close
1.

図書

図書
American Institute of Chemical Engineers. Center for Chemical Process Safety
出版情報: New York : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1995  xxvii, 210 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
Preface
Acknowledgments
Glossary
List of Symbols
Introduction / Chapter 1:
General / 1.1:
Chemical Reactivity / 1.2:
Detonations, Deflagrations, and Runaways / 1.3:
Assessment and Testing Strategies / 1.4:
Identification of Hazardous Chemical Reactivity / Chapter 2:
Summary/Strategy / 2.1:
Hazard Identification Strategy / 2.1.1:
Exothermic Reactions / 2.1.3:
Experimental Thermal and Reactivity Measurements / 2.1.4:
Test Strategies / 2.1.5:
Overview of Thermal Stability Test methods / 2.1.6:
Examples of Interpretation and Application of Test Data / 2.1.7:
Technical Section / 2.2:
Identification of High Energy Substances / 2.2.2:
Hazard Prediction by Thermodynamic Calculations / 2.2.3:
Oxygen Balance / 2.2.3.1:
Calculation of the Reaction Enthalpy / 2.2.3.2:
Application of Computer Programs / 2.2.3.3:
Instability/Incompatibility Factors / 2.2.4:
Factors Influencing Stability / 2.2.4.1:
Redox Systems / 2.2.4.2:
Reactions with Water / 2.2.4.3:
Reactions between Halogenated Hydrocarbons and Metals / 2.2.4.4:
Practical Testing / 2.3:
Screening Tests / 2.3.1:
Thermal Analysis / 2.3.1.1:
Isoperibolic Calorimetry / 2.3.1.2:
Thermal Stability and Runaway Testing / 2.3.2:
Isothermal Storage Tests / 2.3.2.1:
Dewar Flask Testing and Adiabatic Storage Tests / 2.3.2.2:
Accelerating Rate Calorimeter (ARC) / 2.3.2.3:
Stability Tests for Powders / 2.3.2.4:
Explosibility Testing / 2.3.3:
.Detonation Testing / 2.3.3.1:
Deflagration Testing and Autoclave Testing / 2.3.3.2:
Mechanical Sensitivity Testing / 2.3.3.3:
Sensitivity to heating Under Confinement / 2.3.3.4:
Reactivity Testing / 2.3.4:
Pyrophoric Properties / 2.3.4.1:
Reactivity with Water / 2.3.4.2:
Oxidizing Properties / 2.3.4.3:
Flammability Testing / 2.3.5:
Chemical Reactivity Considerations in Process/Reactor Design and Operation / Chapter 3:
Thermal Hazards: Identification and Analysis / 3.1:
Cause, Definition, and Prevention of a Runaway / 3.1.1.1:
Some Simple Rules for Inherent Safety / 3.1.1.2:
Strategy for Inherent Safety in Design and Operation / 3.1.1.3:
Equipment to be Used for the Analysis of Hazards / 3.1.1.4:
Reactor, Heat and Mass Balance Considerations / 3.2:
Heat and Mass Balances, Kinetics, and Reaction Stability / 3.2.1:
Adiabatic Temperature Rise / 3.2.1.1:
The Reaction / 3.2.1.2:
Reaction Rate / 3.2.1.3:
Reaction Rate Constant / 3.2.1.4:
Concentration of Reactants / 3.2.1.5:
Effect of Surrounding Temperature on Stability / 3.2.1.6:
Effect of Agitation and Surface Fouling on Stability / 3.2.1.7:
Mass Balance / 3.2.1.8:
Choice of Reactor / 3.2.2:
Heat Transfer / 3.2.3:
Heat Transfer in Nonagitated Vessels / 3.2.3.1:
Heat Transfer in Agitated Vessels / 3.2.3.2:
Acquisition and Use of Process Design data / 3.3:
Bench-Scale Equipment for Batch/Tank Reactors / 3.3.1:
Reaction Calorimeter (RC1) / 3.3.2.1:
Contalab / 3.3.2.2:
CPA ThermoMetric Instruments / 3.3.2.3:
Quantitative Reaction Calorimeter / 3.3.2.4:
Specialized Rectors / 3.3.2.5:
Vent Size Package (VSP) / 3.3.2.6:
Reactive System Screening Tool (RSST) / 3.3.2.7:
Process Safety for Reactive Systems / 3.3.3:
Test Plan / 3.3.3.1:
System Under Investigation / 3.3.3.2:
Test Results / 3.3.3.3:
Malfunction and Process Deviation Testing / 3.3.3.4:
Pressure Effect / 3.3.3.5:
Results from the ARC, RSST, and VSP / 3.3.3.6:
Scale-up and Pilot Plants / 3.3.4:
General Remarks / 3.3.4.1:
Chemical Kinetics. 3 / 3.3.4.2:
List of Tables
List of Figures
Preface
2.

