close
1.

図書

図書
Maxim Ryadnov
出版情報: Cambridge : RSC Publishing, c2009  ix, 238 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no.7
所蔵情報: loading…
目次情報: 続きを見る
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
Starting Lowest / 1.3:
Picturing Biological / 1.4:
References
Recycling Hereditary / Chapter 2:
Coding Dual / 2.1:
Deoxyribonucleic / 2.1.1:
Building up in Two / 2.1.1.1:
Keeping in Shape / 2.1.1.2:
Priming Topological / 2.1.2:
Resequencing Basic / 2.1.2.1:
Choosing the Fittest / 2.1.2.1.1:
Evolving Diverse / 2.1.2.1.2:
Primary Motifs / 2.1.2.2:
Gluing Universal / 2.1.2.2.1:
Alienating Axial / 2.1.2.2.2:
Fixing Spatial / 2.2:
Hinting Geometric: Secondary Motifs / 2.2.1:
Crossing Double / 2.2.1.1:
Reporting Visible / 2.2.1.1.1:
Translating Symmetrical / 2.2.1.1.2:
Extending Cohesive / 2.2.1.2:
Sharing Mutual / 2.2.1.2.1:
Multiplying Traversal / 2.2.1.2.2:
Tiling Square / 2.2.1.2.3:
Scaffolding Algorithmic / 2.3:
Pursuing Autonomous / 2.3.1:
Lengthening to Shorten / 2.3.1.1:
Gathering to Limit / 2.3.1.2:
Assigning Arbitrary / 2.3.2:
Synchronising Local / 2.3.2.1:
Prescribing General / 2.3.2.2:
Adding up to Third / 2.3.3:
Wrapping to Shut / 2.3.3.1:
Framing to Classify / 2.3.3.2:
Outlook / 2.4:
Recaging Within / Chapter 3:
Enclosing to Deliver / 3.1:
Transporting Foreign / 3.1.1:
Fitting Flat and Straight / 3.1.1.1:
Spiralling Along / 3.1.1.2:
Packing Out and In / 3.1.2:
Spooling Around / 3.1.2.1:
Tunnelling Through
Escaping Walled / 3.1.3:
Capturing On and Off / 3.1.3.1:
Storing Exchangeable / 3.1.3.2:
Reacting Nano / 3.2:
Clustering Spherical / 3.2.1:
Contriving Consistent / 3.2.1.1:
Scaling Hosting / 3.2.1.2:
Following Linear / 3.2.2:
Channelling Inner
Converting Outer
Repairing from Inside / 3.3:
Uninviting Levy / 3.3.1:
Necessitating Exterior / 3.3.2:
Antagonising Dressing / 3.3.2.1:
Renting Occasional / 3.3.2.1.2:
Phasing West / 3.3.2.2:
Facing Concentric / 3.3.2.2.1:
Encircling Between / 3.3.2.2.2:
Singling Out Unique / 3.3.2.2.3:
Sharing the Balance / 3.3.3:
Driving Symmetrical / 3.3.3.1:
Sealing Annular / 3.3.3.2:
Reassembling Multiple / 3.4:
Keeping All in Touch / 4.1:
Unravelling the Essential / 4.1.1:
Winding Three in One / 4.1.1.1:
Aligning Stagger / 4.1.1.2:
Tapering Polar / 4.1.1.3:
Branching and Stretching / 4.1.1.4:
Replicating Apparent / 4.1.2:
Scraping Refusal / 4.1.2.1:
Tempting Compatible / 4.1.2.2:
Likening Synthetic / 4.1.2.3:
Recovering Intelligent / 4.1.2.4:
Restoring Available / 4.2:
Prompting Longitudinal / 4.2.1:
Invoking Granted / 4.2.1.1:
Reposing Modular / 4.3:
Displacing Coil / 4.3.1:
Settling Lateral / 4.3.2:
Bundling Exclusive / 4.3.2.1:
Permitting Distinctive / 4.3.2.2:
Inviting Captive / 4.3.2.3:
Clearing Limiting / 4.3.3:
Equilibrating Transitional / 4.3.3.1:
Extracting Minimal / 4.3.3.2:
Gambling Beyond / 4.4:
Guiding Proliferative / 4.4.1:
Feeding Proximate / 4.4.1.1:
Rooting Renewal / 4.4.1.2:
Accepting Inescapable / 4.4.2:
Patterning Positional / 4.4.2.1:
Relating Interfacial / 4.4.2.2:
Grafting Integral / 4.4.2.3:
Concluding Remarks / 4.5:
Learning Fluent / 5.1:
Parsing Semantic / 5.2:
Drawing Pragmatic / 5.3:
Revealing Contributory / Chapter 6:
Subject Index
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
2.

