close
1.

図書

図書
Charles E. Baukal, Jr.
出版情報: Boca Raton, Fla. : CRC Press, c2000  545 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
Research Needs / 1.1.2:
Literature Discussion / 1.2:
Heat Transfer / 1.2.1:
Combustion / 1.2.2:
Heat Transfer and Combustion / 1.2.3:
Combustion System Components / 1.3:
Burners / 1.3.1:
Competing Priorities / 1.3.1.1:
Design Factors / 1.3.1.2:
General Burner Types / 1.3.1.3:
Combustors / 1.3.2:
Design Considerations / 1.3.2.1:
General Classifications / 1.3.2.2:
Heat Load / 1.3.3:
Process Tubes / 1.3.3.1:
Moving Substrate / 1.3.3.2:
Opaque Materials / 1.3.3.3:
Transparent Materials / 1.3.3.4:
Heat Recovery Devices / 1.3.4:
Recuperators / 1.3.4.1:
Regenerators / 1.3.4.2:
References
Some Fundamentals of Combustion / Chapter 2:
Combustion Chemistry / 2.1:
Fuel Properties / 2.1.1:
Oxidizer Composition / 2.1.2:
Mixture Ratio / 2.1.3:
Operating Regimes / 2.1.4:
Combustion Properties / 2.2:
Combustion Products / 2.2.1:
Air and Fuel Preheat Temperature / 2.2.1.1:
Fuel Composition / 2.2.1.4:
Flame Temperature / 2.2.2:
Oxidizer and Fuel Composition / 2.2.2.1:
Oxidizer and Fuel Preheat Temperature / 2.2.2.2:
Available Heat / 2.2.3:
Flue Gas Volume / 2.2.4:
Exhaust Product Transport Properties / 2.3:
Density / 2.3.1:
Specific Heat / 2.3.2:
Thermal Conductivity / 2.3.3:
Viscosity / 2.3.4:
Prandtl Number / 2.3.5:
Lewis Number / 2.3.6:
Heat Transfer Modes / Chapter 3:
Convection / 3.1:
Forced Convection / 3.2.1:
Forced Convection from Flames / 3.2.1.1:
Forced Convection from Outside Combustor Wall / 3.2.1.2:
Forced Convection from Hot Gases to Tubes / 3.2.1.3:
Natural Convection / 3.2.2:
Natural Convection from Flames / 3.2.2.1:
Natural Convection from Outside Combustor Wall / 3.2.2.2:
Radiation / 3.3:
Surface Radiation / 3.3.1:
Nonluminous Radiation / 3.3.2:
Theory / 3.3.2.1:
Combustion Studies / 3.3.2.2:
Luminous Radiation / 3.3.3:
Conduction / 3.3.3.1:
Steady-State Conduction / 3.4.1:
Transient Conduction / 3.4.2:
Phase Change / 3.5:
Melting / 3.5.1:
Boiling / 3.5.2:
Internal Boiling / 3.5.2.1:
External Boiling / 3.5.2.2:
Condensation / 3.5.3:
Heat Sources and Sinks / Chapter 4:
Heat Sources / 4.1:
Combustibles / 4.1.1:
Fuel Combustion / 4.1.1.1:
Volatile Combustion / 4.1.1.2:
Thermochemical Heat Release / 4.1.2:
Equilibrium TCHR / 4.1.2.1:
Catalytic TCHR / 4.1.2.2:
Mixed TCHR / 4.1.2.3:
Heat Sinks / 4.2:
Load / 4.2.1:
Tubes / 4.2.1.1:
Substrate / 4.2.1.2:
Granular Solid / 4.2.1.3:
Molten Liquid / 4.2.1.4:
Surface Conditions / 4.2.1.5:
Wall Losses / 4.2.2:
Openings / 4.2.3:
Gas Flow Through Openings / 4.2.3.1:
Material Transport / 4.2.4:
Computer Modeling / Chapter 5:
Combustion Modeling / 5.1:
Modeling Approaches / 5.2:
Fluid Dynamics / 5.2.1:
Moment Averaging / 5.2.1.1:
Vortex Methods / 5.2.1.2:
Spectral Methods / 5.2.1.3:
Direct Numerical Simulation / 5.2.1.4:
Geometry / 5.2.2:
Zero-Dimensional Modeling / 5.2.2.1:
One-Dimensional Modeling / 5.2.2.2:
Multi-dimensional Modeling / 5.2.2.3:
Reaction Chemistry / 5.2.3:
Nonreacting Flows / 5.2.3.1:
Simplified Chemistry / 5.2.3.2:
Complex Chemistry / 5.2.3.3:
Nonradiating / 5.2.4:
Participating Media / 5.2.4.2:
Time Dependence / 5.2.5:
Steady State / 5.2.5.1:
Transient / 5.2.5.2:
Simplified Models / 5.3:
Computational Fluid Dynamic Modeling / 5.4:
Increasing Popularity of CFD / 5.4.1:
Potential Problems of CFD / 5.4.2:
Equations / 5.4.3:
Chemistry / 5.4.3.1:
Multiple Phases / 5.4.3.4:
Boundary and Initial Conditions / 5.4.4:
Inlets and Outlets / 5.4.4.1:
Surfaces / 5.4.4.2:
Symmetry / 5.4.4.3:
Discretization / 5.4.5:
Finite Difference Technique / 5.4.5.1:
Finite Volume Technique / 5.4.5.2:
Finite Element Technique / 5.4.5.3:
Mixed / 5.4.5.4:
None / 5.4.5.5:
Solution Methods / 5.4.6:
Model Validation / 5.4.7:
Industrial Combustion Examples / 5.4.8:
Modeling Burners / 5.4.8.1:
Modeling Combustors / 5.4.8.2:
Experimental Techniques / Chapter 6:
Heat Flux / 6.1:
Total Heat Flux / 6.2.1:
Steady-State Uncooled Solids / 6.2.1.1:
Steady-State Cooled Solids / 6.2.1.2:
Steady-State Cooled Gages / 6.2.1.3:
Transient Uncooled Targets / 6.2.1.4:
Transient Uncooled Gages / 6.2.1.5:
Radiant Heat Flux / 6.2.2:
Heat Flux Gage / 6.2.2.1:
Ellipsoidal Radiometer / 6.2.2.2:
Spectral Radiometer / 6.2.2.3:
Other Techniques / 6.2.2.4:
Convective Heat Flux / 6.2.3:
Temperature / 6.3:
Gas Temperature / 6.3.1:
Suction Pyrometer / 6.3.1.1:
Optical Techniques / 6.3.1.2:
Fine Wire Thermocouples / 6.3.1.3:
Line Reversal / 6.3.1.4:
Surface Temperature / 6.3.2:
Embedded Thermocouple / 6.3.2.1:
Infrared Detectors / 6.3.2.2:
Gas Flow / 6.4:
Gas Velocity / 6.4.1:
Pitot Tubes / 6.4.1.1:
Laser Doppler Velocimetry / 6.4.1.2:
Static Pressure Distribution / 6.4.1.3:
Stagnation Velocity Gradient / 6.4.2.1:
Stagnation Zone / 6.4.2.2:
Gas Species / 6.5:
Other Measurements / 6.6:
Physical Modeling / 6.7:
Flame Impingement / Chapter 7:
Experimental Conditions / 7.1:
Configurations / 7.2.1:
Flame Normal to a Cylinder in Crossflow / 7.2.1.1:
Flame Normal to a Hemispherically Nosed Cylinder / 7.2.1.2:
Flame Normal to a Plane Surface / 7.2.1.3:
Flame Parallel to a Plane Surface / 7.2.1.4:
Operating Conditions / 7.2.2:
Oxidizers / 7.2.2.1:
Fuels / 7.2.2.2:
Equivalence Ratios / 7.2.2.3:
Firing Rates / 7.2.2.4:
Reynolds Number / 7.2.2.5:
Nozzle Diameter / 7.2.2.6:
Location / 7.2.2.8:
Stagnation Targets / 7.2.3:
Size / 7.2.3.1:
Target Materials / 7.2.3.2:
Surface Preparation / 7.2.3.3:
Surface Temperatures / 7.2.3.4:
Measurements / 7.2.4:
Semianalytical Heat Transfer Solutions / 7.3:
Equation Parameters / 7.3.1:
Thermophysical Properties / 7.3.1.1:
Sibulkin Results / 7.3.1.2:
Fay and Riddell Results / 7.3.2.2:
Rosner Results / 7.3.2.3:
Comparisons With Experiments / 7.3.3:
Forced Convection (Negligible TCHR) / 7.3.3.1:
Forced Convection with TCHR / 7.3.3.2:
Sample Calculations / 7.3.4:
Laminar Flames Without TCHR / 7.3.4.1:
Turbulent Flames Without TCHR / 7.3.4.2:
Laminar Flames with TCHR
Summary / 7.3.5:
Empirical Heat Transfer Correlations / 7.4:
Flames Impinging Normal to a Cylinder / 7.4.1:
Local Convection Heat Transfer / 7.4.2.1:
Average Convection Heat Transfer / 7.4.2.2:
Average Convection Heat Transfer with TCHR / 7.4.2.3:
Average Radiation Heat Transfer / 7.4.2.4:
Maximum Convection and Radiation Heat Transfer / 7.4.2.5:
Flames Impining Normal to a Hemi-Nosed Cylinder / 7.4.3:
Local Convection Heat Transfer with TCHR / 7.4.3.1:
Flames Impinging Normal to a Plane Surface / 7.4.4:
Flames Parallel to a Plane Surface / 7.4.4.1:
Local Convection Heat Transfer With TCHR / 7.4.5.1:
Local Convection and Radiation Heat Transfer / 7.4.5.2:
Heat Transfer from Burners / Chapter 8:
Open-Flame Burners / 8.1:
Momentum Effects / 8.2.1:
Flame Luminosity / 8.2.2:
Firing Rate Effects / 8.2.3:
Flame Shape Effects / 8.2.4:
Radiant Burners / 8.3:
Perforated Ceramic or Wire Mesh Radiant Burners / 8.3.1:
Flame Impingement Radiant Burners / 8.3.2:
Porous Refractory Radiant Burners / 8.3.3:
Advanced Ceramic Radiant Burners / 8.3.4:
Radiant Wall Burners / 8.3.5:
Radiant Tube Burners / 8.3.6:
Effects on Heat Transfer / 8.4:
Fuel Effects / 8.4.1:
Solid Fuels / 8.4.1.1:
Liquid Fuels / 8.4.1.2:
Gaseous Fuels / 8.4.1.3:
Fuel Temperature / 8.4.1.4:
Oxidizer Effects / 8.4.2:
Oxidizer Temperature / 8.4.2.1:
Staging Effects / 8.4.3:
Fuel Staging / 8.4.3.1:
Oxidizer Staging / 8.4.3.2:
Burner Orientation / 8.4.4:
Hearth-Fired Burners / 8.4.4.1:
Wall-Fired Burners / 8.4.4.2:
Roof-Fired Burners / 8.4.4.3:
Side-Fired Burners / 8.4.4.4:
Heat Recuperation / 8.4.5:
Regenerative Burners / 8.4.5.1:
Recuperative Burners / 8.4.5.2:
Furnace or Flue Gas Recirculation / 8.4.5.3:
Pulse Combustion / 8.4.6:
In-Flame Treatment / 8.5:
Heat Transfer in Furnaces / Chapter 9:
Furnaces / 9.1:
Firing Method / 9.2.1:
Direct Firing / 9.2.1.1:
Indirect Firing / 9.2.1.2:
Heat Distribution / 9.2.1.3:
Load Processing Method / 9.2.2:
Batch Processing / 9.2.2.1:
Continuous Processing / 9.2.2.2:
Hybrid Processing / 9.2.2.3:
Heat Transfer Medium / 9.2.3:
Gaseous Medium / 9.2.3.1:
Vacuum / 9.2.3.2:
Liquid Medium / 9.2.3.3:
Solid Medium / 9.2.3.4:
Rotary Geometry / 9.2.4:
Rectangular Geometry / 9.2.4.2:
Ladle Geometry / 9.2.4.3:
Vertical Cylindrical Geometry / 9.2.4.4:
Furnace Types / 9.2.5:
Reverberatory Furnace / 9.2.5.1:
Shaft Kiln / 9.2.5.2:
Rotary Furnace / 9.2.5.3:
Heat Recovery / 9.3:
Gas Recirculation / 9.3.1:
Flue Gas Recirculation / 9.3.3.1:
Furnace Gas Recirculation / 9.3.3.2:
Lower Temperature Applications / Chapter 10:
Ovens and Dryers / 10.1:
Predryer / 10.2.1:
Dryer / 10.2.2:
Fired Heaters / 10.3:
Reformer / 10.3.1:
Process Heater / 10.3.2:
Heat Treating / 10.4:
Standard Atmosphere / 10.4.1:
Special Atmosphere / 10.4.2:
Higher Temperature Applications / Chapter 11:
Industries / 11.1:
Metals Industry / 11.2:
Ferrous Metal Production / 11.2.1:
Electric Arc Furnace / 11.2.1.1:
Smelting / 11.2.1.2:
Ladle Preheating / 11.2.1.3:
Reheating Furnace / 11.2.1.4:
Forging / 11.2.1.5:
Aluminum Metal Production / 11.2.2:
Minerals Industry / 11.3:
Glass / 11.3.1:
Types of Traditional Glass-Melting Furnaces / 11.3.1.1:
Unit Melter / 11.3.1.2:
Recuperative Melter / 11.3.1.3:
Regenerative or Siemens Furnace / 11.3.1.4:
Oxygen-Enhanced Combustion for Glass Production / 11.3.1.5:
Advanced Techniques for Glass Production / 11.3.1.6:
Cement and Lime / 11.3.2:
Bricks, Refractories, and Ceramics / 11.3.3:
Waste Incineration / 11.4:
Types of Incinerators / 11.4.1:
Municipal Waste Incinerators / 11.4.1.1:
Sludge Incinerators / 11.4.1.2:
Mobile Incinerators / 11.4.1.3:
Transportable Incinerators / 11.4.1.4:
Fixed Hazardous Waste Incinerators / 11.4.1.5:
Heat Transfer in Waste Incineration / 11.4.2:
Advanced Combustion Systems / Chapter 12:
Oxygen-Enhanced Combustion / 12.1:
Typical Use Methods / 12.2.1:
Air Enrichment / 12.2.1.1:
O[subscript 2] Lancing / 12.2.1.2:
Oxy/Fuel / 12.2.1.3:
Air-Oxy/Fuel / 12.2.1.4:
Heat Transfer Benefits / 12.2.2:
Increased Productivity / 12.2.3.1:
Higher Thermal Efficiencies / 12.2.3.2:
Higher Heat Transfer Efficiency / 12.2.3.3.:
Increased Flexibility / 12.2.3.4:
Potential Heat Transfer Problems / 12.2.4:
Refractory Damage / 12.2.4.1:
Nonuniform Heating / 12.2.4.2:
Industrial Heating Applications / 12.2.5:
Metals / 12.2.5.1:
Minerals / 12.2.5.2:
Incineration / 12.2.5.3:
Other / 12.2.5.4:
Submerged Combustion / 12.3:
Metals Production / 12.3.1:
Minerals Production / 12.3.2:
Liquid Heating / 12.3.3:
Miscellaneous / 12.4:
Surface Combustor-Heater / 12.4.1:
Direct-Fired Cylinder Dryer / 12.4.2:
Appendices
Reference Sources for Further Information / Appendix A:
Common Conversions / Appendix B:
Methods of Expressing Mixture Ratios for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] / Appendix C:
Properties for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] Flames / Appendix D:
Fluid Dynamics Equations / Appendix E:
Material Properties / Appendix F:
Author Index
Subject Index
Introduction / Chapter 1:
Importance of Heat Transfer in Industrial Combustion / 1.1:
Energy Consumption / 1.1.1:
2.

図書

図書
M. Hinze ... [et al.]
出版情報: [Dordrecht] : Springer, c2009  xi, 270 p. ; 24 cm
シリーズ名: Mathematical modelling : theory and applications ; v. 23
所蔵情報: loading…
目次情報: 続きを見る
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
Introduction and Examples / 1.1:
Introduction / 1.1.1:
Examples for Optimization Problems with PDEs / 1.1.2:
Optimization of a Stationary Heating Process / 1.1.3:
Optimization of an Unsteady Heating Processes / 1.1.4:
Optimal Design / 1.1.5:
Linear Functional Analysis and Sobolev Spaces / 1.2:
Banach and Hilbert Spaces / 1.2.1:
Sobolev Spaces / 1.2.2:
Weak Convergence / 1.2.3:
Weak Solutions of Elliptic and Parabolic PDEs / 1.3:
Weak Solutions of Elliptic PDEs / 1.3.1:
Weak Solutions of Parabolic PDEs / 1.3.2:
Gateaux- and Fréchet Differentiability / 1.4:
Basic Definitions / 1.4.1:
Implicit Function Theorem / 1.4.2:
Existence of Optimal Controls / 1.5:
Existence Result for a General Linear-Quadratic Problem / 1.5.1:
Existence Result for Nonlinear Problems / 1.5.2:
Applications / 1.5.3:
Reduced Problem, Sensitivities and Adjoints / 1.6:
Sensitivity Approach / 1.6.1:
Adjoint Approach / 1.6.2:
Application to a Linear-Quadratic Optimal Control Problem / 1.6.3:
A Lagrangian-Based View of the Adjoint Approach / 1.6.4:
Second Derivatives / 1.6.5:
Optimality Conditions / 1.7:
Optimality Conditions for Simply Constrained Problems / 1.7.1:
Optimality Conditions for Control-Constrained Problems / 1.7.2:
Optimality Conditions for Problems with General Constraints / 1.7.3:
Optimal Control of Instationary Incompressible Navier-Stokes Flow / 1.8:
Functional Analytic Setting / 1.8.1:
Analysis of the Flow Control Problem / 1.8.2:
Reduced Optimal Control Problem / 1.8.3:
Optimization Methods in Banach Spaces / 2:
Michael Ulbrich
Synopsis / 2.1:
Globally Convergent Methods in Banach Spaces / 2.2:
Unconstrained Optimization / 2.2.1:
Optimization on Closed Convex Sets / 2.2.2:
General Optimization Problems / 2.2.3:
Newton-Based Methods-A Preview / 2.3:
Unconstrained Problems-Newton's Method / 2.3.1:
Simple Constraints / 2.3.2:
General Inequality Constraints / 2.3.3:
Generalized Newton Methods / 2.4:
Motivation: Application to Optimal Control / 2.4.1:
A General Superlinear Convergence Result / 2.4.2:
The Classical Newton's Method / 2.4.3:
Generalized Differential and Semismoothness / 2.4.4:
Semismooth Newton Methods / 2.4.5:
Semismooth Newton Methods in Function Spaces / 2.5:
Semismoothness of Superposition Operators / 2.5.1:
Application to Optimal Control / 2.5.3:
Application to Elliptic Optimal Control Problems / 2.5.5:
Optimal Control of the Incompressible Navier-Stokes Equations / 2.5.7:
Sequential Quadratic Programming / 2.6:
Lagrange-Newton Methods for Equality Constrained Problems / 2.6.1:
The Josephy-Newton Method / 2.6.2:
SQP Methods for Inequality Constrained Problems / 2.6.3:
State-Constrained Problems / 2.7:
SQP Methods / 2.7.1:
Further Aspects / 2.7.2:
Mesh Independence / 2.8.1:
Application of Fast Solvers / 2.8.2:
Other Methods / 2.8.3:
Discrete Concepts in PDE Constrained Optimization / 3:
Michael Hinze
Control Constraints / 3.1:
Stationary Model Problem / 3.2.1:
First Discretize, Then Optimize / 3.2.2:
First Optimize, Then Discretize / 3.2.3:
Discussion and Implications / 3.2.4:
The Variational Discretization Concept / 3.2.5:
Error Estimates / 3.2.6:
Boundary Control / 3.2.7:
Some Literature Related to Control Constraints / 3.2.8:
Constraints on the State / 3.3:
Pointwise Bounds on the State / 3.3.1:
Pointwise Bounds on the Gradient of the State / 3.3.2:
Time Dependent Problem / 3.4:
Mathematical Model, State Equation / 3.4.1:
Optimization Problem / 3.4.2:
Discretization / 3.4.3:
Further Literature on Control of Time-Dependent Problems / 3.4.4:
Rene Pinnau / 4:
Optimal Semiconductor Design / 4.1:
Semiconductor Device Physics / 4.1.1:
The Optimization Problem / 4.1.2:
Numerical Results / 4.1.3:
Optimal Control of Glass Cooling / 4.2:
Modeling / 4.2.1:
Optimal Boundary Control / 4.2.2:
References / 4.2.3:
Preface
Analytical Background and Optimality Theory / 1:
Stefan Ulbrich
3.

図書

図書
Oded Goldreich
出版情報: Cambridge : Cambridge University Press, 2008  xxiv, 606 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
Preface
Organization and Chapter Summaries
Acknowledgments
Introduction and Preliminaries / 1:
Introduction / 1.1:
A Brief Overview of Complexity Theory / 1.1.1:
Characteristics of Complexity Theory / 1.1.2:
Contents of This Book / 1.1.3:
Approach and Style of This Book / 1.1.4:
Standard Notations and Other Conventions / 1.1.5:
Computational Tasks and Models / 1.2:
Representation / 1.2.1:
Computational Tasks / 1.2.2:
Uniform Models (Algorithms) / 1.2.3:
Non-uniform Models (Circuits and Advice) / 1.2.4:
Complexity Classes / 1.2.5:
Chapter Notes
P, NP, and NP-Completeness / 2:
The P Versus NP Question / 2.1:
The Search Version: Finding Versus Checking / 2.1.1:
The Decision Version: Proving Versus Verifying / 2.1.2:
Equivalence of the Two Formulations / 2.1.3:
Two Technical Comments Regarding NP / 2.1.4:
The Traditional Definition of NP / 2.1.5:
In Support of P Different from NP / 2.1.6:
Philosophical Meditations / 2.1.7:
Polynomial-Time Reductions / 2.2:
The General Notion of a Reduction / 2.2.1:
Reducing Optimization Problems to Search Problems / 2.2.2:
Self-Reducibility of Search Problems / 2.2.3:
Digest and General Perspective / 2.2.4:
NP-Completeness / 2.3:
Definitions / 2.3.1:
The Existence of NP-Complete Problems / 2.3.2:
Some Natural NP-Complete Problems / 2.3.3:
NP Sets That Are Neither in P nor NP-Complete / 2.3.4:
Reflections on Complete Problems / 2.3.5:
Three Relatively Advanced Topics / 2.4:
Promise Problems / 2.4.1:
Optimal Search Algorithms for NP / 2.4.2:
The Class coNP and Its Intersection with NP / 2.4.3:
Exercises
Variations on P and NP / 3:
Non-uniform Polynomial Time (P/poly) / 3.1:
Boolean Circuits / 3.1.1:
Machines That Take Advice / 3.1.2:
The Polynomial-Time Hierarchy (PH) / 3.2:
Alternation of Quantifiers / 3.2.1:
Non-deterministic Oracle Machines / 3.2.2:
The P/poly Versus NP Question and PH / 3.2.3:
More Resources, More Power? / 4:
Non-uniform Complexity Hierarchies / 4.1:
Time Hierarchies and Gaps / 4.2:
Time Hierarchies / 4.2.1:
Time Gaps and Speedup / 4.2.2:
Space Hierarchies and Gaps / 4.3:
Space Complexity / 5:
General Preliminaries and Issues / 5.1:
Important Conventions / 5.1.1:
On the Minimal Amount of Useful Computation Space / 5.1.2:
Time Versus Space / 5.1.3:
Circuit Evaluation / 5.1.4:
Logarithmic Space / 5.2:
The Class L / 5.2.1:
Log-Space Reductions / 5.2.2:
Log-Space Uniformity and Stronger Notions / 5.2.3:
Undirected Connectivity / 5.2.4:
Non-deterministic Space Complexity / 5.3:
Two Models / 5.3.1:
NL and Directed Connectivity / 5.3.2:
A Retrospective Discussion / 5.3.3:
PSPACE and Games / 5.4:
Randomness and Counting / 6:
Probabilistic Polynomial Time / 6.1:
Basic Modeling Issues / 6.1.1:
Two-Sided Error: The Complexity Class BPP / 6.1.2:
One-Sided Error: The Complexity Classes RP and coRP / 6.1.3:
Zero-Sided Error: The Complexity Class ZPP / 6.1.4:
Randomized Log-Space / 6.1.5:
Counting / 6.2:
Exact Counting / 6.2.1:
Approximate Counting / 6.2.2:
Searching for Unique Solutions / 6.2.3:
Uniform Generation of Solutions / 6.2.4:
The Bright Side of Hardness / 7:
One-Way Functions / 7.1:
Generating Hard Instances and One-Way Functions / 7.1.1:
Amplification of Weak One-Way Functions / 7.1.2:
Hard-Core Preicates / 7.1.3:
Reflections on Hardness Amplification / 7.1.4:
Hard Problems in E / 7.2:
Amplification with Respect to Polynomial-Size Circuits / 7.2.1:
Amplification with Respect to Exponential-Size Circuits / 7.2.2:
Pseudorandom Generators / 8:
The General Paradigm / 8.1:
General-Purpose Pseudorandom Generators / 8.2:
The Basic Definition / 8.2.1:
The Archetypical Application / 8.2.2:
Computational Indistinguishability / 8.2.3:
Amplifying the Stretch Function / 8.2.4:
Constructions / 8.2.5:
Non-uniformly Strong Pseudorandom Generators / 8.2.6:
Stronger Notions and Conceptual Reflections / 8.2.7:
Derandomization of Time-Complexity Classes / 8.3:
Defining Canonical Derandomizers / 8.3.1:
Constructing Canonical Derandomizers / 8.3.2:
Technical Variations and Conceptual Reflections / 8.3.3:
Space-Bounded Distinguishers / 8.4:
Definitional Issues / 8.4.1:
Two Constructions / 8.4.2:
Special-Purpose Generators / 8.5:
Pairwise Independence Generators / 8.5.1:
Small-Bias Generators / 8.5.2:
Random Walks on Expanders / 8.5.3:
Probabilistic Proof Systems / 9:
Interactive Proof Systems / 9.1:
Motivation and Perspective / 9.1.1:
Definition / 9.1.2:
The Power of Interactive Proofs / 9.1.3:
Variants and Finer Structure: An Overview / 9.1.4:
On Computationally Bounded Provers: An Overview / 9.1.5:
Zero-Knowledge Proof Systems / 9.2:
The Power of Zero-Knowledge / 9.2.1:
Proofs of Knowledge - A Parenthetical Subsection / 9.2.3:
Probabilistically Checkable Proof Systems / 9.3:
The Power of Probabilistically Checkable Proofs / 9.3.1:
PCP and Approximation / 9.3.3:
More on PCP Itself: An Overview / 9.3.4:
Relaxing the Requirements / 10:
Approximation / 10.1:
Search or Optimization / 10.1.1:
Decision or Property Testing / 10.1.2:
Average-Case Complexity / 10.2:
The Basic Theory / 10.2.1:
Ramifications / 10.2.2:
Epilogue
Glossary of Complexity Classes / Appendix A:
Preliminaries / A.1:
Algorithm-Based Classes / A.2:
Time Complexity Classes / A.2.1:
Space Complexity Classes / A.2.2:
Circuit-Based Classes / A.3:
On the Quest for Lower Bounds / Appendix B:
Boolean Circuit Complexity / B.1:
Basic Results and Questions / B.2.1:
Monotone Circuits / B.2.2:
Bounded-Depth Circuits / B.2.3:
Formula Size / B.2.4:
Arithmetic Circuits / B.3:
Univariate Polynomials / B.3.1:
Multivariate Polynomials / B.3.2:
Proof Complexity / B.4:
Logical Proof Systems / B.4.1:
Algebraic Proof Systems / B.4.2:
Geometric Proof Systems / B.4.3:
On the Foundations of Modern Cryptography / Appendix C:
The Underlying Principles / C.1:
The Computational Model / C.1.2:
Organization and Beyond / C.1.3:
Computational Difficulty / C.2:
Hard-Core Predicates / C.2.1:
Pseudorandomness / C.3:
Pseudorandom Functions / C.3.1:
Zero-Knowledge / C.4:
The Simulation Paradigm / C.4.1:
The Actual Definition / C.4.2:
A General Result and a Generic Application / C.4.3:
Definitional Variations and Related Notions / C.4.4:
Encryption Schemes / C.5:
Beyond Eavesdropping Security / C.5.1:
Signatures and Message Authentication / C.6:
General Cryptographic Protocols / C.6.1:
The Definitional Approach and Some Models / C.7.1:
Some Known Results / C.7.2:
Construction Paradigms and Two Simple Protocols / C.7.3:
Concluding Remarks / C.7.4:
Probabilistic Preliminaries and Advanced Topics in Randomization / Appendix D:
Probabilistic Preliminaries / D.1:
Notational Conventions / D.1.1:
Three Inequalities / D.1.2:
Hashing / D.2:
The Leftover Hash Lemma / D.2.1:
Sampling / D.3:
Formal Setting / D.3.1:
Known Results / D.3.2:
Hitters / D.3.3:
Randomnes Extractors / D.4:
Definitions and Various Perspectives / D.4.1:
Explicit Constructions / D.4.2:
Error-Correcting Codes / E.1:
Basic Notions / E.1.1:
A Few Popular Codes / E.1.2:
Two Additional Computational Problems / E.1.3:
A List-Decoding Bound / E.1.4:
Expander Graphs / E.2:
Definitions and Properties / E.2.1:
Some Omitted Proofs / E.2.2:
Proving That PH Reduces to #P / F.1:
Proving That IP(f) [characters not reproducible] AM(O(f)) [characters not reproducible] AM(f) / F.2:
Emulating General Interactive Proofs by AM-Games / F.2.1:
Linear Speedup for AM / F.2.2:
Some Computational Problems / Appendix G:
Graphs / G.1:
Boolean Formulae / G.2:
Finite Fields, Polynomials, and Vector Spaces / G.3:
The Determinant and the Permanent / G.4:
Primes and Composite Numbers / G.5:
Bibliography
Index
List of Figures
Preface
Organization and Chapter Summaries
4.

図書

図書
Noboru Ono
出版情報: New York : Wiley-VCH, c2001  xvi, 372 p. ; 25 cm
シリーズ名: Organic nitro chemistry series
所蔵情報: loading…
目次情報: 続きを見る
Series Foreword
Preface
Acknowledgments
Abbreviations
Introduction / 1.:
Preparation of Nitro Compounds / 2.:
Nitration of Hydrocarbons / 2.1:
Aromatic Compounds / 2.1.1:
Alkanes / 2.1.2:
Activated C-H Compounds / 2.1.3:
Alkenes / 2.1.4:
Synthesis of [alpha]-Nitro Ketones / 2.1.5:
Nitration of Alkyl Halides / 2.1.6:
Synthesis of Nitro Compounds by Oxidation / 2.2:
Oxidation of Amines / 2.2.1:
Oxidation of Oximes / 2.2.2:
The Nitro-Aldol (Henry) Reaction / 3.:
Preparation of [beta]-Nitro Alcohols / 3.1:
Derivatives from [beta]-Nitro Alcohols / 3.2:
Nitroalkenes / 3.2.1:
Nitroalkanes / 3.2.2:
[alpha]-Nitro Ketones / 3.2.3:
[beta]-Amino Alcohols / 3.2.4:
Nitro Sugars and Amino Sugars / 3.2.5:
Stereoselective Henry Reactions and Applications to Organic Synthesis / 3.3:
Michael Addition / 4.:
Addition to Nitroalkenes / 4.1:
Conjugate Addition of Heteroatom-Centered Nucleophiles / 4.1.1:
Conjugate Addition of Heteroatom Nucleophiles and Subsequent Nef Reaction / 4.1.2:
Conjugate Addition of Carbon-Centered Nucleophiles / 4.1.3:
Addition and Elimination Reaction of [beta]-Heterosubstituted Nitroalkenes / 4.2:
Michael Addition of Nitroalkanes / 4.3:
Intermolecular Addition / 4.3.1:
Intramolecular Addition / 4.3.2:
Asymmetric Michael Addition / 4.4:
Chiral Alkenes and Chiral Nitro Compounds / 4.4.1:
Chiral Catalysts / 4.4.2:
Alkylation, Acylation, and Halogenation of Nitro Compounds / 5.:
Alkylation of Nitro Compounds / 5.1:
Acylation of Nitroalkanes / 5.2:
Ring Cleavage of Cyclic [alpha]-Nitro Ketones (Retro-Acylation) / 5.3:
Alkylation of Nitro Compounds via Alkyl Radicals / 5.4:
Alkylation of Nitro Compounds Using Transition Metal Catalysis / 5.5:
Butadiene Telomerization / 5.5.1:
Pd-Catalyzed Allylic C-Alkylation of Nitro Compounds / 5.5.2:
Arylation of Nitro Compounds / 5.6:
Introduction of Heteroatoms to Nitroalkanes / 5.7:
Conversion of Nitro Compounds into Other Compounds / 6.:
Nef Reaction (Aldehydes, Ketones, and Carboxylic Acids) / 6.1:
Treatment With Acid (Classical Procedure) / 6.1.1:
Oxidative Method / 6.1.2:
Reductive Method / 6.1.3:
Direct Conversion of Nitroalkenes to Carbonyl Compounds / 6.1.4:
Nitrile Oxides and Nitriles / 6.2:
Reduction of Nitro Compounds into Amines / 6.3:
Ar-NH[subscript 2] From Ar-NO[subscript 2] / 6.3.1:
R-NH[subscript 2] From R-NO[subscript 2] / 6.3.2:
Oximes, Hydroxylamines, and Other Nitrogen Derivatives / 6.3.3:
Substitution and Elimination of NO[subscript 2] in R-NO[subscript 2] / 7.:
R-Nu from R-NO[subscript 2] / 7.1:
Radical Reactions (S[subscript RN]1) / 7.1.1:
Ionic Process / 7.1.2:
Intramolecular Nucleophilic Substitution Reaction / 7.1.3:
Allylic Rearrangement / 7.1.4:
R-H from R-NO[subscript 2] / 7.2:
Radical Denitration / 7.2.1:
Ionic Denitration / 7.2.2:
Alkenes from R-NO[subscript 2] / 7.3:
Radical Elimination / 7.3.1:
Ionic Elimination of Nitro Compounds / 7.3.2:
Cycloaddition Chemistry of Nitro Compounds / 8.:
Diels-Alder Reactions / 8.1:
Nitroalkenes Using Dienophiles / 8.1.1:
Asymmetric Diels-Alder Reaction / 8.1.2:
1,3-Dipolar Cycloaddition / 8.2:
Nitrones / 8.2.1:
Nitrile Oxides / 8.2.2:
Nitronates / 8.2.3:
Nitroalkenes as Heterodienes in Tandem [4+2]/[3+2] Cycloaddition / 8.3:
Nitroalkenes as Heterodienes / 8.3.1:
Tandem [4+2]/[3+2] Cycloaddition of Nitroalkenes / 8.3.2:
Nucleophilic Aromatic Displacement / 9.:
S[subscript N]Ar / 9.1:
Nucleophilic Aromatic Substitution of Hydrogen (NASH) / 9.2:
Carbon Nucleophiles / 9.2.1:
Nitrogen and Other Heteroatom Nucleophiles / 9.2.2:
Applications to Synthesis of Heterocyclic Compounds / 9.2.3:
Synthesis of Heterocyclic Compounds / 10.:
Pyrroles / 10.1:
Synthesis of Indoles / 10.2:
Synthesis of Other Nitrogen Heterocycles / 10.3:
Three-Membered Ring / 10.3.1:
Five- and Six-Membered Saturated Rings / 10.3.2:
Miscellaneous / 10.3.3:
Index
Series Foreword
Preface
Acknowledgments
5.

図書

図書
Nam-Trung Nguyen, Steven T. Wereley
出版情報: Boston : Artech House, c2002  xiii, 471 p. ; 24 cm
シリーズ名: MEMS--Microelectromechanical systems series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
Microfluidics--The Emerging Technology / 1.1:
What Is Microfluidics? / 1.1.1:
Commercial Aspects / 1.1.2:
Scientific Aspects / 1.1.3:
Milestones of Microfluidics / 1.2:
Device Development / 1.2.1:
Technology Development / 1.2.2:
Organization of the Book / 1.3:
References
Fluid Mechanics Theory / Chapter 2:
Intermolecular Forces / 2.1:
The Three States of Matter / 2.1.2:
Continuum Assumption / 2.1.3:
Continuum Fluid Mechanics at Small Scales / 2.2:
Gas Flows / 2.2.1:
Liquid Flows / 2.2.2:
Boundary Conditions / 2.2.3:
Parallel Flows / 2.2.4:
Low Reynolds Number Flows / 2.2.5:
Entrance Effects / 2.2.6:
Surface Tension / 2.2.7:
Molecular Approaches / 2.3:
MD / 2.3.1:
DSMC Technique / 2.3.2:
Electrokinetics / 2.4:
Electro-Osmosis / 2.4.1:
Electrophoresis / 2.4.2:
Dielectrophoresis / 2.4.3:
Conclusion / 2.5:
Problems
Fabrication Techniques for Microfluidics / Chapter 3:
Basic Microtechniques / 3.1:
Photolithography / 3.1.1:
Additive Techniques / 3.1.2:
Subtractive Techniques / 3.1.3:
Pattern Transfer Techniques / 3.1.4:
Silicon-Based Micromachining Techniques / 3.2:
Silicon Bulk Micromachining / 3.2.1:
Silicon Surface Micromachining / 3.2.2:
Polymer-Based Micromachining Techniques / 3.3:
Thick Resist Lithography / 3.3.1:
Polymeric Surface Micromachining / 3.3.2:
Soft Lithography / 3.3.3:
Microstereo Lithography / 3.3.4:
Micromolding / 3.3.5:
Other Micromachining Techniques / 3.4:
Assembly and Packaging of Microfluidic Devices / 3.4.1:
Wafer Level Assembly and Packaging / 3.5.1:
Device Level Packaging / 3.5.2:
Biocompatibility / 3.6:
Material Response / 3.6.1:
Tissue and Cellular Response / 3.6.2:
Biocompatibility Tests / 3.6.3:
Experimental Flow Characterization / Chapter 4:
Pointwise Methods / 4.1:
Full-Field Methods / 4.1.2:
Overview of Micro-PIV / 4.2:
Fundamental Physics Considerations of Micro-PIV / 4.2.1:
Special Processing Methods for Micro-PIV Recordings / 4.2.2:
Advanced Processing Methods Suitable for Both Micro/Macro-PIV Recordings / 4.2.3:
Micro-PIV Examples / 4.3:
Flow in a Microchannel / 4.3.1:
Flow in a Micronozzle / 4.3.2:
Flow Around a Blood Cell / 4.3.3:
Flow in Microfluidic Biochip / 4.3.4:
Conclusions / 4.3.5:
Extensions of the Micro-PIV technique / 4.4:
Microfluidic Nanoscope / 4.4.1:
Microparticle Image Thermometry / 4.4.2:
Infrared Micro-PIV / 4.4.3:
Particle Tracking Velocimetry / 4.4.4:
Microfluidics for External Flow Control / Chapter 5:
Velocity and Turbulence Measurement / 5.1:
Velocity Sensors / 5.1.1:
Shear Stress Sensors / 5.1.2:
Turbulence Control / 5.2:
Microflaps / 5.2.1:
Microballoon / 5.2.2:
Microsynthetic Jet / 5.2.3:
Microair Vehicles / 5.3:
Fixed-Wing MAV / 5.3.1:
Flapping-Wing MAV / 5.3.2:
Microrotorcraft / 5.3.3:
Microrockets / 5.3.4:
Microfluidics for Internal Flow Control: Microvalves / Chapter 6:
Design Considerations / 6.1:
Actuators / 6.1.1:
Valve Spring / 6.1.2:
Valve Seat / 6.1.3:
Pressure Compensation Design / 6.1.4:
Pneumatic Valves / 6.2:
Pneumatic Actuators / 6.2.1:
Design Examples / 6.2.2:
Thermopneumatic Valves / 6.3:
Thermopneumatic Actuators / 6.3.1:
Thermomechanical Valves / 6.3.2:
Solid-Expansion Valves / 6.4.1:
Bimetallic Valves / 6.4.2:
Shape-Memory Alloy Valves / 6.4.3:
Piezoelectric Valves / 6.5:
Piezoelectric Actuators / 6.5.1:
Electrostatic Valves / 6.5.2:
Electrostatic Actuators / 6.6.1:
Electromagnetic Valves / 6.6.2:
Electromagnetic Actuators / 6.7.1:
Electrochemical Valves / 6.7.2:
Capillary-Force Valves / 6.9:
Capillary-Force Actuators / 6.9.1:
Microfluidics for Internal Flow Control: Micropumps / 6.9.2:
Mechanical Pumps / 7.1:
Check-Valve Pumps / 7.1.1:
Peristaltic Pumps / 7.1.3:
Valveless Rectification Pumps / 7.1.4:
Rotary Pumps / 7.1.5:
Centrifugal Pumps / 7.1.6:
Ultrasonic Pumps / 7.1.7:
Nonmechanical Pumps / 7.2:
Electrical Pumps / 7.2.1:
Surface Tension Driven Pumps / 7.2.2:
Chemical Pumps / 7.2.3:
Magnetic Pumps / 7.2.4:
Scaling Law for Micropumps / 7.3:
Microfluidics for Internal Flow Control: Microflow Sensors / Chapter 8:
Nonthermal Flow Sensors / 8.1:
Differential Pressure Flow Sensors / 8.1.1:
Drag Force Flow Sensors / 8.1.2:
Lift Force Flow Sensors / 8.1.3:
Coriolis Flow Sensors / 8.1.4:
Electrohydrodynamic Flow Sensors / 8.1.5:
Thermal Flow Sensors / 8.2:
Thermoresistive Flow Sensors / 8.2.1:
Thermocapacitive Flow Sensors / 8.2.3:
Thermoelectric Flow Sensors / 8.2.4:
Thermoelectronic Flow Sensors / 8.2.5:
Pyroelectric Flow Sensors / 8.2.6:
Frequency Analog Sensors / 8.2.7:
Microfluidics for Life Sciences and Chemistry / Chapter 9:
Microfilters / 9.1:
Microneedles / 9.1.1:
Micromixers / 9.2.1:
Microreactors / 9.3.1:
Microdispensers / 9.4.1:
Microseparators / 9.5.1:
Gas Chromatography / 9.6.1:
Liquid Chromatography / 9.6.3:
List of Symbols / 9.6.4:
Resources for Microfluidics Research / Appendix B:
Abbreviations of Different Plastics / Appendix C:
Linear Elastic Deflection Models / Appendix D:
About the Authors
Index
Preface
Acknowledgments
Introduction / Chapter 1:
6.

