducers / 4.1.1:
Potentiometer / 4.2:
Rotatory Potentiometers / 4.2.1:
Loading Nonlinearity / 4.2.1.1:
Performance Considerations / 4.2.2:
Optical Potentiometer / 4.2.3:
Variable-Inductance Transducers / 4.3:
Mutual-Induction Transducers / 4.3.1:
Linear-Variable Differential Transformer/Transducer / 4.3.2:
Phase Shift and Null Voltage / 4.3.2.1:
Signal Conditioning / 4.3.2.2:
Rotatory-Variable Differential Transformer/Transducer / 4.3.3:
Mutual-Induction Proximity Sensor / 4.3.4:
Resolver / 4.3.5:
Resolver with Rotor Output / 4.3.5.1:
Synchro Transformer / 4.3.6:
Self-Induction Transducers / 4.3.7:
Permanent-Magnet Transducers / 4.4:
DC Tachometer / 4.4.1:
Electronic Commutation / 4.4.1.1:
Modeling and Design Example / 4.4.1.2:
Loading Considerations / 4.4.1.3:
Permanent-Magnet AC Tachometer / 4.4.2:
AC Induction Tachometer / 4.4.3:
Eddy Current Transducers / 4.4.4:
Variable-Capacitance Transducers / 4.5:
Capacitive Rotation Sensor / 4.5.1:
Capacitive Displacement Sensor / 4.5.2:
Capacitive Angular Velocity Sensor / 4.5.3:
Capacitance Bridge Circuit / 4.5.4:
Differential (Push-PuU) Displacement Sensor / 4.5.5:
Piezoelectric Sensors / 4.6:
Sensitivity / 4.6.1:
Accelerometers / 4.6.2:
Piezoelectric Accelerometer / 4.6.3:
Charge Amplifier / 4.6.4:
Effort Sensors / 4.7:
Force Causality Issues / 4.7.1:
Force-Motion Causality / 4.7.1.1:
Physical Realizability / 4.7.1.2:
Force Control Problems / 4.7.2:
Force Feedback Control / 4.7.2.1:
Feedforward Force Control / 4.7.2.2:
Impedance Control / 4.7.3:
Force Sensor Location / 4.7.4:
Strain Gages / 4.8:
Equations for Strain-Gage Measurements / 4.8.1:
Bridge Sensitivity / 4.8.1.1:
The Bridge Constant / 4.8.1.2:
The Calibration Constant / 4.8.1.3:
Data Acquisition / 4.8.1.4:
Accuracy Considerations / 4.8.1.5:
Semiconductor Strain Gages / 4.8.2:
Automatic (Self) Compensation for Temperature / 4.8.3:
Torque Sensors / 4.9:
Strain-Gage Torque Sensors / 4.9.1:
Design Considerations / 4.9.2:
Strain Capacity of the Gage / 4.9.2.1:
Strain-Gage Nonlinearity Limit / 4.9.2.2:
Sensitivity Requirement / 4.9.2.3:
Stiffness Requirement / 4.9.2.4:
Deflection Torque Sensors / 4.9.3:
Direct-Deflection Torque Sensor / 4.9.3.1:
Variable-Reluctance Torque Sensor / 4.9.3.2:
Reaction Torque Sensors / 4.9.4:
Motor Current Torque Sensors / 4.9.5:
Force Sensors / 4.9.6:
Tactile Sensing / 4.10:
Tactile Sensor Requirements / 4.10.1:
Construction and Operation of Tactile Sensors / 4.10.2:
Optical Tactile Sensors / 4.10.3:
Piezoresistive Tactile Sensors / 4.10.4:
Dexterity / 4.10.5:
A Strain-Gage Tactile Sensor / 4.10.6:
Other Types of Tactile Sensors / 4.10.7:
Passive Compliance / 4.10.8:
Gyroscopic Sensors / 4.11:
Rate Gyro / 4.11.1:
Coriolis Force Devices / 4.11.2:
Optical Sensors and Lasers / 4.12:
Fiber-Optic Position Sensor / 4.12.1:
Laser Interferometer / 4.12.2:
Fiber-Optic Gyroscope / 4.12.3:
Laser Doppler Interferometer / 4.12.4:
Ultrasonic Sensors / 4.13:
Magnetostrictive Displacement Sensors / 4.13.1:
Thermofluid Sensors / 4.14:
Pressure Sensors / 4.14.1:
Flow Sensors / 4.14.2:
Temperature Sensors / 4.14.3:
Thermocouple / 4.14.3.1:
Resistance Temperature Detector / 4.14.3.2:
Thermistor / 4.14.3.3:
Bi-Metal Strip Thermometer / 4.14.3.4:
Other Types of Sensors / 4.15:
Digital Transducers / 5:
Advantages of Digital Transducers / 5.1:
Shaft Encoders / 5.2:
Encoder Types / 5.2.1:
Incremental Optical Encoders / 5.3:
Direction of Rotation / 5.3.1:
Hardware Features / 5.3.2:
Displacement Measurement / 5.3.3:
Digital Resolution / 5.3.3.1:
Physical Resolution / 5.3.3.2:
Step-Up Gearing / 5.3.3.3:
Interpolation / 5.3.3.4:
Velocity Measurement / 5.3.4:
Velocity Resolution / 5.3.4.1:
Data Acquisition Hardware / 5.3.4.2:
Absolute Optical Encoders / 5.4:
Gray Coding / 5.4.1:
Code Conversion Logic / 5.4.1.1:
Resolution / 5.4.2:
Advantages and Drawbacks / 5.4.3:
Encoder Error / 5.5:
Eccentricity Error / 5.5.1:
Miscellaneous Digital Transducers / 5.6:
Digital Resolvers / 5.6.1:
Digital Tachometers / 5.6.2:
Hall-Effect Sensors / 5.6.3:
Linear Encoders / 5.6.4:
Moire Fringe Displacement Sensors / 5.6.5:
Cable Extension Sensors / 5.6.6:
Binary Transducers / 5.6.7:
Stepper Motors / 6:
Principle of Operation / 6.1:
Permanent-Magnet (PM) Stepper Motor / 6.1.1:
Variable-Reluctance (VR) Stepper Motor / 6.1.2:
Polarity Reversal / 6.1.3:
Stepper Motor Classification / 6.2:
Single-Stack Stepper Motors / 6.2.1:
Toothed-Pole Construction / 6.2.2:
Another Toothed Construction / 6.2.3:
Microstepping / 6.2.4:
Multiple-Stack Stepper Motors / 6.2.5:
Equal-Pitch Multiple-Stack Stepper / 6.2.5.1:
Unequal-Pitch Multiple-Stack Stepper / 6.2.5.2:
Hybrid Stepper Motor / 6.2.6:
Driver and Controller / 6.3:
Driver Hardware / 6.3.1:
Motor Time Constant / 6.3.2:
Torque Motion Characteristics / 6.4:
Static Position Error / 6.4.1:
Damping of Stepper Motors / 6.5:
Mechanical Damping / 6.5.1:
Electronic Damping / 6.5.2:
Multiple Phase Energization / 6.5.3:
Stepping Motor Models / 6.6:
A Simplified Model / 6.6.1:
An Improved Model / 6.6.2:
Torque Equation for PM and HB Motors / 6.6.2.1:
Torque Equation for VR Motors / 6.6.2.2:
Control of Stepper Motors / 6.7:
Pulse Missing / 6.7.1:
Feedback Control / 6.7.2:
Torque Control through Switching / 6.7.3:
Model-Based Feedback Control / 6.7.4:
Stepper Motor Selection and Applications / 6.8:
Torque Characteristics and Terminology / 6.8.1:
Stepper Motor Selection / 6.8.2:
Positioning (x-y) Tables / 6.8.2.1:
Stepper Motor Applications / 6.8.3:
Continuous-Drive Actuators / 7:
DC Motors / 7.1:
Rotor and Stator / 7.1.1:
Commutation / 7.1.2:
Static Torque Characteristics / 7.1.3:
Brushless DC Motors / 7.1.4:
Constant-Speed Operation / 7.1.4.1:
Transient Operation / 7.1.4.2:
Torque Motors / 7.1.5:
DC Motor Equations / 7.2:
Steady-State Characteristics / 7.2.1:
Bearing Friction / 7.2.1.1:
Output Power / 7.2.1.2:
Combined Excitation of Motor Windings / 7.2.1.3:
Speed Regulation / 7.2.1.4:
Experimental Model / 7.2.2:
Electrical Damping Constant / 7.2.2.1:
Linearized Experimental Model / 7.2.2.2:
Control of DC Motors / 7.3:
DC Servomotors / 7.3.1:
Armature Control / 7.3.2:
Motor Time Constants / 7.3.2.1:
Motor Parameter Measurement / 7.3.2.2:
Field Control / 7.3.3:
Feedback Control of DC Motors / 7.3.4:
Velocity Feedback Control / 7.3.4.1:
Position Plus Velocity Feedback Control / 7.3.4.2:
Position Feedback with Proportional, Integral, and Derivative Control / 7.3.4.3:
Phase-Locked Control / 7.3.5:
Motor Driver / 7.4:
Interface Card / 7.4.1:
Drive Unit / 7.4.2:
Pulse-Width Modulation / 7.4.3:
DC Motor Selection / 7.5:
Motor Data and Specifications / 7.5.1:
Selection Considerations / 7.5.2:
Motor Sizing Procedure / 7.5.3:
Inertia Matching / 7.5.3.1:
Drive Amplifier Selection / 7.5.3.2:
Induction Motors / 7.6:
Rotating Magnetic Field / 7.6.1:
Induction Motor Characteristics / 7.6.2:
Torque-Speed Relationship / 7.6.3:
Induction Motor Control / 7.7:
Excitation Frequency Control / 7.7.1:
Voltage Control / 7.7.2:
Rotor Resistance Control / 7.7.3:
Pole-Changing Control / 7.7.4:
Field Feedback Control (Flux Vector Drive) / 7.7.5:
A Transfer-Function Model for an Induction Motor / 7.7.6:
Single-Phase AC Motors / 7.7.7:
Synchronous Motors / 7.8:
Control of a Synchronous Motor / 7.8.1:
Linear Actuators / 7.9:
Solenoid / 7.9.1:
Linear Motors / 7.9.2:
Hydraulic Actuators / 7.10:
Components of a Hydraulic Control System / 7.10.1:
Hydraulic Pumps and Motors / 7.10.2:
Hydraulic Valves / 7.10.3:
Spool Valve / 7.10.3.1:
Steady-State Valve Characteristics / 7.10.3.2:
Hydraulic Primary Actuators / 7.10.4:
Load Equation / 7.10.5:
Hydraulic Control Systems / 7.11:
Constant-Flow Systems / 7.11.1:
Pump-Controlled Hydraulic Actuators / 7.11.3:
Hydraulic Accumulators / 7.11.4:
Pneumatic Control Systems / 7.11.5:
Flapper Valves / 7.11.6:
Hydraulic Circuits / 7.11.7:
Fluidics / 7.12:
Fluidic Components / 7.12.1:
Logic Components / 7.12.1.1:
Fluidic Motion Sensors / 7.12.1.2:
Fluidic Amplifiers / 7.12.1.3:
Fluidic Control Systems / 7.12.2:
Interfacing Considerations / 7.12.2.1:
Modular Laminated Construction / 7.12.2.2:
Applications of Fluidics / 7.12.3:
Mechanical Transmission Components / 8:
Mechanical Components / 8.1:
Transmission Components / 8.2:
Lead Screw and Nut / 8.3:
Harmonic Drives / 8.4:
Continuously Variable Transmission / 8.5:
Two-Slider CVT / 8.5.1:
A Three-Slider CVT / 8.5.3:
Bibliography and Further Reading
Answers to Numerical Problems
Index
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
57.

図書

図書
Dwayne Phillips
出版情報: Los Alamitos, Calif. : IEEE Computer Society, c1998  xvi, 387 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Elements of Effective Software Management / Part 1:
What Makes a Good Software Manager? / Chapter 1:
People perspective / 1.1:
Business perspective / 1.2:
Process perspective / 1.3:
Successful process techniques / 1.3.1:
Best practices / 1.3.2:
Management "secrets" / 1.3.3:
Key thoughts in this chapter / 1.4:
References
Four Basics that Work / Chapter 2:
People, process, and product / 2.1:
People / 2.1.1:
Process / 2.1.2:
Product / 2.1.3:
Balancing the 3Ps / 2.1.4:
Visibility / 2.2:
Basic visibility techniques / 2.2.1:
Using the techniques / 2.2.2:
Configuration management / 2.3:
The CM plan / 2.3.1:
Basic baselines / 2.3.2:
Activities / 2.3.3:
CM people / 2.3.4:
CM sketch / 2.3.5:
Standards / 2.4:
What Doesn't Work and Why / 2.5:
When the 3Ps are out of balance / 3.1:
When there's not enough visibility / 3.2:
When configuration management is missing or abused / 3.3:
When standards are dismissed / 3.4:
Managing a Project Day by Day / 3.5:
Balancing the 3Ps to create a good environment / 4.1:
Emotional safety / 4.1.1:
Emphasis on team empowerment / 4.1.2:
High degree of personal interaction / 4.1.3:
Good balance of work and rest / 4.1.4:
Structure that promotes success / 4.1.5:
Visibility: Project control in a simple equation / 4.2:
Collecting status / 4.2.1:
Collection guidelines / 4.2.2:
Making status visible and undistorted / 4.2.3:
Analyzing the situation / 4.2.4:
Taking action / 4.2.5:
Making and communicating decisions / 4.2.6:
Making a decision visible / 4.2.7:
Keeping the environment good / 4.2.8:
Managing an external supplier / 4.2.9:
CM: Managing baselines with milestones / 4.3:
Looking to standards for help / 4.4:
The Development Life-Cycle: Early Stages / 4.5:
Requirements / Chapter 5:
Balancing the 3Ps: Requirements gathering and analysis / 5.1:
Selecting the requirements engineer / 5.1.1:
Interviewing customers / 5.1.2:
Conducting group meetings / 5.1.3:
Diffusing tense situations / 5.1.4:
Evolving requirements / 5.1.5:
Requirements vs. design / 5.1.6:
Visibility: Making requirements known / 5.2:
An overview of techniques / 5.2.1:
Joint Application Development / 5.2.2:
Design by Walking Around / 5.2.3:
System Storyboarding Technique / 5.2.4:
Concept of operations / 5.2.5:
Mind maps / 5.2.6:
Gilb charts / 5.2.7:
Method 315 / 5.2.8:
Rapid prototyping / 5.2.9:
Software diagrams / 5.2.10:
The software requirements specification / 5.2.11:
Database support / 5.2.12:
Using CM / 5.3:
Using standards / 5.4:
Planning / 5.5:
Elements of a good plan / 6.1:
Balancing the 3Ps: Selecting the process / 6.2:
Prototyping / 6.2.1:
Rapid application development / 6.2.2:
Microsoft process / 6.2.3:
Spiral process / 6.2.4:
Process improvement mechanisms / 6.2.5:
Making the project visible: Planning techniques / 6.3:
Project context / 6.3.1:
Creating a task network / 6.3.2:
Cards on the wall planning / 6.3.3:
Making the project visible: Estimating techniques / 6.4:
Rayleigh model / 6.4.1:
PSP's Probe / 6.4.2:
A technique for simple estimation / 6.4.3:
Judging an estimate / 6.4.4:
Tailoring techniques to the process model / 6.4.5:
All-in-one military and commercial standards / 6.5:
Documenting the plan / 6.6.2:
Risk Management / 6.7:
A task overview / 7.1:
Balancing the 3Ps: Uncertainty and choice / 7.2:
Risk identification / 7.2.1:
Risk planning / 7.2.2:
Risk control / 7.2.3:
Risk monitoring / 7.2.4:
Risk directing and staffing / 7.2.5:
Making risk visible / 7.3:
Risk estimating / 7.3.1:
Risk evaluation / 7.3.2:
Risk analysis products / 7.3.3:
The Development Life-Cycle: Middle to Late Stages / 7.4:
Design / Chapter 8:
The challenges of the 3Ps / 8.1:
Managing creativity / 8.1.1:
Reducing design frustration / 8.1.2:
Evaluating and selecting from design alternatives / 8.1.3:
Visibility--Expressing the design / 8.2:
Words / 8.2.1:
Pictures / 8.2.2:
Configuration control boards / 8.3:
Design documents / 8.3.2:
Tracing requirements / 8.3.3:
Standards: Writing the SDD / 8.4:
Contents / 8.4.1:
Organization / 8.4.2:
Integration and Testing / 8.5:
Some I&T myths / 9.1:
Managing the 3Ps: People / 9.2:
Managing the 3Ps: Process / 9.3:
Common testing problems / 9.3.1:
IDEA / 9.3.2:
Verification and validation / 9.3.3:
Visibility: Testing techniques and details / 9.4:
Elements of effective testing / 9.4.1:
Black box testing / 9.4.2:
White box testing / 9.4.3:
Combining white box and black box testing / 9.4.4:
Integration testing / 9.4.5:
Acceptance testing / 9.4.6:
Regression testing / 9.4.7:
Cleanroom testing / 9.4.8:
How testing relates to other activities / 9.5:
Controlling test artifacts / 9.5.2:
Using the requirements traceability matrix / 9.5.3:
Standards: Documenting the test plan / 9.6:
Software Maintenance / 9.7:
What is maintenance? / 10.1:
Maintenance or development? / 10.1.1:
Maintenance activities / 10.1.2:
Why use configuration management? / 10.1.3:
Why is it so expensive and difficult? / 10.1.4:
Balancing the 3Ps: Managing the maintainers / 10.2:
Balancing the 3Ps: Managing the process / 10.3:
Balancing the 3Ps: Making the most of the product / 10.4:
Visibility: Understanding the maintenance stages / 10.5:
Identification and classification / 10.5.1:
Analysis / 10.5.2:
Implementation / 10.5.3:
System test / 10.5.5:
Acceptance test / 10.5.6:
Delivery / 10.5.7:
Keeping baselines straight / 10.6:
Managing releases / 10.6.2:
Pacing the process / 10.6.3:
Applying the Principles / 10.7:
Cookbook / Chapter 11:
Essentials / 11.1:
Use journals and decision records / 11.1.1:
Perform all CM activities / 11.1.2:
Manage day by day / 11.1.3:
Use standards / 11.1.4:
Conduct post-mortems / 11.1.5:
OPT: A waterfall project / 11.2:
Context / 11.2.1:
Project details / 11.2.2:
System upgrade: An evolutionary project / 11.3:
CTRan: A spiral project / 11.3.1:
Risks / 11.4.1:
Quadrants of the spiral / 11.4.3:
Cycles of the spiral / 11.4.5:
Appendices / 11.5:
Documents for the OPT Project / Appendix A:
OPT Executive Sponsor Memorandum
OPT Project Context Document
OPT Configuration Management Plan
OPT Concept of Operations
OPT Software Requirements Specification
OPT Software Project Management Plan
OPT Software Design Description
Configuration Management / Appendix B:
Will the Real CM please stand up? / B.1:
The main ingredients / B.2:
Baselines / B.3:
Basics / B.3.1:
Applying baselines in a waterfall project / B.3.2:
Applying baselines in a non-waterfall project / B.3.3:
Documenting baselines / B.3.4:
Baseline contents / B.3.5:
Interface control documents / B.3.6:
CM Activities / B.4:
Identification / B.4.1:
Control / B.4.2:
Auditing / B.4.3:
Status accounting / B.4.4:
CM staff / B.5:
Project manager / B.5.3:
CM plan / B.6:
A CM sketch / B.7:
Summary / B.8:
Structured Analysis and Design / Appendix C:
Structured analysis / C.1:
Environmental model / C.1.2:
Preliminary behavioral model / C.1.3:
Final behavioral model / C.1.4:
Finished essential model / C.1.5:
Structured design / C.2:
User implementation model / C.2.1:
Systems implementation model / C.2.2:
Program implementation model / C.2.3:
Annotated Bibliography / Appendix D:
Index
About the Author
Preface
Elements of Effective Software Management / Part 1:
What Makes a Good Software Manager? / Chapter 1:
58.

図書

図書
Chris A.M. Peters, Joseph H.M. Steenbrink
出版情報: Berlin : Springer, c2008  xiii, 470 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 52
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Basic Hodge Theory / Part I:
Compact Kahler Manifolds / 1:
Classical Hodge Theory / 1.1:
Harmonic Theory / 1.1.1:
The Hodge Decomposition / 1.1.2:
Hodge Structures in Cohomology and Homology / 1.1.3:
The Lefschetz Decomposition / 1.2:
Representation Theory of SL(2, R) / 1.2.1:
Primitive Cohomology / 1.2.2:
Applications / 1.3:
Pure Hodge Structures / 2:
Hodge Structures / 2.1:
Basic Definitions / 2.1.1:
Polarized Hodge Structures / 2.1.2:
Mumford-Tate Groups of Hodge Structures / 2.2:
Hodge Filtration and Hodge Complexes / 2.3:
Hodge to De Rham Spectral Sequence / 2.3.1:
Strong Hodge Decompositions / 2.3.2:
Hodge Complexes and Hodge Complexes of Sheaves / 2.3.3:
Refined Fundamental Classes / 2.4:
Almost Kahler V-Manifolds / 2.5:
Abstract Aspects of Mixed Hodge Structures / 3:
Introduction to Mixed Hodge Structures: Formal Aspects / 3.1:
Comparison of Filtrations / 3.2:
Mixed Hodge Structures and Mixed Hodge Complexes / 3.3:
The Mixed Cone / 3.4:
Extensions of Mixed Hodge Structures / 3.5:
Mixed Hodge Extensions / 3.5.1:
Iterated Extensions and Absolute Hodge Cohomology / 3.5.2:
Mixed Hodge structures on Cohomology Groups / Part II:
Smooth Varieties / 4:
Main Result / 4.1:
Residue Maps / 4.2:
Associated Mixed Hodge Complexes of Sheaves / 4.3:
Logarithmic Structures / 4.4:
Independence of the Compactification and Further Complements / 4.5:
Invariance / 4.5.1:
Restrictions for the Hodge Numbers / 4.5.2:
Theorem of the Fixed Part and Applications / 4.5.3:
Application to Lefschetz Pencils / 4.5.4:
Singular Varieties / 5:
Simplicial and Cubical Sets / 5.1:
Sheaves on Semi-simplicial Spaces and Their Cohomology / 5.1.1:
Cohomological Descent and Resolutions / 5.1.3:
Construction of Cubical Hyperresolutions / 5.2:
Mixed Hodge Theory for Singular Varieties / 5.3:
The Basic Construction / 5.3.1:
Mixed Hodge Theory of Proper Modifications / 5.3.2:
Restriction on the Hodge Numbers / 5.3.3:
Cup Product and the Kunneth Formula / 5.4:
Relative Cohomology / 5.5:
Construction of the Mixed Hodge Structure / 5.5.1:
Cohomology with Compact Support / 5.5.2:
Singular Varieties: Complementary Results / 6:
The Leray Filtration / 6.1:
Deleted Neighbourhoods of Algebraic Sets / 6.2:
Mixed Hodge Complexes / 6.2.1:
Products and Deleted Neighbourhoods / 6.2.2:
Semi-purity of the Link / 6.2.3:
Cup and Cap Products, and Duality / 6.3:
Duality for Cohomology with Compact Supports / 6.3.1:
The Extra-Ordinary Cup Product / 6.3.2:
Applications to Algebraic Cycles and to Singularities / 7:
The Hodge Conjectures / 7.1:
Versions for Smooth Projective Varieties / 7.1.1:
The Hodge Conjecture and the Intermediate Jacobian / 7.1.2:
A Version for Singular Varieties / 7.1.3:
Deligne Cohomology / 7.2:
Basic Properties / 7.2.1:
Cycle Classes for Deligne Cohomology / 7.2.2:
The Filtered De Rham Complex And Applications / 7.3:
The Filtered De Rham Complex / 7.3.1:
Application to Vanishing Theorems / 7.3.2:
Applications to Du Bois Singularities / 7.3.3:
Mixed Hodge Structures on Homotopy Groups / Part III:
Hodge Theory and Iterated Integrals / 8:
Some Basic Results from Homotopy Theory / 8.1:
Formulation of the Main Results / 8.2:
Loop Space Cohomology and the Homotopy De Rham Theorem / 8.3:
Iterated Integrals / 8.3.1:
Chen's Version of the De Rham Theorem / 8.3.2:
The Bar Construction / 8.3.3:
Iterated Integrals of 1-Forms / 8.3.4:
The Homotopy De Rham Theorem for the Fundamental Group / 8.4:
Mixed Hodge Structure on the Fundamental Group / 8.5:
The Sullivan Construction / 8.6:
Mixed Hodge Structures on the Higher Homotopy Groups / 8.7:
Hodge Theory and Minimal Models / 9:
Minimal Models of Differential Graded Algebras / 9.1:
Postnikov Towers and Minimal Models; the Simply Connected Case / 9.2:
Mixed Hodge Structures on the Minimal Model / 9.3:
Formality of Compact Kahler Manifolds / 9.4:
The 1-Minimal Model / 9.4.1:
The De Rham Fundamental Group / 9.4.2:
Formality / 9.4.3:
Hodge Structures and Local Systems / Part IV:
Variations of Hodge Structure / 10:
Preliminaries: Local Systems over Complex Manifolds / 10.1:
Abstract Variations of Hodge Structure / 10.2:
Big Monodromy Groups, an Application / 10.3:
Variations of Hodge Structures Coming From Smooth Families / 10.4:
Degenerations of Hodge Structures / 11:
Local Systems Acquiring Singularities / 11.1:
Connections with Logarithmic Poles / 11.1.1:
The Riemann-Hilbert Correspondence (I) / 11.1.2:
The Limit Mixed Hodge Structure on Nearby Cycle Spaces / 11.2:
Asymptotics for Variations of Hodge Structure over a Punctured Disk / 11.2.1:
Geometric Set-Up and Preliminary Reductions / 11.2.2:
The Nearby and Vanishing Cycle Functor / 11.2.3:
The Relative Logarithmic de Rham Complex and Quasi-unipotency of the Monodromy / 11.2.4:
The Complex Monodromy Weight Filtration and the Hodge Filtration / 11.2.5:
The Rational Structure / 11.2.6:
The Mixed Hodge Structure on the Limit / 11.2.7:
Geometric Consequences for Degenerations / 11.3:
Monodromy, Specialization and Wang Sequence / 11.3.1:
The Monodromy and Local Invariant Cycle Theorems / 11.3.2:
Examples / 11.4:
Applications of Asymptotic Hodge theory / 12:
Applications to Singularities / 12.1:
Localizing Nearby Cycles / 12.1.1:
A Mixed Hodge Structure on the Cohomology of Milnor Fibres / 12.1.2:
The Spectrum of Singularities / 12.1.3:
An Application to Cycles: Grothendieck's Induction Principle / 12.2:
Perverse Sheaves and D-Modules / 13:
Verdier Duality / 13.1:
Dimension / 13.1.1:
The Dualizing Complex / 13.1.2:
Statement of Verdier Duality / 13.1.3:
Extraordinary Pull Back / 13.1.4:
Perverse Complexes / 13.2:
Intersection Homology and Cohomology / 13.2.1:
Constructible and Perverse Complexes / 13.2.2:
An Example: Nearby and Vanishing Cycles / 13.2.3:
Introduction to D-Modules / 13.3:
Integrable Connections and D-Modules / 13.3.1:
From Left to Right and Vice Versa / 13.3.2:
Derived Categories of D-modules / 13.3.3:
Inverse and Direct Images / 13.3.4:
An Example: the Gauss-Manin System / 13.3.5:
Coherent D-Modules / 13.4:
Good Filtrations and Characteristic Varieties / 13.4.1:
Behaviour under Direct and Inverse Images / 13.4.3:
Filtered D-modules / 13.5:
Derived Categories / 13.5.1:
Duality / 13.5.2:
Functoriality / 13.5.3:
Holonomic D-Modules / 13.6:
Symplectic Geometry / 13.6.1:
Basics on Holonomic D-Modules / 13.6.2:
The Riemann-Hilbert Correspondence (II) / 13.6.3:
Mixed Hodge Modules / 14:
An Axiomatic Introduction / 14.1:
The Axioms / 14.1.1:
First Consequences of the Axioms / 14.1.2:
Spectral Sequences / 14.1.3:
Intersection Cohomology / 14.1.4:
The Kashiwara-Malgrange Filtration / 14.1.5:
Motivation / 14.2.1:
The Rational V-Filtration / 14.2.2:
Polarizable Hodge Modules / 14.3:
Hodge Modules / 14.3.1:
Polarizations / 14.3.2:
Lefschetz Operators and the Decomposition Theorem / 14.3.3:
Variations of Mixed Hodge Structure / 14.4:
Defining Mixed Hodge Modules / 14.4.2:
About the Axioms / 14.4.3:
Application: Vanishing Theorems / 14.4.4:
The Motivic Hodge Character and Motivic Chern Classes / 14.4.5:
Appendices / Part V:
Homological Algebra / A:
Additive and Abelian Categories / A.1:
Pre-Abelian Categories / A.1.1:
Additive Categories / A.1.2:
The Homotopy Category / A.2:
The Derived Category / A.2.2:
Injective and Projective Resolutions / A.2.3:
Derived Functors / A.2.4:
Properties of the Ext-functor / A.2.5:
Yoneda Extensions / A.2.6:
Spectral Sequences and Filtrations / A.3:
Filtrations / A.3.1:
Spectral Sequences and Exact Couples / A.3.2:
Filtrations Induce Spectral Sequences / A.3.3:
Derived Functors and Spectral Sequences / A.3.4:
Algebraic and Differential Topology / B:
Singular (Co)homology and Borel-Moore Homology / B.1:
Basic Definitions and Tools / B.1.1:
Pairings and Products / B.1.2:
Sheaf Cohomology / B.2:
The Godement Resolution and Cohomology / B.2.1:
Cohomology and Supports / B.2.2:
Cech Cohomology / B.2.3:
De Rham Theorems / B.2.4:
Direct and Inverse Images / B.2.5:
Sheaf Cohomology and Closed Subspaces / B.2.6:
Mapping Cones and Cylinders / B.2.7:
Duality Theorems on Manifolds / B.2.8:
Orientations and Fundamental Classes / B.2.9:
Local Systems and Their Cohomology / B.3:
Local Systems and Locally Constant Sheaves / B.3.1:
Homology and Cohomology / B.3.2:
Local Systems and Flat Connections / B.3.3:
Stratified Spaces and Singularities / C:
Stratified Spaces / C.1:
Pseudomanifolds / C.1.1:
Whitney Stratifications / C.1.2:
Fibrations, and the Topology of Singularities / C.2:
The Milnor Fibration / C.2.1:
Topology of One-parameter Degenerations / C.2.2:
An Example: Lefschetz Pencils / C.2.3:
References
Index of Notations
Index
Introduction
Basic Hodge Theory / Part I:
Compact Kahler Manifolds / 1:
59.

図書

図書
Mark G. Kuzyk
出版情報: Boca Raton : CRC : Taylor & Francis, c2007  399 p. ; 24 cm.
シリーズ名: Optical science and engineering ; 117
所蔵情報: loading…
目次情報: 続きを見る
History of Polymer Optical Fibers / Chapter 1:
Introduction / 1.1:
Using Light for Telecommunications / 1.2:
Glass Fibers / 1.3:
Optical Imaging / 1.3.1:
Multimode Fibers / 1.3.2:
Small Core Fibers / 1.3.3:
Polymer Fibers / 1.4:
Early History of Polymer Fibers / 1.4.1:
Gradient-Index Fibers / 1.4.2:
Single-Mode Polymer Fibers / 1.4.4:
Electrooptic Fiber Devices / 1.4.5:
Fiber Amplifiers and Lasers / 1.4.6:
Dual-Core Couplers and Devices / 1.4.7:
The Future / 1.5:
Light Propagation in a Fiber Waveguide / Chapter 2:
The Ray Picture of a Waveguide / 2.1:
The Wave Picture of a Waveguide / 2.1.2:
Rays and Waves / 2.1.2.1:
Solving Maxwell's Wave Equation / 2.1.2.2:
Bound Modes of Step-Index Fibers / 2.2:
Field Relations / 2.2.1:
Longitudinal Fields / 2.2.2:
Bound Modes / 2.2.3:
HE and EH Modes / 2.2.4:
TE and TM Modes / 2.2.5:
Multimode Waveguides / 2.3:
Ray Propagation in a Graded-Index Medium / 2.4:
Transit Time / 2.4.1:
Homogeneous Step-Index Profile / 2.4.2:
Ray Picture / 2.4.2.1:
Ideal Index Profile-The Power Law Profile / 2.4.3:
Hyperbolic Secant Profile / 2.4.3.1:
Directional Couplers / 2.5:
Nonlinear Directional Couplers / 2.5.1:
Conclusion / 2.6:
Acknowledgments / 2.7:
Fabricating Fibers / Chapter 3:
Making Polymer Fibers by Extrusion / 3.1:
Continuous Extrusion / 3.1.1:
Batch Extrusion / 3.1.2:
Making Polymer Fiber by Drawing a Preform / 3.2:
Making Doped Polymers / 3.2.1:
Dissolving Polymers / 3.2.1.1:
Polymerization with Dopants / 3.2.1.2:
Making a Core Preform / 3.2.2:
Making Core Fibers by Drawing / 3.2.3:
Making Core/Cladding Preforms / 3.2.4:
Dry Processing / 3.2.4.1:
Wet Processing / 3.2.4.2:
Birefringence of Drawn Fibers / 3.3:
Mechanical Properties of Fibers / 3.4:
Theory of Refractive Index and Loss / Chapter 4:
Refractive Index / 4.1:
Isotropic Polymer / 4.1.1:
Birefringent Polymers / 4.1.2:
Relationship Between Number and Weight Percent / 4.1.3:
Mixing Polymers to Control the Refractive Index / 4.1.4:
Optical Loss / 4.2:
Absorbance / 4.2.1:
Linear Susceptibility / 4.2.2:
Bending Loss / 4.3:
Multimode Fiber / 4.3.1:
Single-Mode Fiber / 4.3.2:
Rayleigh Scattering / 4.3.2.1:
Microbending Loss / 4.3.3:
Dispersion / 4.4:
The Harmonic Oscillator / 4.4.1:
A Practical Example / 4.5:
Problem / 4.5.1:
Solution / 4.5.2:
Polarization / 4.6:
The Poincare Sphere / 4.6.1:
Some Examples of Polarization States / 4.6.2:
Characterization Techniques and Properties / Chapter 5:
Interphako / 5.1:
One-Dimensional Slab / 5.1.1.1:
Cylindrical Sample / 5.1.1.2:
Beam Deflection Technique / 5.1.2:
DDM Theory / 5.1.2.1:
DDM Experiment / 5.1.2.2:
Examples of Measured Refractive Index Profiles / 5.1.2.3:
Refracted Near-Field Technique / 5.1.3:
Theory / 5.1.3.1:
Experimental Results / 5.1.3.3:
Fresnel Reflection Technique / 5.1.4:
Other Refractive Index Measurement Techniques / 5.1.5:
Measurements on Gradient-Index Fibers / 5.1.6:
Summary of Refractive Index Measurements / 5.1.7:
Cutback Technique / 5.2:
Quick Cutback Method / 5.2.1.1:
Accurate Cutback Method / 5.2.1.2:
Transverse Scattering Loss Measurement / 5.2.2:
The Eyeball Technique / 5.2.3:
Photothermal Deflection / 5.2.4:
Side-Illuminated Fluorescence / 5.2.5:
Numerical Aperture / 5.2.5.1:
Input Numerical Aperture Measurements / 5.3.1:
Objective Lens Coupling / 5.3.1.1:
Ray Angle Method / 5.3.1.2:
Output Numerical Aperture / 5.3.2:
Bandwidth / 5.4:
Modal Dispersion - Ray Picture / 5.4.1:
Material Dispersion / 5.4.2:
Numerical Example of Material Dispersion / 5.4.2.1:
Modal Dispersion - Wave Picture / 5.4.3:
Measurement Techniques / 5.4.4:
Frequency Domain Measurements / 5.4.4.1:
Time Domain Experiments / 5.4.4.2:
Time Domain Measurements Applied Graded-Index Polymer Fibers / 5.4.4.3:
Mode Mixing in Polymer Fibers / 5.4.4.4:
Transmission, Light Sources, and Amplifiers / Chapter 6:
Transmission / 6.1:
Loss Conventions / 6.1.1:
Fiber Materials / 6.1.2:
Displays / 6.2:
Optical Amplification and Lasing / 6.3:
Principles of Stimulated Emission / 6.3.1:
Fluorescence / 6.3.2:
Decay and Recovery of Fluorescence / 6.3.2.1:
Amplified Spontaneous Emission / 6.3.3:
Gain / 6.3.3.1:
Reversible Degradation in ASE / 6.3.3.2:
ASE in Fibers / 6.3.3.3:
Polymer Optical Fiber Amplifiers / 6.3.4:
Laser Dyes / 6.3.4.1:
Lanthanide Complexes / 6.3.4.2:
Applications / 6.3.5:
Optical Switching / Chapter 7:
Electrooptic Switching / 7.1:
Electrooptic Modulation / 7.1.1:
Theory of Electrooptic Modulation in a Mach-Zehnder Interferometer / 7.1.1.1:
Experimental Technique to Measure Electrooptic Coefficients / 7.1.1.2:
Electrooptic Modulation in a Polymer Optical Fiber / 7.1.1.3:
Electrooptic Devices / 7.1.2:
All-Optical Switching / 7.2:
Intensity-Dependent Phase Shift in Polymer Waveguide and Fibers / 7.2.1:
Optical Devices in Polymer Fibers / 7.2.3:
Sagnac Device / 7.2.3.1:
Dual Core Polymer Fiber Switch / 7.2.3.2:
Optical Bistability and Multistability / 7.2.4:
Multistability of a Fabry-Perot Interferometer with End Reflectors / 7.2.4.1:
Multistability of a Fabry-Perot Interferometer due to Fresnel Reflections / 7.2.4.2:
Comparison of the Fresnel and Fabry-Perot Results / 7.2.4.3:
Graphical Solution to Transcendental Equations / 7.2.4.4:
Structured Fibers and Specialty Applications / Chapter 8:
Bragg Gratings / 8.1:
The Bragg Condition, K = 2[Beta] / 8.1.1:
Bragg Gratings in Polymer Fibers / 8.1.3:
Spectrometer / 8.1.4:
Wavelength Division Multiplexing and Demultiplexing / 8.1.4.2:
Advanced Structured Fibers / 8.2:
Imaging Fibers / 8.2.1:
Capillary Tubes / 8.2.2:
Photonic Crystal Fibers / 8.2.3:
Two Parallel Waveguides / 8.2.3.1:
Infinite Number of Parallel Waveguides / 8.2.3.2:
Holey Fiber / 8.2.3.3:
Photorefraction / 8.3:
Two-Beam Coupling / 8.3.1:
Real-Time Holography in a Polymer Fiber / 8.3.2:
Phase Conjugation in a Polymer Fiber / 8.3.3:
Stress and Temperature Sensors / 8.4:
Discrete Sensors / 8.4.1:
Distributed Sensors / 8.4.2:
Chemical Sensors / 8.5:
Single-Agent Sensors / 8.5.1:
Artificial Nose / 8.5.2:
Appendix-Coupled Wave Equation / 8.6:
Smart Fibers and Materials / Chapter 9:
Smart Materials / 9.1:
Photostriction / 9.1.1:
Smart Structures / 9.1.3:
Photomechanical Effects / 9.2:
Theory of Strain / 9.2.1:
Nonlocal Response / 9.2.1.2:
Mechanisms / 9.2.2:
Photothermal Heating / 9.2.2.1:
Photo-Isomerization / 9.2.2.2:
Electrostriction / 9.2.2.3:
Molecular Reorientation / 9.2.2.4:
Electron Cloud Deformation / 9.2.2.5:
Experimental Examples / 9.2.3:
The First Demonstration of an All-Optical Photomechanical System - Nano-Stabilization / 9.2.3.1:
Mesoscale Photomechanical Devices and Multistability / 9.2.3.2:
Optical Tunable Filter and All-Optical Switching / 9.2.3.3:
Stabilizing a Sheet with an MPU / 9.2.3.4:
Transverse Photomechanical Actuation / 9.2.3.5:
The Future of Smart Photonic Materials / 9.3:
Making a Series of MPUs in a Single Fiber / 9.3.1:
The Two-MPU System / 9.3.3:
CASE I: Photomechanical MPU #1; Passive MPU #2; Light Source with Wavelengths [lambda subscript 1] and [lambda subscript 2] / 9.3.3.1:
Case II: Passive MPU #1; Photomechanical MPU #2; Light Source with Wavelength [lambda] / 9.3.3.2:
Case III: Photomechanical MPU #1 and MPU #2; Light Source with Wavelength [lambda] / 9.3.3.3:
Smart Threads and Fabrics / 9.3.4:
Transverse Actuation / 9.3.5:
Crack Formation Sensing and Prevention / 9.3.6:
Noise Reduction / 9.3.7:
Bibliography / 9.3.8:
Index
History of Polymer Optical Fibers / Chapter 1:
Introduction / 1.1:
Using Light for Telecommunications / 1.2:
60.

