close
1.

図書

図書
Maxim Ryadnov
出版情報: Cambridge : RSC Publishing, c2009  ix, 238 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no.7
所蔵情報: loading…
目次情報: 続きを見る
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
Starting Lowest / 1.3:
Picturing Biological / 1.4:
References
Recycling Hereditary / Chapter 2:
Coding Dual / 2.1:
Deoxyribonucleic / 2.1.1:
Building up in Two / 2.1.1.1:
Keeping in Shape / 2.1.1.2:
Priming Topological / 2.1.2:
Resequencing Basic / 2.1.2.1:
Choosing the Fittest / 2.1.2.1.1:
Evolving Diverse / 2.1.2.1.2:
Primary Motifs / 2.1.2.2:
Gluing Universal / 2.1.2.2.1:
Alienating Axial / 2.1.2.2.2:
Fixing Spatial / 2.2:
Hinting Geometric: Secondary Motifs / 2.2.1:
Crossing Double / 2.2.1.1:
Reporting Visible / 2.2.1.1.1:
Translating Symmetrical / 2.2.1.1.2:
Extending Cohesive / 2.2.1.2:
Sharing Mutual / 2.2.1.2.1:
Multiplying Traversal / 2.2.1.2.2:
Tiling Square / 2.2.1.2.3:
Scaffolding Algorithmic / 2.3:
Pursuing Autonomous / 2.3.1:
Lengthening to Shorten / 2.3.1.1:
Gathering to Limit / 2.3.1.2:
Assigning Arbitrary / 2.3.2:
Synchronising Local / 2.3.2.1:
Prescribing General / 2.3.2.2:
Adding up to Third / 2.3.3:
Wrapping to Shut / 2.3.3.1:
Framing to Classify / 2.3.3.2:
Outlook / 2.4:
Recaging Within / Chapter 3:
Enclosing to Deliver / 3.1:
Transporting Foreign / 3.1.1:
Fitting Flat and Straight / 3.1.1.1:
Spiralling Along / 3.1.1.2:
Packing Out and In / 3.1.2:
Spooling Around / 3.1.2.1:
Tunnelling Through
Escaping Walled / 3.1.3:
Capturing On and Off / 3.1.3.1:
Storing Exchangeable / 3.1.3.2:
Reacting Nano / 3.2:
Clustering Spherical / 3.2.1:
Contriving Consistent / 3.2.1.1:
Scaling Hosting / 3.2.1.2:
Following Linear / 3.2.2:
Channelling Inner
Converting Outer
Repairing from Inside / 3.3:
Uninviting Levy / 3.3.1:
Necessitating Exterior / 3.3.2:
Antagonising Dressing / 3.3.2.1:
Renting Occasional / 3.3.2.1.2:
Phasing West / 3.3.2.2:
Facing Concentric / 3.3.2.2.1:
Encircling Between / 3.3.2.2.2:
Singling Out Unique / 3.3.2.2.3:
Sharing the Balance / 3.3.3:
Driving Symmetrical / 3.3.3.1:
Sealing Annular / 3.3.3.2:
Reassembling Multiple / 3.4:
Keeping All in Touch / 4.1:
Unravelling the Essential / 4.1.1:
Winding Three in One / 4.1.1.1:
Aligning Stagger / 4.1.1.2:
Tapering Polar / 4.1.1.3:
Branching and Stretching / 4.1.1.4:
Replicating Apparent / 4.1.2:
Scraping Refusal / 4.1.2.1:
Tempting Compatible / 4.1.2.2:
Likening Synthetic / 4.1.2.3:
Recovering Intelligent / 4.1.2.4:
Restoring Available / 4.2:
Prompting Longitudinal / 4.2.1:
Invoking Granted / 4.2.1.1:
Reposing Modular / 4.3:
Displacing Coil / 4.3.1:
Settling Lateral / 4.3.2:
Bundling Exclusive / 4.3.2.1:
Permitting Distinctive / 4.3.2.2:
Inviting Captive / 4.3.2.3:
Clearing Limiting / 4.3.3:
Equilibrating Transitional / 4.3.3.1:
Extracting Minimal / 4.3.3.2:
Gambling Beyond / 4.4:
Guiding Proliferative / 4.4.1:
Feeding Proximate / 4.4.1.1:
Rooting Renewal / 4.4.1.2:
Accepting Inescapable / 4.4.2:
Patterning Positional / 4.4.2.1:
Relating Interfacial / 4.4.2.2:
Grafting Integral / 4.4.2.3:
Concluding Remarks / 4.5:
Learning Fluent / 5.1:
Parsing Semantic / 5.2:
Drawing Pragmatic / 5.3:
Revealing Contributory / Chapter 6:
Subject Index
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
2.

図書

図書
Hans Bisswanger
出版情報: Weinheim : WILEY-VCH, c2008  xviii, 301 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
Introduction and Definitions
References
Multiple Equilibria / 1:
Diffusion / 1.1:
Interaction between Macromolecules and Ligands / 1.2:
Binding Constants / 1.2.1:
Macromolecules with One Binding Site / 1.2.2:
Macromolecules with Identical Independent Binding Sites / 1.3:
General Binding Equation / 1.3.1:
Graphic Representations of the Binding Equation / 1.3.2:
Direct and Linear Diagrams / 1.3.2.1:
Analysis of Binding Data from Spectroscopic Titrations / 1.3.2.2:
Binding of Different Ligands, Competition / 1.3.3:
Non-competitive Binding / 1.3.4:
Macromolecules with Non-identical, Independent Binding Sites / 1.4:
Macromolecules with Identical, Interacting Binding Sites, Cooperativity / 1.5:
The Hill Equation / 1.5.1:
The Adair Equation / 1.5.2:
The Pauling Model / 1.5.3:
Allosteric Enzymes / 1.5.4:
The Symmetry or Concerted Model / 1.5.5:
The Sequential Model and Negative Cooperativity / 1.5.6:
Analysis of Cooperativity / 1.5.7:
Physiological Aspects of Cooperativity / 1.5.8:
Examples of Allosteric Enzymes / 1.5.9:
Hemoglobin / 1.5.9.1:
Aspartate Transcarbamoylase / 1.5.9.2:
Aspartokinase / 1.5.9.3:
Phosphofructokinase / 1.5.9.4:
Allosteric Regulation of the Glycogen Metabolism / 1.5.9.5:
Membrane Bound Enzymes and Receptors / 1.5.9.6:
Non-identical, Interacting Binding Sites / 1.6:
Enzyme Kinetics / 2:
Reaction Order / 2.1:
First Order Reactions / 2.1.1:
Second Order Reactions / 2.1.2:
Zero Order Reactions / 2.1.3:
Steady-State Kinetics and the Michaelis-Menten Equation / 2.2:
Derivation of the Michaelis-Menten Equation / 2.2.1:
Analysis of Enzyme Kinetic Data / 2.3:
Graphical Representations of the Michaelis-Menten Equation / 2.3.1:
Direct and Semi-logarithmic Representations / 2.3.1.1:
Direct Linear Plots / 2.3.1.2:
Linearization Methods / 2.3.1.3:
Analysis of Progress Curves / 2.3.2:
Integrated Michaelis-Menten Equation / 2.3.2.1:
Determination of Reaction Rates / 2.3.2.2:
Graphic Methods for Rate Determination / 2.3.2.3:
Graphic Determination of True Initial Rates / 2.3.2.4:
Reversible Enzyme Reactions / 2.4:
Rate Equation for Reversible Enzyme Reactions / 2.4.1:
The Haldane Relationship / 2.4.2:
Product Inhibition / 2.4.3:
Enzyme Inhibition / 2.5:
Unspecific Enzyme Inhibition / 2.5.1:
Irreversible Enzyme Inhibition / 2.5.2:
General Features of Irreversible Enzyme Inhibition / 2.5.2.1:
Suicide Substrates / 2.5.2.2:
Transition State Analogs / 2.5.2.3:
Analysis of Irreversible Inhibitions / 2.5.2.4:
Reversible Enzyme Inhibition / 2.5.3:
General Rate Equation / 2.5.3.1:
Non-Competitive Inhibition and Graphic Representation of Inhibition Data / 2.5.3.2:
Competitive Inhibition / 2.5.3.3:
Uncompetitive Inhibition / 2.5.3.4:
Partially Non-competitive Inhibition / 2.5.3.5:
Partially Uncompetitive Inhibition / 2.5.3.6:
Partially Competitive Inhibition / 2.5.3.7:
Noncompetitive and Uncompetitive Product Inhibition / 2.5.3.8:
Substrate Inhibition / 2.5.3.9:
Enzyme Reactions with Two Competing Substrates / 2.5.4:
Different Enzymes Catalyzing the Same Reaction / 2.5.5:
Multi-substrate Reactions / 2.6:
Nomenclature / 2.6.1:
Random Mechanism / 2.6.2:
Ordered Mechanism / 2.6.3:
Ping-pong Mechanism / 2.6.4:
Product Inhibition in Multi-substrate Reactions / 2.6.5:
Haldane Relationships in Multi-substrate Reactions / 2.6.6:
Mechanisms with more than Two Substrates / 2.6.7:
Other Nomenclatures for Multi-substrate Reactions / 2.6.8:
Derivation of Rate Equations of Complex Enzyme Mechanisms / 2.7:
King-Altmann Method / 2.7.1:
Simplified Derivations Applying Graph Theory / 2.7.2:
Combination of Equilibrium and Steady State Approach / 2.7.3:
Kinetic Treatment of Allosteric Enzymes / 2.8:
Hysteretic Enzymes / 2.8.1:
Kinetic Cooperativity, the Slow Transition Model / 2.8.2:
pH and Temperature Dependence of Enzymes / 2.9:
pH Optimum and Determination of pK Values / 2.9.1:
pH Stability / 2.9.2:
Temperature Dependence / 2.9.3:
Isotope Exchange / 2.10:
Isotope Exchange Kinetics / 2.10.1:
Isotope Effects / 2.10.2:
Primary Kinetic Isotope Effect / 2.10.2.1:
Influence of the Kinetic Isotope Effect on V and Km / 2.10.2.2:
Other Isotope Effects / 2.10.2.3:
Special Enzyme Mechanisms / 2.11:
Ribozymes / 2.11.1:
Polymer Substrates / 2.11.2:
Kinetics of Immobilized Enzymes / 2.11.3:
External Diffusion Limitation / 2.11.3.1:
Internal Diffusion Limitation / 2.11.3.2:
Inhibition of Immobilized Enzymes / 2.11.3.3:
pH and Temperature Behavior of Immobilized Enzymes / 2.11.3.4:
Transport Processes / 2.11.4:
Enzyme Reactions at Membrane Interfaces / 2.11.5:
Application of Statistical Methods in Enzyme Kinetics / 2.12:
General Remarks / 2.12.1:
Statistical Terms Used in Enzyme Kinetics / 2.12.2:
Methods / 3:
Methods for Investigation of Multiple Equilibria / 3.1:
Equilibrium Dialysis and General Aspects of Binding Measurements / 3.1.1:
Equilibrium Dialysis / 3.1.1.1:
Control Experiments and Sources of Error / 3.1.1.2:
Continuous Equilibrium Dialysis / 3.1.1.3:
Ultrafiltration / 3.1.2:
Gel Filtration / 3.1.3:
Batch Method / 3.1.3.1:
The Method of Hummel and Dreyer / 3.1.3.2:
Other Gel Filtration Methods / 3.1.3.3:
Ultracentrifugation / 3.1.4:
Fixed Angle Ultracentrifugation Methods / 3.1.4.1:
Sucrose Gradient Centrifugation / 3.1.4.2:
Surface Plasmon Resonance / 3.1.5:
Electrochemical Methods / 3.2:
The Oxygen Electrode / 3.2.1:
The CO2 Electrode / 3.2.2:
Potentiometry, Redox Potentials / 3.2.3:
The pH-stat / 3.2.4:
Polarography / 3.2.5:
Calorimetry / 3.3:
Spectroscopic Methods / 3.4:
Absorption Spectroscopy / 3.4.1:
The Lambert-Beer Law / 3.4.1.1:
Spectral Properties of Enzymes and Ligands / 3.4.1.2:
Structure of Spectrophotometers / 3.4.1.3:
Double Beam Spectrophotometer / 3.4.1.4:
Difference Spectroscopy / 3.4.1.5:
The Dual Wavelength Spectrophotometer / 3.4.1.6:
Photochemical Action Spectra / 3.4.1.7:
Bioluminescence / 3.4.2:
Fluorescence / 3.4.3:
Quantum Yield / 3.4.3.1:
Structure of Spectrofluorimeters / 3.4.3.2:
Perturbations of Fluorescence Measurements / 3.4.3.3:
Fluorescent Compounds (Fluorophores) / 3.4.3.4:
Radiationless Energy Transfer / 3.4.3.5:
Fluorescence Polarization / 3.4.3.6:
Pulse Fluorimetry / 3.4.3.7:
Circular Dichroism and Optical Rotation Dispersion / 3.4.4:
Infrared and Raman Spectroscopy / 3.4.5:
IR Spectroscopy / 3.4.5.1:
Raman Spectroscopy / 3.4.5.2:
Applications / 3.4.5.3:
Electron Paramagnetic Resonance Spectroscopy / 3.4.6:
Measurement of Fast Reactions / 3.5:
Flow Methods / 3.5.1:
The Continuous Flow Method / 3.5.1.1:
The Stopped-flow Method / 3.5.1.2:
Measurement of Enzyme Reactions by Flow Methods / 3.5.1.3:
Determination of the Dead Time / 3.5.1.4:
Relaxation Methods / 3.5.2:
The Temperature Jump Method / 3.5.2.1:
The Pressure Jump Method / 3.5.2.2:
The Electric Field Method / 3.5.2.3:
Flash Photolysis, Pico- and Femto-second Spectroscopy / 3.5.3:
Evaluation of Rapid Kinetic Reactions (Transient Kinetics) / 3.5.4:
Subject Index
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
3.

