close
1.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
2.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
3.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
4.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
5.

図書

図書
Alfredo H-S. Ang, Wilson H. Tang
出版情報: New York : Wiley, 1975  xiii, 409 p. ; 24 cm
シリーズ名: Probability concepts in engineering planning and design ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
Uncertainty Associated with Randomness / 1.2.1:
Uncertainty Associated with Imperfect Modeling and Estimation / 1.2.2:
Design and Decision-Making Under Uncertainty / 1.3:
Planning and Design of Airport Pavement / 1.3.1:
Hydrologic Design / 1.3.2:
Design of Structures and Machines / 1.3.3:
Geotechnical Design / 1.3.4:
Construction Planning and Management / 1.3.5:
Photogrammetric, Geodetic, and Surveying Measurements / 1.3.6:
Control and Standards / 1.4:
Concluding Remarks / 1.5:
Basic Probability Concepts / 2:
Events and Probability / 2.1:
Characteristics of Probability Problems / 2.1.1:
Calculation of Probability / 2.1.2:
Elements of Set Theory / 2.2:
Definitions / 2.2.1:
Combination of Events / 2.2.2:
Operational Rules / 2.2.3:
Mathematics of Probability / 2.3:
Basic Axioms of Probability Addition Rule / 2.3.1:
Conditional Probability Multiplication Rule / 2.3.2:
Theorem of Total Probability / 2.3.3:
Bayes' Theorem / 2.3.4:
Concluding Remarks Problems / 2.4:
Analytical Models of Random Phenomena / 3:
Random Variables / 3.1:
Probability Distribution of a Random Variable / 3.1.1:
Main Descriptors of a Random Variable / 3.1.2:
Useful Probability Distributions / 3.2:
The Normal Distribution / 3.2.1:
The Logarithmic Normal Distribution / 3.2.2:
Bernoulli Sequence and the Binomial Distribution / 3.2.3:
The Geometric Distribution / 3.2.4:
The Negative Binomial Distribution / 3.2.5:
The Poisson Process and Poisson Distribution / 3.2.6:
The Exponential Distribution / 3.2.7:
The Gamma Distribution / 3.2.8:
The Hypergeometric Distribution / 3.2.9:
The Beta Distribution / 3.2.10:
Other Distributions / 3.2.11:
Multiple Random Variables / 3.3:
Joint and Conditional Probability Distributions / 3.3.1:
Covariance and Correlation / 3.3.2:
Conditional Mean and Variance / 3.3.3:
Functions of Random Variables / 3.4:
Derived Probability Distributions / 4.1:
Function of Single Random Variable / 4.2.1:
Function of Multiple Random Variables / 4.2.2:
Moments of Functions of Random Variables / 4.3:
Mean and Variance of a Linear Function / 4.3.1:
Product of Independent Variates / 4.3.3:
Mean and Variance of a General Function / 4.3.4:
Estimating Parameters from Observational Data / 4.4:
The Role of Statistical Inference in Engineering / 5.1:
Inherent Variability and Estimation Error / 5.1.1:
Classical Approach to Estimation of Parameters / 5.2:
Random Sampling and Point Estimation / 5.2.1:
Interval Estimation of the Mean / 5.2.2:
Problems of Measurement Theory / 5.2.3:
Interval Estimation of the Variance / 5.2.4:
Estimation of Proportion / 5.2.5:
Empirical Determination of Distribution Models / 5.3:
Probability Paper / 6.1:
The Normal Probability Paper / 6.2.1:
The Log-Normal Probability Paper / 6.2.2:
Construction of General Probability Paper / 6.2.3:
Testing Validity of Assumed Distribution / 6.3:
Chi-Square Test for Distribution / 6.3.1:
Kolmogorov-Smirnov Test for Distribution / 6.3.2:
Regression and Correlation Analyses / 6.4:
Basic Formulation of Linear Regression / 7.1:
Regression with Constant Variance / 7.1.1:
Regression with Nonconstant Variance / 7.1.2:
Multiple Linear Regression / 7.2:
Nonlinear Regression / 7.3:
Applications of Regression Analysis in Engineering / 7.4:
Correlation Analysis / 7.5:
Estimation of Correlation Coefficient / 7.5.1:
The Bayesian Approach / 7.6:
Basic Concepts-The Discrete Case / 8.1:
The Continuous Case / 8.3:
General Formulation / 8.3.1:
A Special Application of Bayesian Up-dating Process / 8.3.2:
Bayesian Concepts in Sampling Theory / 8.4:
Sampling from Normal Population / 8.4.1:
Error in Estimation / 8.4.3:
Use of Conjugate Distributions / 8.4.4:
Elements of Quality Assurance and Acceptance Sampling / 8.5:
Acceptance Sampling by Attributes / 9.1:
The Operating Characteristic (OC) Curve / 9.1.1:
The Success Run / 9.1.2:
The Average Outgoing Quality Curve / 9.1.3:
Acceptance Sampling by Variables / 9.2:
Average Quality Criterion, sigma Known / 9.2.1:
Average Quality Criterion, sigma Unknown / 9.2.2:
Fraction Defective Criterion / 9.2.3:
Multiple-Stage Sampling / 9.3:
Probability Tables / 9.4:
Table of Standard Normal Probability / Table A.1:
p-Percentile Values of the t-Distribution / Table A.2:
p-Percentile Values of the x 2 -Distribution / Table A.3:
Critical Values of D alpha; in the Kolmogorov-Smirnov Test / Table A.4:
Combinatorial Formulas / Appendix B:
Derivation of the Poisson Distribution / Appendix C:
References
Index
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
6.