図書

図書
Vladimir Medved
出版情報: Boca Raton, Fla. : CRC Press, c2001  xiii, 255 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
About the Book / 1.1:
The History of Locomotion Measurement / 1.2:
Methodological Background / Chapter 2:
Biomechanical Modeling of the Human Body and the Inverse Dynamic Approach / 2.1:
Neurophysiology of Locomotion / 2.2:
Reciprocal Inhibition / 2.2.1:
The Placing Reaction and Reflex Reversal / 2.2.2:
Automatic Generation of Locomotor Patterns / 2.2.3:
Hierarchical Organization of Motor Control / 2.2.4:
Computational Neuroscience and Locomotion / 2.2.5:
The Peripheral Neuromuscular System / 2.2.6:
Biomechanical Modeling of Skeletal Muscle / 2.3:
General Properties of Locomotion Measurement Systems / Chapter 3:
Structure of a Measurement System / 3.1:
Analog-to-Digital Conversion of Signals / 3.2:
Sampling / 3.2.1:
Conversion of the Sampled Signal / 3.2.2:
Technical Realization of the Analog-to-Digital Converter / 3.2.3:
Requirements of Locomotion Measurement Systems / 3.3:
Measurement of Locomotion Kinematics / Chapter 4:
Exoskeletal Systems / 4.1:
Stereometric Methods / 4.2:
Stereophotogrammetric Methods / 4.2.1:
Close-Range Analytical Photogrammetry Fundamentals / 4.2.1.1:
The High-Speed Photography Method / 4.2.1.2:
Optoelectronic Methods / 4.2.1.3:
Light Scanning-Based Methods / 4.2.1.4:
Stereometric Methods--Final Considerations, Signal Processing Aspects, and Computer Vision Issues / 4.2.1.5:
Accelerometry / 4.3:
Kinematic Data Processing / 4.4:
Sources of Errors in Kinematic Measurements / 4.4.1:
Filtering and Numerical Differentiation of Kinematic Data / 4.4.2:
Measurement of Kinetic Variables / Chapter 5:
Ground Reaction Force Measuring Platforms / 5.1:
The Strain Gage Transducer-Based Platform / 5.1.1:
The Strain Gage Sensor / 5.1.1.1:
Platform Construction / 5.1.1.2:
The Piezoelectric Transducer-Based Platform / 5.1.2:
The Piezoelectric Effect / 5.1.2.1:
Mounting the Force Platform / 5.1.2.2:
Applications of the Force Platform / 5.1.4:
Walking and Running / 5.1.4.1:
Take-Off Ability / 5.1.4.2:
Kinetic Signal Representation / 5.1.5:
Vector Diagram / 5.1.5.1:
Stabilometry / 5.1.5.2:
Pressure Distribution Measurement Systems / 5.2:
Historical Development / 5.2.1:
Solutions and Examples of Use / 5.2.2:
Platforms / 5.2.2.1:
Shoe Insoles / 5.2.2.2:
Clinical Findings and Standardization of Measurement / 5.2.3:
Measurement of Myoelectric Variables / Chapter 6:
The Neuromuscular System and Bioelectricity: A Historical Survey / 6.1:
The Myoelectric Signal Model / 6.2:
Kinesiological Electromyography / 6.3:
Surface Electromyography / 6.3.1:
Surface Electrodes in Electromyography / 6.3.1.1:
Myoelectric Signal Amplifiers / 6.3.1.2:
EMG Telemetry / 6.3.2:
Myoelectric Signal Processing / 6.4:
Time Domain Processing Methods / 6.4.1:
Processing in the Frequency Domain / 6.4.2:
Normalization / 6.4.3:
EMG Signal as an Estimate of Muscle Force / 6.4.4:
Multichannel EMG Signal Processing / 6.4.5:
Applications of Surface Electromyography / 6.5:
Backward Somersault in Gymnastics / 6.5.1:
Comprehensive Locomotion Diagnostic Systems and Future Prospects / Chapter 7:
Comprehensive Biomechanical Measurements and Clinical Applications / 7.1:
Development of Methodology of Marker-Free Kinematic Measurements / 7.2:
References
Appendix 1
Appendix 2
Index
Introduction / Chapter 1:
About the Book / 1.1:
The History of Locomotion Measurement / 1.2:
61.

図書

図書
Christopher J. Cramer
出版情報: Chichester, West Sussex, England ; Hoboken, NJ : John Wiley & Sons, c2004  xx, 596 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the First Edition
Preface to the Second Edition
Acknowledgments
What are Theory, Computation, and Modeling? / 1:
Definition of Terms / 1.1:
Quantum Mechanics / 1.2:
Computable Quantities / 1.3:
Structure / 1.3.1:
Potential Energy Surfaces / 1.3.2:
Chemical Properties / 1.3.3:
Cost and Efficiency / 1.4:
Intrinsic Value / 1.4.1:
Hardware and Software / 1.4.2:
Algorithms / 1.4.3:
Note on Units / 1.5:
Bibliography and Suggested Additional Reading
References
Molecular Mechanics / 2:
History and Fundamental Assumptions / 2.1:
Potential Energy Functional Forms / 2.2:
Bond Stretching / 2.2.1:
Valence Angle Bending / 2.2.2:
Torsions / 2.2.3:
Van der Waals Interactions / 2.2.4:
Electrostatic Interactions / 2.2.5:
Cross Terms and Additional Non-bonded Terms / 2.2.6:
Parameterization Strategies / 2.2.7:
Force-field Energies and Thermodynamics / 2.3:
Geometry Optimization / 2.4:
Optimization Algorithms / 2.4.1:
Optimization Aspects Specific to Force Fields / 2.4.2:
Menagerie of Modern Force Fields / 2.5:
Available Force Fields / 2.5.1:
Validation / 2.5.2:
Force Fields and Docking / 2.6:
Case Study: (2R*,4S*)-1-Hydroxy-2,4-dimethylhex-5-ene / 2.7:
Simulations of Molecular Ensembles / 3:
Relationship Between MM Optima and Real Systems / 3.1:
Phase Space and Trajectories / 3.2:
Properties as Ensemble Averages / 3.2.1:
Properties as Time Averages of Trajectories / 3.2.2:
Molecular Dynamics / 3.3:
Harmonic Oscillator Trajectories / 3.3.1:
Non-analytical Systems / 3.3.2:
Practical Issues in Propagation / 3.3.3:
Stochastic Dynamics / 3.3.4:
Monte Carlo / 3.4:
Manipulation of Phase-space Integrals / 3.4.1:
Metropolis Sampling / 3.4.2:
Ensemble and Dynamical Property Examples / 3.5:
Key Details in Formalism / 3.6:
Cutoffs and Boundary Conditions / 3.6.1:
Polarization / 3.6.2:
Control of System Variables / 3.6.3:
Simulation Convergence / 3.6.4:
The Multiple Minima Problem / 3.6.5:
Force Field Performance in Simulations / 3.7:
Case Study: Silica Sodalite / 3.8:
Foundations of Molecular Orbital Theory / 4:
Quantum Mechanics and the Wave Function / 4.1:
The Hamiltonian Operator / 4.2:
General Features / 4.2.1:
The Variational Principle / 4.2.2:
The Born-Oppenheimer Approximation / 4.2.3:
Construction of Trial Wave Functions / 4.3:
The LCAO Basis Set Approach / 4.3.1:
The Secular Equation / 4.3.2:
H?uckel Theory / 4.4:
Fundamental Principles / 4.4.1:
Application to the Allyl System / 4.4.2:
Many-electron Wave Functions / 4.5:
Hartree-product Wave Functions / 4.5.1:
The Hartree Hamiltonian / 4.5.2:
Electron Spin and Antisymmetry / 4.5.3:
Slater Determinants / 4.5.4:
The Hartree-Fock Self-consistent Field Method / 4.5.5:
Semiempirical Implementations of Molecular Orbital Theory / 5:
Semiempirical Philosophy / 5.1:
Chemically Virtuous Approximations / 5.1.1:
Analytic Derivatives / 5.1.2:
Extended Huckel Theory / 5.2:
CNDO Formalism / 5.3:
INDO Formalism / 5.4:
INDO and INDO/S / 5.4.1:
MINDO/3 and SINDO1 / 5.4.2:
Basic NDDO Formalism / 5.5:
MNDO / 5.5.1:
AM1 / 5.5.2:
PM3 / 5.5.3:
General Performance Overview of Basic NDDO Models / 5.6:
Energetics / 5.6.1:
Geometries / 5.6.2:
Charge Distributions / 5.6.3:
Preface to the First Edition
Preface to the Second Edition
Acknowledgments
62.

図書

図書
Franz J. Vesely
出版情報: New York : Kluwer Academic/Plenum Publishers, c2001  xvi, 259 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
The Three Pillars of Computational Physics / I:
Finite Differences / 1:
Interpolation Formulae / 1.1:
NGF Interpolation / 1.1.1:
NGB Interpolation / 1.1.2:
ST Interpolation / 1.1.3:
Difference Quotients / 1.2:
DNGF Formulae / 1.2.1:
DNGB Formulae / 1.2.2:
DST Formulae / 1.2.3:
Finite Differences in Two Dimensions / 1.3:
Sample Applications / 1.4:
Classical Point Mechanics / 1.4.1:
Diffusion and Thermal Conduction / 1.4.2:
Linear Algebra / 2:
Exact Methods / 2.1:
Gauss Elimination and Back Substitution / 2.1.1:
Simplifying Matrices: The Householder Transformation / 2.1.2:
LU Decomposition / 2.1.3:
Tridiagonal Matrices: Recursion Method / 2.1.4:
Iterative Methods / 2.2:
Jacobi Relaxation / 2.2.1:
Gauss-Seidel Relaxation (GSR) / 2.2.2:
Successive Over-Relaxation (SOR) / 2.2.3:
Alternating Direction Implicit Method (ADI) / 2.2.4:
Conjugate Gradient Method (CG) / 2.2.5:
Eigenvalues and Eigenvectors / 2.3:
Largest Eigenvalue and Related Eigenvector / 2.3.1:
Arbitrary Eigenvalue/-vector: Inverse Iteration / 2.3.2:
Potential Equation / 2.4:
Electronic Orbitals / 2.4.3:
Stochastics / 3:
Equidistributed Random Variates / 3.1:
Linear Congruential Generators / 3.1.1:
Shift Register Generators / 3.1.2:
Other Distributions / 3.2:
Fundamentals / 3.2.1:
Transformation Method / 3.2.2:
Generalized Transformation Method / 3.2.3:
Rejection Method / 3.2.4:
Multivariate Gaussian Distribution / 3.2.5:
Equidistribution in Orientation Space / 3.2.6:
Random Sequences / 3.3:
Markov Processes / 3.3.1:
Autoregressive Processes / 3.3.3:
Wiener-Levy Process / 3.3.4:
Markov Chains and the Monte Carlo method / 3.3.5:
Stochastic Optimization / 3.4:
Simulated Annealing / 3.4.1:
Genetic Algorithms / 3.4.2:
Everything Flows / II:
Ordinary Differential Equations / 4:
Initial Value Problems of First Order / 4.1:
Euler-Cauchy Algorithm / 4.1.1:
Stability and Accuracy of Difference Schemes / 4.1.2:
Explicit Methods / 4.1.3:
Implicit Methods / 4.1.4:
Predictor-Corrector Method / 4.1.5:
Runge-Kutta Method / 4.1.6:
Extrapolation Method / 4.1.7:
Initial Value Problems of Second Order / 4.2:
Verlet Method / 4.2.1:
Nordsieck Formulation of the PC Method / 4.2.2:
Symplectic Algorithms / 4.2.4:
Numerov's Method / 4.2.6:
Boundary Value Problems / 4.3:
Shooting Method / 4.3.1:
Relaxation Method / 4.3.2:
Partial Differential Equations / 5:
Initial Value Problems I (Hyperbolic) / 5.1:
FTCS Scheme; Stability Analysis / 5.1.1:
Lax Scheme / 5.1.2:
Leapfrog Scheme (LF) / 5.1.3:
Lax-Wendroff Scheme (LW) / 5.1.4:
Lax and Lax-Wendroff in Two Dimensions / 5.1.5:
Initial Value Problems II (Parabolic) / 5.2:
FTCS Scheme / 5.2.1:
Implicit Scheme of First Order / 5.2.2:
Crank-Nicholson Scheme (CN) / 5.2.3:
Dufort-Frankel Scheme (DF) / 5.2.4:
Boundary Value Problems: Elliptic DE / 5.3:
Relaxation and Multigrid Techniques / 5.3.1:
ADI Method for the Potential Equation / 5.3.2:
Fourier Transform Method (FT) / 5.3.3:
Cyclic Reduction (CR) / 5.3.4:
Anchors Aweigh / III:
Simulation and Statistical Mechanics / 6:
Model Systems of Statistical Mechanics / 6.1:
A Nutshellfull of Fluids and Solids / 6.1.1:
Tricks of the Trade / 6.1.2:
Monte Carlo Method / 6.2:
Molecular Dynamics Simulation / 6.3:
Hard Spheres / 6.3.1:
Continuous Potentials / 6.3.2:
Beyond Basic Molecular Dynamics / 6.3.3:
Evaluation of Simulation Experiments / 6.4:
Pair Correlation Function / 6.4.1:
Autocorrelation Functions / 6.4.2:
Particles and Fields / 6.5:
Ewald summation / 6.5.1:
Particle-Mesh Methods (PM and P3M) / 6.5.2:
Stochastic Dynamics / 6.6:
Quantum Mechanical Simulation / 7:
Diffusion Monte Carlo (DMC) / 7.1:
Path Integral Monte Carlo (PIMC) / 7.2:
Wave Packet Dynamics (WPD) / 7.3:
Density Functional Molecular Dynamics (DFMD) / 7.4:
Hydrodynamics / 8:
Compressible Flow without Viscosity / 8.1:
Explicit Eulerian Methods / 8.1.1:
Particle-in-Cell Method (PIC) / 8.1.2:
Smoothed Particle Hydrodynamics (SPH) / 8.1.3:
Incompressible Flow with Viscosity / 8.2:
Vorticity Method / 8.2.1:
Pressure Method / 8.2.2:
Free Surfaces: Marker-and-Cell Method (MAC) / 8.2.3:
Lattice Gas Models for Hydrodynamics / 8.3:
Lattice Gas Cellular Automata / 8.3.1:
The Lattice Boltzmann Method / 8.3.2:
Direct Simulation Monte Carlo / Bird method / 8.4:
Appendixes
Machine Errors / A:
Discrete Fourier Transformation / B:
Fast Fourier Transform (FFT) / B.1:
Bibliography
Index
The Three Pillars of Computational Physics / I:
Finite Differences / 1:
Interpolation Formulae / 1.1:
63.

図書

図書
Mike Lancaster
出版情報: Cambridge : Royal Society of Chemistry, c2010  xv, 328 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Principles and Concepts of Green Chemistry / Chapter 1:
Introduction / 1.1:
Sustainable Development and Green Chemistry / 1.2:
Green Engineering / 1.2.1:
Atom Economy / 1.3:
Atom Economic Reactions / 1.4:
Rearrangement Reactions / 1.4.1:
Addition Reactions / 1.4.2:
Atom Un-economic Reactions / 1.5:
Substitution Reactions / 1.5.1:
Elimination Reactions / 1.5.2:
Wittig Reactions / 1.5.3:
Reducing Toxicity / 1.6:
Measuring Toxicity / 1.6.1:
Review Questions
Further Reading
Waste: Production, Problems, and Prevention / Chapter 2:
Some Problems Caused by Waste / 2.1:
Sources of Waste from the Chemical Industry / 2.3:
Cost of Waste / 2.4:
Waste Minimization Techniques / 2.5:
The Team Approach to Waste Minimization / 2.5.1:
Process Design for Waste Minimization / 2.5.2:
Minimizing Waste from Existing Processes / 2.5.3:
On-site Waste Treatment / 2.6:
Physical Treatment / 2.6.1:
Chemical Treatment / 2.6.2:
Biotreatment Plants / 2.6.3:
Design for Degradation / 2.7:
Degradation and Surfactants / 2.7.1:
DDT / 2.7.2:
Polymers / 2.7.3:
Some Rules for Degradation / 2.7.4:
Polymer Recycling / 2.8:
Separation and Sorting / 2.8.1:
Incineration / 2.8.2:
Mechanical Recycling / 2.8.3:
Chemical Recycling to Monomers / 2.8.4:
Measuring and Controlling Environmental Performance / Chapter 3:
The Importance of Measurement / 3.1:
Lactic Acid Production / 3.1.1:
Safer Gasoline / 3.1.2:
Introduction to Life Cycle Assessment / 3.2:
Four Stages of LCA / 3.2.1:
Carbon Footprinting / 3.2.2:
Green Process Metrics / 3.3:
Environmental Management Systems (EMS) / 3.4:
ISO 14001 / 3.4.1:
The European Eco-Management and Audit Scheme (EMAS) / 3.4.2:
Eco-Labels / 3.5:
Legislation / 3.6:
Integrated Pollution Prevention and Control (IPPC) / 3.6.1:
Reach / 3.6.2:
Catalysis and Green Chemistry / Chapter 4:
Introduction to Catalysis / 4.1:
Comparison of Catalyst Types / 4.1.1:
Heterogeneous Catalysts / 4.2:
Basics of Heterogeneous Catalysis / 4.2.1:
Zeolites and the Bulk Chemical Industry / 4.2.2:
Heterogeneous Catalysis in the Fine Chemical and Pharmaceutical Industries / 4.2.3:
Catalytic Converters / 4.2.4:
Homogeneous Catalysts / 4.3:
Transition Metal Catalysts with Phosphine or Carbonyl Ligands / 4.3.1:
Greener Lewis Acids / 4.3.2:
Asymmetric Catalysis / 4.3.3:
Phase Transfer Catalysis / 4.4:
Hazard Reduction / 4.4.1:
C-C Bond Formation / 4.4.2:
Oxidation using Hydrogen Peroxide / 4.4.3:
Biocatalysis / 4.5:
Photocatalysis / 4.6:
Conclusions / 4.7:
Organic Solvents: Environmentally Benign Solutions / Chapter 5:
Organic Solvents and Volatile Organic Compounds / 5.1:
Solvent-free Systems / 5.2:
Supercritical Fluids / 5.3:
Supercritical Carbon Dioxide (scCO2) / 5.3.1:
Supercritical Water / 5.3.2:
Water as a Reaction Solvent / 5.4:
Water Based Coatings / 5.4.1:
Ionic Liquids / 5.5:
Ionic Liquids as Catalysts / 5.5.1:
Ionic Liquids as Solvents / 5.5.2:
Fluorous Biphase Solvents / 5.6:
Comparing Greenness of Solvents / 5.7:
Renewable Resources / 5.8:
Biomass as a Renewable Resource / 6.1:
Energy / 6.2:
Fossil Fuels / 6.2.1:
Energy from Biomass / 6.2.2:
Solar Power / 6.2.3:
Other Forms of Renewable Energy / 6.2.4:
Fuel Cells / 6.2.5:
Chemicals from Renewable Feedstocks / 6.3:
Chemicals from Fatly Acids / 6.3.1:
Polymers from Renewable Resources / 6.3.2:
Some Other Chemicals from Natural Resources / 6.3.3:
Alternative Economies / 6.4:
Syngas Economy / 6.4.1:
Hydrogen Economy / 6.4.2:
Biorefinery / 6.5:
Emerging Greener Technologies and Alternative Energy Sources / 6.6:
Design for Energy Efficiency / 7.1:
Photochemical Reactions / 7.2:
Advantages of and Challenges Faced by Photochemical Processes / 7.2.1:
Examples of Photochemical Reactions / 7.2.2:
Chemistry using Microwaves / 7.3:
Microwave Heating / 7.3.1:
Microwave-assisted Reactions / 7.3.2:
Sonochemistry / 7.4:
Sonochemistry and Green Chemistry / 7.4.1:
Electrochemical Synthesis / 7.5:
Examples of Electrochemical Synthesis / 7.5.1:
Designing Greener Processes / 7.6:
Conventional Reactors / 8.1:
Batch Reactors / 8.2.1:
Continuous Reactors / 8.2.2:
Inherently Safer Design / 8.3:
Minimization / 8.3.1:
Simplification / 8.3.2:
Substitution / 8.3.3:
Moderation / 8.3.4:
Limitation / 8.3.5:
Process Intensification / 8.4:
Some PI Equipment / 8.4.1:
Some Example of Intensified Processes / 8.4.2:
In-process Monitoring / 8.5:
Near-infrared Spectroscopy / 8.5.1:
Process Safety / 8.6:
Industrial Case Studies / Chapter 9:
Methyl Methacrylate / 9.1:
Greening of Acetic Acid Manufacture / 9.3:
EPDM Rubbers / 9.4:
Vitamin C / 9.5:
Leather Manufacture / 9.6:
Tanning / 9.6.1:
Fatliquoring / 9.6.2:
Dyeing to be Green / 9.7:
Some Manufacturing Improvements / 9.7.1:
Dye Application / 9.7.2:
Polyethylene / 9.8:
Radical Process / 9.8.1:
Ziegler-Natta Catalysis / 9.8.2:
Metallocene Catalysis / 9.8.3:
Post Metallocene Catalysts / 9.8.4:
Eco-friendly Pesticides / 9.9:
Insecticides / 9.9.1:
Epichlorohydrin / 9.10:
The Future's Green: An Integrated Approach to a Greener Chemical Industry / Chapter 10:
Society and Sustainability / 10.1:
Barriers & Drivers / 10.2:
Role of Legislation / 10.3:
Green Chemical Supply Strategies / 10.4:
Greener Energy / 10.5:
Subject Index / 10.6:
Principles and Concepts of Green Chemistry / Chapter 1:
Introduction / 1.1:
Sustainable Development and Green Chemistry / 1.2:
64.

図書

図書
Vítor Araújo, Maria José Pacifico
出版情報: Berlin : Springer, c2010  xix, 358 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge . A series of modern surveys in mathematics ; v. 53
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Organization of the Text / 1.1:
Preliminary Definitions and Results / 2:
Fundamental Notions and Definitions / 2.1:
Critical Elements, Non-wandering Points, Stable and Unstable Sets / 2.1.1:
Limit Sets, Transitivity, Attractors and Repellers / 2.1.2:
Hyperbolic Critical Elements / 2.1.3:
Topological Equivalence, Structural Stability / 2.1.4:
Low Dimensional Flow Versus Chaotic Behavior / 2.2:
One-Dimensional Flows / 2.2.1:
Two-Dimensional Flows / 2.2.2:
Three Dimensional Chaotic Attractors / 2.2.3:
Hyperbolic Flows / 2.3:
Hyperbolic Sets and Singularities / 2.3.1:
Examples of Hyperbolic Sets and Axiom A Flows / 2.3.2:
Expansiveness and Sensitive Dependence on Initial Conditions / 2.4:
Chaotic Systems / 2.4.1:
Expansive Systems / 2.4.2:
Basic Tools / 2.5:
The Tubular Flow Theorem / 2.5.1:
Transverse Sections and the Poincaré Return Map / 2.5.2:
The Hartman-Grobman Theorem on Local Linearization / 2.5.3:
The (Strong) Inclination Lemma (or ?-Lemma) / 2.5.4:
Homoclinic Classes, Transitiveness and Denseness of Periodic Orbits / 2.5.5:
The Closing Lemma / 2.5.6:
The Connecting Lemma / 2.5.7:
The Ergodic Closing Lemma / 2.5.8:
A Perturbation Lemma for Flows / 2.5.9:
Generic Vector Fields and Lyapunov Stability / 2.5.10:
The Linear Poincaré Flow / 2.6:
Hyperbolic Splitting for the Linear Poincaré Flow / 2.6.1:
Dominated Splitting for the Linear Poincaré Flow / 2.6.2:
Incompressible Flows, Hyperbolicity and Dominated Splitting / 2.6.3:
Ergodic Theory / 2.7:
Physical or SRB Measures / 2.7.1:
Gibbs Measures Versus SRB Measures / 2.7.2:
Stability Conjectures / 2.8:
Singular Cycles and Robust Singular Attractors / 3:
Singular Horseshoe / 3.1:
A Singular Horseshoe Map / 3.1.1:
A Singular Cycle with a Singular Horseshoe First Return Map / 3.1.2:
The Singular Horseshoe Is a Partially Hyperbolic Set with Volume Expanding Central Direction / 3.1.3:
Bifurcations of Saddle-Connections / 3.2:
Saddle-Connection with Real Eigenvalues / 3.2.1:
Inclination Flip and Orbit Flip / 3.2.2:
Saddle-Focus Connection and Shil'nikov Bifurcations / 3.2.3:
Lorenz Attractor and Geometric Models / 3.3:
Properties of the Lorenz System of Equations / 3.3.1:
The Geometric Model / 3.3.2:
The Geometric Lorenz Attractor Is a Partially Hyperbolic Set with Volume Expanding Central Direction / 3.3.3:
Existence and Robustness of Invariant Stable Foliation / 3.3.4:
Robustness of the Geometric Lorenz Attractors / 3.3.5:
The Geometric Lorenz Attractor Is a Homoclinic Class / 3.3.6:
Robustness on the Whole Ambient Space / 4:
No Equilibria Surrounded by Regular Orbits with Dominated Splitting / 4.1:
Homogeneous Flows and Dominated Splitting / 4.2:
Dominated Splitting over the Periodic Orbits / 4.2.1:
Dominated Splitting over Regular Orbits from the Periodic Ones / 4.2.2:
Bounded Angles on the Splitting over Hyperbolic Periodic Orbits / 4.2.3:
Dominated Splitting for the Linear Poincaré Flow Along Regular Orbits / 4.2.4:
Uniform Hyperbolicity for the Linear Poincaré Flow / 4.3:
Subadditive Functions of the Orbits of a Flow and Exponential Growth / 4.3.1:
Uniform Hyperbolicity for the Linear Poincaré Flow on the Whole Manifold / 4.3.2:
Robust Transitivity and Singular-Hyperbolicity / 5:
Definitions and Statement of Results / 5.1:
Equilibria of Robust Attractors Are Lorenz-Like / 5.1.1:
Robust Attractors Are Singular-Hyperbolic / 5.1.2:
Brief Sketch of the Proofs / 5.1.3:
Higher Dimensional Analogues / 5.2:
Singular-Attractor with Arbitrary Number of Expanding Directions / 5.2.1:
The Notion of Sectionally Expanding Sets / 5.2.2:
Homogeneous Flows and Sectionally Expanding Attractors / 5.2.3:
Proof of Sufficient Conditions to Obtain Attractors / 5.3:
Robust Singular Transitivity Implies Attractors or Repellers / 5.3.2:
Attractors and Singular-Hyperbolicity / 5.4:
Uniformly Dominated Splitting over the Periodic Orbits / 5.4.1:
Dominated Splitting over a Robust Attractor / 5.4.2:
Flow-Boxes Near Equilibria / 5.4.3:
Uniformly Bounded Angle Between Stable and Center-Unstable Directions on Periodic Orbits / 5.4.5:
Singular-Hyperbolicity and Robustness / 6:
Cross-Sections and Poincaré Maps / 6.1:
Stable Foliations on Cross-Sections / 6.1.1:
Hyperbolicity of Poincaré Maps / 6.1.2:
Adapted Cross-Sections / 6.1.3:
Global Poincaré Return Map / 6.1.4:
The One-Dimensional Piecewise Expanding Map / 6.1.5:
Denseness of Periodic Orbits and the One-Dimensional Map / 6.1.6:
Crossing Strips and the One-Dimensional Map / 6.1.7:
Homoclinic Class / 6.2:
Sufficient Conditions for Robustness / 6.3:
Denseness of Periodic Orbits and Transitivity with a Unique Singularity / 6.3.1:
Unstable Manifolds of Periodic Orbits Inside Singular-Hyperbolic Attractors / 6.3.2:
Expansiveness and Physical Measure / 7:
Statements of the Results and Overview of the Arguments / 7.1:
Robust Sensitiveness / 7.1.1:
Existence and Uniqueness of a Physical Measure / 7.1.2:
Expansiveness / 7.2:
Proof of Expansiveness / 7.2.1:
Infinitely Many Coupled Returns / 7.2.2:
Semi-global Poincaré Map / 7.2.3:
A Tube-Like Domain Without Singularities / 7.2.4:
Every Orbit Leaves the Tube / 7.2.5:
Expansiveness of the Poincaré Map / 7.2.6:
Singular-Hyperbolicity and Chaotic Behavior / 7.2.8:
Non-uniform Hyperbolicity / 7.3:
The Starting Point / 7.3.1:
The Hölder Property of the Projection / 7.3.2:
Integrability of the Global Return Time / 7.3.3:
Suspending Invariant Measures / 7.3.4:
Physical Measure for the Global Poincaré Map / 7.3.5:
Suspension Flow from the Poincaré Map / 7.3.6:
Physical Measures for the Suspension / 7.3.7:
Physical Measure for the Flow / 7.3.8:
Hyperbolicity of the Physical Measure / 7.3.9:
Absolutely Continuous Disintegration of the Physical Measure / 7.3.10:
Constructing the Disintegration / 7.3.11:
The Support Covers the Whole Attractor / 7.3.12:
Singular-Hyperbolicity and Volume / 8:
Dominated Decomposition and Zero Volume / 8.1:
Dominated Splitting and Regularity / 8.1.1:
Uniform Hyperbolicity / 8.1.2:
Singular-Hyperbolicity and Zero Volume / 8.2:
Positive Volume Versus Transitive Anosov Flows / 8.2.1:
Extension to Sectionally Expanding Attractors in Higher Dimensions / 8.2.3:
Global Dynamics of Generic 3-Flows / 9:
Spectral Decomposition / 9.1:
Some Consequences of the Generic Dichotomy / 9.2:
Generic 3-Flows, Lyapunov Stability and Singular-Hyperbolicity / 9.2.2:
Conservative Tubular Flow Theorem / 9.3:
Realizable Linear Flows / 9.3.2:
Blending Oseledets Directions Along an Orbit Segment / 9.3.3:
Lowering the Norm: Local Procedure / 9.3.4:
Lowering the Norm: Global Procedure / 9.3.5:
Proof of the Dichotomy with Singularities (Theorem 9.4) / 9.3.6:
Related Results and Recent Developments / 10:
More on Singular-Hyperbolicity / 10.1:
Topological Dynamics / 10.1.1:
Attractors that Resemble the Lorenz Attractor / 10.1.2:
Unfolding of Singular Cycles / 10.1.3:
Contracting Lorenz-Like Attractors / 10.1.4:
Dimension Theory, Ergodic and Statistical Properties / 10.1.5:
Large Deviations for the Lorenz Flow / 10.2.1:
Central Limit Theorem for the Lorenz Flow / 10.2.2:
Decay of Correlations / 10.2.3:
Decay of Correlations for the Return Map and Quantitative Recurrence on the Geometric Lorenz Flow / 10.2.4:
Non-mixing Flows and Slow Decay of Correlations / 10.2.5:
Decay of Correlations for Flows / 10.2 6:
Thermodynamical Formalism / 10.2.7:
Generic Conservative Flows in Dimension 3 / 10.3:
Lyapunov Stability on Generic Vector Fields / Appendix A:
Robustness of Dominated Decomposition / Appendix B:
References
Index
Introduction / 1:
Organization of the Text / 1.1:
Preliminary Definitions and Results / 2:
65.

図書

図書
Sami Tabbane
出版情報: Boston : Artech House, 2000  xii, 619 p. ; 24 cm
シリーズ名: The Artech House mobile communications series
所蔵情報: loading…
目次情報: 続きを見る
General Introduction / 1:
History and Development / 1.1:
Phase One: Theoretical Foundations / 1.1.1:
Second Phase: Development and Applications / 1.1.2:
Third Phase: Mobile Services for the General Public / 1.1.3:
Evolution of Mobile Systems / 1.1.4:
Equipment Development / 1.1.5:
Differences Between Fixed Networks and Mobile Networks / 1.2:
Limited Spectrum / 1.2.1:
Fluctuating Quality of Radio Links / 1.2.2:
Unknown and Variable Access Points / 1.2.3:
Management of the Spectrum and Standardization / 1.3:
International Organizations / 1.3.1:
European Organizations / 1.3.2:
Some U.S. Organizations / 1.3.3:
Contents of the Book / 1.4:
First Part (Chapters 2-8) / 1.4.1:
Second Part (Chapters 9-14) / 1.4.2:
Frequency Bands and Some Services and Applications / Appendix 1A:
References
Selected Bibliography
Propagation in a Mobile Radio Environment / 2:
Antenna Basic Elements / 2.1:
Principal Antenna Characteristics / 2.1.1:
Common Antennas / 2.1.2:
Coupling Loss Between Antennas / 2.1.3:
Parameters to Be Specified When Designing or Selecting Antennas / 2.1.4:
Power (Link) Budget / 2.1.5:
Mobile Radio Propagation / 2.2:
Pathloss / 2.2.1:
Attenuation Caused by Vegetation / 2.2.2:
Attenuation Due to Atmosphere / 2.2.3:
Diffraction and Fresnel Region / 2.2.4:
Multipath / 2.2.5:
Delay-spread / 2.2.6:
Rayleigh Fading / 2.2.7:
Doppler Shift / 2.2.8:
Indoor Environment Propagation Characteristics / 2.2.9:
Propagation in Dense Urban Environments / 2.2.10:
Conclusions / 2.2.11:
Interference and Noise / 2.3:
Noise / 2.3.1:
Interference / 2.3.2:
Propagation Prediction Models / 2.4:
Statistical Methods / 2.4.1:
Exact Methods and Ray Tracing/Launching / 2.4.2:
Noise That Can Affect Radio Reception / 2.5:
Internal Noise Sources / 2A.1:
External Noise Sources / 2A.2:
Decibels / Appendix 2B:
Determination of the Plane Earth Propagation Formula / Appendix 2C:
Access--Radio Channel Definitions and Resource Access / 3:
Multiple-Access Methods / 3.1:
Definitions--Narrowband and Wideband Systems / 3.1.1:
Frequency-Division Multiple Access / 3.1.2:
Time-Division Multiple Access / 3.1.3:
Code-Division Multiple Access / 3.1.4:
Random Access Protocols / 3.1.5:
Protocols Nonslotted and Without Carrier Sensing / 3.2.1:
Carrier Sensing Protocols / 3.2.2:
Non-Sensing Slotted Protocols / 3.2.3:
Reservation-Based Framed Protocols / 3.2.4:
TDMA System Measures of Efficiency / 3.3:
Throughputs of Some Random Access Protocols / Appendix 3B:
Protecting Against Channel Imperfections / 4:
Mechanisms Implemented in the Transmission System / 4.1:
Review of the Transmission System / 4.1.1:
Modulation / 4.1.2:
Error Control: ARQ and FEC / 4.1.3:
Equalization / 4.1.4:
Interleaving / 4.1.5:
Diversity Techniques / 4.2:
Microdiversity Techniques / 4.2.1:
Macrodiversity Techniques / 4.2.2:
Adaptive Antennas / 4.3:
Array Antennas / 4.3.1:
Smart Antennas / 4.3.2:
Space-Division Multiple Access Technique (SDMA) / 4.3.3:
Advantages and Drawbacks of Array Antennas / 4.3.4:
Security / 4.4:
Definitions and General Problems / 5.1:
Complexity of the Problem / 5.1.1:
Intrinsic and Extrinsic Protection / 5.1.2:
Attacks and Origin of Security Problems / 5.1.3:
Security Services and Mechanisms as Defined in the OSI Model / 5.1.4:
Confidentiality Problems / 5.2:
Confidentiality Levels / 5.2.1:
Data to Be Protected / 5.2.2:
Protection Methods / 5.3:
Communications Confidentiality: Ciphering or Encryption / 5.3.1:
Location Confidentiality by Use of Implicit Addresses / 5.3.2:
Access Security: Integrity and Authentication / 5.3.3:
Personalization and Telepersonalization / 5.3.4:
Some Methods in the Struggle Against Fraud / 5.3.5:
Examples of Security Feature Implementation / 5.3.6:
Authentication in the CT2 and DECT Systems / 5.4.1:
Authentication in Cellular Systems / 5.4.2:
Conclusions--Future Systems Security Features / 5.5:
Cryptographic Key Distribution Methods / Appendix 5A:
Selected Bibliography on Cryptography
Resource Management in Cellular Systems / 6:
History / 6.1:
The Cellular Concept / 6.2:
Frequency Reuse / 6.2.1:
Reuse Distance and Number of Cells per Cluster / 6.2.2:
Capacities / 6.2.3:
Link Budget / 6.2.4:
System Capacity Expansion Techniques and Network Quality Improvement / 6.2.5:
Frequency Hopping / 6.3.1:
Discontinuous Transmission and Packet Transmission Mode / 6.3.2:
Power Control / 6.3.3:
Dynamic Channel Allocation / 6.3.4:
Basic Cellular System Architecture / 6.4:
The Network Subsystem / 6.4.1:
The BSS / 6.4.2:
Cellular Planning and Engineering / 7:
Cellular Planning Elements / 7.1:
Importance of the Cellular Planning Process / 7.1.1:
Objectives and Problems in Cellular Planning / 7.1.2:
Coverage Objectives / 7.1.3:
Main Steps / 7.1.4:
Traffic Dimensioning Basics / 7.2:
Traffic Load Prediction / 7.2.1:
Quality of Service Parameters / 7.2.2:
Cell Dimensioning / 7.2.3:
Dimensioning Process for a GSM Network / 7.2.4:
Conclusion / 7.2.5:
Planning Stages of a Cellular Network / 7.3:
Radio Planning / 7.3.1:
Fixed Network Planning / 7.3.2:
System Tuning: Example of the GSM BSS / 7.3.3:
Increasing the Capacity of a Cellular Network / 7.5:
Adding New Channels / 7.5.1:
Channel Borrowing / 7.5.2:
Modification of the Cell Reuse Pattern / 7.5.3:
Cell Splitting / 7.5.4:
Sectorization / 7.5.5:
Down-Tilting / 7.5.6:
Cell Layering / 7.5.7:
Trends Toward the Microcellular Techniques / 7.5.8:
Capacity Solutions Comparison / 7.5.9:
Quality of Service / 7.6:
Erlang Formulas / Appendix 7B:
Erlang Table Example / Appendix 7C:
Mobility Management / 8:
Management of Radio Mobility: The Handover Procedure / 8.1:
Basic Handover Principle / 8.1.1:
Growing Importance of the Handover Procedure / 8.1.2:
The Various Handover Phases / 8.1.3:
Various Kinds of Handover Seen by the Network / 8.1.4:
Evaluation of the Handover Procedure / 8.1.5:
Handover Traffic / 8.1.6:
Handover Procedures in Analog Systems / 8.1.7:
Handover in Second-Generation Systems / 8.1.8:
Handover in Third-Generation Systems / 8.1.9:
Network Mobility: Cell Selection and Roaming / 8.1.10:
Cell Selection/Reselection Process / 8.2.1:
Location Management / 8.2.2:
Mobility Management in the Fixed and Mobile Networks: The UPT Concept / 8.2.3:
Location Management Methods for Third-Generation Systems / 8.3:
Memoryless Methods / 8A.1:
Database Architecture / 8A.1.1:
Optimizing Fixed Network Architecture / 8A.1.2:
Combining Location Areas and Paging Areas / 8A.1.3:
Multi-layer LAs / 8A.1.4:
A Procedure for Reducing Signaling Message Exchanges / 8A.1.5:
Memory-Based Methods / 8A.2:
Short-Term Observation for Dynamic LA and PA Sizes Assigning/Adjusting / 8A.2.1:
Individual User Patterns / 8A.2.2:
Predicting Short-Term Movements of the Subscriber / 8A.2.3:
Mobility Statistics / 8A.2.4:
Main UPT Features / Appendix 8B:
Professional Mobile Radio / 9:
Historic and General Background / 9.1:
Definition and General Background / 9.1.1:
PMR Categories According to User Needs / 9.1.2:
Categorization of Users and Organizations / 9.1.3:
PMR General Categorization / 9.1.4:
PMR Categorization According to Their Operation / 9.1.5:
PMR Services / 9.2:
PMR Characteristics / 9.2.1:
Services Offered / 9.2.2:
Conventional PMR Systems / 9.2.3:
Architecture of Conventional Radio Networks / 9.3.1:
Weaknesses of Conventional Radio Systems / 9.3.2:
Trunk Radio Networks / 9.4:
History of Trunked Systems / 9.4.1:
Efficiency of the Trunking Method / 9.4.2:
Trunking Architecture / 9.4.3:
Engineering / 9.4.4:
TETRA / 9.4.5:
TETRAPOL / 9.4.6:
Conventional PMRs Comparison/Analog Trunk/Digital Trunk / 9.4.7:
Short-Range Business Radio / 9.4.8:
PMR Evolution / 9.5:
Cordless Systems and Applications / 10:
Basic Principles and Applications / 10.1:
Characteristics / 10.1.1:
Applications / 10.1.2:
Examples of Cordless Systems / 10.2:
CT2 / 10.2.1:
DECT / 10.2.2:
PHS / 10.2.3:
PACS System / 10.2.4:
Paging Systems / 10.3:
Concepts and Basic Principles / 11.1:
Architecture / 11.1.1:
Signaling Methods / 11.1.2:
Transmission Channels / 11.1.3:
Services / 11.1.4:
Examples of One-Way Paging Systems / 11.1.5:
Eurosignal / 11.2.1:
POCSAG / 11.2.2:
Ermes / 11.2.3:
Cellular Networks / 11.3:
First-Generation Systems / 12.1:
Radiocom 2000 System / 12.1.1:
AMPS / 12.1.2:
NMT System / 12.1.3:
Second-Generation Systems / 12.2:
The GSM System / 12.2.1:
The D-AMPS System / 12.2.2:
The IS-95 System / 12.2.3:
Personal Digital Cellular System / 12.2.4:
GSM Functionality in Its Different Phases / 12.3:
Wireless Data Networks / 13:
Wireless Local Area Networks / 13.1:
Types of Wireless LAN Systems / 13.1.1:
Classification According to the Technique Used / 13.1.2:
Wireless LANs Applications / 13.1.3:
The HIPERLAN Standard / 13.1.4:
The 802.11 Standard / 13.1.5:
Wide Area Wireless Data Networks / 13.1.6:
Types of Systems and Evolution / 13.2.1:
ARDIS / 13.2.2:
The Mobitex System / 13.2.3:
Cellular Digital Packet Data / 13.2.4:
General Packet Radio Service / 13.2.5:
About The Author / 13.3:
Index
General Introduction / 1:
History and Development / 1.1:
Phase One: Theoretical Foundations / 1.1.1:
66.