電子ブック

EB
Kim-Kwang Raymond Choo
出版情報: Springer eBooks Computer Science , Springer US, 2009
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Key Distribution Problem / 1.1:
Solution: Key Establishment Protocols / 1.2:
Computer Security Approach / 1.2.1:
Computational Complexity Approach / 1.2.2:
Research Objectives and Deliverables / 1.2.3:
Structure of Book and Contributions to Knowledge / 1.3:
References
Background Materials / 2:
Mathematical Background / 2.1:
Abstract Algebra and the Main Groups / 2.1.1:
Bilinear Maps from Elliptic Curve Pairings / 2.1.2:
Computational Problems and Assumptions / 2.1.3:
Cryptographic Tools / 2.1.4:
Encryption Schemes: Asymmetric Setting / 2.1.4.1:
Encryption Schemes: Symmetric Setting / 2.1.4.2:
Digital Signature Schemes / 2.1.4.3:
Message Authentication Codes / 2.1.4.4:
Cryptographic Hash Functions / 2.1.4.5:
Random Oracles / 2.1.4.6:
Key Establishment Protocols and their Basis / 2.2:
Protocol Architectures / 2.2.1:
Existing Cryptographic Keys / 2.2.1.1:
Method of Session Key Generation / 2.2.1.2:
Number of Entities / 2.2.1.3:
Protocol Goals and Attacks / 2.2.2:
Protocol Goals / 2.2.2.1:
Additional Security Attributes / 2.2.2.2:
Types of Attacks / 2.2.2.3:
A Need for Rigorous Treatment / 2.2.2.4:
The Computational Complexity Approach / 2.3:
Adversarial Powers / 2.3.1:
Definition of Freshness / 2.3.2:
Definition of Security / 2.3.3:
The Bellare-Rogaway Models / 2.3.4:
The BR93 Model / 2.3.4.1:
The BR95 Model / 2.3.4.2:
The BPR2000 Model / 2.3.4.3:
The Canetti-Krawczyk Model / 2.3.5:
Protocol Security / 2.3.6:
Summary / 2.4:
A Flawed BR95 Partnership Function / 3:
A Flaw in the Security Proof for 3PKD Protocol / 3.1:
The 3PKD Protocol / 3.1.1:
Key Replicating Attack on 3PKD Protocol / 3.1.2:
The Partner Function used in the BR95 Proof / 3.1.3:
A Revised 3PKD Protocol in Bellare-Rogaway Model / 3.2:
Defining SIDs in the 3PKD Protocol / 3.2.1:
An Improved Provably Secure 3PKD Protocol / 3.2.2:
Security Proof for the Improved 3PKD Protocol / 3.2.3:
Adaptive MAC Forger F / 3.2.3.1:
Multiple Eavesdropper Attacker ME / 3.2.3.2:
Conclusion of Proof / 3.2.3.3:
On The Key Sharing Requirement / 3.3:
Bellare-Rogaway 3PKD Protocol in CK2001 Model / 4.1:
New Attack on 3PKD Protocol / 4.1.1:
A New Provably-Secure 3PKD Protocol in CK2001 Model / 4.1.3:
Jeong-Katz-Lee Protocol JP2 / 4.2:
Protocol JP2 / 4.2.1:
New Attack on Protocol JP2 / 4.2.2:
An Improved Protocol JP2 / 4.2.3:
The Key Sharing Requirement / 4.3:
Comparison of Bellare-Rogaway and Canetti-Krawczyk Models / 4.4:
Relating The Notions of Security / 5.1:
Proving BR93 (EA+KE) to BPR2000 (EA+KE) / 5.1.1:
Proof for the key establishment goal / 5.1.1.1:
Proof for the entity authentication goal / 5.1.1.2:
Proving CK2001 to BPR2000 (KE) / 5.1.2:
Proving CK2001 to BR93 (KE) / 5.1.3:
BR93 (KE) to BR95 and BR93 (KE), CK2001 [not left arrow] BR95 / 5.1.4:
BR93 (KE)/CK2001 [not left arrow] BPR2000 (KE) / 5.1.5:
CK2001 [not left arrow] BR93 (EA+KE) / 5.1.6:
BR93 (KE) [not left arrow] CK2001 / 5.1.7:
BPR200 (KE) [not left arrow] BR95 / 5.1.8:
A Drawback in the BPR2000 Model / 5.2:
Case Study: Abdalla-Pointcheval 3PAKE / 5.2.1:
Unknown Key Share Attack on 3PAKE / 5.2.2:
An Extension to the Bellare-Rogaway Model / 5.3:
A Provably-Secure Revised Protocol of Boyd / 6.1:
Secure Authenticated Encryption Schemes / 6.1.1:
Revised Protocol of Boyd / 6.1.2:
Security Proof / 6.1.3:
Integrity attacker / 6.1.3.1:
Confidentiality attacker / 6.1.3.2:
Conclusion of Security Proof / 6.1.3.3:
An Extension to the BR93 Model / 6.2:
An Efficient Protocol in Extended Model / 6.3:
An Efficient Protocol / 6.3.1:
Integrity Breaker / 6.3.2:
Confidentiality Breaker / 6.3.2.2:
Comparative Security and Efficiency / 6.3.2.3:
A Proof of Revised Yahalom Protocol / 6.5:
The Yahalom Protocol and its Simplified Version / 7.1:
A New Provably-Secure Protocol / 7.2:
Proof for Protocol 7.2 / 7.2.1:
Conclusion of Proof for Theorem 7.2.1 / 7.2.1.1:
An Extension to Protocol 7.2 / 7.2.2:
Partnering Mechanism: A Brief Discussion / 7.3:
Errors in Computational Complexity Proofs for Protocols / 7.4:
Boyd-Gonzalez Nieto Protocol / 8.1:
Unknown Key Share Attack on Protocol / 8.1.1:
An Improved Conference Key Agreement Protocol / 8.1.2:
Limitations of Existing Proof / 8.1.3:
Jakobsson-Pointcheval MAKEP / 8.2:
Unknown Key Share Attack on JP-MAKEP / 8.2.1:
Flaws in Existing Security Proof for JP-MAKEP / 8.2.2:
Wong-Chan MAKEP / 8.3:
A New Attack on WC-MAKEP / 8.3.1:
Preventing the Attack / 8.3.2:
Flaws in Existing Security Proof for WC-MAKEP / 8.3.3:
An MT-Authenticator / 8.4:
Encryption-Based MT-Authenticator / 8.4.1:
Flaw in Existing Security Proof Revealed / 8.4.2:
Addressing the Flaw / 8.4.3:
An Example Protocol as a Case Study / 8.4.4:
On Session Key Construction / 8.5:
Chen-Kudla ID-Based Protocol / 9.1:
The ID-Based Protocol / 9.1.1:
Existing Arguments on Restriction of Reveal Query / 9.1.2:
Improved Chen-Kudla Protocol / 9.1.3:
Security Proof for Improved Chen-Kudla Protocol / 9.1.4:
McCullagh-Barreto 2P-IDAKA Protocol / 9.2:
The 2P-IDAKA Protocol / 9.2.1:
Why Reveal Query is Restricted / 9.2.2:
Errors in Existing Proof for 2P-IDAKA Protocol / 9.2.3:
Error 1 / 9.2.3.1:
Error 2 / 9.2.3.2:
Improved 2P-IDAKA Protocol / 9.2.4:
A Proposal for Session Key Construction / 9.3:
Another Case Study / 9.4:
Reflection Attack on Lee-Kim-Yoo Protocol / 9.4.1:
Complementing Computational Protocol Analysis / 9.4.2:
The Formal Framework / 10.1:
Analysing a Provably-Secure Protocol / 10.2:
Protocol Specification / 10.2.1:
Initial State of Protocol 10.1 / 10.2.1.1:
Step 1 of Protocol 10.1 / 10.2.1.2:
A Malicious State Transition / 10.2.1.3:
Protocol Analysis / 10.2.2:
Hijacking Attack / 10.2.2.1:
New Attack 1 / 10.2.2.2:
New Attack 2 / 10.2.2.3:
Analysing Another Two Protocols With Claimed Proofs of Security / 10.3:
Analysis of Protocol 10.2 / 10.3.1:
Analysis of Protocol 10.3 / 10.3.1.2:
Flaws in Refuted Proofs / 10.3.2:
A Possible Fix / 10.3.3:
Analysing Protocols with Heuristic Security Arguments / 10.4:
Case Studies / 10.4.1:
Jan-Chen Mutual Protocol / 10.4.1.1:
Yang-Shen-Shieh Protocol / 10.4.1.2:
Kim-Huh-Hwang-Lee Protocol / 10.4.1.3:
Lin-Sun-Hwang Key Protocols MDHEKE I and II / 10.4.1.4:
Yeh-Sun Key Protocol / 10.4.1.5:
Protocol Analyses / 10.4.2:
Protocol Analysis 1 / 10.4.2.1:
Protocol Analysis 2 / 10.4.2.2:
Protocol Analysis 3 / 10.4.2.3:
Protocol Analysis 4 / 10.4.2.4:
Protocol Analysis 5 / 10.4.2.5:
Protocol Analysis 6 / 10.4.2.6:
Protocol Analysis 7 / 10.4.2.7:
An Integrative Framework to Protocol Analysis and Repair / 10.5:
Case Study Protocol / 11.1:
Proposed Integrative Framework / 11.2:
Protocols Specification / 11.2.1:
Defining SIDs in Protocol 11.1 / 11.2.1.1:
Description of Goal State / 11.2.1.2:
Description of Possible Actions / 11.2.1.3:
Protocols Analysis / 11.2.2:
Protocol Repair / 11.2.3:
Conclusion and Future Work / 11.3:
Research Summary / 12.1:
Open Problems and Future Directions / 12.2:
Index
Introduction / 1:
The Key Distribution Problem / 1.1:
Solution: Key Establishment Protocols / 1.2:
3.