図書

図書
Alexander Mamishev, Sean Williams
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xvii, 243 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
In this Chapter / 1.1:
Our Audience / 1.2:
A few horror stories / 1.2.1:
Some history / 1.2.2:
The Need For a Good "Writing System" / 1.3:
Introducing Stream Tools / 1.4:
What is STREAM Tools? / 1.4.1:
Why use STREAM Tools? / 1.4.2:
The software of STREAM Tools / 1.4.3:
Recommended packages / 1.4.3.1:
A brief comparison of Microsoft Word vs. LaTeX: history and myths / 1.4.3.2:
How to Use this Book / 1.5:
Exercises / 1.6:
Quick Start Guide For Stream Tools / Chapter 2:
A General Overview of the Writing Process / 2.1:
Introduction to Writing Quality Tools: The Stream Tools Editorial Mark-Up Table / 2.3:
Introduction to Document Design Tools / 2.4:
Important fundamental concepts / 2.4.1:
Step 1: Use template files to create your new manuscripts / 2.4.1.1:
Step 2: Copy existing elements and paste them into a new location / 2.4.1.2:
Step 3: Edit the element / 2.4.1.3:
Step 4: Cross-referencing elements / 2.4.1.4:
Creating Elements in a Document / 2.4.2:
Headings / 2.4.2.1:
Equations / 2.4.2.2:
Figures / 2.4.2.3:
Tables / 2.4.2.4:
References (literature citations) / 2.4.2.5:
Introduction to File Management: Optimizing Your Workflow / 2.5:
General principles / 2.5.1:
Using a wiki for file management / 2.5.2:
Version control / 2.5.3:
Conclusions / 2.6:
Document Design / 2.7:
Creating Templates / 3.1:
How to create and cross-reference a heading template / 3.2.1:
How to alter a heading template / 3.2.1.2:
Common formatting mistakes in headings / 3.2.1.3:
Common stylistic mistakes for headings / 3.2.1.4:
Tips and tricks / 3.2.1.5:
How to create and cross-reference an equation template / 3.2.2:
How to alter an equation template / 3.2.2.2:
Common formatting mistakes for equations / 3.2.2.3:
Common stylistic mistakes for equations / 3.2.2.4:
How to create and cross-reference a figure template / 3.2.2.5:
How to alter a figure template / 3.2.3.2:
Common formatting mistakes in figures / 3.2.3.3:
Common stylistic mistakes in figures / 3.2.3.4:
Tips and tricks for figures / 3.2.3.5:
How to create and cross-reference a table template / 3.2.4:
How to alter a table template / 3.2.4.2:
Common typesetting mistakes / 3.2.4.3:
Common stylistic mistakes in tables / 3.2.4.4:
Tips and tricks for tables / 3.2.4.5:
Front matter / 3.2.5:
Controlling page numbers / 3.2.5.1:
Table of contents / 3.2.5.2:
Back matter / 3.2.6:
Appendices / 3.2.6.1:
Indices / 3.2.6.2:
Using Multiple Templates / 3.3:
Controlling styles / 3.3.1:
Switching between single-column and double-column formats / 3.3.2:
Master documents / 3.3.3:
Practice Problems / 3.4:
Additional Resources / 3.4.1:
Using Bibliographic Databases / 3.6:
Why Use a Bibliographic Database? / 4.1:
Choice of Software / 4.3:
Using Endnote / 4.4:
Setting up the interface / 4.4.1:
Adding references / 4.4.2:
Citing references / 4.4.3:
Sharing a Database / 4.5:
Numbering the database entries / 4.5.1:
Compatibility with BiBTeX / 4.5.2:
Formatting References / 4.6:
Planning, Drafting, and Editing Documents / 4.7:
Definition Stage / 5.1:
Select your team members / 5.2.1:
Hold a kick-off meeting / 5.2.2:
Analyze the audience / 5.2.3:
Formulate the purpose / 5.2.4:
Persuasion / 5.2.4.1:
Exposition / 5.2.4.2:
Instruction / 5.2.4.3:
Select the optimum combination of STREAM Tools / 5.2.5:
Preparation Stage / 5.3:
Evaluate historical documents / 5.3.1:
Journal articles / 5.3.1.1:
Proceedings/papers / 5.3.1.2:
Theses and dissertations / 5.3.1.3:
Proposals / 5.3.1.4:
Reports / 5.3.1.5:
Populate the file repository / 5.3.2:
Create a comprehensive outline of the document / 5.3.3:
Using deductive structures / 5.3.3.1:
Using Microsoft Word's Outline feature / 5.3.3.2:
Populate all sections with "yellow text" / 5.3.4:
Distribute writing tasks among team members / 5.3.5:
Choose a drafting strategy / 5.3.5.1:
Synchronize writing styles / 5.3.5.2:
Writing Stage / 5.4:
Enter content / 5.4.1:
Legacy content / 5.4.1.1:
New content / 5.4.1.2:
Control versions of shared files / 5.4.1.3:
Request that team members submit their drafts / 5.4.2:
Verify that each section is headed in the right direction / 5.4.3:
Construct the whole document / 5.4.4:
Revise for content and distribute additional writing tasks / 5.4.5:
Comprehensive editing / 5.4.5.1:
STREAM Tools Editorial Mark-up table (STEM Table) / 5.4.5.2:
Strategies for editing electronic copy using Microsoft Word--an overview of Microsoft Word's commenting, reviewing, and proofing features / 5.4.5.3:
Distribute additional writing tasks / 5.4.6:
Completion Stage / 5.5:
Copy edit the document / 5.5.1:
Send out for a final review of content and clarity / 5.5.2:
Proofread the document / 5.5.3:
Submit the document / 5.5.4:
Conduct the final process-improvement review session / 5.5.5:
Building High Quality Writing Teams / 5.6:
Understanding the Benefits and Challenges of Teamwork / 6.1:
The payoff of teamwork / 6.2.1:
Some principle challenges of teamwork / 6.2.2:
Identifying Team Goals and Assigning Member Roles / 6.3:
Define roles and procedures clearly / 6.3.1:
Define team roles / 6.3.1.1:
Define team procedures / 6.3.1.2:
Managing Teamwork at a Distance / 6.4:
Building trust in virtual teams / 6.4.1:
Demonstrating sensitivity to cultural differences / 6.4.2:
Selecting Communication Tools To Support Teamwork / 6.5:
Wikis / 6.5.1:
Creating a wiki / 6.5.1.1:
Editing / 6.5.1.2:
Organizing / 6.5.1.3:
Monitoring edits / 6.5.1.4:
Other suggestions for wiki use / 6.5.1.5:
SharePoint / 6.5.2:
Lists / 6.5.2.1:
Web pages / 6.5.2.2:
Alerts and site management / 6.5.2.3:
Assuring Quality Writing / 6.6:
Choosing the Best Words 278 / 7.1:
Choose strong words / 7.2.1:
Use strong nouns and verbs / 7.2.1.1:
Choose words with the right level of formality / 7.2.1.2:
Avoid weak words / 7.2.2:
Check for confusing or frequently misused words / 7.2.2.1:
Avoid double negatives, and change negatives to affirmatives / 7.2.2.2:
Avoid changing verbs to nouns / 7.2.2.3:
Delete meaningless words and modifiers / 7.2.2.4:
Steer clear of jargon / 7.2.2.5:
Avoid sexist or discriminatory language / 7.2.2.6:
Writing Strong Sentences / 7.3:
Write economically / 7.3.1:
Include a variety of sentence types / 7.3.2:
Avoiding Weak Sentence Construction / 7.4:
Comma splices / 7.4.1.1:
Fragments / 7.4.1.2:
Fused or run-on sentences / 7.4.1.3:
Misplaced, dangling, or two-way modifiers / 7.4.1.4:
Faulty parallelism / 7.4.1.5:
Punctuating For Clarity / 7.5:
End punctuation / 7.5.1:
Periods / 7.5.1.1:
Question marks / 7.5.1.2:
Exclamation points / 7.5.1.3:
Commas / 7.5.2:
Semicolons / 7.5.3:
Colons / 7.5.4:
Apostrophes / 7.5.5:
Dashes and hyphens / 7.5.6:
Final Considerations / 7.6:
Abbreviations and acronyms / 7.6.1:
Capitalization / 7.6.2:
Numbers / 7.6.3:
Dates / 7.6.4:
Fractions and percentages / 7.6.5:
Units of measure / 7.6.6:
A Final Note on Grammar / 7.7:
Concluding Remarks / 7.8:
Business Case / 8.1:
Frequently Asked Questions / 8.3:
Success Stories / 8.4:
Additional Reading / 8.5:
Useful books and articles / 8.5.1:
Useful weblinks / 8.5.2:
EXERCISES / 8.6:
Preface
Acknowledgments
Introduction / Chapter 1:
4.

図書

図書
by Henri Sauvageot
出版情報: Boston : Artech House, c1991  xii, 366 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
The Sensor / 1.2:
Noncoherent Pulse Radar / 1.2.1:
Pulsed Doppler Radar / 1.2.2:
Display of the Data / 1.2.3:
Sensitivity of the Receiver / 1.2.4:
Antenna / 1.2.5:
Resolution / 1.2.6:
Refraction / 1.2.7:
Attenuation / 1.2.8:
The Radar Equation: General Forms / 1.3:
Single Scatterer / 1.3.1:
Distributed Target / 1.3.2:
Calibration and Setting Up / 1.4:
Meteorological Signals / 1.5:
Meteorological Targets / 1.5.1:
Signal Statistics / 1.5.2:
Decorrelation Time: Independent Samples / 1.5.3:
Sample Time Averaging: Reducing the Variance of the Mean / 1.5.4:
Reducing the Integration Time / 1.5.5:
Detecting Weak Signals / 1.5.6:
Sampling and Demultiplexing / 1.5.7:
Hydrological Measurements / Chapter 2:
Clouds and Precipitation / 2.1:
Physical Processes of Formation / 2.2.1:
Hydrometeor Size Distributions: General Forms / 2.2.2:
Integral Parameters / 2.2.3:
Clouds / 2.2.4:
Precipitation / 2.2.5:
Terminal Fall Velocity of Hydrometeors / 2.2.6:
The Shape of Hydrometeors / 2.2.7:
Scattering and Attenuation Cross Sections / 2.3:
Homogeneous Spherical Particles / 2.3.1:
Nonhomogeneous Particles / 2.3.2:
Nonspherical Particles / 2.3.3:
Atmospheric Attenuation / 2.4:
Attenuation by Gases / 2.4.1:
Attenuation by Clouds / 2.4.2:
Attenuation by Precipitation / 2.4.3:
Backscattering by Clouds and Precipitation / 2.5:
Radar Reflectivity Factor / 2.5.1:
Z and X Relations / 2.5.2:
Polarization Measurements / 2.5.3:
Hail Precipitation Detection / 2.5.4:
Lightning Detection / 2.5.5:
Artifacts / 2.5.6:
Particular Meteorological Forms of the Radar Equation / 2.5.7:
Precipitation Measurements / 2.6:
Single-Wavelength Reflectivity / 2.6.1:
Radar and Rain Gauge / 2.6.3:
Single-Wavelength Attenuation Measurements / 2.6.4:
Dual-Wavelength a-R Method / 2.6.5:
Dual-Wavelength N(D) Method / 2.6.6:
Dual Polarization / 2.6.7:
Area Integral Methods for Convective Rainfall / 2.6.8:
Radar Networks / 2.7:
Short-Term Forecasting / 2.8:
Radars and Satellites / 2.9:
Technical Aspects / 2.9.1:
Estimation of Precipitation with Visible and Infrared Data / 2.9.2:
Rain Estimation by Passive Microwave Methods / 2.9.3:
Orbital Radars / 2.9.4:
Velocity Measurements / Chapter 3:
The Doppler Spectrum / 3.1:
Spectral Parameters / 3.1.1:
Discrete-Fourier Transform / 3.1.2:
Estimators of Spectral Moments / 3.1.3:
Factors Affecting the Width of the Doppler Spectrum / 3.1.4:
Ground Clutter Suppression / 3.1.5:
Doppler Spectra at Vertical Incidence / 3.2:
Size Distribution of Precipitation / 3.2.1:
Vertical Air Velocity / 3.2.2:
Measurement of the Velocity Fields with a Single Doppler Radar / 3.3:
Analysis of the Mean Field by the VAD Method / 3.3.1:
The VVP Method / 3.3.2:
Display of the Radial Velocity / 3.3.3:
Measurement of Turbulence / 3.4:
The Inertial Domain / 3.4.1:
Measurement of Rate of Dissipation of Turbulent Kinetic Energy / 3.4.2:
The Turbulence Field / 3.4.3:
Measurement of the Velocity Fields with Several Doppler Radars / 3.5:
Retrieval of the Thermodynamic and Microphysical Fields / 3.6:
Airborne Radar / 3.7:
Observation of Clear Air / Chapter 4:
Scattering of Electromagnetic Waves by a Turbulent Medium / 4.1:
General Relations / 4.2.1:
Reflectivity in the Inertial Domain / 4.2.2:
Relationship Between Radar Reflectivity and the Average Atmospheric Field / 4.2.3:
ST Radar / 4.3:
Influence of the Wavelength / 4.3.1:
Wind Measurements / 4.3.2:
Reflectivity / 4.3.3:
Networks of ST Radar / 4.3.4:
Rass / 4.4:
Insects / 4.5:
General Characteristics / 4.5.1:
Insects and Birds / 4.5.2:
Observations / 4.5.3:
Artificial Tracers / 4.6:
General Properties / 4.6.1:
Applications to Atmospheric Observation / 4.6.2:
Introduction to the Study of Some Meteorological Structures by Radar / Chapter 5:
Diversity of Meteorological Structures / 5.1:
Movements of the Atmosphere / 5.1.2:
The Area of Radar Application / 5.1.3:
Convection in the Planetary Boundary Layer / 5.2:
The Convective Boundary Layer / 5.2.1:
Observation of the Convective Field / 5.2.2:
The Aerobiological Field / 5.2.3:
Pollution and Plumes / 5.2.4:
Deep Convection and Thunderstorms / 5.3:
The Convective Cells / 5.3.1:
Convective Storm Structure / 5.3.2:
Squall Lines / 5.3.3:
Microbursts / 5.3.4:
Hail / 5.3.5:
Electrical Activity of Storms / 5.3.6:
Tornadoes and Vortexes / 5.4:
Identification of Vortexes by Radar / 5.4.1:
Application to Warning Systems / 5.4.3:
Extratropical Cyclone Disturbances and Stratiform Clouds / 5.5:
Structure of Extratropical Cyclone Disturbances / 5.5.1:
Stratiform Precipitation / 5.5.2:
Tropical Cyclones / 5.6:
Turbulent Stratifications and Shear Instability / 5.7:
Experimental Modification of Clouds and Precipitation / 5.8:
Bibliographical Note / Appendix 1:
Units and Symbols / Appendix 2:
List of Constants / Appendix 3:
Definitions and Various Numerical Values / Appendix 4:
References
Index
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
5.