図書

図書
editor, G. Chiarotti ; contributors, P. Alkemade, ... [et al.]
出版情報: Berlin ; Tokyo : Springer, c1995  xii, 328 p. ; 28 cm
シリーズ名: Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie / Gesamtherausgabe, K.-H. Hellwege ; Group 3 . Solid state physics ; v. 24 . Physics of solid surfaces ; subvolume C
所蔵情報: loading…
目次情報: 続きを見る
Introductory material
General introduction (G. CHIAROTTI) / 1:
Motivations for a Landolt-Bornstein volume on surface physics / 1.1:
Outline of the volume / 1.2:
How to consult the volume / 1.3:
List of frequently used symbols and abbreviations / 1.4:
Conversion tables / 1.5:
Crystal structures and bulk lattice parameters of materials quoted in the volume / 1.6:
References for 1 / 1.7:
See Vol.24A / 2:
See Vol.24B / 3-5:
Interaction of charged particles with surfaces / 6:
Elastic scattering and diffraction of electrons and positrons / E. Zanazzi6.1:
Introduction / 6.1.1:
Definitions and historical layout / 6.1.1.1:
The diffraction of electrons and positrons / 6.1.1.2:
Experimental considerations / 6.1.1.3:
Diffraction theories and methods / 6.1.1.4:
LEED / 6.1.1.4.1:
Alternative methods using LEED / 6.1.1.4.1.1:
Simplifications and calculations / 6.1.1.4.1.2:
The scattering potential in LEED / 6.1.1.4.1.3:
The effect of temperature / 6.1.1.4.1.4:
Structure determination / 6.1.1.4.1.5:
Precision and reliability / 6.1.1.4.1.6:
VLEED / 6.1.1.4.2:
SPLEED / 6.1.1.4.3:
RHEED / 6.1.1.4.4:
LEPD / 6.1.1.4.5:
Clean surfaces / 6.1.1.5:
Data / 6.1.2:
Appendix / 6.1.3:
References for 6.1 / 6.1.4:
Inelastic scattering of electrons (M. ROCCA) / 6.2:
Preliminary remarks / 6.2.1:
The EELS experiment / 6.2.1.2:
EEL-spectrometer designs / 6.2.1.3:
Inelastic cross section / 6.2.1.4:
Dipole scattering / 6.2.1.4.1:
Impact scattering / 6.2.1.4.2:
Metals and semimetals / 6.2.2:
Surface phonons / 6.2.2.1.1:
Surface plasmons / 6.2.2.1.2:
Electron-hole pair and Stoner excitations / 6.2.2.1.3:
Semiconductors / 6.2.2.2:
III-V semiconductors / 6.2.2.2.1:
Si and Ge / 6.2.2.2.2:
Insulators and oxides / 6.2.2.3:
References for 6.2 / 6.2.3:
Elastic and inelastic scattering of ions (P. ALKEMADE) / 6.3:
Low energy ion scattering / 6.3.1:
Scattering phenomena / 6.3.1.2.1:
Charge exchange / 6.3.1.2.2:
Surface structure determination / 6.3.1.2.3:
Medium and high energy ion scattering / 6.3.1.3:
Channeling, shadowing and blocking / 6.3.1.3.1:
References for 6.3 / 6.3.1.3.2:
Interaction of atoms with surfaces (V. CELLI) / 7:
Elastic scattering: the atom-surface potential / 7.1:
Kinematics and resonant scattering / 7.1.2.1:
Semi-empirical atom-surface potentials / 7.1.2.2:
Hard wall models / 7.1.2.3:
Theory of the elastic atom-surface potential / 7.1.2.4:
The static repulsive potential / 7.1.2.4.1:
The static attractive potential / 7.1.2.4.2:
The total static potential / 7.1.2.4.3:
Inelastic scattering: surface phonons / 7.1.3:
Kinematics / 7.1.3.1:
Kinematic focussing / 7.1.3.1.1:
Dynamical theory / 7.1.3.2:
The distorted wave Born approximation (DWBA) / 7.1.3.2.1:
Relation to phonon density of states and correlation functions / 7.1.3.2.2:
The inelastic atom-surface interaction / 7.1.3.3:
The dynamic repulsion and the cutoff factor / 7.1.3.3.1:
Dynamical effects of the attractive potential / 7.1.3.3.2:
Phonon spectra and surface potential data / 7.2:
References for 7 / 7.3:
General index (See Vol.24D)
Index of surfaces
Introductory material
General introduction (G. CHIAROTTI) / 1:
Motivations for a Landolt-Bornstein volume on surface physics / 1.1:
3.

学位論文

学位
by Yu Jian-ding
出版情報: Tokyo : Tokyo Institute of Technology, 1995
所蔵情報: loading…
4.