図書

図書
Govind P. Agrawal
出版情報: Boston ; Tokyo : Academic Press, c1989  xii, 342 p. ; 24 cm
シリーズ名: Quantum electronics : principles and applications
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical Perspective / 1.1:
Fiber Characteristics / 1.2:
Material and Fabrication / 1.2.1:
Fiber Losses / 1.2.2:
Chromatic Dispersion / 1.2.3:
Polarization-Mode Dispersion / 1.2.4:
Fiber Nonlinearities / 1.3:
Nonlinear Refraction / 1.3.1:
Stimulated Inelastic Scattering / 1.3.2:
Importance of Nonlinear Effects / 1.3.3:
Overview / 1.4:
Problems
References
Pulse Propagation in Fibers / 2:
Maxwell's Equations / 2.1:
Fiber Modes / 2.2:
Eigenvalue Equation / 2.2.1:
Single-Mode Condition / 2.2.2:
Characteristics of the Fundamental Mode / 2.2.3:
Pulse-Propagation Equation / 2.3:
Nonlinear Pulse Propagation / 2.3.1:
Higher-Order Nonlinear Effects / 2.3.2:
Numerical Methods / 2.4:
Split-Step Fourier Method / 2.4.1:
Finite-Difference Methods / 2.4.2:
Group-Velocity Dispersion / 3:
Different Propagation Regimes / 3.1:
Dispersion-Induced Pulse Broadening / 3.2:
Gaussian Pulses / 3.2.1:
Chirped Gaussian Pulses / 3.2.2:
Hyperbolic-Secant Pulses / 3.2.3:
Super-Gaussian Pulses / 3.2.4:
Experimental Results / 3.2.5:
Third-Order Dispersion / 3.3:
Changes in Pulse Shape / 3.3.1:
Broadening Factor / 3.3.2:
Arbitrary-Shape Pulses / 3.3.3:
Ultrashort-Pulse Measurements / 3.3.4:
Dispersion Management / 3.4:
GVD-Induced Limitations / 3.4.1:
Dispersion Compensation / 3.4.2:
Compensation of Third-Order Dispersion / 3.4.3:
Self-Phase Modulation / 4:
SPM-Induced Spectral Broadening / 4.1:
Nonlinear Phase Shift / 4.1.1:
Changes in Pulse Spectra / 4.1.2:
Effect of Pulse Shape and Initial Chirp / 4.1.3:
Effect of Partial Coherence / 4.1.4:
Effect of Group-Velocity Dispersion / 4.2:
Pulse Evolution / 4.2.1:
Optical Wave Breaking / 4.2.2:
Effect of Third-Order Dispersion / 4.2.4:
Self-Steepening / 4.3:
Effect of GVD on Optical Shocks / 4.3.2:
Intrapulse Raman Scattering / 4.3.3:
Optical Solitons / 5:
Modulation Instability / 5.1:
Linear Stability Analysis / 5.1.1:
Gain Spectrum / 5.1.2:
Experimental Observation / 5.1.3:
Ultrashort Pulse Generation / 5.1.4:
Impact on Lightwave Systems / 5.1.5:
Fiber Solitons / 5.2:
Inverse Scattering Method / 5.2.1:
Fundamental Soliton / 5.2.2:
Higher-Order Solitons / 5.2.3:
Experimental Confirmation / 5.2.4:
Soliton Stability / 5.2.5:
Other Types of Solitons / 5.3:
Dark Solitons / 5.3.1:
Dispersion-Managed Solitons / 5.3.2:
Bistable Solitons / 5.3.3:
Perturbation of Solitons / 5.4:
Perturbation Methods / 5.4.1:
Soliton Amplification / 5.4.2:
Soliton Interaction / 5.4.4:
Higher-Order Effects / 5.5:
Propagation of Femtosecond Pulses / 5.5.1:
Polarization Effects / 6:
Nonlinear Birefringence / 6.1:
Origin of Nonlinear Birefringence / 6.1.1:
Coupled-Mode Equations / 6.1.2:
Elliptically Birefringent Fibers / 6.1.3:
Nondispersive XPM / 6.2:
Optical Kerr Effect / 6.2.2:
Pulse Shaping / 6.2.3:
Evolution of Polarization State / 6.3:
Analytic Solution / 6.3.1:
Poincare-Sphere Representation / 6.3.2:
Polarization Instability / 6.3.3:
Polarization Chaos / 6.3.4:
Vector Modulation Instability / 6.4:
Low-Birefringence Fibers / 6.4.1:
High-Birefringence Fibers / 6.4.2:
Isotropic Fibers / 6.4.3:
Birefringence and Solitons / 6.4.4:
Soliton-Dragging Logic Gates / 6.5.1:
Vector Solitons / 6.5.4:
Random Birefringence / 6.6:
Polarization State of Solitons / 6.6.1:
Cross-Phase Modulation / 7:
XPM-Induced Nonlinear Coupling / 7.1:
Nonlinear Refractive Index / 7.1.1:
Coupled NLS Equations / 7.1.2:
Propagation in Birefringent Fibers / 7.1.3:
XPM-Induced Modulation Instability / 7.2:
XPM-Paired Solitons / 7.2.1:
Bright-Dark Soliton Pair / 7.3.1:
Bright-Gray Soliton Pair / 7.3.2:
Other Soliton Pairs / 7.3.3:
Spectral and Temporal Effects / 7.4:
Asymmetric Spectral Broadening / 7.4.1:
Asymmetric Temporal Changes / 7.4.2:
Applications of XPM / 7.4.3:
XPM-Induced Pulse Compression / 7.5.1:
XPM-Induced Optical Switching / 7.5.2:
XPM-Induced Nonreciprocity / 7.5.3:
Stimulated Raman Scattering / 8:
Basic Concepts / 8.1:
Raman-Gain Spectrum / 8.1.1:
Raman Threshold / 8.1.2:
Coupled Amplitude Equations / 8.1.3:
Quasi-Continuous SRS / 8.2:
Single-Pass Raman Generation / 8.2.1:
Raman Fiber Lasers / 8.2.2:
Raman Fiber Amplifiers / 8.2.3:
Raman-Induced Crosstalk / 8.2.4:
SRS with Short Pump Pulses / 8.3:
Pulse-Propagation Equations / 8.3.1:
Nondispersive Case / 8.3.2:
Effects of GVD / 8.3.3:
Synchronously Pumped Raman Lasers / 8.3.4:
Soliton Effects / 8.4:
Raman Solitons / 8.4.1:
Raman Soliton Lasers / 8.4.2:
Soliton-Effect Pulse Compression / 8.4.3:
Effect of Four-Wave Mixing / 8.5:
Stimulated Brillouin Scattering / 9:
Physical Process / 9.1:
Brillouin-Gain Spectrum / 9.1.2:
Quasi-CW SBS / 9.2:
Coupled Intensity Equations / 9.2.1:
Brillouin Threshold / 9.2.2:
Gain Saturation / 9.2.3:
Dynamic Aspects / 9.2.4:
Relaxation Oscillations / 9.3.1:
Modulation Instability and Chaos / 9.3.3:
Transient Regime / 9.3.4:
Brillouin Fiber Lasers / 9.4:
CW Operation / 9.4.1:
Pulsed Operation / 9.4.2:
SBS Applications / 9.5:
Brillouin Fiber Amplifiers / 9.5.1:
Fiber Sensors / 9.5.2:
Parametric Processes / 10:
Origin of Four-Wave Mixing / 10.1:
Theory of Four-Wave Mixing / 10.2:
Approximate Solution / 10.2.1:
Effect of Phase Matching / 10.2.3:
Ultrafast FWM / 10.2.4:
Phase-Matching Techniques / 10.3:
Physical Mechanisms / 10.3.1:
Phase Matching in Multimode Fibers / 10.3.2:
Phase Matching in Single-Mode Fibers / 10.3.3:
Phase Matching in Birefringent Fibers / 10.3.4:
Parametric Amplification / 10.4:
Gain and Bandwidth / 10.4.1:
Pump Depletion / 10.4.2:
Parametric Amplifiers / 10.4.3:
Parametric Oscillators / 10.4.4:
FWM Applications / 10.5:
Wavelength Conversion / 10.5.1:
Phase Conjugation / 10.5.2:
Squeezing / 10.5.3:
Supercontinuum Generation / 10.5.4:
Second-Harmonic Generation / 10.6:
Physical Mechanism / 10.6.1:
Simple Theory / 10.6.3:
Quasi-Phase-Matching Technique / 10.6.4:
Decibel Units / Appendix A:
Acronyms / Appendix B:
Index
Preface
Introduction / 1:
Historical Perspective / 1.1:
7.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
8.