図書

図書
Edward Bellinger and David C. Sigee
出版情報: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley-Blackwell, 2010  viii, 271 p ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
Algae as primary producers / 1.1.2:
Freshwater environments / 1.1.3:
Planktonic and benthic algae / 1.1.4:
Size and shape / 1.1.5:
Taxonomic variation / 1.2:
Microscopical appearance / 1.2.1:
Biochemistry / 1.2.2:
Molecular characteristics and identification / 1.2.3:
Blue-green algae / 1.3:
Cytology / 1.3.1:
Morphological and taxonomic diversity / 1.3.2:
Ecology / 1.3.3:
Blue-green algae as bioindicators / 1.3.4:
Green algae / 1.4:
Morphological diversity / 1.4.1:
Green algae as bioindicators / 1.4.3:
Euglenoids / 1.5:
Euglenoids as bioindicators / 1.5.1:
Yellow-green algae / 1.6:
Yellow-green algae as bioindicators / 1.6.1:
Dinoflagellates / 1.7:
Cryptomonads / 1.7.1:
Comparison with euglenoid algae / 1.8.1:
Biodiversity / 1.8.3:
Cryptomonads as bioindicators / 1.8.4:
Chrysophytes / 1.9:
Chrysophytes as bioindicators / 1.9.1:
Diatoms / 1.10:
Diatoms as bioindicators / 1.10.1:
Red algae / 1.11:
Brown algae / 1.12:
Sampling, biomass estimation and counts of freshwater algae A Planktonic algae / 2:
Protocol for collection / 2.1:
Standing water phytoplankton / 2.1.1:
River phytoplankton
Mode of collection / 2.2:
Phytoplankton trawl net / 2.2.1:
Volume samplers / 2.2.2:
Integrated sampling / 2.2.3:
Sediment traps / 2.2.4:
Phytoplankton biomass / 2.3:
Turbidity / 2.3.1:
Dry weight and ash-free dry weight / 2.3.2:
Pigment concentrations / 2.3.3:
Flow cytometry / 2.4:
Microscope counts of species populations / 2.5:
Sample preservation and processing / 2.5.1:
Species counts / 2.5.2:
Conversion of species counts to biovolumes / 2.5.3:
Chemical cleaning of diatoms / 2.5.4:
Diversity within species populations / 2.6:
Molecular analysis / 2.6.1:
Analytical microscopical techniques B Non-planktonic algae / 2.6.2:
Deep water benthic algae / 2.7:
Benthic-pelagic coupling / 2.7.1:
Benthic algae and sediment stability / 2.7.2:
Invertebrate grazing of benthic algae / 2.7.3:
Shallow water communities / 2.8:
Substrate / 2.8.1:
Algal communities / 2.8.2:
Algal biofilms / 2.9:
Mucialginous biofilms / 2.9.1:
Biomass / 2.9.2:
Taxonomic composition / 2.9.3:
Matrix structure / 2.9.4:
Periphyton? algal mats / 2.10:
Inorganic substratum / 2.10.1:
Plant surfaces / 2.10.2:
Algae as bioindicators / 3:
Bioindicators and water quality / 3.1:
Biomarkers and bioindicators / 3.1.1:
Characteristics of bioindicators / 3.1.2:
Biological monitoring versus chemical measurements / 3.1.3:
Monitoring water quality: objectives / 3.1.4:
Lakes / 3.2:
Contemporary planktonic and attached algae as bioindicators / 3.2.1:
Fossil algae as bioindicators: lake sediment analysis / 3.2.2:
Water quality parameters / 3.2.3:
Wetlands / 3.3:
Rivers / 3.4:
The periphyton community / 3.4.1:
River diatoms / 3.4.2:
Evaluation of the diatom community / 3.4.3:
Human impacts and diatom indices / 3.4.4:
Calculation of diatom indices / 3.4.5:
Practical applications of diatom indices / 3.4.6:
Estuaries / 3.5:
Ecosystem complexity / 3.5.1:
Algae as estuarine bioindicators / 3.5.2:
A key to the more frequently occurring freshwater algae / 4:
Introduction to the key / 4.1:
Using the key / 4.1.1:
Morphological groupings / 4.1.2:
Key to the main genera and species / 4.2:
List of algae included and their occurrence in the key / 4.3:
Algal identification: bibliography / 4.4:
Glossary
References
Index
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
6.

図書

図書
F. Grossmann
出版情報: Berlin : Springer, c2008  xiii, 214 p. ; 24 cm
シリーズ名: Springer series on atomic, optical, and plasma physics ; 48
所蔵情報: loading…
目次情報: 続きを見る
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
Fundamentals of the Laser / 1.2:
Elementary Laser Theory / 1.2.1:
Realization of the Laser Principle / 1.2.2:
Pulsed Lasers / 1.3:
Frequency Comb / 1.3.1:
Carrier Envelope Phase / 1.3.2:
Husimi Representation of Laser Pulses / 1.3.3:
Some Gaussian Integrals / 1.A:
References
Time-Dependent Quantum Theory / 2:
The Time-Dependent Schrodinger Equation / 2.1:
Introduction / 2.1.1:
Time-Evolution Operator / 2.1.2:
Spectral Information / 2.1.3:
Analytical Solutions for Wavepackets / 2.1.4:
Analytical Approaches / 2.2:
Feynman's Path Integral / 2.2.1:
Semiclassical Approximation / 2.2.2:
Time-Dependent Perturbation Theory / 2.2.3:
Magnus Expansion / 2.2.4:
Time-Dependent Hartree Method / 2.2.5:
Quantum-Classical Methods / 2.2.6:
Floquet Theory / 2.2.7:
Numerical Methods / 2.3:
Orthogonal Basis Expansion / 2.3.1:
Split-Operator FFT Method / 2.3.2:
Alternative Methods of Time-Evolution / 2.3.3:
Semiclassical Initial Value Representations / 2.3.4:
The Royal Road to the Path Integral / 2.A:
Variational Calculus / 2.B:
Stability Matrix / 2.C:
From the HK- to the VVG-Propagator / 2.D:
Applications / Part II:
Field Matter Coupling and Two-Level Systems / 3:
Light Matter Interaction / 3.1:
Minimal Coupling / 3.1.1:
Length Gauge / 3.1.2:
Kramers-Henneberger Transformation / 3.1.3:
Volkov Wavepacket / 3.1.4:
Analytically Solvable Two-Level Problems / 3.2:
Dipole Matrix Element / 3.2.1:
Rabi Oscillations Induced by a Constant Perturbation / 3.2.2:
Time-Dependent Perturbations / 3.2.3:
Exactly Solvable Time-Dependent Cases / 3.2.4:
Generalized Parity Transformation / 3.A:
Two-Level System in an Incoherent Field / 3.B:
Single Electron Atoms in Strong Laser Fields / 4:
The Hydrogen Atom / 4.1:
Hydrogen in Three Dimensions / 4.1.1:
The One-Dimensional Coulomb Problem / 4.1.2:
Field Induced Ionization / 4.2:
Tunnel Ionization / 4.2.1:
Multiphoton Ionization / 4.2.2:
ATI in the Coulomb Potential / 4.2.3:
Stabilization in Very Strong Fields / 4.2.4:
Atoms Driven by HCP / 4.2.5:
High Harmonic Generation / 4.3:
Three-Step Model / 4.3.1:
Odd Harmonics Rule / 4.3.2:
Semiclassical Explanation of the Plateau / 4.3.3:
Cutoff and Odd Harmonics Revisited / 4.3.4:
More on Atomic Units / 4.A:
Molecules in Strong Laser Fields / 5:
The Molecular Ion H[superscript + subscript 2] / 5.1:
Electronic Potential Energy Surfaces / 5.1.1:
The Morse Potential / 5.1.2:
H[superscript + subscript 2] in a Laser Field / 5.2:
Frozen Nuclei / 5.2.1:
Nuclei in Motion / 5.2.2:
Adiabatic and Nonadiabatic Nuclear Dynamics / 5.3:
Born-Oppenheimer Approximation / 5.3.1:
Dissociation in a Morse Potential / 5.3.2:
Coupled Potential Surfaces / 5.3.3:
Femtosecond Spectroscopy / 5.3.4:
Control of Molecular Dynamics / 5.4:
Control of Tunneling / 5.4.1:
Control of Population Transfer / 5.4.2:
Optimal Control Theory / 5.4.3:
Genetic Algorithms / 5.4.4:
Toward Quantum Computing with Molecules / 5.4.5:
Relative and Center of Mass Coordinates for H[superscript + subscript 2] / 5.A:
Perturbation Theory for Two Coupled Surfaces / 5.B:
Reflection Principle of Photodissociation / 5.C:
The Undriven Double Well Problem / 5.D:
The Quantum Mechanical Adiabatic Theorem / 5.E:
Index
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
7.