図書

図書
Robert B. Grossman
出版情報: New York : Springer, c2003  xvi, 355 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Student
Preface to the Instructor
The Basics / 1:
Structure and Stability of Organic Compounds / 1.1:
Conventions of Drawing Structures; Grossman's Rule / 1.1.1:
Lewis Structures; Resonance Structures / 1.1.2:
Molecular Shape; Hybridization / 1.1.3:
Aromaticity / 1.1.4:
Bronsted Acidity and Basicity / 1.2:
pK[subscript a] Values / 1.2.1:
Tautomerism / 1.2.2:
Kinetics and Thermodynamics / 1.3:
Getting Started in Drawing a Mechanism / 1.4:
Classes of Overall Transformations / 1.5:
Classes of Mechanisms / 1.6:
Polar Mechanisms / 1.6.1:
Free-Radical Mechanisms / 1.6.2:
Pericyclic Mechanisms / 1.6.3:
Transition-Metal-Catalyzed and -Mediated Mechanisms / 1.6.4:
Summary / 1.7:
Problems
Polar Reactions under Basic Conditions / 2:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part I / 2.1:
Substitution by the S[subscript N]2 Mechanism / 2.1.1:
[beta]-Elimination by the E2 and Elcb Mechanisms / 2.1.2:
Predicting Substitution vs. Elimination / 2.1.3:
Addition of Nucleophiles to Electrophilic [pi] Bonds / 2.2:
Addition to Carbonyl Compounds / 2.2.1:
Conjugate Addition; The Michael Reaction / 2.2.2:
Substitution at C(sp[superscript 2])-X [sigma] Bonds / 2.3:
Substitution at Carbonyl C / 2.3.1:
Substitution at Alkenyl and Aryl C / 2.3.2:
Metal Insertion; Halogen-Metal Exchange / 2.3.3:
Substitution and Elimination at C(sp[superscript 3])-X [sigma] Bonds, Part II / 2.4:
Substitution by the S[subscript RN]1 Mechanism / 2.4.1:
Substitution by the Elimination-Addition Mechanism / 2.4.2:
Substitution by the One-Electron Transfer Mechanism / 2.4.3:
[alpha]-Elimination; Generation and Reactions of Carbenes / 2.4.4:
Base-Promoted Rearrangements / 2.5:
Migration from C to C / 2.5.1:
Migration from C to O or N / 2.5.2:
Migration from B to C or O / 2.5.3:
Two Multistep Reactions / 2.6:
The Swern Oxidation / 2.6.1:
The Mitsunobu Reaction / 2.6.2:
Polar Reactions Under Acidic Conditions / 2.7:
Carbocations / 3.1:
Carbocation Stability / 3.1.1:
Carbocation Generation; The Role of Protonation / 3.1.2:
Typical Reactions of Carbocations; Rearrangements / 3.1.3:
Substitution and [beta]-Elimination Reactions at C(sp[superscript 3])-X / 3.2:
Substitution by the S[subscript N]1 and S[subscript N]2 Mechanisms / 3.2.1:
[beta]-Elimination by the E1 Mechanism / 3.2.2:
Electrophilic Addition to Nucleophilic C=C [pi] Bonds / 3.2.3:
Substitution at Nucleophilic C=C [pi] Bonds / 3.4:
Electrophilic Aromatic Substitution / 3.4.1:
Aromatic Substitution of Anilines via Diazonium Salts / 3.4.2:
Electrophilic Aliphatic Substitution / 3.4.3:
Nucleophilic Addition to and Substitution at Electrophilic [pi] Bonds / 3.5:
Heteroatom Nucleophiles / 3.5.1:
Carbon Nucleophiles / 3.5.2:
Pericyclic Reactions / 3.6:
Introduction / 4.1:
Classes of Pericyclic Reactions / 4.1.1:
Polyene MOs / 4.1.2:
Electrocyclic Reactions / 4.2:
Typical Reactions / 4.2.1:
Stereospecificity / 4.2.2:
Stereoselectivity / 4.2.3:
Cycloadditions / 4.3:
Regioselectivity / 4.3.1:
Sigmatropic Rearrangements / 4.3.3:
Ene Reactions / 4.4.1:
Free-Radical Reactions / 4.6:
Free Radicals / 5.1:
Stability / 5.1.1:
Generation from Closed-Shell Species / 5.1.2:
Chain vs. Nonchain Mechanisms / 5.1.3:
Chain Free-Radical Reactions / 5.2:
Substitution Reactions / 5.2.1:
Addition and Fragmentation Reactions / 5.2.2:
Nonchain Free-Radical Reactions / 5.3:
Photochemical Reactions / 5.3.1:
Reductions and Oxidations with Metals / 5.3.2:
Cycloaromatizations / 5.3.3:
Miscellaneous Radical Reactions / 5.4:
1,2-Anionic Rearrangements; Lone-Pair Inversion / 5.4.1:
Triplet Carbenes and Nitrenes / 5.4.2:
Transition-Metal-Mediated and -Catalyzed Reactions / 5.5:
Introduction to the Chemistry of Transition Metals / 6.1:
Conventions of Drawing Structures / 6.1.1:
Counting Electrons / 6.1.2:
Stoichiometric vs. Catalytic Mechanisms / 6.1.3:
Addition Reactions / 6.2:
Late-Metal-Catalyzed Hydrogenation and Hydrometallation (Pd, Pt, Rh) / 6.2.1:
Hydroformylation (Co, Rh) / 6.2.2:
Hydrozirconation (Zr) / 6.2.3:
Alkene Polymerization (Ti, Zr, Sc, and others) / 6.2.4:
Cyclopropanation, Epoxidation, and Aziridination of Alkenes (Cu, Rh, Mn, Ti) / 6.2.5:
Dihydroxylation and Aminohydroxylation of Alkenes (Os) / 6.2.6:
Nucleophilic Addition to Alkenes and Alkynes (Hg, Pd) / 6.2.7:
Conjugate Addition Reactions (Cu) / 6.2.8:
Reductive Coupling Reactions (Ti, Zr) / 6.2.9:
Pauson-Khand Reaction (Co) / 6.2.10:
Dotz Reaction (Cr) / 6.2.11:
Metal-Catalyzed Cycloaddition and Cyclotrimerization (Co, Ni, Rh) / 6.2.12:
Hydrogenolysis (Pd) / 6.3:
Carbonylation of Alkyl Halides (Pd, Rh) / 6.3.2:
Heck Reaction (Pd) / 6.3.3:
Coupling Reactions Between Nucleophiles and C(sp[superscript 2])-X: Kumada, Stille, Suzuki, Negishi, Buchwald-Hartwig, Sonogashira, and Ullmann Reactions (Ni, Pd, Cu) / 6.3.4:
Allylic Substitution (Pd) / 6.3.5:
Pd-Catalyzed Nucleophilic Substitution of Alkenes; Wacker Oxidation / 6.3.6:
Tebbe Reaction (Ti) / 6.3.7:
Propargyl Substitution in Co-Alkyne Complexes / 6.3.8:
Rearrangement Reactions / 6.4:
Alkene Isomerization (Rh) / 6.4.1:
Olefin and Alkyne Metathesis (Ru, W, Mo, Ti) / 6.4.2:
Elimination Reactions / 6.5:
Oxidation of Alcohols (Cr, Ru) / 6.5.1:
Decarbonylation of Aldehydes (Rh) / 6.5.2:
Mixed-Mechanism Problems / 6.6:
A Final Word
Index
Preface to the Student
Preface to the Instructor
The Basics / 1:
7.

図書

図書
Iwao Teraoka
出版情報: New York : Wiley, c2002  xv, 338 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
Chain Architecture / 1.1.1:
Models of a Linear Polymer Chain / 1.1.2:
Real Chains and Ideal Chains / 1.1.3:
Ideal Chains / 1.2:
Random Walk in One Dimension / 1.2.1:
Random Walks in Two and Three Dimensions / 1.2.2:
Dimensions of Random-Walk Chains / 1.2.3:
Problems / 1.2.4:
Gaussian Chain / 1.3:
What is a Gaussian Chain? / 1.3.1:
Dimension of a Gaussian Chain / 1.3.2:
Entropy Elasticity / 1.3.3:
Real Chains / 1.3.4:
Excluded Volume / 1.4.1:
Dimension of a Real Chain / 1.4.2:
Self-Avoiding Walk / 1.4.3:
Semirigid Chains / 1.4.4:
Examples of Semirigid Chains / 1.5.1:
Wormlike Chain / 1.5.2:
Branched Chains / 1.5.3:
Architecture of Branched Chains / 1.6.1:
Dimension of Branched Chains / 1.6.2:
Molecular Weight Distribution / 1.6.3:
Average Molecular Weights / 1.7.1:
Typical Distributions / 1.7.2:
Concentration Regimes / 1.7.3:
Concentration Regimes for Linear Flexible Polymers / 1.8.1:
Concentration Regimes for Rodlike Molecules / 1.8.2:
Thermodynamics of Dilute Polymer Solutions / 1.8.3:
Polymer Solutions and Thermodynamics / 2.1:
Flory-Huggins Mean-Field Theory / 2.2:
Model / 2.2.1:
Free Energy, Chemical Potentials, and Osmotic Pressure / 2.2.2:
Dilute Solutions / 2.2.3:
Coexistence Curve and Stability / 2.2.4:
Polydisperse Polymer / 2.2.5:
Phase Diagram and Theta Solutions / 2.2.6:
Phase Diagram / 2.3.1:
Theta Solutions / 2.3.2:
Coil-Globule Transition / 2.3.3:
Solubility Parameter / 2.3.4:
Static Light Scattering / 2.3.5:
Sample Geometry in Light-Scattering Measurements / 2.4.1:
Scattering by a Small Particle / 2.4.2:
Scattering by a Polymer Chain / 2.4.3:
Scattering by Many Polymer Chains / 2.4.4:
Correlation Function and Structure Factor / 2.4.5:
Structure Factor of a Polymer Chain / 2.4.6:
Light Scattering of a Polymer Solution / 2.4.7:
Other Scattering Techniques / 2.4.8:
Size Exclusion Chromatography and Confinement / 2.4.9:
Separation System / 2.5.1:
Plate Theory / 2.5.2:
Partitioning of Polymer with a Pore / 2.5.3:
Calibration of SEC / 2.5.4:
SEC With an On-Line Light-Scattering Detector / 2.5.5:
Appendixes / 2.5.6:
Review of Thermodynamics for Colligative Properties in Nonideal Solutions / 2.A:
Osmotic Pressure / 2.A.1:
Vapor Pressure Osmometry / 2.A.2:
Another Approach to Thermodynamics of Polymer Solutions / 2.B:
Correlation Function of a Gaussian Chain / 2.C:
Dynamics of Dilute Polymer Solutions / 3:
Dynamics of Polymer Solutions / 3.1:
Dynamic Light Scattering and Diffusion of Polymers / 3.2:
Measurement System and Autocorrelation Function / 3.2.1:
Autocorrelation Function / 3.2.2:
Dynamic Structure Factor of Suspended Particles / 3.2.3:
Diffusion of Particles / 3.2.4:
Diffusion and DLS / 3.2.5:
Dynamic Structure Factor of a Polymer Solution / 3.2.6:
Hydrodynamic Radius / 3.2.7:
Particle Sizing / 3.2.8:
Diffusion From Equation of Motion / 3.2.9:
Diffusion as Kinetics / 3.2.10:
Concentration Effect on Diffusion / 3.2.11:
Diffusion in a Nonuniform System / 3.2.12:
Viscosity / 3.2.13:
Viscosity of Solutions / 3.3.1:
Measurement of Viscosity / 3.3.2:
Intrinsic Viscosity / 3.3.3:
Flow Field / 3.3.4:
Normal Modes / 3.3.5:
Rouse Model / 3.4.1:
Normal Coordinates / 3.4.2:
Equation of Motion for the Normal Coordinates in the Rouse Model / 3.4.3:
Results of the Normal-Coordinates / 3.4.4:
Results for the Rouse Model / 3.4.5:
Zimm Model / 3.4.6:
Dynamic Structure Factor / 3.4.7:
Motion of Monomers / 3.4.9:
Dynamics of Rodlike Molecules / 3.4.10:
Diffusion Coefficients / 3.5.1:
Rotational Diffusion / 3.5.2:
Dynamics of Wormlike Chains / 3.5.3:
Appendices / 3.5.6:
Evaluation of [left angle bracket]q[subscript i superscript 2 right angle bracket subscript eq] / 3.A:
Evaluation of [left angle bracket]exp[ik [middle dot] (Aq - Bp) right angle bracket] / 3.B:
Initial Slope of S[subscript 1](k,t) / 3.C:
Thermodynamics and Dynamics of Semidilute Solutions / 4:
Semidilute Polymer Solutions / 4.1:
Thermodynamics of Semidilute Polymer Solutions / 4.2:
Blob Model / 4.2.1:
Scaling Theory and Semidilute Solutions / 4.2.2:
Partitioning with a Pore / 4.2.3:
Dynamics of Semidilute Solutions / 4.2.4:
Cooperative Diffusion / 4.3.1:
Tube Model and Reptation Theory / 4.3.2:
References / 4.3.3:
Further Readings
Delta Function / A1:
Fourier Transform / A2:
Integrals / A3:
Series / A4:
Index
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
8.

図書

図書
K. Feyrer
出版情報: Berlin : Springer, c2007  IX, 322 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
Wire Manufacturing / 1.1.2:
Metallic Coating / 1.1.3:
Corrosion Resistant Wires / 1.1.4:
Wire Tensile Test / 1.1.5:
Wire Endurance and Fatigue Strength / 1.1.6:
Strands / 1.2:
Round Strands / 1.2.1:
Shaped Strands / 1.2.2:
Compacted Strands / 1.2.3:
Rope Cores / 1.3:
Lubrication / 1.4:
Lubricant / 1.4.1:
Lubricant Consumption / 1.4.2:
Rope Endurance / 1.4.3:
Wire Ropes / 1.5:
The Classification of Ropes According to Usage / 1.5.1:
Wire Rope Constructions / 1.5.2:
Designation of Wire Ropes / 1.5.3:
Symbols and Definitions / 1.5.4:
The Geometry of Wire Ropes / 1.6:
Round Strand with Round Wires / 1.6.1:
Round Strand with Any Kind of Profiled Wires / 1.6.2:
Fibre Core / 1.6.3:
Steel Core / 1.6.4:
References
Wire Ropes under Tensile Load / 2:
Stresses in Straight Wire Ropes / 2.1:
Basic Relation for the Wire Tensile Force in a Strand / 2.1.1:
Wire Tensile Stress in the Strand or Wire Rope / 2.1.2:
Additional Wire Stresses in the Straight Spiral Rope / 2.1.3:
Additional Wire Stresses in Straight Stranded Ropes / 2.1.4:
Wire Rope Elasticity Module / 2.2:
Definition / 2.2.1:
Rope Elasticity Module of Strands and Spiral Ropes, Calculation / 2.2.2:
Rope Elasticity Module of Stranded Wire Ropes / 2.2.3:
Waves and Vibrations / 2.2.4:
Reduction of the Rope Diameter due to Rope Tensile Force / 2.3:
Torque and Torsional Stiffness / 2.4:
Rope Torque from Geometric Data / 2.4.1:
Torque of Twisted Round Strand Ropes / 2.4.2:
Rotating of the Bottom Sheave / 2.4.3:
Rope Twist Caused by the Height-Stress / 2.4.4:
Change of the Rope Length by Twisting the Rope / 2.4.5:
Wire Stresses Caused by Twisting the Rope / 2.4.6:
Rope Endurance Under Fluctuating Twist / 2.4.7:
Wire Rope Breaking Force / 2.5:
Wire Ropes Under Fluctuating Tension / 2.6:
Conditions of Tension-Tension Tests / 2.6.1:
Evaluating Methods / 2.6.2:
Results of Tension Fatigue Test-Series / 2.6.3:
Further Results of Tension Fatigue Tests / 2.6.4:
Calculation of the Number of Load Cycles / 2.6.5:
Dimensioning Stay Wire Ropes / 2.7:
Extreme Forces / 2.7.1:
Fluctuating Forces / 2.7.2:
Discard Criteria / 2.7.3:
Wire Ropes Under Bending and Tensile Stresses / 3:
Stresses in Running Wire Ropes / 3.1:
Bending and Torsion Stress / 3.1.1:
Secondary Tensile Stress / 3.1.2:
Stresses from the Rope Ovalisation / 3.1.3:
Secondary Bending Stress / 3.1.4:
Sum of the Stresses / 3.1.5:
Force Between Rope and Sheave (Line Pressure) / 3.1.6:
Pressure Between Rope and Sheave / 3.1.7:
Force on the Outer Arcs of the Rope Wires / 3.1.8:
Rope Bending Tests / 3.2:
Bending-Fatigue-Machines, Test Procedures / 3.2.1:
Number of Bending Cycles / 3.2.2:
Further Influences on the Number of Bending Cycles / 3.2.3:
Reverse Bending / 3.2.4:
Fluctuating Tension and Bending / 3.2.5:
Palmgren-Miner Rule / 3.2.6:
Limiting Factors / 3.2.7:
Ropes during Bendings / 3.2.8:
Number of Wire Breaks / 3.2.9:
Rope Drive Requirements / 3.3:
General Requirements / 3.3.1:
Lifting Installations for Passengers / 3.3.2:
Cranes and Lifting Appliances / 3.3.3:
Calculation of Rope Drives / 3.4:
Analysis of Rope Drives / 3.4.1:
Tensile Rope Force / 3.4.2:
Limits / 3.4.3:
Rope Drive Calculations, Examples / 3.4.6:
Rope Efficiency / 3.5:
Single Sheave / 3.5.1:
Rope Drive / 3.5.2:
Lowering an Empty Hook Block / 3.5.3:
Index
Wire Ropes, Elements and Definitions / 1:
Steel Wire / 1.1:
Non-Alloy Steel / 1.1.1:
9.

図書

図書
Kenneth V. Price, Rainer M. Storn, Jouni A. Lampinen
出版情報: Berlin : Springer, c2005  xix, 538 p. ; 24 cm.
シリーズ名: Natural computing series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
Introduction to Parameter Optimization / 1.1:
Overview / 1.1.1:
Single-Point, Derivative-Based Optimization / 1.1.2:
One-Point, Derivative-Free Optimization and the Step Size Problem / 1.1.3:
Local Versus Global Optimization / 1.2:
Simulated Annealing / 1.2.1:
Multi-Point, Derivative-Based Methods / 1.2.2:
Multi-Point, Derivative-Free Methods / 1.2.3:
Differential Evolution - A First Impression / 1.2.4:
References
The Differential Evolution Algorithm / 2:
Population Structure / 2.1:
Initialization / 2.1.2:
Mutation / 2.1.3:
Crossover / 2.1.4:
Selection / 2.1.5:
DE at a Glance / 2.1.6:
Visualizing DE / 2.1.7:
Notation / 2.1.8:
Parameter Representation / 2.2:
Bit Strings / 2.2.1:
Floating-Point / 2.2.2:
Floating-Point Constraints / 2.2.3:
Initial Bounds / 2.3:
Initial Distributions / 2.3.2:
Base Vector Selection / 2.4:
Choosing the Base Vector Index, r0 / 2.4.1:
One-to-One Base Vector Selection / 2.4.2:
A Comparison of Random Base Index Selection Methods / 2.4.3:
Degenerate Vector Combinations / 2.4.4:
Implementing Mutually Exclusive Indices / 2.4.5:
Gauging the Effects of Degenerate Combinations: The Sphere / 2.4.6:
Biased Base Vector Selection Schemes / 2.4.7:
Differential Mutation / 2.5:
The Mutation Scale Factor: F / 2.5.1:
Randomizing the Scale Factor / 2.5.2:
Recombination / 2.6:
The Role of Cr in Optimization / 2.6.1:
Arithmetic Recombination / 2.6.3:
Phase Portraits / 2.6.4:
The Either/Or Algorithm / 2.6.5:
Survival Criteria / 2.7:
Tournament Selection / 2.7.2:
One-to-One Survivor Selection / 2.7.3:
Local Versus Global Selection / 2.7.4:
Permutation Selection Invariance / 2.7.5:
Crossover-Dependent Selection Pressure / 2.7.6:
Parallel Performance / 2.7.7:
Extensions / 2.7.8:
Termination Criteria / 2.8:
Objective Met / 2.8.1:
Limit the Number of Generations / 2.8.2:
Population Statistics / 2.8.3:
Limited Time / 2.8.4:
Human Monitoring / 2.8.5:
Application Specific / 2.8.6:
Benchmarking Differential Evolution / 3:
About Testing / 3.1:
Performance Measures / 3.2:
DE Versus DE / 3.3:
The Algorithms / 3.3.1:
The Test Bed / 3.3.2:
Summary / 3.3.3:
DE Versus Other Optimizers / 3.4:
Comparative Performance: Thirty-Dimensional Functions / 3.4.1:
Comparative Studies: Unconstrained Optimization / 3.4.2:
Performance Comparisons from Other Problem Domains / 3.4.3:
Application-Based Performance Comparisons / 3.4.4:
Problem Domains / 3.5:
Function and Parameter Quantization / 4.1:
Uniform Quantization / 4.2.1:
Non-Uniform Quantization / 4.2.2:
Objective Function Quantization / 4.2.3:
Parameter Quantization / 4.2.4:
Mixed Variables / 4.2.5:
Optimization with Constraints / 4.3:
Boundary Constraints / 4.3.1:
Inequality Constraints / 4.3.2:
Equality Constraints / 4.3.3:
Combinatorial Problems / 4.4:
The Traveling Salesman Problem / 4.4.1:
The Permutation Matrix Approach / 4.4.2:
Relative Position Indexing / 4.4.3:
Onwubolu's Approach / 4.4.4:
Adjacency Matrix Approach / 4.4.5:
Design Centering / 4.4.6:
Divergence, Self-Steering and Pooling / 4.5.1:
Computing a Design Center / 4.5.2:
Multi-Objective Optimization / 4.6:
Weighted Sum of Objective Functions / 4.6.1:
Pareto Optimality / 4.6.2:
The Pareto-Front: Two Examples / 4.6.3:
Adapting DE for Multi-Objective Optimization / 4.6.4:
Dynamic Objective Functions / 4.7:
Stationary Optima / 4.7.1:
Non-Stationary Optima / 4.7.2:
Architectural Aspects and Computing Environments / 5:
DE on Parallel Processors / 5.1:
Background / 5.1.1:
Related Work / 5.1.2:
Drawbacks of the Standard Model / 5.1.3:
Modifying the Standard Model / 5.1.4:
The Master Process / 5.1.5:
DE on Limited Resource Devices / 5.2:
Random Numbers / 5.2.1:
Permutation Generators / 5.2.2:
Efficient Sorting / 5.2.3:
Memory-Saving DE Variants / 5.2.4:
Computer Code / 6:
DeMat - Differential Evolution for MATLAB / 6.1:
General Structure of DeMat / 6.1.1:
Naming and Coding Conventions / 6.1.2:
Data Flow Diagram / 6.1.3:
How to Use the Graphics / 6.1.4:
DeWin - DE for MS Windows: An Application in C / 6.2:
General Structure of DeWin / 6.2.1:
How To Use the Graphics / 6.2.2:
Functions of graphics.h / 6.2.5:
Software on the Accompanying CD / 6.3:
Applications / 7:
Genetic Algorithms and Related Techniques for Optimizing Si-H Clusters: A Merit Analysis for Differential Evolution / 7.1:
Introduction / 7.1.1:
The System Model / 7.1.2:
Computational Details / 7.1.3:
Results and Discussion / 7.1.4:
Concluding Remarks / 7.1.5:
Non-Imaging Optical Design Using Differential Evolution / 7.2:
Objective Function / 7.2.1:
A Reverse Engineering Approach to Testing / 7.2.3:
A More Difficult Problem: An Extended Source / 7.2.4:
Conclusion / 7.2.5:
Optimization of an Industrial Compressor Supply System / 7.3:
Background Information on the Test Problem / 7.3.1:
System Optimization / 7.3.3:
Demand Profiles / 7.3.4:
Modified Differential Evolution; Extending the Generality of DE / 7.3.5:
Component Selection from the Database / 7.3.6:
Crossover Approaches / 7.3.7:
Testing Procedures / 7.3.8:
Obtaining 100% Certainty of the Results / 7.3.9:
Results / 7.3.10:
Minimal Representation Multi-Sensor Fusion Using Differential Evolution / 7.3.11:
Minimal Representation Multi-Sensor Fusion / 7.4.1:
Differential Evolution for Multi-Sensor Fusion / 7.4.3:
Experimental Results / 7.4.4:
Comparison with a Binary Genetic Algorithm / 7.4.5:
Determination of the Earthquake Hypocenter: A Challenge for the Differential Evolution Algorithm / 7.4.6:
Brief Outline of Direct Problem Solution / 7.5.1:
Synthetic Location Test / 7.5.3:
Convergence Properties / 7.5.4:
Conclusions / 7.5.5:
Parallel Differential Evolution: Application to 3-D Medical Image Registration / 7.6:
Medical Image Registration Using Similarity Measures / 7.6.1:
Optimization by Differential Evolution / 7.6.3:
Parallelization of Differential Evolution / 7.6.4:
Acknowledgments / 7.6.5:
Design of Efficient Erasure Codes with Differential Evolution / 7.7:
Codes from Bipartite Graphs / 7.7.1:
Code Design / 7.7.3:
Differential Evolution / 7.7.4:
FIWIZ - A Versatile Program for the Design of Digital Filters Using Differential Evolution / 7.7.5:
Unconventional Design Tasks / 7.8.1:
Approach / 7.8.3:
Examples / 7.8.4:
Optimization of Radial Active Magnetic Bearings by Using Differential Evolution and the Finite Element Method / 7.8.5:
Radial Active Magnetic Bearings / 7.9.1:
Magnetic Field Distribution and Force Computed by the Two-Dimensional FEM / 7.9.3:
RAMB Design Optimized by DE and the FEM / 7.9.4:
Application of Differential Evolution to the Analysis of X-Ray Reflectivity Data / 7.9.5:
The Data-Fitting Procedure / 7.10.1:
The Model and Simulation / 7.10.3:
Inverse Fractal Problem / 7.10.4:
General Introduction / 7.11.1:
Active Compensation in RF-Driven Plasmas by Means of Differential Evolution / 7.11.2:
RF-Driven Plasmas / 7.12.1:
Langmuir Probes / 7.12.3:
Active Compensation in RF-Driven Plasmas / 7.12.4:
Automated Control System Structure and Fitness Function / 7.12.5:
Experimental Setup / 7.12.6:
Parameters and Experimental Design / 7.12.7:
Appendix / 7.12.8:
Unconstrained Uni-Modal Test Functions / A.1:
Sphere / A.1.1:
Hyper-Ellipsoid / A.1.2:
Generalized Rosenbrock / A.1.3:
Schwefel's Ridge / A.1.4:
Neumaier #3 / A.1.5:
Unconstrained Multi-Modal Test Functions / A.2:
Ackley / A.2.1:
Griewangk / A.2.2:
Rastrigin / A.2.3:
Salomon / A.2.4:
Whitley / A.2.5:
Storn's Chebyshev / A.2.6:
Lennard-Jones / A.2.7:
Hilbert / A.2.8:
Modified Langerman / A.2.9:
Shekel's Foxholes / A.2.10:
Odd Square / A.2.11:
Katsuura / A.2.12:
Bound-Constrained Test Functions / A.3:
Schwefel / A.3.1:
Epistatic Michalewicz / A.3.2:
Rana / A.3.3:
Index
Preface
Table of Contents
The Motivation for Differential Evolution / 1:
10.

図書

図書
Saeid Sanei and Jonathon Chambers
出版情報: Chichester : John Wiley & Sons, c2007  xxii, 289 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Abbreviations
List of Symbols
Introduction to EEG / 1:
History / 1.1:
Neural Activities / 1.2:
Action Potentials / 1.3:
EEG Generation / 1.4:
Brain Rhythms / 1.5:
EEG Recording and Measurement / 1.6:
Conventional Electrode Positioning / 1.6.1:
Conditioning the Signals / 1.6.2:
Abnormal EEG Patterns / 1.7:
Ageing / 1.8:
Mental Disorders / 1.9:
Dementia / 1.9.1:
Epileptic Seizure and Nonepileptic Attacks / 1.9.2:
Psychiatric Disorders / 1.9.3:
External Effects / 1.9.4:
Summary and Conclusions / 1.10:
References
Fundamentals of EEG Signal Processing / 2:
EEG Signal Modelling / 2.1:
Linear Models / 2.1.1:
Nonlinear Modelling / 2.1.2:
Generating EEG Signals Based on Modelling the Neuronal Activities / 2.1.3:
Nonlinearity of the Medium / 2.2:
Nonstationarity / 2.3:
Signal Segmentation / 2.4:
Signal Transforms and Joint Time-Frequency Analysis / 2.5:
Wavelet Transform / 2.5.1:
Ambiguity Function and the Wigner-Ville Distribution / 2.5.2:
Coherency, Multivariate Autoregressive (MVAR) Modelling, and Directed Transfer Function (DTF) / 2.6:
Chaos and Dynamical Analysis / 2.7:
Entropy / 2.7.1:
Kolmogorov Entropy / 2.7.2:
Lyapunov Exponents / 2.7.3:
Plotting the Attractor Dimensions from the Time Series / 2.7.4:
Estimation of Lyapunov Exponents from the Time Series / 2.7.5:
Approximate Entropy / 2.7.6:
Using the Prediction Order / 2.7.7:
Filtering and Denoising / 2.8:
Principal Component Analysis / 2.9:
Singular-Value Decomposition / 2.9.1:
Independent Component Analysis / 2.10:
Instantaneous BSS / 2.10.1:
Convolutive BSS / 2.10.2:
Sparse Component Analysis / 2.10.3:
Nonlinear BSS / 2.10.4:
Constrained BSS / 2.10.5:
Application of Constrained BSS: Example / 2.11:
Signal Parameter Estimation / 2.12:
Classification Algorithms / 2.13:
Support Vector Machines / 2.13.1:
The k-Means Algorithm / 2.13.2:
Matching Pursuits / 2.14:
Event-Related Potentials / 2.15:
Detection, Separation, Localization, and Classification of P300 Signals / 3.1:
Using ICA / 3.1.1:
Estimating Single Brain Potential Components by Modelling ERP Waveforms / 3.1.2:
Source Tracking / 3.1.3:
Localization of the ERP / 3.1.4:
Time-Frequency Domain Analysis / 3.1.5:
Adaptive Filtering Approach / 3.1.6:
Prony's Approach for Detection of P300 Signals / 3.1.7:
Adaptive Time-Frequency Methods / 3.1.8:
Brain Activity Assessment Using ERP / 3.2:
Application of P300 to BCI / 3.3:
Seizure Signal Analysis / 3.4:
Seizure Detection / 4.1:
Adult Seizure Detection / 4.1.1:
Detection of Neonate Seizure / 4.1.2:
Chaotic Behaviour of EEG Sources / 4.2:
Predictability of Seizure from the EEGs / 4.3:
Fusion of EEG-fMRI Data for Seizure Prediction / 4.4:
EEG Source Localization / 4.5:
Introduction / 5.1:
General Approaches to Source Localization / 5.1.1:
Dipole Assumption / 5.1.2:
Overview of the Traditional Approaches / 5.2:
ICA Method / 5.2.1:
MUSIC Algorithm / 5.2.2:
LORETA Algorithm / 5.2.3:
FOCUSS Algorithm / 5.2.4:
Standardized LORETA / 5.2.5:
Other Weighted Minimum Norm Solutions / 5.2.6:
Evaluation Indices / 5.2.7:
Joint ICA-LORETA Approach / 5.2.8:
Partially Constrained BSS Method / 5.2.9:
Determination of the Number of Sources / 5.3:
Sleep EEG / 5.4:
Stages of Sleep / 6.1:
NREM Sleep / 6.1.1:
REM Sleep / 6.1.2:
The Influence of Circadian Rhythms / 6.2:
Sleep Deprivation / 6.3:
Preface
List of Abbreviations
List of Symbols
11.

図書

図書
Kenneth A. Small and Erik T. Verhoef
出版情報: London : Routledge, 2007  xvi, 276 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of tables
List of figures
Acknowledgments
Selected symbols and abbreviations
Introduction / 1:
Travel demand / 2:
Aggregate tabulations and models / 2.1:
Aggregate demand models / 2.1.1:
Cross-sectional studies of metropolitan areas / 2.1.2:
Cross-sectional studies within a metropolitan area / 2.1.3:
Studies using time-series data / 2.1.4:
Summary of key results of aggregate studies / 2.1.5:
Transportation and land use / 2.1.6:
Disaggregate models: methods / 2.2:
Basic discrete-choice models / 2.2.1:
Estimation / 2.2.2:
Interpreting coefficient estimates / 2.2.3:
Data / 2.2.4:
Randomness, scale of utility, and measures of benefit / 2.2.5:
Aggregation and forecasting / 2.2.6:
Specification / 2.2.7:
Ordered and rank-ordered models / 2.2.8:
Disaggregate models: examples / 2.3:
Mode choice / 2.3.1:
Trip-scheduling choice / 2.3.2:
Choice of free or express lanes / 2.3.3:
Advanced discrete-choice modeling / 2.4:
Generalized extreme value models / 2.4.1:
Combined discrete and continuous choice / 2.4.2:
Disaggregate panel data / 2.4.3:
Random parameters and mixed logit / 2.4.4:
Endogenous prices / 2.4.5:
Activity patterns and trip chaining / 2.5:
Value of time and reliability / 2.6:
Value of time: basic theory / 2.6.1:
Empirical specifications / 2.6.2:
Extensions / 2.6.3:
Value of reliability: theory / 2.6.4:
Empirical results / 2.6.5:
Conclusions / 2.7:
Costs / 3:
The nature of cost functions / 3.1:
Cost functions for public transit / 3.2:
Accounting cost studies / 3.2.1:
Engineering cost studies / 3.2.2:
Statistical cost studies / 3.2.3:
Cost functions including user inputs / 3.2.4:
Highway travel: congestion technology / 3.3:
Fundamentals of congestion / 3.3.1:
Empirical speed-flow relationships / 3.3.2:
Dynamic congestion models / 3.3.3:
Congestion modeling: a conclusion / 3.3.4:
Highway travel: short-run cost functions and equilibrium / 3.4:
Stationary-state congestion on a homogeneous road / 3.4.1:
Time-averaged models / 3.4.2:
Dynamic models with endogenous scheduling / 3.4.3:
Network equilibrium / 3.4.4:
Parking search / 3.4.5:
Empirical evidence on short-run variable costs / 3.4.6:
Highway travel: long-run cost functions / 3.5:
Analytic long-run cost functions / 3.5.1:
The role of information technology / 3.5.2:
Empirical evidence on capital costs / 3.5.3:
Is highway travel subsidized? / 3.5.4:
Intermodal cost comparisons / 3.6:
Pricing / 3.7:
First-best congestion pricing of highways / 4.1:
Static congestion / 4.1.1:
Dynamic congestion / 4.1.2:
Second-best pricing / 4.2:
Network aspects / 4.2.1:
Time-of-day aspects / 4.2.2:
User heterogeneity / 4.2.3:
Stochastic congestion and information / 4.2.4:
Interactions with other distorted markets / 4.2.5:
Second-best pricing: a conclusion / 4.2.6:
Congestion pricing in practice / 4.3:
Singapore / 4.3.1:
Norwegian toll rings / 4.3.2:
Value pricing in the US / 4.3.3:
London congestion charging / 4.3.4:
Other applications / 4.3.5:
Technology of road pricing / 4.3.6:
Pricing of parking / 4.4:
Pricing of public transit / 4.5:
Fare level / 4.5.1:
Fare structure / 4.5.2:
Incentive effects of subsidies / 4.5.3:
Political considerations / 4.5.4:
Investment / 4.6:
Capacity choice for highways / 5.1:
Basic results: capacity choice with first-best pricing and static congestion / 5.1.1:
Self-financing in more complex settings / 5.1.2:
Second-best highway capacity / 5.1.3:
Naive investment rules / 5.1.4:
Cost-benefit analysis / 5.2:
Willingness to pay / 5.2.1:
Demand and cost forecasts / 5.2.2:
Discounting future costs and benefits / 5.2.3:
Shifting of costs and benefits / 5.2.4:
External benefits and network effects / 5.2.5:
Conclusion: the use and misuse of cost-benefit analysis / 5.2.6:
Industrial organization of transportation providers / 5.3:
Private highways / 6.1:
Single road with static congestion / 6.1.1:
Single road with dynamic congestion / 6.1.2:
Heterogeneous users / 6.1.3:
Private toll lanes: the two-route problem revisited / 6.1.4:
Competition in networks / 6.1.5:
Regulation and franchising of private roads / 6.2:
Privately provided transit services / 6.3:
Forms of privatization / 6.3.1:
Market structure and competitive practices / 6.3.2:
Efficiency of public and private providers / 6.3.3:
Experience with privatization and deregulation / 6.3.4:
Paratransit / 6.3.5:
Conventional taxi service / 6.3.6:
Conclusion / 6.4:
Emerging themes / 7.1:
Implications for transportation research / 7.2:
Notes
References
Index
List of tables
List of figures
Acknowledgments
12.

図書

図書
by Robert J. Hilderman, Howard J. Hamilton
出版情報: Boston, MA : Kluwer Academic Publishers, c2001  xvii, 162 p. ; 25 cm
シリーズ名: The Kluwer international series in engineering and computer science ; SECS 638
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Acknowledgments
Introduction / 1.:
KDD in a Nutshell / 1.1:
The Mining Step / 1.1.1:
The Interpretation and Evaluation Step / 1.1.2:
Objective of the Book / 1.2:
Background and Related Work / 2.:
Data Mining Techniques / 2.1:
Classification / 2.1.1:
Association / 2.1.2:
Clustering / 2.1.3:
Correlation / 2.1.4:
Other Techniques / 2.1.5:
Interestingness Measures / 2.2:
Rule Interest Function / 2.2.1:
J-Measure / 2.2.2:
Itemset Measures / 2.2.3:
Rule Templates / 2.2.4:
Projected Savings / 2.2.5:
I-Measures / 2.2.6:
Silbershatz and Tuzhilin's Interestingness / 2.2.7:
Kamber and Shinghal's Interestingness / 2.2.8:
Credibility / 2.2.9:
General Impressions / 2.2.10:
Distance Metric / 2.2.11:
Surprisingness / 2.2.12:
Gray and Orlowska's Interestingness / 2.2.13:
Dong and Li's Interestingness / 2.2.14:
Reliable Exceptions / 2.2.15:
Peculiarity / 2.2.16:
A Data Mining Technique / 3.:
Definitions / 3.1:
The Serial Algorithm / 3.2:
General Overview / 3.2.1:
Detailed Walkthrough / 3.2.2:
The Parallel Algorithm / 3.3:
Complexity Analysis / 3.3.1:
Attribute-Oriented Generalization / 3.4.1:
The All_Gen Algorithm / 3.4.2:
A Comparison with Commercial OLAP Systems / 3.5:
Heuristic Measures of Interestingness / 4.:
Diversity / 4.1:
Notation / 4.2:
The Sixteen Diversity Measures / 4.3:
The I[subscript Variance] Measure / 4.3.1:
The I[subscript Simpson] Measure / 4.3.2:
The I[subscript Shannon] Measure / 4.3.3:
The I[subscript Total] Measure / 4.3.4:
The I[subscript Max] Measure / 4.3.5:
The I[subscript McIntosh] Measure / 4.3.6:
The I[subscript Lorenz] Measure / 4.3.7:
The I[subscript Gini] Measure / 4.3.8:
The I[subscript Berger] Measure / 4.3.9:
The I[subscript Schutz] Measure / 4.3.10:
The I[subscript Bray] Measure / 4.3.11:
The I[subscript Whittaker] Measure / 4.3.12:
The I[subscript Kullback] Measure / 4.3.13:
The I[subscript MacArthur] Measure / 4.3.14:
The I[subscript Theil] Measure / 4.3.15:
The I[subscript Atkinson] Measure / 4.3.16:
An Interestingness Framework / 5.:
Interestingness Principles / 5.1:
Summary / 5.2:
Theorems and Proofs / 5.3:
Minimum Value Principle / 5.3.1:
Maximum Value Principle / 5.3.2:
Skewness Principle / 5.3.3:
Permutation Invariance Principle / 5.3.4:
Transfer Principle / 5.3.5:
Experimental Analyses / 6.:
Evaluation of the All_Gen Algorithm / 6.1:
Serial vs Parallel Performance / 6.1.1:
Speedup and Efficiency Improvements / 6.1.2:
Evaluation of the Sixteen Diversity Measures / 6.2:
Comparison of Assigned Ranks / 6.2.1:
Analysis of Ranking Similarities / 6.2.2:
Analysis of Summary Complexity / 6.2.3:
Distribution of Index Values / 6.2.4:
Conclusion / 7.:
Areas for Future Research / 7.1:
Appendices
Ranking Similarities
Summary Complexity
Index
List of Figures
List of Tables
Preface
13.

図書

図書
V. L. Cherginets
出版情報: Amsterdam ; Tokyo : Elsevier, 2005  xix, 382 p. ; 25 cm
シリーズ名: Comprehensive chemical kinetics ; v. 41
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
Definitions of acids and bases / Part 1:
Definitions of particles possessing acid or base properties / 1.1.1:
Definitions of solvents system / 1.1.2:
Hard and soft acids and bases (Pearson's concept) / 1.1.3:
Generalized definition of solvent system. Solvents of kinds I and II / 1.1.4:
Studies of homogeneous acid-base reactions in ionic melts / Part 2:
Features of high-temperature ionic solvents as media for Lux acid-base interactions / 1.2.1:
Methods of investigations / 1.2.2:
Ionic solvents based on alkali metal nitrates / 1.2.3:
Molten alkali metal sulfates / 1.2.4:
Silicate melts / 1.2.5:
KCl-NaCl equimolar mixture / 1.2.6:
Oxocompounds of chromium(VI) / 1.2.6.1:
Oxoacids of molybdenum(VI) / 1.2.6.2:
Oxocompounds of tungsten(VI) / 1.2.6.3:
Oxoacidic properties of phosphates / 1.2.6.4:
Oxoacids of vanadium(V) / 1.2.6.5:
Oxoacids of boron(III) / 1.2.6.6:
Acidic properties of Ge(IV) and Nb(V) oxocompounds / 1.2.6.7:
Molten KCl-LiCl (0.41:0.59) EUTECTIC / 1.2.7:
Molten NaI / 1.2.8:
Other alkaline-metal halides / 1.2.9:
Conclusion / 1.2.10:
Acid-base ranges in ionic melts. Estimation of relative acidic properties of ionic melts / Part 3:
The oxobasicity index as a measure of relative oxoacidic properties of high-temperature ionic solvents / 1.3.1:
Oxoacidity scales for melts based on alkali- and alkaline-earth metal halides / 1.3.2:
Oxygen electrodes in ionic melts. Oxide ion donors / 1.3.3:
Oxygen electrode reversibility in ionic melts / Part 4:
Potentiometric method of study of oxygen electrode reversibility / 2.4.1:
Direct calibration / 2.4.1.1:
Indirect calibration of oxygen electrodes / 2.4.1.2:
Experimental results / 2.4.2:
Oxygen-containing melts / 2.4.2.1:
Melts based on alkali metal halides / 2.4.2.2:
Melts based on alkali- and alkaline-earth halides / 2.4.2.3:
KCl-NaCl-NaF eutectic / 2.4.2.4:
Conclusions / 2.4.3:
Investigations of dissociation of Lux bases in ionic melts / Part 5:
Reactions of ionic melts with gases of acidic or base character / 2.5.1:
High-temperature hydrolysis of melts based on alkali metal halides / 2.5.1.1:
Purification of halide ionic melts from oxide-ion admixtures / 2.5.1.2:
Behaviour of Lux bases in ionic melts / 2.5.2:
Sodium peroxide, Na[subscript 2]O[subscript 2] / 2.5.2.1:
Alkali metal carbonates, Me[subscript 2]CO[subscript 3] / 2.5.2.2:
Alkali metal hydroxides, MeOH / 2.5.2.3:
Equilibria in "solid oxide-ionic melt" systems / 3:
Characteristics of oxide solubilities and methods of their determination / Part 6:
Parameters describing solubilities of solid substances in ionic solvents / 3.6.1:
Methods of oxide solubility determination / 3.6.2:
Isothermal saturation method / 3.6.2.1:
Potentiometric titration method / 3.6.2.2:
Sequential addition method / 3.6.2.3:
Regularities of oxide solubilities in melts based on alkali and alkaline-earth metal halides / Part 7:
Molten alkali-metal halides and their mixtures / 3.7.1:
KCl-LiCl (0.41:0.59) eutectic mixture / 3.7.1.1:
KCl-NaCl (0.50:0.50) equimolar mixture / 3.7.1.2:
CsCl-KCl-NaCl (0.455:0.245:0.30) eutectic / 3.7.1.3:
CsBr-KBr (0.66:0.34) melt / 3.7.1.4:
Molten CsI, 700[degree]C / 3.7.1.5:
Molten potassium halides / 3.7.1.6:
Other solvents based on alkali-metal halides / 3.7.1.7:
Oxide solubilities in melts based on alkali- and alkaline-earth metal halides / 3.7.2:
Solubilities of alkali earth metal carbonates in KCl-NaCl eutectic / 3.7.3:
Afterword / 3.7.4:
References
Formula Index
Subject Index
List of symbols
Introduction
Homogeneous acid-base equilibria and acidity scales in ionic melts / 1:
14.