電子ブック

EB
Kim-Kwang Raymond Choo
出版情報: SpringerLink Books - AutoHoldings , Springer US, 2009
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Key Distribution Problem / 1.1:
Solution: Key Establishment Protocols / 1.2:
Computer Security Approach / 1.2.1:
Computational Complexity Approach / 1.2.2:
Research Objectives and Deliverables / 1.2.3:
Structure of Book and Contributions to Knowledge / 1.3:
References
Background Materials / 2:
Mathematical Background / 2.1:
Abstract Algebra and the Main Groups / 2.1.1:
Bilinear Maps from Elliptic Curve Pairings / 2.1.2:
Computational Problems and Assumptions / 2.1.3:
Cryptographic Tools / 2.1.4:
Encryption Schemes: Asymmetric Setting / 2.1.4.1:
Encryption Schemes: Symmetric Setting / 2.1.4.2:
Digital Signature Schemes / 2.1.4.3:
Message Authentication Codes / 2.1.4.4:
Cryptographic Hash Functions / 2.1.4.5:
Random Oracles / 2.1.4.6:
Key Establishment Protocols and their Basis / 2.2:
Protocol Architectures / 2.2.1:
Existing Cryptographic Keys / 2.2.1.1:
Method of Session Key Generation / 2.2.1.2:
Number of Entities / 2.2.1.3:
Protocol Goals and Attacks / 2.2.2:
Protocol Goals / 2.2.2.1:
Additional Security Attributes / 2.2.2.2:
Types of Attacks / 2.2.2.3:
A Need for Rigorous Treatment / 2.2.2.4:
The Computational Complexity Approach / 2.3:
Adversarial Powers / 2.3.1:
Definition of Freshness / 2.3.2:
Definition of Security / 2.3.3:
The Bellare-Rogaway Models / 2.3.4:
The BR93 Model / 2.3.4.1:
The BR95 Model / 2.3.4.2:
The BPR2000 Model / 2.3.4.3:
The Canetti-Krawczyk Model / 2.3.5:
Protocol Security / 2.3.6:
Summary / 2.4:
A Flawed BR95 Partnership Function / 3:
A Flaw in the Security Proof for 3PKD Protocol / 3.1:
The 3PKD Protocol / 3.1.1:
Key Replicating Attack on 3PKD Protocol / 3.1.2:
The Partner Function used in the BR95 Proof / 3.1.3:
A Revised 3PKD Protocol in Bellare-Rogaway Model / 3.2:
Defining SIDs in the 3PKD Protocol / 3.2.1:
An Improved Provably Secure 3PKD Protocol / 3.2.2:
Security Proof for the Improved 3PKD Protocol / 3.2.3:
Adaptive MAC Forger F / 3.2.3.1:
Multiple Eavesdropper Attacker ME / 3.2.3.2:
Conclusion of Proof / 3.2.3.3:
On The Key Sharing Requirement / 3.3:
Bellare-Rogaway 3PKD Protocol in CK2001 Model / 4.1:
New Attack on 3PKD Protocol / 4.1.1:
A New Provably-Secure 3PKD Protocol in CK2001 Model / 4.1.3:
Jeong-Katz-Lee Protocol JP2 / 4.2:
Protocol JP2 / 4.2.1:
New Attack on Protocol JP2 / 4.2.2:
An Improved Protocol JP2 / 4.2.3:
The Key Sharing Requirement / 4.3:
Comparison of Bellare-Rogaway and Canetti-Krawczyk Models / 4.4:
Relating The Notions of Security / 5.1:
Proving BR93 (EA+KE) to BPR2000 (EA+KE) / 5.1.1:
Proof for the key establishment goal / 5.1.1.1:
Proof for the entity authentication goal / 5.1.1.2:
Proving CK2001 to BPR2000 (KE) / 5.1.2:
Proving CK2001 to BR93 (KE) / 5.1.3:
BR93 (KE) to BR95 and BR93 (KE), CK2001 [not left arrow] BR95 / 5.1.4:
BR93 (KE)/CK2001 [not left arrow] BPR2000 (KE) / 5.1.5:
CK2001 [not left arrow] BR93 (EA+KE) / 5.1.6:
BR93 (KE) [not left arrow] CK2001 / 5.1.7:
BPR200 (KE) [not left arrow] BR95 / 5.1.8:
A Drawback in the BPR2000 Model / 5.2:
Case Study: Abdalla-Pointcheval 3PAKE / 5.2.1:
Unknown Key Share Attack on 3PAKE / 5.2.2:
An Extension to the Bellare-Rogaway Model / 5.3:
A Provably-Secure Revised Protocol of Boyd / 6.1:
Secure Authenticated Encryption Schemes / 6.1.1:
Revised Protocol of Boyd / 6.1.2:
Security Proof / 6.1.3:
Integrity attacker / 6.1.3.1:
Confidentiality attacker / 6.1.3.2:
Conclusion of Security Proof / 6.1.3.3:
An Extension to the BR93 Model / 6.2:
An Efficient Protocol in Extended Model / 6.3:
An Efficient Protocol / 6.3.1:
Integrity Breaker / 6.3.2:
Confidentiality Breaker / 6.3.2.2:
Comparative Security and Efficiency / 6.3.2.3:
A Proof of Revised Yahalom Protocol / 6.5:
The Yahalom Protocol and its Simplified Version / 7.1:
A New Provably-Secure Protocol / 7.2:
Proof for Protocol 7.2 / 7.2.1:
Conclusion of Proof for Theorem 7.2.1 / 7.2.1.1:
An Extension to Protocol 7.2 / 7.2.2:
Partnering Mechanism: A Brief Discussion / 7.3:
Errors in Computational Complexity Proofs for Protocols / 7.4:
Boyd-Gonzalez Nieto Protocol / 8.1:
Unknown Key Share Attack on Protocol / 8.1.1:
An Improved Conference Key Agreement Protocol / 8.1.2:
Limitations of Existing Proof / 8.1.3:
Jakobsson-Pointcheval MAKEP / 8.2:
Unknown Key Share Attack on JP-MAKEP / 8.2.1:
Flaws in Existing Security Proof for JP-MAKEP / 8.2.2:
Wong-Chan MAKEP / 8.3:
A New Attack on WC-MAKEP / 8.3.1:
Preventing the Attack / 8.3.2:
Flaws in Existing Security Proof for WC-MAKEP / 8.3.3:
An MT-Authenticator / 8.4:
Encryption-Based MT-Authenticator / 8.4.1:
Flaw in Existing Security Proof Revealed / 8.4.2:
Addressing the Flaw / 8.4.3:
An Example Protocol as a Case Study / 8.4.4:
On Session Key Construction / 8.5:
Chen-Kudla ID-Based Protocol / 9.1:
The ID-Based Protocol / 9.1.1:
Existing Arguments on Restriction of Reveal Query / 9.1.2:
Improved Chen-Kudla Protocol / 9.1.3:
Security Proof for Improved Chen-Kudla Protocol / 9.1.4:
McCullagh-Barreto 2P-IDAKA Protocol / 9.2:
The 2P-IDAKA Protocol / 9.2.1:
Why Reveal Query is Restricted / 9.2.2:
Errors in Existing Proof for 2P-IDAKA Protocol / 9.2.3:
Error 1 / 9.2.3.1:
Error 2 / 9.2.3.2:
Improved 2P-IDAKA Protocol / 9.2.4:
A Proposal for Session Key Construction / 9.3:
Another Case Study / 9.4:
Reflection Attack on Lee-Kim-Yoo Protocol / 9.4.1:
Complementing Computational Protocol Analysis / 9.4.2:
The Formal Framework / 10.1:
Analysing a Provably-Secure Protocol / 10.2:
Protocol Specification / 10.2.1:
Initial State of Protocol 10.1 / 10.2.1.1:
Step 1 of Protocol 10.1 / 10.2.1.2:
A Malicious State Transition / 10.2.1.3:
Protocol Analysis / 10.2.2:
Hijacking Attack / 10.2.2.1:
New Attack 1 / 10.2.2.2:
New Attack 2 / 10.2.2.3:
Analysing Another Two Protocols With Claimed Proofs of Security / 10.3:
Analysis of Protocol 10.2 / 10.3.1:
Analysis of Protocol 10.3 / 10.3.1.2:
Flaws in Refuted Proofs / 10.3.2:
A Possible Fix / 10.3.3:
Analysing Protocols with Heuristic Security Arguments / 10.4:
Case Studies / 10.4.1:
Jan-Chen Mutual Protocol / 10.4.1.1:
Yang-Shen-Shieh Protocol / 10.4.1.2:
Kim-Huh-Hwang-Lee Protocol / 10.4.1.3:
Lin-Sun-Hwang Key Protocols MDHEKE I and II / 10.4.1.4:
Yeh-Sun Key Protocol / 10.4.1.5:
Protocol Analyses / 10.4.2:
Protocol Analysis 1 / 10.4.2.1:
Protocol Analysis 2 / 10.4.2.2:
Protocol Analysis 3 / 10.4.2.3:
Protocol Analysis 4 / 10.4.2.4:
Protocol Analysis 5 / 10.4.2.5:
Protocol Analysis 6 / 10.4.2.6:
Protocol Analysis 7 / 10.4.2.7:
An Integrative Framework to Protocol Analysis and Repair / 10.5:
Case Study Protocol / 11.1:
Proposed Integrative Framework / 11.2:
Protocols Specification / 11.2.1:
Defining SIDs in Protocol 11.1 / 11.2.1.1:
Description of Goal State / 11.2.1.2:
Description of Possible Actions / 11.2.1.3:
Protocols Analysis / 11.2.2:
Protocol Repair / 11.2.3:
Conclusion and Future Work / 11.3:
Research Summary / 12.1:
Open Problems and Future Directions / 12.2:
Index
Introduction / 1:
The Key Distribution Problem / 1.1:
Solution: Key Establishment Protocols / 1.2:
4.