図書

図書
George Wolberg
出版情報: Los Alamitos, Calif. ; Tokyo : IEEE Computer Society Press, c1990  xvi, 318 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
Spatial Transformations / 1.2.1:
Sampling Theory / 1.2.2:
Resampling / 1.2.3:
Aliasing / 1.2.4:
Scanline Algorithms / 1.2.5:
Conceptual Layout / 1.3:
Preliminaries / Chapter 2:
Fundamentals / 2.1:
Signals and Images / 2.1.1:
Filters / 2.1.2:
Impulse Response / 2.1.3:
Convolution / 2.1.4:
Frequency Analysis / 2.1.5:
An Analogy to Audio Signals / 2.1.5.1:
Fourier Transforms / 2.1.5.2:
Discrete Fourier Transforms / 2.1.5.3:
Image Acquisition / 2.2:
Imaging Systems / 2.3:
Electronic Scanners / 2.3.1:
Vidicon Systems / 2.3.1.1:
Image Dissectors / 2.3.1.2:
Solid-State Sensors / 2.3.2:
CCD Cameras / 2.3.2.1:
CID Cameras / 2.3.2.2:
Mechanical Scanners / 2.3.3:
Video Digitizers / 2.4:
Digitized Imagery / 2.5:
Summary / 2.6:
Definitions / Chapter 3:
Forward Mapping / 3.1.1:
Inverse Mapping / 3.1.2:
General Transformation Matrix / 3.2:
Homogeneous Coordinates / 3.2.1:
Affine Transformations / 3.3:
Translation / 3.3.1:
Rotation / 3.3.2:
Scale / 3.3.3:
Shear / 3.3.4:
Composite Transformations / 3.3.5:
Inverse / 3.3.6:
Inferring Affine Transformations / 3.3.7:
Perspective Transformations / 3.4:
Inferring Perspective Transformations / 3.4.1:
Case 1: Square-to-Quadrilateral / 3.4.2.1:
Case 2: Quadrilateral-to-Square / 3.4.2.2:
Case 3: Quadrilateral-to-Quadrilateral / 3.4.2.3:
Bilinear Transformations / 3.5:
Bilinear Interpolation / 3.5.1:
Separability / 3.5.2:
Interpolation Grid / 3.5.3:
Polynomial Transformations / 3.6:
Inferring Polynomial Coefficients / 3.6.1:
Pseudoinverse Solution / 3.6.2:
Least-Squares With Ordinary Polynomials / 3.6.3:
Least-Squares With Orthogonal Polynomials / 3.6.4:
Weighted Least-Squares / 3.6.5:
Piecewise Polynomial Transformations / 3.7:
A Surface Fitting Paradigm for Geometric Correction / 3.7.1:
Procedure / 3.7.2:
Triangulation / 3.7.3:
Linear Triangular Patches / 3.7.4:
Cubic Triangular Patches / 3.7.5:
Global Splines / 3.8:
Basis Functions / 3.8.1:
Regularization / 3.8.2:
Grimson, 1981 / 3.8.2.1:
Terzopoulos, 1984 / 3.8.2.2:
Discontinuity Detection / 3.8.2.3:
Boult and Kender, 1986 / 3.8.2.4:
A Definition of Smoothness / 3.8.2.5:
Sampling / 3.9:
Reconstruction / 4.3:
Reconstruction Conditions / 4.3.1:
Ideal Low-Pass Filter / 4.3.2:
Sinc Function / 4.3.3:
Nonideal Reconstruction / 4.4:
Antialiasing / 4.5:
Image Resampling / 4.7:
Ideal Image Resampling / 5.1:
Interpolation / 5.3:
Interpolation Kernels / 5.4:
Nearest Neighbor / 5.4.1:
Linear Interpolation / 5.4.2:
Cubic Convolution / 5.4.3:
Two-Parameter Cubic Filters / 5.4.4:
Cubic Splines / 5.4.5:
B-Splines / 5.4.5.1:
Interpolating B-Splines / 5.4.5.2:
Windowed Sinc Function / 5.4.6:
Hann and Hamming Windows / 5.4.6.1:
Blackman Window / 5.4.6.2:
Kaiser Window / 5.4.6.3:
Lanczos Window / 5.4.6.4:
Gaussian Window / 5.4.6.5:
Exponential Filters / 5.4.7:
Comparison of Interpolation Methods / 5.5:
Implementation / 5.6:
Interpolation with Coefficient Bins / 5.6.1:
Fant's Resampling Algorithm / 5.6.2:
Discussion / 5.7:
Point Sampling / Chapter 6:
Area Sampling / 6.1.2:
Space-Invariant Filtering / 6.1.3:
Space-Variant Filtering / 6.1.4:
Regular Sampling / 6.2:
Supersampling / 6.2.1:
Adaptive Supersampling / 6.2.2:
Reconstruction from Regular Samples / 6.2.3:
Irregular Sampling / 6.3:
Stochastic Sampling / 6.3.1:
Poisson Sampling / 6.3.2:
Jittered Sampling / 6.3.3:
Point-Diffusion Sampling / 6.3.4:
Adaptive Stochastic Sampling / 6.3.5:
Reconstruction from Irregular Samples / 6.3.6:
Direct Convolution / 6.4:
Catmull, 1974 / 6.4.1:
Blinn and Newell, 1976 / 6.4.2:
Feibush, Levoy, and Cook, 1980 / 6.4.3:
Gangnet, Perny, and Coueignoux, 1982 / 6.4.4:
Greene and Heckbert, 1986 / 6.4.5:
Prefiltering / 6.5:
Pyramids / 6.5.1:
Summed-Area Tables / 6.5.2:
Frequency Clamping / 6.6:
Antialiased Lines and Text / 6.7:
Separable Mapping / 6.8:
Incremental Algorithms / 7.2:
Texture Mapping / 7.2.1:
Gouraud Shading / 7.2.2:
Incremental Texture Mapping / 7.2.3:
Incremental Perspective Transformations / 7.2.4:
Approximation / 7.2.5:
Quadratic Interpolation / 7.2.6:
Cubic Interpolation / 7.2.7:
Braccini and Marino, 1980 / 7.3:
Weiman, 1980 / 7.3.2:
Catmull and Smith, 1980 / 7.3.3:
Paeth, 1986/ Tanaka, et. al., 1986 / 7.3.4:
Cordic Algorithm / 7.3.5:
2-Pass Transforms / 7.4:
First Pass / 7.4.1:
Second Pass / 7.4.1.2:
2-Pass Algorithm / 7.4.1.3:
An Example: Rotation / 7.4.1.4:
Another Example: Perspective / 7.4.1.5:
Bottleneck Problem / 7.4.1.6:
Foldover Problem / 7.4.1.7:
Fraser, Schowengerdt, and Briggs, 1985 / 7.4.2:
Smith, 1987
2-Pass Mesh Warping / 7.5:
Special Effects / 7.5.1:
Description of the Algorithm / 7.5.2:
Examples / 7.5.2.1:
Source Code / 7.5.4:
More Separable Mappings / 7.6:
Perspective Projection: Robertson, 1987 / 7.6.1:
Warping Among Arbitrary Planar Shapes: Wolberg, 1988 / 7.6.2:
Spatial Lookup Tables: Wolberg and Boult, 1989 / 7.6.3:
Separable Image Warping / 7.7:
Spatial Lookup Tables / 7.7.1:
Intensity Resampling / 7.7.2:
Coordinate Resampling / 7.7.3:
Distortions and Errors / 7.7.4:
Filtering Errors / 7.7.4.1:
Perspective / 7.7.4.2:
Distortion Measures / 7.7.4.4:
Bottleneck Distortion / 7.7.4.6:
Representing Foldovers / 7.7.5:
Tracking Foldovers / 7.7.5.2:
Storing Information From Foldovers / 7.7.5.3:
Intensity Resampling with Foldovers / 7.7.5.4:
Compositor / 7.7.6:
Epilogue / 7.7.7:
Fast Fourier Transforms / Appendix 1:
Discrete Fourier Transform / A1.1:
Danielson-Lanczos Lemma / A1.2:
Butterfly Flow Graph / A1.2.1:
Putting It All Together / A1.2.2:
Recursive FFT Algorithm / A1.2.3:
Cost of Computation / A1.2.4:
Cooley-Tukey Algorithm / A1.3:
Computational Cost / A1.3.1:
Cooley-Sande Algorithm / A1.4:
Cooley-Tukey FFT Algorithm / A1.5:
Interpolating Cubic Splines / Appendix 2:
Definition / A2.1:
Constraints / A2.2:
Solving for the Spline Coefficients / A2.3:
Derivation of A[subscript 2] / A2.3.1:
Derivation of A[subscript 3] / A2.3.2:
Derivation of A[subscript 1] and A[subscript 3] / A2.3.3:
Evaluting the Unknown Derivatives / A2.4:
First Derivatives / A2.4.1:
Second Derivatives / A2.4.2:
Boundary Conditions / A2.4.3:
Ispline / A2.5:
Ispline_gen / A2.5.2:
Forward Difference Method / Appendix 3:
References
Index
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
8.

図書

図書
Jean-Pierre Colinge, editor
出版情報: New York : Springer, c2008  xiii, 339 p. ; 24 cm
シリーズ名: Series on Integrated Circuits and Systems
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Content
Contributors
The SOI MOSFET: from Single Gate to Multigate / 1:
MOSFET scaling and Moore's law / 1.1:
Short-Channel Effects / 1.2:
Gate Geometry and Electrostatic Integrity / 1.3:
A Brief History of Multiple-Gate MOSFETs / 1.4:
Single-gate SOI MOSFETs / 1.4.1:
Double-gate SOI MOSFETs / 1.4.2:
Triple-gate SOI MOSFETs / 1.4.3:
Surrounding-gate (quadruple-gate) SOI MOSFETs / 1.4.4:
Other multigate MOSFET structures / 1.4.5:
Multigate MOSFET memory devices / 1.4.6:
Multigate MOSFET Physics / 1.5:
Classical physics / 1.5.1:
Natural length and short-channel effects / 1.5.1.1:
Current drive / 1.5.1.2:
Corner effect / 1.5.1.3:
Quantum effects / 1.5.2:
Volume inversion / 1.5.2.1:
Mobility effects / 1.5.2.2:
Threshold voltage / 1.5.2.3:
Inter-subband scattering / 1.5.2.4:
References
Multigate MOSFET Technology / 2:
Introduction / 2.1:
Active Area: Fins / 2.2:
Fin Width / 2.2.1:
Fin Height and Fin Pitch / 2.2.2:
Fin Surface Crystal Orientation / 2.2.3:
Fin Surface Preparation / 2.2.4:
Fins on Bulk Silicon / 2.2.5:
Nano-wires and Self-Assembled Wires / 2.2.6:
Gate Stack / 2.3:
Gate Patterning / 2.3.1:
Threshold Voltage and Gate Workfunction Requirements / 2.3.2:
Polysilicon Gate / 2.3.2.1:
Metal Gate / 2.3.2.2:
Tunable Workfunction Metal Gate / 2.3.2.3:
Gate EWF and Gate Induced Drain Leakage (GIDL) / 2.3.3:
Independently Controlled Gates / 2.3.4:
Source/Drain Resistance and Capacitance / 2.4:
Doping the Thin Fins / 2.4.1:
Junction Depth / 2.4.2:
Parasitic Resistance/Capacitance and Raised Source and Drain Structure / 2.4.3:
Mobility and Strain Engineering / 2.5:
Wafer Bending Experiment / 2.5.1:
Nitride Stress Liners / 2.5.3:
Embedded SiGe and SiC Source and Drain / 2.5.4:
Local Strain from Gate Electrode / 2.5.5:
Substrate Strain: Strained Silicon on Insulator / 2.5.6:
Contacts to the Fins / 2.6:
Dumbbell source and drain contact / 2.6.1:
Saddle contact / 2.6.2:
Contact to merged fins / 2.6.3:
Acknowledgments
BSIM-CMG: A Compact Model for Multi-Gate Transistors / 3:
Framework for Multigate FET Modeling / 3.1:
Multigate Models: BSIM-CMG and BSIM-IMG / 3.3:
The BSIM-CMG Model / 3.3.1:
The BSIM-IMG Model / 3.3.2:
BSIM-CMG / 3.4:
Core Model / 3.4.1:
Surface Potential Model / 3.4.1.1:
I-V Model / 3.4.1.2:
C-V Model / 3.4.1.3:
Modeling Physical Effects of Real Devices / 3.4.2:
Quantum Mechanical Effects (QME) / 3.4.2.1:
Short-channel Effects (SCE) / 3.4.2.2:
Experimental Verification / 3.4.3:
Surface Potential of independent DG-FET / 3.5:
BSIM-IMG features / 3.5.2:
Summary / 3.6:
Physics of the Multigate MOS System / 4:
Device electrostatics / 4.1:
Double gate MOS system / 4.2:
Modeling assumptions / 4.2.1:
Gate voltage effect / 4.2.2:
Semiconductor thickness effect / 4.2.3:
Asymmetry effects / 4.2.4:
Oxide thickness effect / 4.2.5:
Electron tunnel current / 4.2.6:
Two-dimensional confinement / 4.3:
Mobility in Multigate MOSFETs / 5:
Double-Gate MOSFETs and FinFETs / 5.1:
Phonon-limited mobility / 5.2.1:
Confinement of acoustic phonons / 5.2.2:
Interface roughness scattering / 5.2.3:
Coulomb scattering / 5.2.4:
Temperature Dependence of Mobility / 5.2.5:
Symmetrical and Asymmetrical Operation of DGSOI FETs / 5.2.6:
Crystallographic orientation / 5.2.7:
High-k dielectrics / 5.2.8:
Strained DGSOI devices / 5.2.9:
Silicon multiple-gate nanowires / 5.2.10:
Electrostatic description of Si nanowires / 5.3.1:
Electron transport in Si nanowires / 5.3.3:
Surface roughness / 5.3.4:
Experimental results and conclusions / 5.3.5:
Radiation Effects in Advanced Single- and Multi-Gate SOI MOSFETs / 6:
A brief history of radiation effects in SOI / 6.1:
Total Ionizing Dose Effects / 6.2:
A brief overview of Total Ionizing Dose effects / 6.2.1:
Advanced Single-Gate FDSOI devices / 6.2.2:
Description of Advanced FDSOI Devices / 6.2.2.1:
Front-gate threshold voltage shift / 6.2.2.2:
Single-transistor latch / 6.2.2.3:
Advanced Multi-Gate devices / 6.2.3:
Devices and process description / 6.2.3.1:
Single-Event Effects / 6.2.3.2:
Background / 6.3.1:
Effect of ion track diameter in nanoscale devices / 6.3.2:
Transient measurements on single-gate and FinFET SOI transistors / 6.3.3:
Scaling effects / 6.3.4:
Multi-Gate MOSFET Circuit Design / 7:
Digital Circuit Design / 7.1:
Impact of device performance on digital circuit design / 7.2.1:
Large-scale digital circuits / 7.2.2:
Leakage-performance trade off and energy dissipation / 7.2.3:
Multi-V[subscript T] devices and mixed-V[subscript T] circuits / 7.2.4:
High-temperature circuit operation / 7.2.5:
SRAM design / 7.2.6:
Analog Circuit Design / 7.3:
Device figures of merit and technology related design issues / 7.3.1:
Transconductance / 7.3.1.1:
Intrinsic transistor gain / 7.3.1.2:
Matching behavior / 7.3.1.3:
Flicker noise / 7.3.1.4:
Transit and maximum oscillation frequency / 7.3.1.5:
Self-heating / 7.3.1.6:
Charge trapping in high-k dielectrics / 7.3.1.7:
Design of analog building blocks / 7.3.2:
V-[subscript T]-based current reference circuit / 7.3.2.1:
Bandgap voltage reference / 7.3.2.2:
Operational amplifier / 7.3.2.3:
Comparator / 7.3.2.4:
Mixed-signal aspects / 7.3.3:
Current steering DAC / 7.3.3.1:
Successive approximation ADC / 7.3.3.2:
RF circuit design / 7.3.4:
SoC Design and Technology Aspects / 7.4:
Index
Preface
Table of Content
Contributors
9.