図書

図書
Gary E. Bowman
出版情報: Oxford : Oxford University Press, 2008  xi, 208 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
World 3 / 1.2:
Problems / 1.3:
The Quantum Postulates / 2:
Postulate 1: The Quantum State / 2.1:
Postulate 2: Observables, Operators, and Eigenstates / 2.2:
Postulate 3: Quantum Superpositions / 2.3:
Discrete Eigenvalues / 2.3.1:
Continuous Eigenvalues / 2.3.2:
Closing Comments / 2.4:
What Is a Quantum State? / 2.5:
Probabilities, Averages, and Uncertainties / 3.1:
Probabilities / 3.1.1:
Averages / 3.1.2:
Uncertainties / 3.1.3:
The Statistical Interpretation / 3.2:
Bohr, Einstein, and Hidden Variables / 3.3:
Background / 3.3.1:
Fundamental Issues / 3.3.2:
Einstein Revisited / 3.3.3:
The Structure of Quantum States / 3.4:
Mathematical Preliminaries / 4.1:
Vector Spaces / 4.1.1:
Function Spaces / 4.1.2:
Dirac's Bra-ket Notation / 4.2:
Bras and Kets / 4.2.1:
Labeling States / 4.2.2:
The Scalar Product / 4.3:
Quantum Scalar Products / 4.3.1:
Discussion / 4.3.2:
Representations / 4.4:
Basics / 4.4.1:
Superpositions and Representations / 4.4.2:
Representational Freedom / 4.4.3:
Operators / 4.5:
Introductory Comments / 5.1:
Hermitian Operators / 5.2:
Adjoint Operators / 5.2.1:
Hermitian Operators: Definition and Properties / 5.2.2:
Wavefunctions and Hermitian Operators / 5.2.3:
Projection and Identity Operators / 5.3:
Projection Operators / 5.3.1:
The Identity Operator / 5.3.2:
Unitary Operators / 5.4:
Matrix Mechanics / 5.5:
Elementary Matrix Operations / 6.1:
Vectors and Scalar Products / 6.1.1:
Matrices and Matrix Multiplication / 6.1.2:
Vector Transformations / 6.1.3:
States as Vectors / 6.2:
Operators as Matrices / 6.3:
An Operator in Its Eigenbasis / 6.3.1:
Matrix Elements and Alternative Bases / 6.3.2:
Change of Basis / 6.3.3:
Adjoint, Hermitian, and Unitary Operators / 6.3.4:
Eigenvalue Equations / 6.4:
Commutators and Uncertainty Relations / 6.5:
The Commutator / 7.1:
Definition and Characteristics / 7.1.1:
Commutators in Matrix Mechanics / 7.1.2:
The Uncertainty Relations / 7.2:
Uncertainty Products / 7.2.1:
General Form of the Uncertainty Relations / 7.2.2:
Interpretations / 7.2.3:
Reflections / 7.2.4:
Angular Momentum / 7.3:
Angular Momentum in Classical Mechanics / 8.1:
Basics of Quantum Angular Momentum / 8.2:
Operators and Commutation Relations / 8.2.1:
Eigenstates and Eigenvalues / 8.2.2:
Raising and Lowering Operators / 8.2.3:
Physical Interpretation / 8.3:
Measurements / 8.3.1:
Relating L[superscript 2] and L[subscript z] / 8.3.2:
Orbital and Spin Angular Momentum / 8.4:
Orbital Angular Momentum / 8.4.1:
Spin Angular Momentum / 8.4.2:
Review / 8.5:
The Time-Independent Schrodinger Equation / 8.6:
An Eigenvalue Equation for Energy / 9.1:
Using the Schrodinger Equation / 9.2:
Conditions on Wavefunctions / 9.2.1:
An Example: the Infinite Potential Well / 9.2.2:
Interpretation / 9.3:
Energy Eigenstates in Position Space / 9.3.1:
Overall and Relative Phases / 9.3.2:
Potential Barriers and Tunneling / 9.4:
The Step Potential / 9.4.1:
The Step Potential and Scattering / 9.4.2:
Tunneling / 9.4.3:
What's Wrong with This Picture? / 9.5:
Why Is the State Complex? / 9.6:
Complex Numbers / 10.1:
Polar Form / 10.1.1:
Argand Diagrams and the Role of the Phase / 10.1.3:
The Phase in Quantum Mechanics / 10.2:
Phases and the Description of States / 10.2.1:
Phase Changes and Probabilities / 10.2.2:
Unitary Operators Revisited / 10.2.3:
Unitary Operators, Phases, and Probabilities / 10.2.4:
Example: A Spin 1/2 System / 10.2.5:
Wavefunctions / 10.3:
Time Evolution / 10.4:
The Time-Dependent Schrodinger Equation / 11.1:
How Time Evolution Works / 11.2:
Time Evolving a Quantum State / 11.2.1:
Unitarity and Phases Revisited / 11.2.2:
Expectation Values / 11.3:
Time Derivatives / 11.3.1:
Constants of the Motion / 11.3.2:
Energy-Time Uncertainty Relations / 11.4:
Conceptual Basis / 11.4.1:
Spin 1/2: An Example / 11.4.2:
What is a Wavefunction? / 11.5:
Eigenstates and Coefficients / 12.1.1:
Representations and Operators / 12.1.2:
Changing Representations / 12.2:
Change of Basis Revisited / 12.2.1:
From x to p and Back Again / 12.2.2:
Gaussians and Beyond / 12.2.3:
Phases and Time Evolution / 12.3:
Free Particle Evolution / 12.3.1:
Wavepackets / 12.3.2:
Bra-ket Notation / 12.4:
Quantum States / 12.4.1:
Eigenstates and Transformations / 12.4.2:
Epilogue / 12.5:
Mathematical Concepts / 12.6:
Complex Numbers and Functions / A.1:
Differentiation / A.2:
Integration / A.3:
Differential Equations / A.4:
Quantum Measurement / B:
The Harmonic Oscillator / C:
Energy Eigenstates and Eigenvalues / C.1:
The Number Operator and its Cousins / C.2:
Photons as Oscillators / C.3:
Unitary Transformations / D:
Finite Transformations and Generators / D.1:
Continuous Symmetries / D.3:
Symmetry Transformations / D.3.1:
Symmetries of Physical Law / D.3.2:
System Symmetries / D.3.3:
Bibliography
Index
Preface
Introduction: Three Worlds / 1:
Worlds 1 and 2 / 1.1:
15.

図書

図書
Boris Mirkin
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, Taylor & Francis, 2005  xxiii, 266 p. ; 25 cm
シリーズ名: Series in computer science and data analysis ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Denotations
Introduction: Historical Remarks
What Is Clustering / 1:
Base words
Exemplary problems / 1.1:
Structuring / 1.1.1:
Description / 1.1.2:
Association / 1.1.3:
Generalization / 1.1.4:
Visualization of data structure / 1.1.5:
Bird's-eye view / 1.2:
Definition: data and cluster structure / 1.2.1:
Criteria for revealing a cluster structure / 1.2.2:
Three types of cluster description / 1.2.3:
Stages of a clustering application / 1.2.4:
Clustering and other disciplines / 1.2.5:
Different perspectives of clustering / 1.2.6:
What Is Data / 2:
Feature characteristics / 2.1:
Feature scale types / 2.1.1:
Quantitative case / 2.1.2:
Categorical case / 2.1.3:
Bivariate analysis / 2.2:
Two quantitative variables / 2.2.1:
Nominal and quantitative variables / 2.2.2:
Two nominal variables cross-classified / 2.2.3:
Relation between correlation and contingency / 2.2.4:
Meaning of correlation / 2.2.5:
Feature space and data scatter / 2.3:
Data matrix / 2.3.1:
Feature space: distance and inner product / 2.3.2:
Data scatter / 2.3.3:
Pre-processing and standardizing mixed data / 2.4:
Other table data types / 2.5:
Dissimilarity and similarity data / 2.5.1:
Contingency and flow data / 2.5.2:
K-Means Clustering / 3:
Conventional K-Means / 3.1:
Straight K-Means / 3.1.1:
Square error criterion / 3.1.2:
Incremental versions of K-Means / 3.1.3:
Initialization of K-Means / 3.2:
Traditional approaches to initial setting / 3.2.1:
MaxMin for producing deviate centroids / 3.2.2:
Deviate centroids with Anomalous pattern / 3.2.3:
Intelligent K-Means / 3.3:
Iterated Anomalous pattern for iK-Means / 3.3.1:
Cross validation of iK-Means results / 3.3.2:
Interpretation aids / 3.4:
Conventional interpretation aids / 3.4.1:
Contribution and relative contribution tables / 3.4.2:
Cluster representatives / 3.4.3:
Measures of association from ScaD tables / 3.4.4:
Overall assessment / 3.5:
Ward Hierarchical Clustering / 4:
Agglomeration: Ward algorithm / 4.1:
Divisive clustering with Ward criterion / 4.2:
2-Means splitting / 4.2.1:
Splitting by separating / 4.2.2:
Interpretation aids for upper cluster hierarchies / 4.2.3:
Conceptual clustering / 4.3:
Extensions of Ward clustering / 4.4:
Agglomerative clustering with dissimilarity data / 4.4.1:
Hierarchical clustering for contingency and flow data / 4.4.2:
Data Recovery Models / 4.5:
Statistics modeling as data recovery / 5.1:
Averaging / 5.1.1:
Linear regression / 5.1.2:
Principal component analysis / 5.1.3:
Correspondence factor analysis / 5.1.4:
Data recovery model for K-Means / 5.2:
Equation and data scatter decomposition / 5.2.1:
Contributions of clusters, features, and individual entities / 5.2.2:
Correlation ratio as contribution / 5.2.3:
Partition contingency coefficients / 5.2.4:
Data recovery models for Ward criterion / 5.3:
Data recovery models with cluster hierarchies / 5.3.1:
Covariances, variances and data scatter decomposed / 5.3.2:
Direct proof of the equivalence between 2-Means and Ward criteria / 5.3.3:
Gower's controversy / 5.3.4:
Extensions to other data types / 5.4:
Similarity and attraction measures compatible with K-Means and Ward criteria / 5.4.1:
Application to binary data / 5.4.2:
Agglomeration and aggregation of contingency data / 5.4.3:
Extension to multiple data / 5.4.4:
One-by-one clustering / 5.5:
PCA and data recovery clustering / 5.5.1:
Divisive Ward-like clustering / 5.5.2:
Iterated Anomalous pattern / 5.5.3:
Anomalous pattern versus Splitting / 5.5.4:
One-by-one clusters for similarity data / 5.5.5:
Different Clustering Approaches / 5.6:
Extensions of K-Means clustering / 6.1:
Clustering criteria and implementation / 6.1.1:
Partitioning around medoids PAM / 6.1.2:
Fuzzy clustering / 6.1.3:
Regression-wise clustering / 6.1.4:
Mixture of distributions and EM algorithm / 6.1.5:
Kohonen self-organizing maps SOM / 6.1.6:
Graph-theoretic approaches / 6.2:
Single linkage, minimum spanning tree and connected components / 6.2.1:
Finding a core / 6.2.2:
Conceptual description of clusters / 6.3:
False positives and negatives / 6.3.1:
Conceptually describing a partition / 6.3.2:
Describing a cluster with production rules / 6.3.3:
Comprehensive conjunctive description of a cluster / 6.3.4:
General Issues / 6.4:
Feature selection and extraction / 7.1:
A review / 7.1.1:
Comprehensive description as a feature selector / 7.1.2:
Comprehensive description as a feature extractor / 7.1.3:
Data pre-processing and standardization / 7.2:
Dis/similarity between entities / 7.2.1:
Pre-processing feature based data / 7.2.2:
Data standardization / 7.2.3:
Similarity on subsets and partitions / 7.3:
Dis/similarity between binary entities or subsets / 7.3.1:
Dis/similarity between partitions / 7.3.2:
Dealing with missing data / 7.4:
Imputation as part of pre-processing / 7.4.1:
Conditional mean / 7.4.2:
Maximum likelihood / 7.4.3:
Least-squares approximation / 7.4.4:
Validity and reliability / 7.5:
Index based validation / 7.5.1:
Resampling for validation and selection / 7.5.2:
Model selection with resampling / 7.5.3:
Conclusion: Data Recovery Approach in Clustering / 7.6:
Bibliography
Index
Preface
List of Denotations
Introduction: Historical Remarks
16.

図書

図書
Katsunori Muraoka, Mitsuo Maeda ; [English translation by Mark Bowden]
出版情報: Philadelphia : Institute of Physics Pub., c2001  x, 295 p. ; 24 cm
シリーズ名: Plasma physics series
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
Properties of Gases / 1.1:
Classification of Gaseous States / 1.1.1:
Fundamental Parameters used to describe Gases / 1.1.2:
Properties of Plasmas / 1.2:
Different Areas of Plasma Applications / 1.2.1:
Fundamental Parameters used to describe Plasmas / 1.2.2:
Summary / 1.2.3:
Different States of Matter and their Kinetic Properties / 1.3:
Characteristics of Laser Light / 1.4:
Coherence / 1.4.1:
Short Pulse Generation / 1.4.2:
Advantages of Laser-Aided Measurement Methods / 1.5:
References
Basic Principles of Different Laser-Aided Measurement Techniques / 2:
Interaction of Electromagnetic Waves with Single Particles / 2.1:
Thomson Scattering by Charged Particles / 2.1.1:
Mie and Rayleigh Scattering / 2.1.2:
Raman Scattering / 2.1.3:
Resonant Absorption / 2.1.4:
Photo-Ionization / 2.1.5:
Laser Propagation through Gases and Plasmas / 2.2:
Reflection / 2.2.1:
Transmission / 2.2.2:
Refraction / 2.2.3:
Scattering / 2.2.4:
Spectral Profile Measurements / 2.2.5:
Summary of Line Broadening Mechanisms / 2.3.1:
Examples of Spectral Widths / 2.3.2:
Spectral Profile Measurement Techniques / 2.3.3:
Hardware for Laser Measurements / 3:
Lasers / 3.1:
Overview of Laser Systems / 3.1.1:
Control of Laser Light / 3.1.2:
Gas Lasers / 3.1.3:
Solid-State and Semiconductor Diode Lasers / 3.1.4:
Tunable Lasers / 3.1.5:
Nonlinear Wavelength Conversion Devices / 3.2:
Nonlinear Optical Effects / 3.2.1:
Higher Harmonic Generation and Frequency Mixing / 3.2.2:
Optical Parametric Oscillators / 3.2.3:
Stimulated Scattering / 3.2.4:
Optical Elements and Optical Instruments / 3.3:
Dispersion Elements and Spectrometers / 3.3.1:
Interferometers / 3.3.2:
Optical Waveguides / 3.3.3:
Other Optical Elements / 3.3.4:
Detectors and Signal Processing / 3.4:
Light Detectors / 3.4.1:
Imaging Detectors / 3.4.2:
Noise Sources and Signal Recovery / 3.4.3:
Observation of Fast Waveforms / 3.4.4:
Applications and Measurements / Part II:
Plasma Measurements / 4:
Overview of Plasma Spectroscopic Methods / 4.1:
Laser-Aided Measurements in High-Temperature Plasmas / 4.2:
Measurement of Plasma Density and Temperature / 4.2.1:
Measurement of Density and Temperature of Neutral and Impurity Species / 4.2.2:
Measurement of Electric and Magnetic Fields and Plasma Fluctuations / 4.2.3:
Laser-Aided Measurements in Discharge Plasmas / 4.3:
Measurement of Electric Field / 4.3.1:
Measurement of Electron Density and Temperature / 4.3.2:
Measurement of Reaction Products / 4.3.3:
Combustion Measurements / 5:
Combustion Fields and Laser-Aided Measurements / 5.1:
Measurement of Particle Densities / 5.1.1:
Measurement of Temperature / 5.1.2:
Measurement of Velocity / 5.1.3:
Examples of Combustion Measurements / 5.2:
Measurements by Laser-Induced Fluorescence Spectroscopy / 5.2.1:
Measurements by Coherent Anti-Stokes Raman Spectroscopy / 5.2.2:
Measurements by Degenerate Four-Wave Mixing / 5.2.3:
Measurements in Gas Flow Systems / 6:
Measurement of Refractive Index Changes (Density Measurements) / 6.1:
Schlieren Method / 6.1.1:
Shadowgraphy / 6.1.2:
Interferometry / 6.1.3:
Holography / 6.1.4:
Measurement of Flow Velocity / 6.2:
Measurement Techniques / 6.2.1:
Examples of Measurements / 6.2.2:
Imaging of Gas Flows by Laser-Induced Fluorescence / 6.3:
Measurement of Density Distributions / 6.3.1:
Measurement of Temperature Distributions / 6.3.2:
Laser Processing Measurements / 7:
Laser Processing / 7.1:
Measurement Methods in Laser Processing / 7.2:
Different Methods and their Advantages / 7.2.1:
Detection of Atomic and Molecular Species / 7.2.2:
Examples of Laser Processing Measurements / 7.3:
Measurements of Laser CVD Processes / 7.3.1:
Measurements of Laser Ablation Processes / 7.3.2:
Analytical Chemistry / 8:
Analytical Chemistry and Laser Spectroscopy / 8.1:
Examples of Analysis using Laser Spectroscopic Techniques / 8.2:
Analysis using Laser Raman Spectroscopy / 8.2.1:
Analysis using Laser-Induced Emission Spectroscopy / 8.2.2:
Analysis using Laser-Induced Fluorescence Spectroscopy / 8.2.3:
Analysis using Laser Ionization Spectroscopy / 8.2.4:
Analysis using Laser Photothermal Spectroscopy / 8.2.5:
Remote Sensing / 9:
LIDAR and Monitoring of the Atmosphere / 9.1:
LIDAR Theory / 9.1.1:
Different LIDAR Techniques / 9.1.2:
Representative LIDAR Experiments / 9.2:
Mie Scattering LIDAR / 9.2.1:
Rayleigh Scattering LIDAR / 9.2.2:
Differential Absorption LIDAR (DIAL) / 9.2.3:
Raman LIDAR / 9.2.4:
Index
Foreword
Fundamentals / Part I:
Laser-Aided Diagnostics of Gases and Plasmas / 1:
17.

図書

図書
Igor Nikolaev
出版情報: Berlin ; Heiderlberg : Springer, c2001  xxvi, 450 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 41
所蔵情報: loading…
目次情報: 続きを見る
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
Examples / 0.2:
Smooth Functions / 0.2.1:
1-Forms / 0.2.2:
Line Elements / 0.2.3:
Curvature Lines / 0.2.4:
A-Diffeomorphisms / 0.2.5:
Constructions / 0.3:
Suspension / 0.3.1:
Measured Foliations / 0.3.2:
Affine Foliations / 0.3.3:
Labyrinths / 0.3.4:
Gluing Together / 0.3.5:
General Theory / Part I:
Local Theory / 1:
Introduction / 1.1:
Symmetry / 1.2:
Normal Forms / 1.3:
Typical Normal Forms / 1.3.1:
Degenerate Normal Forms / 1.3.2:
Structurally Stable Singularities / 1.4:
Blowing-up Method / 1.4.1:
Fundamental Lemma / 1.4.2:
Classification / 1.4.3:
Bifurcations / 1.5:
Morse-Smale Foliations / 2:
Rough Foliations / 2.1:
Main Theorem / 2.1.1:
Structural Stability / 2.1.2:
Density / 2.1.3:
Classification of Morse-Smale Foliations / 2.2:
Rotation Systems / 2.2.1:
Equivalence Criterion / 2.2.2:
Realization of the Graphs / 2.2.3:
Example / 2.2.4:
Gradient-like Foliations / 2.3:
Lyapunov Function / 2.3.1:
Lyapunov Graph / 2.3.2:
Connected Components of Morse-Smale Foliations / 2.4:
Degrees of Stability / 2.5:
Foliations Without Holonomy / 3:
Periodic Components / 3.1:
Quasiminimal Sets / 3.2:
Structure of a Quasiminimal Set / 3.2.1:
Blowing-Down / 3.2.2:
Decomposition / 3.3:
Surgery / 3.4:
Surgery of Labyrinths / 3.4.1:
Surgery of Measured Foliations / 3.4.2:
Number of Quasiminimal Sets / 3.5:
Application: Smoothing Theorem / 3.6:
Invariants of Foliations / 4:
Torus / 4.1:
Minimal Foliations / 4.1.1:
Foliations With a Cantor Minimal Set / 4.1.2:
Foliations With Cherry Cells / 4.1.3:
Analytic Classification / 4.1.4:
Homotopy Rotation Class / 4.2:
Surfaces of Genus g ≥ 2 / 4.2.1:
Properties of the Homotopy Rotation Class / 4.2.2:
Non Orientable Surfaces / 4.3:
Torus With the Cross-Cap / 4.3.1:
Surfaces of Genus p ≥ 4 / 4.3.2:
Discrete Invariants / 4.4:
Regular Foliations on the Sphere / 4.4.1:
Orbit Complex / 4.4.2:
Cells / 4.5:
Classification of Elementary Cells / 4.5.2:
Amalgamation of Elementary Cells / 4.5.3:
Conley-Lyapunov-Peixoto Graph / 4.5.4:
Foliations With Symmetry / 4.5.5:
Cayley Graph / 4.6.1:
Isomorphism / 4.6.2:
Realization / 4.6.3:
Homology and Cohomology Invariants / 4.7:
Asymptotic Cycles / 4.7.1:
Fundamental Class / 4.7.2:
Cycles of A. Zorich / 4.7.3:
Smooth Classification / 4.8:
Torus and Klein Bottle / 4.8.1:
Surfaces of Genus g ≥ 2 / 4.8.2:
Curves on Surfaces / 5:
Curves and the Absolute / 5.1:
Background / 5.1.1:
Proof of Weil's Conjectures / 5.1.3:
Theorems of D. V. Anosov / 5.1.4:
Asymptotic Directions / 5.2:
Of Recurrent Semi-Trajectory / 5.2.1:
Of Analytic Flow / 5.2.2:
Of Foliation / 5.2.3:
Of Curves With Restriction on the Geodesic Curvature / 5.2.4:
Approximation of a Curve / 5.3:
Limit Sets at the Absolute / 5.4:
Geodesic Deviation / 5.5:
Deviation Property of Trajectories / 5.5.1:
Deviation From the Geodesic Framework / 5.5.2:
Ramified Coverings / 5.5.3:
Swing of Trajectories / 5.5.4:
Unbounded Deviation / 5.6:
Irrational Direction on Torus / 5.6.1:
Rational Direction on Torus / 5.6.3:
Family of Curves / 5.7:
Non-compact Surfaces / 6:
Foliations in the Plane / 6.1:
Non Singular Case / 6.1.1:
Singular Case / 6.1.2:
Level Set of Harmonic Functions / 6.1.3:
Depth of the Centre / 6.2:
Minimal Sets / 6.3.2:
Minimal Flows / 6.3.3:
Transitive Flows / 6.3.4:
Applications / Part II:
Ergodic Theory / 7:
Existence of Invariant Measures / 7.1:
Liouville's Theorem / 7.2.1:
Ergodicity / 7.2.2:
Mixing / 7.3.1:
Entropy / 7.4.1:
Homeomorphisms of the Unit Circle / 8:
Denjoy Flow / 8.1:
Cherry Class / 8.2:
Cherry Example / 8.2.1:
Flows With One Cell / 8.2.2:
Flows With Several Cells / 8.2.3:
Foliations on the Sphere / 8.3:
Main Result / 8.3.1:
Application to the Labyrinths / 8.3.3:
Appendix: The Dulac Functions / 8.3.4:
Addendum: Bendixson's Theorem / 8.4:
Diffeomorphisms of Surfaces / 9:
A-diffeomorphisms / 9.1:
Attractors of R. V. Plykin / 9.1.1:
One-Dimensional Basic Sets on the Sphere / 9.1.2:
Surfaces of Genus g ≥ 1 / 9.1.3:
Singularity Data / 9.2:
Isotopy Classes of Diffeomorphisms / 9.3:
C*-Algebras / 10:
Irrational Rotation Algebra / 10.1:
Dimension Groups / 10.1.1:
Continued Fractions / 10.1.2:
Effros-Shen's Theorem / 10.1.3:
Projections of Aα / 10.1.4:
Morita Equivalence / 10.1.5:
Embedding of Aα / 10.1.6:
Artin Rotation Algebra / 10.2:
Approximationssatz / 10.2.1:
Artin Numbers / 10.2.2:
K Theory / 10.2.3:
Foliation With Reeb Components / 10.3.1:
Baum-Connes Conjecture / 10.3.2:
C*-Algebras of Morse-Smale Flows / 10.4:
Quadratic Differentials / 11:
Finite Critical Points / 11.1:
Pole of Order 2 / 11.2.3:
Higher Order Poles / 11.2.4:
Global Behaviour of the Trajectories / 11.3:
Flat Structures / 12:
Flat Metric With Cone Singularities / 12.1:
Classification of Closed Flat Surfaces / 12.1.1:
Connection With Quadratic Differentials and Measured Foliations / 12.2:
Rational Billiards / 12.3:
Veech Dichotomy / 12.4:
Principal Curvature Lines / 13:
Invariants of the 2-Jets / 13.1:
Stability Lemma / 13.1.3:
Classification of Simple Umbilics / 13.1.4:
Carathéodory Conjecture / 13.2:
ϕ-Geodesics / 13.2.1:
CMC-Surfaces / 13.2.3:
Proof of Theorem 13.2.1 / 13.2.4:
Elements of Global Theory / 13.3:
Bifurcation of Umbilical Connections / 13.3.1:
Differential Equations / 14:
Characteristic Curve / 14.1:
Background and Notations / 14.1.1:
Theorem of Hartman and Wintner / 14.1.2:
Generic Singularities / 14.2:
Theorem of A. G. Kuzmin / 14.2.2:
Positive Differential 2-Forms / 15:
Space of Forms / 15.1:
Stable Subspace / 15.3.1:
Theorem of V. Guinez / 15.3.2:
Control Theory / B. Piccoli16:
Optimal Control / 16.1:
Optimal Flows / 16.3:
Generic Optimal Flows on the Plane / 16.4:
Optimal Flows on 2 Manifolds / 16.5:
Appendix / Part III:
Riemann Surfaces / 17:
Uniformization Theorem / 17.1:
Discrete Groups / 17.2:
Möbius Transformations / 17.2.1:
Fuchsian Group / 17.2.2:
Limit Set of Fuchsian Groups / 17.2.3:
Modular Group / 17.2.4:
Teichmuller Space / 17.2.5:
Conformal Invariants / 17.3.1:
Quasiconformal Mappings / 17.3.2:
Beltrami Equation / 17.3.3:
Ahlfors-Bers' Theorem / 17.3.4:
Geometry of Quadratic Differentials / 17.3.5:
Associated Metric / 17.3.6:
Isothermal Coordinates / 17.3.7:
Complex Curves / 17.4:
Projective Curves / 17.4.1:
Degree-Genus Formula / 17.4.2:
Elliptic Curves / 17.4.3:
Divisors and the Riemann-Roch Theorem / 17.4.4:
Application: Dimension of the Teichmuller Space / 17.4.5:
Bibliography
Index
Index of Notation
Foliations on 2-Manifolds / 0:
Notations / 0.1:
18.

図書

図書
Vilho Räisänen
出版情報: Chichester, England : Wiley, c2003  xxvii, 325 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
List of Figures
List of Tables
Abbreviations
Drivers for the Adoption of Multi-service Networks
Service Quality Requirements
Network Mechanisms for Multi-service Quality Support
Traffic Engineering for Multi-service IP Networks / 1:
Mapping Service Requirements to Network Resources
Service Level Management Techniques
Measurements / 1.1:
Mechanisms for Dynamic Service Quality Control
Customer Perspective
Case Study: Service Quality Support in an IP-based Cellular RAN
Conclusion / 1.2:
References
Network Operator Perspective
Index
Service Provider Perspective / 1.3:
Summary / 1.4:
Services on the Internet / 2:
Definition of a Service / 2.2:
End user service versus provider-level services / 2.2.1:
About service instances and service events / 2.2.2:
Reference model for this section / 2.2.3:
Service Quality Estimation / 2.3:
Measures of end user experienced service quality / 2.3.1:
Recency effect / 2.3.2:
Psychological factors / 2.3.3:
Service Implementation Aspects / 2.3.4:
Choice of transport protocols / 2.4.1:
Throughput adaptability of services / 2.4.2:
Inherent Service Quality Requirements / 2.5:
Service quality characterizations in standards / 2.5.1:
Availability of service / 2.5.2:
Continuity of service / 2.5.3:
Delivery time end-to-end / 2.5.4:
Throughput / 2.5.5:
Support for continuous service data unit transmission / 2.5.6:
Reliability of service delivery / 2.5.7:
Support for variable transfer rate / 2.5.8:
Generic considerations related to service requirements / 2.5.9:
Service Quality Descriptors / 2.6:
Measurement-based determination of traffic profile / 2.6.1:
Introduction to Network Quality Support / 2.7:
Policing of Traffic at Ingress / 3.2:
About Layers / 3.3:
Types of Network Support for Service Quality / 3.4:
Capacity reservation / 3.4.1:
Differentiated treatment / 3.4.2:
Differentiation of service quality instantiation / 3.4.3:
Summary of generic network service quality support mechanisms / 3.4.4:
Service Support in ATM / 3.5:
ATM service models / 3.5.1:
Summary of ATM service support / 3.5.2:
Service Support Models in Internet Protocol / 3.6:
Best effort service model / 3.6.1:
Controlled-load service support / 3.6.2:
Guaranteed QoS support / 3.6.3:
RSVP / 3.6.4:
Statistical QoS: DiffServ model / 3.6.5:
EF PHB / 3.6.5.1:
AF PHB group / 3.6.5.2:
Other PHBs / 3.6.5.3:
Functions of a DiffServ router / 3.6.5.4:
Summary of DiffServ / 3.6.5.5:
Summary of IP QoS service models / 3.6.6:
Routing in IP Networks / 3.7:
On addressing / 3.7.1:
IP routing protocol-based methods / 3.7.2:
ATM overlays / 3.7.3:
Lower layer tunnels: MPLS / 3.7.4:
Link Layer Issues / 3.8:
Performance / 3.8.1:
A note on scheduling / 3.8.2:
Traffic Engineering / 3.9:
Context of traffic engineering / 4.1.1:
The traffic engineering process / 4.1.2:
Obtaining performance data from the network and analysing it / 4.1.3:
Traffic aggregate performance measurements / 4.1.3.1:
Obtaining data relevant for routing control / 4.1.3.2:
Performance enhancement / 4.1.4:
Scope of network optimization / 4.1.5:
IP Routing Control and Traffic Engineering / 4.2:
Optimizing routing based on service quality characteristics / 4.2.1:
Traffic engineering using MPLS / 4.2.2:
DiffServ over MPLS / 4.2.2.1:
Traffic engineering using IP routing protocols / 4.2.3:
Configuration / 4.2.4:
Policy-based management / 4.3.1:
Policy-based management of DiffServ / 4.3.2:
Case study of policy-based management of DiffServ / 4.3.2.1:
Scope of this Chapter / 4.4:
ETSI EP TIPHON Reference Model / 5.2:
Architecture / 5.2.1:
QoS model / 5.2.2:
QBONE / 5.2.3:
Service support models / 5.3.1:
3GPP QoS Model / 5.3.2:
Other Models / 5.4.1:
Utility-based Allocation of Resources / 5.6:
Generic Resource Allocation Framework / 5.6.1:
Signalling / 5.7.1:
Mapping of services onto network resources / 5.7.2:
Network quality support configuration for DiffServ / 5.7.3:
End-to-end service quality budgets / 5.7.4:
Delay / 5.7.4.1:
Delay variation / 5.7.4.2:
Packet loss rate / 5.7.4.3:
Packet loss correlation / 5.7.4.4:
Optimization of resource allocation / 5.7.4.5:
Models for Service Level Management / 5.8:
Areas of service level management / 6.1.1:
Layers of service level management / 6.1.2:
Models for managed data / 6.1.3:
Service Planning and Creation Process / 6.2:
Interests of the customer / 6.2.1:
Network operator viewpoint / 6.2.2:
Service definition / 6.2.3:
Reporting / 6.2.4:
Service Level Agreements / 6.3:
SLA and DiffServ / 6.3.1:
SLA contents / 6.3.2:
End user SLAs / 6.3.3:
End-to-end Services / 6.4:
Assumptions about connection endpoints / 6.4.1:
Assumptions about per-domain service management / 6.4.2:
Requirements for end-to-end service management / 6.4.3:
Service Brokers and Charging / 6.5:
Traffic Characterization / 6.6:
Network Monitoring / 7.2:
Troubleshooting measurements for services / 7.2.1:
Traffic Control / 7.3:
Definition of Measured Characteristics / 7.4:
Sources of Measurement Data / 7.5:
Measurement interfaces / 7.5.1:
Measured characteristics / 7.5.2:
Measurement Methods / 7.6:
Obtaining performance data from network elements / 7.6.1:
Monitoring a link / 7.6.2:
Monitoring a route or node pair / 7.6.3:
Traffic Engineering Measurement Infrastructure / 7.7:
Measuring entity / 7.7.1:
Interface to measuring entity / 7.7.2:
Measurement control and analysis function / 7.7.3:
Internet Service Quality Measurement Architectures / 7.8:
QBone measurement architecture / 7.8.1:
Discussion / 7.8.1.1:
Nokia Research Center measurement architecture demonstrator / 7.8.2:
Previous Studies / 7.8.2.1:
Two-bit DiffServ architecture / 8.1.1:
Bandwidth broker in QBone architecture / 8.1.2:
Phase 0 Bandwidth Broker / 8.1.2.1:
Phase 1 Bandwidth Broker / 8.1.2.2:
QoS Agents / 8.1.3:
Generic Model / 8.2:
Service quality support instantiation control / 8.2.1:
Signalling interface / 8.2.1.1:
Internal bandwidth broker operation / 8.2.1.2:
Domain control / 8.2.2:
Link to traffic engineering / 8.2.2.1:
Means of maintaining information about resource availability / 8.2.2.2:
Inter-domain signalling / 8.2.3:
Link to service admission control / 8.2.4:
Motivation for Using IP-based Transport in Cellular RAN / 8.3:
IP RAN Transport Architecture / 9.2:
PLMN transport architecture / 9.2.1:
IP RAN transport architecture / 9.2.2:
Handover traffic / 9.2.3:
Service mapping in IP RAN / 9.2.4:
Traffic Engineering in All-IP RAN / 9.3:
Capacity planning / 9.3.1:
Capacity management / 9.3.2:
Traffic management / 9.3.3:
Enabling Technologies for Traffic Engineering in IP RAN / 9.4:
Inter-operation with IP-based Backbones and Roaming Networks / 9.4.1:
IP as the Convergence Network / 9.6:
DiffServ / 10.2:
Complementary technologies for DiffServ / 10.2.1:
Service Level Management / 10.3:
Potential Future Development Directions / 10.4:
Preface
Acknowledgements
List of Figures
19.

図書

図書
Stephen Marsland
出版情報: Boca Raton : Chapman & Hall/CRC, c2009  xvi, 390 p. ; 25 cm
シリーズ名: Chapman & Hall/CRC machine learning & pattern recognition series
所蔵情報: loading…
目次情報: 続きを見る
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
Learning / 1.2:
Machine Learning / 1.2.1:
Types of Machine Learning / 1.3:
Supervised Learning / 1.4:
Regression / 1.4.1:
Classification / 1.4.2:
The Brain and the Neuron / 1.5:
Hebb's Rule / 1.5.1:
McCulloch and Pitts Neurons / 1.5.2:
Limitations of the McCulloch and Pitt Neuronal Model / 1.5.3:
Further Reading
Linear Discriminants / 2:
Preliminaries / 2.1:
The Perceptron / 2.2:
The Learning Rate ? / 2.2.1:
The Bias Input / 2.2.2:
The Perceptron Learning Algorithm / 2.2.3:
An Example of Perceptron Learning / 2.2.4:
Implementation / 2.2.5:
Testing the Network / 2.2.6:
Linear Separability / 2.3:
The Exclusive Or (XOR) Function / 2.3.1:
A Useful Insight / 2.3.2:
Another Example: The Pima Indian Dataset / 2.3.3:
Linear Regression / 2.4:
Linear Regression Examples / 2.4.1:
Practice Questions
The Multi-Layer Perceptron / 3:
Going Forwards / 3.1:
Biases / 3.1.1:
Going Backwards: Back-Propagation of Error / 3.2:
The Multi-Layer Preceptron Algorithm / 3.2.1:
Initialising the Weights / 3.2.2:
Different Output Activation Functions / 3.2.3:
Sequential and Batch Training / 3.2.4:
Local Minima / 3.2.5:
Picking Up Momentum / 3.2.6:
Other Improvements / 3.2.7:
The Multi-Layer Perceptron in Practice / 3.3:
Data Preparation / 3.3.1:
Amount of Training Data / 3.3.2:
Number of Hidden Layers / 3.3.3:
Generalisation and Overfitting / 3.3.4:
Training, Testing, and Validation / 3.3.5:
When to Stop Learning / 3.3.6:
Computing and Evaluating the Results / 3.3.7:
Examples of Using the MLP / 3.4:
A Regression Problem / 3.4.1:
Classification with the MLP / 3.4.2:
A Classification Example / 3.4.3:
Time-Series Prediction / 3.4.4:
Data Compression: The Auto-Associative Network / 3.4.5:
Overview / 3.5:
Deriving Back-Propagation / 3.6:
The Network Output and the Error / 3.6.1:
The Error of the Network / 3.6.2:
A Suitable Activation Function / 3.6.3:
Back-Propagation of Error / 3.6.4:
Radial Basis Functions and Splines / 4:
Concepts / 4.1:
Weight Space / 4.1.1:
Receptive Fields / 4.1.2:
The Radial Basis Function (RBF) Network / 4.2:
Training the RBF Network / 4.2.1:
The Curse of Dimensionality / 4.3:
Interpolation and Basis Functions / 4.4:
Bases and Basis Functions / 4.4.1:
The Cubic Spline / 4.4.2:
Fitting the Spline to the Data / 4.4.3:
Smoothing Splines / 4.4.4:
Higher Dimensions / 4.4.5:
Beyond the Bounds / 4.4.6:
Support Vector Machines / 5:
Optimal Separation / 5.1:
Kernels / 5.2:
Example: XOR / 5.2.1:
Extensions to the Support Vector Machine / 5.2.2:
Learning with Trees / 6:
Using Decision Trees / 6.1:
Constructing Decision Trees / 6.2:
Quick Aside: Entropy in Information Theory / 6.2.1:
ID3 / 6.2.2:
Implementing Trees and Graphs in Python / 6.2.3:
Implementation of the Decision Tree / 6.2.4:
Dealing with Continuous Variables / 6.2.5:
Computational Complexity / 6.2.6:
Classification and Regression Trees (CART) / 6.3:
Gini Impurity / 6.3.1:
Regression in Trees / 6.3.2:
Classification Example / 6.4:
Decision by Committee: Ensemble Learning / 7:
Boosting / 7.1:
AdaBoost / 7.1.1:
Stumpting / 7.1.2:
Bagging / 7.2:
Subagging / 7.2.1:
Different Ways to Combine Classifiers / 7.3:
Probability and Learning / 8:
Turning Data into Probabilities / 8.1:
Minimising Risk / 8.1.1:
The Naive Bayes' Classifier / 8.1.2:
Some Basic Statistics / 8.2:
Averages / 8.2.1:
Variance and Covariance / 8.2.2:
The Gaussian / 8.2.3:
The Bias-Variance Tradeoff / 8.2.4:
Gaussian Mixture Models / 8.3:
The Expectation-Maximisation (EM) Algorithm / 8.3.1:
Nearest Neighbour Methods / 8.4:
Nearest Neighbour Smoothing / 8.4.1:
Efficient Distance Computations: the KD-Tree / 8.4.2:
Distance Measures / 8.4.3:
Unsupervised Learning / 9:
The ?-Means Algorithm / 9.1:
Dealing with Noise / 9.1.1:
The ?-Means Neural Network / 9.1.2:
Normalisation / 9.1.3:
A Better Weight Update Rule / 9.1.4:
Example: The Iris Dataset Again / 9.1.5:
Using Competitive Learning for Clustering / 9.1.6:
Vector Quantisation / 9.2:
The Self-Organising Feature Map / 9.3:
The SOM Algorithm / 9.3.1:
Neighbourhood Connections / 9.3.2:
Self-Organisation / 9.3.3:
Network Dimensionality and Boundary Conditions / 9.3.4:
Examples of Using the SOM / 9.3.5:
Dimensionality Reduction / 10:
Linear Discriminant Analysis (LDA) / 10.1:
Principal Components Analysis (PCA) / 10.2:
Relation with the Multi-Layer Perceptron / 10.2.1:
Kernel PCA / 10.2.2:
Factor Analysis / 10.3:
Independent Components Analysis (ICA) / 10.4:
Locally Linear Embedding / 10.5:
Isomap / 10.6:
Multi-Dimensional Scaling (MDS) / 10.6.1:
Optimisation and Search / 11:
Going Downhill / 11.1:
Least-Squares Optimisation / 11.2:
Taylor Expansion / 11.2.1:
The Levenberg-Marquardt Algorithm / 11.2.2:
Conjugate Gradients / 11.3:
Conjugate Gradients Example / 11.3.1:
Search: Three Basic Approaches / 11.4:
Exhaustive Search / 11.4.1:
Greedy Search / 11.4.2:
Hill Climbing / 11.4.3:
Exploitation and Exploration / 11.5:
Simulated Annealing / 11.6:
Comparison / 11.6.1:
Evolutionary Learning / 12:
The Genetic Algorithm (GA) / 12.1:
String Representation / 12.1.1:
Evaluating Fitness / 12.1.2:
Population / 12.1.3:
Generating Offspring: Parent Selection / 12.1.4:
Generating Offspring: Genetic Operators / 12.2:
Crossover / 12.2.1:
Mutation / 12.2.2:
Elitism, Tournaments, and Niching / 12.2.3:
Using Genetic Algorithms / 12.3:
Map Colouring / 12.3.1:
Punctuated Equilibrium / 12.3.2:
Example: The Knapsack Problem / 12.3.3:
Example: The Four Peaks Problem / 12.3.4:
Limitations of the GA / 12.3.5:
Training Neural Networks with Genetic Algorithms / 12.3.6:
Genetic Programming / 12.4:
Combining Sampling with Evolutionary Learning / 12.5:
Reinforcement Learning / 13:
Example: Getting Lost / 13.1:
State and Action Spaces / 13.2.1:
Carrots and Sticks: the Reward Function / 13.2.2:
Discounting / 13.2.3:
Action Selection / 13.2.4:
Policy / 13.2.5:
Markov Decision Processes / 13.3:
The Markov Property / 13.3.1:
Probabilities in Markov Decision Processes / 13.3.2:
Values / 13.4:
Back on Holiday: Using Reinforcement Learning / 13.5:
The Difference between Sarsa and Q-Learning / 13.6:
Uses of Reinforcement Learning / 13.7:
Markov Chain Monte Carlo (MCMC) Methods / 14:
Sampling / 14.1:
Random Numbers / 14.1.1:
Gaussian Random Numbers / 14.1.2:
Monte Carlo or Bust / 14.2:
The Proposal Distribution / 14.3:
Markov Chain Monte Carlo / 14.4:
Markov Chains / 14.4.1:
The Metropolis-Hastings Algorithm / 14.4.2:
Simulated Annealing (Again) / 14.4.3:
Gibbs Sampling / 14.4.4:
Graphical Models / 15:
Bayesian Networks / 15.1:
Example: Exam Panic / 15.1.1:
Approximate Inference / 15.1.2:
Making Bayesian Networks / 15.1.3:
Markov Random Fields / 15.2:
Hidden Markov Models (HMMs) / 15.3:
The Forward Algorithm / 15.3.1:
The Viterbi Algorithm / 15.3.2:
The Baum-Welch or Forward-Backward Algorithm / 15.3.3:
Tracking Methods / 15.4:
The Kalman Filter / 15.4.1:
The Particle Filter / 15.4.2:
Python / 16:
Installing Python and Other Packages / 16.1:
Getting Started / 16.2:
Python for MATLAB and R users / 16.2.1:
Code Basics / 16.3:
Writing and Importing Code / 16.3.1:
Control Flow / 16.3.2:
Functions / 16.3.3:
The doc String / 16.3.4:
map and lambda / 16.3.5:
Exceptions / 16.3.6:
Classes / 16.3.7:
Using NumPy and Matplotlib / 16.4:
Arrays / 16.4.1:
Linear Algebra / 16.4.2:
Plotting / 16.4.4:
Index
Prologue
Introduction / 1:
If Data Had Mass, the Earth Would Be a Black Hole / 1.1:
20.