図書

図書
editor, Gerald D. Fasman
出版情報: Cleveland, Ohio ; Boca Raton, Fla. : CRC Press, c1976  2 v. ; 26 cm
シリーズ名: CRC handbook of biochemistry and molecular biology / editor, Gerald D. Fasman ; [D]
所蔵情報: loading…
目次情報: 続きを見る
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
Process equipment / 1.2.1:
Sensors and actuators / 1.2.2:
Electrical cabling, fieldbus technology and smart devices / 1.2.3:
Programmable logic controllers / 1.2.4:
Soft programmable logic controllers and embedded controllers / 1.2.5:
Supervisory control and data acquisition / 1.2.6:
Network communications and systems integration / 1.2.7:
Manufacturing execution systems / 1.2.8:
Enterprise resource planning / 1.2.9:
Designing an automated process line / 1.3:
User requirements specification / 1.3.1:
Functional design specification / 1.3.2:
Design implementation: project management / 1.3.3:
The future / 1.4:
Further reading
Primary milk production / A. L. Kelly2:
Introduction / 2.1:
Global milk production trends / 2.1.1:
Farm production trends / 2.1.2:
Husbandry management and milk quality / 2.2:
Lactation cycle and milk quality / 2.2.1:
Effect of diet on milk composition / 2.2.3:
Influence of genetic factors and breed on milk quality / 2.2.4:
Mastitis, somatic cell counts and milk quality / 2.2.5:
Milking and feeding systems / 2.3:
Milking machines and effects on milk quality / 2.3.1:
Automated concentrate feeding systems / 2.3.2:
Bulk storage, collection and transportation / 2.4:
Milk cooling and storage / 2.4.1:
Milk collection and handling in developing countries / 2.4.2:
Quality payment schmes and quality optimization / 2.5:
Mastitis control strategies / 2.5.1:
Other animal welfare issues / 2.5.2:
Milk payment and acceptance schemes / 2.5.3:
Acknowledgements
References
Liquid milk / D. D. Muir ; A. Y. Tamime3:
Milk composition / 3.1:
Proteins in milk / 3.1.1:
Lactose and minerals / 3.1.2:
Milk fat / 3.1.3:
Heat-treated milk products / 3.2:
Chemical effects / 3.2.1:
Destruction of microorganisms and enzymes / 3.2.2:
Effects on other milk constituents / 3.2.3:
From farm to factory / 3.3:
Milk collection / 3.3.1:
Milk distribution / 3.3.2:
Delivery to the factory / 3.3.3:
Extension of the shelf-life of raw milk / 3.3.4:
At the factory / 3.3.5:
Milk handling in dairies / 3.4:
Reception of milk / 3.4.1:
Milk processing / 3.4.2:
Pasteurisation systems / 3.4.3:
Extended-shelf-life milk / 3.4.4:
High-temperature pasteurisation / 3.4.5:
In-container sterilisation / 3.4.6:
Ultra high temperature (UHT) / 3.4.7:
Recombination technology / 3.5:
Packaging lines and storage / 3.6:
Statistical process control / 3.7:
Acknowledgement
Concentrated and dried dairy products / P. De Jong ; R. E. M. Verdurmen4:
Evaporation / 4.1:
Drying / 4.1.2:
Product and process technology / 4.2:
Evaporated and dried products / 4.2.1:
Process design and operation / 4.2.2:
Quality control / 4.3:
Control of process conditions / 4.3.1:
Control of product properties / 4.3.2:
High fat content dairy products / H. M. P. Ranjith ; K. K. Rajah5:
Properties of milk fat / 5.1:
Melting and crystallisation / 5.1.2:
High fat content emulsions: oil-in-water type / 5.2:
Centrifugal separation / 5.2.1:
Control of fat content in creams / 5.2.2:
Cleaning of milk separators / 5.2.3:
Description of creams / 5.2.4:
Processing of cream / 5.2.5:
Factors affecting cream quality / 5.2.6:
Processing recommendations for high fat content products / 5.3:
Properties required of high fat emulsions for table spreads / 5.3.1:
Butter manufacture / 5.3.2:
Anhydrous milk fat / 5.3.3:
Ghee / 5.3.4:
Butterschmalz / 5.3.5:
Fractionation of milk fat / 5.4:
Yoghurt and other fermented milks / R. K. Robinson ; E. Latrille6:
Background / 6.1:
Classification of fermented milks / 6.2:
Mesophilic microfloras / 6.2.1:
Thermophilic and/or therapeutic microfloras / 6.2.2:
Microfloras including yeasts and lactic acid bacteria / 6.2.3:
Microfloras including moulds and lactic acid bacteria / 6.2.4:
Manufacture of fermented milks / 6.3:
Raw materials / 6.3.1:
Fortification of the milk / 6.3.2:
Heat treatment of the milk / 6.3.3:
Microbiology of the processes / 6.3.4:
Fermentation / 6.3.5:
Final processing / 6.3.6:
Retail products / 6.3.7:
Options for automation and mechanisation / 6.4:
Processing plants / 6.4.1:
Quick chilling, cold storage and retrieval of products / 6.4.4:
Product recovery / 6.4.5:
Automation in handling systems for finished product / 6.4.6:
Recent developments in some fermented-milk products / 6.5:
Long-life yoghurt / 6.5.1:
Strained or concentrated yoghurt / 6.5.2:
Dried fermented milks / 6.5.3:
Frozen yoghurt / 6.5.4:
Drinking yoghurt / 6.5.5:
Process control systems / 6.6:
Controlled variables / 6.6.1:
New reliable sensors for fermentation monitoring / 6.6.3:
Advanced monitoring: prediction of the final process time / 6.6.4:
Statistical process control and future trends / 6.6.5:
Cheddar cheese production / B. A. Law7:
Cheesemaking as process engineering / 7.1:
Coagulation of milk and curd formation / 7.3:
Vat design / 7.3.1:
Cutting and stirring / 7.3.2:
Theoretical aids to the optimisation of the cutting and scalding stage / 7.3.3:
Curd draining, cheddaring, milling and salting / 7.4:
Production of pressed cheese blocks ready for maturation / 7.5:
Storage and maturation of cheese / 7.6:
Semi-hard cheeses / G. Van Den Berg8:
Cheese varieties involved / 8.1:
General technology / 8.1.2:
General historical background / 8.1.3:
Basic technology / 8.2:
Milk handling and processing / 8.3:
Milk fat standardisation / 8.3.1:
Control of sporeformers by bactofugation and microfiltration / 8.3.2:
Pasteurisation / 8.3.3:
Cheese vats and curd production / 8.4:
Horizontal vats / 8.4.1:
Vertical vats / 8.4.2:
Preparation of the curd / 8.4.3:
Instrumentation to control and automate curd cutting time / 8.4.4:
Curd drainage and moulding / 8.5:
Buffer tanks / 8.5.1:
Casomatic systems / 8.5.2:
Pre-pressing vats / 8.5.3:
Pressing / 8.6:
Cheese pressing / 8.6.1:
Mould handling / 8.6.2:
Brining / 8.7:
Brine composition / 8.7.1:
Hygiene measures / 8.7.2:
Brining systems / 8.7.3:
Dry salting / 8.7.4:
Treatment during natural ripening / 8.8:
Cheese handling systems / 8.8.1:
Conditioning of the ripening room / 8.8.2:
Soft fresh cheese and soft ripened cheese / H. Pointurier9:
Characteristics of ripened and fresh soft cheeses / 9.1:
Soft ripened cheeses (les fromages a pate molle) / 9.2.1:
Fresh cheese (fromage frais) / 9.2.2:
The key phases in the process plant for soft cheese manufacture / 9.3:
Soft ripened cheeses / 9.3.1:
Soft fresh cheeses / 9.3.2:
Cottage cheese / 9.3.3:
Mechanisation and automation solutions / 9.4:
Pasta Filata cheeses / O. Salvadori del Prato9.4.1:
General introduction and basic classification / 10.1:
Technology of Pasta Filata cheeses / 10.2:
Mozzarella and soft Pasta Filata cheeses / 10.2.1:
Provolone and hard Pasta Filata cheeses / 10.2.2:
Mechanisation and control of Pasta Filata cheese production / 10.3:
Coagulators or cheese vats / 10.3.1:
Filatrici and moulding machines / 10.3.2:
Hardening and brining / 10.3.3:
Packaging / 10.3.4:
Miscellaneous systems / 10.3.5:
Quality control of Pasta Filata cheese processing / 10.4:
Rheological properties / 10.4.1:
Microstructure / 10.4.2:
Hazard analysis critical control points / 10.4.3:
Membrane processing / H.C. Van der Horst11:
Principles of membrane processes / 11.1:
Process control and automation of membrane processes / 11.2:
Membrane applications for milk / 11.3:
Milk concentration by reverse osmosis / 11.3.1:
Demineralisation by nanofiltration / 11.3.2:
Milk protein standardisation by ultrafiltration / 11.3.3:
Milk protein concentration by ultrafiltration and microfiltration / 11.3.4:
Removal of bacteria, spores and somatic cells from raw milk by microfiltration / 11.3.5:
Applications to cheese / 11.4:
Soft and hard cheese varieties / 11.4.1:
Applications for whey / 11.5:
Concentration of whey by reverse osmosis / 11.5.1:
Demineralisation of whey by nanofiltration / 11.5.2:
Whey protein concentrate production by ultrafiltration / 11.5.3:
Whey protein fractionation / 11.5.4:
Miscellaneous processes / 11.6:
Clarification of brine / 11.6.1:
Recycling of cleaning solutions / 11.6.2:
Nonproduct operations, services and waste handling / L. Robertson12:
Nonproduct operation and maintenance / 12.1:
Plant commissioning / 12.1.1:
Start-up and shut-down / 12.1.2:
Maintenance, including predictive or planned maintenance / 12.1.3:
Cleaning-in-place operation, control and automation / 12.1.4:
Supply and control of services / 12.2:
Water quality / 12.2.1:
Electricity / 12.2.2:
Steam / 12.2.3:
Hot water / 12.2.4:
Chilled water / 12.2.5:
Compressed air / 12.2.6:
Dryer air / 12.2.7:
Cogeneration / 12.2.8:
Waste heat recovery and re-use / 12.2.9:
Waste handling / 12.3:
Legal issues / 12.3.1:
Waste minimisation / 12.3.2:
Waste characterisation / 12.3.3:
Waste product and by-product treatment / 12.3.4:
Nutrient and biological oxygen demand reduction / 12.3.5:
Index
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
9.