電子ブック

EB
Abhishek Singh., Abhishek Singh, Baibhav Singh
出版情報: Springer eBooks Computer Science , Springer US, 2009
所蔵情報: loading…
目次情報: 続きを見る
Assembly Language
Introduction / 1.0:
Registers / 1.1:
General Purpose Register / 1.1.1:
FLAGS Register / 1.1.2:
80x86 Instruction Format / 1.2:
Instruction Prefix / 1.2.1:
Lock and Repeat Prefixes / 1.2.2:
Segment Override Prefixes / 1.2.3:
Opcode / 1.2.4:
Instructions / 1.3:
Basic Instructions / 1.3.1:
Floating Point Instruction / 1.3.2:
Stack Setup / 1.4:
Passing Parameters in C to the Procedure / 1.4.1:
Local Data Space on the Stack / 1.4.2:
Calling Conventions / 1.5:
cdecl calling convention / 1.5.1:
fastcall calling convention / 1.5.2:
stdcall calling convention / 1.5.3:
thiscall / 1.5.4:
Data Constructs / 1.6:
Global Variables / 1.6.1:
Local Variables / 1.6.2:
Imported Variables / 1.6.3:
Thread Local Storage (TLS) / 1.6.5:
Executable Data Section / 1.6.6:
Representation of Arithmetic Operations in Assembly / 1.7:
Multiplication / 1.7.1:
Division / 1.7.2:
Modulo / 1.7.3:
Representation of Data Structure in Assembly / 1.8:
Representation of Array in Assembly / 1.8.1:
Representation of Linked List in Assembly / 1.8.2:
Virtual Function Call in Assembly / 1.9:
Representation of classes in Assembly / 1.9.1:
Conclusion / 1.10:
Fundamental of Windows
Memory Management / 2.0:
Virtual Memory Management / 2.1.1:
Virtual Memory Management in Windows NT / 2.1.1.1:
Impact of Hooking / 2.1.1.2:
Segmented Memory Management / 2.1.2:
Paged Memory Management / 2.1.3:
Kernel Memory and User Memory / 2.2:
Kernel Memory Space / 2.2.1:
Section Object / 2.2.2:
Virtual Address Descriptor / 2.3:
User Mode Address Space / 2.3.1:
Memory Management in Windows / 2.3.2:
Objects and Handles / 2.3.3:
Named Objects / 2.3.4:
Processes and Threads / 2.4:
Context Switching / 2.4.1:
Context Switches and Mode Switches / 2.4.1.1:
Synchronization Objects / 2.4.2:
Critical Section / 2.4.2.1:
Mutex / 2.4.2.2:
Semaphore / 2.4.2.3:
Event / 2.4.2.4:
Metered Section / 2.4.2.5:
Process Initialization Sequence / 2.5:
Application Programming Interface / 2.5.1:
Reversing Windows NT / 2.6:
ExpEchoPoolCalls / 2.6.1:
ObpShowAllocAndFree / 2.6.2:
LpcpTraceMessages / 2.6.3:
MmDebug / 2.6.4:
NtGlobalFlag / 2.6.5:
SepDumpSD / 2.6.6:
CmLogLevel and CmLogSelect / 2.6.7:
Security Features in Vista / 2.7:
Address Space Layout Randomization (ASLR) / 2.7.1:
Stack Randomization / 2.7.2:
Heap Defenses / 2.7.3:
NX / 2.7.4:
/GS / 2.7.5:
Pointer Encoding / 2.7.6:
Cryptographic API in Windows Vista / 2.7.7:
Crypto-Agility / 2.7.8:
CryptoAgility in CNG / 2.7.9:
Algorithm Providers / 2.7.10:
Random Number Generator / 2.7.11:
Hash Functions / 2.7.12:
Symmetric Encryption / 2.7.13:
Asymmetric Encryption / 2.7.14:
Signatures and Verification / 2.7.15:
Portable Executable File Format / 2.8:
PE file Format / 3.0:
Import Address Table / 3.2:
Executable and Linking Format / 3.3:
ELF Header / 3.3.1:
The Program Header Table / 3.3.2:
Reversing Binaries for Identifying Vulnerabilities / 3.4:
Stack Overflow / 4.0:
CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication Buffer Overflow" / 4.1.1:
CAN-2004-0399 Exim Buffer Overflow / 4.1.2:
Stack Checking / 4.1.3:
Off-by-One Overflow / 4.2:
OpenBSD 2.7 FTP Daemon Off-by-One / 4.2.1:
Non-Executable Memory / 4.2.3:
Heap Overflows / 4.3:
Heap Based Overflows / 4.3.1:
Integer Overflows / 4.4:
Types Integer Overflow / 4.4.1:
CAN-2004-0417 CVS Max dotdot Protocol Command Integer Overflow / 4.4.2:
Format String / 4.5:
Format String Vulnerability / 4.5.1:
Format String Denial of Service Attack / 4.5.2:
Format String Vulnerability Reading Attack / 4.5.3:
SEH Structure Exception Handler / 4.6:
Exploiting the SEH / 4.6.1:
Writing Exploits General Concepts / 4.7:
Stack Overflow Exploits / 4.7.1:
Injection Techniques / 4.7.2:
Optimizing the Injection Vector / 4.7.3:
The Location of the Payload / 4.8:
Direct Jump (Guessing Offsets) / 4.8.1:
Blind Return / 4.8.2:
Pop Return / 4.8.3:
No Operation Sled / 4.8.4:
Call Register / 4.8.5:
Push Return / 4.8.6:
Calculating Offset / 4.8.7:
Fundamental of Reverse Engineering / 4.9:
Anti-Reversing Method / 5.0:
Anti Disassembly / 5.2.1:
Linear Sweep Disassembler / 5.2.1.1:
Recursive Traversal Disassembler / 5.2.1.2:
Evasion of Disassemble / 5.2.1.3:
Self Modifying Code / 5.2.2:
Virtual Machine Obfuscation / 5.2.3:
Anti Debugging Techniques / 5.3:
BreakPoints / 5.3.1:
Software Breakpoint / 5.3.1.1:
Hardware Breakpoint / 5.3.1.2:
Detecting Hardware BreakPoint / 5.3.1.3:
Virtual Machine Detection / 5.4:
Checking Fingerprint Inside Memory, File System and Registry / 5.4.1:
Checking System Tables / 5.4.2:
Checking Processor Instruction Set / 5.4.3:
Unpacking / 5.5:
Manual Unpacking of Software / 5.5.1:
Finding an Original Entry Point of an Executable / 5.5.1.1:
Taking Memory Dump / 5.5.1.2:
Import Table Reconstruction / 5.5.1.3:
Import Redirection and Code emulation / 5.5.1.4:
Appendix / 5.6:
Index
Assembly Language
Introduction / 1.0:
Registers / 1.1:
5.