図書

図書
by Man Leung Wong, Kwong Sak Leung
出版情報: Boston : Kluwer Academic, c2000  xiv, 213 p. ; 25 cm
シリーズ名: Genetic programming series ; GPEM 3
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
Introduction / Chapter 1:
Data Mining / 1.1.:
Motivation / 1.2.:
Contributions of the Book / 1.3.:
Outline of the Book / 1.4.:
An Overview of Data Mining / Chapter 2:
Decision Tree Approach / 2.1.:
ID3 / 2.1.1.:
C4.5 / 2.1.2.:
Classification Rule / 2.2.:
AQ Algorithm / 2.2.1.:
CN2 / 2.2.2.:
C4.5RULES / 2.2.3.:
Association Rule Mining / 2.3.:
Apriori / 2.3.1.:
Quantitative Association Rule Mining / 2.3.2.:
Statistical Approach / 2.4.:
Bayesian Classifier / 2.4.1.:
Forty-Niner / 2.4.2.:
Explora / 2.4.3.:
Bayesian Network Learning / 2.5.:
Other Approaches / 2.6.:
An Overview on Evolutionary Algorithms / Chapter 3:
Evolutionary Algorithms / 3.1.:
Genetic Algorithms (GAs) / 3.2.:
The Canonical Genetic Algorithm / 3.2.1.:
Selection Methods / 3.2.1.1.:
Recombination Methods / 3.2.1.2.:
Inversion and Reordering / 3.2.1.3.:
Steady State Genetic Algorithms / 3.2.2.:
Hybrid Algorithms / 3.2.3.:
Genetic Programming (GP) / 3.3.:
Introduction to the Traditional GP / 3.3.1.:
Strongly Typed Genetic Programming (STGP) / 3.3.2.:
Evolution Strategies (ES) / 3.4.:
Evolutionary Programming (EP) / 3.5.:
Inductive Logic Programming / Chapter 4:
Inductive Concept Learning / 4.1.:
Inductive Logic Programming (ILP) / 4.2.:
Interactive ILP / 4.2.1.:
Empirical ILP / 4.2.2.:
Techniques And Methods of ILP / 4.3.:
Bottom-up ILP Systems / 4.3.1.:
Top-down ILP Systems / 4.3.2.:
Foil / 4.3.2.1.:
mFOIL / 4.3.2.2.:
The Logic Grammars Based Genetic Programming System (Logenpro) / Chapter 5:
Logic Grammars / 5.1.:
Representations of Programs / 5.2.:
Crossover of Programs / 5.3.:
Mutation of Programs / 5.4.:
The Evolution Process of LOGENPRO / 5.5.:
Discussion / 5.6.:
Data Mining Applications Using Logenpro / Chapter 6:
Learning Functional Programs / 6.1.:
Learning S-expressions Using LOGENPRO / 6.1.1.:
The DOT PRODUCT Problem / 6.1.2.:
Learning Sub-functions Using Explicit Knowledge / 6.1.3.:
Inducing Decision Trees Using LOGENPRO / 6.2.:
Representing Decision Trees as S-expressions / 6.2.1.:
The Credit Screening Problem / 6.2.2.:
The Experiment / 6.2.3.:
Learning Logic Program From Imperfect Data / 6.3.:
The Chess Endgame Problem / 6.3.1.:
The Setup of Experiments / 6.3.2.:
Comparison of LOGENPRO With FOIL / 6.3.3.:
Comparison of LOGENPRO With BEAM-FOIL / 6.3.4.:
Comparison of LOGENPRO With mFOIL1 / 6.3.5.:
Comparison of LOGENPRO With mFOIL2 / 6.3.6.:
Comparison of LOGENPRO With mFOIL3 / 6.3.7.:
Comparison of LOGENPRO With mFOIL4 / 6.3.8.:
Applying Logenpro for Rule Learning / 6.3.9.:
Grammar / 7.1.:
Genetic Operators / 7.2.:
Evaluation of Rules / 7.3.:
Learning Multiple Rules From Data / 7.4.:
Previous Approaches / 7.4.1.:
Pre-selection / 7.4.1.1.:
Crowding / 7.4.1.2.:
Deterministic Crowding / 7.4.1.3.:
Fitness Sharing / 7.4.1.4.:
Token Competition / 7.4.2.:
The Complete Rule Learning Approach / 7.4.3.:
Experiments With Machine Learning Databases / 7.4.4.:
Experimental Results on the Iris Plant Database / 7.4.4.1.:
Experimental Results on the Monk Database / 7.4.4.2.:
Medical Data Mining / Chapter 8:
A Case Study on the Fracture Database / 8.1.:
A Case Study on the Scoliosis Database / 8.2.:
Rules for Scoliosis Classification / 8.2.1.:
Rules About Treatment / 8.2.2.:
Conclusion and Future Work / Chapter 9:
Conclusion / 9.1.:
Future Work / 9.2.:
The Rule Sets Discovered / Appendix A:
The Best Rule Set Learned from the Iris Database / A.1.:
The Best Rule Set Learned from the Monk Database / A.2.:
Monk1 / A.2.1.:
Monk2 / A.2.2.:
Monk3 / A.2.3.:
The Best Rule Set Learned from the Fracture Database / A.3.:
Type I rules: About Diagnosis / A.3.1.:
Type II Rules: About Operation/Surgeon / A.3.2.:
Type III Rules: About Stay / A.3.3.:
The Best Rule Set Learned from the Scoliosis Database / A.4.:
Rules for Classification / A.4.1.:
King-I / A.4.1.1.:
King-II / A.4.1.2.:
King-III / A.4.1.3.:
King-IV / A.4.1.4.:
King-V / A.4.1.5.:
TL / A.4.1.6.:
L / A.4.1.7.:
Rules for Treatment / A.4.2.:
Observation / A.4.2.1.:
Bracing / A.4.2.2.:
The Grammar Used for the Fracture and Scoliosis Databases / Appendix B:
The Grammar for the Fracture Database / B.1.:
The Grammar for the Scoliosis Database / B.2.:
References
Index
List of Figures
List of Tables
Preface
21.

図書

図書
M. Shimoseki, T. Hamano, T. Imaizumi (eds.) ; organized by T. Kuwabara
出版情報: Berlin : Springer, c2003  xiii, 233 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
Tangential Gradient / 1.1.2:
System of Multiple Degrees of Freedom / 1.1.3:
Elastic Component in a Vibration System / 1.2:
Vibration Equations / 1.2.1:
Chords of a Guitar / 1.2.2:
Wave Equation / 1.2.3:
First Stages of Analysis / 1.3:
Orientation / 1.3.1:
Steps of Analysis / 1.3.2:
A Pitfall in the Approximate Solution / 1.3.3:
Element Stiffness of Elastic Component / 1.3.4:
One-Dimensional Combination of Components / 1.4:
Coupling Between Components / 1.4.1:
Generalized Matrix Equation for Coupled Elastic Components / 1.4.2:
Verification of Boundary Condition Type / 1.4.3:
Parallel Coupling of Elastic Components / 1.4.4:
Transverse Stiffness of Elastic Components / 1.4.5:
Plane Structures / 1.5:
Transformation of Coordinates / 1.5.1:
Obliquely Connected Components / 1.5.2:
From Components to Finite Elements / 1.5.3:
Outline of Finite Element Method (FEM) / 2:
Fundamentals of Elasto-Plasticity Dynamics / 2.1:
Viewpoint of Continuum Dynamics / 2.1.1:
General Equations / 2.1.2:
Basic Equations for Linear Elastic Body / 2.1.3:
Principle of Virtual Work / 2.1.4:
Expansion to Nonlinear Problems / 2.2:
Geometrical Nonlinearity / 2.2.1:
Material Nonlinearity / 2.2.2:
Expansion to Dynamic Problems / 2.3:
Mass and Damping Matrix / 2.3.1:
Natural Frequency / 2.3.2:
Simulation / 2.3.3:
Spatial Discretization / 2.4:
Derivating Procedure of Element Stiffness / 2.4.1:
Stiffness of Truss Elements / 2.4.2:
Element Stiffness of Plane Stress / 2.4.3:
Element Stiffness of a Three-dimensional Elastic Body / 2.4.4:
Role of Fem in Spring Analysis / 3:
Comparison Of Fem With Conventional Design Meth- ODS / 3.1:
Assumption in Model Construction / 3.1.1:
From Linear to Nonlinear / 3.1.2:
The Utilization of Fem Software / 3.2:
Use of Commercial Software / 3.2.1:
Selection of Commercial Software / 3.2.2:
Development of Dedicated Programs / 3.2.3:
Effectiveness in Design Practice / 3.3:
Single Spring and Peripheral Parts / 3.3.1:
Simulation of the Manufacturing Process / 3.3.2:
Prospect of Future Application / 3.4:
Optimum Design / 3.4.1:
Nonlinear Problems in Manufacturing Simulation / 3.4.2:
Necessity of Material Data / 3.4.3:
Classification and Application of Element / 4:
Introduction of Various Elements / 4.1:
Beam Elements / 4.1.1:
Plate Elements / 4.1.2:
Axisymmetric Elements / 4.1.3:
Cubic Elements (Solid Elements) / 4.1.4:
Contact Elements / 4.1.5:
Selection of Element and Discretizing Practice / 4.2:
Selection of Elements / 4.2.1:
Tips on Discretization / 4.2.2:
Elementary Analysis / 5:
Formed Wire Springs / 5.1:
Stabilizer Bars / 5.2:
Helical Compression Springs / 5.3:
Static Analysis / 5.3.1:
Analysis of Eigenvalue / 5.3.2:
Helical Extension Springs / 5.4:
Helical Torsion Springs / 5.5:
Spiral Springs / 5.6:
Leaf Springs / 5.7:
Flat Springs / 5.8:
Stress Concentration / 5.9:
Stress Concentration on the Periphery of a Center Bolt Hole for Leaf Springs / 5.9.1:
Stress Concentration at the Slit Bottom of a Disc Spring / 5.9.2:
Stress Concentration at the End of a Torsion Bar Spring / 5.9.3:
Expansion of Analytical Handling / 6:
Tubular Stabilizer Bars / 6.1:
Effect of Bush / 6.1.2:
Problem of Contact / 6.2:
Non-circular Cross Section / 6.2.2:
Presetting / 6.2.3:
Surging / 6.2.4:
RBA Type Leaf Springs / 6.3:
Effect of Shackle and Contact Plate / 6.3.2:
Hysteresis Characteristic / 6.3.3:
Wind-up / 6.3.4:
Disc Springs, Ring Springs / 6.3.5:
Disc Springs / 6.4.1:
Ring Springs / 6.4.2:
Index
Springs and Elastic Component / 1:
Spring Constant / 1.1:
Definition of the Spring / 1.1.1:
22.

図書

図書
by Pratul Bandyopadhyay
出版情報: Dordrecht : Kluwer Academic, c2003  xi, 217 p. ; 25 cm
シリーズ名: Fundamental theories of physics ; v. 130
所蔵情報: loading…
目次情報: 続きを見る
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
Spinor space and Spinor Algebra / 1.1.1:
Spinors and Tensors / 1.1.2:
Universal Covering space / 1.1.3:
Spinor structure / 1.1.4:
Spinors in Different Dimensions / 1.2:
Simple Spinor Geometry / 1.2.1:
Conformal Spinors / 1.2.2:
Twistors and Cartan Semispinors / 1.2.3:
Supersymmetry and Superspace / 1.3:
Supersymmetry algebra / 1.3.1:
Superspace / 1.3.2:
Spinor structure and superspace / 1.3.3:
Fermions and Topology / 2:
Fermi Field and Nonlinear Sigma Model / 2.1:
Quantization of a Fermi Field and Sympletic Structure / 2.1.1:
Gauge Theorctic Extension of a Fermion and Nonlinear Sigma Model / 2.1.2:
Boson-Fermion Transformation / 2.1.3:
Vortex Line, Magnetic Flux and Fermion Quantization / 2.1.4:
Quantization and Anomaly / 2.2:
Quantum Mechanical Symmetry Breaking and Anomaly / 2.2.1:
Path Integral Formalism and Chiral Anomaly / 2.2.2:
Quantization of a Fermion and Chiral Anomaly / 2.2.3:
Anomaly and Topology / 2.3:
Topological Aspects of Anomaly / 2.3.1:
Chiral Anomaly and Berry Phase / 2.3.2:
Berry Phase and Fermion Number / 2.3.3:
Electroweak Theory / 3:
Weinberg - Salam Theory / 3.1:
Spontaneous Symmetry Breaking and the Nature of Vacuum / 3.1.1:
Weinberg-Salam Theory of Electroweak Interaction / 3.1.2:
Renormalization of Yang-Mills Theory with Spontaneous Symmetry Breaking / 3.1.3:
Topological Features in Field Theory / 3.2:
The Sine-Gordon Model / 3.2.1:
Vortex Lines / 3.2.2:
The Dirac Monopole / 3.2.3:
The't Hooft Polyakov Monopole / 3.2.4:
Instantons / 3.2.5:
Topological Origin of Mass / 3.3:
Topological Aspects of Chiral Anomaly and Origin of Mass / 3.3.1:
Weak Interaction Gauge Bosons and Topological Origin of Mass / 3.3.2:
Topological Features and Some Aspects of Weak Interaction Phenomenology / 3.3.3:
Skyrme Model / 4:
Nonlinear Sigma Model / 4.1:
Chiral Symmetry Breaking and Nonlinear Sigma Model / 4.1.1:
Nonlinear Sigma Model in Different Dimensions / 4.1.2:
Topological Term in Nonlinear Sigma Model / 4.1.3:
Skyrme Model for Nucleons / 4.2:
Skyrme's Approach: Mesonic Fluid Model / 4.2.1:
Nucleons as Topological Skyrmions / 4.2.2:
Static Properties of Nucleons / 4.2.3:
Baryons as Three Flavor Solitons / 4.3:
Extension of Nuclenoic Model to SU(3) Symmetry / 4.3.1:
Skyrmions and Quantum Chromodynamics / 4.3.2:
Skyrmion Statistics / 4.3.3:
Geometrical Aspects of a Skyrmion / 5:
Microlocal Space Time and Fermions / 5.1:
Microlocal Space Time and Massive Fermions as Solitons / 5.1.1:
Bosonic Degrees of Freedom and Fermion / 5.1.2:
Geometric Phase and [theta]-term / 5.1.3:
Internal Symmetry of Hadrons / 5.2:
Geometrical Aspects of Conformal Spinors / 5.2.1:
Reflection Group and the Internal Symmetry of Hadrons / 5.2.2:
Composite State of Skyrmions and Static Properties of Baryons / 5.2.3:
Supersymmetry and Internal Symmetry / 5.3:
Conformal Spinors and Supersymmetry / 5.3.1:
Reflection Group, Supersymmetry and Internal Symmetry / 5.3.2:
Conformal Spinors and Symmetry Group of Interactions / 5.3.3:
Noncommutative Geometry / 6:
Quantum Space Time / 6.1:
Noncommutative Geometry: Physical Perspective / 6.1.1:
Noncommutative Geometry and Quantum Phase space / 6.1.2:
Noncommutative Geometry and Quantum Group / 6.1.3:
Noncommutative Geometry and Particle Physics / 6.2:
Noncommutative Geometry and Electroweak Theory / 6.2.1:
Noncommutative Geometry and Standard Model / 6.2.2:
Noncommutative Generalization of Gauge Theory / 6.2.3:
Discrete Space as the Internal Space / 6.3:
Noncommutative Geometry and Quantization of a Fermion / 6.3.1:
Noncommutative Geometry, Disconnected Gauge Group and Chiral Anomaly / 6.3.2:
Noncommutative Geometry, Geometrical Aspects of a Skyrmion and Polyakov String / 6.3.3:
References
Subject Index
Preface
Theory of Spinors / 1:
Spinors and Spin structure / 1.1:
23.

図書

図書
Zhen-Gang Ji
出版情報: Hoboken, N.J. : Wiley-Interscience, c2008  xxii, 676 p. ; 25 cm.
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Acknowledgments
Introduction / 1:
Overview / 1.1:
Understanding Surface Waters / 1.2:
Modeling of Surface Waters / 1.3:
About This Book / 1.4:
Hydrodynamics / 2:
Hydrodynamic Processes / 2.1:
Water Density / 2.1.1:
Conservation Laws / 2.1.2:
Advection and Dispersion / 2.1.3:
Mass Balance Equation / 2.1.4:
Atmospheric Forcings / 2.1.5:
Coriolis Force and Geostrophic Flow / 2.1.6:
Governing Equations / 2.2:
Basic Approximations / 2.2.1:
Equations in Cartesian Coordinates / 2.2.2:
Vertical Mixing and Turbulence Models / 2.2.3:
Equations in Curvilinear Coordinates / 2.2.4:
Initial Conditions and Boundary Conditions / 2.2.5:
Temperature / 2.3:
Heatflux Components / 2.3.1:
Temperature Formulations / 2.3.2:
Hydrodynamic Modeling / 2.4:
Hydrodynamic Parameters and Data Requirements / 2.4.1:
Case Study I: Lake Okeechobee / 2.4.2:
Case Study II: St. Lucie Estuary and Indian River Lagoon / 2.4.3:
Sediment Transport / 3:
Properties of Sediment / 3.1:
Problems Associated with Sediment / 3.1.2:
Sediment Processes / 3.2:
Particle Settling / 3.2.1:
Horizontal Transport of Sediment / 3.2.2:
Resuspension and Deposition / 3.2.3:
Equations for Sediment Transport / 3.2.4:
Turbidity and Secchi Depth / 3.2.5:
Cohesive Sediment / 3.3:
Vertical Profiles of Cohesive Sediment Concentrations / 3.3.1:
Flocculation / 3.3.2:
Settling of Cohesive Sediment / 3.3.3:
Deposition of Cohesive Sediment / 3.3.4:
Resuspension of Cohesive Sediment / 3.3.5:
Noncohesive Sediment / 3.4:
Shields Diagram / 3.4.1:
Settling and Equilibrium Concentration / 3.4.2:
Bed Load Transport / 3.4.3:
Sediment Bed / 3.5:
Characteristics of Sediment Bed / 3.5.1:
A Model for Sediment Bed / 3.5.2:
Wind Waves / 3.6:
Wave Processes / 3.6.1:
Wind Wave Characteristics / 3.6.2:
Wind Wave Models / 3.6.3:
Combined Flows of Wind Waves and Currents / 3.6.4:
Case Study: Wind Wave Modeling in Lake Okeechobee / 3.6.5:
Sediment Transport Modeling / 3.7:
Sediment Parameters and Data Requirements / 3.7.1:
Case Study II: Blackstone River / 3.7.2:
Pathogens and Toxics / 4:
Pathogens / 4.1:
Bacteria, Viruses, and Protozoa / 4.2.1:
Pathogen Indicators / 4.2.2:
Processes Affecting Pathogens / 4.2.3:
Toxic Substances / 4.3:
Toxic Organic Chemicals / 4.3.1:
Metals / 4.3.2:
Sorption and Desorption / 4.3.3:
Fate and Transport Processes / 4.4:
Mathematical Formulations / 4.4.1:
Processes Affecting Fate and Decay / 4.4.2:
Contaminant Modeling / 4.5:
Case Study I: St. Lucie Estuary and Indian River Lagoon / 4.5.1:
Case Study II: Rockford Lake / 4.5.2:
Water Quality and Eutrophication / 5:
Eutrophication / 5.1:
Algae / 5.1.2:
Nutrients / 5.1.3:
Dissolved Oxygen / 5.1.4:
Governing Equations for Water Quality Processes / 5.1.5:
Algal Biomass and Chlorophyll / 5.2:
Equations for Algal Processes / 5.2.2:
Algal Growth / 5.2.3:
Algal Reduction / 5.2.4:
Silica and Diatom / 5.2.5:
Periphyton / 5.2.6:
Organic Carbon / 5.3:
Decomposition of Organic Carbon / 5.3.1:
Equations for Organic Carbon / 5.3.2:
Heterotrophic Respiration and Dissolution / 5.3.3:
Phosphorus / 5.4:
Equations for Phosphorus State Variables / 5.4.1:
Phosphorus Processes / 5.4.2:
Nitrogen / 5.5:
Forms of Nitrogen / 5.5.1:
Equations for Nitrogen State Variables / 5.5.2:
Nitrogen Processes / 5.5.3:
Biochemical Oxygen Demand / 5.6:
Processes and Equations of Dissolved Oxygen / 5.6.2:
Effects of Photosynthesis and Respiration / 5.6.3:
Reaeration / 5.6.4:
Chemical Oxygen Demand / 5.6.5:
Sediment Fluxes / 5.7:
Sediment Diagenesis Model / 5.7.1:
Depositional Fluxes / 5.7.2:
Diagenesis Fluxes / 5.7.3:
Silica / 5.7.4:
Coupling with Sediment Resuspension / 5.7.6:
Submerged Aquatic Vegetation / 5.8:
Equations for a SAV Model / 5.8.1:
Coupling with the Water Quality Model / 5.8.3:
Water Quality Modeling / 5.9:
Model Parameters and Data Requirements / 5.9.1:
External Sources and TMDL / 5.9.2:
Point Sources and Nonpoint Sources / 6.1:
Atmospheric Deposition / 6.2:
Wetlands and Groundwater / 6.3:
Wetlands / 6.3.1:
Groundwater / 6.3.2:
Watershed Processes and TMDL Development / 6.4:
Watershed Processes / 6.4.1:
Total Maximum Daily Load (TMDL) / 6.4.2:
Mathematical Modeling and Statistical Analyses / 7:
Mathematical Models / 7.1:
Numerical Models / 7.1.1:
Model Selection / 7.1.2:
Spatial Resolution and Temporal Resolution / 7.1.3:
Statistical Analyses / 7.2:
Statistics for Model Performance Evaluation / 7.2.1:
Correlation and Regression / 7.2.2:
Spectral Analysis / 7.2.3:
Empirical Orthogonal Function (EOF) / 7.2.4:
EOF Case Study / 7.2.5:
Model Calibration and Verification / 7.3:
Model Calibration / 7.3.1:
Model Verification and Validation / 7.3.2:
Sensitivity Analysis / 7.3.3:
Rivers / 8:
Characteristics of Rivers / 8.1:
Hydrodynamic Processes in Rivers / 8.2:
River Flow and the Manning Equation / 8.2.1:
Advection and Dispersion in Rivers / 8.2.2:
Flow over Dams / 8.2.3:
Sediment and Water Quality Processes in Rivers / 8.3:
Sediment and Contaminants in Rivers / 8.3.1:
Impacts of River Flow on Water Quality / 8.3.2:
Eutrophication and Periphyton in Rivers / 8.3.3:
Dissolved Oxygen in Rivers / 8.3.4:
River Modeling / 8.4:
Case Study I: Blackstone River / 8.4.1:
Case Study II: Susquehanna River / 8.4.2:
Lakes and Reservoirs / 9:
Characteristics of Lakes and Reservoirs / 9.1:
Key Factors Controlling a Lake / 9.1.1:
Vertical Stratification / 9.1.2:
Biological Zones in Lakes / 9.1.3:
Characteristics of Reservoirs / 9.1.4:
Lake Pollution and Eutrophication / 9.1.5:
Inflow, Outflow, and Water Budget / 9.2:
Wind Forcing and Vertical Circulations / 9.2.2:
Seasonal Variations of Stratification / 9.2.3:
Gyres / 9.2.4:
Seiches / 9.2.5:
Sediment and Water Quality Processes in Lakes / 9.3:
Sediment Deposition in Reservoirs and Lakes / 9.3.1:
Algae and Nutrient Stratifications / 9.3.2:
Dissolved Oxygen Stratifications / 9.3.3:
Internal Cycling and Limiting Functions in Shallow Lakes / 9.3.4:
Lake Modeling / 9.4:
Case Study I: Lake Tenkiller / 9.4.1:
Case Study II: Lake Okeechobee / 9.4.2:
Estuaries and Coastal Waters / 10:
Tidal Processes / 10.1:
Tides / 10.2.1:
Tidal Currents / 10.2.2:
Harmonic Analysis / 10.2.3:
Hydrodynamic Processes in Estuaries / 10.3:
Salinity / 10.3.1:
Estuarine Circulation / 10.3.2:
Stratifications of Estuaries / 10.3.3:
Flushing Time / 10.3.4:
Sediment and Water Quality Processes in Estuaries / 10.4:
Sediment Transport under Tidal Forcing / 10.4.1:
Flocculation of Cohesive Sediment and Sediment Trapping / 10.4.2:
Eutrophication in Estuaries / 10.4.3:
Estuarine and Coastal Modeling / 10.5:
Open Boundary Conditions / 10.5.1:
Case Study I: Morro Bay / 10.5.2:
Environmental Fluid Dynamics Code / 10.5.3:
Toxic Chemical Transport and Fate / A1:
Numerical Schemes / A5:
Documentation and Application Aids / A7:
Conversion Factors / Appendix B:
Contents of Electronic Files / Appendix C:
Channel Model / C1:
St. Lucie Estuary and Indian River Lagoon Model / C2:
Lake Okeechobee Environmental Model / C3:
Documentation and Utility Programs / C4:
Bibliography
Index
Foreword
Preface
Acknowledgments
24.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
25.

図書

図書
Tod A. Laursen
出版情報: Berlin ; Tokyo : Springer, c2002  xv, 454 p. ; 24 cm
シリーズ名: Engineering online library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
Useful Background for this Presentation / 1.2:
Overview / 1.3:
Finite Element Formulations in Nonlinear Solid Mechanics / 2:
Initial/Boundary Value Problems in the Kinematically Lin-ear Regime / 2.1:
Strong Form of the EBVP / 2.1.1:
Weak Form of the IBVP / 2.1.2:
The IBVP in the Finite Strain Case / 2.2:
Notation and Problem Formulation / 2.2.1:
Finite Strain Kinematics / 2.2.2:
Stress Definitions Appropriate for Large Deformations / 2.2.3:
Frame Indifference / 2.2.4:
The Strong Form in Finite Strains / 2.2.5:
The Weak Form in Finite Strains / 2.2.6:
Finite Element Discretization / 2.3:
Discretized Weak Form; Generation of Discrete Non-linear Equations / 2.3.1:
Discrete Nonlinear Equations for the Kinematically Linear Case / 2.3.2:
Solution Strategies for Spatially Discrete Systems / 2.4:
Quasistatics and Incremental Load Methods / 2.4.1:
Dynamics and Global Time Stepping Procedures / 2.4.2:
Local (Constitutive) Time Stepping Procedures / 2.4.3:
Nonlinear Equation Solving / 2.4.4:
Consistent Algorithmic Linearization of Material Re-sponse / 2.4.5:
The Kinematically Linear Contact Problem / 3:
Strong Forms in Linearized Frictionless Contact / 3.1:
The Signorini Problem: Contact with a Rigid Obstacle / 3.1.1:
The Two Body Contact Problem / 3.1.2:
Weak Statements of the Contact Problem / 3.2:
Variational Inequalities / 3.2.1:
The Quasistatic Elastic Case: Contact as a Problem of Constrained Optimization / 3.2.2:
Methods of Constraint Enforcement / 3.3:
Classical Lagrange Multiplier Methods / 3.3.1:
Penalty Methods / 3.3.2:
Augmented Lagrangian Methods / 3.3.3:
Inclusion of Friction into the Problem Description / 3.4:
Friction Kinematics and Traction Measures / 3.4.1:
Unregularized Coulomb Friction Laws / 3.4.2:
Regularization of Friction / 3.4.3:
Variational Statements Including Friction / 3.4.4:
Nonlocal Frictional Descriptions / 3.4.5:
Continuum Mechanics of Large Deformation Contact / 4:
Two Body Contact Problem Definition / 4.1:
Local Momentum Balances / 4.1.1:
Initial and Boundary Conditions / 4.1.2:
Contact Constraints in Large Deformations / 4.2:
The Gap Function as Defined by Closest Point Projection / 4.2.1:
Frictional Kinematics on Interfaces / 4.2.2:
Frame Indifference of Contact Rate Variables / 4.2.3:
Coulomb Friction in Large Sliding / 4.2.4:
Summary: Strong Form of the Large Deformation Contact Problem / 4.3:
Virtual Work Expressions Incorporating Contact / 4.4:
Contact Virtual Work: The Contact Integral / 4.4.1:
Linearization of Contact Virtual Work / 4.4.2:
Summary: Weak Form of the Large Deformation Con-tact Problem / 4.4.3:
Finite Element Implementation of Contact Interaction / 5:
Finite Dimensional Representation of Contact Interaction / 5.1:
Contact Surface Discretization / 5.1.1:
Numerical Integration of the Contact Integral / 5.1.2:
Contact Detection (Searching) / 5.1.3:
Time Discretization / 5.2:
Global time integration schemes / 5.2.1:
Temporally Discrete Frictional Laws for the Penalty Regularized Case / 5.2.2:
Contact Stiffness and Residual: Penalty Regularized Case / 5.3:
Three dimensional matrix expressions / 5.3.1:
Two dimensional matrix expressions / 5.3.2:
Augmented Lagrangian Constraint Enforcement Algorithms / 5.4:
Uzawa's Method (Method of Multipliers) / 5.4.1:
Algorithmic Symmetrization Using Augmented La-grangians / 5.4.2:
Augmented Lagrangian Discrete Force and Stiffness Expressions / 5.4.3:
Numerical Examples / 5.5:
General Demonstrations of the Computational Frame-work / 5.5.1:
Demonstrations of Augmented Lagrangian Algorith-mic Performance / 5.5.2:
Tribological Complexity in Interface Constitutive Models / 6:
Rate and State Dependent Friction / 6.1:
Motivation / 6.1.1:
One Dimensional Model Development / 6.1.2:
Model Incorporation into Convective Slip Advected Frame / 6.1.3:
Local Time Stepping Algorithm / 6.1.4:
Contact Force Vector and Stiffness Matrix / 6.1.5:
Thermomechanically Coupled Friction on Interfaces / 6.1.6:
Thermally Coupled Problem Definition / 6.2.1:
A Thermodynamically Consistent Friction Model / 6.2.3:
Variational Principle and Finite Element Implemen-tation / 6.2.4:
Thermodynamical Algorithmic Consistency / 6.2.5:
Constitutive Framework for Bulk Continua / 6.3.1:
Thermomechanical Interface Model Framework / 6.3.2:
A Priori Stability Estimates for Dynamic Frictional Contact / 6.3.3:
A New Partitioned Scheme for Thermomechanical Contact / 6.3.4:
Algorithmic Treatment of Contact Conditions According to the Adiabatic Split / 6.3.5:
Energy-Momentum Approaches to Impact Mechanics / 7:
Energy Stability of Traditional Schemes / 7.1:
A Model System / 7.1.1:
The Concept of Energy Stability / 7.1.2:
Influence of Contact Constraints on System Energy / 7.1.3:
Energy-Momentum Methods for Elastodynamics / 7.2:
Conservation Laws / 7.2.1:
Conservative Discretization Schemes / 7.2.2:
Energy-Momentum Algorithmic Treatment of Prictionless Impact / 7.3:
Discrete Contact Constraints / 7.3.1:
Spatial Discretization and Implementation / 7.3.2:
Introduction of Frictional and Bulk Dissipation: Energy Con-sistency / 7.3.3:
Coulomb Friction Model Formulation / 7.4.1:
Local Split of the Coulomb Model / 7.4.2:
Algorithmic Formulation / 7.4.3:
Energy Consistent Treatment of Bulk Inelasticity / 7.4.4:
Numerical Examples With Friction and Inelasticity / 7.4.5:
EM Algorithms Involving a Discontinuous Velocity Update / 7.5:
Temporally Discontinuous Velocity Update / 7.5.1:
Reexamination of Conservation Conditions / 7.5.2:
Contact Constraints / 7.5.3:
Summary of the Algorithm / 7.5.4:
Emerging Paradigms for Contact Surface Discretization / 7.5.5:
Contact Smoothing / 8.1:
An Alternative Variational Framework / 8.1.1:
Smoothing Strategies in Two Dimensions / 8.1.2:
Smoothing Strategies in Three Dimensions / 8.1.3:
Mortar-Finite Element Methods for Contact Description / 8.1.4:
Tied Contact and the Role of Mortar Formulations in Convergence / 8.2.1:
A Mortar-Finite Element Formulation of Frictional Contact / 8.2.2:
Numerical Examples of Mortar Treatment of Frictional Contact / 8.2.3:
References
Index
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
26.

図書

図書
Yoshihito Osada, Danilo E. De Rossi (eds.)
出版情報: Berlin ; New York : Springer, c2000  xix, 419 p. ; 24 cm
シリーズ名: Macromolecular systems, materials approach
所蔵情報: loading…
目次情報: 続きを見る
Ion Conducting Polymer Sensors / Y. SakaiChapter 1:
Introduction / 1.1:
Humidity Sensors / 1.2:
Humidity Sensors Using Polymers Containing Inorganic Salts / 1.2.1:
Humidity Sensors Using Polymer Electrolytes / 1.2.2:
Electrolyte Homopolymers / 1.2.2.1:
Copolymers / 1.2.2.2:
Graft Copolymers / 1.2.2.3:
Hydrophobic Polymers With Added Ionic Groups / 1.2.2.4:
Crosslinked Polymer Electrolytes / 1.2.2.5:
Gas Sensors / 1.3:
References
Ultrathin Films for Sensorics and Molecular Electronics / L. BrehmerChapter 2:
Molecular Electronics and Nanosensorics / 2.1:
Ultrathin Films and Supramolecular Architectures / 2.2:
State of the Art / 2.2.1:
Langmuir- and Langmuir-Blodgett Films: Formation and Structure Investigation / 2.2.2:
Langmuir Films / 2.2.2.1:
Formation of Langmuir-Blodgett Films / 2.2.2.2:
Structure Investigation of LB-Films / 2.2.2.3:
Thin Film Sensorics / 2.3:
Advantages of Ultrathin Films for Sensorics / 2.3.1:
Ultrathin Pyrosensors / 2.3.2:
Definitions and Measurements / 2.3.2.1:
Rationale for Using Thin Organic Films for Pyroelectric Devices / 2.3.2.3:
Pyroelectric Cells and Measuring Techniques / 2.3.2.4:
Pyroelectricity of Organic Thin Films / 2.3.2.5:
Polymer Thin Film Pyroelectricity / 2.3.2.6:
Pyroelectric Measurements / 2.3.2.7:
Materials and Experimental Set-Up / 2.3.2.8:
Sample Preparation and Experimental Procedure / 2.3.2.9:
Pyroelectric Response and Long-Term Stability / 2.3.2.10:
Control of Pyroelectric Response / 2.3.2.11:
Humidity LB Polyelectrolyte Sensors / 2.3.3:
Commercial Application of LB Film Devices / 2.3.4:
Molecular Electronic Devices / 2.4:
Problems and Opportunities / 2.4.1:
Optically Switchable Thin Films / 2.4.2:
E-Z-Switching of Azo-Compounds / 2.4.2.1:
Molecular Rectifier / 2.4.3:
Electroluminescence of Organic Thin Films / 2.4.4:
Ultrathin Films as Electron beam Resists / 2.4.5:
Outlook / 2.5:
List of Abbreviations
Polymers for Optical Fiber Sensors / F. Baldini ; S. BracciChapter 3:
The Optical Fiber Sensor / 3.1:
The Optoelectronic System / 3.2.1:
The Optical Link / 3.2.2:
The Optode / 3.2.3:
Polymers in Optical Fiber Chemical Sensors / 3.3:
Polymer Functions / 3.4:
Polymers as Solid Supports / 3.4.1:
Polymers as Selective Elements / 3.4.2:
Polymers as Chemical Transducers / 3.4.3:
Conclusions / 3.5:
List of Symbols and Abbreviations
Smart Ferroelectric Ceramic/Polymer Composite Sensors / D.-K. Das-GuptaChapter 4:
Basic Concepts / 4.1:
Piezoelectricity / 4.2.1:
Pyroelectricity / 4.2.2:
Ferroelectric Ceramics / 4.2.3:
Ferroelectric Polymers / 4.2.4:
Ferroelectric Ceramic/Polymer Composites / 4.3:
Connectivity / 4.3.1:
0-3 Connectivity Composites and their Fabrication / 4.3.2:
1-3 Connectivity Composite Fabrication / 4.3.3:
3-3 Connectivity Composite Preparation / 4.3.4:
Preparation of Composites with Mixed Connectivity (0-3 and 1-3) / 4.3.5:
Poling Methods of Ceramic/Polymer Composites / 4.4:
D.C. Poling / 4.4.1:
A.C. Poling / 4.4.2:
Piezoelectric Properties of Ceramic/Polymer Composites / 4.5:
Pyroelectric Properties of Ceramic/Polymer Composites with 0-3 Connectivities / 4.6:
Models of 0-3 and Mixed Connectivity Composites / 4.7:
Yamada Model for 0-3 Composites / 4.7.1:
Furukaura Model for 0-3 Composites / 4.7.2:
Parallel and Series Connected Two-Dimensional Structure / 4.7.3:
Applications of Ceramic/Polymer Composite Sensors / 4.8:
Composite Transducers with 1-3 Connectivity / 4.8.1:
Composite Transducers with 0-3 and Mixed Connectivity / 4.8.2:
Sensing Volatile Chemicals Using Conducting Polymer Arrays / R. A. Bailey ; K. C. PersaudChapter 5:
Gas Sensor Technologies / 5.1:
Metal Oxide Semiconductor (MOS) Sensors / 5.1.1.1:
Quartz Crystal Microbalance (QCM) Sensors / 5.1.1.2:
Surface Acoustic Wave (SAW) Sensors / 5.1.1.3:
Amperometric Sensors / 5.1.1.4:
Pellistor Sensors / 5.1.1.5:
Metal-Substituted Phthalocyanine Sensors / 5.1.1.6:
Organic Conducting Polymer (OCP) Gas Sensors / 5.1.1.7:
Other Sensor Technologies / 5.1.1.8:
Combination Gas Sensors / 5.1.1.9:
Implementation of a Conducting Polymer Sensor Array / 5.2:
Conducting Polymer Sensors / 5.2.1:
Preparation of Polypyrrole / 5.2.1.1:
Electrochemical Synthesis / 5.2.1.1.1:
Chemical Synthesis / 5.2.1.1.2:
Polymerisation Mechanism / 5.2.1.2:
Factors Affecting the Polymerisation Process / 5.2.1.2.1:
Electrochemical Conditions / 5.2.1.2.1.1:
Counterion Effects / 5.2.1.2.1.2:
Other Effects / 5.2.1.2.1.3:
Structure of Polypyrrole / 5.2.2:
Conductance Mechanism / 5.2.3:
Classical Band Theory / 5.2.3.1:
Conducting Polymer Mechanisms / 5.2.3.2:
Composite Polymers / 5.2.4:
Gas Sensing / 5.3:
Gas Sampling System / 5.3.1:
Data Acquisition Hardware / 5.3.2:
Data Acquisition and Manipulation Software / 5.3.3:
Pattern Recognition Techniques / 5.3.4:
Linear Solvation Energy Relationships (LSER) and the Investigation of Gas Sensor Responses / 5.4:
Conclusion / 5.5:
Molecular Machines Useful for the Design of Chemosensors / S. Shinkai ; M. Takeuchi ; A. IkedaChapter 6:
Chromogenic Crown Ethers / 6.1:
Photoresponsive Crown Actuators in Action for Ion and Molecule Recognition / 6.3:
Cyclodextrins Modified as Molecule Sensors / 6.4:
Calixarenes Modified as Ion and Molecule Sensors / 6.5:
New Artificial Sugar Sensing Systems in which the Boronic Acid-Diol Interaction is Combined with Photoinduced Electron-Transfer (PET) / 6.6:
Conducting Polymer Actuators: Properties and Modeling / A. Mazzoldi ; A. Della Santa ; D. De Rossi6.7:
Working Principles and Actuator Configurations / 7.1:
Figures of Merit of a CP Actuator / 7.3:
Actuators in the Literature / 7.4:
Materials and Techniques for Fabrication / 7.5:
Films / 7.5.1:
Film Electrochemical Deposition / 7.5.1.1:
Film Preparation by Casting / 7.5.1.2:
Fibers / 7.5.2:
All Polymer Actuators / 7.5.3:
Dry PANi Fiber Actuator / 7.5.3.1:
Dry PPyClO4 Film Actuator / 7.5.3.2:
Continuum Electromechanics of CP Actuators / 7.6:
Introduction to the Continuum Model / 7.6.1:
The Continuum Approach / 7.6.2:
Configuration of Study / 7.6.3:
Mechanical Equations / 7.6.4:
Electrochemical Equations / 7.6.5:
Relations Between the Charges and Equations for the Redox Reactions / 7.6.5.1:
Motion Equations of Ionic Charges / 7.6.5.2:
Relation Between Current and Potential in the Solid Matrix / 7.6.5.3:
Continuity Equations / 7.6.5.4:
Resolvability / 7.6.5.5:
Resolution and Validation of the Model in the Passive Case / 7.6.6:
Model Resolution / 7.6.6.1:
Experimental Determination of the Parameters Considered in the Passive Case / 7.6.6.2:
Passive Continuum Model Testing / 7.6.6.3:
Empirical Corrections / 7.6.6.3.1:
Lumped Parameter Description of a PC Actuator / 7.7:
Model / 7.7.1:
Parameters Estimation and Validation / 7.7.2:
Passive Condition / 7.7.2.1:
Active Condition / 7.7.2.2:
Electrically Induced Strain in Polymer Gels Swollenwith Non-Ionic Organic Solvents / T. Hirai ; M. Hirai7.8:
Electrically Induced Strain in PVA-DMSO Gel / 8.1:
Electrostrictive Motion of PVA-DMSO Gel / 8.2.1:
Detailed Feature of the Electrically Induced Action of the PVA-DMSO Gel / 8.2.2:
Comparison with PAAM-DMSO Gel / 8.2.3:
Effect of Crosslinks on the Electrostrictive Strain / 8.3:
Preparation Method of the DMSO Gel / 8.3.1:
Effect of Solvent Content on the Performance of the Actuation / 8.3.2:
Structural Change in PVA-DMSO Gel Induced by Electric Field / 8.4:
Orientation of DMSO by Electric Field / 8.4.1:
In PVA-DMSO Gel / 8.4.1.1:
Comparison with PVC-DMSO Gel / 8.4.1.2:
Electrically Induced Structure Change Observed by Small Angle X-Ray Scattering (SAXS) / 8.4.2:
Scattering Functions / 8.4.2.1:
Distance Distribution Functions / 8.4.2.2:
Persistence Length and Correlation Length / 8.4.2.3:
On the Mechanism of the Electrostrictive Action and Concluding Remarks (for Future Development) / 8.5:
Actuating Devices of Liquid-Crystalline Polymers / R. KishiChapter 9:
Lyotropic Liquid-Crystalline Polymer Gels / 9.1:
Poly(?-benzyl L-glutamate) Gels Having Cholesteric Liquid-Crystalline Order / 9.2.1:
Poly(?-benzyl L-glutamate) Gels Having Nematic Liquid-Crystalline Order / 9.2.2:
Optical Anisotropy of Poly(?-benzyl L-glutamate) Gels Having Cholesteric Liquid-Crystalline Order / 9.2.3:
Poly(L-glutamic acid) Hydrogels Having Liquid-Crystalline Order / 9.2.4:
Thermotropic Liquid-Crystalline Polymer Gels / 9.3:
Electrical Deformation of Side-Chain Type Liquid-Crystalline Polymer Gels / 9.3.1:
Electrorheological Properties of Thermotropic Liquid-Crystalline Materials / 9.3.2:
Gel Actuators / J. P. Gong ; Y. Osada9.4:
Shape Memory Gel / 10.1:
Spontaneous Motion of Polymer Gels on Water / 10.3:
Electrical Contraction and Tactile-Sensing System / 10.4:
Gel Actuator Based on Molecular Assembly Reactions / 10.5:
Gel Pendulum / 10.5.1:
Gel Looper / 10.5.2:
Gel-Eel / 10.5.3:
Future Prospects / 10.6:
Electrochemomechanical Devices Based on Conducting Polymers / T. F. OteroChapter 11:
Approach Through Electrochemical Systems / 11.1:
Artificial Molecular Muscles in the Literature / 11.3:
Conducting Polymers: a Short Introduction / 11.4:
Redox Processes in Conducting Polymers and Related Properties / 11.5:
Artificial Muscles from Conducting Polymers / 11.6:
Bilayer Devices / 11.7:
Electrochemopositioning Devices / 11.8:
The Working Muscle / 11.9:
Triple Layer Devices / 11.10:
Movement Rate Control / 11.11:
Actuator and Sensor / 11.12:
Lifetime and Degradation Processes / 11.13:
Three-Dimensional Electrochemical Processes and Biological Mimicking / 11.14:
Hydro-Organic Batteries / 11.14.1:
Color Mimicking / 11.14.2:
Nerve Interfaces / 11.14.3:
Smart Membranes / 11.14.4:
Mechanochemoelectrical Devices / 11.14.5:
Theoretical Approaches / 11.15:
Similarities with Natural Muscles / 11.16:
The Future / 11.17:
Ion-Exchange Polymer-Metal Composites as Biomimetic Sensors and Actuators / M. ShahinpoorChapter 12:
Biomimetic Sensing Capability of IPMC / 12.1:
General Considerations / 12.2.1:
Theoretical Analysis / 12.2.2:
Experimental Procedures, Results, and Discussion / 12.2.3:
Dynamic Sensing / 12.2.4:
Biomimetic Actuation Properties of IPMCs / 12.2.5:
Development of Muscle Actuators / 12.3.1:
Muscle Actuator for Robotic Applications / 12.3.3:
Design of Linear and Platform Type Actuators / 12.3.4:
Large Amplitude Vibrational Response of IPMCs / 12.3.5:
Theoretical Model / 12.4.1:
Experimental Observations / 12.4.3:
Ion Conducting Polymer Sensors / Y. SakaiChapter 1:
Introduction / 1.1:
Humidity Sensors / 1.2:
27.