図書

図書
Stephen I. Gallant
出版情報: Cambridge, Mass. : MIT Press, c1993  xvi, 365 p. ; 24 cm
シリーズ名: Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Basics / I:
Introduction and Important Definitions / 1:
Why Connectionist Models? / 1.1:
The Grand Goals of Al and Its Current Impasse / 1.1.1:
The Computational Appeal of Neural Networks / 1.1.2:
The Structure of Connectionist Models / 1.2:
Network Properties / 1.2.1:
Cell Properties / 1.2.2:
Dynamic Properties / 1.2.3:
Learning Properties / 1.2.4:
Two Fundamental Models: Multilayer Perceptrons (MLP's) and Backpropagation Networks (BPN's) / 1.3:
Multilayer Perceptrons (MLP's) / 1.3.1:
Backpropagation Networks (BPN's) / 1.3.2:
Gradient Descent / 1.4:
The Algorithm / 1.4.1:
Practical Problems / 1.4.2:
Comments / 1.4.3:
Historic and Bibliographic Notes / 1.5:
Early Work / 1.5.1:
The Decline of the Perceptron / 1.5.2:
The Rise of Connectionist Research / 1.5.3:
Other Bibliographic Notes / 1.5.4:
Exercises / 1.6:
Programming Project / 1.7:
Representation Issues / 2:
Representing Boolean Functions / 2.1:
Equivalence of {+1, -1,0} and {1,0} Forms / 2.1.1:
Single-Cell Models / 2.1.2:
Nonseparable Functions / 2.1.3:
Representing Arbitrary Boolean Functions / 2.1.4:
Representing Boolean Functions Using Continuous Connectionist Models / 2.1.5:
Distributed Representations / 2.2:
Definition / 2.2.1:
Storage Efficiency and Resistance to Error / 2.2.2:
Superposition / 2.2.3:
Learning / 2.2.4:
Feature Spaces and ISA Relations / 2.3:
Feature Spaces / 2.3.1:
Concept-Function Unification / 2.3.2:
ISA Relations / 2.3.3:
Binding / 2.3.4:
Representing Real-Valued Functions / 2.4:
Approximating Real Numbers by Collections of Discrete Cells / 2.4.1:
Precision / 2.4.2:
Approximating Real Numbers by Collections of Continuous Cells / 2.4.3:
Example: Taxtime! / 2.5:
Programming Projects / 2.6:
Learning In Single-Layer Models / II:
Perceptron Learning and the Pocket Algorithm / 3:
Perceptron Learning for Separable Sets of Training Examples / 3.1:
Statement of the Problem / 3.1.1:
Computing the Bias / 3.1.2:
The Perceptron Learning Algorithm / 3.1.3:
Perceptron Convergence Theorem / 3.1.4:
The Perceptron Cycling Theorem / 3.1.5:
The Pocket Algorithm for Nonseparable Sets of Training Examples / 3.2:
Problem Statement / 3.2.1:
Perceptron Learning Is Poorly Behaved / 3.2.2:
The Pocket Algorithm / 3.2.3:
Ratchets / 3.2.4:
Examples / 3.2.5:
Noisy and Contradictory Sets of Training Examples / 3.2.6:
Rules / 3.2.7:
Implementation Considerations / 3.2.8:
Proof of the Pocket Convergence Theorem / 3.2.9:
Khachiyan's Linear Programming Algorithm / 3.3:
Winner-Take-All Groups or Linear Machines / 3.4:
Generalizes Single-Cell Models / 4.1:
Perceptron Learning for Winner-Take-All Groups / 4.2:
The Pocket Algorithm for Winner-Take-All Groups / 4.3:
Kessler's Construction, Perceptron Cycling, and the Pocket Algorithm Proof / 4.4:
Independent Training / 4.5:
Autoassociators and One-Shot Learning / 4.6:
Linear Autoassociators and the Outer-Product Training Rule / 5.1:
Anderson's BSB Model / 5.2:
Hopfieid's Model / 5.3:
Energy / 5.3.1:
The Traveling Salesman Problem / 5.4:
The Cohen-Grossberg Theorem / 5.5:
Kanerva's Model / 5.6:
Autoassociative Filtering for Feedforward Networks / 5.7:
Concluding Remarks / 5.8:
Mean Squared Error (MSE) Algorithms / 5.9:
Motivation / 6.1:
MSE Approximations / 6.2:
The Widrow-Hoff Rule or LMS Algorithm / 6.3:
Number of Training Examples Required / 6.3.1:
Adaline / 6.4:
Adaptive Noise Cancellation / 6.5:
Decision-Directed Learning / 6.6:
Unsupervised Learning / 6.7:
Introduction / 7.1:
No Teacher / 7.1.1:
Clustering Algorithms / 7.1.2:
k-Means Clustering / 7.2:
Topology-Preserving Maps / 7.2.1:
Example / 7.3.1:
Demonstrations / 7.3.4:
Dimensionality, Neighborhood Size, and Final Comments / 7.3.5:
Art1 / 7.4:
Important Aspects of the Algorithm / 7.4.1:
Art2 / 7.4.2:
Using Clustering Algorithms for Supervised Learning / 7.6:
Labeling Clusters / 7.6.1:
ARTMAP or Supervised ART / 7.6.2:
Learning In Multilayer Models / 7.7:
The Distributed Method and Radial Basis Functions / 8:
Rosenblatt's Approach / 8.1:
The Distributed Method / 8.2:
Cover's Formula / 8.2.1:
Robustness-Preserving Functions / 8.2.2:
Hepatobiliary Data / 8.3:
Artificial Data / 8.3.2:
How Many Cells? / 8.4:
Pruning Data / 8.4.1:
Leave-One-Out / 8.4.2:
Radial Basis Functions / 8.5:
A Variant: The Anchor Algorithm / 8.6:
Scaling, Multiple Outputs, and Parallelism / 8.7:
Scaling Properties / 8.7.1:
Multiple Outputs and Parallelism / 8.7.2:
A Computational Speedup for Learning / 8.7.3:
Computational Learning Theory and the BRD Algorithm / 8.7.4:
Introduction to Computational Learning Theory / 9.1:
PAC-Learning / 9.1.1:
Bounded Distributed Connectionist Networks / 9.1.2:
Probabilistic Bounded Distributed Concepts / 9.1.3:
A Learning Algorithm for Probabilistic Bounded Distributed Concepts / 9.2:
The BRD Theorem / 9.3:
Polynomial Learning / 9.3.1:
Noisy Data and Fallback Estimates / 9.4:
Vapnik-Chervonenkis Bounds / 9.4.1:
Hoeffding and Chernoff Bounds / 9.4.2:
Pocket Algorithm / 9.4.3:
Additional Training Examples / 9.4.4:
Bounds for Single-Layer Algorithms / 9.5:
Fitting Data by Limiting the Number of Iterations / 9.6:
Discussion / 9.7:
Exercise / 9.8:
Constructive Algorithms / 9.9:
The Tower and Pyramid Algorithms / 10.1:
The Tower Algorithm / 10.1.1:
Proof of Convergence / 10.1.2:
A Computational Speedup / 10.1.4:
The Pyramid Algorithm / 10.1.5:
The Cascade-Correlation Algorithm / 10.2:
The Tiling Algorithm / 10.3:
The Upstart Algorithm / 10.4:
Other Constructive Algorithms and Pruning / 10.5:
Easy Learning Problems / 10.6:
Decomposition / 10.6.1:
Expandable Network Problems / 10.6.2:
Limits of Easy Learning / 10.6.3:
Backpropagation / 10.7:
The Backpropagation Algorithm / 11.1:
Statement of the Algorithm / 11.1.1:
A Numerical Example / 11.1.2:
Derivation / 11.2:
Practical Considerations / 11.3:
Determination of Correct Outputs / 11.3.1:
Initial Weights / 11.3.2:
Choice of r / 11.3.3:
Momentum / 11.3.4:
Network Topology / 11.3.5:
Local Minima / 11.3.6:
Activations in [0,1] versus [-1, 1] / 11.3.7:
Update after Every Training Example / 11.3.8:
Other Squashing Functions / 11.3.9:
NP-Completeness / 11.4:
Overuse / 11.5:
Interesting Intermediate Cells / 11.5.2:
Continuous Outputs / 11.5.3:
Probability Outputs / 11.5.4:
Using Backpropagation to Train Multilayer Perceptrons / 11.5.5:
Backpropagation: Variations and Applications / 11.6:
NETtalk / 12.1:
Input and Output Representations / 12.1.1:
Experiments / 12.1.2:
Backpropagation through Time / 12.1.3:
Handwritten Character Recognition / 12.3:
Neocognitron Architecture / 12.3.1:
The Network / 12.3.2:
Robot Manipulator with Excess Degrees of Freedom / 12.3.3:
The Problem / 12.4.1:
Training the Inverse Network / 12.4.2:
Plan Units / 12.4.3:
Simulated Annealing and Boltzmann Machines / 12.4.4:
Simulated Annealing / 13.1:
Boltzmann Machines / 13.2:
The Boltzmann Model / 13.2.1:
Boltzmann Learning / 13.2.2:
The Boltzmann Algorithm and Noise Clamping / 13.2.3:
Example: The 4-2-4 Encoder Problem / 13.2.4:
Remarks / 13.3:
Neural Network Expert Systems / 13.4:
Expert Systems and Neural Networks / 14:
Expert Systems / 14.1:
What Is an Expert System? / 14.1.1:
Why Expert Systems? / 14.1.2:
Historically Important Expert Systems / 14.1.3:
Critique of Conventional Expert Systems / 14.1.4:
Neural Network Decision Systems / 14.2:
Example: Diagnosis of Acute Coronary Occlusion / 14.2.1:
Example: Autonomous Navigation / 14.2.2:
Other Examples / 14.2.3:
Decision Systems versus Expert Systems / 14.2.4:
MACIE, and an Example Problem / 14.3:
Diagnosis and Treatment of Acute Sarcophagal Disease / 14.3.1:
Network Generation / 14.3.2:
Sample Run of Macie / 14.3.3:
Real-Valued Variables and Winner-Take-All Groups / 14.3.4:
Not-Yet-Known versus Unavailable Variables / 14.3.5:
Applicability of Neural Network Expert Systems / 14.4:
Details of the MACIE System / 14.5:
Inferencing and Forward Chaining / 15.1:
Discrete Multilayer Perceptron Models / 15.1.1:
Continuous Variables / 15.1.2:
Winner-Take-All Groups / 15.1.3:
Using Prior Probabilities for More Aggressive Inferencing / 15.1.4:
Confidence Estimation / 15.2:
A Confidence Heuristic Prior to Inference / 15.2.1:
Confidence in Inferences / 15.2.2:
Information Acquisition and Backward Chaining / 15.3:
Concluding Comment / 15.4:
Noise, Redundancy, Fault Detection, and Bayesian Decision Theory / 15.5:
The High Tech Lemonade Corporation's Problem / 16.1:
The Deep Model and the Noise Model / 16.2:
Generating the Expert System / 16.3:
Probabilistic Analysis / 16.4:
Noisy Single-Pattern Boolean Fault Detection Problems / 16.5:
Convergence Theorem / 16.6:
Extracting Rules from networks / 16.7:
Why Rules? / 17.1:
What Kind of Rules? / 17.2:
Criteria / 17.2.1:
Inference Justifications versus Rule Sets / 17.2.2:
Which Variables in Conditions / 17.2.3:
Inference Justifications / 17.3:
MACIE's Algorithm / 17.3.1:
The Removal Algorithm / 17.3.2:
Key Factor Justifications / 17.3.3:
Justifications for Continuous Models / 17.3.4:
Rule Sets / 17.4:
Limiting the Number of Conditions / 17.4.1:
Approximating Rules / 17.4.2:
Conventional + Neural Network Expert Systems / 17.5:
Debugging an Expert System Knowledge Base / 17.5.1:
The Short-Rule Debugging Cycle / 17.5.2:
Appendix Representation Comparisons / 17.6:
DNF Expressions / A.1 DNF Expressions and Polynomial Representability:
Polynomial Representability / A.1.2:
Space Comparison of MLP and DNF Representations / A.1.3:
Speed Comparison of MLP and DNF Representations / A.1.4:
MLP versus DNF Representations / A.1.5:
Decision Trees / A.2:
Representing Decision Trees by MLP's / A.2.1:
Speed Comparison / A.2.2:
Decision Trees versus MLP's / A.2.3:
p-lDiagrams / A.3:
Symmetric Functions and Depth Complexity / A.4:
Bibliography / A.5:
Index
Foreword
Basics / I:
Introduction and Important Definitions / 1:
10.