図書

図書
Ronald C. Arkin
出版情報: Cambridge, Mass. ; London, England : MIT Press, c1998  xiv, 491 p. ; 24 cm
シリーズ名: Intelligent robotics and autonomous agents
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Whence Behavior? / Chapter 1:
Toward Intelligent Robots / 1.1:
Precursors / 1.2:
Cybernetics / 1.2.1:
Artificial Intelligence / 1.2.2:
Robotics / 1.2.3:
The Spectrum Of Robot Control / 1.3:
Deliberative/Hierarchical Control / 1.3.1:
Reactive Systems / 1.3.2:
Related Issues / 1.4:
What's Ahead / 1.5:
Animal Behavior / Chapter 2:
What Does Animal Behavior Offer Robotics? / 2.1:
Neuroscientific Basis For Behavior / 2.2:
Neural Circuity / 2.2.1:
Brain Structure and Function / 2.2.2:
Abstract Neuroscientific Models / 2.2.3:
Schema-Theoretic Methods / 2.2.3.1:
Neural Networks / 2.2.3.2:
Psychological Basis For Behavior / 2.3:
Ethological Basis For Behavior / 2.4:
Representative Examples Of Bio-Robots / 2.5:
Ant Chemotaxis / 2.5.1:
Fly Vision / 2.5.2:
Cockroach Locomotion / 2.5.3:
Primate Brachiation / 2.5.4:
Robotic Honeybee / 2.5.5:
Chapter Summary / 2.6:
Robot Behavior / Chapter 3:
What Are Robotic Behaviors? / 3.1:
A Navigational Example / 3.1.1:
Basis for Robotic Behavior / 3.1.3:
Expression Of Behaviors / 3.2:
Stimulus-Response Diagrams / 3.2.1:
Functional Notation / 3.2.2:
Finite State Acceptor Diagrams / 3.2.3:
Formal Methods / 3.2.4:
RS / 3.2.4.1:
Situated Automata / 3.2.4.2:
Behavioral Encoding / 3.3:
Discrete Encoding / 3.3.1:
Continuous Functional Encoding / 3.3.2:
Assembling Behaviors / 3.4:
Emergent Behavior / 3.4.1:
Notation / 3.4.2:
Behavioral Coordination / 3.4.3:
Competitive Methods / 3.4.3.1:
Cooperative Methods / 3.4.3.2:
Behavioral Assemblages / 3.4.4:
Behavior-Based Architectures / 3.5:
What Is A Robotic Architecture? / 4.1:
Definitions / 4.1.1:
Computability / 4.1.2:
Evaluation Criteria / 4.1.3:
Organizing Principles / 4.1.4:
A Foraging Example / 4.2:
Subsumption Architecture / 4.3:
Behaviors in Subsumption / 4.3.1:
Coordination in Subsumption / 4.3.2:
Design in Subsumption-Based Reactive Systems / 4.3.3:
Foraging Example / 4.3.4:
Evaluation / 4.3.5:
Subsumption Robots / 4.3.6:
Motor Schemas / 4.4:
Schema-Based Behaviors / 4.4.1:
Schema-Based Coordination / 4.4.2:
Design in Motor Schema-Based Systems / 4.4.3:
Schema-Based Robots / 4.4.4:
Other Architectures / 4.5:
Circuit Architecture / 4.5.1:
Colony Architecture / 4.5.3:
Animate Agent Architecture / 4.5.4:
DAMN / 4.5.5:
Skill Network Architecture / 4.5.6:
Other Efforts / 4.5.7:
Architectural Design Issues / 4.6:
Representational Issues for Behavioral Systems / 4.7:
Representational Knowledge / 5.1:
What Is Knowledge? / 5.1.1:
Characteristics of Knowledge / 5.1.2:
Representational Knowledge For Behavior-Based Systems / 5.2:
Short-Term Behavioral Memory / 5.2.1:
Long-Term Memory Maps / 5.2.2:
Sensor-Derived Cognitive Maps / 5.2.2.1:
A Priori Map-Derived Representations / 5.2.2.2:
Perceptual Representations / 5.3:
Hybrid Deliberative/Reactive Architectures / 5.4:
Why Hybridize? / 6.1:
Biological Evidence In Support Of Hybrid Systems / 6.2:
Traditional Deliberative Planners / 6.3:
Deliberation: To Plan Or Not To Plan? / 6.4:
Layering / 6.5:
Representative Hybrid Architectures / 6.6:
AuRa / 6.6.1:
Atlantis / 6.6.2:
Planner-Reactor Architecture / 6.6.3:
The Procedural Reasoning System / 6.6.4:
Other Hybrid Architectures / 6.6.5:
Perceptual Basis for Behavior-Based Control / 6.7:
A Break From Tradition / 7.1:
What Does Biology Say? / 7.2:
The Nature of Perceptual Stimuli / 7.2.1:
Neuroscientific Evidence / 7.2.2:
Psychological Insights / 7.2.3:
Affordances / 7.2.3.1:
A Modified Action-Perception Cycle / 7.2.3.2:
Perception as Communication-An Ethological Stance / 7.2.4:
A Brief Survey Of Robotic Sensors / 7.3:
Dead Reckoning / 7.3.1:
Ultrasound / 7.3.2:
Computer Vision / 7.3.3:
Laser Scanners / 7.3.4:
Modular Perception / 7.4:
Perceptual Schemas / 7.4.1:
Visual Routines / 7.4.2:
Perceptual Classes / 7.4.3:
Lightweight Vision / 7.4.4:
Action And Perception / 7.5:
Action-Oriented Perception / 7.5.1:
Active Perception / 7.5.2:
The Role of Attention in Human Visual Processing / 7.5.5.1:
Hardware Methods for Focus of Attention / 7.5.5.2:
Knowledge-Based Focus-of-Attention Methods / 7.5.5.3:
Perceptual Sequencing / 7.5.6:
Sensor Fusion for Behavior-Based Systems / 7.5.7:
Representative Examples Of Behavior-Based Perception / 7.6:
Road Following / 7.6.1:
Visual Tracking / 7.6.2:
Adaptive Behavior / 7.7:
Why Should Robots Learn? / 8.1:
Opportunities For Learning In Behavior-Based Robotics / 8.2:
Reinforcement Learning / 8.3:
Learning to Walk / 8.3.1:
The Learning Algorithm / 8.3.1.1:
Robotic Results / 8.3.1.2:
Learning to Push / 8.3.2:
Learning to Shoot / 8.3.2.1:
Learning In Neural Networks / 8.3.3.1:
Classical Conditioning / 8.4.1:
Adaptive Heuristic Critic Learning / 8.4.2:
Learning New Behaviors Using an Associative Memory / 8.4.3:
Genetic Algorithms / 8.5:
What Are Genetic Algorithms? / 8.5.1:
Genetic Algorithms for Learning Behavioral Control / 8.5.2:
Classifier Systems / 8.5.3:
On-Line Evolution / 8.5.4:
Evolving Form Concurrently with Control / 8.5.5:
Hybrid Genetic/Neural Learning and Control / 8.5.6:
Fuzzy Behavioral Control / 8.6:
What Is Fuzzy Control? / 8.6.1:
Fuzzy Behavior-Based Robotic Systems / 8.6.2:
Flakey / 8.6.2.1:
Marge / 8.6.2.2:
Learning Fuzzy Rules / 8.6.3:
Other Types Of Learning / 8.7:
Case-Based Learning / 8.7.1:
Memory-based Learning / 8.7.2:
Explanation-Based Learning / 8.7.3:
Social Behavior / 8.8:
Are Two (Or N) Robots Better Than One? / 9.1:
Ethological Considerations / 9.2:
Characterization Of Social Behavior / 9.3:
Reliability / 9.3.1:
Social Organization / 9.3.2:
Communication / 9.3.3:
Spatial Distribution / 9.3.4:
Congregation / 9.3.5:
Performance / 9.3.6:
What Makes A Robotic Team? / 9.4:
Social Organization And Structure / 9.5:
The Nerd Herd / 9.5.1:
Alliance Architecture / 9.5.2:
Stagnation Behaviors / 9.5.3:
Societal Agents / 9.5.4:
Army Ant Project / 9.5.5:
Interrobot Communication / 9.6:
The Need for Communication / 9.6.1:
Communication Range / 9.6.2:
Communication Content / 9.6.3:
Guaranteeing Communication / 9.6.4:
Distributed Perception / 9.7:
Social Learning / 9.8:
L-Alliance / 9.8.1:
Tropism System Cognitive Architecture / 9.8.3:
Learning by Imitation / 9.8.4:
Case Study: Ugv Demo II / 9.9:
Formation Behaviors / 9.9.1:
Multiagent Mission Specification / 9.9.2:
Team Teleautonomy / 9.9.3:
Fringe Robotics: Beyond Behavior / 9.10:
Issues Of The Robot Mind / 10.1:
On Computational Thought / 10.1.1:
On Consciousness / 10.1.2:
On Emotions / 10.1.3:
On Imagination / 10.1.4:
Issues Of The Robot Body / 10.2:
Hormones and Homeostasis / 10.2.1:
The Homeostat / 10.2.1.1:
Subsumption-Based Hormonal Control / 10.2.1.3:
Immune Systems / 10.2.2:
Nanotechnology / 10.2.3:
On Equivalence (Or Better) / 10.3:
Opportunities / 10.4:
References / 10.5:
Name Index
Subject Index
Foreword
Preface
Whence Behavior? / Chapter 1:
67.

図書

図書
R. S. Cant, E. Mastorakos
出版情報: London : Imperial College Press, c2008  xiii, 177 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Motivation, aims and audience / 1.1:
Relevance / 1.1.1:
Aims and structure / 1.1.2:
Bibliography / 1.1.3:
Governing equations / 1.2:
Instantaneous equations and basic concepts / 1.2.1:
Reynolds averaging / 1.2.2:
The mean reaction rate / 1.2.3:
Summary / 1.3:
Exercises / 1.4:
Some Comments on Turbulence / 2:
Statistical description / 2.1:
The randomness of turbulence / 2.2.1:
Probability density functions / 2.2.2:
Turbulent scales / 2.3:
Large-eddy scales / 2.3.1:
Dissipation and small scales / 2.3.2:
Taylor microscale / 2.3.3:
What are eddies? / 2.3.4:
Temporal and spatial correlations / 2.4:
Temporal autocorrelation / 2.4.1:
The convergence of averages / 2.4.2:
Spatial autocorrelation / 2.4.3:
Taylor hypothesis / 2.4.4:
Scalar scales / 2.4.5:
Reynolds-averaged equations / 2.5:
First moments / 2.5.1:
Eddy diffusivity / 2.5.2:
Second moments / 2.5.3:
Computational Fluid Dynamics / 2.5.4:
Spectra and intermittency / 2.6:
Spectra / 2.6.1:
Intermittency / 2.6.2:
Mixing / 2.7:
Molecular mixing / 3.1:
Some analytical solutions / 3.2.1:
Transport properties / 3.2.2:
Random walk / 3.2.3:
Brownian motion / 3.2.4:
Turbulent mixing / 3.3:
Taylor dispersion / 3.3.1:
Characterization of mixing / 3.3.2:
Length scales and spectra / 3.3.3:
Scalar dissipation / 3.3.4:
Reaction-diffusion systems / 3.4:
Propagating front 1 / 3.4.1:
Propagating front 2 / 3.4.2:
Unsteady flamelet equation / 3.4.3:
Final comments / 3.4.4:
Flows with Non-premixed Reactants / 3.5:
Moment methods / 4.1:
Neglecting the fluctuations: very slow chemistry / 4.2.1:
Eddy Dissipation Concept and derivatives / 4.2.2:
Second-order / 4.2.3:
Presumed joint pdf / 4.2.4:
Other / 4.2.5:
The well-stirred reactor / 4.3:
Conserved scalar methods / 4.4:
Mixture fraction / 4.4.1:
Qualitative structure of a laminar non-premixed flame / 4.4.2:
Fast chemistry / 4.4.3:
The pdf of the mixture fraction / 4.4.4:
Steady and transient flamelets / 4.4.5:
Conditional Moment Closure / 4.4.6:
Flame Surface Density / 4.4.7:
Transported pdf / 4.5:
Monte-Carlo method / 4.5.1:
Further developments / 4.5.3:
Concluding comments / 4.6:
Flows with Premixed Reactants / 4.7:
Laminar premixed flames / 5.1:
Background / 5.2.1:
Propagation / 5.2.2:
Laminar premixed flame structure / 5.2.3:
Estimation of laminar premixed flame thickness / 5.2.4:
Effects of mixture strength: flammability limits / 5.2.5:
Effects of pressure and temperature / 5.2.6:
Turbulent premixed flames / 5.3:
Turbulent burning velocity / 5.3.1:
Stretch, strain and curvature / 5.3.2:
Turbulent flame speed measurements / 5.3.3:
Turbulent flame speed correlations / 5.3.4:
Turbulent flame speed: a fractal approach / 5.3.5:
Dimensionless numbers for turbulent premixed flames / 5.3.6:
Regime diagrams / 5.3.7:
Turbulent premixed combustion modelling / 5.4:
Favre averaging / 5.4.1:
Turbulent transport in premixed flames / 5.4.2:
Eddy Break-Up Model for premixed flames / 5.4.3:
The laminar flamelet concept / 5.4.4:
Laminar flamelets in practice / 5.4.5:
Bray-Moss-Libby transport modelling / 5.4.6:
Bray-Moss-Libby reaction rate modelling / 5.4.7:
Flame surface density modelling / 5.4.8:
The G-equation formulation / 5.4.9:
Other models for turbulent premixed flames / 5.4.10:
Numerical Methods for Reacting Flows / 5.5:
Combustion CFD / 6.1:
Unsteady convection-diffusion-reaction equation / 6.2.1:
Spatial discretisation / 6.2.2:
Solution algorithms / 6.2.3:
RANS, LES and DNS / 6.2.4:
Numerical considerations for combustion problems / 6.2.5:
Numerical solvers for stiff differential equations / 6.3:
Forward Euler method / 6.3.1:
Timescales and stiffness / 6.3.3:
Properties of solvers / 6.3.4:
Solvers for chemical systems / 6.3.5:
Method of lines / 6.3.6:
Experimental Methods for Reacting Flows / 6.3.7:
General concepts / 7.1:
Uncertainties and measurement errors / 7.2.1:
Resolution and response / 7.2.2:
Filtering / 7.2.3:
Measurement techniques for reacting flows / 7.3:
Visualization / 7.3.1:
Intrusive techniques / 7.3.2:
Non-intrusive techniques / 7.3.3:
Epilogue / 7.4:
Index
Preface
Introduction / 1:
Motivation, aims and audience / 1.1:
68.

図書

図書
Michael Pidd
出版情報: Chichester ; New York : Wiley, c1984  xiv, 237 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Fifth Edition
Fundamentals Of Computer Simulation In Management Science / Part I:
The computer simulation approach / 1:
Models, experiments and computers / 1.1:
Some applications of computer simulation / 1.2:
Manufacturing / 1.2.1:
Health care / 1.2.2:
Business process re-engineering / 1.2.3:
Transport systems / 1.2.4:
Defence / 1.2.5:
Models in management science / 1.3:
Simulation as experimentation / 1.4:
Why simulate? / 1.5:
Simulation versus direct experimentation / 1.5.1:
Simulation versus mathematical modelling / 1.5.2:
Summary / 1.6:
Exercises
References
A variety of modelling approaches / 2:
General considerations / 2.1:
Time handling / 2.2:
Time slicing / 2.2.1:
Next-event technique / 2.2.2:
Time slicing or next event? / 2.2.3:
Stochastic or deterministic? / 2.3:
Deterministic simulation: a time-slicing example / 2.3.1:
Stochastic simulation / 2.3.2:
Discrete or continuous change / 2.4:
Discrete change / 2.4.1:
Continuous change / 2.4.2:
A few words on simulation software / 2.4.3:
Computer simulation in practice / 3:
Process, content, problem and project / 3.1:
Process and content / 3.1.1:
Problems and projects / 3.1.2:
Two parallel streams / 3.1.3:
The simulation problem part of the study / 3.2:
Problem structuring / 3.3:
Problem structuring as exploration / 3.3.1:
Modelling / 3.4:
Conceptual model building / 3.4.1:
Computer implementation / 3.4.2:
Validation / 3.4.3:
Experimentation / 3.4.4:
Implementation / 3.4.5:
The project part of the study / 3.5:
Initial negotiation and project definition / 3.5.1:
Project management and control / 3.5.2:
Project completion / 3.5.3:
Static Monte Carlo simulation / 4:
Basic ideas / 4.1:
Risk and uncertainty / 4.1.1:
The replacement problem: a reprise / 4.1.2:
Static Monte Carlo simulation defined / 4.1.3:
Some important considerations / 4.2:
Subjective probabilities / 4.2.1:
Repeatability / 4.2.2:
Some simple static simulations / 4.3:
The loan repayment / 4.3.1:
An investment decision / 4.3.2:
Simulation on spreadsheets / 4.4:
Discrete Event Simulation / Part II:
Discrete event modelling / 5:
Fundamentals / 5.1:
Terminology / 5.2:
Objects of the system / 5.2.1:
The organization of entities / 5.2.2:
Operations of the entities / 5.2.3:
Activity cycle diagrams / 5.3:
Example 1: a simple job shop / 5.3.1:
Example 2: the harassed booking clerk / 5.3.2:
Example 3: the delivery depot / 5.3.3:
Using the activity cycle diagram / 5.3.4:
Activity cycle diagrams: a caveat / 5.4:
How discrete simulation software works / 6:
Introduction / 6.1:
Why understand how simulation software is organized? / 6.1.1:
Simulation executives in more detail / 6.1.2:
Application logic / 6.1.3:
The three-phase approach / 6.2:
Bs / 6.2.1:
Cs / 6.2.2:
The exception to the general rule / 6.2.3:
Bs and Cs in the harassed booking clerk problem / 6.2.4:
Another example: a T-junction / 6.2.5:
How the three-phase approach works / 6.3:
The A phase / 6.3.1:
The B phase / 6.3.2:
The C phase / 6.3.3:
The harassed booking clerk--a manual three-phase simulation / 6.4:
The first A phase / 6.4.1:
The first B phase / 6.4.2:
The first C phase / 6.4.3:
The second A phase / 6.4.4:
The next B and C phases / 6.4.5:
The third A phase / 6.4.6:
Preface to the Fifth Edition
Fundamentals Of Computer Simulation In Management Science / Part I:
The computer simulation approach / 1:
69.

図書

図書
Duncan J. Watts
出版情報: Princeton, N.J. : Princeton University Press, 2004, c1999  xv, 262 p. ; 24 cm
シリーズ名: Princeton studies in complexity
Princeton paperbacks
所蔵情報: loading…
目次情報: 続きを見る
Preface
Kevin Bacon, the Small World, and Why It All Matters / 1:
Structure / Part I:
An Overview of the Small-World Phenomenon / 2:
Social Networks and the Small World / 2.1:
A Brief History of the Small World / 2.1.1:
Difficulties with the Real World / 2.1.2:
Reframing the Question to Consider All Worlds / 2.1.3:
Background on the Theory of Graphs / 2.2:
Basic Definitions / 2.2.1:
Length and Length Scaling / 2.2.2:
Neighbourhoods and Distribution Sequences / 2.2.3:
Clustering / 2.2.4:
"Lattice Graphs" and Random Graphs / 2.2.5:
Dimension and Embedding of Graphs / 2.2.6:
Alternative Definition of Clustering Coefficient / 2.2.7:
Big Worlds and Small Worlds: Models of Graphs / 3:
Relational Graphs / 3.1:
[alpha]-Graphs / 3.1.1:
A Stripped-Down Model: [beta]-Graphs / 3.1.2:
Shortcuts and Contractions: Model Invariance / 3.1.3:
Lies, Damned Lies, and (More) Statistics / 3.1.4:
Spatial Graphs / 3.2:
Uniform Spatial Graphs / 3.2.1:
Gaussian Spatial Graphs / 3.2.2:
Main Points in Review / 3.3:
Explanations and Ruminations / 4:
Going to Extremes / 4.1:
The Connected-Caveman World / 4.1.1:
Moore Graphs as Approximate Random Graphs / 4.1.2:
Transitions in Relational Graphs / 4.2:
Local and Global Length Scales / 4.2.1:
Clustering Coefficient / 4.2.2:
Contractions / 4.2.4:
Results and Comparisons with [beta]-Model / 4.2.5:
Transitions in Spatial Graphs / 4.3:
Spatial Length versus Graph Length / 4.3.1:
Results and Comparisons / 4.3.2:
Variations on Spatial and Relational Graphs / 4.4:
"It's a Small World after All": Three Real Graphs / 4.5:
Making Bacon / 5.1:
Examining the Graph / 5.1.1:
Comparisons / 5.1.2:
The Power of Networks / 5.2:
Examining the System / 5.2.1:
A Worm's Eye View / 5.2.2:
Other Systems / 5.3.1:
Dynamics / 5.5:
The Spread of Infectious Disease in Structured Populations / 6:
A Brief Review of Disease Spreading / 6.1:
Analysis and Results / 6.2:
Introduction of the Problem / 6.2.1:
Permanent-Removal Dynamics / 6.2.2:
Temporary-Removal Dynamics / 6.2.3:
Global Computation in Cellular Automata / 6.3:
Background / 7.1:
Global Computation / 7.1.1:
Cellular Automata on Graphs / 7.2:
Density Classification / 7.2.1:
Synchronisation / 7.2.2:
Cooperation in a Small World: Games on Graphs / 7.3:
The Prisoner's Dilemma / 8.1:
Spatial Prisoner's Dilemma / 8.1.2:
N-Player Prisoner's Dilemma / 8.1.3:
Evolution of Strategies / 8.1.4:
Emergence of Cooperation in a Homogeneous Population / 8.2:
Generalised Tit-for-Tat / 8.2.1:
Win-Stay, Lose-Shift / 8.2.2:
Evolution of Cooperation in a Heterogeneous Population / 8.3:
Global Synchrony in Populations of Coupled Phase Oscillators / 8.4:
Kuramoto Oscillators on Graphs / 9.1:
Conclusions / 9.3:
Notes
Bibliography
Index
Preface
Kevin Bacon, the Small World, and Why It All Matters / 1:
Structure / Part I:
70.

図書

図書
André Neubauer, Jürgen Freudenberger, Volker Kühn
出版情報: Chichester : Wiley, c2007  xi, 340 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Communication Systems / 1.1:
Information Theory / 1.2:
Entropy / 1.2.1:
Channel Capacity / 1.2.2:
Binary Symmetric Channel / 1.2.3:
AWGN Channel / 1.2.4:
A Simple Channel Code / 1.3:
Algebraic Coding Theory / 2:
Fundamentals of Block Codes / 2.1:
Code Parameters / 2.1.1:
Maximum Likelihood Decoding / 2.1.2:
Error Detection and Error Correction / 2.1.3:
Linear Block Codes / 2.2:
Definition of Linear Block Codes / 2.2.1:
Generator Matrix / 2.2.2:
Parity-Check Matrix / 2.2.3:
Syndrome and Cosets / 2.2.4:
Dual Code / 2.2.5:
Bounds for Linear Block Codes / 2.2.6:
Code Constructions / 2.2.7:
Examples of Linear Block Codes / 2.2.8:
Cyclic Codes / 2.3:
Definition of Cyclic Codes / 2.3.1:
Generator Polynomial / 2.3.2:
Parity-Check Polynomial / 2.3.3:
Dual Codes / 2.3.4:
Linear Feedback Shift Registers / 2.3.5:
BCH Codes / 2.3.6:
Reed-Solomon Codes / 2.3.7:
Algebraic Decoding Algorithm / 2.3.8:
Summary / 2.4:
Convolutional Codes / 3:
Encoding of Convolutional Codes / 3.1:
Convolutional Encoder / 3.1.1:
Generator Matrix in the Time Domain / 3.1.2:
State Diagram of a Convolutional Encoder / 3.1.3:
Code Termination / 3.1.4:
Puncturing / 3.1.5:
Generator Matrix in the D-Domain / 3.1.6:
Encoder Properties / 3.1.7:
Trellis Diagram and the Viterbi Algorithm / 3.2:
Minimum Distance Decoding / 3.2.1:
Trellises / 3.2.2:
Viterbi Algorithm / 3.2.3:
Distance Properties and Error Bounds / 3.3:
Free Distance / 3.3.1:
Active Distances / 3.3.2:
Weight Enumerators for Terminated Codes / 3.3.3:
Path Enumerators / 3.3.4:
Pairwise Error Probability / 3.3.5:
Viterbi Bound / 3.3.6:
Soft-input Decoding / 3.4:
Euclidean Metric / 3.4.1:
Support of Punctured Codes / 3.4.2:
Implementation Issues / 3.4.3:
Soft-output Decoding / 3.5:
Derivation of APP Decoding / 3.5.1:
APP Decoding in the Log Domain / 3.5.2:
Convolutional Coding in Mobile Communications / 3.6:
Coding of Speech Data / 3.6.1:
Hybrid ARQ / 3.6.2:
EGPRS Modulation and Coding / 3.6.3:
Retransmission Mechanism / 3.6.4:
Link Adaptation / 3.6.5:
Incremental Redundancy / 3.6.6:
Turbo Codes / 3.7:
LDPC Codes / 4.1:
Codes Based on Sparse Graphs / 4.1.1:
Decoding for the Binary Erasure Channel / 4.1.2:
Log-Likelihood Algebra / 4.1.3:
Belief Propagation / 4.1.4:
A First Encounter with Code Concatenation / 4.2:
Product Codes / 4.2.1:
Iterative Decoding of Product Codes / 4.2.2:
Concatenated Convolutional Codes / 4.3:
Parallel Concatenation / 4.3.1:
The UMTS Turbo Code / 4.3.2:
Serial Concatenation / 4.3.3:
Partial Concatenation / 4.3.4:
Turbo Decoding / 4.3.5:
EXIT Charts / 4.4:
Calculating an EXIT Chart / 4.4.1:
Interpretation / 4.4.2:
Weight Distribution / 4.5:
Partial Weights / 4.5.1:
Expected Weight Distribution / 4.5.2:
Woven Convolutional Codes / 4.6:
Encoding Schemes / 4.6.1:
Distance Properties of Woven Codes / 4.6.2:
Woven Turbo Codes / 4.6.3:
Interleaver Design / 4.6.4:
Space-Time Codes / 4.7:
Digital Modulation Schemes / 5.1:
Diversity / 5.1.2:
Spatial Channels / 5.2:
Basic Description / 5.2.1:
Spatial Channel Models / 5.2.2:
Channel Estimation / 5.2.3:
Performance Measures / 5.3:
Outage Probability and Outage Capacity / 5.3.1:
Ergodic Error Probability / 5.3.3:
Orthogonal Space-Time Block Codes / 5.4:
Alamouti's Scheme / 5.4.1:
Extension to More than Two Transmit Antennas / 5.4.2:
Simulation Results / 5.4.3:
Spatial Multiplexing / 5.5:
General Concept / 5.5.1:
Iterative APP Preprocessing and Per-layer Decoding / 5.5.2:
Linear Multilayer Detection / 5.5.3:
Original BLAST Detection / 5.5.4:
QL Decomposition and Interference Cancellation / 5.5.5:
Performance of Multi-Layer Detection Schemes / 5.5.6:
Unified Description by Linear Dispersion Codes / 5.5.7:
Algebraic Structures / 5.6:
Groups, Rings and Finite Fields / A.1:
Groups / A.1.1:
Rings / A.1.2:
Finite Fields / A.1.3:
Vector Spaces / A.2:
Polynomials and Extension Fields / A.3:
Discrete Fourier Transform / A.4:
Linear Algebra / B:
Acronyms / C:
Bibliography
Index
Preface
Introduction / 1:
Communication Systems / 1.1:
71.

図書

図書
Feng Liu
出版情報: Boca Raton, Fla. : Lewis, c2001  367 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Environmental Justice, Equity, and Policies / Chapter 1:
The Environmental Justice Movement / 1.1:
Environmental Justice Policies / 1.2:
Environmental Justice Analysis / 1.3:
The Debate on Terminology / 1.4:
Overview of this Book / 1.5:
Theories and Hypotheses / Chapter 2:
Theories of Justice and Equity / 2.1:
Utilitarianism / 2.1.1:
Contractarianism and Egalitarianism / 2.1.2:
Libertarianism / 2.1.3:
Which Theory? / 2.1.4:
Economic Theory and Location Theory / 2.2:
Externality and Public Goods / 2.2.1:
Welfare Economics / 2.2.2:
Residential Location Theory / 2.2.3:
Industrial Location Theory / 2.2.4:
Theories of Risk / 2.3:
Psychometric Theory / 2.3.1:
Expected Utility Theory / 2.3.2:
Cultural Theory / 2.3.3:
Sociological Theory / 2.3.4:
Theories of Neighborhood Change / 2.4:
Classical Invasion-Succession Model / 2.4.1:
Neighborhood Life-Cycle Model / 2.4.2:
Push-Pull Model / 2.4.3:
Institutional Theory of Neighborhood Change / 2.4.4:
Summary / 2.5:
Methodology and Analytical Framework for Environmental Justice and Equity Analysis / Chapter 3:
Inquiry and Environmental Justice Analysis / 3.1:
Positivism and Participatory Research / 3.1.1:
Scientific Reasoning / 3.1.2:
Validity / 3.1.3:
Causality / 3.1.4:
Methodological Issues in Environmental Justice Research / 3.2:
Integrated Analytical Framework / 3.3:
Measuring Environmental and Human Impacts / Chapter 4:
Environmental and Human Impacts: Concepts and Processes / 4.1:
Modeling and Simulating Environmental Risks / 4.2:
Modeling Exposure / 4.2.1:
Emission Models / 4.2.1.1:
Dispersion Models / 4.2.1.2:
Time-Activity Patterns and Exposure Models / 4.2.1.3:
Modeling Dose-Response / 4.2.2:
Measuring and Modeling Economic Impacts / 4.3:
Contingent Valuation Method / 4.3.1:
Hedonic Price Method / 4.3.2:
Measuring Environmental and Human Impacts for Environmental Justice Analysis / 4.4:
Critique and Response of a Risk-Based Approach to Equity Analysis / 4.5:
Quantifying and Projecting Population Distribution / 4.6:
Census / 5.1:
Population Measurements: Who Is Disadvantaged? / 5.2:
Race and Ethnicity / 5.2.1:
Income / 5.2.2:
Highly Susceptible of Exposed Subpopulations / 5.2.3:
Age / 5.2.4:
Housing / 5.2.5:
Education / 5.2.6:
Population Distribution / 5.3:
Population Projection and Forecast / 5.4:
Methods / 5.4.1:
Choosing the Right Method / 5.4.2:
Defining Units of Analysis / 5.5:
The Debate on Choice of Unit of Analysis / 6.1:
Census Geography: Concepts, Criteria, and Hierarchy / 6.2:
Basic Hierarchy: Standard Geographic Units / 6.2.1:
Non-Standard Geographic Units / 6.2.2:
Census Geography as a Unit of Equity Analysis: Consistency, Comparability, and Availability / 6.3:
Hierarchical Relationship and Geographic Boundary / 6.3.1:
Boundary Comparability over Time / 6.3.2:
Data Availability and Comparability over Time / 6.3.3:
Census Geography as a Unit of Equity Analysis: Which One? / 6.4:
Alternative Units of Analysis / 6.5:
Based on the Boundary of Environmental Impacts / 6.5.1:
Based on the Boundary of Sociological Neighborhood / 6.5.2:
Based on the Boundary of Economic Impacts / 6.5.3:
Based on the Administrative/Political Boundary or Judicial Opinions / 6.5.4:
Analyzing Data with Statistical Methods / 6.6:
Descriptive Statistics / 7.1:
Inferential Statistics / 7.2:
Correlation and Regression / 7.3:
Probability and Discrete Choice Models / 7.4:
Spatial Statistics / 7.5:
Applications of Statistical Methods in Environmental Justice Studies / 7.6:
Integrating, Analyzing, and Mapping Data with GIS / Chapter 8:
Spatial Measures and Concepts / 8.1:
Spatial Data / 8.1.1:
Spatial Data Structure / 8.1.2:
Distance / 8.1.3:
Centroid / 8.1.4:
Spatial Interpolation / 8.2:
Point Interpolation / 8.2.1:
Areal Interpolation / 8.2.2:
GIS-Based Units of Analysis for Equity Analysis / 8.3:
Adjacency Analysis / 8.3.1:
Buffer Analysis / 8.3.2:
Overlay and Suitability Analysis / 8.4:
GIS-Based Operationalization of Equity Criteria / 8.5:
Integrating GIS and Urban and Environmental Models / 8.6:
Modeling Urban Systems / Chapter 9:
Gravity Models, Spatial Interaction, and Entropy Maximization / 9.1:
Deterministic Utility, Random Utility, and Discrete Choice / 9.2:
Deterministic Utility and Optimization / 9.2.1:
Random Utility Theory and Discrete Choice / 9.2.2:
Policy Evaluation Measures / 9.3:
Operational Models / 9.4:
Integrating Urban and Environmental Models for Environmental Justice Analysis / 9.5:
Equity Analysis of Air Pollution / Chapter 10:
Air Quality / 10.1:
Relationship between Air Quality and Population Distribution: Theories, Methods, and Evidence / 10.2:
Theories / 10.2.1:
Residential Location Theory and Spatial Interaction / 10.2.1.1:
Risk Perception and Human Response to Air Quality / 10.2.1.2:
Theories of Neighborhood Changes / 10.2.1.3:
Evidence / 10.2.2:
Spatial Interaction Modeling Approach to Testing Environmental Inequity / 10.3:
Problem Definition / 10.3.1:
Hypothesis / 10.3.2:
Methods: Spatial Interaction Modeling Using DRAM / 10.3.3:
Index Construction and Data Preparation / 10.3.4:
Model Estimation / 10.3.5:
Results / 10.3.6:
Los Angeles / 10.3.6.1:
Houston / 10.3.6.2:
Discussions and Conclusions / 10.3.7:
Equity Analysis of National Ambient Air Quality Standards / 10.4:
Results and Discussion / 10.4.1:
Nonattainment Areas as a Whole / 10.4.3.1:
Spatial Distribution and Regional Differences / 10.4.3.2:
City vs. Non-City Nonattainment Areas / 10.4.3.3:
Major Findings / 10.4.3.4:
Implications for Environmental Policy / 10.4.3.5:
Environmental Justice Analysis of Hazardous Waste Facilities, Superfund Sites, and Toxic Release Facilities / Chapter 11:
Equity Analysis of Hazardous Waste Facilities / 11.1:
Hazardous Wastes / 11.1.1:
Cross-Sectional National Studies / 11.1.2:
Regional Studies / 11.1.2.2:
Methodological Issues / 11.1.3:
Equity Analysis of CERCLIS and Superfund Sites / 11.2:
CERCLIS and Superfund Sites / 11.2.1:
Hypotheses and Empirical Evidence / 11.2.2:
Equity Analysis of Toxic Release Facilities / 11.2.3:
Toxic Releases Inventory / 11.3.1:
National Studies and Evidence / 11.3.2:
Regional Studies and Methodological Improvements / 11.3.3:
Dynamics Analysis of Locally Unwanted Land Uses / 11.3.4:
Methodological Issues in Dynamics Analysis / 12.1:
Framework for Dynamics Analysis / 12.2:
Revisiting the Houston Case: Hypothesis Testing / 12.3:
Data / 12.3.1:
Tests / 12.3.2:
Discussion of Alternative Hypotheses / 12.3.3:
Invasion-Succession Hypothesis / 12.4.1:
Life-Cycle Hypothesis / 12.4.2:
Push Forces: Other Environmental Risks / 12.4.3:
Conclusions / 12.5:
Equity Analysis of Transportation Systems, Projects, Plans, and Policies / Chapter 13:
Environmental Impacts of Transportation Systems / 13.1:
Incorporating Equity Analysis in the Transportation Planning Process / 13.2:
Transportation System Performance Measures / 13.3:
Equity Analysis of Mobility and Accessibility / 13.4:
Concepts and Methods / 13.4.1:
Using Accessibility for Equity Analysis / 13.4.2:
Empirical Evidence about Mobility Disparity / 13.4.3:
Accessibility Disparity and Spatial Mismatch / 13.4.4:
Measuring Distributional Impacts on Property Values / 13.5:
Measuring Environmental Impacts / 13.6:
Equity Analysis of Transportation Policies / 13.7:
Environmental Justice of Transportation in Court / 13.8:
Trends and Conclusions / 13.9:
Internet-Based and Community-Based Tools / 14.1:
EPA's Environfacts / 14.1.1:
LandView III / 14.1.2:
Environmental Defense's Scorecard (http://www.scorecard.org/) / 14.1.3:
References / 14.2:
Index
Environmental Justice, Equity, and Policies / Chapter 1:
The Environmental Justice Movement / 1.1:
Environmental Justice Policies / 1.2:
72.