図書

図書
John F. Watts, John Wolstenholme
出版情報: Chichester : Wiley, c2003  x, 212 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
Electron Spectrometer Design
The Electron Spectrum: Qualitative and Quantitative Interpretation
Compositional Depth Profiling / 1.1:
Applications of Electron Spectroscopy in Materials Science
Analysis of Surfaces
Comparison of XPS and AES with Other Analytical Techniques
Glossary / 1.2:
Bibliography
Notation
Auger Electron Energies / Appendix 1:
Spectroscopists' notation / Appendix 2:
Table of Binding Energies Accessible with AIK& Radiation
Index / 1.2.2:
X-ray notation
X-ray Photoelectron Spectroscopy (XPS) / 1.3:
Auger Electron Spectroscopy (AES) / 1.4:
Scanning Auger Microscopy (SAM) / 1.5:
The Depth of Analysis in Electron Spectroscopy / 1.6:
Comparison of XPS and AES/SAM / 1.7:
The Availability of Surface Analytical Equipment / 1.8:
The Vacuum System / 2:
The Sample / 2.2:
X-ray Sources for XPS / 2.3:
The twin anode X-ray source / 2.3.1:
X-ray monochromators / 2.3.2:
Charge compensation / 2.3.3:
The Electron Gun for AES / 2.4:
Electron sources / 2.4.1:
Analysers for Electron Spectroscopy / 2.5:
The cylindrical mirror analyser / 2.5.1:
The hemispherical sector analyser / 2.5.2:
Detectors / 2.6:
Channel electron multipliers / 2.6.1:
Channel plates / 2.6.2:
Small Area XPS / 2.7:
Lens-defined small area XPS / 2.7.1:
Source-defined small area analysis / 2.7.2:
XPS Imaging and Mapping / 2.8:
Serial acquisition / 2.8.1:
Parallel acquisition / 2.8.2:
Lateral Resolution in Small Area XPS / 2.9:
Angle Resolved XPS / 2.10:
Qualitative Analysis / 3:
Unwanted features in electron spectra / 3.1.1:
Data acquisition / 3.1.2:
Chemical State Information / 3.2:
X-ray photoelectron spectroscopy / 3.2.1:
Electron induced Auger electron spectroscopy / 3.2.2:
The Auger parameter / 3.2.3:
Chemical state plots / 3.2.4:
Shake-up satellites / 3.2.5:
Multiplet splitting / 3.2.6:
Plasmons / 3.2.7:
Quantitative Analysis / 3.3:
Factors affecting the quantification of electron spectra / 3.3.1:
Quantification in XPS / 3.3.2:
Quantification in AES / 3.3.3:
Compositional Depth Profilin / 4:
Non-destructive Depth Profiling Methods / 4.1:
Angle resolved electron spectroscopy / 4.1.1:
Elastic scattering / 4.1.1.1:
Compositional depth profiles by ARXPS / 4.1.1.2:
Recent advances in ARXPS / 4.1.1.3:
Variation of analysis depth with electron kinetic energy / 4.1.2:
Depth Profiling by Erosion with Noble Gas Ions / 4.2:
The sputtering process / 4.2.1:
Experimental method / 4.2.2:
Sputter yield and etch rate / 4.2.3:
Factors affecting the etch rate / 4.2.4:
Factors affecting the depth resolution / 4.2.5:
Calibration / 4.2.6:
Ion gun design / 4.2.7:
Mechanical Sectioning / 4.3:
Angle lapping / 4.3.1:
Ball cratering / 4.3.2:
Conclusions / 4.4:
Introduction / 5:
Metallurgy / 5.2:
Grain-boundary segregation / 5.2.1:
Electronic structure of metallic alloys / 5.2.2:
Surface engineering / 5.2.3:
Corrosion Science / 5.3:
Ceramics and Catalysis / 5.4:
Microelectronics and Semiconductor Materials / 5.5:
Mapping semiconductor devices using AES / 5.5.1:
Depth profiling of semiconductor materials / 5.5.2:
Ultra-thin layers studied by ARXPS / 5.5.3:
Polymeric Materials / 5.6:
Adhesion Science / 5.7:
X-ray Analysis in the Electron Microscope / 6:
Electron Analysis in the Electron Microscope / 6.2:
Mass Spectrometry for Surface Analysis / 6.3:
Ion Scattering / 6.4:
Concluding Remarks / 6.5:
Appendices
Table of Binding Energies Accessible with AlKalpha Radiation
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
10.

図書

図書
edited by Tito Trindade, Ana L. Daniel da Silva
出版情報: Singapore : Pan Stanford Publishing, c2011  xxii, 289, 4 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
From Nanoparticles to Nanocomposites: A Brief Overview / 1:
Nanoscience and Nanotechnology: An introduction / 1.1:
Nanoparticles' Diversity / 1.2:
Quantum dots / 1.2.1:
Iron oxides / 1.2.2:
Metal nanoparticles / 1.2.3:
Surface Modification of Nanoparticles / 1.3:
Ligand exchange reactions / 1.3.1:
Inorganic nanocoating / 1.3.2:
Encapsulation in polymers / 1.3.3:
Designing Biointerfaces over Nanoparticles / 1.4:
Challenges for the Future... Nanosafety for Today / 1.5:
Polymers for Biomedical Applications: Chemical Modification and Biofunctionalization / 2:
Drug Delivery Systems / 2.1:
Hydrogels / 2.2:
Application of hydrogels / 2.2.1:
Types of hydrogels / 2.2.2:
Bioadhesives / 2.3:
Surface Modification / 2.4:
Surface modification by ultra-violet radiation / 2.4.1:
Plasma treatment / 2.4.2:
Plasma generation / 2.4.2.1:
Plasma polymerization and surface modification of polymers / 2.4.2.2:
Concluding Remarks / 2.5:
Nanocapsules as Carriers for the Transport and Targeted Delivery of Bioactive Molecules / 3:
Introduction / 3.1:
Polymeric Nanocapsules: Production and Characterization / 3.2:
Nanocapsules made of synthetic polymers / 3.2.1:
Polyacrylate nanocapsules / 3.2.1.1:
Polyester nanocapsules / 3.2.1.2:
Nanocapsules made of natural polymers / 3.2.2:
Lipid nanocapsules / 3.2.3:
Therapeutical Applications of Nanocapsules / 3.3:
Nanocapsules for oral drug delivery / 3.3.1:
Nanocapsules for oral peptide delivery / 3.3.1.1:
Nanocapsules for oral delivery of lipophilic low molecular weight drugs / 3.3.1.2:
Nanocapsules as nasal drug carriers / 3.3.2:
Nanocapsules as ocular drug carriers / 3.3.3:
Nanocapsules in cancer therapy / 3.3.4:
Nanocapsules as carriers for gene therapy / 3.3.5:
Conclusions / 3.4:
Inorganic Nanoparticles Biofunctionalization / 4:
Bioeonjugation of Nanoparticles / 4.1:
Nanoparticles and Their Surface Properties / 4.2:
Surface capping of nanoparticles / 4.2.1:
Semiconductor quantum dots and metallic nanoparticles / 4.2.2:
Silica nanoparticles and silica encapsulation / 4.2.3:
Attachment Schemes / 4.3:
Covalent attachment / 4.3.1:
Non-covalent attachment / 4.3.2:
Affinity binding / 4.3.3:
Specific Cases / 4.4:
Proteins / 4.4.1:
DNA / 4.4.2:
Avidin / 4.4.3:
Phospholipid encapsulation and functionalization / 4.4.4:
Applications / 4.5:
Cellular imaging / 4.5.1:
Drug delivery / 4.5.2:
Bioluminescence resonance energy transfer / 4.5.3:
Hyperthermia / 4.5.4:
Conclusion / 4.6:
Silica-Based Materials: Bioprocesses and Nanocomposites / 5:
Natural Silica Nanocomposites / 5.1:
Diatom biosilica / 5.1.1:
Sponge biosilica / 5.1.3:
(Bio)-technological applications of biosilica / 5.1.4:
Biomimetic Silica Nanocomposites / 5.2:
Silica nanocomposites based on natural templates / 5.2.1:
Silica nanocomposites based on model templates / 5.2.3:
Synthetic peptides / 5.2.3.1:
Synthetic polyamines / 5.2.3.2:
Biological templates / 5.2.3.3:
Biomimetism: How far can we go? / 5.2.4:
Bio-Inspired Silica Nanocomposites / 5.3:
Biotechnological and medical applications / 5.3.1:
Perspectives / 5.3.3:
Synthetic Strategies for Polymer-Based Nanocomposite Particles / 6:
Surfaces and Interfaces: Chemical Modification of Nanoparticles / 6.1:
In situ Synthetic Strategies for Polymer-Based Colloidal Nanocomposites / 6.3:
In situ preparation of the fillers / 6.3.1:
Sol-gel methods / 6.3.1.1:
In situ polymerization of the matrix / 6.3.2:
Organic solvent-based methods: Dispersion polymerization / 6.3.2.1:
Water-based methods: Emulsion and miniemulsion polymerization / 6.3.2.2:
Controlled polymerization: Surface initiated polymerization(SIP) / 6.3.3:
Atom Transfer Radical Polymerization Atrp / 6.3.3.1:
Reversible Addition Fragmentation chain transfer (Raft) polymerization / 6.3.3.2:
Combined controlled polymerization mechanisms / 6.3.3.3:
Functionalization of Polymer-Based Nanocomposites for Bio-Applications / 6.4:
Final Remarks / 6.5:
Synthesis of Nanocomposite Particles Using Supercritical Fluids: A Bridge with Bio-applications / 7:
Supercritical Fluids: Definition and Current use in, Bio-Applications / 7.1:
Definition / 7.2.1:
Scps in biomedical applications / 7.2.2:
Development of drug delivery systems / 7.2.2.1:
scC02 for purification and sterilization / 7.2.2.2:
Can Scfs be Used to Introduce Inorganic NPs into Polymers? / 7.3:
Formation of hybrid organic-inorganic NPs in Scps(route 1) / 7.3.1:
Encapsulation of inorganic NPs into a polymer shell (route 2) / 7.3.2:
Polymer swelling and in situ growth of inorganic NPs (route 3) / 7.3.3:
Polymer swelling by scC02 / 7.3.3.1:
Chemical transformation of impregnated metal precursor / 7.3.3.2:
Biocomposites Containing Magnetic Nanoparticles / 7.4:
Magnetic Properties / 8.1:
Magnetism at nanoscale level: Concepts and main phenomena / 8.2.1:
Basic concepts / 8.2.1.1:
Systems with interactions between magnetic centers / 8.2.1.2:
Superparamagnetism / 8.2.1.3:
Magnetism concepts subjacent to bio-applicatons / 8.2.2:
Magnetic separation and drug delivery / 8.2.2.1:
Magnetic resonance imaging (Mri) / 8.2.2.2:
Magnetic hyperthermia / 8.2.2.3:
Magnetic Nanoparticles for Bio-Applications / 8.3:
Iron oxide nanoparticles / 8.3.1:
Metallic nanoparticles / 8.3.2:
Metal alloy nanoparticles / 8.3.3:
Bimagnetic nanoparticles / 8.3.4:
Strategies of Synthesis of Magnetic Biocomposite Nanoparticles / 8.4:
In situ formation of magnetic nanoparticles / 8.4.1:
Other magnetic nanoparticles / 8.4.1.1:
Encapsulation of magnetic nanoparticles within biopolymers / 8.4.2:
Conclusions and Future Outlook / 8.5:
Multifunctional Nanoeomposite Particles for Biomedical Applications / 9:
Types of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.1:
Main Approaches to the Preparation of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.3:
Silica coated magnetic-fluorescent nanoparticles / 9.3.1:
Organic polymer coated magnetic cores treated with fluorescent entities / 9.3.2:
Ionic assemblies of magnetic cores and fluorescent entities / 9.3.3:
Fluoreseently-labeled lipid coated magnetic nanoparticles / 9.3.4:
Magnetic core directly linked to fluorescent entity via a molecular spacer / 9.3.5:
Magnetic cores coated by fluorescent semiconducting shells / 9.3.6:
Magnetically-doped Qds / 9.3.7:
Magnetic nanoparticles and Qds embedded within a polymer or silica matrix / 9.3.8:
Biomedical Applications / 9.4:
Bio-imaging probes / 9.4.1:
Cell tracking, sorting and bioseparation / 9.4.2:
Applications in nanomedicine / 9.4.3:
Bio-Applications of Functionalized Magnetic Nanoparticles and Their Nanocomposites / 9.5:
Fundaments of Nanomagnetism / 10.1:
Single-domain particles / 10.2.1:
Magnetic anisotropy energy / 10.2.2:
Fundaments of Colloidal Stability / 10.2.3:
Bio-Applications of Magnetic Nanoparticles / 10.4:
Magnetic separation / 10.4.1:
Nuclear magnetic resonance imaging (Mri) / 10.4.2:
Contrast agents based on superparamagnetic nanomagnets / 10.4.3.1:
Magnetobiosensors / 10.4.4:
Magnetobiosensors based on magnetorelaxometry / 10.4.4.1:
Magnetobiosensors based on magnetoresistance / 10.4.4.2:
Magnetosensors based on Hall effect / 10.4.4.3:
Magnetoplasmonics / 10.4.4.4:
Summary and Outlook / 10.4.5:
Anti-Microbial Polymer Nanocomposites / 11:
Packaging / 11.1:
Textiles / 11.1.2:
Coatings / 11.1.3:
Antimicrobial coatings / 11.1.3.1:
Medicine, pathology and surgical implants/ biomedical coatings / 11.1.3.2:
Anti-Microbial Polymer-Based Nanocomposites / 11.2:
Mechanisms of Antibacterial Action / 11.3:
Detection of microbes / 11.3.1:
Control of microbial growth / 11.3.2:
Environmental and Health Concerns / 11.4:
Biosensing Applications Using Nanoparticles / 12:
Biosensors: A Definition / 12.1:
Uses of Gold Nanoparticles / 12.2:
Tailoring biointerfaces over gold nanoparticles / 12.2.1:
Biosensing applications of gold nanoparticles / 12.2.2:
Crosslinking-based biosensing / 12.2.2.1:
Non-crosslmking-based biosensing / 12.2.2.2:
Semiconductor Quantum Dots / 12.3:
Properties of quantum dots / 12.3.1:
Biosensing with quantum dots / 12.3.2:
Immunosensing / 12.3.2.1:
Dna assays / 12.3.2.2:
Resonance energy transfer-based assays / 12.3.2.3:
Outlook Remarks / 12.4:
Index
List of Figures
List of Tables
Preface
11.