図書

図書
authorized translation from the Russian by Herbert Lashinsky ; edited by M.A. Leontovich
出版情報: New York : Consultants Bureau, 1965-  v. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
Waves and Particles / 3:
Plasma in a Magnetic Field / 4:
Linear Waves / 5:
Relativistic Interaction of Laser Pulse With Plasmas / S.V. Bulanov ; F. Califano ; G.I. Dudnikova ; T.Zh. Esirkepov ; I.N. Inovenkov ; F.F. Kamenets ; T.V. Liseikina ; M. Lontano ; K. Mima ; N. M. Naumova ; K. Nishihara ; F. Pegoraro ; H. Ruhl ; A.S. Sakharov ; Y. Sentoku ; V.A. Vshivkov ; V.V. ZhakhovskiiPart 2:
Introduction
Relativistically strong electromagnetic waves in underdense plasmas
Acceleration of charged particles and photons
Filamentation of the laser light and magnetic interaction of filaments and electromagnetic radiation
Relativistic solitons
Interactions of an ultrashort, relativistically strong, laser pulse with an overdense plasma
Nonlinear interactions of laser pulses with a foil / 6:
Coulomb explosion of a cluster irradiated by a high intensity laser pulse / 7:
Conclusions / 8:
References
Theoretical Principles of the Plasma-Equilibrium Control in Stellarators / V. D. Pustovitov
History of the problem and a general review of the theory / 1.:
The first problems of tokamaks and stellarators / 1.1.:
The problem of high [beta] / 1.2.:
Development of the MHD theory of stellarators / 1.3.:
High [beta] and the problem of plasmaequilibrium control / 1.4.:
Free-boundary plasma equilibrium / 1.5.:
Plasma-shape control in stellarators / 1.6.:
General equations of the theory of plasma equilibrium in conventional stellarators / 2.:
Stellarator approximation and the magnetic differential equation / 2.1.:
Real and averaged magnetic surfaces / 2.2.:
Integral quantities / 2.3.:
Currents in equilibrium configurations / 2.4.:
Longitudinal current in a stellarator / 2.5.:
Two-dimensional equation of plasma equilibrium in stellarators / 2.6.:
Analytical models / 3.:
Two-dimensional model of a stellarator / 3.1.:
Minimal set of parameters / 3.2.:
Description of the inner part of the plasma / 3.3.:
Effect of satellite harmonics on the stellarator configuration / 3.4.:
Control of plasma equilibrium using a vertical magnetic field / 4.:
Boundary conditions in equilibrium problems / 4.1.:
Reduction of the boundary conditions / 4.2.:
Effect of a vertical field on the plasmacolumn position in stellarators / 4.3.:
Suppression of the Pfirsch-Schluter current in conventional stellarators / 4.4.:
Integral independence on [beta] and "overcompensation" / 4.5.:
The influence of a quadrupole field on the stellarator configuration / 5.:
Control of the vacuum stellarator configuration using a quadrupole field / 5.1.:
Doublet-like stellarator configurations / 5.2.:
Control of the rotational-transform profile with the help of the quadrupole field / 5.3.:
Elongation of the plasma column as a means of increasing [beta][subscript eq] in stellarators / 5.4.:
List of main symbols
Fundamentals of Stationary Plasma Thruster Theory / A. I. Morozov ; V. V. Savelyev
General picture of processes in SPTs
Principal scheme of an SPT
Specifics of physical processes in SPTs
Quasi-autonomous functional units of SPTs
General system of equations and boundary conditions for SPT processes
Magnetic and electric fields in SPTs
Magnetic fields in SPTs
"Equipotentialization" of the magnetic force lines. Magnetic drift surfaces
The "loading" of magnetic force lines
Plasma electric field for the quasi-Maxwellian electron component
Remarks
Electron kinetics in the SPT channel
Characteristics of particle collisions with each other and with the surfaces
Electron distribution functions in the SPT channel
Debye layers on the SPT channel walls
The near-wall conductivity (NWC)
UHF-oscillations in the SPT channel / 3.5.:
Some conclusions / 3.6.:
Erosion of insulators in SPTs
The role and form of insulator erosion
Ion sputtering
Mathematical modeling of the anomalous erosion
Heavy particle dynamics in the SPT channel
Dynamics of single heavy particles
A kinetic description of ionizing heavy particles
Similarity criteria for discharges in SPT
The "inverse" problem of heavy particle dynamics
An analysis of processes using the emerging flux characteristics / 5.5.:
Estimate of energetic balance components in the SPT-ATON / 5.6.:
Low-frequency oscillations in SPTs / 6.:
Experimental data on LF-oscillations in the SPT channel / 6.1.:
Linear oscillations in a one-dimensional flux model without ionization / 6.2.:
One-dimensional self-consistent models for plasma flow in an SPT channel / 7.:
Modeling an SPT in the one-dimensional hydrodynamic approximation / 7.1.:
The results of calculations in the hydrodynamic model / 7.2.:
Dynamics of oscillations / 7.3.:
A hybrid model for the plasma flow in an SPT / 7.4.:
SPTs in real conditions / 8.:
The particle influx from the VC into the SPT / 8.1.:
Preventing particle influx from the VC / 8.2.:
Supersynchronization phenomenon / 8.3.:
Appendix
The necessity of electric propulsion thrusters / A.:
Preface
Mechanisma of Transverse Conductivity and Generation of Self-Consistent Electric Fields in Strongly Ionized Magnetized Plasma / V. Rozhansky
Conductivity Tensor in Partially Ionized Plasma / 1.1:
Main Mechanisms of Perpendicular Conductivity in Fully Ionized Plasma: Currents Caused by Viscosity, Inertia, Collisions with Neutrals, and [down triangle, open]B, and Mass-Loading Currents / 1.3:
Inertia Currents / 1.3.1:
Currents Caused by Ion-Neutral Collisions / 1.3.2:
Diamagnetic Currents / 1.3.3:
Viscosity-Driven Currents / 1.3.4:
Mass-Loading Current / 1.3.5:
Inertial (Polarization) and [down triangle, open]B Currents. Acceleration of Plasma Clouds in an Inhomogeneous Magnetic Field / 1.4:
Alfven Conductivity / 1.5:
Perpendicular Viscosity, Radial Current, and Radial Electric Field in an Infinite Cylinder / 1.6:
Current Systems in Front of a Biased Electrode (Flush-Mounted Probe) and Spot of Emission / 1.7:
Viscosity-Driven Perpendicular Currents / 1.7.1:
Currents Driven by Ion-Neutral Collisions / 1.7.2:
General Situation / 1.7.3:
Spot of Emission / 1.7.5:
Currents in the Vicinity of a Biased Electrode That is Smaller Than the Ion Gyroradius / 1.8:
Neoclassical Perpendicular Conductivity in a Tokamak / 1.9:
Steady State Current / 1.9.1:
Time-Dependent Current / 1.9.2:
Transverse Conductivity in a Reversed Field Pinch / 1.10:
Modeling of Electric Field and Currents in the Tokamak Edge Plasma / 1.11:
Mechanisms of Anomalous Perpendicular Viscosity and Viscosity-Driven Currents / 1.12:
Transverse Conductivity in a Stochastic Magnetic Field / 1.13:
Nonstochastic Magnetic Field / 1.13.1:
Stochastic Magnetic Field / 1.13.2:
Electric Fields Generated in the Shielding Layer between Hot Plasma and a Solid State / 1.14:
Correlations and Anomalous Transport Models / O.G. Bakunin
Turbulent Diffusion and Transport / 2.1:
The Correlation Function and the Taylor Diffusivity / 2.2.1:
The Richardson Law / 2.2.2:
The Davydov Model of Turbulent Diffusion / 2.2.3:
The Batchelor Approximation for the Diffusion Coefficient / 2.2.4:
Nonlocal Effects and Diffusion Equations / 2.3:
The Functional Equation for Random Walks / 2.3.1:
Nonlocality and the Levy Distribution / 2.3.2:
The Monin Fractional Differential Equation / 2.3.3:
The Corrsin Conjecture / 2.4:
The Corrsin Independence Hypothesis / 2.4.1:
The Simplified Corrsin Conjecture / 2.4.2:
The Correlation Function and Scalings / 2.4.3:
Effects of Seed Diffusivity / 2.5:
Seed Diffusivity and Correlations / 2.5.1:
"Returns" and Correlations / 2.5.2:
The Stochastic Magnetic Field and Scalings / 2.5.3:
The Howells Result / 2.5.4:
The Diffusive Tracer Equation and Averaging / 2.6:
The Taylor Shear Flow Model / 2.6.1:
Generalization of the Taylor Model / 2.6.2:
The Zeldovich Flow and the Kubo Number / 2.6.3:
Advection and Zeldovich Scaling / 2.6.4:
The System of Random Shear Flows / 2.7:
The Dreizin-Dykhne Superdiffusion Regime / 2.7.1:
The Matheron-de Marsily Model / 2.7.2:
The "Manhattan Grid" Flow and Transport / 2.7.3:
The Quasi-Linear Approximation / 2.8:
Quasi-Linear Equations / 2.8.1:
Short-Range and Long-Range Correlations / 2.8.2:
The Telegraph Equation / 2.8.3:
Magnetic Diffusivity and the Kubo Number / 2.8.4:
The Diffusive Renormalization / 2.9:
The Dupree Approximation / 2.9.1:
The Dupree Theory Revisited / 2.9.2:
The Taylor-McNamara Correlation Function / 2.9.3:
The Kadomtsev-Pogutse Renormalization and the Stochastic Magnetic Field / 2.9.4:
Anomalous Transport and Convective Cells / 2.10:
Bohm Scaling and Electric Field Fluctuations / 2.10.1:
The Bohm Regime and Correlations / 2.10.2:
Convective Cells and Transport / 2.10.3:
Complex Structures and Convective Transport / 2.10.4:
Stochastic Instability and Transport / 2.11:
Stochastic Instability and Correlations / 2.11.1:
The Rechester-Rosenbluth Model / 2.11.2:
Collisional Effects and the Stix Formula / 2.11.3:
The Quasi-Isotropic Stochastic Magnetic Field and Transport / 2.11.4:
Quasi-Linear Scaling for the Stochastic Instability Increment / 2.11.5:
Fractal Conceptions and Turbulence / 2.12:
Fractality and Transport / 2.12.1:
The Richardson Law and Fractality / 2.12.2:
Intermittency and the Kolmogorov Law / 2.12.3:
Percolation and Scalings / 2.13:
Continuum Percolation and Transport / 2.13.1:
Renormalization and Percolation / 2.13.2:
Graded Percolation / 2.13.3:
Percolation and Turbulent Transport Scalings / 2.14:
Random Steady Flows and Seed Diffusivity / 2.14.1:
The Spatial Hierarchy of Scales and Stochastic Instability / 2.14.2:
Low Frequency Regimes / 2.14.3:
The Temporal Hierarchy of Scales and Correlations / 2.15:
The Spatial and Temporal Hierarchy of Scales / 2.15.1:
The Isichenko Intermediate Regime / 2.15.2:
Dissipation and Percolation Transport / 2.15.3:
The Stochastic Magnetic Field and Percolation Transport / 2.16:
Percolation and the Kadomtsev-Pogutse Scaling / 2.16.1:
Percolation Renormalization and the Stochastic Instability Increment / 2.16.3:
Percolation in Drift Flows / 2.17:
Graded Percolation and Drift Flows / 2.17.1:
Low Frequency Regimes and Drift Effects / 2.17.2:
Compressibility and Percolation / 2.17.3:
Multiscale Flows / 2.18:
The Nested Hierarchy of Scales and Drift Effects / 2.18.1:
The Brownian Landscape and Percolation / 2.18.2:
Correlations and Transport Scalings / 2.18.3:
The Diffusive Approximation and the Multiscale Model / 2.18.4:
Stochastic Instability and Time Scales / 2.18.5:
Isotropic and Anisotropic Turbulent Energy Spectra / 2.18.6:
The Multiscale Model of Transport in a Tangled Magnetic Field / 2.18.7:
Subdiffusion and Traps / 2.19:
The Balagurov and Vaks Model of Diffusion with Traps / 2.19.1:
Subdiffusion and Fractality / 2.19.2:
Comb Structures and Transport / 2.19.3:
Continuous Time Random Walks / 2.20:
The Montroll and Weiss Approach and Memory Effects / 2.20.1:
Fractional Differential Equations / 2.20.2:
The Taylor Definition and Memory Effects / 2.20.3:
Fractional Differential Equations and Scalings / 2.21:
The Klafter, Blumen, and Shlesinger Approximation / 2.21.1:
The Stochastic Magnetic Field and Balescu Approach / 2.21.2:
Longitudinal Correlations and the Diffusive Approximation / 2.21.3:
Vortex Structures and Trapping / 2.21.4:
Correlations and Trapping / 2.21.5:
Correlation and Phase-Space / 2.22:
The Corrsin Conjecture and Phase-Space / 2.22.1:
The Hamiltonian Nature of the Universal Hurst Exponent / 2.22.2:
The One-Flight Model and Transport / 2.22.3:
Correlations and Nonlocal Velocity Distribution / 2.22.4:
The Arrhenius Law and Phase-Space Distribution / 2.22.5:
Conclusion / 2.23:
Acknowledgements
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