図書

図書
John M. Harris, Jeffry L. Hirst, Michael J. Mossinghoff
出版情報: New York, NY : Springer, c2008  xv, 381 p. ; 25 cm
シリーズ名: Undergraduate texts in mathematics
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Graph Theory / 1:
Introductory Concepts / 1.1:
Graphs and Their Relatives / 1.1.1:
The Basics / 1.1.2:
Special Types of Graphs / 1.1.3:
Distance in Graphs / 1.2:
Definitions and a Few Properties / 1.2.1:
Graphs and Matrices / 1.2.2:
Graph Models and Distance / 1.2.3:
Trees / 1.3:
Definitions and Examples / 1.3.1:
Properties of Trees / 1.3.2:
Spanning Trees / 1.3.3:
Counting Trees / 1.3.4:
Trails, Circuits, Paths, and Cycles / 1.4:
The Bridges of Konigsberg / 1.4.1:
Eulerian Trails and Circuits / 1.4.2:
Hamiltonian Paths and Cycles / 1.4.3:
Three Open Problems / 1.4.4:
Planarity / 1.5:
Euler's Formula and Beyond / 1.5.1:
Regular Polyhedra / 1.5.3:
Kuratowski's Theorem / 1.5.4:
Colorings / 1.6:
Definitions / 1.6.1:
Bounds on Chromatic Number / 1.6.2:
The Four Color Problem / 1.6.3:
Chromatic Polynomials / 1.6.4:
Matchings / 1.7:
Hall's Theorem and SDRs / 1.7.1:
The Konig-Egervary Theorem / 1.7.3:
Perfect Matchings / 1.7.4:
Ramsey Theory / 1.8:
Classical Ramsey Numbers / 1.8.1:
Exact Ramsey Numbers and Bounds / 1.8.2:
Graph Ramsey Theory / 1.8.3:
References / 1.9:
Combinatorics / 2:
Some Essential Problems / 2.1:
Binomial Coefficients / 2.2:
Multinomial Coefficients / 2.3:
The Pigeonhole Principle / 2.4:
The Principle of Inclusion and Exclusion / 2.5:
Generating Functions / 2.6:
Double Decks / 2.6.1:
Counting with Repetition / 2.6.2:
Changing Money / 2.6.3:
Fibonacci Numbers / 2.6.4:
Recurrence Relations / 2.6.5:
Catalan Numbers / 2.6.6:
Polya's Theory of Counting / 2.7:
Permutation Groups / 2.7.1:
Burnside's Lemma / 2.7.2:
The Cycle Index / 2.7.3:
Polya's Enumeration Formula / 2.7.4:
de Bruijn's Generalization / 2.7.5:
More Numbers / 2.8:
Partitions / 2.8.1:
Stirling Cycle Numbers / 2.8.2:
Stirling Set Numbers / 2.8.3:
Bell Numbers / 2.8.4:
Eulerian Numbers / 2.8.5:
Stable Marriage / 2.9:
The Gale-Shapley Algorithm / 2.9.1:
Variations on Stable Marriage / 2.9.2:
Combinatorial Geometry / 2.10:
Sylvester's Problem / 2.10.1:
Convex Polygons / 2.10.2:
Infinite Combinatorics and Graphs / 2.11:
Pigeons and Trees / 3.1:
Ramsey Revisited / 3.2:
ZFC / 3.3:
Language and Logical Axioms / 3.3.1:
Proper Axioms / 3.3.2:
Axiom of Choice / 3.3.3:
The Return of der Konig / 3.4:
Ordinals, Cardinals, and Many Pigeons / 3.5:
Cardinality / 3.5.1:
Ordinals and Cardinals / 3.5.2:
Pigeons Finished Off / 3.5.3:
Incompleteness and Cardinals / 3.6:
Godel's Theorems for PA and ZFC / 3.6.1:
Inaccessible Cardinals / 3.6.2:
A Small Collage of Large Cardinals / 3.6.3:
Weakly Compact Cardinals / 3.7:
Infinite Marriage Problems / 3.8:
Hall and Hall / 3.8.1:
Countably Many Men / 3.8.2:
Uncountably Many Men / 3.8.3:
Espousable Cardinals / 3.8.4:
Finite Combinatorics with Infinite Consequences / 3.8.5:
k-critical Linear Orderings / 3.10:
Points of Departure / 3.11:
Index / 3.12:
Preface to the Second Edition
Preface to the First Edition
Graph Theory / 1:
73.

図書

図書
Maher S. Amer
出版情報: Cambridge : Royal Society of Chemistry, c2010  xiv, 287 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no. 13
所蔵情報: loading…
目次情報: 続きを見る
Nanotechnology, the Technology of Small Thermodynamic Systems / Chapter 1:
Introduction / 1.1:
Origins of Nanotechnology / 1.2:
What Nanotechnology Is / 1.3:
What Can Nanotechnology Do For Us? / 1.3.1:
Where did the Name "Nano" Came From? / 1.3.2:
Does Every Nanosystem Have to Be so Small? / 1.3.3:
How and Why do the Properties of Matter Change by Entering the Nano-domain? / 1.3.4:
Has Nanotechnology Been Used Before? / 1.3.5:
Why did it Take us so Long to Realize the Importance of Nanotechnology? / 1.3.6:
Back to the Science / 1.4:
Large Systems and Small Systems Limits / 1.5:
Scales of Inhomogeneity / 1.6:
Thermal Gravitational Scale / 1.6.1:
Capillary Length / 1.6.2:
Tolman Length / 1.6.3:
Line Tension (?) and the (?/?) Ratio / 1.6.4:
Correlation Length (?) / 1.6.5:
Thermodynamics of Small Systems / 1.7:
Configurational Entropy of Small Systems / 1.8:
Nanophenomena / 1.9:
Optical Phenomena / 1.9.1:
Electronic Phenomena / 1.9.2:
Thermal Phenomena / 1.9.3:
Mechanical Phenomena / 1.9.4:
References
Raman Spectroscopy; (the Diagnostic Tool / Chapter 2:
Raman Phenomenon / 2.1:
General Theory of Raman Scattering / 2.3:
Raman Selection Rules / 2.4:
Vibration Modes and the Polarizability Tensor / 2.4.1:
Symmetry / 2.5:
Identity (E) / 2.5.1:
Center of Symmetry (i) / 2.5.2:
Planes of Symmetry (?) (Minor Planes) / 2.5.3:
Symmetry Elements and Symmetry Operations / 2.5.5:
Point Groups / 2.6:
Point Groups of Molecules / 2.6.1:
Point Groups of Crystals / 2.6.2:
Space Groups / 2.7:
Glide Planes / 2.7.1:
Space Groups in One- and Two-dimensional Space / 2.7.3:
Character Table / 2.8:
Symmetry Operations and Transformation of Directional Properties / 2.8.1:
Degenerate Symmetry Species (Degenerate Representations) / 2.8.2:
Symmetry Species in Linear Molecules / 2.8.3:
Classification of Normal Vibration by Symmetry / 2.8.4:
Raman Overtones and Combination Bands / 2.8.5:
Molecular and Lattice Raman Modes / 2.8.6:
Raman from an Energy Transfer Viewpoint / 2.9:
Boltzmann Distribution and its Correlation to Raman Lines / 2.10:
Perturbation Effects on Raman Bands / 2.11:
Strain Effects / 2.11.1:
Heat Effects / 2.11.2:
Hydrostatic Pressure Effects / 2.11.3:
Structural Imperfections Effects / 2.11.4:
Chemical Potentials Effects / 2.11.5:
Resonant Raman Effect / 2.12:
Calculations of Raman Band Positions / 2.13:
Polarized Raman and Band Intensity / 2.14:
Dispersion Effect / 2.15:
Instrumentation / 2.16:
Recommended General Reading
Fullerenes, the Building Blocks / Chapter 3:
Overview / 3.1:
Fullerenes, the Beginnings and Current State / 3.2:
Zero-dimensional Fullerenes: The Structure / 3.4:
Structure of the [60] Fullerene Molecule / 3.4.1:
Structure of the [70] Fullerene Molecule / 3.4.2:
Production Methods of Fullerenes / 3.5:
Huffman- Krätschmer Method / 3.5.1:
Benzene Combustion Method / 3.5.2:
Condensation Method / 3.5.3:
Extraction Methods of Fullerenes / 3.6:
Purification Methods of Fullerene / 3.7:
Fullerene Onions / 3.8:
One-dimensional Fullerene: the Structure / 3.9:
Single-walled Carbon Nanotubes (SWCNTs) / 3.9.1:
Multi-walled Carbon Nanotubes (MWCNTs) / 3.9.2:
Production of Carbon Nanotubes / 3.9.3:
Two-dimensional Fullerenes - Graphene / 3.10:
The Nano-frontier; Properties, Achievements, and Challenges / Chapter 4:
Raman Scattering of Fullerenes / 4.1:
Raman Scattering of Single-walled Carbon Nanotubes / 4.2.1:
Raman Scattering of Double- and Multi-walled Carbon Nanotubes / 4.2.4:
Raman Scattering of Graphene / 4.2.5:
Thermal Effects on Raman Scattering / 4.2.6:
Fullerene Solubility and Solvent Interactions / 4.3:
Solvent Effects on Fullerenes / 4.3.1:
Fullerene Effects on Solvents / 4.3.2:
Fullerenes under Pressure / 4.4:
Overview, Potentials, Challenges, and Concluding Remarks / 4.5:
Character Tables for Various Point Groups / Appendix 1:
General Formula for Calculating the Number of Normal Vibrations in Each Symmetry Species / Appendix 2:
Polarizability Tensors for the 32 Point Groups including the Icosahedral Group / Appendix 3:
Subject Index
Nanotechnology, the Technology of Small Thermodynamic Systems / Chapter 1:
Introduction / 1.1:
Origins of Nanotechnology / 1.2:
74.

図書

図書
Hajer Bahouri, Jean-Yves Chemin, Raphaël Danchin
出版情報: Heidelberg : Springer, c2011  xv, 523 p. ; 25 cm
シリーズ名: Die Grundlehren der mathematischen Wissenschaften ; 343
所蔵情報: loading…
目次情報: 続きを見る
Basic Analysis / 1:
Basic Real Anslysis / 1.1:
Holder and Convolution Inequslities / 1.1.1:
The Atomic Decomposition / 1.1.2:
Proof of Refined Young Inequslityp8 / 1.1.3:
A Bilinear Interpolation Theorem / 1.1.4:
A Linear Interpolation Result / 1.1.5:
The Hardy-Littlewood Maximal Function / 1.1.6:
The Fourier Transform / 1.2:
Fourier Transforms of Functions and the Schwartz Space / 1.2.1:
Tempered Distributions and the Fourier Transform / 1.2.2:
A Few Calculations of Fourier Transforms / 1.2.3:
Homogeneous Sobolev Spaces / 1.3:
Definition and Basic Properties / 1.3.1:
Sobolev Embedding in Lebesgue Spaces / 1.3.2:
The Limit Case Hd/2 / 1.3.3:
The Embedding Theorem in Hölder Spaces / 1.3.4:
Nonhomogeneous Sobolev Spaces on Rd / 1.4:
Embedding / 1.4.1:
A Density Theorem / 1.4.3:
Hardy Inequality / 1.4.4:
References and Remarks / 1.5:
Littlewood-Paley Theory / 2:
Functions with Compactly Supported Fourier Transforms / 2.1:
Bernstein-Type Lemmas / 2.1.1:
The Smoothing Effect of Heat Flow / 2.1.2:
The Action of a Diffeomorphism / 2.1.3:
The Effects of Some Nonlinear Functions / 2.1.4:
Dyadic Partition of Unity / 2.2:
Homogeneous Besov Spaces / 2.3:
Characterizations of Homogeneous Besov Spaces / 2.4:
Besov Spaces, Lebesgue Spaces, and Refined Inequalities / 2.5:
Homogeneous Paradifferential Calculus / 2.6:
Homogeneous Bony Decomposition / 2.6.1:
Action of Smooth Functions / 2.6.2:
Time-Space Besov Spaces / 2.6.3:
Nonhomogeneous Besov Spaces / 2.7:
Nonhomogeneous Paradifferential Calculus / 2.8:
The Bony Decomposition / 2.8.1:
The Paralinearization Theorem / 2.8.2:
Besov Spaces and Compact Embeddings / 2.9:
Commutator Estimates / 2.10:
Around the Space B&infty;,&infty;1 / 2.11:
Transport and Transport-Diffusion Equations / 2.12:
Ordinary Differential Equations / 3.1:
The Cauchy-Lipschitz Theorem Revisited / 3.1.1:
Estimates for the Flow / 3.1.2:
A Blow-up Criterion for Ordinary Differential Equations / 3.1.3:
Transport Equations: The Lipschitz Case / 3.2:
A Priori Estimates in General Besov Spaces / 3.2.1:
Refined Estimates in Besov Spaces with Index 0 / 3.2.2:
Solving the Transport Equation in Besov Spaces / 3.2.3:
Application to a Shallow Water Equation / 3.2.4:
Losing Estimates for Transport Equations / 3.3:
Linear Loss of Regularity in Besov Spaces / 3.3.1:
The Exponential Loss / 3.3.2:
Limited Loss of Regularity / 3.3.3:
A Few Applications / 3.3.4:
Transport-Diffusion Equations / 3.4:
A Priori Estimates / 3.4.1:
Exponential Decay / 3.4.2:
Quasilinear Symmetric Systems / 3.5:
Definition and Examples / 4.1:
Linear Symmetric Systems / 4.2:
The Well-posedness of Linear Symmetric Systems / 4.2.1:
Finite Propagation Speed / 4.2.2:
Further Well-posedness Results for Linear Symmetric Systems / 4.2.3:
The Resolution of Quasilinear Symmetric Systems / 4.3:
Paralinearization and Energy Estimates / 4.3.1:
Convergence of the Scheme / 4.3.2:
Completion of the Proof of Existence / 4.3.3:
Uniqueness and Continuation Criterion / 4.3.4:
Data with Critical Regularity and Blow-up Criteria / 4.4:
Critical Besov Regularity / 4.4.1:
A Refined Blow-up Crndition / 4.4.2:
Continuity of the Flow Map / 4.5:
The Incompressible Navier-Stokes System / 4.6:
Basic Facts Concerning the Navier-Stokes System / 5.1:
Well-posedness in Sobolev Spaces / 5.2:
A General Result / 5.2.1:
The Behavior of the Hd/2-1 Norm Near 0 / 5.2.2:
Results Related to the Structure of the System / 5.3:
The Particular Case of Dimension Two / 5.3.1:
The Case of Dimension Three / 5.3.2:
An Elementary Lp Approach / 5.4:
The Endpoint Space for Picard's Scheme / 5.5:
The Use of the L1-smoothing Effect of the Heat Flow / 5.6:
The Cannone-Meyer-Planchon Theorem Revisited / 5.6.1:
The Flow of the Solutions of the Navier-Stokes System / 5.6.2:
Anisotropic Viscosity / 5.7:
The Case of L2 Data with One Vertical Derivative in L2 / 6.1:
A Global Existence Result in Anisotropic Besov Spaces / 6.2:
Anisotropic Localization in Fourier Space / 6.2.1:
The Functional Framework / 6.2.2:
Statement of the Main Result / 6.2.3:
Some Technical Lemmas / 6.2.4:
The Proof of Existence / 6.3:
The Proof of Uniqueness / 6.4:
Euler System for Perfect Incompressible Fluids / 6.5:
Local Well-posedness Results for Inviscid Fluids / 7.1:
The Biot-Savart Law / 7.1.1:
Estimates for the Pressure / 7.1.2:
Another Formulation of the Euler System / 7.1.3:
Local Existence of Smooth Solutions / 7.1.4:
Uniqueness / 7.1.5:
Continuation Criteria / 7.1.6:
Global Existence Results in Dimension Two / 7.2:
Smooth Solutions / 7.2.1:
The Borderline Case / 7.2.2:
The Yudovich Theorem / 7.2.3:
The Inviscid Limit / 7.3:
Regularity Results for the Navier-Stokes System / 7.3.1:
The Smooth Case / 7.3.2:
The Rough Case / 7.3.3:
Viscous Vortex Patches / 7.4:
Results Related to Striated Regularity / 7.4.1:
A Stationary Estimate for the Velocity Field / 7.4.2:
Uniform Estimates for Striated Regularity / 7.4.3:
A Global Convergence Result for Striated Regularity / 7.4.4:
Application to Smooth Vortex Patches / 7.4.5:
Strichartz Estimates and Applications to Semilinear Dispersive Equations / 7.5:
Examples of Dispersive Estimates / 8.1:
The Dispersive Estimate for the Free Transport Equation / 8.1.1:
The Dispersive Estimates for the Schrdillger Equation / 8.1.2:
Integral of Oscillating Functions / 8.1.3:
Dispersive Estimates for the Wave Equation / 8.1.4:
The L2 Boundedness of Some Fourier Integral Operators / 8.1.5:
Billnear Methods / 8.2:
The Duality Method and the TT* Argument / 8.2.1:
Strichartz Estimates: The Case q > 2 / 8.2.2:
Strichartz Estimates: The Endpoint Case q = 2 / 8.2.3:
Application to the Cubic Semilinear Schrödinger Equation / 8.2.4:
Strichartz Estimates for the Wave Equation / 8.3:
The Basic Strichartz Estimate / 8.3.1:
The Refined Strichartz Estimate / 8.3.2:
The Qulntic Wave Equation in R3 / 8.4:
The Cubic Wave Equation in R3 / 8.5:
Solutions in H1 / 8.5.1:
Local and Global Well-posedness for Rough Data / 8.5.2:
The Nonlinear Interpolation Method / 8.5.3:
Application to a Class of Semilinear Wave Equations / 8.6:
Smoothing Effect in Quasilinear Wave Equations / 8.7:
A Well-posedness Result Based on an Energy Method / 9.1:
The Main Statement and the Strategy of its Proof / 9.2:
Refined Paralinearization of the Wave Equation / 9.3:
Reduction to a Microlocal Strichartz Estimate / 9.4:
Microlocal Strichartz Estimates / 9.5:
A Rather General Statement / 9.5.1:
Geometrical Optics / 9.5.2:
The Solution of the Eikonal Equation / 9.5.3:
The Transport Equation / 9.5.4:
The Approximation Theorem / 9.5.5:
The Proof of Theorem 9.16 / 9.5.6:
The Compressible Navier-Stokes System / 9.6:
About the Model / 10.1:
General Overview / 10.1.1:
The Barotropic Navier-Stokes Equations / 10.1.2:
Local Theory for Data with Critical Regularity / 10.2:
Scaling Invariance and Statement of the Main Result / 10.2.1:
Existence of a Local Solution / 10.2.2:
A Continuation Criterion / 10.2.4:
Local Theory for Data Bounded Away from the Vacuum / 10.3:
A Priori Estimates for the Linearized Momentum Equation / 10.3.1:
Global Existence for Small Data / 10.3.2:
Statement of the Results / 10.4.1:
A Spectral Analysis of the Linearized Equation / 10.4.2:
A Prioli Estimates for the Linearized Equation / 10.4.3:
Proof of Global Existence / 10.4.4:
The Incompressible Limit / 10.5:
Main Results / 10.5.1:
The Case of Small Data with Critical Regularity / 10.5.2:
The Case of Large Data with More Regularity / 10.5.3:
References / 10.6:
List of Notations
Index
Basic Analysis / 1:
Basic Real Anslysis / 1.1:
Holder and Convolution Inequslities / 1.1.1:
75.

図書

図書
Deborah D.L. Chung
出版情報: Singapore : World Scientific, c2019  xiii, 367 p. ; 24 cm
シリーズ名: Engineering materials for technological needs ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
Graphite / 1.1.1:
Diamond / 1.1.2:
Fullerene / 1.1.3:
The graphite family / 1.2:
Graphite and turbostratic carbon / 1.2.1:
Carbon fibers and nanofibers / 1.2.2:
Carbon nanotubes / 1.2.3:
Intercalated graphite / 1.2.4:
Graphite oxide / 1.2.5:
Exfoliated graphite / 1.2.6:
Flexible graphite / 1.2.7:
Graphene / 1.2.8:
Activated carbon / 1.2.9:
Carbon black / 1.2.10:
Carbon-carbon composites / 1.2.11:
The diamond family / 1.3:
Diamond-like carbon / 1.3.1:
Graphane
The fullerene family / 1.4:
References
Structure of graphite and carbon in the graphite family / 2:
Fabrication of graphite / 2.2:
Polycrytalline graphite / 2.2.1:
Graphite flakes / 2.2.2:
Pyrolytic graphite / 2.2.3:
Properties of graphite / 2.3:
Reciprocal lattice / 2.4:
Electronic energy bands / 2.5:
Magnetic energy levels / 2.6:
Electrical properties / 2.7:
Lattice vibrations / 2.8:
Graphite intercalation compounds / 2.9:
Classification of graphite intercalation compounds / 2.9.1:
Covalent intercalation compounds / 2.9.2:
Graphite oxide (graphitic acid) / 2.9.2.1:
Carbon monofluoride (graphite monofluoride) / 2.9.2.2:
Tetracarbon monofluoride / 2.9.2.3:
Ionic intercalation compounds / 2.9.3:
Graphite-halogens / 2.9.3.1:
Graphite-alkali metals / 2.9.3.2:
Graphite-acid compounds / 2.9.3.3:
Graphite-halide compounds / 2.9.3.4:
Intercalated graphite fibers / 2.9.4:
Structure and formation / 2.10:
Viscoelastic and elastomeric properties / 2.10.2:
Dielectric properties / 2.10.3:
Thermal and electrical conductivities / 2.10.4:
Adsorption and filtration behavior / 2.10.5:
Electronic structure of graphene / 2.11:
Optical behavior / 3.3:
Defects in graphene / 3.4:
Mechanical behavior / 3.5:
Preparation of graphene / 3.6:
Preparation of graphene by the cleavage of graphite / 3.6.1:
Preparation of graphene by the mechanical disintegration of intercalated graphite / 3.6.2:
Preparation of graphene by the chemical reduction of graphene oxide / 3.6.3:
Preparation of graphene by nonoxidizing liquid exfoliation / 3.6.4:
Preparation of graphene by chemical vapor deposition / 3.6.5:
Graphene yarns / 3.7:
Graphene paper / 3.8:
Graphene foam / 3.9:
Graphene ink / 3.10:
Graphene quantum dots / 3.11:
Doping of graphene / 3.12:
Hybrids of graphene and carbon nanotubes / 3.13:
Hybrids of graphene and carbon fibers / 3.14:
Hybrids of graphene and electrochemical electrode materials / 3.15:
Fabrication / 4:
Structure / 4.3:
Squish ability and compaction / 4.4:
Application in thermal interface materials / 4.5:
Application as an electrically conductive additive / 4.6:
Dielectric behavior / 4.7:
Viscoelastic behavior / 4.8:
Nanoindentation behavior / 4.8.1:
Dynamic mechanical properties / 4.8.2:
Carbon black composites / 4.9:
Competing materials / 4.10:
Market and applications / 4.11:
Structure of activated carbon / 5:
Adsorption / 5.2:
Forms of activated carbon / 5.3:
Granular activated carbon / 5.3.1:
Powdered activated carbon / 5.3.2:
Extruded activated carbon / 5.3.3:
Bead activated carbon / 5.3.4:
Activated carbon assemblies / 5.4:
Honeycomb carbon filters / 5.4.1:
Activated carbon blocks with hollow channels / 5.4.2:
Activated carbon foam / 5.4.3:
Activated carbon foam assemblies / 5.4.4:
Activated carbon fiber fabric / 5.4.5:
Activated carbon composites / 5.4.6:
Fabrication of activated carbon / 5.5:
Steam activation / 5.5.1:
Gas activation / 5.5.2:
Chemical activation / 5.5.3:
Regeneration of activated carbon / 5.6:
Processing-structure-properly relationships of activated carbon / 5.7:
Applications of activated carbon / 5.8:
Water purification / 5.8.1:
Air purification / 5.8.2:
Gas purification / 5.8.3:
Waste treatment / 5.8.4:
Carbon dioxide capture / 5.8.5:
Heat pumps and refrigeration / 5.8.6:
Electrochemical components / 5.8.7:
Catalyst support / 5.8.8:
Market of activated carbon / 5.9:
Carbon fibers / 6:
Applications and market / 6.1:
Continuous fiber assemblies / 6.3:
Discontinuous fibers / 6.4:
Microstructure / 6.5:
Continuous carbon fibers vs. other materials / 6.6:
Carbon fiber composites / 6.8:
Carbon nanofibers and nanotubes / 7:
Structure of carbon nanofibers and nanotubes / 7.1:
Properties of carbon nanofibers and nanotubes / 7.3:
Mats and yams of CNFs/CNTs / 7.4:
Mats / 7.4.1:
Fabrication of mats / 7.4.1.1:
Electrical and electromagnetic behavior of mats / 7.4.1.2:
Mechanical behavior of mats / 7.4.1.3:
Electrochemical behavior of mats / 7.4.1.4:
Yarns / 7.4.2:
Fabrication of yarns / 7.4.2.1:
Mechanical behavior of yarns / 7.4.2.2:
Assemblies involving CNTs/CNFs / 7.5:
Vertically aligned CNTs / 7.5.1:
CMF/CNT with filled core channel / 7.5.2:
CNFs/CNTs grown on carbon fibers / 7.5.3:
CNTs grown on carbon black / 7.5.4:
CNTs grown on graphene, reduced graphene oxide or exfoliated graphite / 7.5.5:
Carbon deposited on CNTs / 7.5.6:
CNTs grown on alumina / 7.5.7:
CNTs grown on silica fibers / 7.5.8:
CNFs grown on cordierite / 7.5.9:
CNTs grown on metals / 7.5.10:
CNTs attached to polymers / 7.5.11:
CNFs/CNTs mixed with electrochemical electrode material / 7.5.12:
Fabrication of carbon nanofibers and nanotubes / 7.6:
Fabrication of carbon nanofibers/nanotubes from carbonaceous gases / 7.6.1:
Fabrication of carbon nanofibers from electro spun polymer nanofibers / 7.6.2:
Graphitization of carbon nanofibers / 7.6.4:
Index / 7.7:
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
76.

図書

図書
Gautam R. Desiraju and Thomas Steiner
出版情報: Oxford : Oxford University Press, 1999  xiv, 507 p. ; 24 cm
シリーズ名: International Union of Crystallography monographs on crystallography ; 9
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
The hydrogen bond / 1.1:
Historical background / 1.1.1:
Geometrical parameters and definitions / 1.1.2:
Energetic parameters and definitions / 1.1.3:
The weak or non-conventional hydrogen bond - scope of this work / 1.2:
Classification of hydrogen bonds / 1.2.1:
The nature of the hydrogen bond interaction and its limits / 1.2.2:
Differences between strong and weak hydrogen bonds / 1.2.3:
Methods of studying weak hydrogen bonds / 1.3:
Crystal structure analysis and statistical treatment of these results / 1.3.1:
Vibrational spectroscopy / 1.3.2:
Gas-phase rotational spectroscopy / 1.3.3:
Computation / 1.3.4:
Summary / 1.4:
Archetypes of the weak hydrogen bond - C--H...O and C--H...N interactions in organic and organometallic systems / 2:
Historical developments / 2.1:
Sutor's study / 2.1.1:
The dark ages / 2.1.2:
The Taylor-Kennard paper / 2.1.3:
General properties / 2.2:
Length properties / 2.2.1:
Angular properties / 2.2.3:
C--H bond lengthening / 2.2.4:
Reduction of thermal vibrations / 2.2.5:
Computational studies and hydrogen bond energies / 2.2.6:
Cooperativity / 2.2.7:
Hardness and softness / 2.2.8:
Intramolecular phenomena / 2.2.9:
Influence on crystal packing / 2.2.10:
Repulsive and destabilizing C--H...O contacts / 2.2.11:
Weak hydrogen bonds in liquids and solution / 2.2.12:
Recapitulation / 2.2.13:
Other weak and non-conventional hydrogen bonds / 3:
[pi]-Acceptors / 3.1:
What is a [pi]-acceptor? / 3.1.1:
Solution and gas phase experiments / 3.1.2:
Phenyl groups / 3.1.3:
Alkynes / 3.1.4:
Alkenes / 3.1.5:
Heterocycles / 3.1.6:
Other [pi]-acceptors / 3.1.7:
Weak atomic acceptors / 3.2:
Group VII elements - covalent halogen / 3.2.1:
Group VI elements - S, Se and Te / 3.2.2:
Group V elements - P, As and Sb / 3.2.3:
Group IV elements - isonitriles, carbanions, carbenes and silylenes / 3.2.4:
Halide anions / 3.3:
Weak donors / 3.4:
S--H / 3.4.1:
P--H and P[superscript +]--H / 3.4.2:
Se--H, As--H and Si--H / 3.4.3:
Organometallics / 3.5:
Metal atoms as acceptors - X--H...M hydrogen bonds / 3.5.1:
Metal atom groups as donors - M--H...A hydrogen bonds / 3.5.2:
Agostic interactions - M...(H--C) / 3.5.3:
Other varieties / 3.6:
The dihydrogen bond - X--H...H--M / 3.6.1:
The inverse hydrogen bond - X--H[superscript -]...A[superscript +] / 3.6.2:
The weak hydrogen bond in supramolecular chemistry / 3.7:
The solid state - influence of weak hydrogen bonds on packing / 4.1:
The crystal as a supermolecule / 4.1.1:
Crystal structures wherein weak hydrogen bonds are important / 4.1.2:
Inclusion complexes / 4.2:
Crown ethers / 4.2.1:
Oligoaryl hosts / 4.2.2:
Cyclodextrins (cycloamyloses) / 4.2.3:
Crystal engineering - promises and problems / 4.3:
From molecular to crystal structure / 4.3.1:
The computational approach / 4.3.2:
The experimental approach - database research / 4.3.3:
Crystal engineering in practice - supramolecular synthons / 4.3.4:
Recognition in solution and related phenomena / 4.4:
Supramolecular assistance to molecular synthesis / 4.4.1:
Drug design and biological recognition / 4.4.2:
The weak hydrogen bond in biological structures / 5:
Biological structures are not time-stable / 5.1:
The crystallographic resolution problem / 5.1.2:
Peptides and proteins / 5.2:
The building blocks - amino acids / 5.2.1:
C--H...O hydrogen bonds / 5.2.2:
X--H...[pi] hydrogen bonds / 5.2.3:
Protein-ligand interactions / 5.2.4:
Enzymatic activity / 5.2.5:
Nucleic acids / 5.3:
Nucleic acid constituents / 5.3.1:
Polymeric DNA and RNA / 5.3.2:
Carbohydrates / 5.4:
Chemical constitution / 5.4.1:
Hydrogen bond geometry / 5.4.2:
Functionally important C--H...O hydrogen bonds / 5.4.3:
Water molecules / 5.5:
Organic hydrates / 5.5.1:
Are there water molecules with vacant hydrogen bond potentials? / 5.5.2:
Macromolecular structures / 5.5.3:
Conclusions / 6:
Some bibliographic statistics / Appendix:
References
Index
Acknowledgements
Introduction / 1:
The hydrogen bond / 1.1:
77.

図書

図書
Brian R. Martin, G. Shaw
出版情報: Hoboken, NJ : Wiley, 2019  xiv, 499 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Notes
Basic concepts / 1:
History / 1.1:
The origins of nuclear physics / 1.1.1:
The emergence of particle physics: hadrons and quarks / 1.1.2:
The standard model of particle physics / 1.1.3:
Relativity and antiporticles / 1.2:
Space-time symmetries and conservation laws / 1.3:
Parity / 1.3.1:
Charge conjugation / 1.3.2:
Time reversal / 1.3.3:
Interactions and Feynman diagrams / 1.4:
Interactions / 1.4.1:
Feynman diagrams / 1.4.2:
Particle exchange: forces and potentials / 1.5:
Range of forces / 1.5.1:
The Yukawa potential / 1.5.2:
Observable quantities: cross-sections and decay rates / 1.6:
Amplitudes / 1.6.1:
Cross-sections / 1.6.2:
The basic scattering formulas / 1.6.3:
Unstable states / 1.6.4:
Units / 1.7:
Problems 1
Nuclear phenomenology / 2:
Mass spectroscopy / 2.1:
Deflection spectrometers / 2.1.1:
Kinematic analysis / 2.1.2:
Penning trap measurements / 2.1.3:
Nuclear shapes and sizes / 2.2:
Charge distribution / 2.2.1:
Matter distribution / 2.2.2:
Semi-empirical mass formula: the liquid drop model / 2.3:
Binding energies / 2.3.1:
Semi-empirical mass formula / 2.3.2:
Nuclear instability / 2.4:
Decay chains / 2.5:
ß decay phenomenology / 2.6:
Odd-mass nuclei / 2.6.1:
Even-mass nuclei / 2.6.2:
Fission / 2.7:
¿ decays / 2.8:
Nuclear reactions / 2.9:
Problems 2
Particle phenomenology / 3:
Leptons / 3.1:
Lepton multiplets and lepton numbers / 3.1.1:
Universal lepton interactions; the number of neutrinos / 3.1.2:
Neutrinos / 3.1.3:
Neutrino mixing and oscillations / 3.1.4:
Oscillation experiments / 3.1.5:
Neutrino masses and mixing angles / 3.1.0:
Lepton numbers revisited / 3.1.7:
Quarks / 3.2:
Evidence for quarks / 3.2.1:
Quark generations and quark numbers / 3.2.2:
Hadrons / 3.3:
Flavour independence and charge multiplets / 3.3.1:
The simple quark model / 3.3.2:
Hadron decays and lifetimes / 3.3.3:
Hadron magnetic moments and masses / 3.3.4:
Heavy quarkonia / 3.3.5:
Allowed and exotic quantum numbers / 3.3.6:
Problems 3
Experimental methods / 4:
Overview / 4.1:
Accelerators and beams / 4.2:
DC accelerators / 4.2.1:
AC accelerators / 4.2.2:
Neutral and unstable particle beams / 4.2.3:
Particle interactions with matter / 4.3:
Short-range interactions with nuclei / 4.3.1:
Ionisation energy losses / 4.3.2:
Radiation energy losses / 4.3.3:
Interactions of photons in matter
Ranges and interaction lengths
Particle detectors / 4.4:
Gaseous ionisation detectors / 4.4.1:
Scintillation counters / 4.4.2:
Semiconductor detectors / 4.4.3:
Cerenkov counters and transition radiation / 4.4.4:
Calorimeters / 4.4.5:
Detector Systems / 4.5:
Problems 4
Quark dynamics: the strong interaction / 5:
Colour / 5.1:
Quantum chromodynamics (QCD) / 5.2:
The strong coupling constant / 5.2.1:
Screening, antiscreening and asymptotic freedom / 5.2.2:
New forms of matter / 5.3:
Exotic hadrons / 5.3.1:
The quark-gluon plasma / 5.3.2:
Jets and gluons / 5.4:
Colour counting / 5.4.1:
Deep inelastic scattering and nucleoli structure / 5.5:
Scaling / 5.5.1:
The quark-par ton model / 5.5.2:
Scaling violations and parton distributions / 5.5.3:
Inelastic neutrino scattering / 5.5.4:
Other processes / 5.0:
Jets / 5.0.1:
Lepton pair production / 5.0.2:
Current and constituent quarks / 5.7:
Problems 5
Weak interactions and electroweak unification / 6:
Charged and neutral currents / 6.1:
Charged current reactions / 6.2:
W-lepton interactions / 6.2.1:
Lepton-quark symmetry and mixing / 6.2.2:
W-boson decays / 6.2.3:
Charged current selection rules / 6.2.4:
The third generation / 6.3:
More quark mixing / 6.3.1:
Properties of the top quark / 6.3.2:
Neutral currents and the unified theory / 6.4:
Electroweak unification / 0.4.1:
The Z° vertices and electroweak reactions / 6.4.2:
Gauge invariance and the Higgs boson / 6.5:
Unification and the gauge principle / 6.5.1:
Particle masses and the Higgs held / 6.5.2:
Properties of the Higgs boson / 6.5.3:
Discovery of the Higgs boson / 6.5.4:
Problems 0
Symmetry breaking in the weak interaction / 7:
P violation, C violation, and CP conservation / 7.1:
Muon decay symmetries / 7.1.1:
Parity violation in electro weak processes / 7.1.2:
Spin structure of the weak interactions / 7.2:
Left-handed neutrinos and right-handed antineutrinos / 7.2.1:
Particles with mass: chirality / 7.2.2:
Neutral kaons: particle-antiparticle mixing and CP violation / 7.3:
CP invariance and neutral kaons / 7.3.1:
CP violation in K0L decay / 7.3.2:
Flavour oscillations and CPT invariance / 7.3.3:
CP violation and flavour oscillations in B decays / 7.4:
Direct CP violation in decay rates / 7.4.1:
B0-B0 mixing / 7.4.2:
CP violation in interference / 7.4.3:
CP violation in the standard model / 7.5:
Problems 7
Models and theories of nuclear physics / 8:
The nucleon-nucleon potential / 8.1:
Fermi gas model / 8.2:
Shell model / 8.3:
Shell structure of atoms / 8.3.1:
Nuclear shell structure and magic numbers / 8.3.2:
Spins, parities, and magnetic dipole moments
Excited states
Nonspbcrical nuclei / 8.4:
Electric quadrupole moments / 8.4.1:
Collective model / 8.4.2:
Summary of nuclear structure models / 8.5:
¿ decay / 8.6:
ß decay / 8.7:
V - A theory / 8.7.1:
Electron and positron momentum distributions / 8.7.2:
Selection rules / 8.7.3:
Applications of Fermi theory / 8.7.4:
Transition rates / 8.8:
Problems 8
Applications of nuclear and particle physics / 9:
Induced fission and chain reactions / 9.1:
Thermal fission reactors / 9.1.2:
Radioactive waste / 9.1.3:
Power from ADS systems / 9.1.4:
Fusion / 9.2:
Coulomb barrier / 9.2.1:
Fusion reaction rates / 9.2.2:
Nucleosynthesis and stellar evolution / 9.2.3:
Fusion reactors / 9.2.4:
Nuclear weapons / 9.3:
Fission devices / 9.3.1:
Fission/fusion devices / 9.3.2:
Biomedical applications / 9.4:
Radiation and living matter / 9.4.1:
Radiation therapy / 9.4.2:
Medical imaging using ionising radiation / 9.4.3:
Magnetic resonance imaging / 9.4.4:
Further applications / 9.5:
Computing and data analysis / 9.5.1:
Archaeology and geophysics / 9.5.2:
Accelerators and detectors / 9.5.3:
Industrial applications / 9.5.4:
Problems 9
Some outstanding questions and future prospects / 10:
Hadrons and nuclei / 10.1:
Hadron structure and the nuclear environment / 10.2.1:
Nuclear structure / 10.2.2:
Unification schemes / 10.3:
Grand unification / 10.3.1:
Supersymmetry / 10.3.2:
Strings and things / 10.3.3:
The nature of the neutrino / 10.4:
Neutrinoless double beta decay / 10.4.1:
Particle astrophysics / 10.5:
Neutrino astrophysics / 10.5.1:
Cosmology and dark matter / 10.5.2:
Matter antimatter asymmetry / 10.5.3:
Axioms and the strong CP problem / 10.5.4:
Some results in quantum mechanics / A:
Barrier penetration / A.1:
Density of states / A.2:
Perturbation theory and the Second Golden Rule / A.3:
Isospin formalism / A.4:
Isospin operators and quark states / A.4.1:
Hadron states / A.4.2:
Problems A
Relativistic kinematics / B:
Loreutz transformations and four-vectors / B.1:
Frames of reference / B.2:
Invariants / B.3:
Problems B
Rutherford scattering / C:
Classical physios / C.1:
Quantum mechanics / C.2:
Problems C
Gauge theories / D:
Gauge invariance and the standard model / D.1:
Electromagnetism and the gauge principle / D.1.1:
The standard model / D.1.2:
Problems D / D.2:
Short answers to selected problems / E:
References
Index
Inside Rear Cover: Table of constants and conversion factors
Preface
Notes
Basic concepts / 1:
78.