電子ブック

EB
Abhishek Singh., Abhishek Singh, Baibhav Singh
出版情報: SpringerLink Books - AutoHoldings , Springer US, 2009
所蔵情報: loading…
目次情報: 続きを見る
Assembly Language
Introduction / 1.0:
Registers / 1.1:
General Purpose Register / 1.1.1:
FLAGS Register / 1.1.2:
80x86 Instruction Format / 1.2:
Instruction Prefix / 1.2.1:
Lock and Repeat Prefixes / 1.2.2:
Segment Override Prefixes / 1.2.3:
Opcode / 1.2.4:
Instructions / 1.3:
Basic Instructions / 1.3.1:
Floating Point Instruction / 1.3.2:
Stack Setup / 1.4:
Passing Parameters in C to the Procedure / 1.4.1:
Local Data Space on the Stack / 1.4.2:
Calling Conventions / 1.5:
cdecl calling convention / 1.5.1:
fastcall calling convention / 1.5.2:
stdcall calling convention / 1.5.3:
thiscall / 1.5.4:
Data Constructs / 1.6:
Global Variables / 1.6.1:
Local Variables / 1.6.2:
Imported Variables / 1.6.3:
Thread Local Storage (TLS) / 1.6.5:
Executable Data Section / 1.6.6:
Representation of Arithmetic Operations in Assembly / 1.7:
Multiplication / 1.7.1:
Division / 1.7.2:
Modulo / 1.7.3:
Representation of Data Structure in Assembly / 1.8:
Representation of Array in Assembly / 1.8.1:
Representation of Linked List in Assembly / 1.8.2:
Virtual Function Call in Assembly / 1.9:
Representation of classes in Assembly / 1.9.1:
Conclusion / 1.10:
Fundamental of Windows
Memory Management / 2.0:
Virtual Memory Management / 2.1.1:
Virtual Memory Management in Windows NT / 2.1.1.1:
Impact of Hooking / 2.1.1.2:
Segmented Memory Management / 2.1.2:
Paged Memory Management / 2.1.3:
Kernel Memory and User Memory / 2.2:
Kernel Memory Space / 2.2.1:
Section Object / 2.2.2:
Virtual Address Descriptor / 2.3:
User Mode Address Space / 2.3.1:
Memory Management in Windows / 2.3.2:
Objects and Handles / 2.3.3:
Named Objects / 2.3.4:
Processes and Threads / 2.4:
Context Switching / 2.4.1:
Context Switches and Mode Switches / 2.4.1.1:
Synchronization Objects / 2.4.2:
Critical Section / 2.4.2.1:
Mutex / 2.4.2.2:
Semaphore / 2.4.2.3:
Event / 2.4.2.4:
Metered Section / 2.4.2.5:
Process Initialization Sequence / 2.5:
Application Programming Interface / 2.5.1:
Reversing Windows NT / 2.6:
ExpEchoPoolCalls / 2.6.1:
ObpShowAllocAndFree / 2.6.2:
LpcpTraceMessages / 2.6.3:
MmDebug / 2.6.4:
NtGlobalFlag / 2.6.5:
SepDumpSD / 2.6.6:
CmLogLevel and CmLogSelect / 2.6.7:
Security Features in Vista / 2.7:
Address Space Layout Randomization (ASLR) / 2.7.1:
Stack Randomization / 2.7.2:
Heap Defenses / 2.7.3:
NX / 2.7.4:
/GS / 2.7.5:
Pointer Encoding / 2.7.6:
Cryptographic API in Windows Vista / 2.7.7:
Crypto-Agility / 2.7.8:
CryptoAgility in CNG / 2.7.9:
Algorithm Providers / 2.7.10:
Random Number Generator / 2.7.11:
Hash Functions / 2.7.12:
Symmetric Encryption / 2.7.13:
Asymmetric Encryption / 2.7.14:
Signatures and Verification / 2.7.15:
Portable Executable File Format / 2.8:
PE file Format / 3.0:
Import Address Table / 3.2:
Executable and Linking Format / 3.3:
ELF Header / 3.3.1:
The Program Header Table / 3.3.2:
Reversing Binaries for Identifying Vulnerabilities / 3.4:
Stack Overflow / 4.0:
CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication Buffer Overflow" / 4.1.1:
CAN-2004-0399 Exim Buffer Overflow / 4.1.2:
Stack Checking / 4.1.3:
Off-by-One Overflow / 4.2:
OpenBSD 2.7 FTP Daemon Off-by-One / 4.2.1:
Non-Executable Memory / 4.2.3:
Heap Overflows / 4.3:
Heap Based Overflows / 4.3.1:
Integer Overflows / 4.4:
Types Integer Overflow / 4.4.1:
CAN-2004-0417 CVS Max dotdot Protocol Command Integer Overflow / 4.4.2:
Format String / 4.5:
Format String Vulnerability / 4.5.1:
Format String Denial of Service Attack / 4.5.2:
Format String Vulnerability Reading Attack / 4.5.3:
SEH Structure Exception Handler / 4.6:
Exploiting the SEH / 4.6.1:
Writing Exploits General Concepts / 4.7:
Stack Overflow Exploits / 4.7.1:
Injection Techniques / 4.7.2:
Optimizing the Injection Vector / 4.7.3:
The Location of the Payload / 4.8:
Direct Jump (Guessing Offsets) / 4.8.1:
Blind Return / 4.8.2:
Pop Return / 4.8.3:
No Operation Sled / 4.8.4:
Call Register / 4.8.5:
Push Return / 4.8.6:
Calculating Offset / 4.8.7:
Fundamental of Reverse Engineering / 4.9:
Anti-Reversing Method / 5.0:
Anti Disassembly / 5.2.1:
Linear Sweep Disassembler / 5.2.1.1:
Recursive Traversal Disassembler / 5.2.1.2:
Evasion of Disassemble / 5.2.1.3:
Self Modifying Code / 5.2.2:
Virtual Machine Obfuscation / 5.2.3:
Anti Debugging Techniques / 5.3:
BreakPoints / 5.3.1:
Software Breakpoint / 5.3.1.1:
Hardware Breakpoint / 5.3.1.2:
Detecting Hardware BreakPoint / 5.3.1.3:
Virtual Machine Detection / 5.4:
Checking Fingerprint Inside Memory, File System and Registry / 5.4.1:
Checking System Tables / 5.4.2:
Checking Processor Instruction Set / 5.4.3:
Unpacking / 5.5:
Manual Unpacking of Software / 5.5.1:
Finding an Original Entry Point of an Executable / 5.5.1.1:
Taking Memory Dump / 5.5.1.2:
Import Table Reconstruction / 5.5.1.3:
Import Redirection and Code emulation / 5.5.1.4:
Appendix / 5.6:
Index
Assembly Language
Introduction / 1.0:
Registers / 1.1:
6.