図書

図書
American Institute of Chemical Engineers. Center for Chemical Process Safety
出版情報: New York : Center for Chemical Process Safety of the American Institute of Chemical Engineers, c1995  xxiv, 360 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Acronyms and Abbreviations
Glossary
Introduction / 1:
Objective / 1.1:
Scope / 1.2:
Organization / 1.3:
References
Materials/Chemical Handling / 2:
Hazardous Property Identification / 2.1:
Material handling Hazards / 2.2:
Fire and Explosive Properties / 2.2.1:
Chemical Toxicity / 2.2.2:
Biological Hazards / 2.2.3:
Radiation Hazards / 2.2.4:
Electrical Hazards / 2.2.5:
Thermal Hazards / 2.2.6:
Physical Plant Hazards / 2.2.7:
Material Transport / 2.3:
Liquid Handling / 2.4:
Liquid Transport / 2.4.1:
Liquid Storage / 2.4.2:
Spill Control and Cleanup / 2.4.3:
Solids Handling / 2.5:
Storage Procedures / 2.5.1:
Transfer Procedures / 2.5.2:
Bulk Conveying / 2.5.3:
Solids Packaging / 2.5.4:
Gas Handling / 2.6:
Classification of Gases / 2.6.1:
Regulations and Standards / 2.6.2:
Gas Containers / 2.6.3:
Cylinder Auxiliaries / 2.6.4:
Cylinder Handling Procedures / 2.6.5:
Handling Hazardous Gases / 2.6.6:
Cryogenic Liquids / 2.6.7:
Waste Handling / 2.7:
Waste Disposal Plan / 2.7.1:
Release Reporting / 2.7.2:
Scrap and Salvage / 2.7.3:
Vessel Decommissioning / 2.7.4:
Waste Containers / 2.7.5:
Process Equipment and Procedures / 3:
Materials of Construction / 3.1:
Material Selection / 3.1.1:
Material Application / 3.1.2:
Corrosion / 3.2:
Types of Corrosion / 3.2.1:
Sources of Corrosion Information / 3.2.2:
Small Containers / 3.3:
Container Specification / 3.3.1:
Manufacturer's Quality Control / 3.3.2:
Receiving / 3.3.3:
Emptying of Containers / 3.3.4:
Warehousing / 3.3.5:
Loading and Shipping / 3.3.6:
Disposal of Containers / 3.3.7:
Piping / 3.4:
Piping Codes and Specifications / 3.4.1:
Piping Design Safety / 3.4.2:
Piping Installation Safety / 3.4.3:
Piping Operation Safety / 3.4.4:
Piping Maintenance Safety / 3.4.5:
Transfer Hoses / 3.5:
Safety in Design and Installation / 3.5.1:
Safety in Operation / 3.5.3:
Inspection and Maintenance / 3.5.4:
Pumps / 3.6:
Pump Types / 3.6.1:
Pump Design Safety / 3.6.2:
Pump Installation Safety / 3.6.3:
Pump Operation Safety / 3.6.4:
Pump Maintenance Safety / 3.6.5:
Fans and Compressors / 3.7:
Classification of Gas Movers / 3.7.1:
Gas Mover Operating Parameters / 3.7.2:
Gas Mover Safety Precautions / 3.7.3:
Drivers / 3.8:
Motors / 3.8.1:
Steam Turbines / 3.8.2:
Transmission / 3.8.3:
Filters / 3.9:
Safety Considerations / 3.9.1:
Waste Minimization and Disposal / 3.9.2:
Centrifuges / 3.10:
Types of Centrifuges / 3.10.1:
Design Considerations / 3.10.2:
Operation / 3.10.3:
Drying and Particle Size Reduction / 3.10.4:
Dryers / 3.11.1:
Size Reduction Equipment / 3.11.2:
Screening Equipment / 3.11.3:
Packaging of Hot Materials / 3.11.4:
Deflagration Hazards / 3.11.5:
Environmental Concerns and Hygiene / 3.11.6:
Instrument and Controls / 3.12:
I & C Design Safety / 3.12.1:
I & C Installation Safety / 3.12.2:
I & C Operation Safety / 3.12.3:
I & C Maintenance Safety / 3.12.4:
General Topics / 4:
Inspection, Maintenance, and Calibration / 4.1:
Inspection Techniques / 4.1.1:
Maintenance Manuals / 4.1.2:
Preventive Maintenance / 4.1.3:
Equipment Calibration / 4.1.4:
Spare Parts and Equipment / 4.2:
Storage / 4.2.1:
Disbursement / 4.2.3:
Storage and Warehousing / 4.3:
General Storage Techniques / 4.3.1:
Stored Materials and Containers / 4.3.2:
Material Movement / 4.3.3:
Shipping Vehicles / 4.3.4:
Plant Modification / 4.4:
Change Control Program / 4.4.1:
Change/Work Authorization / 4.4.2:
Training / 4.4.3:
Hazardous Work / 4.5:
Confined Space Entry / 4.5.1:
Equipment Lockout / 4.5.2:
Line Breaking and System Opening / 4.5.3:
Hazardous materials / 4.5.4:
4.5
Preface
Acknowledgments
Acronyms and Abbreviations
5.