図書

図書
Wasim E. Rajput
出版情報: Boston : Artech House, c2000  xix, 422 p. ; 24 cm
シリーズ名: The Artech House telecommunication library
所蔵情報: loading…
目次情報: 続きを見る
Preface
E-Commerce-Enabled Business Paradigm / 1:
E-Commerce Business Drivers / 1.1:
E-Commerce Value Propositions / 1.2:
Customer-Oriented Propositions / 1.2.1:
Organizational Efficiencies / 1.2.2:
Revenue Generation / 1.2.3:
E-Commerce-Driven IT Strategy Realignment / 1.3:
Formulating E-Commerce System Requirements / 1.3.1:
Instituting IT Processes / 1.3.2:
Operational Infrastructure / 1.3.3:
Intraorganization IT and Business Alignment / 1.3.4:
Formulating a Technology Architecture / 1.3.5:
Intelligently Embracing the E-Commerce Glut / 1.3.6:
Characteristics of E-Commerce Systems / 1.4:
Functional Characteristics / 1.4.1:
Infrastructural Characteristics / 1.4.2:
E-Commerce Business Domains and Respective E-Commerce Systems Requirements / 1.5:
Business-to-Consumer Application Domain / 1.5.1:
Intraenterprise Application Domain / 1.5.2:
Business-to-Business Application Domain / 1.5.3:
E-Commerce Technology Architecture / 1.6:
Information Appliances / 2:
Overview and Background / 2.1:
Services Provided by Information Appliances / 2.1.1:
Enabling Characteristics of Information Appliances / 2.2:
E-Commerce Content / 2.3:
Understanding Content / 2.3.1:
Content Handlers / 2.3.2:
Content Technologies / 2.3.3:
Choice of Information Appliances / 2.4:
Wireless Telephones / 2.4.1:
Pagers / 2.4.2:
PCs/Workstations / 2.4.3:
Handheld PCs (HPCs) / 2.4.4:
Set-Top Boxes/Internet Receivers / 2.4.5:
Network Computers / 2.4.6:
AutoPC / 2.4.7:
Information Appliance System Software and Technologies / 2.5:
Operating Systems and Environments / 2.5.1:
Information Appliance Connectivity Technologies / 2.5.2:
Matching Information Appliance Features With Business Process Requirements / 2.6:
Requirements Analysis / 2.6.1:
Business Process Considerations / 2.6.2:
Technology Infrastructure Considerations / 2.6.3:
E-Commerce Systems Computing Networks / 3:
Network Computing Technologies / 3.1:
Wireline Technologies / 3.1.1:
Wireless Technologies / 3.1.2:
Internet Backbone / 3.2:
Internet Network Topology / 3.2.1:
Internet Network Services / 3.2.2:
Wireless Network Backbones / 3.3:
Wireless Topology / 3.3.1:
Wireless Network Services / 3.3.2:
Paging Network Backbone / 3.4:
Paging Network Topology / 3.4.1:
Paging Network Services / 3.4.2:
Integrated Network Services / 3.5:
Sprint's Integrated On-Demand Network (ION) / 3.5.1:
Wireless Knowledge Services / 3.5.2:
Formulating the Enterprise Virtual Network Architecture / 3.6:
E-Commerce Systems' Network Requirements Assessment / 3.6.1:
NSP/ISP Selection Criteria / 3.6.2:
E-Commerce Services and Application Repositories / 4:
Application Access Gateways / 4.1:
Web Servers / 4.1.1:
Interactive Voice Response (IVR) Gateways / 4.1.2:
Internet Telephony Gateways / 4.1.3:
Wireless Gateways for Web Access / 4.1.4:
E-Mail Gateways / 4.1.5:
Webcasting / 4.1.6:
E-Commerce Solutions / 4.2:
E-Commerce Applications / 4.2.1:
E-Commerce Business Standards / 4.2.2:
Enabling ERP Systems and Legacy Applications for E-Commerce / 4.3:
Web-Enabling Backend Systems / 4.3.1:
Enabling Backend Systems for Nonbrowser-Based Access / 4.3.2:
Knowledge Repositories / 4.4:
Identification of Knowledge and Content Sources / 4.4.1:
Knowledge Capture / 4.4.2:
Knowledge Organization and Access / 4.4.3:
Using Search Engines for Knowledge Retrieval / 4.4.4:
Live Agent Services / 4.5:
Enabling Call Centers for Various Electronic Channels / 4.5.1:
Establish Call Routing Infrastructure / 4.5.2:
Empowering Service Representatives With Appropriate Tools and Information / 4.5.3:
Establishing E-Commerce Application Access Infrastructure / 5:
Extranets / 5.1:
Classification of Extranets / 5.1.1:
Development and Deployment of Extranets / 5.1.2:
Applications Access Through Portals / 5.2:
Classification of Portals / 5.2.1:
Development of Portals / 5.2.2:
E-Commerce Systems Operational Management and Control / 5.3:
Network and Systems Management Issues / 5.3.1:
Standards and Technologies / 5.3.2:
Formulating an E-Commerce Operational Management Strategy / 5.3.3:
E-Commerce Hosting / 5.4:
E-Commerce Systems Technology Infrastructure / 6:
E-Commerce Systems Middleware / 6.1:
Middleware Frameworks / 6.1.1:
Transaction Processing Middleware / 6.1.2:
Communication Middleware / 6.1.3:
Database Middleware / 6.1.4:
Application Middleware / 6.1.5:
Directory Services: Glue for E-Commerce Systems / 6.2:
Centralization of Directory Services Through Metadirectories / 6.2.1:
Directory Services Requirements for E-Commerce Systems / 6.2.2:
Popular Directory Services / 6.2.3:
Internet Domain Name Service (DNS) / 6.3:
DNS Structure / 6.3.1:
History of DNS Operations and Organization Control / 6.3.2:
Future Directions for DNS Operations / 6.3.3:
Enabling Groupware for E-Commerce and the Internet / 6.4:
Group Communications / 6.4.1:
Group Information Sharing and Collaboration / 6.4.2:
Workflow / 6.4.3:
E-Commerce Application Development Standards / 6.5:
Java Servlets / 6.5.1:
Enterprise Java Beans (EJB) / 6.5.2:
Active Server Pages (ASP) / 6.5.3:
Java Server Pages (JSP) / 6.5.4:
The E-Commerce Payment Infrastructure / 7:
Federal Reserve System / 7.1:
Automated Clearing House (ACH) / 7.1.1:
Fedwire / 7.1.2:
Credit Card Payments / 7.2:
Credit Card Process Flow / 7.2.1:
Secure Socket Layer (SSL)-Based Internet Payments / 7.2.2:
Secure Electronic Transactions (SET)-Based Internet Payments / 7.2.3:
Electronic Cash / 7.3:
Mondex / 7.3.1:
VISA Cash / 7.3.2:
Electronic Check Processing and ATM-Based Banking / 7.4:
Check Processing Flow / 7.4.1:
FSTC Electronic Check / 7.4.2:
ATMs / 7.4.3:
Payment Models / 7.5:
Electronic Wallets / 7.5.1:
Electronic Bill Presentment and Payment (EBPP) / 7.5.2:
E-Commerce Systems Security / 8:
Security Services and Technologies / 8.1:
Confidentiality / 8.1.1:
Access Control / 8.1.2:
Integrity / 8.1.3:
Availability / 8.1.4:
Nonrepudiation / 8.1.5:
Network Security / 8.2:
Network Security Technologies / 8.2.1:
Security for Various Network Topologies / 8.2.2:
Platform Security / 8.3:
Establishing Controls for Platform Access / 8.3.1:
Proper Configuration of the Computing Platform / 8.3.2:
Protecting the Integrity of Platform Applications and Data / 8.3.3:
The Certificate Authority (CA) Infrastructure / 8.4:
Public CA Services / 8.4.1:
Registration Authorities (RAs) / 8.4.2:
Building Internal PKI Services / 8.4.3:
E-Commerce Systems Security--Cost and Risk Assessment / 8.5:
Information Security-Related Costs / 8.5.1:
Information Security Risk Assessment / 8.5.2:
E-Commerce Systems Security Controls Enforcement / 8.6:
Formulating an Enterprise's Information Security Policy / 8.6.1:
Controlling Software Processes / 8.6.2:
Formulating Security Administration Processes / 8.6.3:
Managing E-Commerce Systems Implementation Risks / 9:
Business Process Alignment / 9.1:
E-Commerce-Relevant Organizational Policies / 9.1.1:
Measuring Business Performance / 9.1.2:
IT Process Alignment / 9.2:
E-Commerce Project Management / 9.2.1:
Software Product Engineering / 9.2.2:
Intergroup Coordination / 9.2.3:
Capturing and Retaining Customers / 9.3:
Internet Advertising / 9.3.1:
Customer Retention / 9.3.2:
Using SLAs to Manage Outsourced Services / 9.4:
ISP/NSP/Data Center SLAs / 9.4.1:
Software Development SLAs / 9.4.2:
Understanding E-Commerce Legal and Regulatory Issues / 9.5:
E-Commerce Privacy Issues / 9.5.1:
E-Commerce Piracy Issues / 9.5.2:
Index
Preface
E-Commerce-Enabled Business Paradigm / 1:
E-Commerce Business Drivers / 1.1:
79.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
80.

図書

図書
John Y. Campbell, Andrew W. Lo, A. Craig MacKinlay
出版情報: Princeton, N.J. : Princeton University Press, c1997  xviii, 611 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Introduction / 1:
Organization of the Book / 1.1:
Useful Background / 1.2:
Mathematics Background / 1.2.1:
Probability and Statistics Background / 1.2.2:
Finance Theory Background / 1.2.3:
Notation / 1.3:
Prices, Returns, and Compounding / 1.4:
Definitions and Conventions / 1.4.1:
The Marginal, Conditional, and Joint Distribution of Returns / 1.4.2:
Market Efficiency / 1.5:
Efficient Markets and the Law of Iterated Expectations / 1.5.1:
Is Market Efficiency Testable? / 1.5.2:
The Predictability of Asset Returns / 2:
The Random Walk Hypotheses / 2.1:
The Random Walk 1: IID Increments / 2.1.1:
The Random Walk 2: Independent Increments / 2.1.2:
The Random Walk 3: Uncorrelated Increments / 2.1.3:
Tests of Random Walk 1: IID Increments / 2.2:
Traditional Statistical Tests / 2.2.1:
Sequences and Reversals, and Runs / 2.2.2:
Tests of Random Walk 2: Independent Increments / 2.3:
Filter Rules / 2.3.1:
Technical Analysis / 2.3.2:
Tests of Random Walk 3: Uncorrelated Increments / 2.4:
Autocorrelation Coefficients / 2.4.1:
Portmanteau Statistics / 2.4.2:
Variance Ratios / 2.4.3:
Long-Horizon Returns / 2.5:
Problems with Long-Horizon Inferences / 2.5.1:
Tests For Long-Range Dependence / 2.6:
Examples of Long-Range Dependence / 2.6.1:
The Hurst-Mandelbrot Rescaled Range Statistic / 2.6.2:
Unit Root Tests / 2.7:
Recent Empirical Evidence / 2.8:
Autocorrelations / 2.8.1:
Cross-Autocorrelations and Lead-Lag Relations / 2.8.2:
Tests Using Long-Horizon Returns / 2.8.4:
Conclusion / 2.9:
Market Microstructure / 3:
Nonsynchronous Trading / 3.1:
A Model of Nonsynchronous Trading / 3.1.1:
Extensions and Generalizations / 3.1.2:
The Bid-Ask Spread / 3.2:
Bid-Ask Bounce / 3.2.1:
Components of the Bid-Ask Spread / 3.2.2:
Modeling Transactions Data / 3.3:
Motivation / 3.3.1:
Rounding and Barrier Models / 3.3.2:
The Ordered Probit Model / 3.3.3:
Recent Empirical Findings / 3.4:
Estimating the Effective Bid-Ask Spread / 3.4.1:
Transactions Data / 3.4.3:
Outline of an Event Study / 3.5:
An Example of an Event Study / 4.2:
Models fo / 4.3:
List of Figures
List of Tables
Preface
81.

図書

図書
Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl
出版情報: Weinheim : Wiley-VCH, c2006  xii, 386 p. ; 24 cm
シリーズ名: Physics textbook
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Liquid surfaces / 2:
Microscopic picture of the liquid surface / 2.1:
Surface tension / 2.2:
Equation of Young and Laplace / 2.3:
Curved liquid surfaces / 2.3.1:
Derivation of the Young-Laplace equation / 2.3.2:
Applying the Young-Laplace equation / 2.3.3:
Techniques to measure the surface tension / 2.4:
The Kelvin equation / 2.5:
Capillary condensation / 2.6:
Nucleation theory / 2.7:
Summary / 2.8:
Exercises / 2.9:
Thermodynamics of interfaces / 3:
The surface excess / 3.1:
Fundamental thermodynamic relations / 3.2:
Internal energy and Helmholtz energy / 3.2.1:
Equilibrium conditions / 3.2.2:
Location of the interface / 3.2.3:
Gibbs energy and definition of the surface tension / 3.2.4:
Helmholtz surface energy, interfacial enthalpy, and Gibbs surface energy / 3.2.5:
The surface tension of pure liquids / 3.3:
Gibbs adsorption isotherm / 3.4:
Derivation / 3.4.1:
System of two components / 3.4.2:
Experimental aspects / 3.4.3:
The Marangoni effect / 3.4.4:
The electric double layer / 3.5:
Poisson-Boltzmann theory of the diffuse double layer / 4.1:
The Poisson-Boltzmann equation / 4.2.1:
Planar surfaces / 4.2.2:
The full one-dimensional case / 4.2.3:
The Grahame equation / 4.2.4:
Capacity of the diffuse electric double layer / 4.2.5:
Beyond Poisson-Boltzmann theory / 4.3:
Limitations of the Poisson-Boltzmann theory / 4.3.1:
The Stern layer / 4.3.2:
The Gibbs free energy of the electric double layer / 4.4:
Effects at charged interfaces / 4.5:
Electrocapillarity / 5.1:
Theory / 5.1.1:
Measurement of electrocapillarity / 5.1.2:
Examples of charged surfaces / 5.2:
Mercury / 5.2.1:
Silver iodide / 5.2.2:
Oxides / 5.2.3:
Mica / 5.2.4:
Semiconductors / 5.2.5:
Measuring surface charge densities / 5.3:
Potentiometric colloid titration / 5.3.1:
Capacitances / 5.3.2:
Electrokinetic phenomena: The zeta potential / 5.4:
The Navier-Stokes equation / 5.4.1:
Electro-osmosis and streaming potential / 5.4.2:
Electrophoresis and sedimentation potential / 5.4.3:
Types of potentials / 5.5:
Surface forces / 5.6:
Van der Waals forces between molecules / 6.1:
The van der Waals force between macroscopic solids / 6.2:
Microscopic approach / 6.2.1:
Macroscopic calculation - Lifshitz theory / 6.2.2:
Surface energy and Hamaker constant / 6.2.3:
Concepts for the description of surface forces / 6.3:
The Derjaguin approximation / 6.3.1:
The disjoining pressure / 6.3.2:
Measurement of surface forces / 6.4:
The electrostatic double-layer force / 6.5:
General equations / 6.5.1:
Electrostatic interaction between two identical surfaces / 6.5.2:
The DLVO theory / 6.5.3:
Beyond DLVO theory / 6.6:
The solvation force and confined liquids / 6.6.1:
Non DLVO forces in an aqueous medium / 6.6.2:
Steric and depletion interaction / 6.7:
Properties of polymers / 6.7.1:
Force between polymer coated surfaces / 6.7.2:
Depletion forces / 6.7.3:
Spherical particles in contact / 6.8:
Contact angle phenomena and wetting / 6.9:
Young's equation / 7.1:
The contact angle / 7.1.1:
The line tension / 7.1.2:
Complete wetting and wetting transitions / 7.1.4:
Important wetting geometries / 7.2:
Capillary rise / 7.2.1:
Particles in the liquid-gas interface / 7.2.2:
Network of fibers / 7.2.3:
Measurement of the contact angle / 7.3:
Experimental methods / 7.3.1:
Hysteresis in contact angle measurements / 7.3.2:
Surface roughness and heterogeneity / 7.3.3:
Theoretical aspects of contact angle phenomena / 7.4:
Dynamics of wetting and dewetting / 7.5:
Wetting / 7.5.1:
Dewetting / 7.5.2:
Applications / 7.6:
Flotation / 7.6.1:
Detergency / 7.6.2:
Microfluidics / 7.6.3:
Adjustable wetting / 7.6.4:
Solid surfaces / 7.7:
Description of crystalline surfaces / 8.1:
The substrate structure / 8.2.1:
Surface relaxation and reconstruction / 8.2.2:
Description of adsorbate structures / 8.2.3:
Preparation of clean surfaces / 8.3:
Thermodynamics of solid surfaces / 8.4:
Surface stress and surface tension / 8.4.1:
Determination of the surface energy / 8.4.2:
Surface steps and defects / 8.4.3:
Solid-solid interfaces / 8.5:
Microscopy of solid surfaces / 8.6:
Optical microscopy / 8.6.1:
Electron microscopy / 8.6.2:
Scanning probe microscopy / 8.6.3:
Diffraction methods / 8.7:
Diffraction patterns of two-dimensional periodic structures / 8.7.1:
Diffraction with electrons, X-rays, and atoms / 8.7.2:
Spectroscopic methods / 8.8:
Spectroscopy using mainly inner electrons / 8.8.1:
Spectroscopy with outer electrons / 8.8.2:
Secondary ion mass spectrometry / 8.8.3:
Adsorption / 8.9:
Definitions / 9.1:
The adsorption time / 9.1.2:
Classification of adsorption isotherms / 9.1.3:
Presentation of adsorption isotherms / 9.1.4:
Thermodynamics of adsorption / 9.2:
Heats of adsorption / 9.2.1:
Differential quantities of adsorption and experimental results / 9.2.2:
Adsorption models / 9.3:
The Langmuir adsorption isotherm / 9.3.1:
The Langmuir constant and the Gibbs energy of adsorption / 9.3.2:
Langmuir adsorption with lateral interactions / 9.3.3:
The BET adsorption isotherm / 9.3.4:
Adsorption on heterogeneous surfaces / 9.3.5:
The potential theory of Polanyi / 9.3.6:
Experimental aspects of adsorption from the gas phase / 9.4:
Measurement of adsorption isotherms / 9.4.1:
Procedures to measure the specific surface area / 9.4.2:
Adsorption on porous solids - hysteresis / 9.4.3:
Special aspects of chemisorption / 9.4.4:
Adsorption from solution / 9.5:
Surface modification / 9.6:
Chemical vapor deposition / 10.1:
Soft matter deposition / 10.3:
Self-assembled monolayers / 10.3.1:
Physisorption of Polymers / 10.3.2:
Polymerization on surfaces / 10.3.3:
Plasma polymerization / 10.3.4:
Etching techniques / 10.4:
Lithography / 10.5:
Friction, lubrication, and wear / 10.6:
Friction / 11.1:
Amontons' and Coulomb's Law / 11.1.1:
Static, kinetic, and stick-slip friction / 11.1.3:
Rolling friction / 11.1.4:
Friction and adhesion / 11.1.5:
Experimental Aspects / 11.1.6:
Techniques to measure friction / 11.1.7:
Macroscopic friction / 11.1.8:
Microscopic friction / 11.1.9:
Lubrication / 11.2:
Hydrodynamic lubrication / 11.2.1:
Boundary lubrication / 11.2.2:
Thin film lubrication / 11.2.3:
Lubricants / 11.2.4:
Wear / 11.3:
Surfactants, micelles, emulsions, and foams / 11.4:
Surfactants / 12.1:
Spherical micelles, cylinders, and bilayers / 12.2:
The critical micelle concentration / 12.2.1:
Influence of temperature / 12.2.2:
Thermodynamics of micellization / 12.2.3:
Structure of surfactant aggregates / 12.2.4:
Biological membranes / 12.2.5:
Macroemulsions / 12.3:
General properties / 12.3.1:
Formation / 12.3.2:
Stabilization / 12.3.3:
Evolution and aging / 12.3.4:
Coalescence and demulsification / 12.3.5:
Microemulsions / 12.4:
Size of droplets / 12.4.1:
Elastic properties of surfactant films / 12.4.2:
Factors influencing the structure of microemulsions / 12.4.3:
Foams / 12.5:
Classification, application and formation / 12.5.1:
Structure of foams / 12.5.2:
Soap films / 12.5.3:
Evolution of foams / 12.5.4:
Thin films on surfaces of liquids / 12.6:
Phases of monomolecular films / 13.1:
Experimental techniques to study monolayers / 13.3:
Optical methods / 13.3.1:
X-ray reflection and diffraction / 13.3.2:
The surface potential / 13.3.3:
Surface elasticity and viscosity / 13.3.4:
Langmuir-Blodgett transfer / 13.4:
Thick films - spreading of one liquid on another / 13.5:
Solutions to exercises / 13.6:
Appendix
Analysis of diffraction patterns / A:
Diffraction at three dimensional crystals / A.1:
Bragg condition / A.1.1:
Laue condition / A.1.2:
The reciprocal lattice / A.1.3:
Ewald construction / A.1.4:
Diffraction at Surfaces / A.2:
Intensity of diffraction peaks / A.3:
Symbols and abbreviations / B:
Bibliography
Index
Preface
Introduction / 1:
Liquid surfaces / 2:
82.

図書

図書
David A. Watt ; with contributions by William Findlay
出版情報: Chichester : John Wiley & Sons, c2004  xviii, 473 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Part I:
Programming languages / 1:
Programming linguistics / 1.1:
Concepts and paradigms / 1.1.1:
Syntax, semantics, and pragmatics / 1.1.2:
Language processors / 1.1.3:
Historical development / 1.2:
Summary
Further reading
Exercises
Basic Concepts / Part II:
Values and types / 2:
Types / 2.1:
Primitive types / 2.2:
Built-in primitive types / 2.2.1:
Defined primitive types / 2.2.2:
Discrete primitive types / 2.2.3:
Composite types / 2.3:
Cartesian products, structures, and records / 2.3.1:
Mappings, arrays, and functions / 2.3.2:
Disjoint unions, discriminated records, and objects / 2.3.3:
Recursive types / 2.4:
Lists / 2.4.1:
Strings / 2.4.2:
Recursive types in general / 2.4.3:
Type systems / 2.5:
Static vs dynamic typing / 2.5.1:
Type equivalence / 2.5.2:
The Type Completeness Principle / 2.5.3:
Expressions / 2.6:
Literals / 2.6.1:
Constructions / 2.6.2:
Function calls / 2.6.3:
Conditional expressions / 2.6.4:
Iterative expressions / 2.6.5:
Constant and variable accesses / 2.6.6:
Implementation notes / 2.7:
Representation of primitive types / 2.7.1:
Representation of Cartesian products / 2.7.2:
Representation of arrays / 2.7.3:
Representation of disjoint unions / 2.7.4:
Representation of recursive types / 2.7.5:
Variables and storage / 3:
Simple variables / 3.1:
Composite variables / 3.3:
Total vs selective update / 3.3.1:
Static vs dynamic vs flexible arrays / 3.3.2:
Copy semantics vs reference semantics / 3.4:
Lifetime / 3.5:
Global and local variables / 3.5.1:
Heap variables / 3.5.2:
Persistent variables / 3.5.3:
Pointers / 3.6:
Pointers and recursive types / 3.6.1:
Dangling pointers / 3.6.2:
Commands / 3.7:
Skips / 3.7.1:
Assignments / 3.7.2:
Proper procedure calls / 3.7.3:
Sequential commands / 3.7.4:
Collateral commands / 3.7.5:
Conditional commands / 3.7.6:
Iterative commands / 3.7.7:
Expressions with side effects / 3.8:
Command expressions / 3.8.1:
Expression-oriented languages / 3.8.2:
Storage for global and local variables / 3.9:
Storage for heap variables / 3.9.2:
Representation of dynamic and flexible arrays / 3.9.3:
Bindings and scope / 4:
Bindings and environments / 4.1:
Scope / 4.2:
Block structure / 4.2.1:
Scope and visibility / 4.2.2:
Static vs dynamic scoping / 4.2.3:
Declarations / 4.3:
Type declarations / 4.3.1:
Constant declarations / 4.3.2:
Variable declarations / 4.3.3:
Procedure definitions / 4.3.4:
Collateral declarations / 4.3.5:
Sequential declarations / 4.3.6:
Recursive declarations / 4.3.7:
Scopes of declarations / 4.3.8:
Blocks / 4.4:
Block commands / 4.4.1:
Block expressions / 4.4.2:
The Qualification Principle / 4.4.3:
Procedural abstraction / 5:
Function procedures and proper procedures / 5.1:
Function procedures / 5.1.1:
Proper procedures / 5.1.2:
The Abstraction Principle / 5.1.3:
Parameters and arguments / 5.2:
Copy parameter mechanisms / 5.2.1:
Reference parameter mechanisms / 5.2.2:
The Correspondence Principle / 5.2.3:
Implementation of procedure calls / 5.3:
Implementation of parameter mechanisms / 5.3.2:
Advanced Concepts / Part III:
Data abstraction / 6:
Program units, packages, and encapsulation / 6.1:
Packages / 6.1.1:
Encapsulation / 6.1.2:
Abstract types / 6.2:
Objects and classes / 6.3:
Classes / 6.3.1:
Subclasses and inheritance / 6.3.2:
Abstract classes / 6.3.3:
Single vs multiple inheritance / 6.3.4:
Interfaces / 6.3.5:
Representation of objects / 6.4:
Implementation of method calls / 6.4.2:
Generic abstraction / 7:
Generic units and instantiation / 7.1:
Generic packages in ADA / 7.1.1:
Generic classes in C++ / 7.1.2:
Type and class parameters / 7.2:
Type parameters in ADA / 7.2.1:
Type parameters in C++ / 7.2.2:
Class parameters in JAVA / 7.2.3:
Implementation of ADA generic units / 7.3:
Implementation of C++ generic units / 7.3.2:
Implementation of JAVA generic units / 7.3.3:
Inclusion polymorphism / 8:
Types and subtypes / 8.1.1:
Classes and subclasses / 8.1.2:
Parametric polymorphism / 8.2:
Polymorphic procedures / 8.2.1:
Parameterized types / 8.2.2:
Type inference / 8.2.3:
Overloading / 8.3:
Type conversions / 8.4:
Implementation of parametric polymorphism / 8.5:
Control flow / 9:
Sequencers / 9.1:
Jumps / 9.2:
Escapes / 9.3:
Exceptions / 9.4:
Implementation of jumps and escapes / 9.5:
Implementation of exceptions / 9.5.2:
Concurrency / 10:
Why concurrency? / 10.1:
Programs and processes / 10.2:
Problems with concurrency / 10.3:
Nondeterminism / 10.3.1:
Speed dependence / 10.3.2:
Deadlock / 10.3.3:
Starvation / 10.3.4:
Process interactions / 10.4:
Independent processes / 10.4.1:
Competing processes / 10.4.2:
Communicating processes / 10.4.3:
Concurrency primitives / 10.5:
Process creation and control / 10.5.1:
Interrupts / 10.5.2:
Spin locks and wait-free algorithms / 10.5.3:
Events / 10.5.4:
Semaphores / 10.5.5:
Messages / 10.5.6:
Remote procedure calls / 10.5.7:
Concurrent control abstractions / 10.6:
Conditional critical regions / 10.6.1:
Monitors / 10.6.2:
Rendezvous / 10.6.3:
Paradigms / Part IV:
Imperative programming / 11:
Key concepts / 11.1:
Pragmatics / 11.2:
A simple spellchecker / 11.2.1:
Case study: C / 11.3:
Variables, storage, and control / 11.3.1:
Independent compilation / 11.3.3:
Preprocessor directives / 11.3.6:
Function library / 11.3.7:
Case study: Ada / 11.3.8:
Separate compilation / 11.4.1:
Package library / 11.4.8:
Object-oriented programming / 11.4.9:
Case study: C++ / 12.1:
Independent compilation and preprocessor directives / 12.3.1:
Class and template library / 12.3.8:
Case study: Java / 12.3.9:
Separate compilation and dynamic linking / 12.4.1:
Class library / 12.4.8:
Case study: Ada95 / 12.4.9:
Concurrent programming / 12.5.1:
Process creation and termination / 13.1:
Mutual exclusion / 13.3.2:
Admission control / 13.3.3:
Scheduling away deadlock / 13.3.4:
Functional programming / 13.4:
Eager vs normal-order vs lazy evaluation / 14.1:
Case study: Haskell / 14.2:
Lazy evaluation / 14.3.1:
Modeling state / 14.3.5:
Logic programming / 14.3.8:
Case study: Prolog / 15.1:
Values, variables, and terms / 15.3.1:
Assertions and clauses / 15.3.2:
Relations / 15.3.3:
The closed-world assumption / 15.3.4:
Control / 15.3.5:
Input/output / 15.3.7:
Scripting / 15.3.8:
Regular expressions / 16.1:
Case study: Python / 16.3:
Module library / 16.3.1:
Conclusion / Part V:
Language selection / 17:
Criteria / 17.1:
Evaluation / 17.2:
Language design / 18:
Selection of concepts / 18.1:
Regularity / 18.2:
Simplicity / 18.3:
Efficiency / 18.4:
Syntax / 18.5:
Language life cycles / 18.6:
The future / 18.7:
Bibliography
Glossary
Index
Preface
Introduction / Part I:
Programming languages / 1:
83.

図書

図書
Yogesh Jaluria, Kenneth E. Torrance
出版情報: New York, N.Y. ; London : Taylor & Francis, 2003  xv, 544 p ; 24 cm
シリーズ名: Series in computational methods in mechanics and thermal sciences
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Introduction / 1:
Thermal Transport / 1.1:
Mass Transfer and Fluid Flow / 1.2:
An Example / 1.3:
Importance of Analytical and Experimental Methods / 1.4:
Numerical Approach / 1.5:
Basic Considerations in a Numerical Solution / 1.6:
Outline and Scope of the Book / 1.7:
References
Mathematical Background / Part 1:
Governing Equations / 2:
Classification / 2.1:
Representative Differential Equations from Heat Transfer and Fluid Flow / 2.2:
Boundary and Initial Conditions / 2.3:
Integral Forms / 2.4:
Numerical Solution / 2.5:
Basic Equations / 2.5.1:
Different Approaches / 2.5.2:
Problems
Finite Differences / 3:
Basic Concepts / 3.1:
Direct Approximation Approach / 3.1.1:
Polynomial Representation / 3.1.2:
Taylor Series Approach and Accuracy / 3.1.3:
Control Volume Approach and Conservation / 3.1.4:
Numerical Considerations / 3.1.5:
Total Truncation Error / 3.1.5.1:
Discretization and Roundoff Errors / 3.1.5.2:
Convergence / 3.1.5.3:
Numerical Stability and the Equivalence Theorem / 3.1.5.4:
Steady-State Diffusion / 3.2:
Discretization / 3.2.1:
Solution of Simultaneous Equations / 3.2.2:
Iterative Methods / 3.2.2.1:
Direct Methods / 3.2.2.2:
Transient Diffusion / 3.3:
Two-Level Time Discretization / 3.3.1:
Matrix Stability Analysis / 3.3.2:
Fourier Series Stability Analysis / 3.3.3:
An Example of Numerical Instability / 3.3.4:
Other Explicit and Implicit Schemes / 3.3.5:
Finite Elements / 4:
Interpolation Functions / 4.1:
Integral Representations and Galerkin's Method / 4.1.3:
Assembly / 4.1.4:
Elements / 4.1.5:
Condensation and Substructuring / 4.1.6:
Practical Implementation / 4.1.7:
Matrix Equations with Boundary Conditions / 4.2:
One-Dimensional Diffusion / 4.2.2:
Two-Dimensional Diffusion / 4.2.3:
Typical FEM Solutions / 4.2.4:
The Matrix System / 4.3:
Finite Differences in Time / 4.3.2:
Diagonalization / 4.3.3:
Transient One-Dimensional Diffusion / 4.3.4:
Other Methods and Solutions / 4.3.5:
Simulation of Transport Processes / Part 2:
Numerical Methods for Conduction Heat Transfer / 5:
Numerical Solution of Steady-State Conduction / 5.1:
One-Dimensional Conduction / 5.2.1:
Finite Difference Approximation of the Boundary Conditions / 5.2.1.1:
An Example: Numerical Solution of Heat Transfer in an Extended Surface / 5.2.1.3:
Runge-Kutta Methods / 5.2.1.4:
Finite Difference Method / 5.2.1.5:
Multidimensional Steady-State Conduction / 5.2.2:
Finite Difference Formulation / 5.2.2.1:
Solution: Iterative and Direct Methods / 5.2.2.2:
Improvement in Accuracy of Numerical Results / 5.2.2.3:
Finite Element Formulation / 5.2.2.4:
Variable Property and Other Considerations / 5.2.3:
Numerical Solution of Unsteady-State Conduction / 5.3:
One-Dimensional Unsteady-State Conduction / 5.3.1:
FTCS Explicit Method / 5.3.1.1:
Other Methods / 5.3.1.2:
Numerical Approximation of Lumped Mass and Semi-infinite Solids / 5.3.2:
Multidimensional Unsteady-State Conduction / 5.3.3:
Numerical Methods for Time-Varying Boundary Conditions / 5.3.4:
Property Variation / 5.3.5:
Finite Element Solution / 5.3.6:
Grid Generation / 5.4:
Summary / 5.5:
Numerical Methods for Convection Heat Transfer / 6:
Computation of Forced Convection with Constant Fluid Properties / 6.1:
Inviscid Flow: Introduction to Stream Function and Vorticity / 6.2.1:
Equations for Viscous Flow: Primitive and Derived Variables / 6.2.2:
Linear Viscous Flow (Creeping Flow) / 6.2.3:
Computation of Boundary Layer Flows / 6.2.4:
Similarity Solution: Ordinary Differential Equations / 6.2.4.1:
Finite Difference Approach / 6.2.4.2:
Numerical Solution of the Full Equations / 6.2.5:
Central Differencing / 6.2.5.1:
Upwind, Hybrid and Other Lower-Order Differencing Schemes / 6.2.5.2:
Higher-Order Differencing Schemes for Convection / 6.2.5.3:
Other Numerical Methods and Considerations / 6.2.5.4:
Steady State Solution / 6.2.5.5:
Primitive Variables Approach / 6.2.5.6:
Simpler Algorithm / 6.2.5.7:
Finite Difference Considerations of the Conservative Form / 6.2.6:
Concluding Remarks on Flow Calculations / 6.2.7:
Energy Equation / 6.2.8:
Numerical Formulation / 6.2.8.1:
Boundary Conditions / 6.2.8.2:
Numerical Solution of Turbulent Flows / 6.2.8.3:
Computation of Natural Convection Flow and Transport / 6.3:
Similarity Solutions / 6.3.1:
Finite Difference Methods / 6.3.2:
Additional Considerations / 6.3.3:
Convection with Variable Fluid Properties / 6.4:
Finite Element Methods / 6.5:
Discretization and Interpolation Functions / 6.5.1:
Integral Representation / 6.5.2:
Element Equations and Assembly / 6.5.3:
Solution / 6.5.4:
Examples and Other Considerations / 6.5.5:
Comparison of Finite Element and Finite Difference Methods / 6.5.6:
Numerical Methods for Radiation Heat Transfer / 6.6:
Numerical Techniques for Enclosures with Diffuse-Gray Surfaces / 7.1:
Radiosity Method / 7.2.1:
Absorption Factor Method / 7.2.2:
Computation of View Factors / 7.2.3:
Temperature Dependence of Surface Properties / 7.2.3.2:
Spectral Variation / 7.2.3.3:
Nonuniform Irradiation and Emission: Discrete Integral Equations / 7.3:
Numerical Solution of Radiation in the Presence of Other Modes / 7.4:
Combined Modes at Boundaries: Nonparticipating Media / 7.4.1:
Participating Media / 7.4.2:
Other Methods For Participating Media / 7.5:
Monte Carlo Method / 7.6:
Combined Modes and Process Applications / 7.7:
Applications of Computational Heat Transfer / 8:
Numerical Simulation of Thermal Systems in Manufacturing / 8.1:
Heat Treatment: Temperature Regulation / 8.1.1:
Surface Treatment: Semi-infinite Approximation / 8.1.2:
Continuously Moving Materials: Moving Boundary Effects / 8.1.3:
Melting and Solidification: Phase Change Considerations / 8.1.4:
Other Processes / 8.1.5:
Numerical Simulation of Environmental Heat Transfer Problems / 8.2:
Cooling Ponds: Periodic Processes / 8.2.1:
Recirculating Flows in Enclosed Spaces / 8.2.2:
Fire-Induced Flows in Partial Enclosures / 8.2.3:
Free Boundary Flows and Other Problems / 8.2.4:
Computer Simulation and Computer-Aided Design of Thermal Systems / 8.2.5:
General Approach / 8.3.1:
Example of Computer Simulation of a Thermal System / 8.3.2:
Appendices
Finite Difference Approximations / A:
Sample Computer Programs / B:
Successive Over-Relaxation (SOR) Method / B.1:
Tridiagonal Matrix Algorithm (TDMA) or Thomas Algorithm / B.2:
Gauss-Jordan Elimination Method / B.3:
Forward-Time-Central-Space (FTCS) Method / B.4:
Crank-Nicolson Method / B.5:
Newton-Raphson Method / B.6:
Finite Difference Method for ODEs / B.7:
Runge-Kutta Method / B.8:
Alternating-Direction-Implicit (ADI) Method / B.9:
Material Properties / C:
Nomenclature
Index
Preface to the Second Edition
Preface to the First Edition
Introduction / 1:
84.

図書

図書
American Institute of Chemical Engineers. Center for Chemical Process Safety
出版情報: New York : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1995  xxiv, 360 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Acronyms and Abbreviations
Glossary
Introduction / 1:
Objective / 1.1:
Scope / 1.2:
Organization / 1.3:
References
Materials/Chemical Handling / 2:
Hazardous Property Identification / 2.1:
Material handling Hazards / 2.2:
Fire and Explosive Properties / 2.2.1:
Chemical Toxicity / 2.2.2:
Biological Hazards / 2.2.3:
Radiation Hazards / 2.2.4:
Electrical Hazards / 2.2.5:
Thermal Hazards / 2.2.6:
Physical Plant Hazards / 2.2.7:
Material Transport / 2.3:
Liquid Handling / 2.4:
Liquid Transport / 2.4.1:
Liquid Storage / 2.4.2:
Spill Control and Cleanup / 2.4.3:
Solids Handling / 2.5:
Storage Procedures / 2.5.1:
Transfer Procedures / 2.5.2:
Bulk Conveying / 2.5.3:
Solids Packaging / 2.5.4:
Gas Handling / 2.6:
Classification of Gases / 2.6.1:
Regulations and Standards / 2.6.2:
Gas Containers / 2.6.3:
Cylinder Auxiliaries / 2.6.4:
Cylinder Handling Procedures / 2.6.5:
Handling Hazardous Gases / 2.6.6:
Cryogenic Liquids / 2.6.7:
Waste Handling / 2.7:
Waste Disposal Plan / 2.7.1:
Release Reporting / 2.7.2:
Scrap and Salvage / 2.7.3:
Vessel Decommissioning / 2.7.4:
Waste Containers / 2.7.5:
Process Equipment and Procedures / 3:
Materials of Construction / 3.1:
Material Selection / 3.1.1:
Material Application / 3.1.2:
Corrosion / 3.2:
Types of Corrosion / 3.2.1:
Sources of Corrosion Information / 3.2.2:
Small Containers / 3.3:
Container Specification / 3.3.1:
Manufacturer's Quality Control / 3.3.2:
Receiving / 3.3.3:
Emptying of Containers / 3.3.4:
Warehousing / 3.3.5:
Loading and Shipping / 3.3.6:
Disposal of Containers / 3.3.7:
Piping / 3.4:
Piping Codes and Specifications / 3.4.1:
Piping Design Safety / 3.4.2:
Piping Installation Safety / 3.4.3:
Piping Operation Safety / 3.4.4:
Piping Maintenance Safety / 3.4.5:
Transfer Hoses / 3.5:
Safety in Design and Installation / 3.5.1:
Safety in Operation / 3.5.3:
Inspection and Maintenance / 3.5.4:
Pumps / 3.6:
Pump Types / 3.6.1:
Pump Design Safety / 3.6.2:
Pump Installation Safety / 3.6.3:
Pump Operation Safety / 3.6.4:
Pump Maintenance Safety / 3.6.5:
Fans and Compressors / 3.7:
Classification of Gas Movers / 3.7.1:
Gas Mover Operating Parameters / 3.7.2:
Gas Mover Safety Precautions / 3.7.3:
Drivers / 3.8:
Motors / 3.8.1:
Steam Turbines / 3.8.2:
Transmission / 3.8.3:
Filters / 3.9:
Safety Considerations / 3.9.1:
Waste Minimization and Disposal / 3.9.2:
Centrifuges / 3.10:
Types of Centrifuges / 3.10.1:
Design Considerations / 3.10.2:
Operation / 3.10.3:
Drying and Particle Size Reduction / 3.10.4:
Dryers / 3.11.1:
Size Reduction Equipment / 3.11.2:
Screening Equipment / 3.11.3:
Packaging of Hot Materials / 3.11.4:
Deflagration Hazards / 3.11.5:
Environmental Concerns and Hygiene / 3.11.6:
Instrument and Controls / 3.12:
I & C Design Safety / 3.12.1:
I & C Installation Safety / 3.12.2:
I & C Operation Safety / 3.12.3:
I & C Maintenance Safety / 3.12.4:
General Topics / 4:
Inspection, Maintenance, and Calibration / 4.1:
Inspection Techniques / 4.1.1:
Maintenance Manuals / 4.1.2:
Preventive Maintenance / 4.1.3:
Equipment Calibration / 4.1.4:
Spare Parts and Equipment / 4.2:
Storage / 4.2.1:
Disbursement / 4.2.3:
Storage and Warehousing / 4.3:
General Storage Techniques / 4.3.1:
Stored Materials and Containers / 4.3.2:
Material Movement / 4.3.3:
Shipping Vehicles / 4.3.4:
Plant Modification / 4.4:
Change Control Program / 4.4.1:
Change/Work Authorization / 4.4.2:
Training / 4.4.3:
Hazardous Work / 4.5:
Confined Space Entry / 4.5.1:
Equipment Lockout / 4.5.2:
Line Breaking and System Opening / 4.5.3:
Hazardous materials / 4.5.4:
4.5
Preface
Acknowledgments
Acronyms and Abbreviations
85.