電子ブック

EB
Masao Nagasaki, Atsushi Doi, Andreas Dress, Hiroshi Matsuno, Satoru Miyano, Ayumu Saito, Martin Vingron, Martin Vingron, Gene Myers, Robert Giegerich, Walter Fitch, Pavel A. Pevzner. edited by Andreas Dress
出版情報: Springer eBooks Computer Science , Springer London, 2009
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
Intracellular Events / 1.1:
Transcription, Translation, and Regulation / 1.1.1:
Signaling Pathways and Proteins / 1.1.2:
Metabolism and Genes / 1.1.3:
Intracellular Reactions and Pathways / 1.2:
Pathway Databases / 2:
Major Pathway Databases / 2.1:
KEGG / 2.1.1:
BioCyc / 2.1.2:
Ingenuity Pathways Knowledge Base / 2.1.3:
TRANSPATH / 2.1.4:
ResNet / 2.1.5:
Signal Transduction Knowledge Environment (STKE): Database of Cell Signaling / 2.1.6:
Reactome / 2.1.7:
Metabolome.jp / 2.1.8:
Summary and Conclusion / 2.1.9:
Software for Pathway Display / 2.2:
Ingenuity Pathway Analysis (IPA) / 2.2.1:
Pathway Builder / 2.2.2:
Pathway Studio / 2.2.3:
Connections Maps / 2.2.4:
Cytoscape / 2.2.5:
File Formats for Pathways / 2.3:
Gene Ontology / 2.3.1:
PSI MI / 2.3.2:
CellML / 2.3.3:
SBML / 2.3.4:
BioPAX / 2.3.5:
CSML/CSO / 2.3.6:
Pathway Simulation Software / 3:
Simulation Software Backend / 3.1:
Architecture: Deterministic, Probabilistic, or Hybrid? / 3.1.1:
Methods of Pathway Modeling / 3.1.2:
Major Simulation Software Tools / 3.2:
Gepasi/COPASI / 3.2.1:
Virtual Cell / 3.2.2:
Systems Biology Workbench (SBW), Cell Designer, JDesigner / 3.2.3:
Dizzy / 3.2.4:
E-Cell / 3.2.5:
Cell Illustrator / 3.2.6:
Summary / 3.2.7:
Starting Cell Illustrator / 4:
Installing Cell Illustrator / 4.1:
Operating Systems and Hardware Requirements / 4.1.1:
Cell Illustrator Lineup / 4.1.2:
Installing and Running Cell Illustrator / 4.1.3:
License Install / 4.1.4:
Basic Concepts in Cell Illustrator / 4.2:
Basic Concepts / 4.2.1:
Entity / 4.2.2:
Process / 4.2.3:
Connector / 4.2.4:
Rules for Connecting Elements / 4.2.5:
Icons for Elements / 4.2.6:
Editing a Model on Cell Illustrator / 4.3:
Adding Elements / 4.3.1:
Model Editing and Canvas Controls / 4.3.2:
Simulating Models / 4.4:
Simulation Settings / 4.4.1:
Graph Settings / 4.4.2:
Executing Simulation / 4.4.3:
Simulation Parameters and Rules / 4.5:
Creating a Model with Discrete Entity and Process / 4.5.1:
Creating a Model with Continuous Entity and Process / 4.5.2:
Concepts of Discrete and Continuous / 4.5.3:
Pathway Modeling Using Illustrated Elements / 4.6:
Creating Pathway Models Using Cell Illustrator / 4.7:
Degradation / 4.7.1:
Translocation / 4.7.2:
Transcription / 4.7.3:
Binding / 4.7.4:
Dissociation / 4.7.5:
Inhibition / 4.7.6:
Phosphorylation by Enzyme Reaction / 4.7.7:
Conclusion / 4.8:
Pathway Modeling and Simulation / 5:
Modeling Signaling Pathway / 5.1:
Main Players: Ligand and Receptor / 5.1.1:
Modeling EGFR Signaling with EGF Stimulation / 5.1.2:
Modeling Metabolic Pathways / 5.2:
Chemical Equations and Pathway Representations / 5.2.1:
Michaelis-Menten Kinetics and Cell Illustrator Pathway Representation / 5.2.2:
Creating Glycolysis Pathway Model / 5.2.3:
Simulation of Glycolysis Pathway / 5.2.4:
Improving the Model / 5.2.5:
Modeling Gene Regulatory Networks / 5.3:
Biological Clocks and Circadian Rhythms / 5.3.1:
Gene Regulatory Network for Circadian Rhythms in Mice / 5.3.2:
Modeling Circadian Rhythms in Mice / 5.3.3:
Creating Hypothesis by Simulation / 5.3.4:
Computational Platform for Systems Biology / 5.4:
Gene Network of Yeast / 6.1:
Computational Analysis of Gene Network / 6.2:
Displaying Gene Network / 6.2.1:
Layout of Gene Networks / 6.2.2:
Pathway Search Function / 6.2.3:
Extracting Subnetworks / 6.2.4:
Comparing Two Subnetworks / 6.2.5:
Further Functionalities for Systems Biology / 6.3:
Languages for Pathways: CSML 3.0 and CSO / 6.3.1:
SaaS Technology / 6.3.2:
Pathway Parameter Search / 6.3.3:
Much Faster Simulation / 6.3.4:
Exporting Pathway Models to Programming Languages / 6.3.5:
Pathway Layout Algorithms / 6.3.6:
Pathway Database Management System / 6.3.7:
More Visually: Automatic Generation of Icons / 6.3.8:
Bibliographic Notes
Index
Foreword
Preface
Introduction / 1:
7.