図書

図書
Govind P. Agrawal
出版情報: San Diego : Academic Press, c1995  xviii, 592 p. ; 24 cm
シリーズ名: Optics and photonics series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical Perspective / 1.1:
Fiber Characteristics / 1.2:
Material and Fabrication / 1.2.1:
Fiber Losses / 1.2.2:
Chromatic Dispersion / 1.2.3:
Polarization-Mode Dispersion / 1.2.4:
Fiber Nonlinearities / 1.3:
Nonlinear Refraction / 1.3.1:
Stimulated Inelastic Scattering / 1.3.2:
Importance of Nonlinear Effects / 1.3.3:
Overview / 1.4:
Problems
References
Pulse Propagation in Fibers / 2:
Maxwell's Equations / 2.1:
Fiber Modes / 2.2:
Eigenvalue Equation / 2.2.1:
Single-Mode Condition / 2.2.2:
Characteristics of the Fundamental Mode / 2.2.3:
Pulse-Propagation Equation / 2.3:
Nonlinear Pulse Propagation / 2.3.1:
Higher-Order Nonlinear Effects / 2.3.2:
Numerical Methods / 2.4:
Split-Step Fourier Method / 2.4.1:
Finite-Difference Methods / 2.4.2:
Group-Velocity Dispersion / 3:
Different Propagation Regimes / 3.1:
Dispersion-Induced Pulse Broadening / 3.2:
Gaussian Pulses / 3.2.1:
Chirped Gaussian Pulses / 3.2.2:
Hyperbolic-Secant Pulses / 3.2.3:
Super-Gaussian Pulses / 3.2.4:
Experimental Results / 3.2.5:
Third-Order Dispersion / 3.3:
Changes in Pulse Shape / 3.3.1:
Broadening Factor / 3.3.2:
Arbitrary-Shape Pulses / 3.3.3:
Ultrashort-Pulse Measurements / 3.3.4:
Dispersion Management / 3.4:
GVD-Induced Limitations / 3.4.1:
Dispersion Compensation / 3.4.2:
Compensation of Third-Order Dispersion / 3.4.3:
Self-Phase Modulation / 4:
SPM-Induced Spectral Broadening / 4.1:
Nonlinear Phase Shift / 4.1.1:
Changes in Pulse Spectra / 4.1.2:
Effect of Pulse Shape and Initial Chirp / 4.1.3:
Effect of Partial Coherence / 4.1.4:
Effect of Group-Velocity Dispersion / 4.2:
Pulse Evolution / 4.2.1:
Optical Wave Breaking / 4.2.2:
Effect of Third-Order Dispersion / 4.2.4:
Self-Steepening / 4.3:
Effect of GVD on Optical Shocks / 4.3.2:
Intrapulse Raman Scattering / 4.3.3:
Optical Solitons / 5:
Modulation Instability / 5.1:
Linear Stability Analysis / 5.1.1:
Gain Spectrum / 5.1.2:
Experimental Observation / 5.1.3:
Ultrashort Pulse Generation / 5.1.4:
Impact on Lightwave Systems / 5.1.5:
Fiber Solitons / 5.2:
Inverse Scattering Method / 5.2.1:
Fundamental Soliton / 5.2.2:
Higher-Order Solitons / 5.2.3:
Experimental Confirmation / 5.2.4:
Soliton Stability / 5.2.5:
Other Types of Solitons / 5.3:
Dark Solitons / 5.3.1:
Dispersion-Managed Solitons / 5.3.2:
Bistable Solitons / 5.3.3:
Perturbation of Solitons / 5.4:
Perturbation Methods / 5.4.1:
Soliton Amplification / 5.4.2:
Soliton Interaction / 5.4.4:
Higher-Order Effects / 5.5:
Propagation of Femtosecond Pulses / 5.5.1:
Polarization Effects / 6:
Nonlinear Birefringence / 6.1:
Origin of Nonlinear Birefringence / 6.1.1:
Coupled-Mode Equations / 6.1.2:
Elliptically Birefringent Fibers / 6.1.3:
Nondispersive XPM / 6.2:
Optical Kerr Effect / 6.2.2:
Pulse Shaping / 6.2.3:
Evolution of Polarization State / 6.3:
Analytic Solution / 6.3.1:
Poincare-Sphere Representation / 6.3.2:
Polarization Instability / 6.3.3:
Polarization Chaos / 6.3.4:
Vector Modulation Instability / 6.4:
Low-Birefringence Fibers / 6.4.1:
High-Birefringence Fibers / 6.4.2:
Isotropic Fibers / 6.4.3:
Birefringence and Solitons / 6.4.4:
Soliton-Dragging Logic Gates / 6.5.1:
Vector Solitons / 6.5.4:
Random Birefringence / 6.6:
Polarization State of Solitons / 6.6.1:
Cross-Phase Modulation / 7:
XPM-Induced Nonlinear Coupling / 7.1:
Nonlinear Refractive Index / 7.1.1:
Coupled NLS Equations / 7.1.2:
Propagation in Birefringent Fibers / 7.1.3:
XPM-Induced Modulation Instability / 7.2:
XPM-Paired Solitons / 7.2.1:
Bright-Dark Soliton Pair / 7.3.1:
Bright-Gray Soliton Pair / 7.3.2:
Other Soliton Pairs / 7.3.3:
Spectral and Temporal Effects / 7.4:
Asymmetric Spectral Broadening / 7.4.1:
Asymmetric Temporal Changes / 7.4.2:
Applications of XPM / 7.4.3:
XPM-Induced Pulse Compression / 7.5.1:
XPM-Induced Optical Switching / 7.5.2:
XPM-Induced Nonreciprocity / 7.5.3:
Stimulated Raman Scattering / 8:
Basic Concepts / 8.1:
Raman-Gain Spectrum / 8.1.1:
Raman Threshold / 8.1.2:
Coupled Amplitude Equations / 8.1.3:
Quasi-Continuous SRS / 8.2:
Single-Pass Raman Generation / 8.2.1:
Raman Fiber Lasers / 8.2.2:
Raman Fiber Amplifiers / 8.2.3:
Raman-Induced Crosstalk / 8.2.4:
SRS with Short Pump Pulses / 8.3:
Pulse-Propagation Equations / 8.3.1:
Nondispersive Case / 8.3.2:
Effects of GVD / 8.3.3:
Synchronously Pumped Raman Lasers / 8.3.4:
Soliton Effects / 8.4:
Raman Solitons / 8.4.1:
Raman Soliton Lasers / 8.4.2:
Soliton-Effect Pulse Compression / 8.4.3:
Effect of Four-Wave Mixing / 8.5:
Stimulated Brillouin Scattering / 9:
Physical Process / 9.1:
Brillouin-Gain Spectrum / 9.1.2:
Quasi-CW SBS / 9.2:
Coupled Intensity Equations / 9.2.1:
Brillouin Threshold / 9.2.2:
Gain Saturation / 9.2.3:
Dynamic Aspects / 9.2.4:
Relaxation Oscillations / 9.3.1:
Modulation Instability and Chaos / 9.3.3:
Transient Regime / 9.3.4:
Brillouin Fiber Lasers / 9.4:
CW Operation / 9.4.1:
Pulsed Operation / 9.4.2:
SBS Applications / 9.5:
Brillouin Fiber Amplifiers / 9.5.1:
Fiber Sensors / 9.5.2:
Parametric Processes / 10:
Origin of Four-Wave Mixing / 10.1:
Theory of Four-Wave Mixing / 10.2:
Approximate Solution / 10.2.1:
Effect of Phase Matching / 10.2.3:
Ultrafast FWM / 10.2.4:
Phase-Matching Techniques / 10.3:
Physical Mechanisms / 10.3.1:
Phase Matching in Multimode Fibers / 10.3.2:
Phase Matching in Single-Mode Fibers / 10.3.3:
Phase Matching in Birefringent Fibers / 10.3.4:
Parametric Amplification / 10.4:
Gain and Bandwidth / 10.4.1:
Pump Depletion / 10.4.2:
Parametric Amplifiers / 10.4.3:
Parametric Oscillators / 10.4.4:
FWM Applications / 10.5:
Wavelength Conversion / 10.5.1:
Phase Conjugation / 10.5.2:
Squeezing / 10.5.3:
Supercontinuum Generation / 10.5.4:
Second-Harmonic Generation / 10.6:
Physical Mechanism / 10.6.1:
Simple Theory / 10.6.3:
Quasi-Phase-Matching Technique / 10.6.4:
Decibel Units / Appendix A:
Acronyms / Appendix B:
Index
Preface
Introduction / 1:
Historical Perspective / 1.1:
6.

図書

図書
National Electronic Packaging and Production Conference
出版情報: Norwalk, CT : Reed Exhibition Companies, c1995  3 v. ; 28 cm
所蔵情報: loading…
7.