図書

図書
Claude Itzykson, Jean-Michel Drouffe
出版情報: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1989  xvi, 403 p. ; 24 cm
シリーズ名: Cambridge monographs on mathematical physics ; . Statistical field theory / Claude Itzykson, Jean-Michel Drouffe ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Contents of Volume 2
Preface
From Brownian motion to Euclidean fields / 1:
Brownian motion / 1.1:
Random walks / 1.1.1:
The sum over paths / 1.1.2:
The dimension two of Brownian curves / 1.1.3:
Euclidean fields / 1.2:
Free fields / 1.2.1:
Interacting fields and random walks / 1.2.2:
Self-avoiding walks and the limit n [right arrow] 0 / 1.2.3:
Comparison with the high temperature expansion / 1.2.4:
The one-dimensional case / 1.2.5:
Lattices / 1.A:
Notes
Grassmannian integrals and the two-dimensional Ising model / 2:
Grassmannian integrals / 2.1:
Anticommuting variables / 2.1.1:
Integrals / 2.1.2:
The two-dimensional Ising model / 2.2:
Duality / 2.2.1:
Transfer matrix / 2.2.2:
Fermionic representation / 2.2.3:
Free energy / 2.2.4:
Spontaneous magnetization / 2.2.5:
Correlation function in the high temperature phase / 2.2.6:
Surface tension / 2.2.7:
Critical continuous theory / 2.3:
Effective action / 2.3.1:
Correlation functions / 2.3.2:
Quadratic differences and Painleve equations / 2.A:
Spontaneous symmetry breaking, mean field / 3:
Mean field approximation / 3.1:
Dielectric constant of a polarizable medium / 3.1.1:
Classical spin model with a finite symmetry group / 3.1.2:
Continuous symmetry group / 3.1.3:
The Bethe approximation / 3.1.4:
Critical exponents / 3.1.5:
Lee-Yang zeroes / 3.2:
The Lee-Yang theorem / 3.2.1:
General properties / 3.2.2:
Zeroes in the temperature plane / 3.2.4:
Large n limit / 3.3:
Saddle point method / 3.3.1:
Factorization / 3.3.2:
Coupling to an external field / 3.3.3:
Corrections to mean field / 3.4:
Laplace transform / 3.4.1:
Scaling transformations and the XY-model / 4:
Scaling laws. Real space renormalization / 4.1:
Homogeneity and scale invariance / 4.1.1:
Recurrence relations in real space / 4.1.2:
Examples and approximations / 4.1.3:
The XY-model / 4.2:
High temperature behaviour / 4.2.1:
Low temperature expansion. Vortices / 4.2.2:
The Villain action / 4.2.3:
Correlations / 4.2.4:
Renormalization flow / 4.2.5:
Two-dimensional systems with continuous symmetry / 4.A:
Magnetization inequality / 4.A.1:
Correlation inequality / 4.A.2:
Phenomenological renormalization / 4.B:
Continuous field theory and the renormalization group / 5:
The Lagrangian and dimensional analysis / 5.1:
Introduction / 5.1.1:
Generating functionals and dimensional analysis / 5.1.2:
The perturbative method / 5.2:
Diagrammatic series / 5.2.1:
Loop expansion / 5.2.2:
Evaluation of integrals and dimensional continuation / 5.2.3:
Group theoretical factors / 5.2.4:
Power counting / 5.2.5:
Perturbative renormalization / 5.2.6:
The renormalization group / 5.3:
From the Gaussian ultraviolet fixed point to the infrared critical point in dimension less than four / 5.3.1:
Correlation functions at the critical point / 5.3.4:
Expansion near the critical point / 5.3.5:
Scaling laws below the critical temperature / 5.3.6:
Corrections to scaling laws / 5.4:
Deviation from the critical point in dimension lower than four / 5.4.1:
Logarithmic corrections in dimension four / 5.4.2:
Irrelevant operators / 5.4.3:
Numerical results / 5.5:
[varepsilon]-expansion of critical exponents / 5.5.1:
Equation of state / 5.5.2:
Amplitude ratios / 5.5.3:
Three-dimensional results / 5.5.4:
Multicritical points / 5.A:
Lattice gauge fields / 6:
Generalities / 6.1:
Presentation / 6.1.1:
The continuous limit / 6.1.2:
Order parameter and Elitzur's theorem / 6.1.3:
Structure of the phase diagram / 6.1.4:
Corrections to mean field and restoration of gauge invariance / 6.2.1:
Discrete groups: 1/d expansion / 6.2.3:
Continuous groups: computation of corrections / 6.2.4:
Strong coupling expansions / 6.3:
Convergence / 6.3.1:
Character expansions / 6.3.2:
String tension and roughening transition / 6.3.3:
Mass spectrum / 6.3.5:
Lattice fermions / 6.4:
The doubling problem / 6.4.1:
The Nielsen-Ninomiya theorem / 6.4.2:
Staggered fermions / 6.4.3:
Index
Grassmannian integrals and two-dimensional Ising models
Spontaneous symmetry breaking
Contents of Volume 2
Preface
From Brownian motion to Euclidean fields / 1:
86.

図書

図書
F. Albert Cotton, Richard A. Walton
出版情報: New York : Wiley, c1982  xiv, 466 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
87.

図書

図書
Joseph B. Lambert, Eugene P. Mazzola, Clark D. Ridge
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xxii, 456 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to First Edition
Acknowledgments
Preface to Second Edition
Solutions
Symbols
Abbreviations
Introduction / 1:
Magnetic Properties of Nuclei / 1.1:
The Chemical Shift / 1.2:
Excitation and Relaxation / 1.3:
Pulsed Experiments / 1.4:
The Coupling Constant / 1.5:
Quantitation and Complex Splitting / 1.6:
Commonly Studied Nuclides / 1.7:
Dynamic Effects / 1.8:
Spectra of Solids / 1.9:
Problems
Tips on Solving NMR Problems
References
Further Reading
Introductory Experimental Methods / 2:
The Spectrometer / 2.1:
Sample Preparation / 2.2:
Optimizing the Signal / 2.3:
Sample Tube Placement / 2.3.1:
Probe Tuning / 2.3.2:
Field/Frequency Locking / 2.3.3:
Spectrometer Shimming / 2.3.4:
Determination of NMR Spectral-Acquisition Parameters / 2.4:
Number of Data Points / 2.4.1:
Spectral Width / 2.4.2:
Filter Bandwidth / 2.4.3:
Acquisition Time / 2.4.4:
Transmitter Offset / 2.4.5:
Flip Angle / 2.4.6:
Receiver Gain / 2.4.7:
Number of Scans / 2.4.8:
Steady-State Scans / 2.4.9:
Oversampling and Digital Filtration / 2.4.10:
Decoupling for X Nuclei / 2.4.11:
Typical NMR Experiments / 2.4.12:
Determination of NMR Spectral-Processing Parameters / 2.5:
Exponential Weighting / 2.5.1:
Zero Filling / 2.5.2:
FID Truncation and Spectral Artifacts / 2.5.3:
Resolution / 2.5.4:
Determination of NMR Spectra: Spectral Presentation / 2.6:
Signal Phasing and Baseline Correction / 2.6.1:
Zero Referencing / 2.6.2:
Determination of Certain NMR Parameters / 2.6.3:
Chemical Shifts and Coupling Constants / 2.6.3.1:
1H Integration / 2.6.3.2:
Calibrations / 2.7:
Pulse Width (Flip Angle) / 2.7.1:
Decoupler Field Strength / 2.7.2:
Factors That Influence Proton Shifts / 3:
Local Fields / 3.1.1:
Nonlocal Fields / 3.1.2:
Proton Chemical Shifts and Structure / 3.2:
Saturated Aliphatics / 3.2.1:
Alkanes / 3.2.1.1:
Functionalized Alkanes / 3.2.1.2:
Unsaturated Aliphatics / 3.2.2:
Alkynes / 3.2.2.1:
Alkenes / 3.2.2.2:
Aldehydes / 3.2.2.3:
Aromatics / 3.2.3:
Protons on Oxygen and Nitrogen / 3.2.4:
Programs for Empirical Calculations / 3.2.5:
Medium and Isotope Effects / 3.3:
Medium Effects / 3.3.1:
Isotope Effects / 3.3.2:
Factors That Influence Carbon Shifts / 3.4:
Carbon Chemical Shifts and Structure / 3.5:
Acyclic Alkanes / 3.5.1:
Cyclic Alkanes / 3.5.1.2:
Unsaturated Compounds / 3.5.1.3:
Alkynes and Nitriles / 3.5.2.1:
Carbonyl Groups / 3.5.2.3:
Tables of Chemical Shifts / 3.5.4:
Further Tips on Solving NMR Problems
First- and Second-order Spectra / 4:
Chemical and Magnetic Equivalence / 4.2:
Signs and Mechanisms of Coupling / 4.3:
Couplings over One Bond / 4.4:
Geminal Couplings / 4.5:
Vicinal Couplings / 4.6:
Long-range Couplings / 4.7:
¿- ¿ Overlap / 4.7.1:
Zigzag Pathways / 4.7.2:
Through-Space Coupling / 4.7.3:
Spectral Analysis / 4.8:
Second-order Spectra / 4.9:
Deceptive Simplicity / 4.9.1:
Virtual Coupling / 4.9.2:
Shift Reagents / 4.9.3:
Isotope Satellites / 4.9.4:
Tables of Coupling Constants / 4.10:
Further Topics in One-Dimensional NMR Spectroscopy / 5:
Spin-Lattice and Spin-Spin Relaxation / 5.1:
Causes of Relaxation / 5.1.1:
Measurement of Relaxation Time / 5.1.2:
Transverse Relaxation / 5.1.3:
Structural Ramifications / 5.1.4:
Anisotropic Motion / 5.1.5:
Segmental Motion / 5.1.6:
Partially Relaxed Spectra / 5.1.7:
Quadrupolar Relaxation / 5.1.8:
Reactions on the NMR Time Scale / 5.2:
Hindered Rotation / 5.2.1:
Ring Reversal / 5.2.2:
Atomic Inversion / 5.2.3:
Valence Tautomerizations and Bond Shifts / 5.2.4:
Quantification / 5.2.5:
Magnetization Transfer and Spin Locking / 5.2.6:
Multiple Resonance / 5.3:
Spin Decoupling / 5.3.1:
Difference Decoupling / 5.3.2:
Classes of Multiple Resonance Experiments / 5.3.3:
Off-resonance Decoupling / 5.3.4:
The Nuclear Overhauser Effect / 5.4:
Origin / 5.4.1:
Observation / 5.4.2:
Difference NOE / 5.4.3:
Applications / 5.4.4:
Limitations / 5.4.5:
Spectral Editing / 5.5:
The Spin-Echo Experiment / 5.5.1:
The Attached Proton Test / 5.5.2:
The DEPT Sequence / 5.5.3:
Sensitivity Enhancement / 5.6:
The INEPT sequence / 5.6.1:
Refocused INEPT / 5.6.2:
Spectral Editing with Refocused INEPT / 5.6.3:
DEPT Revisited / 5.6.4:
Carbon Connectivity / 5.7:
Phase Cycling, Composite Pulses, and Shaped Pulses / 5.8:
Phase Cycling / 5.8.1:
Composite Pulses / 5.8.2:
Shaped Pulses / 5.8.3:
Two-Dimensional NMR Spectroscooy / 6:
Proton-Proton Correlation Through/Coupling / 6.1:
COSY45 / 6.1.1:
Long-Range COSY (LRCOSY or Delayed COSY) / 6.1.2:
Phase-Sensitive COSY (¿-COSY) / 6.1.3:
Multiple Quantum Filtration / 6.1.4:
TOtal Correlation SpectroscopY (TOCSY) / 6.1.5:
Relayed COSY / 6.1.6:
J-Resolved Spectroscopy / 6.1.7:
COSY for Other Nuclides / 6.1.8:
Proton-Heteronucleus Correlation / 6.2:
HETCOR / 6.2.1:
HMQC / 6.2.2:
BIRD-HMQC / 6.2.3:
HSQC / 6.2.4:
COLOC / 6.2.5:
HMBC / 6.2.6:
Heteronuclear Relay Coherence Transfer / 6.2.7:
Proton-Proton Correlation Through Space or Chemical Exchange / 6.3:
Carbon-Carbon Correlation / 6.4:
Higher Dimensions / 6.5:
Pulsed Field Gradients / 6.6:
Diffusion-Ordered Spectroscopy / 6.7:
Summary of 2D Methods / 6.8:
Advanced Experimental Methods / 7:
Part A: One-Dimensional Techniques / 7.1:
T1 Measurements / 7.1.1:
13C Spectral Editing Experiments / 7.1.2:
The APT Experiment / 7.1.2.1:
The DEPT Experiment / 7.1.2.2:
NOE Experiments / 7.1.3:
The NOE Difference Experiment / 7.1.3.1:
The Double-Pulse, Field-Gradient, Spin-Echo NOE Experiment / 7.1.3.2:
Part B: Two-Dimensional Techniques / 7.2:
Two-Dimensional NMR Data-Acquisition Parameters / 7.2.1:
Number of Time Increments / 7.2.1.1:
Spectral Widths / 7.2.1.3:
Relaxation Delay / 7.2.1.4:
Number of Scans per Time Increment / 7.2.1.8:
Two-Dimensional NMR Data-Processing Parameters / 7.2.1.10:
Weighting Functions / 7.2.2.1:
Digital Resolution / 7.2.2.2:
Linear Prediction / 7.2.2.4:
Two-Dimensional NMR Data Display / 7.2.3:
Phasing and Zero Referencing / 7.2.3.1:
Symmetrization / 7.2.3.2:
Use of Cross Sections in Analysis / 7.2.3.3:
Part C: Two-Dimensional Techniques: The Experiments / 7.3:
Homonuclear Chemical-Shift Correlation Experiments via Scalar / 7.3.1:
Coupling
The COSY Family: COSY-90°, COSY-45°, Long-Range COSY, and DQF-COSY / 7.3.1.1:
The TOCSY Experiment / 7.3.1.2:
Direct Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.2:
The HMQC Experiment / 7.3.2.1:
The HSQC Experiment / 7.3.2.2:
The HETCOR Experiment / 7.3.2.3:
Indirect Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.3:
The HMBC Experiment / 7.3.3.1:
The FLOCK Experiment / 7.3.3.2:
The HSQC-TOCSY Experiment / 7.3.3.3:
Homonuclear Chemical-Shift Correlation via Dipolar Coupling / 7.3.4:
The NOESY Experiment / 7.3.4.1:
The ROESY Experiment / 7.3.4.2:
1D and Advanced 2D Experiments / 7.3.5:
The 1D TOCSY Experiment / 7.3.5.1:
The 1D NOESY and ROESY Experiments / 7.3.5.2:
The Multiplicity-Edited HSQC Experiment / 7.3.5.3:
The H2BC Experiment / 7.3.5.4:
Nonuniform Sampling / 7.3.5.5:
Pure Shift NMR / 7.3.5.6:
Covariance NMR / 7.3.5.7:
Pure Shift-Covariance NMR / 7.3.6:
Structural Elucidation: Two Methods / 8:
Part A: Spectral Analysis / 8.1:
1H NMR Data / 8.1.1:
13C NMR Data / 8.1.2:
The COSY Experiment / 8.13:
General Molecular Assembly Strategy / 8.1.6:
A Specific Molecular Assembly Procedure / 8.1.8:
Part B: Computer-Assisted Structure Elucidation / 8.1.9:
CASE Procedures / 8.2.1:
T-2 Toxin / 8.2.2:
Derivation of the NMR Equation / Appendix A:
The Bloch Equations / Appendix B:
Reference
Quantum Mechanical Treatment of the Two-Spin System / Appendix C:
Analysis of Second-Order. Three- and Four-Spin Systems by Inspection / Appendix D:
Relaxation / Appendix E:
Product-Operator Formalism and Coherence-Level Diagrams / Appendix F:
Stereochemical Considerations / Appendix G:
Homotopics Groups / G.1:
Enantiotopic Groups / G.2:
Diastereotopic Groups / G.3:
Index
Preface to First Edition
Acknowledgments
Preface to Second Edition
88.

図書

東工大
目次DB

図書
東工大
目次DB
赤間世紀著
出版情報: 東京 : カットシステム, 2011.11  xiv, 408p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
第1章 統計ソフトR 1
   1.1 Rの歴史 2
   1.2 Rの機能 3
   1.3 本書の使用法 4
   1.4 構文の構成 4
第2章 基本項目
   2.1 データ属性 8
    2.1.1 attr 8
    2.1.2 attributes 9
    2.1.3 comment 10
    2.1.4 length 11
    2.1.5 names 12
    2.1.6 NULL 13
    2.1.7 numeric 14
    2.1.8 structure 15
    2.1.9 typeof 15
   2.2 日付と時間 16
    2.2.1 Sys.time 16
    2.2.2 Sys.Date 17
    2.2.3 date 17
    2.2.4 as.POSIX 18
    2.2.5 difftime 19
    2.2.6 strptime 20
    2.2.7 weekdays 21
    2.2.8 months 22
    2.2.9 Date 22
    2.2.10 DateTimeClasses 23
   2.3 データタイプ 25
    2.3.1 integer 25
    2.3.2 numeric 26
    2.3.3 double 27
    2.3.4 complex 29
    2.3.5 character 30
    2.3.6 logical 31
    2.3.7 vector 33
    2.3.8 matrix 34
    2.3.9 data.frame 35
    2.3.10 array 37
    2.3.11 list 39
    2.3.12 seq 41
    2.3.13 NA 42
    2.3.14 is.finit 43
   2.4 基本システム変数 44
    2.4.1 commandArgs 44
    2.4.2 LETTERS 45
    2.4.3 NULL 46
    2.4.4 Random 47
    2.4.5 R.Version 48
   2.5 データセット
    2.5.1 ability.cov 50
    2.5.2 airmiles 51
    2.5.3 AirPassengers 52
    2.5.4 airquality 53
    2.5.5 anscombe 54
    2.5.6 attenu 55
    2.5.7 attitude 56
    2.5.8 austres 57
    2.5.9 beaver 58
    2.5.10 BJsales 59
    2.5.11 BOD 61
    2.5.12 cars 62
    2.5.13 ChickWeight 63
    2.5.14 chickwts 64
    2.5.15 C02 65
    2.5.16 co2 66
    2.5.17 crimtab67
    2.5.18 discoveries 68
    2.5.19 DNase 69
    2.5.20 esoph 70
    2.5.21 euro 71
    2.5.22 eurodist 73
    2.5.23 EuStockMarkets 75
    2.5.24 faithful 76
    2.5.25 Formaldehyde 77
    2.5.26 freeny 78
    2.5.27 HairEyeColor 80
    2.5.28 Harman23.cor 81
    2.5.29 Harman74.cor 82
    2.5.30 Indometh 83
    2.5.31 infert 84
    2.5.32 InsectSprays 86
    2.5.33 iris 87
    2.5.34 islands 88
    2.5.35 JohnsonJohnson 90
    2.5.36 LakeHuron 91
    2.5.37 lh 92
    2.5.38 LifeCycleSavings 92
    2.5.39 Loblolly 94
    2.5.40 longley 95
    2.5.41 lynx 96
    2.5.42 morley 97
    2.5.43 mtcars 98
    2.5.44 nhtemp 99
    2.5.45 Nile 100
    2.5.46 nottem 101
    2.5.47 occupationalStatus 102
    2.5.48 Orange 103
    2.5.49 OrchardSprays 104
    2.5.50 PlantGrowth 106
    2.5.51 precip 107
    2.5.52 presidents 108
    2.5.53 pressure 110
    2.5.54 Puromycin 111
    2.5.55 quakes 11 2
    2.5.56 randu 113
    2.5.57 rivers 114
    2.5.58 rock 11 5
    2.5.59 sleep 116
    2.5.60 stackloss 118
    2.5.61 state 120
    2.5.62 sunspot.month 122
    2.5.63 sunspot.year 122
    2.5.64 sunspots 1 23
    2.5.65 swiss 124
    2.5.66 Theoph 126
    2.5.67 Titanic 127
    2.5.68 ToothGrowth 128
    2.5.69 treering 130
    2.5.70 trees 131
    2.5.71 UCBAdmissions 132
    2.5.72 UKDriverDeaths 133
    2.5.73 UKgas 135
    2.5.74 UKLungDeaths 136
    2.5.75 USAccDeaths 137
    2.5.76 USArrests 138
    2.5.77 USJudgeRatings 139
    2.5.78 USPersonalExpenditure 140
    2.5.79 uspop 141
    2.5.80 VADeaths 142
    2.5.81 volcano 143
    2.5.82 warpbreaks 144
    2.5.83 women 145
    2.5.84 WorldPhones 146
    2.5.85 WWWusage 147
   2.6 主なパッケージ 148
    2.6.1 base-package 148
    2.6.2 utilis-package 148
    2.6.3 stats-package 148
    2.6.4 graphics-package 148
    2.6.5 grDevices-package 149
第3章 数学 151
   3.1 算術 152
    3.1.1 Arithmetic 152
    3.1.2 Extremes 153
    3.1.3 colSums 155
    3.1.4 cumsum 156
    3.1.5 prod 157
    3.1.6 Round 158
    3.1.7 range 159
    3.1.8 sets 161
    3.1.9 sort 162
    3.1.10 sum 164
   3.2 数学関数 165
    3.2.1 abs 165
    3.2.2 sign 166
    3.2.3 log 167
    3.2.4 Trig 168
    3.2.5 Hyperbolic 170
    3.2.6 Special 172
    3.2.7 Bessel 174
    3.2.8 norm 176
    3 2 9 polyroot 177
   3.3 論理演算 178
    3.3.1 Comparison 178
    3.3.2 Logic 180
    3.3.3 logical 182
    3.3.4 all 183
    3.3.5 any 184
    3.3.6 complete.cases 185
    3.3.7 which 186
   3.4 配列と行列 187
    3.4.1 backsolve 187
    3.4.2 col 190
    3.4.3 row 191
    3.4.4 crossprod 192
    3.4.5 %*% 193
    3.4.6 %o% 195
    3.4.7 nrow 198
    3.4.8 ncol 199
    3.4.9 t 200
    3.4.10 det 201
    3.4.11 diag 202
    3.4.12 dim 203
    3.4.13 dimnames 204
    3.4.14 row.names 206
    3.4.15 row/colnames 207
    3.4.16 eigen 208
    3.4.17 kronecker 210
    3.4.18 lower.tri 211
    3.4.19 qr 213
    3.4.20 svd 214
    3.4.21 chol 215
    3.4.22 solve 216
第4章 グラフィックス 219
   4.1 プロット 220
    4.1.1 plot 220
    4.1.2 curve 222
    4.1.3 barplot 223
    4.1.4 pie 225
    4.1.5 hist 227
    4.1.6 boxplot 229
    4.1.7 qqnorm 231
    4.1.8 contour 233
   4.2 グラフィックスデバイス 235
    4.2.1 Devices 235
    4.2.2 dev 236
    4.2.3 embedFonts 238
    4.2.4 Japanese 239
    4.2.5 pdf 240
    4.2.6 pictex 242
    4.2.7 png 243
    4.2.8 postscript 244
    4.2.9 windows 246
    4.2.10 xfig 248
   4.3 カラー 249
    4.3.1 RGB 249
    4.3.2 XYZ 250
    4.3.3 colors 251
    4.3.4 rgb 252
第5章 プログラミング 253
   5.1 制御 254
    5.1.1 Control 254
    5.1.2 ifelse 257
    5.1.3 switch 258
    5.1.4 function 259
    5.1.5 debug 260
    5.1.6 call 262
    5.1.7 eval 263
    5.1.8 expression 264
    5.1.9 message 265
    5.1.10 mode 266
    5.1.11 name 267
    5.1.12 stop 268
    5.1.13 try 269
    5.1.14 warning 270
   5.2 メソッド 271
    5.2.1 setClass 271
    5.2.2 new 272
    5.2.3 as 274
    5.2.4 setMethod 275
    5.2.5 is 277
   5.3 入出力 279
    5.3.1 scan 279
    5.3.2 print 281
    5.3.3 readline 282
    5.3.4 readBin 283
    5.3.5 readChar 284
    5.3.6 read.table 286
    5.3.7 write 288
    5.3.8 write.table 289
    5.3.9 sprintf 290
   5.4 ユーティリティ 292
    5.4.1 demo 292
    5.4.2 edit 293
    5.4.3 example 295
第6章 統計 297
   6.1 確率分布と乱数 298
    6.1.1 Beta 298
    6.1.2 Binomial 300
    6.1.3 Cauchy 302
    6.1.4 Chisquare 303
    6.1.5 Exponential 305
    6.1.6 FDist 306
    6.1.7 GammaDist 308
    6.1.8 Geometric 309
    6.1.9 Hypergeometric 310
    6.1.10 Lognormal 312
    6.1.11 NegBinomial 313
    6.1.12 Normal 315
    6.1.13 Poisson 317
    6.1.14 TDist 318
    6.1.15 Uniform 321
    6.1.16 Weibull 322
   6.2 記述統計 324
    6.2.1 mean 325
    6.2.2 median 326
    6.2.3 quantile 327
    6.2.4 IQR 328
    6.2.5 Correlation 328
    6.2.6 sd 331
    6.2.7 fivenurn 332
    6.2.8 skewness 333
    6.2.9 kurtosis 335
   6.3 推測統計 337
    6.3.1 binom.test 339
    6.3.2 prop.test 340
    6.3.3 t.test 342
    6.3.4 chisq.test 344
    6.3.5 var.test 346
    6.3.6 cor.test 347
   6.4 統計モデル 349
    6.4.1 formula 349
    6.4.2 lm 350
    6.4.3 summary.lm 353
    6.4.4 predict.lm 354
    6.4.5 nls 356
    6.4.6 summary.nls 357
    6.4.7 predict.nls 358
    6.4.8 glm 360
   6.5 時系列 362
    6.5.1 ts 362
    6.5.2 plot.ts 363
    6.5.3 lag 365
    6.5.4 diff 366
    6.5.5 acf 367
    6.5.6 plot.acf 369
    6.5.7 spec.pgram 371
    6.5.8 spectrum 374
    6.5.9 ar 376
    6.5.10 arima 378
    6.5.11 garch 380
参考文献 384
逆引き索引 385
   (1)基本項目 385
   (2)データセット 387
   (3)数学 390
   (4)グラフィックス 392
   (5)プログラミング 393
   (6)統計 395
索引 398
第1章 統計ソフトR 1
   1.1 Rの歴史 2
   1.2 Rの機能 3
89.

図書

図書
Andrew S. Tanenbaum ; with contributions from James R. Goodman
出版情報: London : Prentice Hall International , Upper Saddle River, N.J. : Prentice Hall, c1999  xviii, 669 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Computer Systems Organization / 2:
The Digital Logic Level / 3:
The Microarchitecture Level / 4:
The Instruction Set Architecture Level / 5:
The Operating System Machine Level / 6:
The Assembly Language Level / 7:
Parallel Computer Architectures / 8:
Reading List and Bibliography / 9:
Binary Numbers / Appendix A:
Floating-Point Numbers / Appendix B:
Preface
Structured Computer Organization / 1.1:
Languages, Levels, and Virtual Machines / 1.1.1:
Contemporary Multilevel Machines / 1.1.2:
Evolution of Multilevel Machines / 1.1.3:
Milestones in Computer Architecture / 1.2:
The Zeroth Generation-Mechanical Computers (1642-1945) / 1.2.1:
The First Generation-Vacuum Tubes (1945-1955) / 1.2.2:
The Second Generation-Transistors (1955-1965) / 1.2.3:
The Third Generation-Integrated Circuits (1965-1980) / 1.2.4:
The Fourth Generation-Very Large Scale Integration (1980-?) / 1.2.5:
The Fifth Generation-Invisible Computers / 1.2.6:
The Computer Zoo / 1.3:
Technological and Economic Forces / 1.3.1:
The Computer Spectrum / 1.3.2:
Disposable Computers / 1.3.3:
Microcontrollers / 1.3.4:
Game Computers / 1.3.5:
Personal Computers / 1.3.6:
Servers / 1.3.7:
Collections of Workstations / 1.3.8:
Mainframes / 1.3.9:
Example Computer Families / 1.4:
Introduction to the Pentium 4 / 1.4.1:
Introduction to the UltraSPARC III / 1.4.2:
Introduction to the 8051 / 1.4.3:
Metric Units / 1.5:
Outline of This Book / 1.6:
Processors / 2.1:
CPU Organization / 2.1.1:
Instruction Execution / 2.1.2:
RISC versus CISC / 2.1.3:
Design Principles for Modern Computers / 2.1.4:
Instruction-Level Parallelism / 2.1.5:
Processor-Level Parallelism / 2.1.6:
Primary Memory / 2.2:
Bits / 2.2.1:
Memory Addresses / 2.2.2:
Byte Ordering / 2.2.3:
Error-Correcting Codes / 2.2.4:
Cache Memory / 2.2.5:
Memory Packaging and Types / 2.2.6:
Secondary Memory / 2.3:
Memory Hierarchies / 2.3.1:
Magnetic Disks / 2.3.2:
Floppy Disks / 2.3.3:
IDE Disks / 2.3.4:
SCSI Disks / 2.3.5:
RAID / 2.3.6:
CD-ROMs / 2.3.7:
CD-Recordables / 2.3.8:
CD-Rewritables / 2.3.9:
DVD / 2.3.10:
Blu-Ray / 2.3.11:
Input/Output / 2.4:
Buses / 2.4.1:
Terminals / 2.4.2:
Mice / 2.4.3:
Printers / 2.4.4:
Telecommunications Equipment / 2.4.5:
Digital Cameras / 2.4.6:
Character Codes / 2.4.7:
Summary / 2.5:
Gates and Boolean Algebra / 3.1:
Gates / 3.1.1:
Boolean Algebra / 3.1.2:
Implementation of Boolean Functions / 3.1.3:
Circuit Equivalence / 3.1.4:
Basic Digital Logic Circuits / 3.2:
Integrated Circuits / 3.2.1:
Combinational Circuits / 3.2.2:
Arithmetic Circuits / 3.2.3:
Clocks / 3.2.4:
Memory / 3.3:
Latches / 3.3.1:
Flip-Flops / 3.3.2:
Registers / 3.3.3:
Memory Organization / 3.3.4:
Memory Chips / 3.3.5:
RAMs and ROMs / 3.3.6:
CPU Chips and Buses / 3.4:
CPU Chips / 3.4.1:
Computer Buses / 3.4.2:
Bus Width / 3.4.3:
Bus Clocking / 3.4.4:
Bus Arbitration / 3.4.5:
Bus Operations / 3.4.6:
Example CPU Chips / 3.5:
The Pentium 4 / 3.5.1:
The UltraSPARC III / 3.5.2:
The 8051 / 3.5.3:
Example Buses / 3.6:
The ISA Bus / 3.6.1:
The PCI Bus / 3.6.2:
PCI Express / 3.6.3:
The Universal Serial Bus / 3.6.4:
Interfacing / 3.7:
I/O Chips / 3.7.1:
Address Decoding / 3.7.2:
An Example Microarchitecture / 3.8:
The Data Path / 4.1.1:
Microinstructions / 4.1.2:
Microinstruction Control: The Mic-1 / 4.1.3:
An Example Isa: IJVM / 4.2:
Stacks / 4.2.1:
The IJVM Memory Model / 4.2.2:
The IJVM Instruction Set / 4.2.3:
Compiling Java to IJVM / 4.2.4:
An Example Implementation / 4.3:
Microinstructions and Notation / 4.3.1:
Implementation of IJVM Using the Mic-1 / 4.3.2:
Design of the Microarchitecture Level / 4.4:
Speed versus Cost / 4.4.1:
Reducing the Execution Path Length / 4.4.2:
A Design with Prefetching: The Mic-2 / 4.4.3:
A Pipelined Design: The Mic-3 / 4.4.4:
A Seven-Stage Pipeline: The Mic-4 / 4.4.5:
Improving Performance / 4.5:
Branch Prediction / 4.5.1:
Out-of-Order Execution and Register Renaming / 4.5.3:
Speculative Execution / 4.5.4:
Examples of the Microarchitecture Level / 4.6:
The Microarchitecture of the Pentium 4 CPU / 4.6.1:
The Microarchitecture of the UltraSPARC-III Cu CPU / 4.6.2:
The Microarchitecture of the 8051 CPU / 4.6.3:
Comparison of the Pentium, Ultrasparc, and 8051 / 4.7:
Overview of the ISA Level / 4.8:
Properties of the ISA Level / 5.1.1:
Memory Models / 5.1.2:
Instructions / 5.1.3:
Overview of the Pentium 4 ISA Level / 5.1.5:
Overview of the UltraSPARC III ISA Level / 5.1.6:
Overview of the 8051 ISA Level / 5.1.7:
Data Types / 5.2:
Numeric Data Types / 5.2.1:
Nonnumeric Data Types / 5.2.2:
Data Types on the Pentium 4 / 5.2.3:
Data Types on the UltraSPARC III / 5.2.4:
Data Types on the 8051 / 5.2.5:
Instruction Formats / 5.3:
Design Criteria for Instruction Formats / 5.3.1:
Expanding Opcodes / 5.3.2:
The Pentium 4 Instruction Formats / 5.3.3:
The UltraSPARC III Instruction Formats / 5.3.4:
The 8051 Instruction Formats / 5.3.5:
Addressing / 5.4:
Addressing Modes / 5.4.1:
Immediate Addressing / 5.4.2:
Direct Addressing / 5.4.3:
Register Addressing / 5.4.4:
Register Indirect Addressing / 5.4.5:
Indexed Addressing / 5.4.6:
Based-Indexed Addressing / 5.4.7:
Stack Addressing / 5.4.8:
Addressing Modes for Branch Instructions / 5.4.9:
Orthogonality of Opcodes and Addressing Modes / 5.4.10:
The Pentium 4 Addressing Modes / 5.4.11:
The UltraSPARC III Addressing Modes / 5.4.12:
The 8051 Addressing Modes / 5.4.13:
Discussion of Addressing Modes / 5.4.14:
Instruction Types / 5.5:
Data Movement Instructions / 5.5.1:
Dyadic Operations / 5.5.2:
Monadic Operations / 5.5.3:
Comparisons and Conditional Branches / 5.5.4:
Procedure Call Instructions / 5.5.5:
Loop Control / 5.5.6:
The Pentium 4 Instructions / 5.5.7:
The UltraSPARC III Instructions / 5.5.9:
The 8051 Instructions / 5.5.10:
Comparison of Instruction Sets / 5.5.11:
Flow of Control / 5.6:
Sequential Flow of Control and Branches / 5.6.1:
Procedures / 5.6.2:
Coroutines / 5.6.3:
Traps / 5.6.5:
Interrupts
A Detailed Example: The Towers of Hanoi / 5.7:
The Towers of Hanoi in Pentium 4 Assembly Language / 5.7.1:
The Towers of Hanoi in UltraSPARC III Assembly Language / 5.7.2:
The IA-64 Architecture and the Itanium 2 / 5.8:
The Problem with the Pentium 4 / 5.8.1:
The IA-64 Model: Explicitly Parallel Instruction Computing / 5.8.2:
Reducing Memory References / 5.8.3:
Instruction Scheduling / 5.8.4:
Reducing Conditional Branches: Predication / 5.8.5:
Speculative Loads / 5.8.6:
Virtual Memory / 5.9:
Paging / 6.1.1:
Implementation of Paging / 6.1.2:
Demand Paging and the Working Set Model / 6.1.3:
Page Replacement Policy / 6.1.4:
Page Size and Fragmentation / 6.1.5:
Segmentation / 6.1.6:
Implementation of Segmentation / 6.1.7:
Virtual Memory on the Pentium 4 / 6.1.8:
Virtual Memory on the UltraSPARC III / 6.1.9:
Virtual Memory and Caching / 6.1.10:
Virtual I/O Instructions / 6.2:
Files / 6.2.1:
Implementation of Virtual I/O Instructions / 6.2.2:
Directory Management Instructions / 6.2.3:
Virtual Instructions for Parallel Processing / 6.3:
Process Creation / 6.3.1:
Race Conditions / 6.3.2:
Process Synchronization Using Semaphores / 6.3.3:
Example Operating Systems / 6.4:
Examples of Virtual Memory / 6.4.1:
Examples of Virtual I/O / 6.4.3:
Examples of Process Management / 6.4.4:
Introduction to Assembly Language / 6.5:
What Is an Assembly Language? / 7.1.1:
Why Use Assembly Language? / 7.1.2:
Format of an Assembly Language Statement / 7.1.3:
Pseudoinstructions / 7.1.4:
Macros / 7.2:
Macro Definition, Call, and Expansion / 7.2.1:
Macros with Parameters / 7.2.2:
Advanced Features / 7.2.3:
Implementation of a Macro Facility in an Assembler / 7.2.4:
The Assembly Process / 7.3:
Two-Pass Assemblers / 7.3.1:
Pass One / 7.3.2:
Pass Two / 7.3.3:
The Symbol Table / 7.3.4:
Linking and Loading / 7.4:
Tasks Performed by the Linker / 7.4.1:
Structure of an Object Module / 7.4.2:
Binding Time and Dynamic Relocation / 7.4.3:
Dynamic Linking / 7.4.4:
On-Chip Paralellism / 7.5:
On-Chip Multithreading / 8.1.1:
Single-Chip Multiprocessors / 8.1.3:
Coprocessors / 8.2:
Network Processors / 8.2.1:
Media Processors / 8.2.2:
Cryptoprocessors / 8.2.3:
Shared-Memory Multiprocessors / 8.3:
Multiprocessors vs. Multicomputers / 8.3.1:
Memory Semantics / 8.3.2:
UMA Symmetric Multiprocessor Architectures / 8.3.3:
NUMA Multiprocessors / 8.3.4:
COMA Multiprocessors / 8.3.5:
Message-Passing Multicomputers / 8.4:
Interconnection Networks / 8.4.1:
MPPs-Massively Parallel Processors / 8.4.2:
Cluster Computing / 8.4.3:
Communication Software for Multicomputers / 8.4.4:
Scheduling / 8.4.5:
Application-Level Shared Memory / 8.4.6:
Performance / 8.4.7:
Grid Computing / 8.5:
Suggestions for Further Reading / 8.6:
Introduction and General Works / 9.1.1:
Binary and Floating-Point Numbers / 9.1.2:
Assembly Language Programming / 9.1.10:
Alphabetical Bibliography / 9.2:
Finte-Precision Numbers / A:
Radix Number Systems / A.2:
Conversion From One Radix to Another / A.3:
Negative Binary Numbers / A.4:
Binary Arithmetic / A.5:
Principles of Floating Point / B:
IEEE Floating-Point Standard 754 / B.2:
Overview / C:
Assembly Language / C.1.1:
A Small Assembly Language Program / C.1.2:
The 8088 Processor / C.2:
The Processor Cycle / C.2.1:
The General Registers / C.2.2:
Pointer Registers / C.2.3:
Memory and Addressing / C.3:
Memory Organization and Segments / C.3.1:
The 8088 Instruction Set / C.3.2:
Move, Copy and Arithmetic / C.4.1:
Logical, Bit and Shift Operations / C.4.2:
Loop and Repetitive String Operations / C.4.3:
Jump and Call Instructions / C.4.4:
Subroutine Calls / C.4.5:
System Calls and System Subroutines / C.4.6:
Final Remarks on the Instruction Set / C.4.7:
The Assembler / C.5:
The ACK-Based Tutorial Assembler as88 / C.5.1:
Some Differences with Other 8088 Assemblers / C.5.3:
The Tracer / C.6:
Tracer Commands / C.6.1:
Getting Started / C.7:
Examples / C.8:
Hello World Example / C.8.1:
General Registers Example / C.8.2:
Call Command and Pointer Registers / C.8.3:
Debugging an Array Print Program / C.8.4:
Introduction / 1:
Computer Systems Organization / 2:
The Digital Logic Level / 3:
90.