図書

図書
Sushmita Mitra, Tinku Acharya
出版情報: Hoboken, N.J. : John Wiley, c2003  xviii, 401 p., [2] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Data Mining / 1:
Introduction / 1.1:
Knowledge Discovery and Data Mining / 1.2:
Data Compression / 1.3:
Information Retrieval / 1.4:
Text Mining / 1.5:
Web Mining / 1.6:
Image Mining / 1.7:
Classification / 1.8:
Clustering / 1.9:
Rule Mining / 1.10:
String Matching / 1.11:
Bioinformatics / 1.12:
Data Warehousing / 1.13:
Applications and Challenges / 1.14:
Conclusions and Discussion / 1.15:
References
Soft Computing / 2:
What is Soft Computing? / 2.1:
Relevance / 2.2.1:
Fuzzy sets / 2.2.2:
Neural networks / 2.2.3:
Neuro-fuzzy computing / 2.2.4:
Genetic algorithms / 2.2.5:
Rough sets / 2.2.6:
Wavelets / 2.2.7:
Role of Fuzzy Sets in Data Mining / 2.3:
Granular computing / 2.3.1:
Association rules / 2.3.3:
Functional dependencies / 2.3.4:
Data summarization / 2.3.5:
Image mining / 2.3.6:
Role of Neural Networks in Data Mining / 2.4:
Rule extraction / 2.4.1:
Rule evaluation / 2.4.2:
Clustering and self-organization / 2.4.3:
Regression / 2.4.4:
Information retrieval / 2.4.5:
Role of Genetic Algorithms in Data Mining / 2.5:
Role of Rough Sets in Data Mining / 2.5.1:
Role of Wavelets in Data Mining / 2.7:
Role of Hybridizations in Data Mining / 2.8:
Multimedia Data Compression / 2.9:
Information Theory Concepts / 3.1:
Discrete memoryless model and entropy / 3.2.1:
Noiseless Source Coding Theorem / 3.2.2:
Classification of Compression Algorithms / 3.3:
A Data Compression Model / 3.4:
Measures of Compression Performance / 3.5:
Compression ratio and bits per sample / 3.5.1:
Quality metric / 3.5.2:
Coding complexity / 3.5.3:
Source Coding Algorithms / 3.6:
Run-length coding / 3.6.1:
Huffman coding / 3.6.2:
Principal Component Analysis for Data Compression / 3.7:
Principles of Still Image Compression / 3.8:
Predictive coding / 3.8.1:
Transform coding / 3.8.2:
Wavelet coding / 3.8.3:
Image Compression Standard: JPEG / 3.9:
The JPEG Lossless Coding Algorithm / 3.10:
Baseline JPEG Compression / 3.11:
Color space conversion / 3.11.1:
Source image data arrangement / 3.11.2:
The baseline compression algorithm / 3.11.3:
Decompression process in baseline JPEG / 3.11.4:
JPEG2000: Next generation still picture coding standard / 3.11.5:
Text Compression / 3.12:
The LZ77 algorithm / 3.12.1:
The LZ78 algorithm / 3.12.2:
The LZW algorithm / 3.12.3:
Other applications of Lempel-Ziv coding / 3.12.4:
Some definitions and preliminaries / 3.13:
String matching problem / 4.1.2:
Brute force string matching / 4.1.3:
Linear-Order String Matching Algorithms / 4.2:
String matching with finite automata / 4.2.1:
Knuth-Morris-Pratt algorithm / 4.2.2:
Boyer-Moore algorithm / 4.2.3:
Boyer-Moore-Horspool algorithm / 4.2.4:
Karp-Rabin algorithm / 4.2.5:
String Matching in Bioinformatics / 4.3:
Approximate String Matching / 4.4:
Basic definitions / 4.4.1:
Wagner-Fischer algorithm for computation of string distance / 4.4.2:
Text search with k-differences / 4.4.3:
Compressed Pattern Matching / 4.5:
Classification in Data Mining / 4.6:
Decision Tree Classifiers / 5.1:
ID3 / 5.2.1:
IBM IntelligentMiner / 5.2.2:
Serial PaRallelizable INduction of decision Trees (SPRINT) / 5.2.3:
RainForest / 5.2.4:
Overfitting / 5.2.5:
PrUning and BuiLding Integrated in Classification (PUBLIC) / 5.2.6:
Extracting classification rules from trees / 5.2.7:
Fusion with neural networks / 5.2.8:
Bayesian Classifiers / 5.3:
Bayesian rule for minimum risk / 5.3.1:
Naive Bayesian classifier / 5.3.2:
Bayesian belief network / 5.3.3:
Instance-Based Learners / 5.4:
Minimum distance classifiers / 5.4.1:
k-nearest neighbor (k-NN) classifier / 5.4.2:
Locally weighted regression / 5.4.3:
Radial basis functions (RBFs) / 5.4.4:
Case-based reasoning (CBR) / 5.4.5:
Granular computing and CBR / 5.4.6:
Support Vector Machines / 5.5:
Fuzzy Decision Trees / 5.6:
Rule generation and evaluation / 5.6.1:
Mapping of rules to fuzzy neural network / 5.6.3:
Results / 5.6.4:
Clustering in Data Mining / 5.7:
Distance Measures and Symbolic Objects / 6.1:
Numeric objects / 6.2.1:
Binary objects / 6.2.2:
Categorical objects / 6.2.3:
Symbolic objects / 6.2.4:
Clustering Categories / 6.3:
Partitional clustering / 6.3.1:
Hierarchical clustering / 6.3.2:
Leader clustering / 6.3.3:
Scalable Clustering Algorithms / 6.4:
Clustering large applications / 6.4.1:
Density-based clustering / 6.4.2:
Grid-based methods / 6.4.3:
Other variants / 6.4.5:
Soft Computing-Based Approaches / 6.5:
Evolutionary algorithms / 6.5.1:
Clustering with Categorical Attributes / 6.6:
Sieving Through Iterated Relational Reinforcements (STIRR) / 6.6.1:
Robust Hierarchical Clustering with Links (ROCK) / 6.6.2:
c-modes algorithm / 6.6.3:
Hierarchical Symbolic Clustering / 6.7:
Conceptual clustering / 6.7.1:
Agglomerative symbolic clustering / 6.7.2:
Cluster validity indices / 6.7.3:
Association Rules / 6.7.4:
Candidate Generation and Test Methods / 7.1:
A priori algorithm / 7.2.1:
Partition algorithm / 7.2.2:
Some extensions / 7.2.3:
Depth-First Search Methods / 7.3:
Interesting Rules / 7.4:
Multilevel Rules / 7.5:
Online Generation of Rules / 7.6:
Generalized Rules / 7.7:
Scalable Mining of Rules / 7.8:
Other Variants / 7.9:
Quantitative association rules / 7.9.1:
Temporal association rules / 7.9.2:
Correlation rules / 7.9.3:
Localized associations / 7.9.4:
Optimized association rules / 7.9.5:
Fuzzy Association Rules / 7.10:
Rule Mining with Soft Computing / 7.11:
Connectionist Rule Generation / 8.1:
Neural models / 8.2.1:
Neuro-fuzzy models / 8.2.2:
Using knowledge-based networks / 8.2.3:
Modular Hybridization / 8.3:
Rough fuzzy MLP / 8.3.1:
Modular knowledge-based network / 8.3.2:
Evolutionary design / 8.3.3:
Multimedia Data Mining / 8.3.4:
Keyword-based search and mining / 9.1:
Text analysis and retrieval / 9.2.2:
Mathematical modeling of documents / 9.2.3:
Similarity-based matching for documents and queries / 9.2.4:
Latent semantic analysis / 9.2.5:
Soft computing approaches / 9.2.6:
Content-Based Image Retrieval / 9.3:
Color features / 9.3.2:
Texture features / 9.3.3:
Shape features / 9.3.4:
Topology / 9.3.5:
Multidimensional indexing / 9.3.6:
Results of a simple CBIR system / 9.3.7:
Video Mining / 9.4:
MPEG-7: Multimedia content description interface / 9.4.1:
Content-based video retrieval system / 9.4.2:
Search engines / 9.5:
Bioinformatics: An Application / 9.5.2:
Preliminaries from Biology / 10.1:
Deoxyribonucleic acid / 10.2.1:
Amino acids / 10.2.2:
Proteins / 10.2.3:
Microarray and gene expression / 10.2.4:
Information Science Aspects / 10.3:
Protein folding / 10.3.1:
Protein structure modeling / 10.3.2:
Genomic sequence analysis / 10.3.3:
Homology search / 10.3.4:
Clustering of Microarray Data / 10.4:
First-generation algorithms / 10.4.1:
Second-generation algorithms / 10.4.2:
Role of Soft Computing / 10.5:
Predicting protein secondary structure / 10.6.1:
Predicting protein tertiary structure / 10.6.2:
Determining binding sites / 10.6.3:
Classifying gene expression data / 10.6.4:
Index / 10.7:
About the Authors
Preface
Introduction to Data Mining / 1:
Introduction / 1.1:
28.

図書

図書
Song Y. Yan ; foreword by Martin E. Hellman
出版情報: Berlin : Springer-Verlag, c2002  xxii, 435 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
Algebraic Preliminaries / 1.1.2:
Theory of Divisibility / 1.2:
Basic Properties of Divisibility / 1.2.1:
Fundamental Theorem of Arithmetic / 1.2.2:
Mersenne Primes and Fermat Numbers / 1.2.3:
Euclid's Algorithm / 1.2.4:
Continued Fractions / 1.2.5:
Diophantine Equations / 1.3:
Basic Concepts of Diophantine Equations / 1.3.1:
Linear Diophantine Equations / 1.3.2:
Pell's Equations / 1.3.3:
Arithmetic Functions / 1.4:
Multiplicative Functions / 1.4.1:
Functions ?(n), ?(n) and s(n) / 1.4.2:
Perfect, Amicable and Sociable Numbers / 1.4.3:
Functions ?(n), ?(n) and ?(n) / 1.4.4:
Distribution of Prime Numbers / 1.5:
Prime Distribution Function ?(x) / 1.5.1:
Approximations of ?(x) by x/ ln x / 1.5.2:
Approximations of ?(x) by Li(x) / 1.5.3:
The Riemann ?-Function ?(s) / 1.5.4:
The nth Prime / 1.5.5:
Distribution of Twin Primes / 1.5.6:
The Arithmetic Progression of Primes / 1.5.7:
Theory of Congruences / 1.6:
Basic Properties of Congruences / 1.6.1:
Modular Arithmetic / 1.6.2:
Linear Congruences / 1.6.3:
The Chinese Remainder Theorem / 1.6.4:
High-Order Congruences / 1.6.5:
Legendre and Jacobi Symbols / 1.6.6:
Orders and Primitive Roots / 1.6.7:
Indices and kth Power Residues / 1.6.8:
Arithmetic of Elliptic Curves / 1.7:
Basic Concepts of Elliptic Curves / 1.7.1:
Geometric Composition Laws of Elliptic Curves / 1.7.2:
Algebraic Computation Laws for Elliptic Curves / 1.7.3:
Group Laws on Elliptic Curves / 1.7.4:
Number of Points on Elliptic Curves / 1.7.5:
Bibliographic Notes and Further Reading / 1.8:
Algorithmic Number Theory / 2:
What is Algorithmic Number Theory? / 2.1:
E ective Computability / 2.1.2:
Computational Complexity / 2.1.3:
Complexity of Number-Theoretic Algorithms / 2.1.4:
Fast Modular Exponentiations / 2.1.5:
Fast Group Operations on Elliptic Curves / 2.1.6:
Algorithms for Primality Testing / 2.2:
Deterministic and Rigorous Primality Tests / 2.2.1:
Fermat's Pseudoprimality Test / 2.2.2:
Strong Pseudoprimality Test / 2.2.3:
Lucas Pseudoprimality Test / 2.2.4:
Elliptic Curve Test / 2.2.5:
Historical Notes on Primality Testing / 2.2.6:
Algorithms for Integer Factorization / 2.3:
Complexity of Integer Factorization / 2.3.1:
Trial Division and Fermat Method / 2.3.2:
Legendre's Congruence / 2.3.3:
Continued FRACtion Method (CFRAC) / 2.3.4:
Quadratic and Number Field Sieves (QS/NFS) / 2.3.5:
Polland's "rho" and "p - 1" Methods / 2.3.6:
Lenstra's Elliptic Curve Method (ECM) / 2.3.7:
Algorithms for Discrete Logarithms / 2.4:
Shanks' Baby-Step Giant-Step Algorithm / 2.4.1:
Silver{Pohlig{Hellman Algorithm / 2.4.2:
Subexponential Algorithms / 2.4.3:
Algorithm for the Root Finding Problem / 2.4.4:
Quantum Number-Theoretic Algorithms / 2.5:
Quantum Information and Computation / 2.5.1:
Quantum Computability and Complexity / 2.5.2:
Quantum Algorithm for Integer Factorization / 2.5.3:
Quantum Algorithms for Discrete Logarithms / 2.5.4:
Miscellaneous Algorithms in Number Theory / 2.6:
Algorithms for Computing ?(x) / 2.6.1:
Algorithms for Generating Amicable Pairs / 2.6.2:
Algorithms for Verifying Goldbach's Conjecture / 2.6.3:
Algorithm for Finding Odd Perfect Numbers / 2.6.4:
Applied Number Theory / 2.7:
Why Applied Number Theory? / 3.1:
Computer Systems Design / 3.2:
Representing Numbers in Residue Number Systems / 3.2.1:
Fast Computations in Residue Number Systems / 3.2.2:
Residue Computers / 3.2.3:
Complementary Arithmetic / 3.2.4:
Hashing Functions / 3.2.5:
Error Detection and Correction Methods / 3.2.6:
Random Number Generation / 3.2.7:
Cryptography and Information Security / 3.3:
Secret-Key Cryptography / 3.3.1:
Data/Advanced Encryption Standard (DES/AES) / 3.3.3:
Public-Key Cryptography / 3.3.4:
Discrete Logarithm Based Cryptosystems / 3.3.5:
RSA Public-Key Cryptosystem / 3.3.6:
Quadratic Residuosity Cryptosystems / 3.3.7:
Elliptic Curve Public-Key Cryptosystems / 3.3.8:
Digital Signatures / 3.3.9:
Digital Signature Algorithm/Standard (DSA/DSS) / 3.3.10:
Database Security / 3.3.11:
Secret Sharing / 3.3.12:
Internet/Web Security and Electronic Commerce / 3.3.13:
Steganography / 3.3.14:
Quantum Cryptography / 3.3.15:
Bibliography / 3.4:
Index
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
29.

図書

図書
George Greaves
出版情報: Berlin ; Tokyo : Springer, c2001  xii, 304 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 43
所蔵情報: loading…
目次情報: 続きを見る
Introduction
The Structure of Sifting Arguments / 1:
The Sieves of Eratosthenes and Legendre / 1.1:
The Contribution of Eratosthenes / 1.1.1:
Legendre's Sieve / 1.1.2:
An Estimate for n(X) / 1.1.3:
The Distribution of Primes / 1.1.4:
Examples of Sifting Situations / 1.2:
Notations / 1.2.1:
The Integers in an Interval (Y - X, Y ) / 1.2.2:
Numbers Given by Polynomial Expressions / 1.2.3:
Arithmetic Progressions / 1.2.4:
Sums of Two Squares / 1.2.5:
Polynomials with Prime Arguments / 1.2.6:
A General Formulation of a Sifting Situation / 1.3:
The Basic Formulation / 1.3.1:
Legendre's Sieve in a General Setting / 1.3.2:
A Generalised Formulation / 1.3.3:
A Further Generalisation / 1.3.4:
Sifting Density / 1.3.5:
The Sifting Limit Β(k) / 1.3.6:
Composition of Sieves / 1.3.7:
Notes on Chapter 1 / 1.4:
Selberg's Upper Bound Method / 2:
The Sifting Apparatus / 2.1:
Selberg's Theorem / 2.1.1:
The Numbers (lambda)(d) / 2.1.2:
A Simple Application / 2.1.3:
General Estimates of G(x) and E(D, P) / 2.2:
An Estimate by Rankin's Device / 2.2.1:
Asymptotic Formulas / 2.2.2:
The Error Term / 2.2.3:
Applications / 2.3:
Prime Twins and Goldbach's Problem / 2.3.1:
Polynomial Sequences / 2.3.3:
Notes on Chapter 2 / 2.4:
Combinatorial Methods / 3:
The Construction of Combinatorial Sieves / 3.1:
Preliminary Discussion of Brun's Ideas / 3.1.1:
Fundamental Inequalities and Identities / 3.1.2:
Buchstab's Identity / 3.1.3:
The Combinatorial Sieve Lemma / 3.1.4:
Brun's Pure Sieve / 3.2:
Inequalities and Identities / 3.2.1:
The "Pure Sieve" Theorem / 3.2.2:
A Corollary / 3.2.3:
Prime Twins / 3.2.4:
A Modern Edition of Brun's Sieve / 3.3:
Rosser's Choice of X / 3.3.1:
A Technical Estimate / 3.3.2:
A Simplifying Approximation / 3.3.3:
A Combinatorial Sieve Theorem / 3.3.4:
Brun's Version of his Method / 3.3.5:
Brun's Choice of x / 3.4.1:
The Estimations / 3.4.2:
The Result / 3.4.3:
Notes on Chapter 3 / 3.5:
Rosser's Sieve / 4:
Approximations by Continuous Functions / 4.1:
The Recurrence Relations / 4.1.1:
Partial Summation / 4.1.2:
The Leading Terms / 4.1.3:
The Functions F and f / 4.2:
The Difference-Differential Equations / 4.2.1:
The Adjoint Equation and the Inner Product / 4.2.2:
Solutions of the Adjoint Equation / 4.2.3:
Particular Values of F(s) and f(s) / 4.2.4:
Asymptotic Analysis as k -> $(infinity$) / 4.2.5:
The Convergence Problem / 4.3:
The Auxiliary Functions / 4.3.1:
Adjoints and Inner Products / 4.3.2:
The Case k
A Sieve Theorem Following Rosser / 4.4:
The Case k >/= 1/2: a First Result / 4.4.1:
Theorem 1 when k
An Improved Version of Proposition 1 / 4.4.3:
A Two-Sided Estimate / 4.4.4:
Extremal Examples / 4.5:
The Linear Case / 4.5.1:
The Case k=1/2 / 4.5.2:
Notes on Chapter 4 / 4.6:
The Sieve with Weights / 5:
Simpler Weighting Devices / 5.1:
Logarithmic Weights / 5.1.1:
Modified Logarithmic Weights / 5.1.2:
Some Applications / 5.1.3:
More Elaborate Weighted Sieves / 5.2:
An Improved Weighting Device / 5.2.1:
Buchstab's Weights / 5.2.2:
A Weighted Sieve Following Rosser / 5.3:
Combining Sieving and Weighting / 5.3.1:
The Reduction Identities / 5.3.2:
An Identity for the Main Term / 5.3.3:
The Estimate for the Main Term / 5.3.4:
Notes on Chapter 5 / 5.4:
The Remainder Term in the Linear Sieve / 6:
The Bilinear Nature of Rosser's Construction / 6.1:
The Factorisation of x.d / 6.1.1:
Discretisations of Rosser's Sieve / 6.1.2:
Specification of Details / 6.1.3:
The Leading Contributions to the Main Term / 6.1.4:
The Remainder Term / 6.1.5:
Sifting Short Intervals / 6.2:
The Smoothed Formulation / 6.2.1:
The Remainder Sums / 6.2.2:
Trigonometrical Sums / 6.2.3:
Notes on Chapter 6 / 6.3:
Lower Bound Sieves when k > 1 / 7:
An Extension of Selberg's Upper Bound / 7.1:
The Integral Equation and the Function $(sigma$) (s) / 7.1.1:
The Estimation of G(s) / 7.1.2:
A Lower Bound Sieve via Buchstab's Identity / 7.2:
Buchstab's Iterations / 7.2.1:
The Buchstab Transform of the $(lambda$)2 Method / 7.2.2:
The Sifting Limit as k -> $(infinity$) / 7.2.3:
Selberg's a2 a" Method / 7.3:
The Improved Sifting Limit for Large k / 7.3.1:
Notes on Chapter 7 / 7.4:
References
Index
Introduction
The Structure of Sifting Arguments / 1:
The Sieves of Eratosthenes and Legendre / 1.1:
30.

図書

図書
Clarence W. de Silva
出版情報: Boca Raton, Fla. : CRC Press, c2007  671 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
Instrumentation and Design / 1.2.1:
Modeling and Design / 1.2.2:
Control System Architectures / 1.3:
Feedback Control with PID Action / 1.3.1:
Digital Control / 1.3.2:
Feed-Forward Control / 1.3.3:
Programmable Logic Controllers / 1.3.4:
PLC Hardware / 1.3.4.1:
Distributed Control / 1.3.5:
A Networked Application / 1.3.5.1:
Hierarchical Control / 1.3.6:
Organization of the Book / 1.4:
Problems
Component Interconnection and Signal Conditioning / 2:
Component Interconnection / 2.1:
Impedance Characteristics / 2.2:
Cascade Connection of Devices / 2.2.1:
Impedance Matching / 2.2.2:
Impedance Matching in Mechanical Systems / 2.2.3:
Amplifiers / 2.3:
Operational Amplifier / 2.3.1:
Use of Feedback in Op-Amps / 2.3.1.1:
Voltage, Current, and Power Amplifiers / 2.3.2:
Instrumentation Amplifiers / 2.3.3:
Differential Amplifier / 2.3.3.1:
Common Mode / 2.3.3.2:
Amplifier Performance Ratings / 2.3.4:
Common-Mode Rejection Ratio / 2.3.4.1:
AC-Coupled Amplifiers / 2.3.4.2:
Ground-Loop Noise / 2.3.5:
Analog Filters / 2.4:
Passive Filters and Active Filters / 2.4.1:
Number of Poles / 2.4.1.1:
Low-Pass Filters / 2.4.2:
Low-Pass Butterworth Filter / 2.4.2.1:
High-Pass Filters / 2.4.3:
Band-Pass Filters / 2.4.4:
Resonance-Type Band-Pass Filters / 2.4.4.1:
Band-Reject Filters / 2.4.5:
Modulators and Demodulators / 2.5:
Amplitude Modulation / 2.5.1:
Modulation Theorem / 2.5.1.1:
Side Frequencies and Side Bands / 2.5.1.2:
Application of Amplitude Modulation / 2.5.2:
Fault Detection and Diagnosis / 2.5.2.1:
Demodulation / 2.5.3:
Analog-Digital Conversion / 2.6:
Digital to Analog Conversion / 2.6.1:
Weighted Resistor DAC / 2.6.1.1:
Ladder DAC / 2.6.1.2:
DAC Error Sources / 2.6.1.3:
Analog to Digital Conversion / 2.6.2:
Successive Approximation ADC / 2.6.2.1:
Dual-Slope ADC / 2.6.2.2:
Counter ADC / 2.6.2.3:
ADC Performance Characteristics / 2.6.2.4:
Sample-and-Hold Circuitry / 2.7:
Multiplexers / 2.8:
Analog Multiplexers / 2.8.1:
Digital Multiplexers / 2.8.2:
Digital Filters / 2.9:
Software Implementation and Hardware Implementation / 2.9.1:
Bridge Circuits / 2.10:
Wheatstone Bridge / 2.10.1:
Constant-Current Bridge / 2.10.2:
Hardware Linearization of Bridge Outputs / 2.10.3:
Bridge Amplifiers / 2.10.4:
Half-Bridge Circuits / 2.10.5:
Impedance Bridges / 2.10.6:
Owen Bridge / 2.10.6.1:
Wien-Bridge Oscillator / 2.10.6.2:
Linearizing Devices / 2.11:
Linearization by Software / 2.11.1:
Linearization by Hardware Logic / 2.11.2:
Analog Linearizing Circuitry / 2.11.3:
Offsetting Circuitry / 2.11.4:
Proportional-Output Circuitry / 2.11.5:
Curve-Shaping Circuitry / 2.11.6:
Miscellaneous Signal-Modification Circuitry / 2.12:
Phase Shifters / 2.12.1:
Voltage-to-Frequency Converters / 2.12.2:
Frequency-to-Voltage Converter / 2.12.3:
Voltage-to-Current Converter / 2.12.4:
Peak-Hold Circuits / 2.12.5:
Signal Analyzers and Display Devices / 2.13:
Signal Analyzers / 2.13.1:
Oscilloscopes / 2.13.2:
Triggering / 2.13.2.1:
Lissajous Patterns / 2.13.2.2:
Digital Oscilloscopes / 2.13.2.3:
Performance Specification and Analysis / 3:
Parameters for Performance Specification / 3.1:
Perfect Measurement Device / 3.1.1:
Time-Domain Specifications / 3.2:
Rise Time / 3.2.1:
Delay Time / 3.2.2:
Peak Time / 3.2.3:
Settling Time / 3.2.4:
Percentage Overshoot / 3.2.5:
Steady-State Error / 3.2.6:
Simple Oscillator Model / 3.2.7:
Stability and Speed of Response / 3.2.8:
Frequency-Domain Specifications / 3.3:
Gain Margin and Phase Margin / 3.3.1:
Linearity / 3.3.2:
Saturation / 3.4.1:
Dead Zone / 3.4.2:
Hysteresis / 3.4.3:
The Jump Phenomenon / 3.4.4:
Limit Cycles / 3.4.5:
Frequency Creation / 3.4.6:
Instrument Ratings / 3.5:
Rating Parameters / 3.5.1:
Bandwidth Design / 3.6:
Bandwidth / 3.6.1:
Transmission Level of a Band-Pass Filter / 3.6.1.1:
Effective Noise Bandwidth / 3.6.1.2:
Half-Power (or 3dB) Bandwidth / 3.6.1.3:
Fourier Analysis Bandwidth / 3.6.1.4:
Useful Frequency Range / 3.6.1.5:
Instrument Bandwidth / 3.6.1.6:
Control Bandwidth / 3.6.1.7:
Static Gain / 3.6.2:
Aliasing Distortion due to Signal Sampling / 3.7:
Sampling Theorem / 3.7.1:
Antialiasing Filter / 3.7.2:
Another Illustration of Aliasing / 3.7.3:
Bandwidth Design of a Control System / 3.8:
Comment about Control Cycle Time / 3.8.1:
Instrument Error Analysis / 3.9:
Statistical Representation / 3.9.1:
Accuracy and Precision / 3.9.2:
Error Combination / 3.9.3:
Absolute Error / 3.9.3.1:
SRSS Error / 3.9.3.2:
Statistical Process Control / 3.10:
Control Limits or Action Lines / 3.10.1:
Steps of SPC / 3.10.2:
Analog Sensors and Transducers / 4:
Terminology / 4.1:
Motion Transducers / 4.1.1:
Potentiometer / 4.2:
Rotatory Potentiometers / 4.2.1:
Loading Nonlinearity / 4.2.1.1:
Performance Considerations / 4.2.2:
Optical Potentiometer / 4.2.3:
Variable-Inductance Transducers / 4.3:
Mutual-Induction Transducers / 4.3.1:
Linear-Variable Differential Transformer/Transducer / 4.3.2:
Phase Shift and Null Voltage / 4.3.2.1:
Signal Conditioning / 4.3.2.2:
Rotatory-Variable Differential Transformer/Transducer / 4.3.3:
Mutual-Induction Proximity Sensor / 4.3.4:
Resolver / 4.3.5:
Resolver with Rotor Output / 4.3.5.1:
Synchro Transformer / 4.3.6:
Self-Induction Transducers / 4.3.7:
Permanent-Magnet Transducers / 4.4:
DC Tachometer / 4.4.1:
Electronic Commutation / 4.4.1.1:
Modeling and Design Example / 4.4.1.2:
Loading Considerations / 4.4.1.3:
Permanent-Magnet AC Tachometer / 4.4.2:
AC Induction Tachometer / 4.4.3:
Eddy Current Transducers / 4.4.4:
Variable-Capacitance Transducers / 4.5:
Capacitive Rotation Sensor / 4.5.1:
Capacitive Displacement Sensor / 4.5.2:
Capacitive Angular Velocity Sensor / 4.5.3:
Capacitance Bridge Circuit / 4.5.4:
Differential (Push-PuU) Displacement Sensor / 4.5.5:
Piezoelectric Sensors / 4.6:
Sensitivity / 4.6.1:
Accelerometers / 4.6.2:
Piezoelectric Accelerometer / 4.6.3:
Charge Amplifier / 4.6.4:
Effort Sensors / 4.7:
Force Causality Issues / 4.7.1:
Force-Motion Causality / 4.7.1.1:
Physical Realizability / 4.7.1.2:
Force Control Problems / 4.7.2:
Force Feedback Control / 4.7.2.1:
Feedforward Force Control / 4.7.2.2:
Impedance Control / 4.7.3:
Force Sensor Location / 4.7.4:
Strain Gages / 4.8:
Equations for Strain-Gage Measurements / 4.8.1:
Bridge Sensitivity / 4.8.1.1:
The Bridge Constant / 4.8.1.2:
The Calibration Constant / 4.8.1.3:
Data Acquisition / 4.8.1.4:
Accuracy Considerations / 4.8.1.5:
Semiconductor Strain Gages / 4.8.2:
Automatic (Self) Compensation for Temperature / 4.8.3:
Torque Sensors / 4.9:
Strain-Gage Torque Sensors / 4.9.1:
Design Considerations / 4.9.2:
Strain Capacity of the Gage / 4.9.2.1:
Strain-Gage Nonlinearity Limit / 4.9.2.2:
Sensitivity Requirement / 4.9.2.3:
Stiffness Requirement / 4.9.2.4:
Deflection Torque Sensors / 4.9.3:
Direct-Deflection Torque Sensor / 4.9.3.1:
Variable-Reluctance Torque Sensor / 4.9.3.2:
Reaction Torque Sensors / 4.9.4:
Motor Current Torque Sensors / 4.9.5:
Force Sensors / 4.9.6:
Tactile Sensing / 4.10:
Tactile Sensor Requirements / 4.10.1:
Construction and Operation of Tactile Sensors / 4.10.2:
Optical Tactile Sensors / 4.10.3:
Piezoresistive Tactile Sensors / 4.10.4:
Dexterity / 4.10.5:
A Strain-Gage Tactile Sensor / 4.10.6:
Other Types of Tactile Sensors / 4.10.7:
Passive Compliance / 4.10.8:
Gyroscopic Sensors / 4.11:
Rate Gyro / 4.11.1:
Coriolis Force Devices / 4.11.2:
Optical Sensors and Lasers / 4.12:
Fiber-Optic Position Sensor / 4.12.1:
Laser Interferometer / 4.12.2:
Fiber-Optic Gyroscope / 4.12.3:
Laser Doppler Interferometer / 4.12.4:
Ultrasonic Sensors / 4.13:
Magnetostrictive Displacement Sensors / 4.13.1:
Thermofluid Sensors / 4.14:
Pressure Sensors / 4.14.1:
Flow Sensors / 4.14.2:
Temperature Sensors / 4.14.3:
Thermocouple / 4.14.3.1:
Resistance Temperature Detector / 4.14.3.2:
Thermistor / 4.14.3.3:
Bi-Metal Strip Thermometer / 4.14.3.4:
Other Types of Sensors / 4.15:
Digital Transducers / 5:
Advantages of Digital Transducers / 5.1:
Shaft Encoders / 5.2:
Encoder Types / 5.2.1:
Incremental Optical Encoders / 5.3:
Direction of Rotation / 5.3.1:
Hardware Features / 5.3.2:
Displacement Measurement / 5.3.3:
Digital Resolution / 5.3.3.1:
Physical Resolution / 5.3.3.2:
Step-Up Gearing / 5.3.3.3:
Interpolation / 5.3.3.4:
Velocity Measurement / 5.3.4:
Velocity Resolution / 5.3.4.1:
Data Acquisition Hardware / 5.3.4.2:
Absolute Optical Encoders / 5.4:
Gray Coding / 5.4.1:
Code Conversion Logic / 5.4.1.1:
Resolution / 5.4.2:
Advantages and Drawbacks / 5.4.3:
Encoder Error / 5.5:
Eccentricity Error / 5.5.1:
Miscellaneous Digital Transducers / 5.6:
Digital Resolvers / 5.6.1:
Digital Tachometers / 5.6.2:
Hall-Effect Sensors / 5.6.3:
Linear Encoders / 5.6.4:
Moire Fringe Displacement Sensors / 5.6.5:
Cable Extension Sensors / 5.6.6:
Binary Transducers / 5.6.7:
Stepper Motors / 6:
Principle of Operation / 6.1:
Permanent-Magnet (PM) Stepper Motor / 6.1.1:
Variable-Reluctance (VR) Stepper Motor / 6.1.2:
Polarity Reversal / 6.1.3:
Stepper Motor Classification / 6.2:
Single-Stack Stepper Motors / 6.2.1:
Toothed-Pole Construction / 6.2.2:
Another Toothed Construction / 6.2.3:
Microstepping / 6.2.4:
Multiple-Stack Stepper Motors / 6.2.5:
Equal-Pitch Multiple-Stack Stepper / 6.2.5.1:
Unequal-Pitch Multiple-Stack Stepper / 6.2.5.2:
Hybrid Stepper Motor / 6.2.6:
Driver and Controller / 6.3:
Driver Hardware / 6.3.1:
Motor Time Constant / 6.3.2:
Torque Motion Characteristics / 6.4:
Static Position Error / 6.4.1:
Damping of Stepper Motors / 6.5:
Mechanical Damping / 6.5.1:
Electronic Damping / 6.5.2:
Multiple Phase Energization / 6.5.3:
Stepping Motor Models / 6.6:
A Simplified Model / 6.6.1:
An Improved Model / 6.6.2:
Torque Equation for PM and HB Motors / 6.6.2.1:
Torque Equation for VR Motors / 6.6.2.2:
Control of Stepper Motors / 6.7:
Pulse Missing / 6.7.1:
Feedback Control / 6.7.2:
Torque Control through Switching / 6.7.3:
Model-Based Feedback Control / 6.7.4:
Stepper Motor Selection and Applications / 6.8:
Torque Characteristics and Terminology / 6.8.1:
Stepper Motor Selection / 6.8.2:
Positioning (x-y) Tables / 6.8.2.1:
Stepper Motor Applications / 6.8.3:
Continuous-Drive Actuators / 7:
DC Motors / 7.1:
Rotor and Stator / 7.1.1:
Commutation / 7.1.2:
Static Torque Characteristics / 7.1.3:
Brushless DC Motors / 7.1.4:
Constant-Speed Operation / 7.1.4.1:
Transient Operation / 7.1.4.2:
Torque Motors / 7.1.5:
DC Motor Equations / 7.2:
Steady-State Characteristics / 7.2.1:
Bearing Friction / 7.2.1.1:
Output Power / 7.2.1.2:
Combined Excitation of Motor Windings / 7.2.1.3:
Speed Regulation / 7.2.1.4:
Experimental Model / 7.2.2:
Electrical Damping Constant / 7.2.2.1:
Linearized Experimental Model / 7.2.2.2:
Control of DC Motors / 7.3:
DC Servomotors / 7.3.1:
Armature Control / 7.3.2:
Motor Time Constants / 7.3.2.1:
Motor Parameter Measurement / 7.3.2.2:
Field Control / 7.3.3:
Feedback Control of DC Motors / 7.3.4:
Velocity Feedback Control / 7.3.4.1:
Position Plus Velocity Feedback Control / 7.3.4.2:
Position Feedback with Proportional, Integral, and Derivative Control / 7.3.4.3:
Phase-Locked Control / 7.3.5:
Motor Driver / 7.4:
Interface Card / 7.4.1:
Drive Unit / 7.4.2:
Pulse-Width Modulation / 7.4.3:
DC Motor Selection / 7.5:
Motor Data and Specifications / 7.5.1:
Selection Considerations / 7.5.2:
Motor Sizing Procedure / 7.5.3:
Inertia Matching / 7.5.3.1:
Drive Amplifier Selection / 7.5.3.2:
Induction Motors / 7.6:
Rotating Magnetic Field / 7.6.1:
Induction Motor Characteristics / 7.6.2:
Torque-Speed Relationship / 7.6.3:
Induction Motor Control / 7.7:
Excitation Frequency Control / 7.7.1:
Voltage Control / 7.7.2:
Rotor Resistance Control / 7.7.3:
Pole-Changing Control / 7.7.4:
Field Feedback Control (Flux Vector Drive) / 7.7.5:
A Transfer-Function Model for an Induction Motor / 7.7.6:
Single-Phase AC Motors / 7.7.7:
Synchronous Motors / 7.8:
Control of a Synchronous Motor / 7.8.1:
Linear Actuators / 7.9:
Solenoid / 7.9.1:
Linear Motors / 7.9.2:
Hydraulic Actuators / 7.10:
Components of a Hydraulic Control System / 7.10.1:
Hydraulic Pumps and Motors / 7.10.2:
Hydraulic Valves / 7.10.3:
Spool Valve / 7.10.3.1:
Steady-State Valve Characteristics / 7.10.3.2:
Hydraulic Primary Actuators / 7.10.4:
Load Equation / 7.10.5:
Hydraulic Control Systems / 7.11:
Constant-Flow Systems / 7.11.1:
Pump-Controlled Hydraulic Actuators / 7.11.3:
Hydraulic Accumulators / 7.11.4:
Pneumatic Control Systems / 7.11.5:
Flapper Valves / 7.11.6:
Hydraulic Circuits / 7.11.7:
Fluidics / 7.12:
Fluidic Components / 7.12.1:
Logic Components / 7.12.1.1:
Fluidic Motion Sensors / 7.12.1.2:
Fluidic Amplifiers / 7.12.1.3:
Fluidic Control Systems / 7.12.2:
Interfacing Considerations / 7.12.2.1:
Modular Laminated Construction / 7.12.2.2:
Applications of Fluidics / 7.12.3:
Mechanical Transmission Components / 8:
Mechanical Components / 8.1:
Transmission Components / 8.2:
Lead Screw and Nut / 8.3:
Harmonic Drives / 8.4:
Continuously Variable Transmission / 8.5:
Two-Slider CVT / 8.5.1:
A Three-Slider CVT / 8.5.3:
Bibliography and Further Reading
Answers to Numerical Problems
Index
Control, Instrumentation, and Design / 1:
Introduction / 1.1:
Control Engineering / 1.2:
31.