図書

図書
A.P. Sutton and R.W. Balluffi
出版情報: Oxford : Clarendon Press , New York : Oxford University, 1995  xxxii, 819 p. ; 25 cm
シリーズ名: Monographs on the physics and chemistry of materials ; 51
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Glossary
Interfacial Structure / Part I:
The geometry of interfaces / 1:
Introduction / 1.1:
All the group theory we need / 1.2:
The relationship between two crystals / 1.3:
Crystals and lattices / 1.3.1:
Vector and coordinate transformations / 1.3.2:
Descriptions of lattice rotations / 1.3.3:
Vector and matrix representations / 1.3.3.1:
The Frank-Rodrigues map / 1.3.3.2:
Fundamental zones / 1.3.3.3:
Quaternions / 1.3.3.4:
Geometrical specification of an interface / 1.4:
Macroscopic and microscopic geometrical degrees of freedom / 1.4.1:
Macroscopic geometrical degrees of freedom of an arbitrary interface / 1.4.2:
Grain boundaries in cubic materials / 1.4.3:
The median lattice and the mean boundary plane / 1.4.3.1:
Tilt and twist components / 1.4.3.2:
Symmetric and asymmetric tilt boundaries / 1.4.3.3:
Bicrystallography / 1.5:
Outline of crystallographic methodology / 1.5.1:
Introduction to Seitz symbols / 1.5.3:
Symmetry of dichromatic patterns / 1.5.4:
Symmetry of dichromatic complexes / 1.5.5:
Symmetry of ideal bicrystals / 1.5.6:
Symmetry of real bicrystals / 1.5.7:
Two examples / 1.6:
Lattice matched polar-non-polar epitaxial interfaces / 1.6.1:
Lattice matched metal-silicide silicon interfaces / 1.6.2:
Classification of isolated interfacial line defects / 1.7:
General formulation / 1.7.1:
Interfacial dislocations / 1.7.2:
DSC dislocations / 1.7.2.1:
Supplementary displacement dislocations / 1.7.2.2:
Relaxation displacement dislocations / 1.7.2.3:
Non-holosymmetric crystals and interfacial defects / 1.7.2.4:
Interfacial disclinations and dispirations / 1.7.2.5:
The morphologies of embedded crystals / 1.8:
Quasiperiodicity and incommensurate interfaces / 1.9:
References
Dislocation models for interfaces / 2:
Classification of interfacial dislocations / 2.1:
The Frank-Bilby equation / 2.3:
Comments on the Frank-Bilby equation and the dislocation content of an interface / 2.4:
Frank's formula / 2.5:
The O-lattice / 2.6:
The geometry of discrete dislocation arrays in interfaces / 2.7:
The general interface / 2.7.1:
Application to a grain boundary with arbitrary geometrical parameters / 2.7.2:
Grain boundaries containing one and two sets of dislocations / 2.7.3:
Epitaxial interfaces / 2.7.4:
Local dislocation interactions / 2.8:
Pt-NiO interfaces / 2.9:
A1-A1[subscript 3] Ni eutectic interfaces / 2.9.2:
Elastic fields of interfaces / 2.10:
Stress and distortion fields of grain boundaries in isotropic elasticity / 2.10.1:
Grain boundary energies / 2.10.3:
Stress fields of heterophase interfaces in isotropic elasticity / 2.10.4:
Dislocation arrays at interfaces in anisotropic elasticity / 2.10.5:
Isotropic elastic analysis of epitaxial interfaces / 2.10.6:
Stress fields of precipitates and non-planar interfaces / 2.10.7:
Degree of localization of the cores of interfacial dislocations / 2.11:
Lattice theories of dislocation arrays / 2.11.1:
Peierls-Nabarro model for an isolated edge dislocation / 2.11.2.1:
Peierls-Nabarro model for a symmetrical tilt boundary / 2.11.2.3:
The van der Merwe model for a symmetrical tilt boundary / 2.11.2.4:
Atomistic models using computer simulation and interatomic forces / 2.11.3:
Experimental observations of arrays of interfacial dislocations / 2.12:
Mainly room-temperature observations / 2.12.1:
High-temperature observations / 2.12.2:
Models of interatomic forces at interfaces / 3:
Density functional theory / 3.1:
The variational principle and the Kohn-Sham equations / 3.2.1:
The Harris-Foulkes energy functional / 3.2.2:
Valence and core electrons: pseudopotentials / 3.3:
The force theorem and Hellmann-Feynman forces / 3.4:
Cohesion and pair potentials in sp-bonded metals / 3.5:
Effective medium theory / 3.6:
The embedded atom method / 3.7:
Tight binding models / 3.8:
The diatomic molecule / 3.8.1:
Bands, bonds, and Green functions / 3.8.3:
Moments of the spectral density matrix / 3.8.4:
The tight binding bond (TBB) model / 3.8.5:
The second moment approximation / 3.8.6:
Beyond the second moment approximation / 3.8.7:
Temperature dependence of atomic interactions / 3.9:
Ionic bonding / 3.10:
Interatomic forces at heterophase interfaces / 3.11:
Models and experimental observations of atomic structure / 4:
Introduction: classification of interfaces / 4.1:
Diffuse interfaces / 4.2:
Heterophase interfaces in systems with a miscibility gap / 4.2.1:
Antiphase domain boundaries in systems with long-range order / 4.2.2:
Displacive transformation interfaces in systems near a mechanical instability / 4.2.3:
Sharp homophase interfaces: large-angle grain boundaries / 4.3:
Large-angle grain boundaries in metals / 4.3.1:
The significance of the rigid body displacement parallel to the boundary plane / 4.3.1.1:
The significance of the expansion normal to the boundary plane / 4.3.1.2:
Testing the analytic model / 4.3.1.3:
The significance of individual atomic relaxation / 4.3.1.4:
Discussion: singular, vicinal, and general interfaces / 4.3.1.5:
Methods of computer simulation / 4.3.1.6:
The polyhedral unit model / 4.3.1.7:
The structural unit model / 4.3.1.8:
Three-dimensional grain boundary structures / 4.3.1.9:
The influence of temperature / 4.3.1.10:
Grain boundaries in ionic crystals / 4.3.2:
Grain boundaries in covalent crystals / 4.3.3:
Sharp heterophase interfaces / 4.4:
Metal-metal interfaces / 4.4.1:
Metal-insulator interfaces / 4.4.3:
Metal-semiconductor interfaces / 4.4.4:
Interfacial Thermodynamics / Part II:
Thermodynamics of interfaces / 5:
The interface free energy / 5.1:
Additional interface thermodynamic quantities and relationships between them / 5.3:
Introduction of the interface stress and strain variables / 5.4:
Introduction of the geometric thermodynamic variables / 5.5:
Dependence of [sigma] on the interface inclination / 5.6:
The Wulff plot / 5.6.1:
Equilibrium shape (Wulff form) of embedded second-phase particle / 5.6.2:
Faceting of initially flat interface / 5.6.3:
The capillarity vector, [xi] / 5.6.4:
Capillary pressure associated with smoothly curved interface / 5.6.5:
Equilibrium lattice solubility at a smoothly curved heterophase interface / 5.6.6:
Equilibrium solubility at embedded second-phase particle / 5.6.7:
Equilibrium interface configurations at interface junction lines / 5.6.8:
Further thermodynamic relationships involving changes in interface inclination / 5.6.9:
Dependence of [sigma] on the crystal misorientation / 5.7:
Dependence of [sigma] on simultaneous variations of the interface inclination and crystal misorientation / 5.8:
Chemical potentials and diffusion potentials, M[subscript i], in non-uniform systems containing interfaces / 5.9:
Analysis of system at equilibrium; introduction of the diffusion potential, M[subscript i] / 5.9.1:
Incoherent interface / 5.9.2.1:
Coherent interface / 5.9.2.2:
Summary / 5.9.2.3:
Diffusional transport in non-equilibrium systems / 5.9.3:
Interface phases and phase transitions / 6:
Interface phase equilibria / 6.1:
Interface phase transitions / 6.3:
Non-congruent phase transitions / 6.3.1:
Faceting of initially flat interfaces / 6.3.1.1:
Faceting of embedded particle interfaces / 6.3.1.2:
Interface dissociation / 6.3.1.3:
Congruent phase transitions / 6.3.2:
Various transitions induced by changes in temperature, composition, or crystal misorientation / 6.3.2.1:
Interface wetting by a solid phase / 6.3.2.2:
Interface wetting by a liquid phase in alloy systems / 6.3.2.3:
Grain boundary melting in a one-component system / 6.3.2.4:
Segregation of solute atoms to interfaces / 7:
Overview of some of the main features of interface segregation in metals / 7.1:
Physical models for the interaction between solute atoms and interfaces / 7.3:
Elastic interaction models / 7.3.1:
Size accommodation model / 7.3.2.1:
Hydrostatic pressure (P[Delta]V) and elastic inhomogeneity models / 7.3.2.2:
Further elastic models / 7.3.2.3:
Atomistic models at 0 K / 7.3.3:
Electronic interaction models / 7.3.4:
Statistical mechanical models of segregation / 7.4:
Regular solution model / 7.4.1:
Mean field models / 7.4.3:
McLean isotherm / 7.4.3.1:
Fowler-Guggenheim isotherm / 7.4.3.2:
Multiple segregation site models / 7.4.3.3:
Beyond mean field models / 7.4.4:
Some additional models / 7.4.5:
Atomistic models at a finite temperature / 7.5:
Interface segregation in ionic solids / 7.6:
Interfacial Kinetics / Part III:
Diffusion at interfaces / 8:
Fast diffusion along interfaces of species which are substitutional in the crystal lattice / 8.1:
Slab model and regimes of diffusion behaviour / 8.2.1:
Mathematical analysis of the diffusant distribution in the type A, B, and C regimes / 8.2.2:
Experimental observations / 8.2.3:
Some major results for diffusion along interfaces / 8.2.3.1:
Effects of interface structure / 8.2.3.2:
Mechanisms for fast grain boundary diffusion / 8.2.4:
Equilibrium point defects in the grain boundary core / 8.2.4.1:
'Ring', vacancy, interstitialcy, and interstitial mechanisms / 8.2.4.2:
Models for grain boundary self-diffusivities via the different mechanisms / 8.2.5:
Vacancy mechanism / 8.2.5.1:
Interstitialcy mechanism / 8.2.5.2:
Interstitial mechanism / 8.2.5.3:
General characteristics of the models for boundary self-diffusion / 8.2.6:
On the question of the mechanism (or mechanisms) of fast grain boundary diffusion / 8.2.7:
Metals / 8.2.7.1:
Ionic materials / 8.2.7.2:
Covalent materials / 8.2.7.3:
Diffusion along interfaces of solute species which are interstitial in the crystal lattice / 8.3:
Slow diffusion across interfaces in fast ion conductors / 8.4:
Diffusion-induced grain boundary motion (DIGM) / 8.5:
Conservative motion of interfaces / 9:
'Conservative' versus 'non-conservative' motion of interfaces / 9.1:
Driving pressures for conservative motion / 9.1.2:
Basic mechanisms: correlated versus uncorrelated processes / 9.1.3:
Impediments to interface motion / 9.1.4:
Mechanisms and models for sharp interfaces / 9.2:
Glissile motion of interfacial dislocations / 9.2.1:
Small-angle grain boundaries / 9.2.1.1:
Large-angle grain boundaries / 9.2.1.2:
Heterophase interfaces / 9.2.1.3:
Glide and climb of interfacial dislocations / 9.2.2:
Shuffling motion of pure steps / 9.2.2.1:
Uncorrelated atom shuffling and/or diffusional transport / 9.2.4:
Uncorrelated atom shuffling / 9.2.4.1:
Uncorrelated diffusional transport / 9.2.4.2:
Solute atom drag / 9.2.5:
Experimental observations of non-glissile (thermally activated) grain boundary motion in metals / 9.2.6:
General large-angle grain boundaries / 9.2.6.1:
Singular (or vicinal) large-angle grain boundaries / 9.2.6.2:
Solute atom drag effects / 9.2.6.3:
Mechanisms and models for diffuse interfaces / 9.2.6.4:
Propagation of non-linear elastic wave (or, alternatively, coherency dislocations) / 9.3.1:
Self-diffusion / 9.3.2:
Equations of interface motion / 9.4:
Motion when v = v(n) / 9.4.1:
Motion of curved interfaces under capillary pressure / 9.4.2:
More general conservative motion / 9.4.3:
Impediments to interface motion due to pinning / 9.5:
Pinning effects due to embedded particles / 9.5.1:
Pinning at stationary particles at low temperatures / 9.5.1.1:
Thermally activated unpinning / 9.5.1.2:
Diffusive motion of pinned particles along with the interface / 9.5.1.3:
Pinning at free surface grooves / 9.5.2:
Non-conservative motion of interfaces: interfaces as sources/sinks for diffusional fluxes of atoms / 10:
General aspects of interfaces as sources/sinks / 10.1:
'Diffusion-controlled', 'interface-controlled', and 'mixed' kinetics / 10.2.1:
Dissipation of energy during source/sink action / 10.2.2:
The maximum energy available to drive the source/sink action / 10.2.3:
Grain boundaries as sources/sinks for fluxes of atoms / 10.3:
Models / 10.3.1:
Models for singular or vicinal grain boundaries / 10.3.2.2:
Models for general grain boundaries / 10.3.3.2:
Sharp heterophase interfaces as sources/sinks for fluxes of atoms / 10.3.3.3:
Singular or vicinal heterophase interfaces / 10.4.1:
General heterophase interfaces / 10.4.1.2:
Growth, coarsening, shape-equilibration, and shrinkage of small precipitate particles / 10.4.2:
Growth of phases in the form of flat parallel layers / 10.4.2.2:
Annealing of supersaturated vacancies / 10.4.2.3:
Diffusional accommodation of boundary sliding at second phase particles / 10.4.2.4:
Diffuse heterophase interfaces as sources/sinks for solute atoms / 10.5:
On the question of interface stability during source/sink action / 10.6:
Interfacial Properties / Part IV:
Electronic properties of interfaces / 11:
The Schottky model / 11.1:
The Bardeen model / 11.2.3:
Metal-induced gap states (MIGS) / 11.2.4:
The defect model / 11.2.5:
The development of the Schottky barrier as a function of metal coverage / 11.2.6:
Schottky barriers on Si / 11.2.7:
Discussion of models for Schottky barriers / 11.2.8:
Inhomogeneous Schottky barriers / 11.2.9:
Semiconductor heterojunctions / 11.3:
The band offsets / 11.3.1:
Grain boundaries in metals / 11.4:
Grain boundaries in semiconductors / 11.5:
Grain boundaries in high temperature superconductors / 11.6:
Mechanical properties of interfaces / 12:
Compatibility stresses in bicrystals and polycrystals / 12.1:
Compatibility stresses caused by applied elastic stress / 12.2.1:
Compatibility stresses caused by plastic straining / 12.2.2:
Compatibility stresses caused by heating/cooling / 12.2.3:
Elastic interactions between dislocations and interfaces / 12.3:
Interfaces as sinks, or traps, for lattice dislocations / 12.4:
Large-angle grain boundaries and heterophase boundaries / 12.4.1:
Singular boundaries / 12.4.3.1:
General boundaries / 12.4.3.2:
On the global equilibration of impinged lattice dislocations / 12.4.4:
Interfaces as sources of both interfacial and lattice dislocations / 12.5:
Interfaces as sources of interfacial dislocations / 12.5.1:
Interfaces as sources of lattice dislocations / 12.5.2:
Singular interfaces / 12.5.2.1:
General interfaces / 12.5.2.2:
Interfaces as barriers to the glide of lattice dislocations (slip) / 12.6:
Grain boundaries / 12.6.1:
Effects of interfaces on the plastic deformation of bicrystals and polycrystals at low temperatures / 12.6.2:
Homophase bicrystals and polycrystals / 12.7.1:
Heterophase bicrystals and polycrystals / 12.7.2:
Role of interfaces in the plastic deformation of bicrystals and polycrystals at high temperatures / 12.8:
Interface sliding / 12.8.1:
Sliding at an ideally planar grain boundary / 12.8.1.1:
Sliding at a non-planar grain boundary by means of elastic accommodation / 12.8.1.2:
Sliding at a non-planar grain boundary by means of diffusional accommodation / 12.8.1.3:
Sliding at a non-planar grain boundary by means of plastic flow accommodation in the lattice / 12.8.1.4:
Experimental observations of sliding at interfaces / 12.8.1.5:
Creep of polycrystals / 12.8.2:
Creep of homophase polycrystals controlled by diffusional transport / 12.8.2.1:
Creep of homophase polycrystals controlled by boundary sliding / 12.8.2.2:
Creep of homophase polycrystals controlled by movement of lattice dislocations / 12.8.2.3:
Further aspects of the creep of polycrystals / 12.8.2.4:
Fracture at homophase interfaces / 12.9:
Overview of the different types of fracture observed experimentally in homophase polycrystals / 12.9.1:
Propagation of cleavage cracks / 12.9.2:
Crack propagation in a single crystal / 12.9.2.1:
Crack propagation along a grain boundary / 12.9.2.2:
Crack propagation in homophase polycrystals / 12.9.2.3:
Growth and coalescence of cavities at grain boundaries at low temperatures by plastic flow due to dislocation glide / 12.9.3:
Growth and coalescence of cavities at grain boundaries at high temperatures by diffusion, power-law creep, and boundary sliding / 12.9.4:
Initiation of cavities / 12.9.4.1:
Growth of cavities / 12.9.4.2:
Coalescence of cavities and complete intergranular fracture / 12.9.4.3:
Fracture at heterophase interfaces / 12.10:
Index
List of symbols
Glossary
Interfacial Structure / Part I:
8.