電子ブック

EB
Masao Nagasaki, Atsushi Doi, Andreas Dress, Hiroshi Matsuno, Satoru Miyano, Ayumu Saito, Martin Vingron, Martin Vingron, Gene Myers, Robert Giegerich, Walter Fitch, Pavel A. Pevzner. edited by Andreas Dress, Gene Myers
出版情報: SpringerLink Books - AutoHoldings , Springer London, 2009
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
Intracellular Events / 1.1:
Transcription, Translation, and Regulation / 1.1.1:
Signaling Pathways and Proteins / 1.1.2:
Metabolism and Genes / 1.1.3:
Intracellular Reactions and Pathways / 1.2:
Pathway Databases / 2:
Major Pathway Databases / 2.1:
KEGG / 2.1.1:
BioCyc / 2.1.2:
Ingenuity Pathways Knowledge Base / 2.1.3:
TRANSPATH / 2.1.4:
ResNet / 2.1.5:
Signal Transduction Knowledge Environment (STKE): Database of Cell Signaling / 2.1.6:
Reactome / 2.1.7:
Metabolome.jp / 2.1.8:
Summary and Conclusion / 2.1.9:
Software for Pathway Display / 2.2:
Ingenuity Pathway Analysis (IPA) / 2.2.1:
Pathway Builder / 2.2.2:
Pathway Studio / 2.2.3:
Connections Maps / 2.2.4:
Cytoscape / 2.2.5:
File Formats for Pathways / 2.3:
Gene Ontology / 2.3.1:
PSI MI / 2.3.2:
CellML / 2.3.3:
SBML / 2.3.4:
BioPAX / 2.3.5:
CSML/CSO / 2.3.6:
Pathway Simulation Software / 3:
Simulation Software Backend / 3.1:
Architecture: Deterministic, Probabilistic, or Hybrid? / 3.1.1:
Methods of Pathway Modeling / 3.1.2:
Major Simulation Software Tools / 3.2:
Gepasi/COPASI / 3.2.1:
Virtual Cell / 3.2.2:
Systems Biology Workbench (SBW), Cell Designer, JDesigner / 3.2.3:
Dizzy / 3.2.4:
E-Cell / 3.2.5:
Cell Illustrator / 3.2.6:
Summary / 3.2.7:
Starting Cell Illustrator / 4:
Installing Cell Illustrator / 4.1:
Operating Systems and Hardware Requirements / 4.1.1:
Cell Illustrator Lineup / 4.1.2:
Installing and Running Cell Illustrator / 4.1.3:
License Install / 4.1.4:
Basic Concepts in Cell Illustrator / 4.2:
Basic Concepts / 4.2.1:
Entity / 4.2.2:
Process / 4.2.3:
Connector / 4.2.4:
Rules for Connecting Elements / 4.2.5:
Icons for Elements / 4.2.6:
Editing a Model on Cell Illustrator / 4.3:
Adding Elements / 4.3.1:
Model Editing and Canvas Controls / 4.3.2:
Simulating Models / 4.4:
Simulation Settings / 4.4.1:
Graph Settings / 4.4.2:
Executing Simulation / 4.4.3:
Simulation Parameters and Rules / 4.5:
Creating a Model with Discrete Entity and Process / 4.5.1:
Creating a Model with Continuous Entity and Process / 4.5.2:
Concepts of Discrete and Continuous / 4.5.3:
Pathway Modeling Using Illustrated Elements / 4.6:
Creating Pathway Models Using Cell Illustrator / 4.7:
Degradation / 4.7.1:
Translocation / 4.7.2:
Transcription / 4.7.3:
Binding / 4.7.4:
Dissociation / 4.7.5:
Inhibition / 4.7.6:
Phosphorylation by Enzyme Reaction / 4.7.7:
Conclusion / 4.8:
Pathway Modeling and Simulation / 5:
Modeling Signaling Pathway / 5.1:
Main Players: Ligand and Receptor / 5.1.1:
Modeling EGFR Signaling with EGF Stimulation / 5.1.2:
Modeling Metabolic Pathways / 5.2:
Chemical Equations and Pathway Representations / 5.2.1:
Michaelis-Menten Kinetics and Cell Illustrator Pathway Representation / 5.2.2:
Creating Glycolysis Pathway Model / 5.2.3:
Simulation of Glycolysis Pathway / 5.2.4:
Improving the Model / 5.2.5:
Modeling Gene Regulatory Networks / 5.3:
Biological Clocks and Circadian Rhythms / 5.3.1:
Gene Regulatory Network for Circadian Rhythms in Mice / 5.3.2:
Modeling Circadian Rhythms in Mice / 5.3.3:
Creating Hypothesis by Simulation / 5.3.4:
Computational Platform for Systems Biology / 5.4:
Gene Network of Yeast / 6.1:
Computational Analysis of Gene Network / 6.2:
Displaying Gene Network / 6.2.1:
Layout of Gene Networks / 6.2.2:
Pathway Search Function / 6.2.3:
Extracting Subnetworks / 6.2.4:
Comparing Two Subnetworks / 6.2.5:
Further Functionalities for Systems Biology / 6.3:
Languages for Pathways: CSML 3.0 and CSO / 6.3.1:
SaaS Technology / 6.3.2:
Pathway Parameter Search / 6.3.3:
Much Faster Simulation / 6.3.4:
Exporting Pathway Models to Programming Languages / 6.3.5:
Pathway Layout Algorithms / 6.3.6:
Pathway Database Management System / 6.3.7:
More Visually: Automatic Generation of Icons / 6.3.8:
Bibliographic Notes
Index
Foreword
Preface
Introduction / 1:
8.

電子ブック

EB
Gian Piero Zarri
出版情報: Springer eBooks Computer Science , Springer London, 2009
所蔵情報: loading…
目次情報: 続きを見る
Basic Principles / 1:
Narrative Information in an NKRL Context / 1.1:
Narratology and NKRL / 1.1.1:
The Notion of "Event" in an NKRL Context / 1.1.2:
Knowledge Representation and NKRL / 1.2:
"Standard" Ontologies and the "n-ary" Problem / 1.2.1:
A Plain "n-ary" Solution and Some Related Problems / 1.2.2:
In the Guise of Winding Up / 1.3:
The Knowledge Representation Strategy / 2:
Architecture of NKRL: the Four "Components" / 2.1:
The Data Structures of the Four Components / 2.2:
Definitional/Enumerative Data Structures / 2.2.1:
Descriptive/Factual Data Structures / 2.2.2:
Second-order Structures / 2.3:
The Completive Construction / 2.3.1:
Binding Occurrences / 2.3.2:
The Semantic and Ontological Contents / 2.4:
The Organization of the HClass Hierarchy / 3.1:
General Notions about Ontologies / 3.1.1:
HClass Architecture / 3.1.2:
The Organization of the HTemp Hierarchy / 3.2:
Recent Examples of "Structured" Ontological Systems / 3.2.1:
Main Features of Some Specific HTemp Structures / 3.2.2:
The Query and Inference Procedures / 3.3:
"Search Patterns" and Low-level Inferences / 4.1:
The Algorithmic Structure of Fum / 4.1.1:
Temporal Information and Indexing / 4.1.2:
High-level Inference Procedures / 4.2:
General Remarks about Some Reasoning Paradigms / 4.2.1:
Hypothesis Rules / 4.2.2:
Transformation Rules / 4.2.3:
Integrating the Two Main Inferencing Modes of NKRL / 4.2.4:
Inference Rules and Internet Filtering / 4.2.5:
Conclusion / 4.3:
Technological Enhancements / 5.1:
Theoretical Enhancements / 5.2:
Appendix A
Appendix B
References
Index
Basic Principles / 1:
Narrative Information in an NKRL Context / 1.1:
Narratology and NKRL / 1.1.1:
9.