図書

図書
Walter Koechner
出版情報: New York : Springer-Verlag, 1976  xi, 620 p. ; 24 cm
シリーズ名: Springer series in optical sciences ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Energy Transfer Between Radiation and Atomic Transitions / 1:
Optical Amplification / 1.1:
Interaction of Radiation with Matter / 1.2:
Blackbody Radiation / 1.2.1:
Boltzmann's Statistics / 1.2.2:
Einstein's Coefficients / 1.2.3:
Phase Coherence of Stimulated Emission / 1.2.4:
Absorption and Optical Gain / 1.3:
Atomic Lineshapes / 1.3.1:
Absorption by Stimulated Transitions / 1.3.2:
Population Inversion / 1.3.3:
Creation of a Population Inversion / 1.4:
The Three-Level System / 1.4.1:
The Four-Level System / 1.4.2:
The Metastable Level / 1.4.3:
Laser Rate Equations / 1.5:
Comparison of Three- and Four-Level Lasers / 1.5.1:
Properties of Solid-State Laser Materials / 2:
Overview / 2.1:
Host Materials / 2.1.1:
Active Ions / 2.1.2:
Ruby / 2.2:
Nd:Lasers / 2.3:
Nd:YAG / 2.3.1:
Nd:Glass / 2.3.2:
Nd:Cr:GSGG / 2.3.3:
Nd:YLF / 2.3.4:
Nd:YVO[subscript 4] / 2.3.5:
Er:Lasers / 2.4:
Er:YAG / 2.4.1:
Er:Glass / 2.4.2:
Tunable Lasers / 2.5:
Alexandrite Laser / 2.5.1:
Ti:Sapphire / 2.5.2:
Cr:LiSAF / 2.5.3:
Tm:YAG / 2.5.4:
Yb:YAG / 2.6:
Laser Oscillator / 3:
Operation at Threshold / 3.1:
Gain Saturation / 3.2:
Circulating Power / 3.3:
Oscillator Performance Model / 3.4:
Conversion of Input to Output Energy / 3.4.1:
Laser Output / 3.4.2:
Relaxation Oscillations / 3.5:
Theory / 3.5.1:
Spike Suppression / 3.5.2:
Gain Switching / 3.5.3:
Examples of Laser Oscillators / 3.6:
Lamp-Pumped cw Nd:YAG Laser / 3.6.1:
Diode Side-Pumped Nd:YAG Laser / 3.6.2:
End-Pumped Systems / 3.6.3:
Ring Laser / 3.7:
Laser Amplifier / 4:
Single- and Multiple-Pass Pulse Amplifiers / 4.1:
Pulse Amplification / 4.1.1:
Nd:YAG Amplifiers / 4.1.2:
Nd:Glass Amplifiers / 4.1.3:
Multipass Amplifier Configurations / 4.1.4:
Regenerative Amplifiers / 4.2:
cw Amplifiers / 4.3:
Signal Distortions / 4.4:
Spatial Distortions / 4.4.1:
Temporal Distortions / 4.4.2:
Depopulation Losses / 4.5:
Amplified Spontaneous Emission / 4.5.1:
Prelasing and Parasitic Modes / 4.5.2:
Reduction of Depopulation Losses / 4.5.3:
Self-Focusing / 4.6:
Whole-Beam Self-Focusing / 4.6.1:
Examples of Self-focusing in Nd:YAG Lasers / 4.6.2:
Small-Scale Self-Focusing / 4.6.3:
Suppression of Self-Focusing / 4.6.4:
Optical Resonator / 5:
Transverse Modes / 5.1:
Intensity Distribution / 5.1.1:
Characteristics of a Gaussian Beam / 5.1.2:
Resonator Configurations / 5.1.3:
Stability of Laser Resonators / 5.1.4:
Diffraction Losses / 5.1.5:
Higher-Order Modes / 5.1.6:
Mode Selection / 5.1.7:
Active Resonator / 5.1.8:
Examples of Resonator Designs / 5.1.9:
Resonator Modeling and Software Packages / 5.1.10:
Longitudinal Modes / 5.2:
The Fabry-Perot Interferometer / 5.2.1:
Laser Resonator with Gain Medium / 5.2.2:
Longitudinal Mode Control / 5.2.3:
Injection Seeding / 5.2.4:
Intensity and Frequency Control / 5.3:
Amplitude Fluctuations / 5.3.1:
Frequency Tuning / 5.3.2:
Frequency Locking / 5.3.3:
Hardware Design / 5.4:
Unstable Resonators / 5.5:
Confocal Positive-Branch Unstable Resonator / 5.5.1:
Negative-Branch Unstable Resonator / 5.5.2:
Variable Reflectivity Output Couplers / 5.5.3:
Gain, Mode Size, and Alignment Sensitivity / 5.5.4:
Wavelength Selection / 5.6:
Optical Pump Systems / 6:
Pump Sources / 6.1:
Flashlamps / 6.1.1:
Continuous Arc Lamps / 6.1.2:
Laser Diodes / 6.1.3:
Pump Radiation Transfer Methods / 6.2:
Side-Pumping with Lamps / 6.2.1:
Side-Pumping with Diodes / 6.2.2:
End-Pumped Lasers / 6.2.3:
Face-Pumped Disks / 6.2.4:
Thermo-Optic Effects / 7:
Cylindrical Geometry / 7.1:
Temperature Distribution / 7.1.1:
Thermal Stresses / 7.1.2:
Photoelastic Effects / 7.1.3:
Thermal Lensing / 7.1.4:
Stress Birefringence / 7.1.5:
Compensation of Optical Distortions / 7.1.6:
Slab and Disk Geometries / 7.2:
Rectangular-Slab Laser / 7.2.1:
Slab Laser with Zigzag Optical Path / 7.2.2:
Disk Amplifiers and Lasers / 7.2.3:
End-Pumped Configurations / 7.3:
Thermal Gradients and Stress / 7.3.1:
Thermal Fracture Limit / 7.3.2:
Thermal Management / 7.4:
Liquid Cooling / 7.4.1:
Conduction Cooling / 7.4.2:
Air/Gas Cooling / 7.4.3:
Q-Switching / 8:
Q-Switch Theory / 8.1:
Fast Q-Switch / 8.1.1:
Slow Q-Switching / 8.1.2:
Continuously Pumped, Repetitively Q-Switched Systems / 8.1.3:
Mechanical Q-Switches / 8.2:
Electro-Optical Q-Switches / 8.3:
KDP and KD*P Pockels Cells / 8.3.1:
LiNbO[subscript 3] Pockels Cells / 8.3.2:
Prelasing and Postlasing / 8.3.3:
Depolarization Losses / 8.3.4:
Drivers for Electro-Optic Q-Switches / 8.3.5:
Acousto-Optic Q-Switches / 8.4:
Bragg Reflection / 8.4.1:
Device Characteristics / 8.4.2:
Passive Q-Switches / 8.5:
Cavity Dumping / 8.6:
Mode Locking / 9:
Pulse Formation / 9.1:
Passive Mode Locking / 9.2:
Liquid Dye Saturable Absorber / 9.2.1:
Coupled-Cavity Mode Locking / 9.2.2:
Kerr Lens Mode Locking / 9.2.3:
Semiconductor Saturable Absorber Mirror (SESAM) / 9.2.4:
Active Mode Locking / 9.3:
cw Mode Locking / 9.3.1:
Transient Active Mode Locking / 9.3.2:
Picosecond Lasers / 9.4:
AM Mode Locking / 9.4.1:
FM Mode Locking / 9.4.2:
Femtosecond Lasers / 9.5:
Laser Materials / 9.5.1:
Dispersion Compensation / 9.5.2:
Examples of Kerr Lens or SESAM Mode-Locked Femtosecond Lasers / 9.5.3:
Chirped Pulse Amplifiers / 9.5.4:
Nonlinear Devices / 10:
Nonlinear Optical Effects / 10.1:
Second-Order Nonlinearities / 10.1.1:
Third-Order Nonlinearities / 10.1.2:
Harmonic Generation / 10.2:
Basic Theory of Second Harmonic Generation / 10.2.1:
Phase Matching / 10.2.2:
Properties of Nonlinear Crystals / 10.2.3:
Intracavity Frequency Doubling / 10.2.4:
Third Harmonic Generation / 10.2.5:
Examples of Harmonic Generation / 10.2.6:
Optical Parametric Oscillators / 10.3:
Performance Modeling / 10.3.1:
Crystals / 10.3.2:
Quasi Phase Matching / 10.3.3:
Design and Performance / 10.3.4:
Raman Laser / 10.4:
Device Implementation / 10.4.1:
Optical Phase Conjugation / 10.5:
Basic Considerations / 10.5.1:
Material Properties / 10.5.2:
Focusing Geometry / 10.5.3:
Pump-Beam Properties / 10.5.4:
System Design / 10.5.5:
Damage of Optical Elements / 11:
Surface Damage / 11.1:
Inclusion Damage / 11.2:
Damage Threshold of Optical Materials / 11.3:
Scaling Laws / 11.3.1:
Laser Host Materials / 11.3.2:
Optical Glass / 11.3.3:
Nonlinear Crystals / 11.3.4:
Dielectric Thin Films / 11.3.5:
System Design Considerations / 11.4:
Choice of Materials / 11.4.1:
Design of System / 11.4.2:
System Operation / 11.4.3:
Laser Safety / Appendix A:
Conversion Factors and Constants / Appendix B:
Definition of Symbols / Appendix C:
References
Subject Index
Preface
Introduction
Energy Transfer Between Radiation and Atomic Transitions / 1:
91.

図書

図書
Qing Liu ; translated by Reinie Erné
出版情報: Oxford : Oxford University Press, 2006  xv, 577 p. ; 24 cm
シリーズ名: Oxford graduate texts in mathematics ; 6
所蔵情報: loading…
目次情報: 続きを見る
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
Right-exactness of the tensor product / 1.1.2:
Tensor product of algebras / 1.1.3:
Flatness / 1.2:
Left-exactness: flatness / 1.2.1:
Local nature of flatness / 1.2.2:
Faithful flatness / 1.2.3:
Formal completion / 1.3:
Inverse limits and completions / 1.3.1:
The Artin-Rees lemma and applications / 1.3.2:
The case of Noetherian local rings / 1.3.3:
General properties of schemes / 2:
Spectrum of a ring / 2.1:
Zariski topology / 2.1.1:
Algebraic sets / 2.1.2:
Ringed topological spaces / 2.2:
Sheaves / 2.2.1:
Schemes / 2.2.2:
Definition of schemes and examples / 2.3.1:
Morphisms of schemes / 2.3.2:
Projective schemes / 2.3.3:
Noetherian schemes, algebraic varieties / 2.3.4:
Reduced schemes and integral schemes / 2.4:
Reduced schemes / 2.4.1:
Irreducible components / 2.4.2:
Integral schemes / 2.4.3:
Dimension / 2.5:
Dyimension of schemes / 2.5.1:
The case of Noetherian schemes / 2.5.2:
Dimension of algebraic varieties / 2.5.3:
Morphisms and base change / 3:
The technique of base change / 3.1:
Fibered product / 3.1.1:
Base change / 3.1.2:
Applications to algebraic varieties / 3.2:
Morphisms of finite type / 3.2.1:
Algebraic varieties and extension of the base field / 3.2.2:
Points with values in an extension of the base field / 3.2.3:
Frobenius / 3.2.4:
Some global properties of morphisms / 3.3:
Separated morphisms / 3.3.1:
Proper morphisms / 3.3.2:
Projective morphisms / 3.3.3:
Some local properties / 4:
Normal schemes / 4.1:
Normal schemes and extensions of regular functions / 4.1.1:
Normalization / 4.1.2:
Regular schemes / 4.2:
Tangent space to a scheme / 4.2.1:
Regular schemes and the Jacobian criterion / 4.2.2:
Flat morphisms and smooth morphisms / 4.3:
Flat morphisms / 4.3.1:
Etale morphisms / 4.3.2:
Smooth morphisms / 4.3.3:
Zariski's 'Main Theorem' and applications / 4.4:
Coherent sheaves and Cech cohomology / 5:
Coherent sheaves on a scheme / 5.1:
Sheaves of modules / 5.1.1:
Quasi-coherent sheaves on an affine scheme / 5.1.2:
Coherent sheaves / 5.1.3:
Quasi-coherent sheaves on a projective scheme / 5.1.4:
Cech cohomology / 5.2:
Differential modules and cohomology with values in a sheaf / 5.2.1:
Cech cohomology on a separated scheme / 5.2.2:
Higher direct image and flat base change / 5.2.3:
Cohomology of projective schemes / 5.3:
Direct image theorem / 5.3.1:
Connectedness principle / 5.3.2:
Cohomology of the fibers / 5.3.3:
Sheaves of differentials / 6:
Kahler differentials / 6.1:
Modules of relative differential forms / 6.1.1:
Sheaves of relative differentials (of degree 1) / 6.1.2:
Differential study of smooth morphisms / 6.2:
Smoothness criteria / 6.2.1:
Local structure and lifting of sections / 6.2.2:
Local complete intersection / 6.3:
Regular immersions / 6.3.1:
Local complete intersections / 6.3.2:
Duality theory / 6.4:
Determinant / 6.4.1:
Canonical sheaf / 6.4.2:
Grothendieck duality / 6.4.3:
Divisors and applications to curves / 7:
Cartier divisors / 7.1:
Meromorphic functions / 7.1.1:
Inverse image of Cartier divisors / 7.1.2:
Weil divisors / 7.2:
Cycles of codimension 1 / 7.2.1:
Van der Waerden's purity theorem / 7.2.2:
Riemann-Roch theorem / 7.3:
Degree of a divisor / 7.3.1:
Riemann-Roch for projective curves / 7.3.2:
Algebraic curves / 7.4:
Classification of curves of small genus / 7.4.1:
Hurwitz formula / 7.4.2:
Hyperelliptic curves / 7.4.3:
Group schemes and Picard varieties / 7.4.4:
Singular curves, structure of Pic[supercript 0] (X) / 7.5:
Birational geometry of surfaces / 8:
Blowing-ups / 8.1:
Definition and elementary properties / 8.1.1:
Universal property of blowing-up / 8.1.2:
Blowing-ups and birational morphisms / 8.1.3:
Normalization of curves by blowing-up points / 8.1.4:
Excellent schemes / 8.2:
Universally catenary schemes and the dimension formula / 8.2.1:
Cohen-Macaulay rings / 8.2.2:
Fibered surfaces / 8.2.3:
Properties of the fibers / 8.3.1:
Valuations and birational classes of fibered surfaces / 8.3.2:
Contraction / 8.3.3:
Desingularization / 8.3.4:
Regular surfaces / 9:
Intersection theory on a regular surface / 9.1:
Local intersection / 9.1.1:
Intersection on a fibered surface / 9.1.2:
Intersection with a horizontal divisor, adjunction formula / 9.1.3:
Intersection and morphisms / 9.2:
Factorization theorem / 9.2.1:
Projection formula / 9.2.2:
Birational morphisms and Picard groups / 9.2.3:
Embedded resolutions / 9.2.4:
Minimal surfaces / 9.3:
Exceptional divisors and Castelnuovo's criterion / 9.3.1:
Relatively minimal surfaces / 9.3.2:
Existence of the minimal regular model / 9.3.3:
Minimal desingularization and minimal embedded resolution / 9.3.4:
Applications to contraction; canonical model / 9.4:
Artin's contractability criterion / 9.4.1:
Determination of the tangent spaces / 9.4.2:
Canonical models / 9.4.3:
Weierstrass models and regular models of elliptic curves / 9.4.4:
Reduction of algebraic curves / 10:
Models and reductions / 10.1:
Models of algebraic curves / 10.1.1:
Reduction / 10.1.2:
Reduction map / 10.1.3:
Graphs / 10.1.4:
Reduction of elliptic curves / 10.2:
Reduction of the minimal regular model / 10.2.1:
Neron models of elliptic curves / 10.2.2:
Potential semi-stable reduction / 10.2.3:
Stable reduction of algebraic curves / 10.3:
Stable curves / 10.3.1:
Stable reduction / 10.3.2:
Some sufficient conditions for the existence of the stable model / 10.3.3:
Deligne-Mumford theorem / 10.4:
Simplifications on the base scheme / 10.4.1:
Proof of Artin-Winters / 10.4.2:
Examples of computations of the potential stable reduction / 10.4.3:
Bibliography
Index
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
92.

図書

図書
Zhuoqun Wu ... [et al.]
出版情報: Singapore : World Scientific, c2001  xvii, 502 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Newtonian Filtration Equations / Chapter 1:
Introduction / 1.1:
Physical examples / 1.1.1:
Definitions of generalized solutions / 1.1.2:
Special solutions / 1.1.3:
Existence and Uniqueness of Solutions: One Dimensional Case / 1.2:
Uniqueness of solutions / 1.2.1:
Existence of solutions / 1.2.2:
Comparison theorems / 1.2.3:
Some extensions / 1.2.4:
Existence and Uniqueness of Solutions: Higher Dimensional Case / 1.3:
Comparison theorem and uniqueness of solutions / 1.3.1:
Regularity of Solutions: One Dimensional Case / 1.3.2:
Lemma / 1.4.1:
Regularity of solutions / 1.4.2:
Regularity of Solutions: Higher Dimensional Case / 1.4.3:
Generalized class B[subscript 2] / 1.5.1:
Some lemmas / 1.5.2:
Properties of functions in the generalized class B[subscript 2] / 1.5.3:
Holder continuity of solutions / 1.5.4:
Properties of the Free Boundary: One Dimensional Case / 1.6:
Finite propagation of disturbances / 1.6.1:
Localization and extinction of disturbances / 1.6.2:
Differential equation on the free boundary / 1.6.3:
Continuously differentiability of the free boundary / 1.6.4:
Some further results / 1.6.5:
Properties of the Free Boundary: Higher Dimensional Case / 1.7:
Monotonicity and Holder continuity of the free boundary / 1.7.1:
Lipschitz continuity of the free boundary / 1.7.2:
Initial Trace of Solutions / 1.7.3:
Harnack inequality / 1.8.1:
Main result / 1.8.2:
Extension of existence and uniqueness theorem / 1.8.3:
Other Problems / 1.9:
Equations with strongly nonlinear sources / 1.9.1:
Asymptotic properties of solutions / 1.9.2:
Non-Newtonian Filtration Equations / Chapter 2:
Introduction Preliminary Knowledge / 2.1:
Introduction Physical example / 2.1.1:
Basic spaces and some lemmas / 2.1.2:
Existence of Solutions / 2.1.3:
The case u[subscript 0] [set membership] C[superscript [infinity] subscript 0](R[superscript N]) or u[subscript 0] [set membership] L[superscript 1](R[superscript N]) [intersection of] L[superscript [infinity](R[superscript N]) / 2.2.1:
The case u[subscript 0] [set membership] L[superscript 1 subscript loc](R[superscript N]) / 2.2.2:
Some remarks / 2.2.3:
Harnack Inequality and the Initial Trace of Solutions / 2.3:
Local Harnack inequality / 2.3.1:
Global Harnack inequality / 2.3.2:
Initial trace of solutions / 2.3.3:
Regularity of Solutions / 2.4:
Boundedness of solutions / 2.4.1:
Boundedness of the gradient of solutions / 2.4.2:
Holder continuity of the gradient of solutions / 2.4.3:
Uniqueness of Solutions / 2.5:
Auxiliary propositions / 2.5.1:
Uniqueness theorem and its proof / 2.5.2:
Properties of the Free Boundary / 2.6:
p-Laplacian equation with strongly nonlinear sources / 2.6.1:
General Quasilinear Equations of Second Order / 2.7.2:
Weakly Degenerate Equations in One Dimension / 3.1:
Uniqueness of bounded and measurable solutions / 3.2.1:
Existence of continuous solutions / 3.2.2:
Weakly Degenerate Equations in Higher Dimension / 3.2.3:
Existence of continuous solutions for equations with two points of degeneracy / 3.3.1:
Uniqueness of BV solutions / 3.3.2:
Existence of BV solutions / 3.3.3:
Strongly Degenerate Equations in One Dimension / 3.3.4:
Definitions of solutions with discontinuity / 3.4.1:
Interior discontinuity condition / 3.4.2:
Uniqueness of BV solutions of the Cauchy problem / 3.4.3:
Formulation of the boundary value problem / 3.4.4:
Boundary discontinuity condition / 3.4.5:
Uniqueness of BV solutions of the first boundary value problem / 3.4.6:
Existence of BV solutions of the first boundary value problem / 3.4.7:
Equations with degeneracy at infinity / 3.4.8:
Properties of the curves of discontinuity / 3.4.10:
Degenerate Equations in Higher Dimension without Terms of Lower Order / 3.5:
Uniqueness of bounded and integrable solutions / 3.5.1:
A lemma on weak convergence / 3.5.2:
General Strongly Degenerate Equations in Higher Dimension / 3.5.3:
Appendix Classes BV and BV[subscript x] / 3.6.1:
Nonlinear Diffusion Equations of Higher Order / Chapter 4:
Similarity Solutions of a Fourth Order Equation / 4.1:
Definition of similarity solutions / 4.2.1:
Existence and uniqueness of global solutions of the Cauchy problem / 4.2.2:
Properties of solutions at zero points / 4.2.3:
Properties of unbounded solutions / 4.2.5:
Bounded solutions on the half line / 4.2.6:
Bounded solutions on the whole line / 4.2.7:
Properties of solutions in typical cases k = 1,2,3,4 / 4.2.8:
Behavior of similarity solutions as t [right arrow] 0[superscript +] / 4.2.9:
Equations with Double-Degeneracy / 4.3:
Weighted energy equality of solutions / 4.3.1:
Some auxiliary inequalities / 4.3.4:
Asymptotic behavior of solutions / 4.3.5:
Extinction of solutions at finite time / 4.3.7:
Nonexistence of nonnegative solutions / 4.3.8:
Infinite propagation case / 4.3.9:
Cahn-Hilliard Equation with Constant Mobility / 4.4:
Existence of classical solutions / 4.4.1:
Blowing-up of solutions / 4.4.2:
Global existence of solutions for small initial value / 4.4.3:
Cahn-Hilliard Equations with Positive Concentration Dependent Mobility / 4.5:
A modified Campanato space / 4.5.1:
Holder norm estimates for a linear problem / 4.5.2:
Zero potential case / 4.5.3:
General case / 4.5.4:
Thin Film Equation / 4.6:
Definition of generalized solutions / 4.6.1:
Approximate solutions / 4.6.2:
Nonnegativity of solutions / 4.6.3:
Zeros of nonnegative solutions / 4.6.5:
Monotonicity of the support of solutions / 4.6.6:
Cahn-Hilliard Equation with Degenerate Mobility / 4.7:
Models with degenerate mobility / 4.7.1:
Definition of physical solutions / 4.7.2:
Physical solutions / 4.7.3:
Bibliography
Preface
Newtonian Filtration Equations / Chapter 1:
Introduction / 1.1:
93.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
94.

図書

図書
B.G. Orekhov, M.G. Zertsalov
出版情報: Rotterdam ; Brookfield, VT : A.A. Balkema, 2001  ix, 285 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Strength and Deformation of Brittle Materials / Chapter 1.:
Mechanics of Failure and Investigation of the Strength of Materials / 1.1.:
Theory of Deformation of Rocks and Concretes under Compression / 1.2.:
Phenomenological Theories of Deformation / 1.2.1.:
Structural Theories of Deformation / 1.2.2.:
Analytical Models of the Strength of Building Materials / Chapter 2.:
Limit State of Brittle Solid Based on the Maximum Tensile Strength Criterion / 2.1.:
Elastic Body with Thin Elliptical Crack / 2.1.1.:
Elastic Body with Ideally Thin Cracks / 2.1.2.:
Elastic Body with Elliptical Cracks of Finite Dimensions / 2.1.3.:
Application of Energy Criteria for Determining the Limiting States of an Elastic Body / 2.2.:
Energy Approach to the Solution of the Problem / 2.2.1.:
Criteria of the Intensity of Release of Elastic Energy of Systems / 2.2.2.:
Strain Energy Density Criteria / 2.2.3.:
Development of Analytical Model of Strength of Materials Based on the Theory of Quasibrittle failure / 2.3.:
Problem Formulation / 2.3.1.:
State of Stress of Body Around the Tip of Elliptical Crack / 2.3.2.:
Theoretical Outline of the Contour Enveloping the Region of Plastic Flow of Material / 2.3.3.:
Theoretical Model of the Strength of Material / 2.3.4.:
Consideration of Strength Anisotropy of Materials / 2.3.5.:
Strength of Building Constructions and Structures / Chapter 3.:
Method of Analysis of the Strength of Constructions and Structures / 3.1.:
Important Theoretical Relations / 3.1.1.:
Criterion of Maximum Tangential Tensile Stress / 3.1.2.:
Criterion of Strain-Energy Density / 3.1.3.:
Computation Algorithm / 3.1.4.:
Experimental Justification of the Method of Analysis / 3.2.:
Determination of the Analytical Parameters of Gypsum Used for Model Making / 3.2.1.:
Fracture of Gypsum Plates / 3.2.2.:
Fracture of the Model of a Die under Shear / 3.2.3.:
Fracture of Reinforced Beam / 3.2.4.:
Fracture of the Model of Dam with a Horizontal Weakened Joint / 3.2.5.:
Analysis of the Strength and Stability of Concrete Dams / 3.3.:
Mechanics of the Failure and Deformation of Rocks and Concretes under Compression / Chapter 4.:
Effect of Internal Structural Defects on the Compressibility of Rocks and Concretes / 4.1.:
Equations of the State of Rocks and Concretes under Compression / 4.2.:
Two-dimensional Problem / 4.2.1.:
Axisymmetrical Problem / 4.2.2.:
Three-dimensional Problem / 4.2.3.:
Microcracking as the Main Cause of Non-linear Deformation of Rocks and Concretes / 4.3.:
Application of Finite Element Method in Modelling of Crack Growth / 4.4.:
Modelling of Cracks and Contacts in Discontinuities / 4.4.1.:
Formation of Stiffness Matrix of the Contact Element / 4.4.2.:
Modelling of Stress and Strain Distribution Around the Crack Tip / 4.4.3.:
Formation of Stiffness Matrix of a Singular Element / 4.4.4.:
Effect of the Size of the Singular Element on the Accuracy of the Solution / 4.4.5.:
Combination of the Singular and Contact Elements and its Use in Solving the Problems of Fracture Mechanics / 4.4.6.:
Equation of State of Rocks and Concrete when Deformed under Compression / 4.5.:
Deformation under Conditions of Microcrack Formation / 4.5.1.:
Deformation of the Fragment with a Unitary Three-link Cut (Two dimensional Problem) / 4.5.2.:
Deformation of Body Weakened by Thin Elliptical Cracks After the Commencement of Microcrack Formation (Two-dimensional Problem) / 4.5.3.:
Elastoplastic Model of Rocks and the Criteria of Failure under Compression / 4.5.4.:
Elastoplastic Model of the Behaviour of Rocks and Concretes / 5.1.:
Failure Criteria Used in the Model / 5.2.:
Griffith's Criterion as Modified by Fairhurst / 5.2.1.:
Criteria of the Critical Value of Volumetric Strain of Microcrack Formation / 5.2.2.:
Investigation of the Load-bearing Capacity of Engineering Structures / Chapter 6.:
Load-bearing Capacity of Gravity Concrete Dams with Consideration of Factors that Weaken them / 6.1.:
Experimental Investigation of Load-bearing Capacity of Dams Using Scaled Down Models / 6.2.:
Details of the Study and the Methods Used / 6.2.1.:
Investigation of the Models of Series III / 6.2.2.:
Investigation of the Models of Series IV / 6.2.3.:
Theoretical Investigations of the Strength and Failure of Concrete Dam / 6.3.:
Method of Calculations / 6.3.1.:
First Series of Calculations (Model of Dam with Slope of Downstream Face 1:0.7) / 6.3.2.:
Second Series of Calculations (Model of Dam with Slope of Downstream Face 1:0.6) / 6.3.3.:
Investigation of the Interaction between Engineering Structures and the Rock Mass / 6.4.:
Estimate of the Stability of Tunnelling Work of the Turbine Water Line at the Nureksk Hydropower Plant / 6.4.1.:
Investigation of the Schemes of Failure of the Concrete Dam-Rock Base System / 6.4.2.:
Estimation of the Load-bearing Capacity of Concrete Dam on Weak Fractured Base (Boguchansk Hydroengineering Complex) / 6.4.3.:
Bibliography
Introduction
Strength and Deformation of Brittle Materials / Chapter 1.:
Mechanics of Failure and Investigation of the Strength of Materials / 1.1.:
95.

図書

図書
Tony Aspromourgos
出版情報: London : Routledge, 2009  xix, 396 p. ; 24 cm
シリーズ名: Routledge studies in the history of economics ; 95
所蔵情報: loading…
目次情報: 続きを見る
Preface
A note on citation practice
Introduction / 1:
The science of wealth / 2:
Political oeconomy and science / 2.1:
Smith on 'political economy' / 2.1.1:
Smith on 'science' / 2.1.2:
Genesis of modern political economy / 2.1.3:
Enlightenment and political economy / 2.1.4:
Hobbes, Petty, Steuart / 2.1.5:
Cameralism and Linnaeus / 2.1.6:
Smith's achievement / 2.1.7:
Wealth as national product / 2.2:
Smith on 'wealth' / 2.2.1:
Early meanings of wealth / 2.2.2:
Petty to Turgot / 2.2.3:
Nature as a norm / 2.3:
Smith on 'nature' / 2.3.1:
Earlier concepts of 'natural' / 2.3.2:
A science of man / 2.3.3:
The economy of nature / 2.3.4:
A 'new' science / 2.4:
Competition, prices and distribution / 3:
Competition and prices / 3.1:
Concepts of price / 3.1.1:
Smith on 'competition' / 3.1.2:
Supply and demand / 3.2:
Smith on 'supply' and 'demand' / 3.2.1:
Smith on 'scarcity' and 'plenty' / 3.2.2:
Market prices, supply dynamics and the role of demand / 3.3:
Role of supply versus demand / 3.3.1:
Indeterminacy of demand-prices / 3.3.2:
Competitive price and concepts of cost / 3.4:
Normal price and scale of production / 3.4.1:
Four concepts of cost / 3.4.2:
Income distribution as pricing / 3.4.3:
Prices and costs prior to Smith / 3.5:
Etymology / 3.5.1:
The century prior to Smith / 3.5.2:
Market prices and the 'just' price / 3.5.3:
Aristotle's formula / 3.5.4:
Some latter-day interpretations / 3.5.5:
Cost and pre-modern thought / 3.5.6:
Competition theory without supply-and-demand functions / 3.6:
Production and capital accumulation / 4:
Division of labour and labour productivity / 4.1:
Smith and division of labour / 4.1.1:
Earlier conceptions of division of labour / 4.1.2:
Gross revenue and net revenue / 4.2:
Smith and social 'net revenue' / 4.2.1:
The concept of a social surplus / 4.2.2:
Earlier concepts of net revenue / 4.2.3:
Capital and productive labour / 4.3:
Smith on 'capital' / 4.3.1:
Smith on 'productive labour' / 4.3.2:
Productive labour: a rational reconstruction / 4.3.3:
Growth dynamics / 4.3.4:
Reducibility of normal prices / 4.3.5:
Prehistory: capital, cattle, chattels / 4.3.6:
Quesnay: the invention of capital theory / 4.3.7:
Luxury, unproductiveness and surplus before Smith / 4.3.8:
Two problems / 4.4:
Growth dynamics and demand/supply coordination / 4.4.1:
The content of the social surplus / 4.4.2:
Opulence and policy / 5:
The progress of opulence / 5.1:
Smith on 'opulence' / 5.1.1:
Extending opulence / 5.1.2:
Policy and the system of liberty / 5.2:
Smith on 'liberty' / 5.2.1:
Smith on 'police' and 'policy' / 5.2.2:
Economic liberty: justification and limits / 5.2.3:
Early meanings of liberty and freedom / 5.2.4:
Modern political liberty / 5.2.5:
The idea of police / 5.2.6:
Theory, policy, history / 5.3:
Smith on 'theory' / 5.3.1:
Theory and practice / 5.3.2:
History and political economy / 5.3.3:
Limits of theory and limits of Smith's policy / 5.4:
Epilogue
Notes
References
Index
Preface
A note on citation practice
Introduction / 1:
96.

図書

図書
edited by Mark Wild, Gregory J. Offer
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xiv, 335 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
Overview of a LiS cell / 1.1:
The Development of the Cell Voltage / 1.2:
Using the Electrochemical Potential / 1.2.1:
Electrochemical Reactions / 1.2.2:
The Electric Double Layer / 1.2.3:
Reaction Equilibrium / 1.2.4:
A Finite Electrolyte / 1.2.5:
The Need for a Second Electrode / 1.2.6:
Allowing a Current to Flow / 1.3:
The Reaction Overpotential / 1.3.1:
The Transport Overpotential / 1.3.2:
General Comments on the Over potentials / 1.3.3:
Additional Processes Which Define the Behavior of a LiS Cell / 1.4:
Multiple Electrochemical Reactions at One Surface / 1.4.1:
Chemical Reactions / 1.4.2:
Species Solubility and Indirect Reaction Effects / 1.4.3:
Transport Limitations in the Cathode / 1.4.4:
The Active Surface Area / 1.4.5:
Precipitate Accumulation / 1.4.6:
Electrolyte Viscosity, Conductivity, and Species Transport / 1.4.7:
Side Reactions and SEI Formation at the Anode / 1.4.8:
Anode Morphological Changes / 1.4.9:
Polysulfide Shuttle / 1.4.10:
Summary / 1.5:
References
Sulfur Cathodes / Holger Althues and Susanne Dörfler and Sören Thieme and Patrick Strubel and Stefan Kaskel2:
Cathode Design Criteria / 2.1:
Overview of Cathode Components and Composition / 2.1.1:
Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry / 2.1.2:
Cathode Design: Impact on Energy Density on Cell Level / 2.1.3:
Cathode Design: Impact on Cycle Life and Self-discharge / 2.1.4:
Cathode Design: Impact on Rate Capability / 2.1.5:
Cathode Materials / 2.2:
Properties of Sulfur / 2.2.1:
Porous and Nanostructured Carbons as Conductive Cathode Scaffolds / 2.2.2:
Graphite-Like Carbons / 2.2.2.1:
Synthesis of Graphite-like Carbons / 2.2.2.2:
Carbon Black / 2.2.2.3:
Activated Carbons / 2.2.2.4:
Carbide-Derived Carbon / 2.2.2.5:
Hard-Template-Assisted Carbon Synthesis / 2.2.2.6:
Carbon Surface Chemistry / 2.2.2.7:
Carbon/Sulfur Composite Cathodes / 2.2.3:
Microporous Carbons / 2.2.3.1:
Mesoporous Carbons / 2.2.3.2:
Macroporous Carbons and Nanotube-based Cathode Systems / 2.2.3.3:
Hierarchical Mesoporous Carbons / 2.2.3.4:
Hierarchical Microporous Carbons / 2.2.3.5:
Hollow Carbon Spheres / 2.2.3.6:
Graphene / 2.2.3.7:
Retention of LiPS by Surface Modifications and Coating / 2.2.4:
Metal Oxides as Adsorbents for Lithium Polysulfides / 2.2.4.1:
Cathode Processing / 2.3:
Methods for C/S Composite Preparation / 2.3.1:
Wet (Organic, Aqueous) and Dry Coating for Cathode Production / 2.3.2:
Alternative Cathode Support Concepts (Carbon Current Collectors, Binder-free Electrodes) / 2.3.3:
Processing Perspective for Carbons, Binders, and Additives / 2.3.4:
Conclusions / 2.4:
Electrolyte for Lithium-Sulfur Batteries / Marzieh Barghamadi and Mustafa Musameh and Thomas Rüther and Anand I. Bhatt and Anthony F. Hollenkamp and Adam S. Best3:
The Case for Better Batteries / 3.1:
Li-S Battery: Origins and Principles / 3.2:
Solubility of Species and Electrochemistry / 3.3:
Liquid Electrolyte Solutions / 3.4:
Modified Liquid Electrolyte Solutions / 3.5:
Variation in Electrolyte Salt Concentration / 3.5.1:
Mixed Organic-Ionic Liquid Electrolyte Solutions / 3.5.2:
Ionic Liquid Electrolyte Solutions / 3.5.3:
Solid and Solidified Electrolyte Configurations / 3.6:
Polymer Electrolytes / 3.6.1:
Absorbed Liquid/Gelled Electrolyte / 3.6.1.1:
Solid Polymer Electrolytes / 3.6.1.2:
Non-polymer Solid Electrolytes / 3.6.2:
Challenges of the Cathode and Solvent for Device Engineering / 3.7:
Tire Cathode Loading Challenge / 3.7.1:
Cathode Wetting Challenge / 3.7.2:
Concluding Remarks and Outlook / 3.8:
Anode-Electrolyte Interface / Mark Wild4:
Introduction / 4.1:
SEI Formation / 4.2:
Anode Morphology / 4.3:
Electrolyte Additives for Stable SEI Formation / 4.4:
Barrier Layers on the Anode / 4.6:
A Systemic Approach / 4.7:
Mechanisms / Part II:
Reference
Molecular Level Understanding of the Interactions Between Reaction Intermediates of Li-S Energy Storage Systems and Ether Solvents / Rajeev S. Assary and Larry A. Curtiss5:
Computational Details / 5.1:
Results and Discussions / 5.3:
Reactivity of Li-S Intermediates with Dimethoxy Ethane (DME) / 5.3.1:
Kinetic Stability of Ethers in the Presence of Lithium Polysulfide / 5.3.2:
Linear Fluorinated Ethers / 5.3.3:
Summary and Conclusions / 5.4:
Acknowledgments
Lithium Sulfide / Sylwia Walus6:
Li2S as the End Discharge Product / 6.1:
General / 6.2.1:
Discharge Product: Li2S or Li2S2/Li2S? / 6.2.2:
A Survey of Experimental and Theoretical Findings Involving Li2S and Li2S2 Formation and Proposed Reduction Pathways / 6.2.3:
Mechanistic Insight into Li2S/Li2S2 Nucleation and Growth / 6.2.4:
Strategies to Limit Li2S Precipitation and Enhance the Capacity / 6.2.5:
Charge Mechanism and its Difficulties / 6.2.6:
Li2S-Based Cathodes: Toward a Li Ion System / 6.3:
Initial Activation of Li2S - Mechanism of First Charge / 6.3.1:
Recent Developments in Li2S Cathodes for Improved Performances / 6.3.3:
Degradation in Lithium-Sulfur Batteries / Rajlakshmi Purkoyastha6.4:
Degradation Processes Within a Lithium- Sulfur Cell / 7.1:
Degradation at Cathode / 7.2.1:
Degradation at Anode / 7.2.2:
Degradation in Electrolyte / 7.2.3:
Degradation Due to Operating Conditions: Temperature, C-Rates, and Pressure / 7.2.4:
Degradation Due to Geometry: Scale-Up and Topology / 7.2.5:
Capacity Fade Models / 7.3:
Dendrite Models / 7.3.1:
Equivalent Circuit Network Models / 7.3.2:
Methods of Detecting and Measuring Degradation / 7.4:
Incremental Capacity Analysis / 7.4.1:
Differential Thermal Voltammetry / 7.4.2:
Electrochemical Impedance Spectroscopy / 7.4.3:
Resistance Curves / 7.4.4:
Macroscopic Indicators / 7.4.5:
Methods for Countering Degradation / 7.5:
Future Direction / 7.6:
Modeling / Part III:
Lithium-Sulfur Model Development / Teng Zhang and Monica Marinescu and Gregory J. Offer8:
Zero-Dimensional Model / 8.1:
Model Formulation / 8.2.1:
Shuttle and Precipitation / 8.2.1.1:
Time Evolution of Species / 8.2.1.3:
Model Implementation / 8.2.1.4:
Basic Charge/Discharge Behaviors / 8.2.2:
Modeling Voltage Loss in Li-S Cells / 8.3:
Electrolyte Resistance / 8.3.1:
Anode Potential / 8.3.2:
Surface Passivation / 8.3.3:
Transport Limitation / 8.3.4:
Higher Dimensional Models / 8.4:
One-Dimensional Models / 8.4.1:
Multi-Scale Models / 8.4.2:
Battery Management Systems - State Estimation for Lithium-Sulfur Batteries / Daniel J. Auger and Abbas Fotouhi and Karsten Propp and Stefano Longo8.5:
Motivation / 9.1:
Capacity / 9.1.1:
State of Charge (SoC) / 9.1.2:
State of Health (SoH) / 9.1.3:
Limitations of Existing Battery State Estimation Techniques / 9.1.4:
SoC Estimation from "Coulomb Counting" / 9.1.4.1:
SoC Estimation from Open-Circuit Voltage (OCV) / 9.1.4.2:
Direction of Current Work / 9.1.5:
Experimental Environment for Li-S Algorithm Development / 9.2:
Pulse Discharge Tests / 9.2.1:
Driving Cycle Tests / 9.2.2:
State Estimation Techniques from Control Theory / 9.3:
Electrochemical Models / 9.3.1:
Equivalent Circuit Network (ECN) Models / 9.3.2:
Kalman Filters and Their Derivatives / 9.3.3:
State Estimation Techniques from Computer Science / 9.4:
ANFIS as a Modeling Tool / 9.4.1:
Human Knowledge and Fuzzy Inference Systems (FIS) / 9.4.2:
Adaptive Neuro-Fuzzy Inference Systems / 9.4.3:
State-of-Charge Estimation Using ANFIS / 9.4.4:
Conclusions and Further Directions / 9.5:
Application / Part IV:
Commercial Markets for Li-S / Mark Crittenden10:
Technology Strengths Meet Market Needs / 10.1:
Weight / 10.1.1:
Safety / 10.1.2:
Cost / 10.1.3:
Temperature Tolerance / 10.1.4:
Shipment and Storage / 10.1.5:
Power Characteristics / 10.1.6:
Environmentally Friendly Technology (Clean Tech) / 10.1.7:
Pressure Tolerance / 10.1.8:
Control / 10.1.9:
Electric Aircraft / 10.2:
Satellites / 10.3:
Cars / 10.4:
Buses / 10.5:
Trucks / 10.6:
Electric Scooter and Electric Bikes / 10.7:
Marine / 10.8:
Energy Storage / 10.9:
Low-Temperature Applications / 10.10:
Defense / 10.11:
Looking Ahead / 10.12:
Conclusion / 10.13:
Battery Engineering / Gregory J. Offer11:
Mechanical Considerations / 11.1:
Thermal and Electrical Considerations / 11.2:
Case Study / Paul Brooks12:
A Potted History of Eternal Solar Flight / 12.1:
Why Has It Been So Difficult? / 12.3:
Objectives of HALE UAV / 12.4:
Stay Above the Cloud / 12.4.1:
Stay Above the Wind / 12.4.2:
Stay in the Sun / 12.4.3:
Year-Round Markets / 12.4.4:
Seasonal Markets / 12.4.5:
How Valuable Are These Markets and What Does That Mean for the Battery? / 12.4.6:
Worked Example - HALE UAV / 12.5:
Cells, Batteries, and Real Life / 12.6:
Cycle Life, Charge, and Discharge Rates / 12.6.1:
Payload / 12.6.2:
Avionics / 12.6.3:
Temperature / 12.6.4:
End-of-Life Performance / 12.6.5:
Protection / 12.6.6:
Balancing - Useful Capacity / 12.6.7:
Summary of Real-World Issues / 12.6.8:
A Quick Aside on Regenerative Fuel Cells / 12.7:
So What Do We Need from Our Battery Suppliers? / 12.8:
The Challenges for Battery Developers / 12.9:
The Answer to the Title / 12.10:
Index / 12.11:
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
97.