図書

図書
Detlev Möller
出版情報: Berlin : Walter de Gruyter, c2019  xxviii, 619 p. ; 25 cm
シリーズ名: Chemistry of the climate system ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
Prologue
List of principal symbols
Introduction / 1:
Chemistry and the climate system / 1.1:
Air and atmosphere: a multiphase and multicomponent system / 1.2:
Principles of chemistry in the climate system / 1.3:
Substances in climate system / 1.4:
Fundamentals of physics in the climate system / 2:
Meteorological basics / 2.1:
Scaling and structure of the atmosphere / 2.1.1:
Meteorological elements / 2.1.2:
Air pressure / 2.1.2.1:
Air temperature / 2.1.2.2:
Air humidity / 2.1.2.3:
Hydrometeors / 2.1.3:
Clouds / 2.1.3.1:
Fog, mist, and haze / 2.1.3.2:
Precipitation / 2.1.3.3:
Dew, frost, rime, and interception / 2.1.4:
Clirnatologtcai basics / 2.2:
Climate / 2.2.1:
Climate system / 2.2.2:
Chemical climate / 2.2.3:
Optics of the atmosphere: Radiation / 2.3:
Solar radiation / 2.3.1:
The Sun and its radiation output / 2.3.1.1:
Solar radiation transfer through the atmosphere / 2.3.1.2:
Absorption and emission of light / 2.3.2:
Absorption (Lambert-Beer law) / 2.3.2.1:
Emission (Planck's law and Stefan-Boltzmann law) / 2.3.2.2:
Terrestrial radiation and radiation budget / 2.3.3:
Atmospheric dynamics / 2.4:
Fluid characteristics / 2.4.1:
Effective atmospheric forces / 2.4.1.1:
Atmospheric flow: Laminar and turbulent / 2.4.1.2:
Fluid characteristics: Wind speed and direction / 2.4.1.3:
Properties of gases: The ideal gas / 2.5:
Gas laws / 2.5.1:
Mean free path and number of collisions between molecules / 2.5.2:
Viscosity / 2.5.3:
Diffusion / 2.5.4:
Atmospheric removal: Deposition processes / 2.6:
Dry deposition / 2.6.1:
Wet deposition / 2.6.2:
Characteristic times; Residence time, lifetime, and turnover time / 2.7:
Fundamentals of physicochemistry in the climate system / 3:
Chemical thermodynamics / 3.1:
First law of thermodynamics and its applications / 3.1.1:
Internal energy / 3.1.1.1:
Molar heat capacity / 3.1.1.2:
Thermochemistry: Heat of chemical reaction / 3.1.1.3:
Second law of thermodynamics and its applications / 3.1.2:
Entropy and reversibility / 3.1.2.1:
Thermodynamic potential: Gibbs-Helmholtz equation / 3.1.2.2:
Chemical potential / 3.1.2.3:
Chemical potential in real mixtures: Activity / 3.1.2.4:
Equilibrium / 3.2:
Chemical equilibrium: The mass action law / 3.2.1:
Phase equilibrium / 3.2.2:
Gas-liquid equilibrium: Evaporation and condensation / 3.2.2.1:
Gas-liquid equilibrium: Special case of droplets (Kelvin equation) / 3.2.2.2:
Absorption of gases in water: Henry's law / 3.2.2.3:
Solubility equilibrium: Solid-aqueous equilibrium / 3.2.2.4:
Adsorption and desorption / 3.2.2.5:
Steady state / 3.3:
Water: Physical and chemical properties / 3.4:
Water structure: Hydrogen bond / 3.4.1:
Water as solvent / 3.4.2:
Water vapor / 3.4.3:
Water properties in relation to the climate system / 3.4.4:
Properties of solutions and droplets / 3.5:
Surface tension and surface-active substances / 3.5.1:
Vapor pressure lowering: Raoult's law / 3.5.2:
Freezing point depression / 3.5.3:
Diffusion in solution / 3.5.4:
Heterogeneous processes: Multiphase chemistry in the climate system / 3.6:
Aerosols, clouds, and precipitation: The climate multiphase system / 3.6.1:
Gas-to-particle formation: Homogeneous formation of CCNs / 3.6.2:
Classical nucleation theory / 3.6.2.1:
Formation of secondary organic aerosols / 3.6.2.2:
Atmospheric aerosols and the properties of aerosol particles / 3.6.3:
Formation of cloud droplets: Heterogeneous nucleation / 3.6.4:
Scavenging: Acommodation, adsorption, and reaction (mass transfer) / 3.6.5:
Mass transfer: General remarks / 3.6.5.1:
Adsorption / 3.6.5.2:
Surface chemistry: Kinetics of heterogeneous chemical reactions / 3.6.5.3:
Mass transfer into droplets with chemical reaction / 3.6.5.4:
Fundamentals of chemistry in the climate system / 4:
State of matter / 4.1:
Atoms, elements, molecules, compounds, and substances / 4.1.1:
Pure substances and mixtures / 4.1.2:
Radicals, groups, and nomenclature / 4.1.3:
Units for chemical abundance: Concentrations and mixing ratios / 4.1.4:
Theory of chemical reactions / 4.2:
Chemical bonding / 4.2.1:
Types of chemical reactions / 4.2.2:
Chemical kinetics: Reaction rate constant / 4.2.3:
Catalysis / 4.3:
Electrochemistry / 4.4:
Electrolytic dissociation / 4.4.1:
Acids, bases, and the ionic product of water / 4.4.1.1:
pH value / 4.4.1.2:
Hydrolysis of salts and oxides / 4.4.1.3:
Buffer solutions / 4.4.1.4:
Complex ions / 4.4.1.5:
The CO2-carbonate system / 4.4.1.6:
Oxidation-reduction reaction (redox process) / 4.4.2:
Hydrated electron: A fundamental species / 4.4.3:
Photochemistry / 4.5:
Photoexcitation: Electronic states / 4.5.1:
Photodissociation: Photolysis rate coefficient / 4.5.2:
Photocatalysis: Photosensitization and autoxidation / 4.5.3:
Environmental relevance of acidity / 4.6:
Atmospheric acidity / 4.6.1:
pH averaging / 4.6.2:
Isotopes in atmospheric chemistry and geochemistry / 4.7:
Substaces and chemical reactions in the climate system / 5:
Hydrogen / 5.1:
Natural occurrence / 5.1.1:
Compounds of hydrogen / 5.1.2:
Chemistry / 5.1.3:
Oxygen / 5.2:
Oxygen, dioxygen, and ozone: O, O2, and O3 / 5.2.1:
Reactive oxygen species I: OH, HO2, and H2O2 (HxOy species) / 5.2.3:
Atmosphere, free of trace species / 5.2.3.1:
Atmosphere with trace species / 5.2.3.2:
Reactive oxygen species II: RO, RO2, and ROOH / 5.2.4:
Aqueous-phase oxygen chemistry / 5.2.5:
Water chemistry / 5.2.5.1:
Dioxygen and superoxide ion chemistry / 5.2.5.2:
Hydrogen peroxide chemistry / 5.2.5.3:
Ozone and hydroxyl radical chemistry / 5.2.5.4:
Hydrogen polyoxides / 5.2.5.5:
Multiphase oxygen chemistry / 5.2.6:
Hydrogen peroxide / 5.2.6.1:
Ozone / 5.2.6.2:
Stratospheric oxygen chemistry / 5.2.7:
Nitrogen / 5.3:
Natural occurrence and sources / 5.3.1:
Thermal dissociation of dinitrogen (N2) / 5.3.2:
Ammonia (NH3) / 5.3.3:
Dinitrogen oxide (N2O) / 5.3.4:
Inorganic nitrogen oxides and oxoacids (NOy) / 5.3.5:
Gas-phase chemistry / 5.3.3.1:
Aqueous and interfacial chemistry / 5.3.5.2:
Organic nitrogen compounds / 5.3.6:
Amines, amides, and nitriles / 5.3.6.1:
Organic NOx compounds / 5.3.6.2:
Sulfur / 5.4:
Reduced sulfur: H2S, COS, CS2, and DMS / 5.4.1:
Oxides and oxoacids: SO2, H2SO3, SO3, and H2SO4 / 5.4.3:
Gas-phase SO2 oxidation / 5.4.3.1:
Aqueous-phase sulfur chemistry / 5.4.3.2:
Multiphase sulfur chemistry / 5.4.4:
Phosphorus / 5.5:
Carbon / 5.6:
Organic carbon and chemistry / 5.6.1:
Elemental carbon and soot / 5.6.2:
Inorganic C1 chemistry: CO, CO2, and H2CO3 / 5.6.3:
Aqueous chemistry / 5.6.3.1:
Hydrocarbon oxidation and organic radicals / 5.6.4:
Organic C1 chemistry: CH4, CH3OH, HCHO, HCOOH / 5.6.5:
C2 chemistry: C2H6, CH3CHO, C2H5OH, CH3COOH, and (COOH)2
Alkenes, atkynes, and ketones / 5.6.6.1:
Aromatic compounds / 5.6.8:
Is the atmospheric fate of complex organic compounds predictable? / 5.6.9:
Halogens (Cl, Br, F, and I) / 5.7:
Chlorine in the environment / 5.7.1:
Formation of sea salt and chlorine degassing / 5.7.2:
Metals and metalloids / 5.7.3:
General remarks / 5.8.1:
Alkali and alkaline earth metals: Na, K, Mg, and Ca / 5.8.2:
Iron: Fe / 5.8.3:
Mercury: Hg / 5.8.4:
Cadmium: Cd / 5.8.5:
Lead: Pb / 5.8.6:
Arsenic: As / 5.8.7:
Silicon (Si) and aluminum (Al) / 5.8.8:
Biogeochemistry and global cycling / 6:
The hydrosphere and the global water cycle / 6.1:
The hydrological cycle and the climate system / 6.1.1:
Soil water and groundwater; Chemical weathering / 6.1.2:
Surface water: Rivers and lakes / 6.1.3:
The oceans / 6.1.4:
Atmospheric waters (hydrometeors): Chemical composition / 6.1.5:
Fog / 6.1.5.1:
Rain (precipitation) / 6.1.5.3:
Biogeochemical cycling / 6.2:
Photosynthesis: Nonequilibrium redox processes / 6.2.1:
Primary production of carbon / 6.2.2:
Nitrogen cycling / 6.2.3:
Sulfur cycling / 6.2.4:
Natural sources of atmospheric substances / 6.3:
Source characteristics / 6.3.1:
Biological processes / 6.3.2:
Continental / 6.3.2.1:
Oceanic / 6.3.2.2:
Geogenic processes / 6.3.3:
Soil dust / 6.3.3.1:
Sea salt / 6.3.3.2:
Volcanism / 6.3.3.3:
Chemical processes / 6.3.4:
Lightning / 6.3.4.1:
Secondary atmospheric processes / 6.3.4.2:
List of acronyms and abbreviations used in this volume / A:
Quantities, units, and some useful numerical values / B:
References
Name Index
Subject Index
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
12.