電子ブック

EB
Gian Piero Zarri
出版情報: SpringerLink Books - AutoHoldings , Springer London, 2009
所蔵情報: loading…
目次情報: 続きを見る
Basic Principles / 1:
Narrative Information in an NKRL Context / 1.1:
Narratology and NKRL / 1.1.1:
The Notion of "Event" in an NKRL Context / 1.1.2:
Knowledge Representation and NKRL / 1.2:
"Standard" Ontologies and the "n-ary" Problem / 1.2.1:
A Plain "n-ary" Solution and Some Related Problems / 1.2.2:
In the Guise of Winding Up / 1.3:
The Knowledge Representation Strategy / 2:
Architecture of NKRL: the Four "Components" / 2.1:
The Data Structures of the Four Components / 2.2:
Definitional/Enumerative Data Structures / 2.2.1:
Descriptive/Factual Data Structures / 2.2.2:
Second-order Structures / 2.3:
The Completive Construction / 2.3.1:
Binding Occurrences / 2.3.2:
The Semantic and Ontological Contents / 2.4:
The Organization of the HClass Hierarchy / 3.1:
General Notions about Ontologies / 3.1.1:
HClass Architecture / 3.1.2:
The Organization of the HTemp Hierarchy / 3.2:
Recent Examples of "Structured" Ontological Systems / 3.2.1:
Main Features of Some Specific HTemp Structures / 3.2.2:
The Query and Inference Procedures / 3.3:
"Search Patterns" and Low-level Inferences / 4.1:
The Algorithmic Structure of Fum / 4.1.1:
Temporal Information and Indexing / 4.1.2:
High-level Inference Procedures / 4.2:
General Remarks about Some Reasoning Paradigms / 4.2.1:
Hypothesis Rules / 4.2.2:
Transformation Rules / 4.2.3:
Integrating the Two Main Inferencing Modes of NKRL / 4.2.4:
Inference Rules and Internet Filtering / 4.2.5:
Conclusion / 4.3:
Technological Enhancements / 5.1:
Theoretical Enhancements / 5.2:
Appendix A
Appendix B
References
Index
Basic Principles / 1:
Narrative Information in an NKRL Context / 1.1:
Narratology and NKRL / 1.1.1:
10.

電子ブック

EB
Kathryn E. Merrick, Mary Lou Maher
出版情報: Springer eBooks Computer Science , Springer Berlin Heidelberg, 2009
所蔵情報: loading…
目次情報: 続きを見る
Non-Player Characters and Reinforcement Learning / Part I:
Non-Player Characters in Multiuser Games / 1:
Types of Multiuser Games / 1.1:
Massively Multiplayer Online Role-Playing Games / 1.1.1:
Multiuser Simulation Games / 1.1.2:
Open-Ended Virtual Worlds / 1.1.3:
Character Roles in Multiuser Games / 1.2:
Existing Artificial Intelligence Techniques for Non-Player Characters in Multiuser Games / 1.3:
Reflexive Agents / 1.3.1:
Learning Agents / 1.3.2:
Evolutionary Agents / 1.3.3:
Smart Terrain / 1.3.4:
Summary / 1.4:
References / 1.5:
Motivation in Natural and Artificial Agents / 2:
Defining Motivation / 2.1:
Biological Theories of Motivation / 2.2:
Drive Theory / 2.2.1:
Motivational State Theory / 2.2.2:
Arousal / 2.2.3:
Cognitive Theories of Motivation / 2.3:
Curiosity / 2.3.1:
Operant Theory / 2.3.2:
Incentive / 2.3.3:
Achievement Motivation / 2.3.4:
Attribution Theory / 2.3.5:
Intrinsic Motivation / 2.3.6:
Social Theories of Motivation / 2.4:
Conformity / 2.4.1:
Cultural Effect / 2.4.2:
Evolution / 2.4.3:
Combined Motivation Theories / 2.5:
Maslow's Hierarchy of Needs / 2.5.1:
Existence Relatedness Growth Theory / 2.5.2:
Towards Motivated Reinforcement Learning / 2.6:
Defining Reinforcement Learning / 3.1:
Dynamic Programming / 3.1.1:
Monte Carlo Methods / 3.1.2:
Temporal Difference Learning / 3.1.3:
Reinforcement Learning in Complex Environments / 3.2:
Partially Observable Environments / 3.2.1:
Function Approximation / 3.2.2:
Hierarchical Reinforcement Learning / 3.2.3:
Motivated Reinforcement Learning / 3.3:
Using a Motivation Signal in Addition to a Reward Signal / 3.3.1:
Using a Motivation Signal Instead of a Reward Signal / 3.3.2:
Comparing the Behaviour of Learning Agents / 3.4:
Player Satisfaction / 4.1:
Psychological Flow / 4.1.1:
Structural Flow / 4.1.2:
Formalising Non-Player Character Behaviour / 4.2:
Models of Optimality for Reinforcement Learning / 4.2.1:
Characteristics of Motivated Reinforcement Learning / 4.2.2:
Comparing Motivated Reinforcement Learning Agents / 4.3:
Statistical Model for Identifying Learned Tasks / 4.3.1:
Behavioural Variety / 4.3.2:
Behavioural Complexity / 4.3.3:
Developing Curious Characters Using Motivated Reinforcement Learning / 4.4:
Curiosity, Motivation and Attention Focus / 5:
Agents in Complex, Dynamic Environments / 5.1:
States / 5.1.1:
Actions / 5.1.2:
Reward and Motivation / 5.1.3:
Motivation and Attention Focus / 5.2:
Observations / 5.2.1:
Events / 5.2.2:
Tasks and Task Selection / 5.2.3:
Experience-Based Reward as Cognitive Motivation / 5.2.4:
Arbitration Functions / 5.2.5:
A General Experience-Based Motivation Function / 5.2.6:
Curiosity as Motivation for Support Characters / 5.3:
Curiosity as Interesting Events / 5.3.1:
Curiosity as Interesting and Competence / 5.3.2:
Motivated Reinforcement Learning Agents / 5.4:
A General Motivated Reinforcement Learning Model / 6.1:
Algorithms for Motivated Reinforcement Learning / 6.2:
Motivated Flat Reinforcement Learning / 6.2.1:
Motivated Multioption Reinforcement Learning / 6.2.2:
Motivated Hierarchical Reinforcement Learning / 6.2.3:
Curious Characters in Games / 6.3:
Curious Characters for Multiuser Games / 7:
Motivated Reinforcement Learning for Support Characters in Massively Multiplayer Online Role-Playing Games / 7.1:
Character Behaviour in Small-Scale, Isolated Games Locations / 7.2:
Case Studies of Individual Characters / 7.2.1:
General Trends in Character Behaviour / 7.2.2:
Curious Characters for Games in Complex, Dynamic Environments / 7.3:
Designing Characters That Can Multitask / 8.1:
Designing Characters for Complex Tasks / 8.1.1:
Games That Change While Characters Are Learning / 8.2.1:
Curious Characters for Games in Second Life / 8.3.1:
Motivated Reinforcement Learning in Open-Ended Simulation Games / 9.1:
Game Design / 9.1.1:
Character Design / 9.1.2:
Evaluating Character Behaviour in Response to Game Play Sequences / 9.2:
Discussion / 9.2.1:
Future / 9.3:
Towards the Future / 10:
Using Motivated Reinforcement Learning in Non-Player Characters / 10.1:
Other Gaming Applications for Motivated Reinforcement Learning / 10.2:
Dynamic Difficulty Adjustment / 10.2.1:
Procedural Content Generation / 10.2.2:
Beyond Curiosity / 10.3:
Biological Models of Motivation / 10.3.1:
Cognitive Models of Motivation / 10.3.2:
Social Models of Motivation / 10.3.3:
Combined Models of Motivation / 10.3.4:
New Models of Motivated Learning / 10.4:
Motivated Supervised Learning / 10.4.1:
Motivated Unsupervised Learning / 10.4.2:
Evaluating the Behaviour of Motivated Learning Agents / 10.5:
Concluding Remarks / 10.6:
Index / 10.7:
Non-Player Characters and Reinforcement Learning / Part I:
Non-Player Characters in Multiuser Games / 1:
Types of Multiuser Games / 1.1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