図書

図書
Mark G. Kuzyk
出版情報: Boca Raton : CRC : Taylor & Francis, c2007  399 p. ; 24 cm.
シリーズ名: Optical science and engineering ; 117
所蔵情報: loading…
目次情報: 続きを見る
History of Polymer Optical Fibers / Chapter 1:
Introduction / 1.1:
Using Light for Telecommunications / 1.2:
Glass Fibers / 1.3:
Optical Imaging / 1.3.1:
Multimode Fibers / 1.3.2:
Small Core Fibers / 1.3.3:
Polymer Fibers / 1.4:
Early History of Polymer Fibers / 1.4.1:
Gradient-Index Fibers / 1.4.2:
Single-Mode Polymer Fibers / 1.4.4:
Electrooptic Fiber Devices / 1.4.5:
Fiber Amplifiers and Lasers / 1.4.6:
Dual-Core Couplers and Devices / 1.4.7:
The Future / 1.5:
Light Propagation in a Fiber Waveguide / Chapter 2:
The Ray Picture of a Waveguide / 2.1:
The Wave Picture of a Waveguide / 2.1.2:
Rays and Waves / 2.1.2.1:
Solving Maxwell's Wave Equation / 2.1.2.2:
Bound Modes of Step-Index Fibers / 2.2:
Field Relations / 2.2.1:
Longitudinal Fields / 2.2.2:
Bound Modes / 2.2.3:
HE and EH Modes / 2.2.4:
TE and TM Modes / 2.2.5:
Multimode Waveguides / 2.3:
Ray Propagation in a Graded-Index Medium / 2.4:
Transit Time / 2.4.1:
Homogeneous Step-Index Profile / 2.4.2:
Ray Picture / 2.4.2.1:
Ideal Index Profile-The Power Law Profile / 2.4.3:
Hyperbolic Secant Profile / 2.4.3.1:
Directional Couplers / 2.5:
Nonlinear Directional Couplers / 2.5.1:
Conclusion / 2.6:
Acknowledgments / 2.7:
Fabricating Fibers / Chapter 3:
Making Polymer Fibers by Extrusion / 3.1:
Continuous Extrusion / 3.1.1:
Batch Extrusion / 3.1.2:
Making Polymer Fiber by Drawing a Preform / 3.2:
Making Doped Polymers / 3.2.1:
Dissolving Polymers / 3.2.1.1:
Polymerization with Dopants / 3.2.1.2:
Making a Core Preform / 3.2.2:
Making Core Fibers by Drawing / 3.2.3:
Making Core/Cladding Preforms / 3.2.4:
Dry Processing / 3.2.4.1:
Wet Processing / 3.2.4.2:
Birefringence of Drawn Fibers / 3.3:
Mechanical Properties of Fibers / 3.4:
Theory of Refractive Index and Loss / Chapter 4:
Refractive Index / 4.1:
Isotropic Polymer / 4.1.1:
Birefringent Polymers / 4.1.2:
Relationship Between Number and Weight Percent / 4.1.3:
Mixing Polymers to Control the Refractive Index / 4.1.4:
Optical Loss / 4.2:
Absorbance / 4.2.1:
Linear Susceptibility / 4.2.2:
Bending Loss / 4.3:
Multimode Fiber / 4.3.1:
Single-Mode Fiber / 4.3.2:
Rayleigh Scattering / 4.3.2.1:
Microbending Loss / 4.3.3:
Dispersion / 4.4:
The Harmonic Oscillator / 4.4.1:
A Practical Example / 4.5:
Problem / 4.5.1:
Solution / 4.5.2:
Polarization / 4.6:
The Poincare Sphere / 4.6.1:
Some Examples of Polarization States / 4.6.2:
Characterization Techniques and Properties / Chapter 5:
Interphako / 5.1:
One-Dimensional Slab / 5.1.1.1:
Cylindrical Sample / 5.1.1.2:
Beam Deflection Technique / 5.1.2:
DDM Theory / 5.1.2.1:
DDM Experiment / 5.1.2.2:
Examples of Measured Refractive Index Profiles / 5.1.2.3:
Refracted Near-Field Technique / 5.1.3:
Theory / 5.1.3.1:
Experimental Results / 5.1.3.3:
Fresnel Reflection Technique / 5.1.4:
Other Refractive Index Measurement Techniques / 5.1.5:
Measurements on Gradient-Index Fibers / 5.1.6:
Summary of Refractive Index Measurements / 5.1.7:
Cutback Technique / 5.2:
Quick Cutback Method / 5.2.1.1:
Accurate Cutback Method / 5.2.1.2:
Transverse Scattering Loss Measurement / 5.2.2:
The Eyeball Technique / 5.2.3:
Photothermal Deflection / 5.2.4:
Side-Illuminated Fluorescence / 5.2.5:
Numerical Aperture / 5.2.5.1:
Input Numerical Aperture Measurements / 5.3.1:
Objective Lens Coupling / 5.3.1.1:
Ray Angle Method / 5.3.1.2:
Output Numerical Aperture / 5.3.2:
Bandwidth / 5.4:
Modal Dispersion - Ray Picture / 5.4.1:
Material Dispersion / 5.4.2:
Numerical Example of Material Dispersion / 5.4.2.1:
Modal Dispersion - Wave Picture / 5.4.3:
Measurement Techniques / 5.4.4:
Frequency Domain Measurements / 5.4.4.1:
Time Domain Experiments / 5.4.4.2:
Time Domain Measurements Applied Graded-Index Polymer Fibers / 5.4.4.3:
Mode Mixing in Polymer Fibers / 5.4.4.4:
Transmission, Light Sources, and Amplifiers / Chapter 6:
Transmission / 6.1:
Loss Conventions / 6.1.1:
Fiber Materials / 6.1.2:
Displays / 6.2:
Optical Amplification and Lasing / 6.3:
Principles of Stimulated Emission / 6.3.1:
Fluorescence / 6.3.2:
Decay and Recovery of Fluorescence / 6.3.2.1:
Amplified Spontaneous Emission / 6.3.3:
Gain / 6.3.3.1:
Reversible Degradation in ASE / 6.3.3.2:
ASE in Fibers / 6.3.3.3:
Polymer Optical Fiber Amplifiers / 6.3.4:
Laser Dyes / 6.3.4.1:
Lanthanide Complexes / 6.3.4.2:
Applications / 6.3.5:
Optical Switching / Chapter 7:
Electrooptic Switching / 7.1:
Electrooptic Modulation / 7.1.1:
Theory of Electrooptic Modulation in a Mach-Zehnder Interferometer / 7.1.1.1:
Experimental Technique to Measure Electrooptic Coefficients / 7.1.1.2:
Electrooptic Modulation in a Polymer Optical Fiber / 7.1.1.3:
Electrooptic Devices / 7.1.2:
All-Optical Switching / 7.2:
Intensity-Dependent Phase Shift in Polymer Waveguide and Fibers / 7.2.1:
Optical Devices in Polymer Fibers / 7.2.3:
Sagnac Device / 7.2.3.1:
Dual Core Polymer Fiber Switch / 7.2.3.2:
Optical Bistability and Multistability / 7.2.4:
Multistability of a Fabry-Perot Interferometer with End Reflectors / 7.2.4.1:
Multistability of a Fabry-Perot Interferometer due to Fresnel Reflections / 7.2.4.2:
Comparison of the Fresnel and Fabry-Perot Results / 7.2.4.3:
Graphical Solution to Transcendental Equations / 7.2.4.4:
Structured Fibers and Specialty Applications / Chapter 8:
Bragg Gratings / 8.1:
The Bragg Condition, K = 2[Beta] / 8.1.1:
Bragg Gratings in Polymer Fibers / 8.1.3:
Spectrometer / 8.1.4:
Wavelength Division Multiplexing and Demultiplexing / 8.1.4.2:
Advanced Structured Fibers / 8.2:
Imaging Fibers / 8.2.1:
Capillary Tubes / 8.2.2:
Photonic Crystal Fibers / 8.2.3:
Two Parallel Waveguides / 8.2.3.1:
Infinite Number of Parallel Waveguides / 8.2.3.2:
Holey Fiber / 8.2.3.3:
Photorefraction / 8.3:
Two-Beam Coupling / 8.3.1:
Real-Time Holography in a Polymer Fiber / 8.3.2:
Phase Conjugation in a Polymer Fiber / 8.3.3:
Stress and Temperature Sensors / 8.4:
Discrete Sensors / 8.4.1:
Distributed Sensors / 8.4.2:
Chemical Sensors / 8.5:
Single-Agent Sensors / 8.5.1:
Artificial Nose / 8.5.2:
Appendix-Coupled Wave Equation / 8.6:
Smart Fibers and Materials / Chapter 9:
Smart Materials / 9.1:
Photostriction / 9.1.1:
Smart Structures / 9.1.3:
Photomechanical Effects / 9.2:
Theory of Strain / 9.2.1:
Nonlocal Response / 9.2.1.2:
Mechanisms / 9.2.2:
Photothermal Heating / 9.2.2.1:
Photo-Isomerization / 9.2.2.2:
Electrostriction / 9.2.2.3:
Molecular Reorientation / 9.2.2.4:
Electron Cloud Deformation / 9.2.2.5:
Experimental Examples / 9.2.3:
The First Demonstration of an All-Optical Photomechanical System - Nano-Stabilization / 9.2.3.1:
Mesoscale Photomechanical Devices and Multistability / 9.2.3.2:
Optical Tunable Filter and All-Optical Switching / 9.2.3.3:
Stabilizing a Sheet with an MPU / 9.2.3.4:
Transverse Photomechanical Actuation / 9.2.3.5:
The Future of Smart Photonic Materials / 9.3:
Making a Series of MPUs in a Single Fiber / 9.3.1:
The Two-MPU System / 9.3.3:
CASE I: Photomechanical MPU #1; Passive MPU #2; Light Source with Wavelengths [lambda subscript 1] and [lambda subscript 2] / 9.3.3.1:
Case II: Passive MPU #1; Photomechanical MPU #2; Light Source with Wavelength [lambda] / 9.3.3.2:
Case III: Photomechanical MPU #1 and MPU #2; Light Source with Wavelength [lambda] / 9.3.3.3:
Smart Threads and Fabrics / 9.3.4:
Transverse Actuation / 9.3.5:
Crack Formation Sensing and Prevention / 9.3.6:
Noise Reduction / 9.3.7:
Bibliography / 9.3.8:
Index
History of Polymer Optical Fibers / Chapter 1:
Introduction / 1.1:
Using Light for Telecommunications / 1.2:
32.

図書

図書
Chris A.M. Peters, Joseph H.M. Steenbrink
出版情報: Berlin : Springer, c2008  xiii, 470 p. ; 24 cm
シリーズ名: Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, v. 52
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Basic Hodge Theory / Part I:
Compact Kahler Manifolds / 1:
Classical Hodge Theory / 1.1:
Harmonic Theory / 1.1.1:
The Hodge Decomposition / 1.1.2:
Hodge Structures in Cohomology and Homology / 1.1.3:
The Lefschetz Decomposition / 1.2:
Representation Theory of SL(2, R) / 1.2.1:
Primitive Cohomology / 1.2.2:
Applications / 1.3:
Pure Hodge Structures / 2:
Hodge Structures / 2.1:
Basic Definitions / 2.1.1:
Polarized Hodge Structures / 2.1.2:
Mumford-Tate Groups of Hodge Structures / 2.2:
Hodge Filtration and Hodge Complexes / 2.3:
Hodge to De Rham Spectral Sequence / 2.3.1:
Strong Hodge Decompositions / 2.3.2:
Hodge Complexes and Hodge Complexes of Sheaves / 2.3.3:
Refined Fundamental Classes / 2.4:
Almost Kahler V-Manifolds / 2.5:
Abstract Aspects of Mixed Hodge Structures / 3:
Introduction to Mixed Hodge Structures: Formal Aspects / 3.1:
Comparison of Filtrations / 3.2:
Mixed Hodge Structures and Mixed Hodge Complexes / 3.3:
The Mixed Cone / 3.4:
Extensions of Mixed Hodge Structures / 3.5:
Mixed Hodge Extensions / 3.5.1:
Iterated Extensions and Absolute Hodge Cohomology / 3.5.2:
Mixed Hodge structures on Cohomology Groups / Part II:
Smooth Varieties / 4:
Main Result / 4.1:
Residue Maps / 4.2:
Associated Mixed Hodge Complexes of Sheaves / 4.3:
Logarithmic Structures / 4.4:
Independence of the Compactification and Further Complements / 4.5:
Invariance / 4.5.1:
Restrictions for the Hodge Numbers / 4.5.2:
Theorem of the Fixed Part and Applications / 4.5.3:
Application to Lefschetz Pencils / 4.5.4:
Singular Varieties / 5:
Simplicial and Cubical Sets / 5.1:
Sheaves on Semi-simplicial Spaces and Their Cohomology / 5.1.1:
Cohomological Descent and Resolutions / 5.1.3:
Construction of Cubical Hyperresolutions / 5.2:
Mixed Hodge Theory for Singular Varieties / 5.3:
The Basic Construction / 5.3.1:
Mixed Hodge Theory of Proper Modifications / 5.3.2:
Restriction on the Hodge Numbers / 5.3.3:
Cup Product and the Kunneth Formula / 5.4:
Relative Cohomology / 5.5:
Construction of the Mixed Hodge Structure / 5.5.1:
Cohomology with Compact Support / 5.5.2:
Singular Varieties: Complementary Results / 6:
The Leray Filtration / 6.1:
Deleted Neighbourhoods of Algebraic Sets / 6.2:
Mixed Hodge Complexes / 6.2.1:
Products and Deleted Neighbourhoods / 6.2.2:
Semi-purity of the Link / 6.2.3:
Cup and Cap Products, and Duality / 6.3:
Duality for Cohomology with Compact Supports / 6.3.1:
The Extra-Ordinary Cup Product / 6.3.2:
Applications to Algebraic Cycles and to Singularities / 7:
The Hodge Conjectures / 7.1:
Versions for Smooth Projective Varieties / 7.1.1:
The Hodge Conjecture and the Intermediate Jacobian / 7.1.2:
A Version for Singular Varieties / 7.1.3:
Deligne Cohomology / 7.2:
Basic Properties / 7.2.1:
Cycle Classes for Deligne Cohomology / 7.2.2:
The Filtered De Rham Complex And Applications / 7.3:
The Filtered De Rham Complex / 7.3.1:
Application to Vanishing Theorems / 7.3.2:
Applications to Du Bois Singularities / 7.3.3:
Mixed Hodge Structures on Homotopy Groups / Part III:
Hodge Theory and Iterated Integrals / 8:
Some Basic Results from Homotopy Theory / 8.1:
Formulation of the Main Results / 8.2:
Loop Space Cohomology and the Homotopy De Rham Theorem / 8.3:
Iterated Integrals / 8.3.1:
Chen's Version of the De Rham Theorem / 8.3.2:
The Bar Construction / 8.3.3:
Iterated Integrals of 1-Forms / 8.3.4:
The Homotopy De Rham Theorem for the Fundamental Group / 8.4:
Mixed Hodge Structure on the Fundamental Group / 8.5:
The Sullivan Construction / 8.6:
Mixed Hodge Structures on the Higher Homotopy Groups / 8.7:
Hodge Theory and Minimal Models / 9:
Minimal Models of Differential Graded Algebras / 9.1:
Postnikov Towers and Minimal Models; the Simply Connected Case / 9.2:
Mixed Hodge Structures on the Minimal Model / 9.3:
Formality of Compact Kahler Manifolds / 9.4:
The 1-Minimal Model / 9.4.1:
The De Rham Fundamental Group / 9.4.2:
Formality / 9.4.3:
Hodge Structures and Local Systems / Part IV:
Variations of Hodge Structure / 10:
Preliminaries: Local Systems over Complex Manifolds / 10.1:
Abstract Variations of Hodge Structure / 10.2:
Big Monodromy Groups, an Application / 10.3:
Variations of Hodge Structures Coming From Smooth Families / 10.4:
Degenerations of Hodge Structures / 11:
Local Systems Acquiring Singularities / 11.1:
Connections with Logarithmic Poles / 11.1.1:
The Riemann-Hilbert Correspondence (I) / 11.1.2:
The Limit Mixed Hodge Structure on Nearby Cycle Spaces / 11.2:
Asymptotics for Variations of Hodge Structure over a Punctured Disk / 11.2.1:
Geometric Set-Up and Preliminary Reductions / 11.2.2:
The Nearby and Vanishing Cycle Functor / 11.2.3:
The Relative Logarithmic de Rham Complex and Quasi-unipotency of the Monodromy / 11.2.4:
The Complex Monodromy Weight Filtration and the Hodge Filtration / 11.2.5:
The Rational Structure / 11.2.6:
The Mixed Hodge Structure on the Limit / 11.2.7:
Geometric Consequences for Degenerations / 11.3:
Monodromy, Specialization and Wang Sequence / 11.3.1:
The Monodromy and Local Invariant Cycle Theorems / 11.3.2:
Examples / 11.4:
Applications of Asymptotic Hodge theory / 12:
Applications to Singularities / 12.1:
Localizing Nearby Cycles / 12.1.1:
A Mixed Hodge Structure on the Cohomology of Milnor Fibres / 12.1.2:
The Spectrum of Singularities / 12.1.3:
An Application to Cycles: Grothendieck's Induction Principle / 12.2:
Perverse Sheaves and D-Modules / 13:
Verdier Duality / 13.1:
Dimension / 13.1.1:
The Dualizing Complex / 13.1.2:
Statement of Verdier Duality / 13.1.3:
Extraordinary Pull Back / 13.1.4:
Perverse Complexes / 13.2:
Intersection Homology and Cohomology / 13.2.1:
Constructible and Perverse Complexes / 13.2.2:
An Example: Nearby and Vanishing Cycles / 13.2.3:
Introduction to D-Modules / 13.3:
Integrable Connections and D-Modules / 13.3.1:
From Left to Right and Vice Versa / 13.3.2:
Derived Categories of D-modules / 13.3.3:
Inverse and Direct Images / 13.3.4:
An Example: the Gauss-Manin System / 13.3.5:
Coherent D-Modules / 13.4:
Good Filtrations and Characteristic Varieties / 13.4.1:
Behaviour under Direct and Inverse Images / 13.4.3:
Filtered D-modules / 13.5:
Derived Categories / 13.5.1:
Duality / 13.5.2:
Functoriality / 13.5.3:
Holonomic D-Modules / 13.6:
Symplectic Geometry / 13.6.1:
Basics on Holonomic D-Modules / 13.6.2:
The Riemann-Hilbert Correspondence (II) / 13.6.3:
Mixed Hodge Modules / 14:
An Axiomatic Introduction / 14.1:
The Axioms / 14.1.1:
First Consequences of the Axioms / 14.1.2:
Spectral Sequences / 14.1.3:
Intersection Cohomology / 14.1.4:
The Kashiwara-Malgrange Filtration / 14.1.5:
Motivation / 14.2.1:
The Rational V-Filtration / 14.2.2:
Polarizable Hodge Modules / 14.3:
Hodge Modules / 14.3.1:
Polarizations / 14.3.2:
Lefschetz Operators and the Decomposition Theorem / 14.3.3:
Variations of Mixed Hodge Structure / 14.4:
Defining Mixed Hodge Modules / 14.4.2:
About the Axioms / 14.4.3:
Application: Vanishing Theorems / 14.4.4:
The Motivic Hodge Character and Motivic Chern Classes / 14.4.5:
Appendices / Part V:
Homological Algebra / A:
Additive and Abelian Categories / A.1:
Pre-Abelian Categories / A.1.1:
Additive Categories / A.1.2:
The Homotopy Category / A.2:
The Derived Category / A.2.2:
Injective and Projective Resolutions / A.2.3:
Derived Functors / A.2.4:
Properties of the Ext-functor / A.2.5:
Yoneda Extensions / A.2.6:
Spectral Sequences and Filtrations / A.3:
Filtrations / A.3.1:
Spectral Sequences and Exact Couples / A.3.2:
Filtrations Induce Spectral Sequences / A.3.3:
Derived Functors and Spectral Sequences / A.3.4:
Algebraic and Differential Topology / B:
Singular (Co)homology and Borel-Moore Homology / B.1:
Basic Definitions and Tools / B.1.1:
Pairings and Products / B.1.2:
Sheaf Cohomology / B.2:
The Godement Resolution and Cohomology / B.2.1:
Cohomology and Supports / B.2.2:
Cech Cohomology / B.2.3:
De Rham Theorems / B.2.4:
Direct and Inverse Images / B.2.5:
Sheaf Cohomology and Closed Subspaces / B.2.6:
Mapping Cones and Cylinders / B.2.7:
Duality Theorems on Manifolds / B.2.8:
Orientations and Fundamental Classes / B.2.9:
Local Systems and Their Cohomology / B.3:
Local Systems and Locally Constant Sheaves / B.3.1:
Homology and Cohomology / B.3.2:
Local Systems and Flat Connections / B.3.3:
Stratified Spaces and Singularities / C:
Stratified Spaces / C.1:
Pseudomanifolds / C.1.1:
Whitney Stratifications / C.1.2:
Fibrations, and the Topology of Singularities / C.2:
The Milnor Fibration / C.2.1:
Topology of One-parameter Degenerations / C.2.2:
An Example: Lefschetz Pencils / C.2.3:
References
Index of Notations
Index
Introduction
Basic Hodge Theory / Part I:
Compact Kahler Manifolds / 1:
33.

図書

図書
Vladimir Medved
出版情報: Boca Raton, Fla. : CRC Press, c2001  xiii, 255 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
About the Book / 1.1:
The History of Locomotion Measurement / 1.2:
Methodological Background / Chapter 2:
Biomechanical Modeling of the Human Body and the Inverse Dynamic Approach / 2.1:
Neurophysiology of Locomotion / 2.2:
Reciprocal Inhibition / 2.2.1:
The Placing Reaction and Reflex Reversal / 2.2.2:
Automatic Generation of Locomotor Patterns / 2.2.3:
Hierarchical Organization of Motor Control / 2.2.4:
Computational Neuroscience and Locomotion / 2.2.5:
The Peripheral Neuromuscular System / 2.2.6:
Biomechanical Modeling of Skeletal Muscle / 2.3:
General Properties of Locomotion Measurement Systems / Chapter 3:
Structure of a Measurement System / 3.1:
Analog-to-Digital Conversion of Signals / 3.2:
Sampling / 3.2.1:
Conversion of the Sampled Signal / 3.2.2:
Technical Realization of the Analog-to-Digital Converter / 3.2.3:
Requirements of Locomotion Measurement Systems / 3.3:
Measurement of Locomotion Kinematics / Chapter 4:
Exoskeletal Systems / 4.1:
Stereometric Methods / 4.2:
Stereophotogrammetric Methods / 4.2.1:
Close-Range Analytical Photogrammetry Fundamentals / 4.2.1.1:
The High-Speed Photography Method / 4.2.1.2:
Optoelectronic Methods / 4.2.1.3:
Light Scanning-Based Methods / 4.2.1.4:
Stereometric Methods--Final Considerations, Signal Processing Aspects, and Computer Vision Issues / 4.2.1.5:
Accelerometry / 4.3:
Kinematic Data Processing / 4.4:
Sources of Errors in Kinematic Measurements / 4.4.1:
Filtering and Numerical Differentiation of Kinematic Data / 4.4.2:
Measurement of Kinetic Variables / Chapter 5:
Ground Reaction Force Measuring Platforms / 5.1:
The Strain Gage Transducer-Based Platform / 5.1.1:
The Strain Gage Sensor / 5.1.1.1:
Platform Construction / 5.1.1.2:
The Piezoelectric Transducer-Based Platform / 5.1.2:
The Piezoelectric Effect / 5.1.2.1:
Mounting the Force Platform / 5.1.2.2:
Applications of the Force Platform / 5.1.4:
Walking and Running / 5.1.4.1:
Take-Off Ability / 5.1.4.2:
Kinetic Signal Representation / 5.1.5:
Vector Diagram / 5.1.5.1:
Stabilometry / 5.1.5.2:
Pressure Distribution Measurement Systems / 5.2:
Historical Development / 5.2.1:
Solutions and Examples of Use / 5.2.2:
Platforms / 5.2.2.1:
Shoe Insoles / 5.2.2.2:
Clinical Findings and Standardization of Measurement / 5.2.3:
Measurement of Myoelectric Variables / Chapter 6:
The Neuromuscular System and Bioelectricity: A Historical Survey / 6.1:
The Myoelectric Signal Model / 6.2:
Kinesiological Electromyography / 6.3:
Surface Electromyography / 6.3.1:
Surface Electrodes in Electromyography / 6.3.1.1:
Myoelectric Signal Amplifiers / 6.3.1.2:
EMG Telemetry / 6.3.2:
Myoelectric Signal Processing / 6.4:
Time Domain Processing Methods / 6.4.1:
Processing in the Frequency Domain / 6.4.2:
Normalization / 6.4.3:
EMG Signal as an Estimate of Muscle Force / 6.4.4:
Multichannel EMG Signal Processing / 6.4.5:
Applications of Surface Electromyography / 6.5:
Backward Somersault in Gymnastics / 6.5.1:
Comprehensive Locomotion Diagnostic Systems and Future Prospects / Chapter 7:
Comprehensive Biomechanical Measurements and Clinical Applications / 7.1:
Development of Methodology of Marker-Free Kinematic Measurements / 7.2:
References
Appendix 1
Appendix 2
Index
Introduction / Chapter 1:
About the Book / 1.1:
The History of Locomotion Measurement / 1.2:
34.

図書

図書
Christopher J. Cramer
出版情報: Chichester, West Sussex, England ; Hoboken, NJ : John Wiley & Sons, c2004  xx, 596 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the First Edition
Preface to the Second Edition
Acknowledgments
What are Theory, Computation, and Modeling? / 1:
Definition of Terms / 1.1:
Quantum Mechanics / 1.2:
Computable Quantities / 1.3:
Structure / 1.3.1:
Potential Energy Surfaces / 1.3.2:
Chemical Properties / 1.3.3:
Cost and Efficiency / 1.4:
Intrinsic Value / 1.4.1:
Hardware and Software / 1.4.2:
Algorithms / 1.4.3:
Note on Units / 1.5:
Bibliography and Suggested Additional Reading
References
Molecular Mechanics / 2:
History and Fundamental Assumptions / 2.1:
Potential Energy Functional Forms / 2.2:
Bond Stretching / 2.2.1:
Valence Angle Bending / 2.2.2:
Torsions / 2.2.3:
Van der Waals Interactions / 2.2.4:
Electrostatic Interactions / 2.2.5:
Cross Terms and Additional Non-bonded Terms / 2.2.6:
Parameterization Strategies / 2.2.7:
Force-field Energies and Thermodynamics / 2.3:
Geometry Optimization / 2.4:
Optimization Algorithms / 2.4.1:
Optimization Aspects Specific to Force Fields / 2.4.2:
Menagerie of Modern Force Fields / 2.5:
Available Force Fields / 2.5.1:
Validation / 2.5.2:
Force Fields and Docking / 2.6:
Case Study: (2R*,4S*)-1-Hydroxy-2,4-dimethylhex-5-ene / 2.7:
Simulations of Molecular Ensembles / 3:
Relationship Between MM Optima and Real Systems / 3.1:
Phase Space and Trajectories / 3.2:
Properties as Ensemble Averages / 3.2.1:
Properties as Time Averages of Trajectories / 3.2.2:
Molecular Dynamics / 3.3:
Harmonic Oscillator Trajectories / 3.3.1:
Non-analytical Systems / 3.3.2:
Practical Issues in Propagation / 3.3.3:
Stochastic Dynamics / 3.3.4:
Monte Carlo / 3.4:
Manipulation of Phase-space Integrals / 3.4.1:
Metropolis Sampling / 3.4.2:
Ensemble and Dynamical Property Examples / 3.5:
Key Details in Formalism / 3.6:
Cutoffs and Boundary Conditions / 3.6.1:
Polarization / 3.6.2:
Control of System Variables / 3.6.3:
Simulation Convergence / 3.6.4:
The Multiple Minima Problem / 3.6.5:
Force Field Performance in Simulations / 3.7:
Case Study: Silica Sodalite / 3.8:
Foundations of Molecular Orbital Theory / 4:
Quantum Mechanics and the Wave Function / 4.1:
The Hamiltonian Operator / 4.2:
General Features / 4.2.1:
The Variational Principle / 4.2.2:
The Born-Oppenheimer Approximation / 4.2.3:
Construction of Trial Wave Functions / 4.3:
The LCAO Basis Set Approach / 4.3.1:
The Secular Equation / 4.3.2:
H?uckel Theory / 4.4:
Fundamental Principles / 4.4.1:
Application to the Allyl System / 4.4.2:
Many-electron Wave Functions / 4.5:
Hartree-product Wave Functions / 4.5.1:
The Hartree Hamiltonian / 4.5.2:
Electron Spin and Antisymmetry / 4.5.3:
Slater Determinants / 4.5.4:
The Hartree-Fock Self-consistent Field Method / 4.5.5:
Semiempirical Implementations of Molecular Orbital Theory / 5:
Semiempirical Philosophy / 5.1:
Chemically Virtuous Approximations / 5.1.1:
Analytic Derivatives / 5.1.2:
Extended Huckel Theory / 5.2:
CNDO Formalism / 5.3:
INDO Formalism / 5.4:
INDO and INDO/S / 5.4.1:
MINDO/3 and SINDO1 / 5.4.2:
Basic NDDO Formalism / 5.5:
MNDO / 5.5.1:
AM1 / 5.5.2:
PM3 / 5.5.3:
General Performance Overview of Basic NDDO Models / 5.6:
Energetics / 5.6.1:
Geometries / 5.6.2:
Charge Distributions / 5.6.3:
Preface to the First Edition
Preface to the Second Edition
Acknowledgments
35.

図書

図書
Franz J. Vesely
出版情報: New York : Kluwer Academic/Plenum Publishers, c2001  xvi, 259 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
The Three Pillars of Computational Physics / I:
Finite Differences / 1:
Interpolation Formulae / 1.1:
NGF Interpolation / 1.1.1:
NGB Interpolation / 1.1.2:
ST Interpolation / 1.1.3:
Difference Quotients / 1.2:
DNGF Formulae / 1.2.1:
DNGB Formulae / 1.2.2:
DST Formulae / 1.2.3:
Finite Differences in Two Dimensions / 1.3:
Sample Applications / 1.4:
Classical Point Mechanics / 1.4.1:
Diffusion and Thermal Conduction / 1.4.2:
Linear Algebra / 2:
Exact Methods / 2.1:
Gauss Elimination and Back Substitution / 2.1.1:
Simplifying Matrices: The Householder Transformation / 2.1.2:
LU Decomposition / 2.1.3:
Tridiagonal Matrices: Recursion Method / 2.1.4:
Iterative Methods / 2.2:
Jacobi Relaxation / 2.2.1:
Gauss-Seidel Relaxation (GSR) / 2.2.2:
Successive Over-Relaxation (SOR) / 2.2.3:
Alternating Direction Implicit Method (ADI) / 2.2.4:
Conjugate Gradient Method (CG) / 2.2.5:
Eigenvalues and Eigenvectors / 2.3:
Largest Eigenvalue and Related Eigenvector / 2.3.1:
Arbitrary Eigenvalue/-vector: Inverse Iteration / 2.3.2:
Potential Equation / 2.4:
Electronic Orbitals / 2.4.3:
Stochastics / 3:
Equidistributed Random Variates / 3.1:
Linear Congruential Generators / 3.1.1:
Shift Register Generators / 3.1.2:
Other Distributions / 3.2:
Fundamentals / 3.2.1:
Transformation Method / 3.2.2:
Generalized Transformation Method / 3.2.3:
Rejection Method / 3.2.4:
Multivariate Gaussian Distribution / 3.2.5:
Equidistribution in Orientation Space / 3.2.6:
Random Sequences / 3.3:
Markov Processes / 3.3.1:
Autoregressive Processes / 3.3.3:
Wiener-Levy Process / 3.3.4:
Markov Chains and the Monte Carlo method / 3.3.5:
Stochastic Optimization / 3.4:
Simulated Annealing / 3.4.1:
Genetic Algorithms / 3.4.2:
Everything Flows / II:
Ordinary Differential Equations / 4:
Initial Value Problems of First Order / 4.1:
Euler-Cauchy Algorithm / 4.1.1:
Stability and Accuracy of Difference Schemes / 4.1.2:
Explicit Methods / 4.1.3:
Implicit Methods / 4.1.4:
Predictor-Corrector Method / 4.1.5:
Runge-Kutta Method / 4.1.6:
Extrapolation Method / 4.1.7:
Initial Value Problems of Second Order / 4.2:
Verlet Method / 4.2.1:
Nordsieck Formulation of the PC Method / 4.2.2:
Symplectic Algorithms / 4.2.4:
Numerov's Method / 4.2.6:
Boundary Value Problems / 4.3:
Shooting Method / 4.3.1:
Relaxation Method / 4.3.2:
Partial Differential Equations / 5:
Initial Value Problems I (Hyperbolic) / 5.1:
FTCS Scheme; Stability Analysis / 5.1.1:
Lax Scheme / 5.1.2:
Leapfrog Scheme (LF) / 5.1.3:
Lax-Wendroff Scheme (LW) / 5.1.4:
Lax and Lax-Wendroff in Two Dimensions / 5.1.5:
Initial Value Problems II (Parabolic) / 5.2:
FTCS Scheme / 5.2.1:
Implicit Scheme of First Order / 5.2.2:
Crank-Nicholson Scheme (CN) / 5.2.3:
Dufort-Frankel Scheme (DF) / 5.2.4:
Boundary Value Problems: Elliptic DE / 5.3:
Relaxation and Multigrid Techniques / 5.3.1:
ADI Method for the Potential Equation / 5.3.2:
Fourier Transform Method (FT) / 5.3.3:
Cyclic Reduction (CR) / 5.3.4:
Anchors Aweigh / III:
Simulation and Statistical Mechanics / 6:
Model Systems of Statistical Mechanics / 6.1:
A Nutshellfull of Fluids and Solids / 6.1.1:
Tricks of the Trade / 6.1.2:
Monte Carlo Method / 6.2:
Molecular Dynamics Simulation / 6.3:
Hard Spheres / 6.3.1:
Continuous Potentials / 6.3.2:
Beyond Basic Molecular Dynamics / 6.3.3:
Evaluation of Simulation Experiments / 6.4:
Pair Correlation Function / 6.4.1:
Autocorrelation Functions / 6.4.2:
Particles and Fields / 6.5:
Ewald summation / 6.5.1:
Particle-Mesh Methods (PM and P3M) / 6.5.2:
Stochastic Dynamics / 6.6:
Quantum Mechanical Simulation / 7:
Diffusion Monte Carlo (DMC) / 7.1:
Path Integral Monte Carlo (PIMC) / 7.2:
Wave Packet Dynamics (WPD) / 7.3:
Density Functional Molecular Dynamics (DFMD) / 7.4:
Hydrodynamics / 8:
Compressible Flow without Viscosity / 8.1:
Explicit Eulerian Methods / 8.1.1:
Particle-in-Cell Method (PIC) / 8.1.2:
Smoothed Particle Hydrodynamics (SPH) / 8.1.3:
Incompressible Flow with Viscosity / 8.2:
Vorticity Method / 8.2.1:
Pressure Method / 8.2.2:
Free Surfaces: Marker-and-Cell Method (MAC) / 8.2.3:
Lattice Gas Models for Hydrodynamics / 8.3:
Lattice Gas Cellular Automata / 8.3.1:
The Lattice Boltzmann Method / 8.3.2:
Direct Simulation Monte Carlo / Bird method / 8.4:
Appendixes
Machine Errors / A:
Discrete Fourier Transformation / B:
Fast Fourier Transform (FFT) / B.1:
Bibliography
Index
The Three Pillars of Computational Physics / I:
Finite Differences / 1:
Interpolation Formulae / 1.1:
36.

図書

図書
Sami Tabbane
出版情報: Boston : Artech House, 2000  xii, 619 p. ; 24 cm
シリーズ名: The Artech House mobile communications series
所蔵情報: loading…
目次情報: 続きを見る
General Introduction / 1:
History and Development / 1.1:
Phase One: Theoretical Foundations / 1.1.1:
Second Phase: Development and Applications / 1.1.2:
Third Phase: Mobile Services for the General Public / 1.1.3:
Evolution of Mobile Systems / 1.1.4:
Equipment Development / 1.1.5:
Differences Between Fixed Networks and Mobile Networks / 1.2:
Limited Spectrum / 1.2.1:
Fluctuating Quality of Radio Links / 1.2.2:
Unknown and Variable Access Points / 1.2.3:
Management of the Spectrum and Standardization / 1.3:
International Organizations / 1.3.1:
European Organizations / 1.3.2:
Some U.S. Organizations / 1.3.3:
Contents of the Book / 1.4:
First Part (Chapters 2-8) / 1.4.1:
Second Part (Chapters 9-14) / 1.4.2:
Frequency Bands and Some Services and Applications / Appendix 1A:
References
Selected Bibliography
Propagation in a Mobile Radio Environment / 2:
Antenna Basic Elements / 2.1:
Principal Antenna Characteristics / 2.1.1:
Common Antennas / 2.1.2:
Coupling Loss Between Antennas / 2.1.3:
Parameters to Be Specified When Designing or Selecting Antennas / 2.1.4:
Power (Link) Budget / 2.1.5:
Mobile Radio Propagation / 2.2:
Pathloss / 2.2.1:
Attenuation Caused by Vegetation / 2.2.2:
Attenuation Due to Atmosphere / 2.2.3:
Diffraction and Fresnel Region / 2.2.4:
Multipath / 2.2.5:
Delay-spread / 2.2.6:
Rayleigh Fading / 2.2.7:
Doppler Shift / 2.2.8:
Indoor Environment Propagation Characteristics / 2.2.9:
Propagation in Dense Urban Environments / 2.2.10:
Conclusions / 2.2.11:
Interference and Noise / 2.3:
Noise / 2.3.1:
Interference / 2.3.2:
Propagation Prediction Models / 2.4:
Statistical Methods / 2.4.1:
Exact Methods and Ray Tracing/Launching / 2.4.2:
Noise That Can Affect Radio Reception / 2.5:
Internal Noise Sources / 2A.1:
External Noise Sources / 2A.2:
Decibels / Appendix 2B:
Determination of the Plane Earth Propagation Formula / Appendix 2C:
Access--Radio Channel Definitions and Resource Access / 3:
Multiple-Access Methods / 3.1:
Definitions--Narrowband and Wideband Systems / 3.1.1:
Frequency-Division Multiple Access / 3.1.2:
Time-Division Multiple Access / 3.1.3:
Code-Division Multiple Access / 3.1.4:
Random Access Protocols / 3.1.5:
Protocols Nonslotted and Without Carrier Sensing / 3.2.1:
Carrier Sensing Protocols / 3.2.2:
Non-Sensing Slotted Protocols / 3.2.3:
Reservation-Based Framed Protocols / 3.2.4:
TDMA System Measures of Efficiency / 3.3:
Throughputs of Some Random Access Protocols / Appendix 3B:
Protecting Against Channel Imperfections / 4:
Mechanisms Implemented in the Transmission System / 4.1:
Review of the Transmission System / 4.1.1:
Modulation / 4.1.2:
Error Control: ARQ and FEC / 4.1.3:
Equalization / 4.1.4:
Interleaving / 4.1.5:
Diversity Techniques / 4.2:
Microdiversity Techniques / 4.2.1:
Macrodiversity Techniques / 4.2.2:
Adaptive Antennas / 4.3:
Array Antennas / 4.3.1:
Smart Antennas / 4.3.2:
Space-Division Multiple Access Technique (SDMA) / 4.3.3:
Advantages and Drawbacks of Array Antennas / 4.3.4:
Security / 4.4:
Definitions and General Problems / 5.1:
Complexity of the Problem / 5.1.1:
Intrinsic and Extrinsic Protection / 5.1.2:
Attacks and Origin of Security Problems / 5.1.3:
Security Services and Mechanisms as Defined in the OSI Model / 5.1.4:
Confidentiality Problems / 5.2:
Confidentiality Levels / 5.2.1:
Data to Be Protected / 5.2.2:
Protection Methods / 5.3:
Communications Confidentiality: Ciphering or Encryption / 5.3.1:
Location Confidentiality by Use of Implicit Addresses / 5.3.2:
Access Security: Integrity and Authentication / 5.3.3:
Personalization and Telepersonalization / 5.3.4:
Some Methods in the Struggle Against Fraud / 5.3.5:
Examples of Security Feature Implementation / 5.3.6:
Authentication in the CT2 and DECT Systems / 5.4.1:
Authentication in Cellular Systems / 5.4.2:
Conclusions--Future Systems Security Features / 5.5:
Cryptographic Key Distribution Methods / Appendix 5A:
Selected Bibliography on Cryptography
Resource Management in Cellular Systems / 6:
History / 6.1:
The Cellular Concept / 6.2:
Frequency Reuse / 6.2.1:
Reuse Distance and Number of Cells per Cluster / 6.2.2:
Capacities / 6.2.3:
Link Budget / 6.2.4:
System Capacity Expansion Techniques and Network Quality Improvement / 6.2.5:
Frequency Hopping / 6.3.1:
Discontinuous Transmission and Packet Transmission Mode / 6.3.2:
Power Control / 6.3.3:
Dynamic Channel Allocation / 6.3.4:
Basic Cellular System Architecture / 6.4:
The Network Subsystem / 6.4.1:
The BSS / 6.4.2:
Cellular Planning and Engineering / 7:
Cellular Planning Elements / 7.1:
Importance of the Cellular Planning Process / 7.1.1:
Objectives and Problems in Cellular Planning / 7.1.2:
Coverage Objectives / 7.1.3:
Main Steps / 7.1.4:
Traffic Dimensioning Basics / 7.2:
Traffic Load Prediction / 7.2.1:
Quality of Service Parameters / 7.2.2:
Cell Dimensioning / 7.2.3:
Dimensioning Process for a GSM Network / 7.2.4:
Conclusion / 7.2.5:
Planning Stages of a Cellular Network / 7.3:
Radio Planning / 7.3.1:
Fixed Network Planning / 7.3.2:
System Tuning: Example of the GSM BSS / 7.3.3:
Increasing the Capacity of a Cellular Network / 7.5:
Adding New Channels / 7.5.1:
Channel Borrowing / 7.5.2:
Modification of the Cell Reuse Pattern / 7.5.3:
Cell Splitting / 7.5.4:
Sectorization / 7.5.5:
Down-Tilting / 7.5.6:
Cell Layering / 7.5.7:
Trends Toward the Microcellular Techniques / 7.5.8:
Capacity Solutions Comparison / 7.5.9:
Quality of Service / 7.6:
Erlang Formulas / Appendix 7B:
Erlang Table Example / Appendix 7C:
Mobility Management / 8:
Management of Radio Mobility: The Handover Procedure / 8.1:
Basic Handover Principle / 8.1.1:
Growing Importance of the Handover Procedure / 8.1.2:
The Various Handover Phases / 8.1.3:
Various Kinds of Handover Seen by the Network / 8.1.4:
Evaluation of the Handover Procedure / 8.1.5:
Handover Traffic / 8.1.6:
Handover Procedures in Analog Systems / 8.1.7:
Handover in Second-Generation Systems / 8.1.8:
Handover in Third-Generation Systems / 8.1.9:
Network Mobility: Cell Selection and Roaming / 8.1.10:
Cell Selection/Reselection Process / 8.2.1:
Location Management / 8.2.2:
Mobility Management in the Fixed and Mobile Networks: The UPT Concept / 8.2.3:
Location Management Methods for Third-Generation Systems / 8.3:
Memoryless Methods / 8A.1:
Database Architecture / 8A.1.1:
Optimizing Fixed Network Architecture / 8A.1.2:
Combining Location Areas and Paging Areas / 8A.1.3:
Multi-layer LAs / 8A.1.4:
A Procedure for Reducing Signaling Message Exchanges / 8A.1.5:
Memory-Based Methods / 8A.2:
Short-Term Observation for Dynamic LA and PA Sizes Assigning/Adjusting / 8A.2.1:
Individual User Patterns / 8A.2.2:
Predicting Short-Term Movements of the Subscriber / 8A.2.3:
Mobility Statistics / 8A.2.4:
Main UPT Features / Appendix 8B:
Professional Mobile Radio / 9:
Historic and General Background / 9.1:
Definition and General Background / 9.1.1:
PMR Categories According to User Needs / 9.1.2:
Categorization of Users and Organizations / 9.1.3:
PMR General Categorization / 9.1.4:
PMR Categorization According to Their Operation / 9.1.5:
PMR Services / 9.2:
PMR Characteristics / 9.2.1:
Services Offered / 9.2.2:
Conventional PMR Systems / 9.2.3:
Architecture of Conventional Radio Networks / 9.3.1:
Weaknesses of Conventional Radio Systems / 9.3.2:
Trunk Radio Networks / 9.4:
History of Trunked Systems / 9.4.1:
Efficiency of the Trunking Method / 9.4.2:
Trunking Architecture / 9.4.3:
Engineering / 9.4.4:
TETRA / 9.4.5:
TETRAPOL / 9.4.6:
Conventional PMRs Comparison/Analog Trunk/Digital Trunk / 9.4.7:
Short-Range Business Radio / 9.4.8:
PMR Evolution / 9.5:
Cordless Systems and Applications / 10:
Basic Principles and Applications / 10.1:
Characteristics / 10.1.1:
Applications / 10.1.2:
Examples of Cordless Systems / 10.2:
CT2 / 10.2.1:
DECT / 10.2.2:
PHS / 10.2.3:
PACS System / 10.2.4:
Paging Systems / 10.3:
Concepts and Basic Principles / 11.1:
Architecture / 11.1.1:
Signaling Methods / 11.1.2:
Transmission Channels / 11.1.3:
Services / 11.1.4:
Examples of One-Way Paging Systems / 11.1.5:
Eurosignal / 11.2.1:
POCSAG / 11.2.2:
Ermes / 11.2.3:
Cellular Networks / 11.3:
First-Generation Systems / 12.1:
Radiocom 2000 System / 12.1.1:
AMPS / 12.1.2:
NMT System / 12.1.3:
Second-Generation Systems / 12.2:
The GSM System / 12.2.1:
The D-AMPS System / 12.2.2:
The IS-95 System / 12.2.3:
Personal Digital Cellular System / 12.2.4:
GSM Functionality in Its Different Phases / 12.3:
Wireless Data Networks / 13:
Wireless Local Area Networks / 13.1:
Types of Wireless LAN Systems / 13.1.1:
Classification According to the Technique Used / 13.1.2:
Wireless LANs Applications / 13.1.3:
The HIPERLAN Standard / 13.1.4:
The 802.11 Standard / 13.1.5:
Wide Area Wireless Data Networks / 13.1.6:
Types of Systems and Evolution / 13.2.1:
ARDIS / 13.2.2:
The Mobitex System / 13.2.3:
Cellular Digital Packet Data / 13.2.4:
General Packet Radio Service / 13.2.5:
About The Author / 13.3:
Index
General Introduction / 1:
History and Development / 1.1:
Phase One: Theoretical Foundations / 1.1.1:
37.