図書

図書
David K. Ferry
出版情報: Bristol [UK] ; Philadelphia : Institute of Physics Pub., c1995  x, 345 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Preface to the second edition
Waves and particles / 1:
Introduction / 1.1:
Light as particles--the photoelectric effect / 1.2:
Electrons as waves / 1.3:
Position and momentum / 1.4:
Expectation of the position / 1.4.1:
Momentum / 1.4.2:
Non-commuting operators / 1.4.3:
Returning to temporal behaviour / 1.4.4:
Summary / 1.5:
References
Problems
The Schrodinger equation / 2:
Waves and the differential equation / 2.1:
Density and current / 2.2:
Some simple cases / 2.3:
The free particle / 2.3.1:
A potential step / 2.3.2:
The infinite potential well / 2.4:
The finite potential well / 2.5:
The triangular well / 2.6:
Coupled potential wells / 2.7:
The time variation again / 2.8:
The Ehrenfest theorem / 2.8.1:
Propagators and Green's functions / 2.8.2:
Numerical solution of the Schrodinger equation / 2.9:
Tunnelling / 3:
The tunnel barrier / 3.1:
The simple rectangular barrier / 3.1.1:
The tunnelling probability / 3.1.2:
A more complex barrier / 3.2:
The double barrier / 3.3:
Simple, equal barriers / 3.3.1:
The unequal-barrier case / 3.3.2:
Shape of the resonance / 3.3.3:
Approximation methods--the WKB method / 3.4:
Bound states of a general potential / 3.4.1:
Tunnelling devices / 3.4.2:
A current formulation / 3.5.1:
The p-n junction diode / 3.5.2:
The resonant tunnelling diode / 3.5.3:
Resonant interband tunnelling / 3.5.4:
Self-consistent simulations / 3.5.5:
The Landauer formula / 3.6:
Periodic potentials / 3.7:
Velocity / 3.7.1:
Superlattices / 3.7.2:
Single-electron tunnelling / 3.8:
Bloch oscillations / 3.8.1:
The double-barrier quantum dot / 3.8.2:
The harmonic oscillator / 4:
Hermite polynomials / 4.1:
The generating function / 4.2:
Motion of the wave packet / 4.3:
A simpler approach with operators / 4.4:
Quantizing the LC-circuit / 4.5:
The vibrating lattice / 4.6:
Motion in a quantizing magnetic field / 4.7:
Connection with semi-classical orbits / 4.7.1:
Adding lateral confinement / 4.7.2:
The quantum Hall effect / 4.7.3:
Basis functions, operators, and quantum dynamics / 5:
Position and momentum representation / 5.1:
Some operator properties / 5.2:
Time-varying expectations / 5.2.1:
Hermitian operators / 5.2.2:
On commutation relations / 5.2.3:
Linear vector spaces / 5.3:
Some matrix properties / 5.3.1:
The eigenvalue problem / 5.3.2:
Dirac notation / 5.3.3:
Fundamental quantum postulates / 5.4:
Translation operators / 5.4.1:
Discretization and superlattices / 5.4.2:
Time as a translation operator / 5.4.3:
Canonical quantization / 5.4.4:
Stationary perturbation theory / 6:
The perturbation series / 6.1:
Some examples of perturbation theory / 6.2:
The Stark effect in a potential well / 6.2.1:
The shifted harmonic oscillator / 6.2.2:
Multiple quantum wells / 6.2.3:
Coulomb scattering / 6.2.4:
An alternative technique--the variational method / 6.3:
Time-dependent perturbation theory / 7:
Electron-phonon scattering / 7.1:
The interaction representation / 7.3:
Exponential decay and uncertainty / 7.4:
A scattering-state basis--the T-matrix / 7.5:
The Lippmann-Schwinger equation / 7.5.1:
Coulomb scattering again / 7.5.2:
Orthogonality of the scattering states / 7.5.3:
Motion in centrally symmetric potentials / 8:
The two-dimensional harmonic oscillator / 8.1:
Rectangular coordinates / 8.1.1:
Polar coordinates / 8.1.2:
Splitting the angular momentum states with a magnetic field / 8.1.3:
Spectroscopy of a harmonic oscillator / 8.1.4:
The hydrogen atom / 8.2:
The radial equation / 8.2.1:
Angular solutions / 8.2.2:
Angular momentum / 8.2.3:
Atomic energy levels / 8.3:
The Fermi-Thomas model / 8.3.1:
The Hartree self-consistent potential / 8.3.2:
Corrections to the centrally symmetric potential / 8.3.3:
The covalent bond in semiconductors / 8.3.4:
Hydrogenic impurities in semiconductors / 8.4:
Electrons and anti-symmetry / 9:
Symmetric and anti-symmetric wave functions / 9.1:
Spin angular momentum / 9.2:
Systems of identical particles / 9.3:
Fermion creation and annihilation operators / 9.4:
Field operators / 9.5:
Connection with the many-electron formulation / 9.5.1:
Quantization of the Hamiltonian / 9.5.2:
The two-electron wave function / 9.5.3:
The homogeneous electron gas / 9.5.4:
The Green's function / 9.6:
The equations of motion / 9.6.1:
The Hartree approximation / 9.6.2:
Connection with perturbation theory / 9.6.3:
Dyson's equation / 9.6.4:
The self-energy / 9.6.5:
Solutions to selected problems
Index
Preface to the first edition
Preface to the second edition
Waves and particles / 1:
9.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 1995
所蔵情報: loading…
10.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 1995
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