図書

図書
Ivan Kozhevnikov
出版情報: Chichester : J. Wiley & Sons, c2002  xiv, 201 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 2
Introduction / 1:
Scope and definitions / 1.1:
Nomenclature / 1.2:
Historical background / 1.3:
Introduction to catalysis by polyoxometalates / 1.4:
References
Properties of Polyoxometalates / 2:
Structures of polyoxometalates / 2.1:
General principles / 2.1.1:
The Keggin structure / 2.1.2:
The Wells-Dawson structure / 2.1.3:
The Anderson-Evans structure / 2.1.4:
The Dexter-Silverton structure / 2.1.5:
Crystal structure of heteropoly compounds / 2.2:
Thermal stability / 2.3:
Solubility / 2.4:
Formation and state in solution / 2.5:
Stability of polyoxometalates in solution / 2.5.1:
Polyoxometalates as ligands / 2.5.2:
Isotope exchange / 2.5.3:
Kinetics and mechanism of substitution in polyoxmetalates / 2.5.4:
Acid properties / 2.6:
Proton structure / 2.6.1:
Heteropoly acids in solutions / 2.6.2:
Acidity of solid heteropoly acids / 2.6.3:
Redox properties / 2.7:
Synthesis of Polyoxometalates / 3:
General methods of synthesis / 3.1:
Keggin polyoxometalates / 3.2:
12-Molybdosilicic acid, [alpha]-H[subscript 4 SiMo[subscript 12]O[subscript 40] / 3.2.1:
12-Tungstosilicic acid, [alpha]-H[subscript 4 SiW[subscript 12]O[subscript 40] / 3.2.2:
12-Tungstophosphoric acid, [alpha]-H[subscript 3 PW[subscript 12]O[subscript 40] / 3.2.3:
12-Molybdophosphoric acid, [alpha]-H[subscript 3 PMo[subscript 12]O[subscript 40] / 3.2.4:
12-Tungstogermanic acid, [alpha]-[H[subscript 4 GeW[subscript 12]O[subscript 40] / 3.2.5:
11-Molybdo-1-vanadophosphoric acid, H[subscript 4 PMo[subscript 11] VO[subscript 40] / 3.2.6:
10-Molybdo-2-vanadophosphoric acid, H[subscript 5 PMo[subscript 10]V[subscript 2]O[subscript 40] / 3.2.7:
9-Molybdo-3-vanadophosphoric acid, H[subscript 6 PMo[subscript 9] V[subscript 3]O[subscript 40] / 3.2.8:
Transition-metal-substituted tungstophosphates, {PW[subscript 11]MO[subscript 39]} / 3.2.9:
Wells-Dawson polyoxometalates / 3.3:
18-Tungstodiphosphoric acid, H[subscript 6 P[subscript 2]W[subscript 18]O[subscript 62] / 3.3.1:
Sandwich-type polyoxometalates / 3.4:
Na[subscript 12 WZn[subscript 3](H[subscript 2]O)[subscript 2](ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.1:
Na[subscript 12 WCo[subscript 3 superscript II](H[subscript 2]O)[subscript 2] (Co[superscript II]W[subscript 9]O[subscript 34])[subscript 2] / 3.4.2:
K[subscript 11 WZnRu[subscript 2 superscript III](OH)(H[subscript 2]O) (ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.3:
K[subscript 10 WZnRh[superscript III subscript 2](H[subscript 2]O)(ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.4:
Peroxo polyoxometalates / 3.5:
Venturello complex, {PO[subscript 4 WO(O[subscript 2])[subscript 2 subscript 4]}[superscript 3-] / 3.5.1:
Polyoxometalate catalysts / 3.6:
Solid acid catalysts / 3.6.1:
Homogeneous catalysts / 3.6.2:
Acid Catalysis by Heteropoly Compounds / 4:
General overview / 4.1:
The scope of applications / 4.1.1:
Mechanistic principles / 4.1.2:
Homogeneous acid catalysis / 4.2:
Acid-catalysed reactions / 4.2.1:
Acid-catalysed reactions in biphasic liquid-liquid systems / 4.3:
Biphasic reactions / 4.3.1:
Heterogeneous acid catalysts / 4.4:
Heteropoly acid catalysts / 4.4.1:
Heterogeneous catalysis in liquid-solid systems / 4.4.2:
Heterogeneous catalysis in gas-solid systems / 4.4.3:
Deactivation and regeneration of solid heteropoly acid catalysts / 4.5:
Polyoxometalates as Catalysts for Selective Oxidation / 5:
Liquid-phase oxidation / 5.1:
Oxidation with dioxygen / 5.1.1:
Oxidation with hydrogen peroxide / 5.1.2:
Oxidation with organic peroxides / 5.1.3:
Miscellaneous oxidations / 5.1.4:
Gas-phase oxidation / 5.2:
Oxidation catalysts / 5.2.1:
Reactions / 5.2.3:
Miscellaneous Catalytic Applications of Polyoxometalates / 6:
Hydrogenation, carbonylation and related reactions / 6.1:
Polyanion-stabilised clusters / 6.2:
Polyoxometalates as catalyst precursors / 6.3:
Catalysis by Polyoxometalates in Industry / 7:
Acid catalysis / 7.1:
Hydration of olefins / 7.1.1:
Synthesis of ethyl acetate from ethylene and acetic acid / 7.1.2:
Selective oxidation / 7.2:
Oxidation of methacrolein in methacrylic acid / 7.2.1:
Oxidation of ethylene to acetic acid / 7.2.2:
Other Applications of Polyoxometalates / 8:
Analytical chemistry / 8.1:
Elemental analysis / 8.1.1:
Analysis of biomaterials / 8.1.2:
Separation / 8.2:
Processing of radioactive waste / 8.2.1:
Sorption of gases / 8.2.2:
Corrosion-resistant coatings / 8.3:
Polyoxometalates as additives to inorganic and organic matrices / 8.4:
Additives in sol-gel matrices / 8.4.1:
Additives in polymer matrices / 8.4.2:
Membranes / 8.5:
Fuel cells / 8.5.1:
Selective electrodes / 8.5.2:
Gas sensors / 8.5.3:
Polyoxometalates in medicine: antiviral and antitumoral activity / 8.6:
Index
Series Preface
Preface to Volume 2
Introduction / 1:
13.

図書

図書
Jeremy W. Dale and Simon F. Park
出版情報: Chichester, West Sussex : Wiley-Blackwell, 2010  xii, 388 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
DNA / 1.1.1:
RNA / 1.1.2:
Hydrophobic interactions / 1.1.3:
Different forms of the double helix / 1.1.4:
Supercoiling / 1.1.5:
Denaturation and hybridization / 1.1.6:
Orientation of nucleic acid strands / 1.1.7:
Replication of DNA / 1.2:
Unwinding and rewinding / 1.2.1:
Fidelity of replication; proofreading / 1.2.2:
Chromosome replication and cell division / 1.3:
DNA repair / 1.4:
Mismatch repair / 1.4.1:
Excision repair / 1.4.2:
Recombination (post-replication) repair / 1.4.3:
SOS repair / 1.4.4:
Gene expression / 1.5:
Transcription / 1.5.1:
Translation / 1.5.2:
Post-translational events / 1.5.3:
Gene organization / 1.6:
Mutation and Variation / 2:
Variation and evolution / 2.1:
Fluctuation test / 2.1.1:
Replica plating / 2.1.2:
Directed mutation in bacteria? / 2.1.3:
Types of mutation / 2.2:
Point mutations / 2.2.1:
Conditional mutants / 2.2.2:
Variation due to larger-scale DNA alterations / 2.2.3:
Extrachromosomal agents and horizontal gene transfer / 2.2.4:
Recombination / 2.3:
A model of the general (homologous) recombination process / 2.3.1:
Enzymes involved in recombination / 2.3.2:
Phenotypes / 2.4:
Restoration of phenotype / 2.4.1:
Mechanisms of mutation / 2.5:
Spontaneous mutation / 2.5.1:
Chemical mutagens / 2.5.2:
Ultraviolet irradiation / 2.5.3:
Isolation and identification of mutants / 2.6:
Mutation and selection / 2.6.1:
Isolation of other mutants / 2.6.2:
Molecular methods / 2.6.4:
Regulation of Gene Expression / 3:
Gene copy number / 3.1:
Transcriptional control / 3.2:
Promoters / 3.2.1:
Terminators, attenuators and anti-terminators / 3.2.2:
Induction and repression: regulatory proteins / 3.2.3:
Two-component regulatory systems / 3.2.4:
Global regulatory systems / 3.2.5:
Quorum sensing / 3.2.6:
Translational control / 3.3:
Ribosome binding / 3.3.1:
Codon usage / 3.3.2:
Stringent response / 3.3.3:
Regulatory RNA / 3.3.4:
Phase variation / 3.4:
Genetics of Bacteriophages / 4:
Bacteriophage structure / 4.1:
Single-strand DNA bacteriophages / 4.2:
ΦX174 / 4.2.1:
M13 / 4.2.2:
RNA-containing phages: MS2 / 4.3:
Double-stranded DNA phages / 4.4:
Bacteriophage T4 / 4.4.1:
Bacteriophage λ / 4.4.2:
Lytic and lysogenic regulation of bacteriophage λ / 4.4.3:
Restriction and modification / 4.5:
Bacterial resistance to phage attack / 4.6:
Complementation and recombination / 4.7:
Why are bacteriophages important? / 4.8:
Phage typing / 4.8.1:
Phage therapy / 4.8.2:
Phage display / 4.8.3:
Phages in the natural environment / 4.8.4:
Bacterial virulence and phage conversion / 4.8.5:
Plasmids / 5:
Some bacterial characteristics are determined by plasmids / 5.1:
Antibiotic resistance / 5.1.1:
Colicins and bacteriocins / 5.1.2:
Virulence determinants / 5.1.3:
Plasmids in plant-associated bacteria / 5.1.4:
Metabolic activities / 5.1.5:
Molecular properties of plasmids / 5.2:
Plasmid replication and control / 5.2.1:
Partitioning / 5.2.2:
Host range / 5.2.3:
Plasmid incompatibility / 5.2.4:
Plasmid stability / 5.3:
Plasmid integrity / 5.3.1:
Differential growth rate / 5.3.2:
Associating a plasmid with a phenotype / 5.4:
Gene Transfer / 6:
Transformation / 6.1:
Conjugation / 6.2:
Mechanism of conjugation / 6.2.1:
The F plasmid / 6.2.2:
Conjugation in other bacteria / 6.2.3:
Transduction / 6.3:
Specialized transduction / 6.3.1:
Consequences of recombination / 6.4:
Site-specific and non-homologous (illegitimate) recombination / 6.4.2:
Mosaic genes and chromosome plasticity / 6.5:
Genomic Plasticity: Movable Genes and Phase Variation / 7:
Insertion sequences / 7.1:
Structure of insertion sequences / 7.1.1:
Occurrence of insertion sequences / 7.1.2:
Transposons / 7.2:
Structure of transposons / 7.2.1:
Integrons / 7.2.2:
ISCR elements / 7.2.3:
Mechanisms of transposition / 7.3:
Replicative transposition / 7.3.1:
Non-replicative (conservative) transposition / 7.3.2:
Regulation of transposition / 7.3.3:
Activation of genes by transposable elements / 7.3.4:
Mu: A transposable bacteriophage / 7.3.5:
Conjugative transposons / 7.3.6:
Variation mediated by simple DNA inversion / 7.4:
Variation mediated by nested DNA inversion / 7.4.2:
Antigenic variation in the gonococcus / 7.4.3:
Phase variation by slipped-strand mispairing / 7.4.4:
Phase variation mediated by differential DNA methylation / 7.4.5:
Clustered regularly interspersed short palindromic repeats / 7.5:
Genetic Modification: Exploiting the Potential of Bacteria / 8:
Strain development / 8.1:
Generation of variation / 8.1.1:
Selection of desired variants / 8.1.2:
Overproduction of primary metabolites / 8.2:
Simple pathways / 8.2.1:
Branched pathways / 8.2.2:
Overproduction of secondary metabolites / 8.3:
Gene cloning / 8.4:
Cutting and joining DNA / 8.4.1:
Plasmid vectors / 8.4.2:
Bacteriophage λ vectors / 8.4.3:
Cloning larger fragments / 8.4.4:
Bacteriophage M13 vectors / 8.4.5:
Gene libraries / 8.5:
Construction of genomic libraries / 8.5.1:
Screening a gene library / 8.5.2:
Cloning PCR products / 8.5.3:
Construction of a cDNA library / 8.5.4:
Products from cloned genes / 8.6:
Expression vectors / 8.6.1:
Making new genes / 8.6.2:
Other bacterial hosts / 8.6.3:
Novel vaccines / 8.6.4:
Other uses of gene technology / 8.7:
Genetic Methods for Investigating Bacteria / 9:
Metabolic pathways / 9.1:
Complementation / 9.1.1:
Cross-feeding / 9.1.2:
Microbial physiology / 9.2:
Reporter genes / 9.2.1:
Chromatin immunoprecipitation / 9.2.2:
Cell division / 9.2.3:
Motility and chemotaxis / 9.2.4:
Cell differentiation / 9.2.5:
Bacterial virulence / 9.3:
Wide-range mechanisms of bacterial pathogenesis / 9.3.1:
Detection of virulence genes / 9.3.2:
Specific mutagenesis / 9.4:
Gene replacement / 9.4.1:
Antisense RNA / 9.4.2:
Taxonomy, evolution and epidemiology / 9.5:
Molecular taxonomy / 9.5.1:
GC content / 9.5.2:
16 S rRNA / 9.5.3:
Denaturing-gradient gel electrophoresis and temperature-gradient gel electrophoresis / 9.5.4:
Diagnostic use of PCR / 9.5.5:
Molecular epidemiology / 9.5.6:
Gene Mapping to Genomics and Beyond / 10:
Gene mapping / 10.1:
Conjugational analysis / 10.1.1:
Restriction mapping and pulsed-field gel electrophoresis / 10.1.2:
DNA sequence determination / 10.2:
Sanger sequencing / 10.2.1:
Dye terminator sequencing / 10.2.2:
Pyrosequencing / 10.2.3:
Massively parallel sequencing / 10.2.4:
Genome sequencing / 10.3:
Genome-sequencing strategies / 10.3.1:
Relating sequence to function / 10.3.2:
Metagenomics / 10.3.3:
Comparative genomics / 10.4:
Microarrays / 10.4.1:
Analysis of gene expression / 10.5:
Transcriptional analysis / 10.5.1:
Translational analysis / 10.5.2:
Metabolomics / 10.6:
Systems biology and synthetic genomics / 10.7:
Systems biology / 10.7.1:
Synthetic genomics / 10.7.2:
Conclusion / 10.8:
Further Reading / Appendix A:
Abbreviations Used / Appendix B:
Glossary / Appendix C:
Enzymes and other Proteins / Appendix D:
Genes / Appendix E:
Standard Genetic Code / Appendix F:
Bacterial Species / Appendix G:
Index
?X174
Bacteriophage ?
Lytic and lysogenic regulation of bacteriophage ?
Bacteriophage ? vectors
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
14.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
15.