図書

図書
R. S. Cant, E. Mastorakos
出版情報: London : Imperial College Press, c2008  xiii, 177 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Motivation, aims and audience / 1.1:
Relevance / 1.1.1:
Aims and structure / 1.1.2:
Bibliography / 1.1.3:
Governing equations / 1.2:
Instantaneous equations and basic concepts / 1.2.1:
Reynolds averaging / 1.2.2:
The mean reaction rate / 1.2.3:
Summary / 1.3:
Exercises / 1.4:
Some Comments on Turbulence / 2:
Statistical description / 2.1:
The randomness of turbulence / 2.2.1:
Probability density functions / 2.2.2:
Turbulent scales / 2.3:
Large-eddy scales / 2.3.1:
Dissipation and small scales / 2.3.2:
Taylor microscale / 2.3.3:
What are eddies? / 2.3.4:
Temporal and spatial correlations / 2.4:
Temporal autocorrelation / 2.4.1:
The convergence of averages / 2.4.2:
Spatial autocorrelation / 2.4.3:
Taylor hypothesis / 2.4.4:
Scalar scales / 2.4.5:
Reynolds-averaged equations / 2.5:
First moments / 2.5.1:
Eddy diffusivity / 2.5.2:
Second moments / 2.5.3:
Computational Fluid Dynamics / 2.5.4:
Spectra and intermittency / 2.6:
Spectra / 2.6.1:
Intermittency / 2.6.2:
Mixing / 2.7:
Molecular mixing / 3.1:
Some analytical solutions / 3.2.1:
Transport properties / 3.2.2:
Random walk / 3.2.3:
Brownian motion / 3.2.4:
Turbulent mixing / 3.3:
Taylor dispersion / 3.3.1:
Characterization of mixing / 3.3.2:
Length scales and spectra / 3.3.3:
Scalar dissipation / 3.3.4:
Reaction-diffusion systems / 3.4:
Propagating front 1 / 3.4.1:
Propagating front 2 / 3.4.2:
Unsteady flamelet equation / 3.4.3:
Final comments / 3.4.4:
Flows with Non-premixed Reactants / 3.5:
Moment methods / 4.1:
Neglecting the fluctuations: very slow chemistry / 4.2.1:
Eddy Dissipation Concept and derivatives / 4.2.2:
Second-order / 4.2.3:
Presumed joint pdf / 4.2.4:
Other / 4.2.5:
The well-stirred reactor / 4.3:
Conserved scalar methods / 4.4:
Mixture fraction / 4.4.1:
Qualitative structure of a laminar non-premixed flame / 4.4.2:
Fast chemistry / 4.4.3:
The pdf of the mixture fraction / 4.4.4:
Steady and transient flamelets / 4.4.5:
Conditional Moment Closure / 4.4.6:
Flame Surface Density / 4.4.7:
Transported pdf / 4.5:
Monte-Carlo method / 4.5.1:
Further developments / 4.5.3:
Concluding comments / 4.6:
Flows with Premixed Reactants / 4.7:
Laminar premixed flames / 5.1:
Background / 5.2.1:
Propagation / 5.2.2:
Laminar premixed flame structure / 5.2.3:
Estimation of laminar premixed flame thickness / 5.2.4:
Effects of mixture strength: flammability limits / 5.2.5:
Effects of pressure and temperature / 5.2.6:
Turbulent premixed flames / 5.3:
Turbulent burning velocity / 5.3.1:
Stretch, strain and curvature / 5.3.2:
Turbulent flame speed measurements / 5.3.3:
Turbulent flame speed correlations / 5.3.4:
Turbulent flame speed: a fractal approach / 5.3.5:
Dimensionless numbers for turbulent premixed flames / 5.3.6:
Regime diagrams / 5.3.7:
Turbulent premixed combustion modelling / 5.4:
Favre averaging / 5.4.1:
Turbulent transport in premixed flames / 5.4.2:
Eddy Break-Up Model for premixed flames / 5.4.3:
The laminar flamelet concept / 5.4.4:
Laminar flamelets in practice / 5.4.5:
Bray-Moss-Libby transport modelling / 5.4.6:
Bray-Moss-Libby reaction rate modelling / 5.4.7:
Flame surface density modelling / 5.4.8:
The G-equation formulation / 5.4.9:
Other models for turbulent premixed flames / 5.4.10:
Numerical Methods for Reacting Flows / 5.5:
Combustion CFD / 6.1:
Unsteady convection-diffusion-reaction equation / 6.2.1:
Spatial discretisation / 6.2.2:
Solution algorithms / 6.2.3:
RANS, LES and DNS / 6.2.4:
Numerical considerations for combustion problems / 6.2.5:
Numerical solvers for stiff differential equations / 6.3:
Forward Euler method / 6.3.1:
Timescales and stiffness / 6.3.3:
Properties of solvers / 6.3.4:
Solvers for chemical systems / 6.3.5:
Method of lines / 6.3.6:
Experimental Methods for Reacting Flows / 6.3.7:
General concepts / 7.1:
Uncertainties and measurement errors / 7.2.1:
Resolution and response / 7.2.2:
Filtering / 7.2.3:
Measurement techniques for reacting flows / 7.3:
Visualization / 7.3.1:
Intrusive techniques / 7.3.2:
Non-intrusive techniques / 7.3.3:
Epilogue / 7.4:
Index
Preface
Introduction / 1:
Motivation, aims and audience / 1.1:
38.

図書

図書
Duncan J. Watts
出版情報: Princeton, N.J. : Princeton University Press, 2004, c1999  xv, 262 p. ; 24 cm
シリーズ名: Princeton studies in complexity
Princeton paperbacks
所蔵情報: loading…
目次情報: 続きを見る
Preface
Kevin Bacon, the Small World, and Why It All Matters / 1:
Structure / Part I:
An Overview of the Small-World Phenomenon / 2:
Social Networks and the Small World / 2.1:
A Brief History of the Small World / 2.1.1:
Difficulties with the Real World / 2.1.2:
Reframing the Question to Consider All Worlds / 2.1.3:
Background on the Theory of Graphs / 2.2:
Basic Definitions / 2.2.1:
Length and Length Scaling / 2.2.2:
Neighbourhoods and Distribution Sequences / 2.2.3:
Clustering / 2.2.4:
"Lattice Graphs" and Random Graphs / 2.2.5:
Dimension and Embedding of Graphs / 2.2.6:
Alternative Definition of Clustering Coefficient / 2.2.7:
Big Worlds and Small Worlds: Models of Graphs / 3:
Relational Graphs / 3.1:
[alpha]-Graphs / 3.1.1:
A Stripped-Down Model: [beta]-Graphs / 3.1.2:
Shortcuts and Contractions: Model Invariance / 3.1.3:
Lies, Damned Lies, and (More) Statistics / 3.1.4:
Spatial Graphs / 3.2:
Uniform Spatial Graphs / 3.2.1:
Gaussian Spatial Graphs / 3.2.2:
Main Points in Review / 3.3:
Explanations and Ruminations / 4:
Going to Extremes / 4.1:
The Connected-Caveman World / 4.1.1:
Moore Graphs as Approximate Random Graphs / 4.1.2:
Transitions in Relational Graphs / 4.2:
Local and Global Length Scales / 4.2.1:
Clustering Coefficient / 4.2.2:
Contractions / 4.2.4:
Results and Comparisons with [beta]-Model / 4.2.5:
Transitions in Spatial Graphs / 4.3:
Spatial Length versus Graph Length / 4.3.1:
Results and Comparisons / 4.3.2:
Variations on Spatial and Relational Graphs / 4.4:
"It's a Small World after All": Three Real Graphs / 4.5:
Making Bacon / 5.1:
Examining the Graph / 5.1.1:
Comparisons / 5.1.2:
The Power of Networks / 5.2:
Examining the System / 5.2.1:
A Worm's Eye View / 5.2.2:
Other Systems / 5.3.1:
Dynamics / 5.5:
The Spread of Infectious Disease in Structured Populations / 6:
A Brief Review of Disease Spreading / 6.1:
Analysis and Results / 6.2:
Introduction of the Problem / 6.2.1:
Permanent-Removal Dynamics / 6.2.2:
Temporary-Removal Dynamics / 6.2.3:
Global Computation in Cellular Automata / 6.3:
Background / 7.1:
Global Computation / 7.1.1:
Cellular Automata on Graphs / 7.2:
Density Classification / 7.2.1:
Synchronisation / 7.2.2:
Cooperation in a Small World: Games on Graphs / 7.3:
The Prisoner's Dilemma / 8.1:
Spatial Prisoner's Dilemma / 8.1.2:
N-Player Prisoner's Dilemma / 8.1.3:
Evolution of Strategies / 8.1.4:
Emergence of Cooperation in a Homogeneous Population / 8.2:
Generalised Tit-for-Tat / 8.2.1:
Win-Stay, Lose-Shift / 8.2.2:
Evolution of Cooperation in a Heterogeneous Population / 8.3:
Global Synchrony in Populations of Coupled Phase Oscillators / 8.4:
Kuramoto Oscillators on Graphs / 9.1:
Conclusions / 9.3:
Notes
Bibliography
Index
Preface
Kevin Bacon, the Small World, and Why It All Matters / 1:
Structure / Part I:
39.

図書

図書
André Neubauer, Jürgen Freudenberger, Volker Kühn
出版情報: Chichester : Wiley, c2007  xi, 340 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Communication Systems / 1.1:
Information Theory / 1.2:
Entropy / 1.2.1:
Channel Capacity / 1.2.2:
Binary Symmetric Channel / 1.2.3:
AWGN Channel / 1.2.4:
A Simple Channel Code / 1.3:
Algebraic Coding Theory / 2:
Fundamentals of Block Codes / 2.1:
Code Parameters / 2.1.1:
Maximum Likelihood Decoding / 2.1.2:
Error Detection and Error Correction / 2.1.3:
Linear Block Codes / 2.2:
Definition of Linear Block Codes / 2.2.1:
Generator Matrix / 2.2.2:
Parity-Check Matrix / 2.2.3:
Syndrome and Cosets / 2.2.4:
Dual Code / 2.2.5:
Bounds for Linear Block Codes / 2.2.6:
Code Constructions / 2.2.7:
Examples of Linear Block Codes / 2.2.8:
Cyclic Codes / 2.3:
Definition of Cyclic Codes / 2.3.1:
Generator Polynomial / 2.3.2:
Parity-Check Polynomial / 2.3.3:
Dual Codes / 2.3.4:
Linear Feedback Shift Registers / 2.3.5:
BCH Codes / 2.3.6:
Reed-Solomon Codes / 2.3.7:
Algebraic Decoding Algorithm / 2.3.8:
Summary / 2.4:
Convolutional Codes / 3:
Encoding of Convolutional Codes / 3.1:
Convolutional Encoder / 3.1.1:
Generator Matrix in the Time Domain / 3.1.2:
State Diagram of a Convolutional Encoder / 3.1.3:
Code Termination / 3.1.4:
Puncturing / 3.1.5:
Generator Matrix in the D-Domain / 3.1.6:
Encoder Properties / 3.1.7:
Trellis Diagram and the Viterbi Algorithm / 3.2:
Minimum Distance Decoding / 3.2.1:
Trellises / 3.2.2:
Viterbi Algorithm / 3.2.3:
Distance Properties and Error Bounds / 3.3:
Free Distance / 3.3.1:
Active Distances / 3.3.2:
Weight Enumerators for Terminated Codes / 3.3.3:
Path Enumerators / 3.3.4:
Pairwise Error Probability / 3.3.5:
Viterbi Bound / 3.3.6:
Soft-input Decoding / 3.4:
Euclidean Metric / 3.4.1:
Support of Punctured Codes / 3.4.2:
Implementation Issues / 3.4.3:
Soft-output Decoding / 3.5:
Derivation of APP Decoding / 3.5.1:
APP Decoding in the Log Domain / 3.5.2:
Convolutional Coding in Mobile Communications / 3.6:
Coding of Speech Data / 3.6.1:
Hybrid ARQ / 3.6.2:
EGPRS Modulation and Coding / 3.6.3:
Retransmission Mechanism / 3.6.4:
Link Adaptation / 3.6.5:
Incremental Redundancy / 3.6.6:
Turbo Codes / 3.7:
LDPC Codes / 4.1:
Codes Based on Sparse Graphs / 4.1.1:
Decoding for the Binary Erasure Channel / 4.1.2:
Log-Likelihood Algebra / 4.1.3:
Belief Propagation / 4.1.4:
A First Encounter with Code Concatenation / 4.2:
Product Codes / 4.2.1:
Iterative Decoding of Product Codes / 4.2.2:
Concatenated Convolutional Codes / 4.3:
Parallel Concatenation / 4.3.1:
The UMTS Turbo Code / 4.3.2:
Serial Concatenation / 4.3.3:
Partial Concatenation / 4.3.4:
Turbo Decoding / 4.3.5:
EXIT Charts / 4.4:
Calculating an EXIT Chart / 4.4.1:
Interpretation / 4.4.2:
Weight Distribution / 4.5:
Partial Weights / 4.5.1:
Expected Weight Distribution / 4.5.2:
Woven Convolutional Codes / 4.6:
Encoding Schemes / 4.6.1:
Distance Properties of Woven Codes / 4.6.2:
Woven Turbo Codes / 4.6.3:
Interleaver Design / 4.6.4:
Space-Time Codes / 4.7:
Digital Modulation Schemes / 5.1:
Diversity / 5.1.2:
Spatial Channels / 5.2:
Basic Description / 5.2.1:
Spatial Channel Models / 5.2.2:
Channel Estimation / 5.2.3:
Performance Measures / 5.3:
Outage Probability and Outage Capacity / 5.3.1:
Ergodic Error Probability / 5.3.3:
Orthogonal Space-Time Block Codes / 5.4:
Alamouti's Scheme / 5.4.1:
Extension to More than Two Transmit Antennas / 5.4.2:
Simulation Results / 5.4.3:
Spatial Multiplexing / 5.5:
General Concept / 5.5.1:
Iterative APP Preprocessing and Per-layer Decoding / 5.5.2:
Linear Multilayer Detection / 5.5.3:
Original BLAST Detection / 5.5.4:
QL Decomposition and Interference Cancellation / 5.5.5:
Performance of Multi-Layer Detection Schemes / 5.5.6:
Unified Description by Linear Dispersion Codes / 5.5.7:
Algebraic Structures / 5.6:
Groups, Rings and Finite Fields / A.1:
Groups / A.1.1:
Rings / A.1.2:
Finite Fields / A.1.3:
Vector Spaces / A.2:
Polynomials and Extension Fields / A.3:
Discrete Fourier Transform / A.4:
Linear Algebra / B:
Acronyms / C:
Bibliography
Index
Preface
Introduction / 1:
Communication Systems / 1.1:
40.

図書

図書
Feng Liu
出版情報: Boca Raton, Fla. : Lewis, c2001  367 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Environmental Justice, Equity, and Policies / Chapter 1:
The Environmental Justice Movement / 1.1:
Environmental Justice Policies / 1.2:
Environmental Justice Analysis / 1.3:
The Debate on Terminology / 1.4:
Overview of this Book / 1.5:
Theories and Hypotheses / Chapter 2:
Theories of Justice and Equity / 2.1:
Utilitarianism / 2.1.1:
Contractarianism and Egalitarianism / 2.1.2:
Libertarianism / 2.1.3:
Which Theory? / 2.1.4:
Economic Theory and Location Theory / 2.2:
Externality and Public Goods / 2.2.1:
Welfare Economics / 2.2.2:
Residential Location Theory / 2.2.3:
Industrial Location Theory / 2.2.4:
Theories of Risk / 2.3:
Psychometric Theory / 2.3.1:
Expected Utility Theory / 2.3.2:
Cultural Theory / 2.3.3:
Sociological Theory / 2.3.4:
Theories of Neighborhood Change / 2.4:
Classical Invasion-Succession Model / 2.4.1:
Neighborhood Life-Cycle Model / 2.4.2:
Push-Pull Model / 2.4.3:
Institutional Theory of Neighborhood Change / 2.4.4:
Summary / 2.5:
Methodology and Analytical Framework for Environmental Justice and Equity Analysis / Chapter 3:
Inquiry and Environmental Justice Analysis / 3.1:
Positivism and Participatory Research / 3.1.1:
Scientific Reasoning / 3.1.2:
Validity / 3.1.3:
Causality / 3.1.4:
Methodological Issues in Environmental Justice Research / 3.2:
Integrated Analytical Framework / 3.3:
Measuring Environmental and Human Impacts / Chapter 4:
Environmental and Human Impacts: Concepts and Processes / 4.1:
Modeling and Simulating Environmental Risks / 4.2:
Modeling Exposure / 4.2.1:
Emission Models / 4.2.1.1:
Dispersion Models / 4.2.1.2:
Time-Activity Patterns and Exposure Models / 4.2.1.3:
Modeling Dose-Response / 4.2.2:
Measuring and Modeling Economic Impacts / 4.3:
Contingent Valuation Method / 4.3.1:
Hedonic Price Method / 4.3.2:
Measuring Environmental and Human Impacts for Environmental Justice Analysis / 4.4:
Critique and Response of a Risk-Based Approach to Equity Analysis / 4.5:
Quantifying and Projecting Population Distribution / 4.6:
Census / 5.1:
Population Measurements: Who Is Disadvantaged? / 5.2:
Race and Ethnicity / 5.2.1:
Income / 5.2.2:
Highly Susceptible of Exposed Subpopulations / 5.2.3:
Age / 5.2.4:
Housing / 5.2.5:
Education / 5.2.6:
Population Distribution / 5.3:
Population Projection and Forecast / 5.4:
Methods / 5.4.1:
Choosing the Right Method / 5.4.2:
Defining Units of Analysis / 5.5:
The Debate on Choice of Unit of Analysis / 6.1:
Census Geography: Concepts, Criteria, and Hierarchy / 6.2:
Basic Hierarchy: Standard Geographic Units / 6.2.1:
Non-Standard Geographic Units / 6.2.2:
Census Geography as a Unit of Equity Analysis: Consistency, Comparability, and Availability / 6.3:
Hierarchical Relationship and Geographic Boundary / 6.3.1:
Boundary Comparability over Time / 6.3.2:
Data Availability and Comparability over Time / 6.3.3:
Census Geography as a Unit of Equity Analysis: Which One? / 6.4:
Alternative Units of Analysis / 6.5:
Based on the Boundary of Environmental Impacts / 6.5.1:
Based on the Boundary of Sociological Neighborhood / 6.5.2:
Based on the Boundary of Economic Impacts / 6.5.3:
Based on the Administrative/Political Boundary or Judicial Opinions / 6.5.4:
Analyzing Data with Statistical Methods / 6.6:
Descriptive Statistics / 7.1:
Inferential Statistics / 7.2:
Correlation and Regression / 7.3:
Probability and Discrete Choice Models / 7.4:
Spatial Statistics / 7.5:
Applications of Statistical Methods in Environmental Justice Studies / 7.6:
Integrating, Analyzing, and Mapping Data with GIS / Chapter 8:
Spatial Measures and Concepts / 8.1:
Spatial Data / 8.1.1:
Spatial Data Structure / 8.1.2:
Distance / 8.1.3:
Centroid / 8.1.4:
Spatial Interpolation / 8.2:
Point Interpolation / 8.2.1:
Areal Interpolation / 8.2.2:
GIS-Based Units of Analysis for Equity Analysis / 8.3:
Adjacency Analysis / 8.3.1:
Buffer Analysis / 8.3.2:
Overlay and Suitability Analysis / 8.4:
GIS-Based Operationalization of Equity Criteria / 8.5:
Integrating GIS and Urban and Environmental Models / 8.6:
Modeling Urban Systems / Chapter 9:
Gravity Models, Spatial Interaction, and Entropy Maximization / 9.1:
Deterministic Utility, Random Utility, and Discrete Choice / 9.2:
Deterministic Utility and Optimization / 9.2.1:
Random Utility Theory and Discrete Choice / 9.2.2:
Policy Evaluation Measures / 9.3:
Operational Models / 9.4:
Integrating Urban and Environmental Models for Environmental Justice Analysis / 9.5:
Equity Analysis of Air Pollution / Chapter 10:
Air Quality / 10.1:
Relationship between Air Quality and Population Distribution: Theories, Methods, and Evidence / 10.2:
Theories / 10.2.1:
Residential Location Theory and Spatial Interaction / 10.2.1.1:
Risk Perception and Human Response to Air Quality / 10.2.1.2:
Theories of Neighborhood Changes / 10.2.1.3:
Evidence / 10.2.2:
Spatial Interaction Modeling Approach to Testing Environmental Inequity / 10.3:
Problem Definition / 10.3.1:
Hypothesis / 10.3.2:
Methods: Spatial Interaction Modeling Using DRAM / 10.3.3:
Index Construction and Data Preparation / 10.3.4:
Model Estimation / 10.3.5:
Results / 10.3.6:
Los Angeles / 10.3.6.1:
Houston / 10.3.6.2:
Discussions and Conclusions / 10.3.7:
Equity Analysis of National Ambient Air Quality Standards / 10.4:
Results and Discussion / 10.4.1:
Nonattainment Areas as a Whole / 10.4.3.1:
Spatial Distribution and Regional Differences / 10.4.3.2:
City vs. Non-City Nonattainment Areas / 10.4.3.3:
Major Findings / 10.4.3.4:
Implications for Environmental Policy / 10.4.3.5:
Environmental Justice Analysis of Hazardous Waste Facilities, Superfund Sites, and Toxic Release Facilities / Chapter 11:
Equity Analysis of Hazardous Waste Facilities / 11.1:
Hazardous Wastes / 11.1.1:
Cross-Sectional National Studies / 11.1.2:
Regional Studies / 11.1.2.2:
Methodological Issues / 11.1.3:
Equity Analysis of CERCLIS and Superfund Sites / 11.2:
CERCLIS and Superfund Sites / 11.2.1:
Hypotheses and Empirical Evidence / 11.2.2:
Equity Analysis of Toxic Release Facilities / 11.2.3:
Toxic Releases Inventory / 11.3.1:
National Studies and Evidence / 11.3.2:
Regional Studies and Methodological Improvements / 11.3.3:
Dynamics Analysis of Locally Unwanted Land Uses / 11.3.4:
Methodological Issues in Dynamics Analysis / 12.1:
Framework for Dynamics Analysis / 12.2:
Revisiting the Houston Case: Hypothesis Testing / 12.3:
Data / 12.3.1:
Tests / 12.3.2:
Discussion of Alternative Hypotheses / 12.3.3:
Invasion-Succession Hypothesis / 12.4.1:
Life-Cycle Hypothesis / 12.4.2:
Push Forces: Other Environmental Risks / 12.4.3:
Conclusions / 12.5:
Equity Analysis of Transportation Systems, Projects, Plans, and Policies / Chapter 13:
Environmental Impacts of Transportation Systems / 13.1:
Incorporating Equity Analysis in the Transportation Planning Process / 13.2:
Transportation System Performance Measures / 13.3:
Equity Analysis of Mobility and Accessibility / 13.4:
Concepts and Methods / 13.4.1:
Using Accessibility for Equity Analysis / 13.4.2:
Empirical Evidence about Mobility Disparity / 13.4.3:
Accessibility Disparity and Spatial Mismatch / 13.4.4:
Measuring Distributional Impacts on Property Values / 13.5:
Measuring Environmental Impacts / 13.6:
Equity Analysis of Transportation Policies / 13.7:
Environmental Justice of Transportation in Court / 13.8:
Trends and Conclusions / 13.9:
Internet-Based and Community-Based Tools / 14.1:
EPA's Environfacts / 14.1.1:
LandView III / 14.1.2:
Environmental Defense's Scorecard (http://www.scorecard.org/) / 14.1.3:
References / 14.2:
Index
Environmental Justice, Equity, and Policies / Chapter 1:
The Environmental Justice Movement / 1.1:
Environmental Justice Policies / 1.2:
41.

図書

図書
John M. Harris, Jeffry L. Hirst, Michael J. Mossinghoff
出版情報: New York, NY : Springer, c2008  xv, 381 p. ; 25 cm
シリーズ名: Undergraduate texts in mathematics
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Graph Theory / 1:
Introductory Concepts / 1.1:
Graphs and Their Relatives / 1.1.1:
The Basics / 1.1.2:
Special Types of Graphs / 1.1.3:
Distance in Graphs / 1.2:
Definitions and a Few Properties / 1.2.1:
Graphs and Matrices / 1.2.2:
Graph Models and Distance / 1.2.3:
Trees / 1.3:
Definitions and Examples / 1.3.1:
Properties of Trees / 1.3.2:
Spanning Trees / 1.3.3:
Counting Trees / 1.3.4:
Trails, Circuits, Paths, and Cycles / 1.4:
The Bridges of Konigsberg / 1.4.1:
Eulerian Trails and Circuits / 1.4.2:
Hamiltonian Paths and Cycles / 1.4.3:
Three Open Problems / 1.4.4:
Planarity / 1.5:
Euler's Formula and Beyond / 1.5.1:
Regular Polyhedra / 1.5.3:
Kuratowski's Theorem / 1.5.4:
Colorings / 1.6:
Definitions / 1.6.1:
Bounds on Chromatic Number / 1.6.2:
The Four Color Problem / 1.6.3:
Chromatic Polynomials / 1.6.4:
Matchings / 1.7:
Hall's Theorem and SDRs / 1.7.1:
The Konig-Egervary Theorem / 1.7.3:
Perfect Matchings / 1.7.4:
Ramsey Theory / 1.8:
Classical Ramsey Numbers / 1.8.1:
Exact Ramsey Numbers and Bounds / 1.8.2:
Graph Ramsey Theory / 1.8.3:
References / 1.9:
Combinatorics / 2:
Some Essential Problems / 2.1:
Binomial Coefficients / 2.2:
Multinomial Coefficients / 2.3:
The Pigeonhole Principle / 2.4:
The Principle of Inclusion and Exclusion / 2.5:
Generating Functions / 2.6:
Double Decks / 2.6.1:
Counting with Repetition / 2.6.2:
Changing Money / 2.6.3:
Fibonacci Numbers / 2.6.4:
Recurrence Relations / 2.6.5:
Catalan Numbers / 2.6.6:
Polya's Theory of Counting / 2.7:
Permutation Groups / 2.7.1:
Burnside's Lemma / 2.7.2:
The Cycle Index / 2.7.3:
Polya's Enumeration Formula / 2.7.4:
de Bruijn's Generalization / 2.7.5:
More Numbers / 2.8:
Partitions / 2.8.1:
Stirling Cycle Numbers / 2.8.2:
Stirling Set Numbers / 2.8.3:
Bell Numbers / 2.8.4:
Eulerian Numbers / 2.8.5:
Stable Marriage / 2.9:
The Gale-Shapley Algorithm / 2.9.1:
Variations on Stable Marriage / 2.9.2:
Combinatorial Geometry / 2.10:
Sylvester's Problem / 2.10.1:
Convex Polygons / 2.10.2:
Infinite Combinatorics and Graphs / 2.11:
Pigeons and Trees / 3.1:
Ramsey Revisited / 3.2:
ZFC / 3.3:
Language and Logical Axioms / 3.3.1:
Proper Axioms / 3.3.2:
Axiom of Choice / 3.3.3:
The Return of der Konig / 3.4:
Ordinals, Cardinals, and Many Pigeons / 3.5:
Cardinality / 3.5.1:
Ordinals and Cardinals / 3.5.2:
Pigeons Finished Off / 3.5.3:
Incompleteness and Cardinals / 3.6:
Godel's Theorems for PA and ZFC / 3.6.1:
Inaccessible Cardinals / 3.6.2:
A Small Collage of Large Cardinals / 3.6.3:
Weakly Compact Cardinals / 3.7:
Infinite Marriage Problems / 3.8:
Hall and Hall / 3.8.1:
Countably Many Men / 3.8.2:
Uncountably Many Men / 3.8.3:
Espousable Cardinals / 3.8.4:
Finite Combinatorics with Infinite Consequences / 3.8.5:
k-critical Linear Orderings / 3.10:
Points of Departure / 3.11:
Index / 3.12:
Preface to the Second Edition
Preface to the First Edition
Graph Theory / 1:
42.

図書

図書
Wasim E. Rajput
出版情報: Boston : Artech House, c2000  xix, 422 p. ; 24 cm
シリーズ名: The Artech House telecommunication library
所蔵情報: loading…
目次情報: 続きを見る
Preface
E-Commerce-Enabled Business Paradigm / 1:
E-Commerce Business Drivers / 1.1:
E-Commerce Value Propositions / 1.2:
Customer-Oriented Propositions / 1.2.1:
Organizational Efficiencies / 1.2.2:
Revenue Generation / 1.2.3:
E-Commerce-Driven IT Strategy Realignment / 1.3:
Formulating E-Commerce System Requirements / 1.3.1:
Instituting IT Processes / 1.3.2:
Operational Infrastructure / 1.3.3:
Intraorganization IT and Business Alignment / 1.3.4:
Formulating a Technology Architecture / 1.3.5:
Intelligently Embracing the E-Commerce Glut / 1.3.6:
Characteristics of E-Commerce Systems / 1.4:
Functional Characteristics / 1.4.1:
Infrastructural Characteristics / 1.4.2:
E-Commerce Business Domains and Respective E-Commerce Systems Requirements / 1.5:
Business-to-Consumer Application Domain / 1.5.1:
Intraenterprise Application Domain / 1.5.2:
Business-to-Business Application Domain / 1.5.3:
E-Commerce Technology Architecture / 1.6:
Information Appliances / 2:
Overview and Background / 2.1:
Services Provided by Information Appliances / 2.1.1:
Enabling Characteristics of Information Appliances / 2.2:
E-Commerce Content / 2.3:
Understanding Content / 2.3.1:
Content Handlers / 2.3.2:
Content Technologies / 2.3.3:
Choice of Information Appliances / 2.4:
Wireless Telephones / 2.4.1:
Pagers / 2.4.2:
PCs/Workstations / 2.4.3:
Handheld PCs (HPCs) / 2.4.4:
Set-Top Boxes/Internet Receivers / 2.4.5:
Network Computers / 2.4.6:
AutoPC / 2.4.7:
Information Appliance System Software and Technologies / 2.5:
Operating Systems and Environments / 2.5.1:
Information Appliance Connectivity Technologies / 2.5.2:
Matching Information Appliance Features With Business Process Requirements / 2.6:
Requirements Analysis / 2.6.1:
Business Process Considerations / 2.6.2:
Technology Infrastructure Considerations / 2.6.3:
E-Commerce Systems Computing Networks / 3:
Network Computing Technologies / 3.1:
Wireline Technologies / 3.1.1:
Wireless Technologies / 3.1.2:
Internet Backbone / 3.2:
Internet Network Topology / 3.2.1:
Internet Network Services / 3.2.2:
Wireless Network Backbones / 3.3:
Wireless Topology / 3.3.1:
Wireless Network Services / 3.3.2:
Paging Network Backbone / 3.4:
Paging Network Topology / 3.4.1:
Paging Network Services / 3.4.2:
Integrated Network Services / 3.5:
Sprint's Integrated On-Demand Network (ION) / 3.5.1:
Wireless Knowledge Services / 3.5.2:
Formulating the Enterprise Virtual Network Architecture / 3.6:
E-Commerce Systems' Network Requirements Assessment / 3.6.1:
NSP/ISP Selection Criteria / 3.6.2:
E-Commerce Services and Application Repositories / 4:
Application Access Gateways / 4.1:
Web Servers / 4.1.1:
Interactive Voice Response (IVR) Gateways / 4.1.2:
Internet Telephony Gateways / 4.1.3:
Wireless Gateways for Web Access / 4.1.4:
E-Mail Gateways / 4.1.5:
Webcasting / 4.1.6:
E-Commerce Solutions / 4.2:
E-Commerce Applications / 4.2.1:
E-Commerce Business Standards / 4.2.2:
Enabling ERP Systems and Legacy Applications for E-Commerce / 4.3:
Web-Enabling Backend Systems / 4.3.1:
Enabling Backend Systems for Nonbrowser-Based Access / 4.3.2:
Knowledge Repositories / 4.4:
Identification of Knowledge and Content Sources / 4.4.1:
Knowledge Capture / 4.4.2:
Knowledge Organization and Access / 4.4.3:
Using Search Engines for Knowledge Retrieval / 4.4.4:
Live Agent Services / 4.5:
Enabling Call Centers for Various Electronic Channels / 4.5.1:
Establish Call Routing Infrastructure / 4.5.2:
Empowering Service Representatives With Appropriate Tools and Information / 4.5.3:
Establishing E-Commerce Application Access Infrastructure / 5:
Extranets / 5.1:
Classification of Extranets / 5.1.1:
Development and Deployment of Extranets / 5.1.2:
Applications Access Through Portals / 5.2:
Classification of Portals / 5.2.1:
Development of Portals / 5.2.2:
E-Commerce Systems Operational Management and Control / 5.3:
Network and Systems Management Issues / 5.3.1:
Standards and Technologies / 5.3.2:
Formulating an E-Commerce Operational Management Strategy / 5.3.3:
E-Commerce Hosting / 5.4:
E-Commerce Systems Technology Infrastructure / 6:
E-Commerce Systems Middleware / 6.1:
Middleware Frameworks / 6.1.1:
Transaction Processing Middleware / 6.1.2:
Communication Middleware / 6.1.3:
Database Middleware / 6.1.4:
Application Middleware / 6.1.5:
Directory Services: Glue for E-Commerce Systems / 6.2:
Centralization of Directory Services Through Metadirectories / 6.2.1:
Directory Services Requirements for E-Commerce Systems / 6.2.2:
Popular Directory Services / 6.2.3:
Internet Domain Name Service (DNS) / 6.3:
DNS Structure / 6.3.1:
History of DNS Operations and Organization Control / 6.3.2:
Future Directions for DNS Operations / 6.3.3:
Enabling Groupware for E-Commerce and the Internet / 6.4:
Group Communications / 6.4.1:
Group Information Sharing and Collaboration / 6.4.2:
Workflow / 6.4.3:
E-Commerce Application Development Standards / 6.5:
Java Servlets / 6.5.1:
Enterprise Java Beans (EJB) / 6.5.2:
Active Server Pages (ASP) / 6.5.3:
Java Server Pages (JSP) / 6.5.4:
The E-Commerce Payment Infrastructure / 7:
Federal Reserve System / 7.1:
Automated Clearing House (ACH) / 7.1.1:
Fedwire / 7.1.2:
Credit Card Payments / 7.2:
Credit Card Process Flow / 7.2.1:
Secure Socket Layer (SSL)-Based Internet Payments / 7.2.2:
Secure Electronic Transactions (SET)-Based Internet Payments / 7.2.3:
Electronic Cash / 7.3:
Mondex / 7.3.1:
VISA Cash / 7.3.2:
Electronic Check Processing and ATM-Based Banking / 7.4:
Check Processing Flow / 7.4.1:
FSTC Electronic Check / 7.4.2:
ATMs / 7.4.3:
Payment Models / 7.5:
Electronic Wallets / 7.5.1:
Electronic Bill Presentment and Payment (EBPP) / 7.5.2:
E-Commerce Systems Security / 8:
Security Services and Technologies / 8.1:
Confidentiality / 8.1.1:
Access Control / 8.1.2:
Integrity / 8.1.3:
Availability / 8.1.4:
Nonrepudiation / 8.1.5:
Network Security / 8.2:
Network Security Technologies / 8.2.1:
Security for Various Network Topologies / 8.2.2:
Platform Security / 8.3:
Establishing Controls for Platform Access / 8.3.1:
Proper Configuration of the Computing Platform / 8.3.2:
Protecting the Integrity of Platform Applications and Data / 8.3.3:
The Certificate Authority (CA) Infrastructure / 8.4:
Public CA Services / 8.4.1:
Registration Authorities (RAs) / 8.4.2:
Building Internal PKI Services / 8.4.3:
E-Commerce Systems Security--Cost and Risk Assessment / 8.5:
Information Security-Related Costs / 8.5.1:
Information Security Risk Assessment / 8.5.2:
E-Commerce Systems Security Controls Enforcement / 8.6:
Formulating an Enterprise's Information Security Policy / 8.6.1:
Controlling Software Processes / 8.6.2:
Formulating Security Administration Processes / 8.6.3:
Managing E-Commerce Systems Implementation Risks / 9:
Business Process Alignment / 9.1:
E-Commerce-Relevant Organizational Policies / 9.1.1:
Measuring Business Performance / 9.1.2:
IT Process Alignment / 9.2:
E-Commerce Project Management / 9.2.1:
Software Product Engineering / 9.2.2:
Intergroup Coordination / 9.2.3:
Capturing and Retaining Customers / 9.3:
Internet Advertising / 9.3.1:
Customer Retention / 9.3.2:
Using SLAs to Manage Outsourced Services / 9.4:
ISP/NSP/Data Center SLAs / 9.4.1:
Software Development SLAs / 9.4.2:
Understanding E-Commerce Legal and Regulatory Issues / 9.5:
E-Commerce Privacy Issues / 9.5.1:
E-Commerce Piracy Issues / 9.5.2:
Index
Preface
E-Commerce-Enabled Business Paradigm / 1:
E-Commerce Business Drivers / 1.1:
43.

図書

図書
Hans Jürgen Butt, Karlheinz Graf, and Michael Kappl
出版情報: Weinheim : Wiley-VCH, c2006  xii, 386 p. ; 24 cm
シリーズ名: Physics textbook
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Liquid surfaces / 2:
Microscopic picture of the liquid surface / 2.1:
Surface tension / 2.2:
Equation of Young and Laplace / 2.3:
Curved liquid surfaces / 2.3.1:
Derivation of the Young-Laplace equation / 2.3.2:
Applying the Young-Laplace equation / 2.3.3:
Techniques to measure the surface tension / 2.4:
The Kelvin equation / 2.5:
Capillary condensation / 2.6:
Nucleation theory / 2.7:
Summary / 2.8:
Exercises / 2.9:
Thermodynamics of interfaces / 3:
The surface excess / 3.1:
Fundamental thermodynamic relations / 3.2:
Internal energy and Helmholtz energy / 3.2.1:
Equilibrium conditions / 3.2.2:
Location of the interface / 3.2.3:
Gibbs energy and definition of the surface tension / 3.2.4:
Helmholtz surface energy, interfacial enthalpy, and Gibbs surface energy / 3.2.5:
The surface tension of pure liquids / 3.3:
Gibbs adsorption isotherm / 3.4:
Derivation / 3.4.1:
System of two components / 3.4.2:
Experimental aspects / 3.4.3:
The Marangoni effect / 3.4.4:
The electric double layer / 3.5:
Poisson-Boltzmann theory of the diffuse double layer / 4.1:
The Poisson-Boltzmann equation / 4.2.1:
Planar surfaces / 4.2.2:
The full one-dimensional case / 4.2.3:
The Grahame equation / 4.2.4:
Capacity of the diffuse electric double layer / 4.2.5:
Beyond Poisson-Boltzmann theory / 4.3:
Limitations of the Poisson-Boltzmann theory / 4.3.1:
The Stern layer / 4.3.2:
The Gibbs free energy of the electric double layer / 4.4:
Effects at charged interfaces / 4.5:
Electrocapillarity / 5.1:
Theory / 5.1.1:
Measurement of electrocapillarity / 5.1.2:
Examples of charged surfaces / 5.2:
Mercury / 5.2.1:
Silver iodide / 5.2.2:
Oxides / 5.2.3:
Mica / 5.2.4:
Semiconductors / 5.2.5:
Measuring surface charge densities / 5.3:
Potentiometric colloid titration / 5.3.1:
Capacitances / 5.3.2:
Electrokinetic phenomena: The zeta potential / 5.4:
The Navier-Stokes equation / 5.4.1:
Electro-osmosis and streaming potential / 5.4.2:
Electrophoresis and sedimentation potential / 5.4.3:
Types of potentials / 5.5:
Surface forces / 5.6:
Van der Waals forces between molecules / 6.1:
The van der Waals force between macroscopic solids / 6.2:
Microscopic approach / 6.2.1:
Macroscopic calculation - Lifshitz theory / 6.2.2:
Surface energy and Hamaker constant / 6.2.3:
Concepts for the description of surface forces / 6.3:
The Derjaguin approximation / 6.3.1:
The disjoining pressure / 6.3.2:
Measurement of surface forces / 6.4:
The electrostatic double-layer force / 6.5:
General equations / 6.5.1:
Electrostatic interaction between two identical surfaces / 6.5.2:
The DLVO theory / 6.5.3:
Beyond DLVO theory / 6.6:
The solvation force and confined liquids / 6.6.1:
Non DLVO forces in an aqueous medium / 6.6.2:
Steric and depletion interaction / 6.7:
Properties of polymers / 6.7.1:
Force between polymer coated surfaces / 6.7.2:
Depletion forces / 6.7.3:
Spherical particles in contact / 6.8:
Contact angle phenomena and wetting / 6.9:
Young's equation / 7.1:
The contact angle / 7.1.1:
The line tension / 7.1.2:
Complete wetting and wetting transitions / 7.1.4:
Important wetting geometries / 7.2:
Capillary rise / 7.2.1:
Particles in the liquid-gas interface / 7.2.2:
Network of fibers / 7.2.3:
Measurement of the contact angle / 7.3:
Experimental methods / 7.3.1:
Hysteresis in contact angle measurements / 7.3.2:
Surface roughness and heterogeneity / 7.3.3:
Theoretical aspects of contact angle phenomena / 7.4:
Dynamics of wetting and dewetting / 7.5:
Wetting / 7.5.1:
Dewetting / 7.5.2:
Applications / 7.6:
Flotation / 7.6.1:
Detergency / 7.6.2:
Microfluidics / 7.6.3:
Adjustable wetting / 7.6.4:
Solid surfaces / 7.7:
Description of crystalline surfaces / 8.1:
The substrate structure / 8.2.1:
Surface relaxation and reconstruction / 8.2.2:
Description of adsorbate structures / 8.2.3:
Preparation of clean surfaces / 8.3:
Thermodynamics of solid surfaces / 8.4:
Surface stress and surface tension / 8.4.1:
Determination of the surface energy / 8.4.2:
Surface steps and defects / 8.4.3:
Solid-solid interfaces / 8.5:
Microscopy of solid surfaces / 8.6:
Optical microscopy / 8.6.1:
Electron microscopy / 8.6.2:
Scanning probe microscopy / 8.6.3:
Diffraction methods / 8.7:
Diffraction patterns of two-dimensional periodic structures / 8.7.1:
Diffraction with electrons, X-rays, and atoms / 8.7.2:
Spectroscopic methods / 8.8:
Spectroscopy using mainly inner electrons / 8.8.1:
Spectroscopy with outer electrons / 8.8.2:
Secondary ion mass spectrometry / 8.8.3:
Adsorption / 8.9:
Definitions / 9.1:
The adsorption time / 9.1.2:
Classification of adsorption isotherms / 9.1.3:
Presentation of adsorption isotherms / 9.1.4:
Thermodynamics of adsorption / 9.2:
Heats of adsorption / 9.2.1:
Differential quantities of adsorption and experimental results / 9.2.2:
Adsorption models / 9.3:
The Langmuir adsorption isotherm / 9.3.1:
The Langmuir constant and the Gibbs energy of adsorption / 9.3.2:
Langmuir adsorption with lateral interactions / 9.3.3:
The BET adsorption isotherm / 9.3.4:
Adsorption on heterogeneous surfaces / 9.3.5:
The potential theory of Polanyi / 9.3.6:
Experimental aspects of adsorption from the gas phase / 9.4:
Measurement of adsorption isotherms / 9.4.1:
Procedures to measure the specific surface area / 9.4.2:
Adsorption on porous solids - hysteresis / 9.4.3:
Special aspects of chemisorption / 9.4.4:
Adsorption from solution / 9.5:
Surface modification / 9.6:
Chemical vapor deposition / 10.1:
Soft matter deposition / 10.3:
Self-assembled monolayers / 10.3.1:
Physisorption of Polymers / 10.3.2:
Polymerization on surfaces / 10.3.3:
Plasma polymerization / 10.3.4:
Etching techniques / 10.4:
Lithography / 10.5:
Friction, lubrication, and wear / 10.6:
Friction / 11.1:
Amontons' and Coulomb's Law / 11.1.1:
Static, kinetic, and stick-slip friction / 11.1.3:
Rolling friction / 11.1.4:
Friction and adhesion / 11.1.5:
Experimental Aspects / 11.1.6:
Techniques to measure friction / 11.1.7:
Macroscopic friction / 11.1.8:
Microscopic friction / 11.1.9:
Lubrication / 11.2:
Hydrodynamic lubrication / 11.2.1:
Boundary lubrication / 11.2.2:
Thin film lubrication / 11.2.3:
Lubricants / 11.2.4:
Wear / 11.3:
Surfactants, micelles, emulsions, and foams / 11.4:
Surfactants / 12.1:
Spherical micelles, cylinders, and bilayers / 12.2:
The critical micelle concentration / 12.2.1:
Influence of temperature / 12.2.2:
Thermodynamics of micellization / 12.2.3:
Structure of surfactant aggregates / 12.2.4:
Biological membranes / 12.2.5:
Macroemulsions / 12.3:
General properties / 12.3.1:
Formation / 12.3.2:
Stabilization / 12.3.3:
Evolution and aging / 12.3.4:
Coalescence and demulsification / 12.3.5:
Microemulsions / 12.4:
Size of droplets / 12.4.1:
Elastic properties of surfactant films / 12.4.2:
Factors influencing the structure of microemulsions / 12.4.3:
Foams / 12.5:
Classification, application and formation / 12.5.1:
Structure of foams / 12.5.2:
Soap films / 12.5.3:
Evolution of foams / 12.5.4:
Thin films on surfaces of liquids / 12.6:
Phases of monomolecular films / 13.1:
Experimental techniques to study monolayers / 13.3:
Optical methods / 13.3.1:
X-ray reflection and diffraction / 13.3.2:
The surface potential / 13.3.3:
Surface elasticity and viscosity / 13.3.4:
Langmuir-Blodgett transfer / 13.4:
Thick films - spreading of one liquid on another / 13.5:
Solutions to exercises / 13.6:
Appendix
Analysis of diffraction patterns / A:
Diffraction at three dimensional crystals / A.1:
Bragg condition / A.1.1:
Laue condition / A.1.2:
The reciprocal lattice / A.1.3:
Ewald construction / A.1.4:
Diffraction at Surfaces / A.2:
Intensity of diffraction peaks / A.3:
Symbols and abbreviations / B:
Bibliography
Index
Preface
Introduction / 1:
Liquid surfaces / 2:
44.