図書

図書
Dan C. Marinescu
出版情報: New York : Wiley, c2002  xxiv, 627 p. ; 25 cm
シリーズ名: Wiley series on parallel and distributed computing
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acronyms
Internet-Based Workflows / 1:
Workflows and the Internet / 1.1:
Historic Perspective / 1.1.1:
Enabling Technologies / 1.1.2:
Nomadic, Network-Centric, and Network-Aware Computing / 1.1.3:
Information Grids; the Semantic Web / 1.1.4:
Workflow Management in a Semantic Web / 1.1.5:
Informal Introduction to Workflows / 1.2:
Assembly of a Laptop / 1.2.1:
Computer Scripts / 1.2.2:
A Metacomputing Example / 1.2.3:
Automatic Monitoring and Benchmarking of Web Services / 1.2.4:
Lessons Learned / 1.2.5:
Workflow Reference Model / 1.3:
Workflows and Database Management Systems / 1.4:
Database Transactions / 1.4.1:
Workflow Products / 1.4.2:
Internet Workflow Models / 1.5:
Basic Concepts / 1.5.1:
The Life Cycle of a Workflow / 1.5.2:
States, Events, and Transition Systems / 1.5.3:
Safe and Live Processes / 1.5.4:
Transactional versus Internet-Based Workflows / 1.6:
Workflow Patterns / 1.7:
Workflow Enactment / 1.8:
Task Activation and States / 1.8.1:
Workflow Enactment Models / 1.8.2:
Workflow Coordination / 1.9:
Challenges of Dynamic Workflows / 1.10:
Further Reading / 1.11:
Exercises and Problems / 1.12:
References
Basic Concepts and Models / 2:
Introduction / 2.1:
System Models / 2.1.1:
Functional and Dependability Attributes / 2.1.2:
Major Concerns in the Design of a Distributed System / 2.1.3:
Information Transmission and Communication Channel Models / 2.2:
Channel Bandwidth and Latency / 2.2.1:
Entropy and Mutual Information / 2.2.2:
Binary Symmetric Channels / 2.2.3:
Information Encoding / 2.2.4:
Channel Capacity: Shannon's Theorems / 2.2.5:
Error Detecting and Error Correcting Codes / 2.2.6:
Final Remarks on Communication Channel Models / 2.2.7:
Process Models / 2.3:
Processes and Events / 2.3.1:
Local and Global States / 2.3.2:
Process Coordination / 2.3.3:
Time, Time Intervals, and Global Time / 2.3.4:
Cause-Effect Relationship, Concurrent Events / 2.3.5:
Logical Clocks / 2.3.6:
Message Delivery to Processes / 2.3.7:
Process Algebra / 2.3.8:
Final Remarks on Process Models / 2.3.9:
Synchronous and Asynchronous Message Passing System Models / 2.4:
Time and the Process Channel Model / 2.4.1:
Synchronous Systems / 2.4.2:
Asynchronous Systems / 2.4.3:
Final Remarks on Synchronous and Asynchronous Systems / 2.4.4:
Monitoring Models / 2.5:
Runs / 2.5.1:
Cuts; the Frontier of a Cut / 2.5.2:
Consistent Cuts and Runs / 2.5.3:
Causal History / 2.5.4:
Consistent Global States and Distributed Snapshots / 2.5.5:
Monitoring and Intrusion / 2.5.6:
Quantum Computing, Entangled States, and Decoherence / 2.5.7:
Examples of Monitoring Systems / 2.5.8:
Final Remarks on Monitoring / 2.5.9:
Reliability and Fault Tolerance Models. Reliable Collective Communication / 2.6:
Failure Modes / 2.6.1:
Redundancy / 2.6.2:
Broadcast and Multicast / 2.6.3:
Properties of a Broadcast Algorithm / 2.6.4:
Broadcast Primitives / 2.6.5:
Terminating Reliable Broadcast and Consensus / 2.6.6:
Resource Sharing, Scheduling, and Performance Models / 2.7:
Process Scheduling in a Distributed System / 2.7.1:
Objective Functions and Scheduling Policies / 2.7.2:
Real-Time Process Scheduling / 2.7.3:
Queuing Models: Basic Concepts / 2.7.4:
The M/M/1 Queuing Model / 2.7.5:
The M/G/1 System: The Server with Vacation / 2.7.6:
Network Congestion Example / 2.7.7:
Final Remarks Regarding Resource Sharing and Performance Models / 2.7.8:
Security Models / 2.8:
Basic Terms and Concepts / 2.8.1:
An Access Control Model / 2.8.2:
Challenges in Distributed Systems / 2.9:
Concurrency / 2.9.1:
Mobility of Data and Computations / 2.9.2:
Net Models of Distributed Systems and Workflows / 2.10:
Informal Introduction to Petri Nets / 3.1:
Basic Definitions and Notations / 3.2:
Modeling with Place/Transition Nets / 3.3:
Conflict/Choice, Synchronization, Priorities, and Exclusion / 3.3.1:
State Machines and Marked Graphs / 3.3.2:
Marking Independent Properties of P/T Nets / 3.3.3:
Marking Dependent Properties of P/T Nets / 3.3.4:
Petri Net Languages / 3.3.5:
State Equations / 3.4:
Properties of Place/Transition Nets / 3.5:
Coverability Analysis / 3.6:
Applications of Stochastic Petri Nets to Performance Analysis / 3.7:
Stochastic Petri Nets / 3.7.1:
Informal Introduction to SHLPNs / 3.7.2:
Formal Definition of SHLPNs / 3.7.3:
Compound Marking of an SHLPN / 3.7.4:
Modeling and Performance Analysis of a Multiprocessor System Using SHLPNs / 3.7.5:
Performance Analysis / 3.7.6:
Modeling Horn Clauses with Petri Nets / 3.8:
Workflow Modeling with Petri Nets / 3.9:
Basic Models / 3.9.1:
Branching Bisimilarity / 3.9.2:
Dynamic Workflow Inheritance / 3.9.3:
Internet Quality of Service / 3.10:
Brief Introduction to Networking / 4.1:
Layered Network Architecture and Communication Protocols / 4.1.1:
Internet Applications and Programming Abstractions / 4.1.2:
Messages and Packets / 4.1.3:
Encapsulation and Multiplexing / 4.1.4:
Circuit and Packet Switching. Virtual Circuits and Datagrams / 4.1.5:
Networking Hardware / 4.1.6:
Routing Algorithms and Wide Area Networks / 4.1.7:
Local Area Networks / 4.1.8:
Residential Access Networks / 4.1.9:
Forwarding in Packet-Switched Network / 4.1.10:
Protocol Control Mechanisms / 4.1.11:
Internet Addressing / 4.2:
Internet Address Encoding / 4.2.1:
Subnetting / 4.2.2:
Classless IP Addressing / 4.2.3:
Address Mapping, the Address Resolution Protocol / 4.2.4:
Static and Dynamic IP Address Assignment / 4.2.5:
Packet Forwarding in the Internet / 4.2.6:
Tunneling / 4.2.7:
Wireless Communication and Host Mobility in Internet / 4.2.8:
Internet Routing and the Protocol Stack / 4.2.9:
Autonomous Systems. Hierarchical Routing / 4.3.1:
Firewalls and Network Security / 4.3.2:
IP, the Internet Protocol / 4.3.3:
ICMP, the Internet Control Message Protocol / 4.3.4:
UDP, the User Datagram Protocol / 4.3.5:
TCP, the Transport Control Protocol / 4.3.6:
Congestion Control in TCP / 4.3.7:
Routing Protocols and Internet Traffic / 4.3.8:
Quality of Service / 4.4:
Service Guarantees and Service Models / 4.4.1:
Flows / 4.4.2:
Resource Allocation in the Internet / 4.4.3:
Best-Effort Service Networks / 4.4.4:
Buffer Acceptance Algorithms / 4.4.5:
Explicit Congestion Notification (ECN) in TCP / 4.4.6:
Maximum and Minimum Bandwidth Guarantees / 4.4.7:
Delay Guarantees and Packet Scheduling Strategies / 4.4.8:
Constrained Routing / 4.4.9:
Resource Reservation Protocol (RSVP) / 4.4.10:
Integrated Services / 4.4.11:
Differentiated Services / 4.4.12:
Final Remarks on Internet QoS / 4.4.13:
From Ubiquitous Internet Services to Open Systems / 4.5:
The Client-Server Paradigm / 5.1:
Internet Directory Service / 5.3:
Electronic Mail / 5.4:
Overview / 5.4.1:
Simple Mail Transfer Protocol / 5.4.2:
Multipurpose Internet Mail Extensions / 5.4.3:
Mail Access Protocols / 5.4.4:
The World Wide Web / 5.5:
HTTP Communication Model / 5.5.1:
Hypertext Transfer Protocol (HTTP) / 5.5.2:
Web Server Response Time / 5.5.3:
Web Caching / 5.5.4:
Nonpersistent and Persistent HTTP Connections / 5.5.5:
Web Server Workload Characterization / 5.5.6:
Scalable Web Server Architecture / 5.5.7:
Web Security / 5.5.8:
Reflections on the Web / 5.5.9:
Multimedia Services / 5.6:
Sampling and Quantization; Bandwidth Requirements for Digital Voice, Audio, and Video Streams / 5.6.1:
Delay and Jitter in Data Streaming / 5.6.2:
Data Streaming / 5.6.3:
Real-Time Protocol and Real-Time Streaming Protocol / 5.6.4:
Audio and Video Compression / 5.6.5:
Open Systems / 5.7:
Resource Management, Discovery and Virtualization, and Service Composition in an Open System / 5.7.1:
Mobility / 5.7.2:
Network Objects / 5.7.3:
Java Virtual Machine and Java Security / 5.7.4:
Remote Method Invocation / 5.7.5:
Jini / 5.7.6:
Information Grids / 5.8:
Resource Sharing and Administrative Domains / 5.8.1:
Services in Information Grids / 5.8.2:
Service Coordination / 5.8.3:
Computational Grids / 5.8.4:
Coordination and Software Agents / 5.9:
Coordination and Autonomy / 6.1:
Coordination Models / 6.2:
Coordination Techniques / 6.3:
Coordination Based on Scripting Languages / 6.3.1:
Coordination Based on Shared-Data Spaces / 6.3.2:
Coordination Based on Middle Agents / 6.3.3:
Software Agents / 6.4:
Software Agents as Reactive Programs / 6.4.1:
Reactivity and Temporal Continuity / 6.4.2:
Persistence of Identity and State / 6.4.3:
Autonomy / 6.4.4:
Inferential Ability / 6.4.5:
Mobility, Adaptability, and Knowledge-Level Communication Ability / 6.4.6:
Internet Agents / 6.5:
Agent Communication / 6.6:
Agent Communication Languages / 6.6.1:
Speech Acts and Agent Communication Language Primitives / 6.6.2:
Knowledge Query and Manipulation Language / 6.6.3:
FIPA Agent Communication Language / 6.6.4:
Software Engineering Challenges for Agents / 6.7:
Knowledge Representation, Inference, and Planning / 6.8:
Software Agents and Knowledge Representation / 7.1:
Software Agents as Reasoning Systems / 7.2.1:
Knowledge Representation Languages / 7.2.2:
Propositional Logic / 7.3:
Syntax and Semantics of Propositional Logic / 7.3.1:
Inference in Propositional Logic / 7.3.2:
First-Order Logic / 7.4:
Syntax and Semantics of First-Order Logic / 7.4.1:
Applications of First-Order Logic / 7.4.2:
Changes, Actions, and Events / 7.4.3:
Inference in First-Order Logic / 7.4.4:
Building a Reasoning Program / 7.4.5:
Knowledge Engineering / 7.5:
Knowledge Engineering and Programming / 7.5.1:
Ontologies / 7.5.2:
Automatic Reasoning Systems / 7.6:
Forward- and Backward-Chaining Systems / 7.6.1:
Frames - The Open Knowledge Base Connectivity / 7.6.3:
Metadata / 7.6.4:
Planning / 7.7:
Problem Solving and State Spaces / 7.7.1:
Problem Solving and Planning / 7.7.2:
Partial-Order and Total-Order Plans / 7.7.3:
Planning Algorithms / 7.7.4:
Summary / 7.8:
Middleware for Process Coordination: A Case Study / 7.9:
The Core / 8.1:
The Objects / 8.1.1:
Communication Architecture / 8.1.2:
Understanding Messages / 8.1.3:
Security / 8.1.4:
The Agents / 8.2:
The Bond Agent Model / 8.2.1:
Communication and Control. Agent Internals / 8.2.2:
Agent Description / 8.2.3:
Agent Transformations / 8.2.4:
Agent Extensions / 8.2.5:
Applications of the Framework / 8.3:
Adaptive Video Service / 8.3.1:
Web Server Monitoring and Benchmarking / 8.3.2:
Agent-Based Workflow Management / 8.3.3:
Other Applications / 8.3.4:
Glossary / 8.4:
Index
Preface
Acronyms
Internet-Based Workflows / 1:
98.

図書

図書
Steven Tadelis
出版情報: Princeton : Princeton University Press, c2013  xv, 396 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Rational Decision Making / Part I:
The Single-Person Decision Problem / Chapter 1:
Actions, Outcomes, and Preferences / 1.1:
Preference Relations / 1.1.1:
Payoff Functions / 1.1.2:
The Rational Choice Paradigm / 1.2:
Summary / 1.3:
Exercises / 1.4:
Introducing Uncertainty and Time / Chapter 2:
Risk, Nature, and Random Outcomes / 2.1:
Finite Outcomes and Simple Lotteries / 2.1.1:
Simple versus Compound Lotteries / 2.1.2:
Lotteries over Continuous Outcomes / 2.1.3:
Evaluating Random Outcomes / 2.2:
Expected Payoff: The Finite Case / 2.2.1:
Expected Payoff: The Continuous Case / 2.2.2:
Caveat: It's Not Just the Order Anymore / 2.2.3:
Risk Attitudes / 2.2.4:
The St. Petersburg Paradox / 2.2.5:
Rational Decision Making with Uncertainty / 2.3:
Rationality Revisited / 2.3.1:
Maximizing Expected Payoffs / 2.3.2:
Decisions over Time / 2.4:
Backward Induction / 2.4.1:
Discounting Future Payoffs / 2.4.2:
Applications / 2.5:
The Value of Information / 2.5.1:
Discounted Future Consumption / 2.5.2:
Theory versus Practice / 2.6:
Static Games of Complete Information / 2.7:
Preliminaries / Chapter 3:
Normal-Form Games with Pure Strategies / 3.1:
Example: The Prisoner's Dilemma / 3.1.1:
Example: Cournot Duopoly / 3.1.2:
Example: Voting on a New Agenda / 3.1.3:
Matrix Representation: Two-Player Finite Game / 3.2:
Example: Rock-Paper-Scissors / 3.2.1:
Solution Concepts / 3.3:
Assumptions and Setup / 3.3.1:
Evaluating Solution Concepts / 3.3.2:
Evaluating Outcomes / 3.3.3:
Rationality and Common Knowledge / 3.4:
Dominance in Pure Strategies / 4.1:
Dominated Strategies / 4.1.1:
Dominant Strategy Equilibrium / 4.1.2:
Evaluating Dominant Strategy Equilibrium / 4.1.3:
Iterated Elimination of Strictly Dominated Pure Strategies / 4.2:
Iterated Elimination and Common Knowledge of Rationality / 4.2.1:
Evaluating IESDS / 4.2.2:
Beliefs, Best Response, and Rationalizability / 4.3:
The Best Response / 4.3.1:
Beliefs and Best-Response Correspondences / 4.3.2:
Rationalizability / 4.3.3:
The Cournot Duopoly Revisited / 4.3.4:
The "p-Beauty Contest" / 4.3.5:
Evaluating Rationalizability / 4.3.6:
Pinning Down Beliefs: Nash Equilibrium / 4.4:
Nash Equilibrium in Pure Strategies / 5.1:
Pure-Strategy Nash Equilibrium in a Matrix / 5.1.1:
Evaluating the Nash Equilibria Solution / 5.1.2:
Nash Equilibrium: Some Classic Applications / 5.2:
Two Kinds of Societies / 5.2.1:
The Tragedy of the Commons / 5.2.2:
Coumot Duopoly / 5.2.3:
Bertrand Duopoly / 5.2.4:
Political Ideology and Electoral Competition / 5.2.5:
Mixed Strategies / 5.3:
Strategies, Beliefs, and Expected Payoffs / 6.1:
Finite Strategy Sets / 6.1.1:
Continuous Strategy Sets / 6.1.2:
Beliefs and Mixed Strategies / 6.1.3:
Expected Payoffs / 6.1.4:
Mixed-Strategy Nash Equilibrium / 6.2:
Example: Matching Pennies / 6.2.1:
Multiple Equilibria: Pure and Mixed / 6.2.2:
IESDS and Rationalizability Revisited / 6.3:
Nash's Existence Theorem / 6.4:
Dynamic Games of Complete Information / 6.5:
The Extensive-Form Game / Chapter 7:
Game Trees / 7.1.1:
Imperfect versus Perfect Information / 7.1.2:
Strategies and Nash Equilibrium / 7.2:
Pure Strategies / 7.2.1:
Mixed versus Behavioral Strategies / 7.2.2:
Normal-Form Representation of Extensive-Form Games / 7.2.3:
Nash Equilibrium and Paths of Play / 7.3:
Credibility and Sequential Rationality / 7.4:
Sequential Rationality and Backward Induction / 8.1:
Subgame-Perfect Nash Equilibrium: Concept / 8.2:
Subgame-Perfect Nash Equilibrium: Examples / 8.3:
The Centipede Game / 8.3.1:
Stackelberg Competition / 8.3.2:
Mutually Assured Destruction / 8.3.3:
Time-Inconsistent Preferences / 8.3.4:
Multistage Games / 8.4:
Payoffs / 9.1:
Strategies and Conditional Play / 9.3:
Subgame-Perfect Equilibria / 9.4:
The One-Stage Deviation Principle / 9.5:
Repeated Games / 9.6:
Finitely Repeated Games / 10.1:
Infinitely Repeated Games / 10.2:
Strategies / 10.2.1:
Application: Tacit Collusion / 10.3:
Sequential Interaction and Reputation / 10.5:
Cooperation as Reputation / 10.5.1:
Third-Party Institutions as Reputation Mechanisms / 10.5.2:
Reputation Transfers without Third Parties / 10.5.3:
The Folk Theorem: Almost Anything Goes / 10.6:
Strategic Bargaining / 10.7:
One Round of Bargaining: The Ultimatum Game / 11.1:
Finitely Many Rounds of Bargaining / 11.2:
The Infinite-Horizon Game / 11.3:
Application: Legislative Bargaining / 11.4:
Closed-Rule Bargaining / 11.4.1:
Open-Rule Bargaining / 11.4.2:
Static Games of Incomplete Information / 11.5:
Bayesian Games / Chapter 12:
Strategic Representation of Bayesian Games / 12.1:
Players, Actions, Information, and Preferences / 12.1.1:
Deriving Posteriors from a Common Prior: A Player's Beliefs / 12.1.2:
Strategies and Bayesian Nash Equilibrium / 12.1.3:
Examples / 12.2:
Teenagers and the Game of Chicken / 12.2.1:
Study Groups / 12.2.2:
Inefficient Trade and Adverse Selection / 12.3:
Committee Voting / 12.4:
Mixed Strategies Revisited: Harsanyi's Interpretation / 12.5:
Auctions and Competitive Bidding / 12.6:
Independent Private Values / 13.1:
Second-Price Sealed-Bid Auctions / 13.1.1:
English Auctions / 13.1.2:
First-Price Sealed-Bid and Dutch Auctions / 13.1.3:
Revenue Equivalence / 13.1.4:
Common Values and the Winner's Curse / 13.2:
Mechanism Design / 13.3:
Setup: Mechanisms as Bayesian Games / 14.1:
The Players / 14.1.1:
The Mechanism Designer / 14.1.2:
The Mechanism Game / 14.1.3:
The Revelation Principle / 14.2:
Dominant Strategies and Vickrey-Clarke-Groves Mechanisms / 14.3:
Dominant Strategy Implementation / 14.3.1:
Vickrey-Clarke-Groves Mechanisms / 14.3.2:
Dynamic Games of Incomplete Information / 14.4:
Sequential Rationality with Incomplete Information / Chapter 15:
The Problem with Subgame Perfection / 15.1:
Perfect Bayesian Equilibrium / 15.2:
Sequential Equilibrium / 15.3:
Signaling Games / 15.4:
Education Signaling: The MBA Game / 16.1:
Limit Pricing and Entry Deterrence / 16.2:
Separating Equilibria / 16.2.1:
Pooling Equilibria / 16.2.2:
Refinements of Perfect Bayesian Equilibrium in Signaling Games / 16.3:
Building a Reputation / 16.4:
Cooperation in a Finitely Repeated Prisoner's Dilemma / 17.1:
Driving a Tough Bargain / 17.2:
A Reputation for Being "Nice" / 17.3:
Information Transmission and Cheap Talk / 17.4:
Information Transmission: A Finite Example / 18.1:
Information Transmission: The Continuous Case / 18.2:
Application: Information and Legislative Organization / 18.3:
Mathematical Appendix / 18.4:
Sets and Sequences / 19.1:
Basic Definitions / 19.1.1:
Basic Set Operations / 19.1.2:
Functions / 19.2:
Continuity / 19.2.1:
Calculus and Optimization / 19.3:
Differentiation and Optimization / 19.3.1:
Integration / 19.3.3:
Probability and Random Variables / 19.4:
Cumulative Distribution and Density Functions / 19.4.1:
Independence, Conditional Probability, and Bayes' Rule / 19.4.3:
Expected Values / 19.4.4:
References
Index
Preface
Rational Decision Making / Part I:
The Single-Person Decision Problem / Chapter 1:
99.

図書

図書
H Nifenecker, O Meplan and S David
出版情報: Bristol : Institute of Physics Publishing, c2003  ix, 316 p. ; 25 cm
シリーズ名: Fundamental and applied nuclear physics series / series editors, R.R. Betts, W. Greiner and W.D. Hamilton
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The energy issue / 2:
World energy perspectives / 2.1:
Energy consumptions / 2.1.1:
Fossil reserves / 2.1.2:
Greenhouse effect / 2.1.3:
Renewable energies / 2.2:
Solar energy / 2.2.1:
Biomass / 2.2.2:
Wind energy / 2.2.3:
Hydroelectricity / 2.2.4:
Nuclear energy / 2.3:
Standard reactors / 2.3.1:
Breeder reactors / 2.3.2:
Nuclear waste disposal options / 2.3.3:
Deployment of a breeder park / 2.3.4:
Costs / 2.4:
The possible role of accelerator driven subcritical reactors / 2.5:
Safety advantages of subcriticality / 2.5.1:
Use of additional neutrons / 2.5.2:
Elementary reactor theory / 3:
Interaction of neutrons with nuclei / 3.1:
Elementary processes / 3.1.1:
Properties of heavy nuclei / 3.1.2:
Neutron density, flux and reaction rates / 3.1.3:
Neutron propagation / 3.2:
Boltzmann equation / 3.2.1:
Integral form of the Boltzmann equation / 3.2.2:
Fick's law / 3.2.3:
Diffusion equation / 3.2.4:
Slowing down of neutrons / 3.2.5:
Neutron multiplying assemblies / 3.3:
Limiting values / 3.4:
Critical masses / 3.4.1:
Maximum flux / 3.4.2:
Reactor control / 3.5:
Delayed neutrons / 3.5.1:
Temperature dependence of the reactivity / 3.5.2:
Critical trip / 3.5.3:
Residual heat extraction / 3.5.4:
Fuel evolution / 3.6:
The Bateman equations / 3.6.1:
The long-term fuel evolutions / 3.6.2:
Basics of waste transmutation / 3.7:
Radiotoxicities / 3.7.1:
Neutron balance for transmutation and incineration / 3.7.2:
ADSR principles / 4:
Properties of the multiplying medium / 4.1:
Energy gain / 4.1.1:
Neutron balance / 4.1.2:
Neutron importance / 4.1.3:
Practical simulation methods / 5:
Neutron reaction data files / 5.1:
Determinstic methods / 5.2:
Monte Carlo codes / 5.3:
Deterministic versus Monte Carlo simulation codes / 5.3.1:
MCNP, a well validated Monte Carlo code / 5.3.2:
Physics in MCNP / 5.4:
Precision and variance reduction / 5.4.1:
MCNP in practice / 5.5:
Units / 5.5.1:
Input file structure / 5.5.3:
Examples / 5.6:
Reactivity calculation / 5.6.1:
Homogeneous versus heterogeneous cores / 5.6.2:
Subcritical core / 5.6.3:
Precision / 5.6.4:
Evolution constraint / 5.7:
Spatial flux / 5.7.2:
Special cross-section data / 5.7.3:
Time step between two MCNPs / 5.7.4:
The neutron source / 6:
Interaction of protons with matter / 6.1:
Electronic energy losses / 6.1.1:
Nuclear stopping / 6.1.2:
The nuclear cascade / 6.1.3:
Experimental tests of the INC models / 6.1.4:
State of the art of the simulation codes / 6.1.5:
Alternative primary neutron production / 6.2:
Deuteron induced neutron production / 6.2.1:
Muon catalysed fusion / 6.2.2:
Electron induced neutron production / 6.2.3:
Experimental determination of the energy gain / 6.3:
Two-stage neutron multipliers / 6.4:
High-intensity accelerators / 6.5:
State of the art of high-intensity accelerators / 6.5.1:
Requirements for ADSR accelerators / 6.5.2:
Perspectives for high-intensity accelerators for ADSRs / 6.5.3:
Examples of high-intensity accelerator concepts / 6.5.4:
ADSR kinetics / 7:
Reactivity evolutions / 8:
Long-term evolutions / 8.1:
Short-term reactivity excursions / 8.2:
Protactinium effect / 8.2.1:
Xenon effect / 8.2.2:
Temperature effect / 8.2.3:
Impact of reactivity excursions / 8.2.4:
Fuel reprocessing techniques / 9:
Basics of reprocessing / 9.1:
Wet processes / 9.2:
The purex process / 9.2.1:
Dry processes / 9.3:
Vaporization / 9.3.1:
Gas purge / 9.3.2:
Liquid-liquid extraction / 9.3.3:
Selective precipitation / 9.3.4:
Electrolysis / 9.3.5:
Generic properties of ADSRs / 10:
The homogeneous spherical reactor / 10.1:
General solution of the diffusion equation / 10.1.1:
The three-zone reactor / 10.1.2:
Model calculations / 10.1.3:
Parametric study of heterogeneous systems / 10.2:
Role of hybrid reactors in fuel cycles / 11:
The thorium-uranium cycle / 11.1:
Radiotoxicity / 11.1.1:
Breeding rates / 11.1.2:
Doubling time / 11.1.3:
Transition towards a [superscript 232]Th-based fuel from the PWR spent fuel, using a fast spectrum and solid fuel / 11.1.4:
Thorium cycle with thermal spectrum / 11.1.5:
Incineration / 11.2:
Plutonium incineration / 11.2.1:
Minor actinide incineration / 11.2.2:
Initial reactivity of MA fuels / 11.2.3:
Solid versus liquid fuels / 11.2.4:
The paradox of minor actinide fuels / 11.2.6:
Ground laying proposals / 12:
Solid fuel reactors / 12.1:
Lead cooled ADSR: the Rubbia proposal / 12.1.1:
Molten salt reactors / 12.2:
The Bowman proposal / 12.2.1:
The TIER concept / 12.2.2:
Cost estimates / 12.3:
Scenarios for the development of ADSRs / 13:
Experiments / 13.1:
The FEAT experiment / 13.1.1:
The MUSE experiment / 13.1.2:
Demonstrators / 13.2:
Japan / 13.2.1:
United States / 13.2.2:
Europe / 13.2.3:
Deep underground disposal of nuclear waste / Appendix I:
Model of an underground disposal site / I.1:
Radioelement diffusion in geological layers / I.1.2:
Physical model of diffusion in the clay layer / I.1.3:
Simplified solution of the diffusion problem through the clay layer / I.1.4:
Solubility as a limiting factor of the flow of radioactive nuclei / I.1.5:
Determining the dose to the population / I.2:
Some dose determination examples / I.2.1:
Full computation example of the dose at the outlet / I.2.2:
Accidental intrusion / I.3:
Drilled samples / I.3.1:
Using the well to draw drinking water / I.3.2:
Heat production and sizing of the storage site / I.4:
Schematic determination of the temperature distribution / I.4.1:
Geological hazard / I.4.2:
An underground laboratory. What for? / I.6:
Conclusion / I.7:
The Chernobyl accident and the RMBK reactors / Appendix II:
The RBMK-1000 reactor / II.1:
Events leading to the accident / II.2:
The accident / II.3:
Basics of accelerator physics / Appendix III:
Linear accelerators / III.1:
The Wideroe linear accelerator / III.1.1:
The Alvarez or drift tube linac (DTL) / III.1.2:
Phase stability / III.1.3:
Beam focusing / III.1.4:
The radio frequency quadrupole (RFQ) / III.1.5:
Cyclotrons / III.2:
Superconductive solutions / III.3:
Space charge limitations / III.4:
Bibliography
Index
Introduction / 1:
The energy issue / 2:
World energy perspectives / 2.1:
100.

図書

図書
edited by Shunri Oda and David K. Ferry
出版情報: Boca Raton : Taylor & Francis Group, 2006  313 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Physics of Silicon Nanodevices / David K. Ferry ; Richard Akis ; Matthew J. Gilbert ; Stephen M. RameyChapter 1:
Introduction / 1.1:
Small MOSFETs / 1.2:
The Simple One-Dimensional Theory / 1.2.1:
Ballistic Transport in the MOSFET / 1.2.2:
Granularity / 1.3:
Quantum Behavior in the Device / 1.4:
The Effective Potential / 1.4.1:
Effective Carrier Wave Packet / 1.4.1.1:
Statistical Considerations / 1.4.1.2:
Quantum Simulations / 1.4.2:
The Device Structure / 1.4.2.1:
The Wave Function and Technique / 1.4.2.2:
Results / 1.4.2.3:
Quantum Dot Single-Electron Devices / 1.5:
Many-Body Interactions / 1.6:
Acknowledgments / 1.7:
References
Practical CMOS Scaling / David J. FrankChapter 2:
CMOS Technology Overview / 2.1:
Current CMOS Device Technology / 2.2.1:
International Technology Roadmap for Semiconductors (ITRS) Projections / 2.2.2:
Scaling Principles / 2.3:
General Scaling
Characteristic Scale Length / 2.3.2:
Exploratory Technology / 2.4:
New Materials / 2.4.1:
Fully Depleted SOI / 2.4.2:
Double-Gate and Multiple-Gate FET Structures / 2.4.3:
Limits to Scaling / 2.5:
Quantum Mechanics / 2.5.1:
Atomistic Effects / 2.5.2:
Thermodynamic Effects / 2.5.3:
Practical Considerations / 2.5.4:
Power-Constrained Scaling Limits / 2.6:
Summary / 2.7:
The Scaling Limit of MOSFETs due to Direct Source-Drain Tunneling / Hisao KawauraChapter 3:
EJ-MOSFETs / 3.1:
Concept of EJ-MOSFETs / 3.2.1:
Fabrication of the Device Structure / 3.2.2:
Basic Operation / 3.2.3:
Direct Source-Drain Tunneling / 3.3:
Detection of the Tunneling Current / 3.3.1:
Numerical Study of the Tunneling Current / 3.3.2:
The Scaling Limit of MOSFETs / 3.4:
Estimation of Direct Source-Drain Tunneling in MOSFETs / 3.4.1:
Future Trends in Post-6-nm MOSFETs / 3.4.2:
Conclusion / 3.5:
Quantum Effects in Silicon Nanodevices / Toshiro HiramotoChapter 4:
Quantum Effects in MOSFETs / 4.1:
Band Structures of Silicon / 4.2.1:
Surface Quantization / 4.2.2:
Carrier Confinement in Thin SOI MOS Structures / 4.2.3:
Mobility of Confined Carriers / 4.2.4:
Influences of Quantum Effects in MOSFETs / 4.3:
Threshold Voltage Increase in Bulk MOSFETs / 4.3.1:
Threshold Voltage Increase in FD-SOI MOSFETs / 4.3.2:
Mobility in Ultrathin FD-SOI MOSFETs / 4.3.3:
Quantum Effects in Ultranarrow Channel MOSFETs / 4.4:
Advantage of Quantum Effects in Ultranarrow Channel MOSFETs / 4.4.1:
Threshold Voltage Increase in n-Type Narrow Channel MOSFETs / 4.4.2:
Threshold Voltage Increase in n-Type and p-Type Narrow Channel MOSFETs / 4.4.3:
Threshold Voltage Adjustment Using Quantum Effects / 4.4.4:
Mobility Enhancement due to Quantum Effects / 4.4.5:
Ballistic Transport in Silicon Nanostructures / Hiroshi Mizuta ; Katsuhiko Nishiguchi ; Shunri Oda4.5:
Ballistic Transport in Quantum Point Contacts / 5.1:
Ballistic Transport in Ultra-Short Channel Vertical Silicon Transistors / 5.3:
Fabrication of Nanoscale Vertical FETs / 5.3.1:
Conductance Quantization in Nanoscale Vertical FETs / 5.3.2:
Characteristics under a Magnetic Field / 5.3.3:
Effects of Cross-Sectional Channel Geometries / 5.3.4:
Summary and Future Subjects / 5.4:
Resonant Tunneling in Si Nanodevices / Michiharu Tabe ; Hiroya Ikeda ; Yasuhiko IshikawaChapter 6:
Outline of Resonant Tunneling / 6.1:
Early Work on Resonant Tunneling / 6.1.1.1:
Resonant Tunneling in Si-Based Materials - Si/SiGe and Si/SiO[subscript 2] / 6.1.1.2:
Quantum Confinement Effect in a Thin Si Layer / 6.1.2:
Double-Barrier Structures of SiO[subscript 2]/Si/SiO[subscript 2] Formed by Anisotropic Etching / 6.1.3:
Resonant Tunneling in SiO[subscript 2]/Si/SiO[subscript 2] / 6.2:
Fabrication of an RTD / 6.2.1:
Resonant Tunneling in the Low Voltage Region / 6.2.2:
Hot-Electron Storage in the High-Voltage Region / 6.2.3:
Switching of Tunnel-Modes: Comparison with a Single Barrier / 6.2.4:
Zero-Dimensional Resonant Tunneling / 6.3:
Coexistence of Coulomb Blockade and Resonant Tunneling / 6.3.1:
Fabrication of a SiO[subscript 2]/Si-Dots/SiO[subscript 2] Structure / 6.3.2:
I-V Characteristics of an SiO[subscript 2]/Si-Dots/SiO[subscript 2] Tunnel Diode / 6.3.3:
Acknowledgment
Silicon Single-Electron Transistor and Memory / L. Jay GuoChapter 7:
Quantum Dot Transistor / 7.1:
Theoretical Background / 7.2:
Energy of the Quantum Dot System / 7.2.1:
Conductance Oscillation and Potential Fluctuation / 7.2.2:
Transport under Finite Temperature and Finite Bias / 7.2.3:
Device Structure and Fabrication / 7.3:
Experimental Results and Analysis / 7.4:
Single-Electron Quantum-Dot Transistor / 7.4.1:
Single-Hole Quantum-Dot Transistor / 7.4.2:
Transport Characteristics under Finite Bias / 7.4.3:
Transport Through Excited States / 7.4.4:
Artificial Atom / 7.5:
Single Charge Trapping / 7.6:
Introduction to Memory Devices / 7.7:
Floating Gate Scheme / 7.8:
Single-Electron MOS memory (SEMM) / 7.9:
Structure of SEMM / 7.9.1:
Fabrication Procedure / 7.9.2:
Experimental Observations / 7.9.3:
Analysis / 7.9.4:
Effects of Trap States / 7.9.5:
Effect of Thicker Tunnel Oxide / 7.10:
Discussion / 7.11:
Silicon Memories Using Quantum and Single-Electron Effects / Sandip TiwariChapter 8:
Single-Electron Effect / 8.1:
Single-Electron Transistors and Their Memories / 8.3:
Memories by Scaling Floating Gates of Flash Structures / 8.3.2:
Modeling of Transport: Tunneling / 8.4:
Tunneling in Oxide / 8.4.1:
Quantum Kinetic Equation / 8.4.2:
Carrier Statistics and Charge Fluctuations / 8.4.3:
Experimental Behavior of Memories / 8.5:
Percolation Effects / 8.5.1:
Limitations in Use of Field Effect / 8.5.2:
Confinement and Random Effects in Semiconductors / 8.5.3:
Variances due to Dimensions / 8.5.4:
Limits due to Tunneling / 8.5.5:
Tunneling in Silicon / 8.5.5.1:
Can We Avoid Use of Collective Phenomena? / 8.6:
SESO Memory Devices / Kazuo Yano8.7:
How Nanotechnologies Solve Real Problems / 9.1:
New Direction of Electronics / 9.1.2:
Conventional Memory Technologies / 9.2:
Classification of Conventional Memories / 9.2.1:
Origin of DRAM Power Consumption / 9.2.2:
Bandgap Enlargement in Nanosilicon / 9.3:
SESO Transistor / 9.4:
History: Single-Electron Devices to SESO / 9.4.1:
Fabricated SESO Transistor / 9.4.2:
SESO Memory / 9.5:
Memory-Technology Comparison / 9.6:
SESO as On-Chip RAM Component / 9.7:
Conclusions / 9.8:
Few Electron Devices and Memory Circuits / Kazuo Nakazato ; Haroon AhmedChapter 10:
Current Semiconductor Memories / 10.1:
Limitations of the DRAM / 10.2.1:
DRAM Gain Cell / 10.2.2:
A New DRAM Gain Cell - The PLEDM / 10.3:
PLEDTR / 10.3.1:
PLEDM Cell / 10.3.2:
Single-Electron Memory / 10.4:
Single-Electron Devices / 10.4.1:
Operation Principle of Single-Electron Memory / 10.4.2:
Local Stability / 10.4.2.1:
Global Stability / 10.4.2.2:
Experimental Single-Electron Memory / 10.4.3:
First Experimental Single-Electron Memory / 10.4.3.1:
Silicon Single-Electron Memory / 10.4.3.2:
Single-Electron Memory Array / 10.4.4:
Single-Electron Logic Devices / Yasuo Takahashi ; Yukinori Ono ; Akira Fujiwara ; Hiroshi Inokawa10.5:
Single-Electron Transistor (SET) / 11.1:
Fabrication of Si SETs / 11.3:
Logic Circuit Applications of SETs / 11.4:
Fundamentals of SET Logic / 11.4.1:
Merged SET and MOSFET Logic / 11.4.2:
CMOS-Type Logic Circuit / 11.4.3:
Pass-Transistor Logic / 11.4.4:
Multigate SET / 11.4.5:
Multiple-Valued Operation / 11.4.6:
Index / 11.5:
Physics of Silicon Nanodevices / David K. Ferry ; Richard Akis ; Matthew J. Gilbert ; Stephen M. RameyChapter 1:
Introduction / 1.1:
Small MOSFETs / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