図書

図書
David A. Watt ; with contributions by William Findlay
出版情報: Chichester : John Wiley & Sons, c2004  xviii, 473 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Part I:
Programming languages / 1:
Programming linguistics / 1.1:
Concepts and paradigms / 1.1.1:
Syntax, semantics, and pragmatics / 1.1.2:
Language processors / 1.1.3:
Historical development / 1.2:
Summary
Further reading
Exercises
Basic Concepts / Part II:
Values and types / 2:
Types / 2.1:
Primitive types / 2.2:
Built-in primitive types / 2.2.1:
Defined primitive types / 2.2.2:
Discrete primitive types / 2.2.3:
Composite types / 2.3:
Cartesian products, structures, and records / 2.3.1:
Mappings, arrays, and functions / 2.3.2:
Disjoint unions, discriminated records, and objects / 2.3.3:
Recursive types / 2.4:
Lists / 2.4.1:
Strings / 2.4.2:
Recursive types in general / 2.4.3:
Type systems / 2.5:
Static vs dynamic typing / 2.5.1:
Type equivalence / 2.5.2:
The Type Completeness Principle / 2.5.3:
Expressions / 2.6:
Literals / 2.6.1:
Constructions / 2.6.2:
Function calls / 2.6.3:
Conditional expressions / 2.6.4:
Iterative expressions / 2.6.5:
Constant and variable accesses / 2.6.6:
Implementation notes / 2.7:
Representation of primitive types / 2.7.1:
Representation of Cartesian products / 2.7.2:
Representation of arrays / 2.7.3:
Representation of disjoint unions / 2.7.4:
Representation of recursive types / 2.7.5:
Variables and storage / 3:
Simple variables / 3.1:
Composite variables / 3.3:
Total vs selective update / 3.3.1:
Static vs dynamic vs flexible arrays / 3.3.2:
Copy semantics vs reference semantics / 3.4:
Lifetime / 3.5:
Global and local variables / 3.5.1:
Heap variables / 3.5.2:
Persistent variables / 3.5.3:
Pointers / 3.6:
Pointers and recursive types / 3.6.1:
Dangling pointers / 3.6.2:
Commands / 3.7:
Skips / 3.7.1:
Assignments / 3.7.2:
Proper procedure calls / 3.7.3:
Sequential commands / 3.7.4:
Collateral commands / 3.7.5:
Conditional commands / 3.7.6:
Iterative commands / 3.7.7:
Expressions with side effects / 3.8:
Command expressions / 3.8.1:
Expression-oriented languages / 3.8.2:
Storage for global and local variables / 3.9:
Storage for heap variables / 3.9.2:
Representation of dynamic and flexible arrays / 3.9.3:
Bindings and scope / 4:
Bindings and environments / 4.1:
Scope / 4.2:
Block structure / 4.2.1:
Scope and visibility / 4.2.2:
Static vs dynamic scoping / 4.2.3:
Declarations / 4.3:
Type declarations / 4.3.1:
Constant declarations / 4.3.2:
Variable declarations / 4.3.3:
Procedure definitions / 4.3.4:
Collateral declarations / 4.3.5:
Sequential declarations / 4.3.6:
Recursive declarations / 4.3.7:
Scopes of declarations / 4.3.8:
Blocks / 4.4:
Block commands / 4.4.1:
Block expressions / 4.4.2:
The Qualification Principle / 4.4.3:
Procedural abstraction / 5:
Function procedures and proper procedures / 5.1:
Function procedures / 5.1.1:
Proper procedures / 5.1.2:
The Abstraction Principle / 5.1.3:
Parameters and arguments / 5.2:
Copy parameter mechanisms / 5.2.1:
Reference parameter mechanisms / 5.2.2:
The Correspondence Principle / 5.2.3:
Implementation of procedure calls / 5.3:
Implementation of parameter mechanisms / 5.3.2:
Advanced Concepts / Part III:
Data abstraction / 6:
Program units, packages, and encapsulation / 6.1:
Packages / 6.1.1:
Encapsulation / 6.1.2:
Abstract types / 6.2:
Objects and classes / 6.3:
Classes / 6.3.1:
Subclasses and inheritance / 6.3.2:
Abstract classes / 6.3.3:
Single vs multiple inheritance / 6.3.4:
Interfaces / 6.3.5:
Representation of objects / 6.4:
Implementation of method calls / 6.4.2:
Generic abstraction / 7:
Generic units and instantiation / 7.1:
Generic packages in ADA / 7.1.1:
Generic classes in C++ / 7.1.2:
Type and class parameters / 7.2:
Type parameters in ADA / 7.2.1:
Type parameters in C++ / 7.2.2:
Class parameters in JAVA / 7.2.3:
Implementation of ADA generic units / 7.3:
Implementation of C++ generic units / 7.3.2:
Implementation of JAVA generic units / 7.3.3:
Inclusion polymorphism / 8:
Types and subtypes / 8.1.1:
Classes and subclasses / 8.1.2:
Parametric polymorphism / 8.2:
Polymorphic procedures / 8.2.1:
Parameterized types / 8.2.2:
Type inference / 8.2.3:
Overloading / 8.3:
Type conversions / 8.4:
Implementation of parametric polymorphism / 8.5:
Control flow / 9:
Sequencers / 9.1:
Jumps / 9.2:
Escapes / 9.3:
Exceptions / 9.4:
Implementation of jumps and escapes / 9.5:
Implementation of exceptions / 9.5.2:
Concurrency / 10:
Why concurrency? / 10.1:
Programs and processes / 10.2:
Problems with concurrency / 10.3:
Nondeterminism / 10.3.1:
Speed dependence / 10.3.2:
Deadlock / 10.3.3:
Starvation / 10.3.4:
Process interactions / 10.4:
Independent processes / 10.4.1:
Competing processes / 10.4.2:
Communicating processes / 10.4.3:
Concurrency primitives / 10.5:
Process creation and control / 10.5.1:
Interrupts / 10.5.2:
Spin locks and wait-free algorithms / 10.5.3:
Events / 10.5.4:
Semaphores / 10.5.5:
Messages / 10.5.6:
Remote procedure calls / 10.5.7:
Concurrent control abstractions / 10.6:
Conditional critical regions / 10.6.1:
Monitors / 10.6.2:
Rendezvous / 10.6.3:
Paradigms / Part IV:
Imperative programming / 11:
Key concepts / 11.1:
Pragmatics / 11.2:
A simple spellchecker / 11.2.1:
Case study: C / 11.3:
Variables, storage, and control / 11.3.1:
Independent compilation / 11.3.3:
Preprocessor directives / 11.3.6:
Function library / 11.3.7:
Case study: Ada / 11.3.8:
Separate compilation / 11.4.1:
Package library / 11.4.8:
Object-oriented programming / 11.4.9:
Case study: C++ / 12.1:
Independent compilation and preprocessor directives / 12.3.1:
Class and template library / 12.3.8:
Case study: Java / 12.3.9:
Separate compilation and dynamic linking / 12.4.1:
Class library / 12.4.8:
Case study: Ada95 / 12.4.9:
Concurrent programming / 12.5.1:
Process creation and termination / 13.1:
Mutual exclusion / 13.3.2:
Admission control / 13.3.3:
Scheduling away deadlock / 13.3.4:
Functional programming / 13.4:
Eager vs normal-order vs lazy evaluation / 14.1:
Case study: Haskell / 14.2:
Lazy evaluation / 14.3.1:
Modeling state / 14.3.5:
Logic programming / 14.3.8:
Case study: Prolog / 15.1:
Values, variables, and terms / 15.3.1:
Assertions and clauses / 15.3.2:
Relations / 15.3.3:
The closed-world assumption / 15.3.4:
Control / 15.3.5:
Input/output / 15.3.7:
Scripting / 15.3.8:
Regular expressions / 16.1:
Case study: Python / 16.3:
Module library / 16.3.1:
Conclusion / Part V:
Language selection / 17:
Criteria / 17.1:
Evaluation / 17.2:
Language design / 18:
Selection of concepts / 18.1:
Regularity / 18.2:
Simplicity / 18.3:
Efficiency / 18.4:
Syntax / 18.5:
Language life cycles / 18.6:
The future / 18.7:
Bibliography
Glossary
Index
Preface
Introduction / Part I:
Programming languages / 1:
45.

図書

図書
Yogesh Jaluria, Kenneth E. Torrance
出版情報: New York, N.Y. ; London : Taylor & Francis, 2003  xv, 544 p ; 24 cm
シリーズ名: Series in computational methods in mechanics and thermal sciences
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Introduction / 1:
Thermal Transport / 1.1:
Mass Transfer and Fluid Flow / 1.2:
An Example / 1.3:
Importance of Analytical and Experimental Methods / 1.4:
Numerical Approach / 1.5:
Basic Considerations in a Numerical Solution / 1.6:
Outline and Scope of the Book / 1.7:
References
Mathematical Background / Part 1:
Governing Equations / 2:
Classification / 2.1:
Representative Differential Equations from Heat Transfer and Fluid Flow / 2.2:
Boundary and Initial Conditions / 2.3:
Integral Forms / 2.4:
Numerical Solution / 2.5:
Basic Equations / 2.5.1:
Different Approaches / 2.5.2:
Problems
Finite Differences / 3:
Basic Concepts / 3.1:
Direct Approximation Approach / 3.1.1:
Polynomial Representation / 3.1.2:
Taylor Series Approach and Accuracy / 3.1.3:
Control Volume Approach and Conservation / 3.1.4:
Numerical Considerations / 3.1.5:
Total Truncation Error / 3.1.5.1:
Discretization and Roundoff Errors / 3.1.5.2:
Convergence / 3.1.5.3:
Numerical Stability and the Equivalence Theorem / 3.1.5.4:
Steady-State Diffusion / 3.2:
Discretization / 3.2.1:
Solution of Simultaneous Equations / 3.2.2:
Iterative Methods / 3.2.2.1:
Direct Methods / 3.2.2.2:
Transient Diffusion / 3.3:
Two-Level Time Discretization / 3.3.1:
Matrix Stability Analysis / 3.3.2:
Fourier Series Stability Analysis / 3.3.3:
An Example of Numerical Instability / 3.3.4:
Other Explicit and Implicit Schemes / 3.3.5:
Finite Elements / 4:
Interpolation Functions / 4.1:
Integral Representations and Galerkin's Method / 4.1.3:
Assembly / 4.1.4:
Elements / 4.1.5:
Condensation and Substructuring / 4.1.6:
Practical Implementation / 4.1.7:
Matrix Equations with Boundary Conditions / 4.2:
One-Dimensional Diffusion / 4.2.2:
Two-Dimensional Diffusion / 4.2.3:
Typical FEM Solutions / 4.2.4:
The Matrix System / 4.3:
Finite Differences in Time / 4.3.2:
Diagonalization / 4.3.3:
Transient One-Dimensional Diffusion / 4.3.4:
Other Methods and Solutions / 4.3.5:
Simulation of Transport Processes / Part 2:
Numerical Methods for Conduction Heat Transfer / 5:
Numerical Solution of Steady-State Conduction / 5.1:
One-Dimensional Conduction / 5.2.1:
Finite Difference Approximation of the Boundary Conditions / 5.2.1.1:
An Example: Numerical Solution of Heat Transfer in an Extended Surface / 5.2.1.3:
Runge-Kutta Methods / 5.2.1.4:
Finite Difference Method / 5.2.1.5:
Multidimensional Steady-State Conduction / 5.2.2:
Finite Difference Formulation / 5.2.2.1:
Solution: Iterative and Direct Methods / 5.2.2.2:
Improvement in Accuracy of Numerical Results / 5.2.2.3:
Finite Element Formulation / 5.2.2.4:
Variable Property and Other Considerations / 5.2.3:
Numerical Solution of Unsteady-State Conduction / 5.3:
One-Dimensional Unsteady-State Conduction / 5.3.1:
FTCS Explicit Method / 5.3.1.1:
Other Methods / 5.3.1.2:
Numerical Approximation of Lumped Mass and Semi-infinite Solids / 5.3.2:
Multidimensional Unsteady-State Conduction / 5.3.3:
Numerical Methods for Time-Varying Boundary Conditions / 5.3.4:
Property Variation / 5.3.5:
Finite Element Solution / 5.3.6:
Grid Generation / 5.4:
Summary / 5.5:
Numerical Methods for Convection Heat Transfer / 6:
Computation of Forced Convection with Constant Fluid Properties / 6.1:
Inviscid Flow: Introduction to Stream Function and Vorticity / 6.2.1:
Equations for Viscous Flow: Primitive and Derived Variables / 6.2.2:
Linear Viscous Flow (Creeping Flow) / 6.2.3:
Computation of Boundary Layer Flows / 6.2.4:
Similarity Solution: Ordinary Differential Equations / 6.2.4.1:
Finite Difference Approach / 6.2.4.2:
Numerical Solution of the Full Equations / 6.2.5:
Central Differencing / 6.2.5.1:
Upwind, Hybrid and Other Lower-Order Differencing Schemes / 6.2.5.2:
Higher-Order Differencing Schemes for Convection / 6.2.5.3:
Other Numerical Methods and Considerations / 6.2.5.4:
Steady State Solution / 6.2.5.5:
Primitive Variables Approach / 6.2.5.6:
Simpler Algorithm / 6.2.5.7:
Finite Difference Considerations of the Conservative Form / 6.2.6:
Concluding Remarks on Flow Calculations / 6.2.7:
Energy Equation / 6.2.8:
Numerical Formulation / 6.2.8.1:
Boundary Conditions / 6.2.8.2:
Numerical Solution of Turbulent Flows / 6.2.8.3:
Computation of Natural Convection Flow and Transport / 6.3:
Similarity Solutions / 6.3.1:
Finite Difference Methods / 6.3.2:
Additional Considerations / 6.3.3:
Convection with Variable Fluid Properties / 6.4:
Finite Element Methods / 6.5:
Discretization and Interpolation Functions / 6.5.1:
Integral Representation / 6.5.2:
Element Equations and Assembly / 6.5.3:
Solution / 6.5.4:
Examples and Other Considerations / 6.5.5:
Comparison of Finite Element and Finite Difference Methods / 6.5.6:
Numerical Methods for Radiation Heat Transfer / 6.6:
Numerical Techniques for Enclosures with Diffuse-Gray Surfaces / 7.1:
Radiosity Method / 7.2.1:
Absorption Factor Method / 7.2.2:
Computation of View Factors / 7.2.3:
Temperature Dependence of Surface Properties / 7.2.3.2:
Spectral Variation / 7.2.3.3:
Nonuniform Irradiation and Emission: Discrete Integral Equations / 7.3:
Numerical Solution of Radiation in the Presence of Other Modes / 7.4:
Combined Modes at Boundaries: Nonparticipating Media / 7.4.1:
Participating Media / 7.4.2:
Other Methods For Participating Media / 7.5:
Monte Carlo Method / 7.6:
Combined Modes and Process Applications / 7.7:
Applications of Computational Heat Transfer / 8:
Numerical Simulation of Thermal Systems in Manufacturing / 8.1:
Heat Treatment: Temperature Regulation / 8.1.1:
Surface Treatment: Semi-infinite Approximation / 8.1.2:
Continuously Moving Materials: Moving Boundary Effects / 8.1.3:
Melting and Solidification: Phase Change Considerations / 8.1.4:
Other Processes / 8.1.5:
Numerical Simulation of Environmental Heat Transfer Problems / 8.2:
Cooling Ponds: Periodic Processes / 8.2.1:
Recirculating Flows in Enclosed Spaces / 8.2.2:
Fire-Induced Flows in Partial Enclosures / 8.2.3:
Free Boundary Flows and Other Problems / 8.2.4:
Computer Simulation and Computer-Aided Design of Thermal Systems / 8.2.5:
General Approach / 8.3.1:
Example of Computer Simulation of a Thermal System / 8.3.2:
Appendices
Finite Difference Approximations / A:
Sample Computer Programs / B:
Successive Over-Relaxation (SOR) Method / B.1:
Tridiagonal Matrix Algorithm (TDMA) or Thomas Algorithm / B.2:
Gauss-Jordan Elimination Method / B.3:
Forward-Time-Central-Space (FTCS) Method / B.4:
Crank-Nicolson Method / B.5:
Newton-Raphson Method / B.6:
Finite Difference Method for ODEs / B.7:
Runge-Kutta Method / B.8:
Alternating-Direction-Implicit (ADI) Method / B.9:
Material Properties / C:
Nomenclature
Index
Preface to the Second Edition
Preface to the First Edition
Introduction / 1:
46.

図書

図書
Qing Liu ; translated by Reinie Erné
出版情報: Oxford : Oxford University Press, 2006  xv, 577 p. ; 24 cm
シリーズ名: Oxford graduate texts in mathematics ; 6
所蔵情報: loading…
目次情報: 続きを見る
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
Right-exactness of the tensor product / 1.1.2:
Tensor product of algebras / 1.1.3:
Flatness / 1.2:
Left-exactness: flatness / 1.2.1:
Local nature of flatness / 1.2.2:
Faithful flatness / 1.2.3:
Formal completion / 1.3:
Inverse limits and completions / 1.3.1:
The Artin-Rees lemma and applications / 1.3.2:
The case of Noetherian local rings / 1.3.3:
General properties of schemes / 2:
Spectrum of a ring / 2.1:
Zariski topology / 2.1.1:
Algebraic sets / 2.1.2:
Ringed topological spaces / 2.2:
Sheaves / 2.2.1:
Schemes / 2.2.2:
Definition of schemes and examples / 2.3.1:
Morphisms of schemes / 2.3.2:
Projective schemes / 2.3.3:
Noetherian schemes, algebraic varieties / 2.3.4:
Reduced schemes and integral schemes / 2.4:
Reduced schemes / 2.4.1:
Irreducible components / 2.4.2:
Integral schemes / 2.4.3:
Dimension / 2.5:
Dyimension of schemes / 2.5.1:
The case of Noetherian schemes / 2.5.2:
Dimension of algebraic varieties / 2.5.3:
Morphisms and base change / 3:
The technique of base change / 3.1:
Fibered product / 3.1.1:
Base change / 3.1.2:
Applications to algebraic varieties / 3.2:
Morphisms of finite type / 3.2.1:
Algebraic varieties and extension of the base field / 3.2.2:
Points with values in an extension of the base field / 3.2.3:
Frobenius / 3.2.4:
Some global properties of morphisms / 3.3:
Separated morphisms / 3.3.1:
Proper morphisms / 3.3.2:
Projective morphisms / 3.3.3:
Some local properties / 4:
Normal schemes / 4.1:
Normal schemes and extensions of regular functions / 4.1.1:
Normalization / 4.1.2:
Regular schemes / 4.2:
Tangent space to a scheme / 4.2.1:
Regular schemes and the Jacobian criterion / 4.2.2:
Flat morphisms and smooth morphisms / 4.3:
Flat morphisms / 4.3.1:
Etale morphisms / 4.3.2:
Smooth morphisms / 4.3.3:
Zariski's 'Main Theorem' and applications / 4.4:
Coherent sheaves and Cech cohomology / 5:
Coherent sheaves on a scheme / 5.1:
Sheaves of modules / 5.1.1:
Quasi-coherent sheaves on an affine scheme / 5.1.2:
Coherent sheaves / 5.1.3:
Quasi-coherent sheaves on a projective scheme / 5.1.4:
Cech cohomology / 5.2:
Differential modules and cohomology with values in a sheaf / 5.2.1:
Cech cohomology on a separated scheme / 5.2.2:
Higher direct image and flat base change / 5.2.3:
Cohomology of projective schemes / 5.3:
Direct image theorem / 5.3.1:
Connectedness principle / 5.3.2:
Cohomology of the fibers / 5.3.3:
Sheaves of differentials / 6:
Kahler differentials / 6.1:
Modules of relative differential forms / 6.1.1:
Sheaves of relative differentials (of degree 1) / 6.1.2:
Differential study of smooth morphisms / 6.2:
Smoothness criteria / 6.2.1:
Local structure and lifting of sections / 6.2.2:
Local complete intersection / 6.3:
Regular immersions / 6.3.1:
Local complete intersections / 6.3.2:
Duality theory / 6.4:
Determinant / 6.4.1:
Canonical sheaf / 6.4.2:
Grothendieck duality / 6.4.3:
Divisors and applications to curves / 7:
Cartier divisors / 7.1:
Meromorphic functions / 7.1.1:
Inverse image of Cartier divisors / 7.1.2:
Weil divisors / 7.2:
Cycles of codimension 1 / 7.2.1:
Van der Waerden's purity theorem / 7.2.2:
Riemann-Roch theorem / 7.3:
Degree of a divisor / 7.3.1:
Riemann-Roch for projective curves / 7.3.2:
Algebraic curves / 7.4:
Classification of curves of small genus / 7.4.1:
Hurwitz formula / 7.4.2:
Hyperelliptic curves / 7.4.3:
Group schemes and Picard varieties / 7.4.4:
Singular curves, structure of Pic[supercript 0] (X) / 7.5:
Birational geometry of surfaces / 8:
Blowing-ups / 8.1:
Definition and elementary properties / 8.1.1:
Universal property of blowing-up / 8.1.2:
Blowing-ups and birational morphisms / 8.1.3:
Normalization of curves by blowing-up points / 8.1.4:
Excellent schemes / 8.2:
Universally catenary schemes and the dimension formula / 8.2.1:
Cohen-Macaulay rings / 8.2.2:
Fibered surfaces / 8.2.3:
Properties of the fibers / 8.3.1:
Valuations and birational classes of fibered surfaces / 8.3.2:
Contraction / 8.3.3:
Desingularization / 8.3.4:
Regular surfaces / 9:
Intersection theory on a regular surface / 9.1:
Local intersection / 9.1.1:
Intersection on a fibered surface / 9.1.2:
Intersection with a horizontal divisor, adjunction formula / 9.1.3:
Intersection and morphisms / 9.2:
Factorization theorem / 9.2.1:
Projection formula / 9.2.2:
Birational morphisms and Picard groups / 9.2.3:
Embedded resolutions / 9.2.4:
Minimal surfaces / 9.3:
Exceptional divisors and Castelnuovo's criterion / 9.3.1:
Relatively minimal surfaces / 9.3.2:
Existence of the minimal regular model / 9.3.3:
Minimal desingularization and minimal embedded resolution / 9.3.4:
Applications to contraction; canonical model / 9.4:
Artin's contractability criterion / 9.4.1:
Determination of the tangent spaces / 9.4.2:
Canonical models / 9.4.3:
Weierstrass models and regular models of elliptic curves / 9.4.4:
Reduction of algebraic curves / 10:
Models and reductions / 10.1:
Models of algebraic curves / 10.1.1:
Reduction / 10.1.2:
Reduction map / 10.1.3:
Graphs / 10.1.4:
Reduction of elliptic curves / 10.2:
Reduction of the minimal regular model / 10.2.1:
Neron models of elliptic curves / 10.2.2:
Potential semi-stable reduction / 10.2.3:
Stable reduction of algebraic curves / 10.3:
Stable curves / 10.3.1:
Stable reduction / 10.3.2:
Some sufficient conditions for the existence of the stable model / 10.3.3:
Deligne-Mumford theorem / 10.4:
Simplifications on the base scheme / 10.4.1:
Proof of Artin-Winters / 10.4.2:
Examples of computations of the potential stable reduction / 10.4.3:
Bibliography
Index
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
47.

図書

図書
Zhuoqun Wu ... [et al.]
出版情報: Singapore : World Scientific, c2001  xvii, 502 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Newtonian Filtration Equations / Chapter 1:
Introduction / 1.1:
Physical examples / 1.1.1:
Definitions of generalized solutions / 1.1.2:
Special solutions / 1.1.3:
Existence and Uniqueness of Solutions: One Dimensional Case / 1.2:
Uniqueness of solutions / 1.2.1:
Existence of solutions / 1.2.2:
Comparison theorems / 1.2.3:
Some extensions / 1.2.4:
Existence and Uniqueness of Solutions: Higher Dimensional Case / 1.3:
Comparison theorem and uniqueness of solutions / 1.3.1:
Regularity of Solutions: One Dimensional Case / 1.3.2:
Lemma / 1.4.1:
Regularity of solutions / 1.4.2:
Regularity of Solutions: Higher Dimensional Case / 1.4.3:
Generalized class B[subscript 2] / 1.5.1:
Some lemmas / 1.5.2:
Properties of functions in the generalized class B[subscript 2] / 1.5.3:
Holder continuity of solutions / 1.5.4:
Properties of the Free Boundary: One Dimensional Case / 1.6:
Finite propagation of disturbances / 1.6.1:
Localization and extinction of disturbances / 1.6.2:
Differential equation on the free boundary / 1.6.3:
Continuously differentiability of the free boundary / 1.6.4:
Some further results / 1.6.5:
Properties of the Free Boundary: Higher Dimensional Case / 1.7:
Monotonicity and Holder continuity of the free boundary / 1.7.1:
Lipschitz continuity of the free boundary / 1.7.2:
Initial Trace of Solutions / 1.7.3:
Harnack inequality / 1.8.1:
Main result / 1.8.2:
Extension of existence and uniqueness theorem / 1.8.3:
Other Problems / 1.9:
Equations with strongly nonlinear sources / 1.9.1:
Asymptotic properties of solutions / 1.9.2:
Non-Newtonian Filtration Equations / Chapter 2:
Introduction Preliminary Knowledge / 2.1:
Introduction Physical example / 2.1.1:
Basic spaces and some lemmas / 2.1.2:
Existence of Solutions / 2.1.3:
The case u[subscript 0] [set membership] C[superscript [infinity] subscript 0](R[superscript N]) or u[subscript 0] [set membership] L[superscript 1](R[superscript N]) [intersection of] L[superscript [infinity](R[superscript N]) / 2.2.1:
The case u[subscript 0] [set membership] L[superscript 1 subscript loc](R[superscript N]) / 2.2.2:
Some remarks / 2.2.3:
Harnack Inequality and the Initial Trace of Solutions / 2.3:
Local Harnack inequality / 2.3.1:
Global Harnack inequality / 2.3.2:
Initial trace of solutions / 2.3.3:
Regularity of Solutions / 2.4:
Boundedness of solutions / 2.4.1:
Boundedness of the gradient of solutions / 2.4.2:
Holder continuity of the gradient of solutions / 2.4.3:
Uniqueness of Solutions / 2.5:
Auxiliary propositions / 2.5.1:
Uniqueness theorem and its proof / 2.5.2:
Properties of the Free Boundary / 2.6:
p-Laplacian equation with strongly nonlinear sources / 2.6.1:
General Quasilinear Equations of Second Order / 2.7.2:
Weakly Degenerate Equations in One Dimension / 3.1:
Uniqueness of bounded and measurable solutions / 3.2.1:
Existence of continuous solutions / 3.2.2:
Weakly Degenerate Equations in Higher Dimension / 3.2.3:
Existence of continuous solutions for equations with two points of degeneracy / 3.3.1:
Uniqueness of BV solutions / 3.3.2:
Existence of BV solutions / 3.3.3:
Strongly Degenerate Equations in One Dimension / 3.3.4:
Definitions of solutions with discontinuity / 3.4.1:
Interior discontinuity condition / 3.4.2:
Uniqueness of BV solutions of the Cauchy problem / 3.4.3:
Formulation of the boundary value problem / 3.4.4:
Boundary discontinuity condition / 3.4.5:
Uniqueness of BV solutions of the first boundary value problem / 3.4.6:
Existence of BV solutions of the first boundary value problem / 3.4.7:
Equations with degeneracy at infinity / 3.4.8:
Properties of the curves of discontinuity / 3.4.10:
Degenerate Equations in Higher Dimension without Terms of Lower Order / 3.5:
Uniqueness of bounded and integrable solutions / 3.5.1:
A lemma on weak convergence / 3.5.2:
General Strongly Degenerate Equations in Higher Dimension / 3.5.3:
Appendix Classes BV and BV[subscript x] / 3.6.1:
Nonlinear Diffusion Equations of Higher Order / Chapter 4:
Similarity Solutions of a Fourth Order Equation / 4.1:
Definition of similarity solutions / 4.2.1:
Existence and uniqueness of global solutions of the Cauchy problem / 4.2.2:
Properties of solutions at zero points / 4.2.3:
Properties of unbounded solutions / 4.2.5:
Bounded solutions on the half line / 4.2.6:
Bounded solutions on the whole line / 4.2.7:
Properties of solutions in typical cases k = 1,2,3,4 / 4.2.8:
Behavior of similarity solutions as t [right arrow] 0[superscript +] / 4.2.9:
Equations with Double-Degeneracy / 4.3:
Weighted energy equality of solutions / 4.3.1:
Some auxiliary inequalities / 4.3.4:
Asymptotic behavior of solutions / 4.3.5:
Extinction of solutions at finite time / 4.3.7:
Nonexistence of nonnegative solutions / 4.3.8:
Infinite propagation case / 4.3.9:
Cahn-Hilliard Equation with Constant Mobility / 4.4:
Existence of classical solutions / 4.4.1:
Blowing-up of solutions / 4.4.2:
Global existence of solutions for small initial value / 4.4.3:
Cahn-Hilliard Equations with Positive Concentration Dependent Mobility / 4.5:
A modified Campanato space / 4.5.1:
Holder norm estimates for a linear problem / 4.5.2:
Zero potential case / 4.5.3:
General case / 4.5.4:
Thin Film Equation / 4.6:
Definition of generalized solutions / 4.6.1:
Approximate solutions / 4.6.2:
Nonnegativity of solutions / 4.6.3:
Zeros of nonnegative solutions / 4.6.5:
Monotonicity of the support of solutions / 4.6.6:
Cahn-Hilliard Equation with Degenerate Mobility / 4.7:
Models with degenerate mobility / 4.7.1:
Definition of physical solutions / 4.7.2:
Physical solutions / 4.7.3:
Bibliography
Preface
Newtonian Filtration Equations / Chapter 1:
Introduction / 1.1:
48.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
49.

図書

図書
B.G. Orekhov, M.G. Zertsalov
出版情報: Rotterdam ; Brookfield, VT : A.A. Balkema, 2001  ix, 285 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Strength and Deformation of Brittle Materials / Chapter 1.:
Mechanics of Failure and Investigation of the Strength of Materials / 1.1.:
Theory of Deformation of Rocks and Concretes under Compression / 1.2.:
Phenomenological Theories of Deformation / 1.2.1.:
Structural Theories of Deformation / 1.2.2.:
Analytical Models of the Strength of Building Materials / Chapter 2.:
Limit State of Brittle Solid Based on the Maximum Tensile Strength Criterion / 2.1.:
Elastic Body with Thin Elliptical Crack / 2.1.1.:
Elastic Body with Ideally Thin Cracks / 2.1.2.:
Elastic Body with Elliptical Cracks of Finite Dimensions / 2.1.3.:
Application of Energy Criteria for Determining the Limiting States of an Elastic Body / 2.2.:
Energy Approach to the Solution of the Problem / 2.2.1.:
Criteria of the Intensity of Release of Elastic Energy of Systems / 2.2.2.:
Strain Energy Density Criteria / 2.2.3.:
Development of Analytical Model of Strength of Materials Based on the Theory of Quasibrittle failure / 2.3.:
Problem Formulation / 2.3.1.:
State of Stress of Body Around the Tip of Elliptical Crack / 2.3.2.:
Theoretical Outline of the Contour Enveloping the Region of Plastic Flow of Material / 2.3.3.:
Theoretical Model of the Strength of Material / 2.3.4.:
Consideration of Strength Anisotropy of Materials / 2.3.5.:
Strength of Building Constructions and Structures / Chapter 3.:
Method of Analysis of the Strength of Constructions and Structures / 3.1.:
Important Theoretical Relations / 3.1.1.:
Criterion of Maximum Tangential Tensile Stress / 3.1.2.:
Criterion of Strain-Energy Density / 3.1.3.:
Computation Algorithm / 3.1.4.:
Experimental Justification of the Method of Analysis / 3.2.:
Determination of the Analytical Parameters of Gypsum Used for Model Making / 3.2.1.:
Fracture of Gypsum Plates / 3.2.2.:
Fracture of the Model of a Die under Shear / 3.2.3.:
Fracture of Reinforced Beam / 3.2.4.:
Fracture of the Model of Dam with a Horizontal Weakened Joint / 3.2.5.:
Analysis of the Strength and Stability of Concrete Dams / 3.3.:
Mechanics of the Failure and Deformation of Rocks and Concretes under Compression / Chapter 4.:
Effect of Internal Structural Defects on the Compressibility of Rocks and Concretes / 4.1.:
Equations of the State of Rocks and Concretes under Compression / 4.2.:
Two-dimensional Problem / 4.2.1.:
Axisymmetrical Problem / 4.2.2.:
Three-dimensional Problem / 4.2.3.:
Microcracking as the Main Cause of Non-linear Deformation of Rocks and Concretes / 4.3.:
Application of Finite Element Method in Modelling of Crack Growth / 4.4.:
Modelling of Cracks and Contacts in Discontinuities / 4.4.1.:
Formation of Stiffness Matrix of the Contact Element / 4.4.2.:
Modelling of Stress and Strain Distribution Around the Crack Tip / 4.4.3.:
Formation of Stiffness Matrix of a Singular Element / 4.4.4.:
Effect of the Size of the Singular Element on the Accuracy of the Solution / 4.4.5.:
Combination of the Singular and Contact Elements and its Use in Solving the Problems of Fracture Mechanics / 4.4.6.:
Equation of State of Rocks and Concrete when Deformed under Compression / 4.5.:
Deformation under Conditions of Microcrack Formation / 4.5.1.:
Deformation of the Fragment with a Unitary Three-link Cut (Two dimensional Problem) / 4.5.2.:
Deformation of Body Weakened by Thin Elliptical Cracks After the Commencement of Microcrack Formation (Two-dimensional Problem) / 4.5.3.:
Elastoplastic Model of Rocks and the Criteria of Failure under Compression / 4.5.4.:
Elastoplastic Model of the Behaviour of Rocks and Concretes / 5.1.:
Failure Criteria Used in the Model / 5.2.:
Griffith's Criterion as Modified by Fairhurst / 5.2.1.:
Criteria of the Critical Value of Volumetric Strain of Microcrack Formation / 5.2.2.:
Investigation of the Load-bearing Capacity of Engineering Structures / Chapter 6.:
Load-bearing Capacity of Gravity Concrete Dams with Consideration of Factors that Weaken them / 6.1.:
Experimental Investigation of Load-bearing Capacity of Dams Using Scaled Down Models / 6.2.:
Details of the Study and the Methods Used / 6.2.1.:
Investigation of the Models of Series III / 6.2.2.:
Investigation of the Models of Series IV / 6.2.3.:
Theoretical Investigations of the Strength and Failure of Concrete Dam / 6.3.:
Method of Calculations / 6.3.1.:
First Series of Calculations (Model of Dam with Slope of Downstream Face 1:0.7) / 6.3.2.:
Second Series of Calculations (Model of Dam with Slope of Downstream Face 1:0.6) / 6.3.3.:
Investigation of the Interaction between Engineering Structures and the Rock Mass / 6.4.:
Estimate of the Stability of Tunnelling Work of the Turbine Water Line at the Nureksk Hydropower Plant / 6.4.1.:
Investigation of the Schemes of Failure of the Concrete Dam-Rock Base System / 6.4.2.:
Estimation of the Load-bearing Capacity of Concrete Dam on Weak Fractured Base (Boguchansk Hydroengineering Complex) / 6.4.3.:
Bibliography
Introduction
Strength and Deformation of Brittle Materials / Chapter 1.:
Mechanics of Failure and Investigation of the Strength of Materials / 1.1.:
50.

図書

図書
Tony Aspromourgos
出版情報: London : Routledge, 2009  xix, 396 p. ; 24 cm
シリーズ名: Routledge studies in the history of economics ; 95
所蔵情報: loading…
目次情報: 続きを見る
Preface
A note on citation practice
Introduction / 1:
The science of wealth / 2:
Political oeconomy and science / 2.1:
Smith on 'political economy' / 2.1.1:
Smith on 'science' / 2.1.2:
Genesis of modern political economy / 2.1.3:
Enlightenment and political economy / 2.1.4:
Hobbes, Petty, Steuart / 2.1.5:
Cameralism and Linnaeus / 2.1.6:
Smith's achievement / 2.1.7:
Wealth as national product / 2.2:
Smith on 'wealth' / 2.2.1:
Early meanings of wealth / 2.2.2:
Petty to Turgot / 2.2.3:
Nature as a norm / 2.3:
Smith on 'nature' / 2.3.1:
Earlier concepts of 'natural' / 2.3.2:
A science of man / 2.3.3:
The economy of nature / 2.3.4:
A 'new' science / 2.4:
Competition, prices and distribution / 3:
Competition and prices / 3.1:
Concepts of price / 3.1.1:
Smith on 'competition' / 3.1.2:
Supply and demand / 3.2:
Smith on 'supply' and 'demand' / 3.2.1:
Smith on 'scarcity' and 'plenty' / 3.2.2:
Market prices, supply dynamics and the role of demand / 3.3:
Role of supply versus demand / 3.3.1:
Indeterminacy of demand-prices / 3.3.2:
Competitive price and concepts of cost / 3.4:
Normal price and scale of production / 3.4.1:
Four concepts of cost / 3.4.2:
Income distribution as pricing / 3.4.3:
Prices and costs prior to Smith / 3.5:
Etymology / 3.5.1:
The century prior to Smith / 3.5.2:
Market prices and the 'just' price / 3.5.3:
Aristotle's formula / 3.5.4:
Some latter-day interpretations / 3.5.5:
Cost and pre-modern thought / 3.5.6:
Competition theory without supply-and-demand functions / 3.6:
Production and capital accumulation / 4:
Division of labour and labour productivity / 4.1:
Smith and division of labour / 4.1.1:
Earlier conceptions of division of labour / 4.1.2:
Gross revenue and net revenue / 4.2:
Smith and social 'net revenue' / 4.2.1:
The concept of a social surplus / 4.2.2:
Earlier concepts of net revenue / 4.2.3:
Capital and productive labour / 4.3:
Smith on 'capital' / 4.3.1:
Smith on 'productive labour' / 4.3.2:
Productive labour: a rational reconstruction / 4.3.3:
Growth dynamics / 4.3.4:
Reducibility of normal prices / 4.3.5:
Prehistory: capital, cattle, chattels / 4.3.6:
Quesnay: the invention of capital theory / 4.3.7:
Luxury, unproductiveness and surplus before Smith / 4.3.8:
Two problems / 4.4:
Growth dynamics and demand/supply coordination / 4.4.1:
The content of the social surplus / 4.4.2:
Opulence and policy / 5:
The progress of opulence / 5.1:
Smith on 'opulence' / 5.1.1:
Extending opulence / 5.1.2:
Policy and the system of liberty / 5.2:
Smith on 'liberty' / 5.2.1:
Smith on 'police' and 'policy' / 5.2.2:
Economic liberty: justification and limits / 5.2.3:
Early meanings of liberty and freedom / 5.2.4:
Modern political liberty / 5.2.5:
The idea of police / 5.2.6:
Theory, policy, history / 5.3:
Smith on 'theory' / 5.3.1:
Theory and practice / 5.3.2:
History and political economy / 5.3.3:
Limits of theory and limits of Smith's policy / 5.4:
Epilogue
Notes
References
Index
Preface
A note on citation practice
Introduction / 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