図書

図書
Bernard Picinbono
出版情報: Norwood, Ma. : Artech House, c1988  xiii, 243 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Signals and Systems / Chapter 1:
The concept of signals / 1.1:
The concept of a linear system / 1.2:
The concept of linear filters / 1.3:
The concept of signal representation and transform / 1.4:
Problems
Representations of Continuous-time Signals / Chapter 2:
Energy and power; scalar product of signals / 2.1:
Fourier series / 2.2:
Time-limited signals / 2.2.1:
Periodic signals / 2.2.2:
Principal properties of Fourier series of periodic signals / 2.2.3:
Fourier transforms of signals of finite energy / 2.3:
Definitions and notation / 2.3.1:
Examples of Fourier transforms / 2.3.2:
Principal properties of Fourier transforms / 2.3.3:
Examples / 2.3.4:
Fourier representation of signals with infinite energy / 2.4:
The unit impulse function / 2.4.1:
Fourier transforms of periodic signals / 2.4.2:
The Dirac comb signal / 2.4.3:
Fourier transform of the unit step signal / 2.4.4:
Real narrowband signals: instantaneous amplitude and phase, duration and bandwidth / 2.5:
Analytic signal of a real signal / 2.5.1:
Instantaneous amplitude and phase of a signal / 2.5.2:
Application to the case of narrowband signals / 2.5.3:
Laplace representation / 2.6:
Definition and notation / 2.6.1:
Region of convergence / 2.6.2:
Inversion of the Laplace transform / 2.6.3:
Inverse Laplace transform of rational functions / 2.6.4:
Principal properties of the Laplace transform / 2.6.5:
From Continuous Time to Discrete Time by Sampling / Chapter 3:
The principle of sampling: the sampling theorem / 3.1:
The sampling formula and consequences / 3.2:
Sampling and signal representation / 3.2.1:
Sampling and interpolation / 3.2.2:
Sampling and linear spaces / 3.2.3:
Minimum sampling rate / 3.2.4:
Exact position of the sampling time instants / 3.2.5:
Exact position of the frequency band / 3.2.6:
Some practical comments / 3.2.7:
Sampling and filtering / 3.3:
The sampling transformation T / 3.3.1:
Physical structure of the transformation T / 3.3.2:
Interpretation of the sampling theorem / 3.3.3:
Aliasing; undersampling and oversampling / 3.3.4:
Duality between sampling and periodicity / 3.3.5:
Sampling and Fourier representation / 3.4:
Geometrical interpretation of sampling / 3.5:
Discrete Fourier transform of a continuous signal / 3.6:
Principle of the discrete Fourier transform / 3.6.1:
Calculation of the discrete Fourier transform / 3.6.2:
Relation between the Fourier transform and the discrete Fourier transform / 3.6.3:
Representations of Discrete-time Signals / Chapter 4:
Time-limited and periodic signals: the discrete Fourier transform / 4.1:
Fourier transform of discrete-time signals / 4.2:
The z transform / 4.3:
Inversion of the z transform / 4.3.1:
Principal properties of the z transform / 4.3.4:
The z transform of sampled signals / 4.3.5:
Some algebraic properties of discrete-time signals: the fast Fourier transform / 4.4:
The discrete Fourier transform as an eigenvalue problem: circulant matrices / 4.4.1:
The discrete Fourier transform as a linear problem: the fast Fourier algorithm / 4.4.2:
Linear Filtering / Chapter 5:
Definitions and examples / 5.1:
Some basic properties of filters / 5.2:
Causality of linear filters / 5.3:
Causality and impulse response / 5.3.1:
Causality and the transfer function / 5.3.2:
Causality and frequency response / 5.3.3:
Multidimensional filters / 5.4:
Dynamical Filters / Chapter 6:
Definitions and basic properties / 6.1:
Representations of dynamical filters / 6.2:
The continuous-time case / 6.2.1:
The discrete-time case / 6.2.2:
Stability problems / 6.3:
Impulse and unit step responses / 6.3.1:
Internal Representation of Dynamical Filters / 6.4.1:
Introduction / 7.1:
Principles of the internal representation of linear systems / 7.2:
Canonical internal representation of dynamical filters / 7.3:
First continuous-time canonical representation / 7.3.1:
Second continuous-time canonical representation / 7.3.2:
First discrete-time canonical representation / 7.3.3:
Diagonal and quasi-diagonal representations / 7.3.4:
Solution of the state equation in the discrete-time case / 7.4:
Solution of the state equation in the continuous-time case / 7.5:
Free system: transition matrix / 7.5.1:
Driven system / 7.5.2:
Input-output relationship / 7.6:
Modes of a dynamical filter / 7.7:
On the Routh criterion / Appendix A:
Reflection coefficients and stability / Appendix B:
Bibliography
Glossary
Index
Preface
Introduction to Signals and Systems / Chapter 1:
The concept of signals / 1.1:
16.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2006  xviii, 395 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
Introduction and Outlook / 1.1:
A New Era in Cell Biology / 1.1.1:
Manotechnology and its Perspectives for Fluorescence Imaging in Cell Biology / 1.1.2:
Fundamentals of Fluorescence / 1.2:
Basic Principles / 1.2.1:
A Few Types of Fluorescent Probes / 1.2.2:
Small Luminescent Units and Autofluorescence of Living Organisms / 1.2.2.1:
A few Organic Dyes and their Limitation in Live Cell Labeling / 1.2.2.2:
Green Fluorescent Protein and its Cousin Mutants / 1.2.2.3:
Quantum Dots / 1.2.2.4:
Toxicity Issues of Nanomaterials / 1.2.2.5:
Sources and Detectors / 1.2.3:
Light Sources / 1.2.3.1:
Detectors / 1.2.3.2:
Microscope Configurations / 1.3:
Wide-field Methods: Epi-, and Total Internal Reflection (TIR) / 1.3.1:
Epifluorescence Illumination / 1.3.1.1:
Total Internal Reflection (TIR) Illumination / 1.3.1.2:
Scanning Methods for Microscopy / 1.3.2:
Laser-scanning or Stage-scanning Confocal Microscopy / 1.3.2.1:
Near-field Scanning Optical Microscopy (NSOM) / 1.3.2.2:
Strategies for Image Acquisition / 1.4:
Intensity Imaging / 1.4.1:
Spectral Imaging / 1.4.2:
Lifetime and Time-gated Imaging / 1.4.3:
Other Imaging Modalities: Polarization and FRET Imaging / 1.4.4:
Qdots in Biology: A Few Selected Examples / 1.5:
Ultra-high Colocalization of Qdots for Genetic Mapping / 1.5.1:
Dynamics of Biomolecules in a Cellular Environment / 1.5.2:
Trafficking of Glycine Receptors in Neural Membranes of Live Cells / 1.5.2.1:
Dynamics of Labeled Nuclear Localization Sequences Inside Living Cells / 1.5.2.2:
In Vivo and Non-invasive Detection Using Qdot Reporters / 1.5.3:
Outlook: Is there a Role for Nanoscience in Cellular Biology and in Medicine? / 1.6:
Acknowledgments
References
Characterization of Nanoscale Systems in Biology using Scanning Probe Microscopy Techniques / Anthony W. Coleman ; Adina N. Lazar ; Cecile F. Rousseau ; Sebastien Cecillon ; Patrick Shahgaldian2:
Introduction / 2.1:
The Scanning Probe Microscopy Experiment / 2.2:
Scanning Tunneling Microscopy Imaging / 2.3:
Atomic Force Microscopy / 2.4:
Generalities / 2.4.1:
Tips and Cantilevers / 2.4.2:
Contact Mode AFM / 2.4.3:
Dynamic Modes / 2.4.4:
Non-contact Mode / 2.4.4.1:
Intermittent Contact Mode / 2.4.4.3:
Force Modulation Mode / 2.4.4.4:
Friction Force Mode or Lateral Force Mode / 2.4.5:
Force-Distance Analysis / 2.4.6:
Chemical Force Imaging / 2.4.7:
Dip-pen Lithography / 2.4.8:
Cantilever Array Sensors / 2.4.9:
Near-field Scanning Optical Microscopy / 2.5:
Artifacts / 2.6:
Artifacts Related to Tip Size and Geometry / 2.6.1:
Artifacts from Damaged Tips / 2.6.2:
Artifacts from Tip-Sample Interactions / 2.6.3:
Sample Artifacts / 2.6.4:
Using the Tools / 2.7:
DNA / 2.7.1:
Topographic Imaging of DNA / 2.7.1.1:
Imaging DNA Translocation / 2.7.1.2:
DNA Interactions and Stretching / 2.7.1.3:
Proteins / 2.7.2:
Topographic Imaging of Proteins / 2.7.2.1:
Dip-pen Nanolithography Patterning of Proteins / 2.7.2.2:
Protein-Protein and Protein-Ligand Interactions / 2.7.2.3:
Polysaccharides / 2.7.3:
Proteoglycan Topographic Imaging / 2.7.3.1:
Lipid Systems / 2.7.4:
Liposomes / 2.7.4.1:
Solid Lipid Nanoparticles (SLNs) / 2.7.4.2:
Supported Lipid Bilayers and Monolayers / 2.7.4.3:
SNOM Imaging / 2.7.5:
Viruses / 2.7.6:
Cells / 2.7.7:
Topographic Imaging / 2.7.7.1:
Interactions and Mechanical Properties / 2.7.7.2:
NSOM Imaging / 2.7.7.3:
Cantilever Arrays as Biosensors / 2.7.8:
Conclusion / 2.8:
Books on Scanning Probe Microsopies Reviews on Scanning Probe Microsopies in Biology / Appendix 1:
Reviews on Scanning Probe Microsopies in Biology / Appendix 2:
Quartz Crystal Microbalance Characterization of Nanostructure Assemblies in Biosensing / Aren E. Gerdon ; David W. Wright ; David E. Cliffel3:
Principles of QCM / 3.1:
QCM Wave Penetration Depth / 3.1.2:
QCM Sensor Specificity / 3.1.3:
Calculation of Equilibrium and Kinetic Constants / 3.1.4:
QCM Application to Life Sciences / 3.1.5:
Interface Between Biology and Nanomaterials / 3.2:
Antibodies / 3.2.1:
Nanoparticles / 3.2.2:
QCM Nanoparticle-based Chemical Sensors / 3.3:
QCM Nanoparticle-based Biosensors / 3.4:
QCM Nanoparticle-based Immunosensors / 3.5:
Traditional Immunoassays / 3.5.1:
Immunoassays using Nanotechnology / 3.5.2:
Antigen Mimic Design / 3.5.3:
Glutathione-protected Nanocluster / 3.5.3.2:
Hemagglutanin Mimic Nanocluster / 3.5.3.3:
Protective Antigen of B. anthracis Mimic Nanocluster / 3.5.3.4:
Conclusions and Future Directions / 3.6:
Symbols
NMR Characterization Techniques - Application to Nanoscaled Pharmaceutical Carriers / Christian Mayer4:
Structural Analysis of Nanoparticles / 4.1:
Phase Transitions of the Particle Matrix / 4.3:
Adsorption to the Particle Surface / 4.4:
Molecular Exchange through Nanocapsule Membranes / 4.5:
Particle Degradation and Release / 4.6:
Summary and Outlook / 4.7:
Characterization of Nano Features in Biopolymers using Small-angle X-ray Scattering, Electron Microscopy and Modeling / Angelika Krebs ; Bettina Bottcher5:
Small-angle X-ray Scattering / 5.1:
Scattering Technique / 5.2.1:
Scattering Phenomenon / 5.2.1.1:
Scattering Curve and Pair Distance Distribution Function / 5.2.1.2:
Determination of Scattering Parameters / 5.2.1.3:
Experimental Setup / 5.2.1.4:
Interpretation of Data / 5.2.2:
Direct Methods / 5.2.2.1:
Indirect Methods / 5.2.2.2:
Electron Microscopy / 5.3:
Image Formation / 5.3.1:
Interference of Electrons with Matter / 5.3.1.1:
Contrast Transfer Function / 5.3.1.2:
Sample Preparation / 5.3.2:
Vitrification of Biological Specimens / 5.3.2.1:
Two-dimensional Merging of Electron Microscopic Data / 5.3.3:
Cross Correlation Function / 5.3.3.1:
Identification of the Different Views / 5.3.3.2:
Merging of EM-data in Three Dimensions / 5.3.4:
Sinogram Correlation / 5.3.4.1:
Reconstruction of the Three-dimensional Model / 5.3.4.2:
Merging of Methods / 5.4:
Comparison of EM and SAXS Data / 5.4.1:
SAXS Modeling Approaches using EM Information / 5.4.2:
In Situ Characterization of Drug Nanoparticles by FTIR Spectroscopy / Michael Turk ; Ruth Signorell6:
Particle Generation Methods / 6.1:
Rapid Expansion of Supercritical Solutions (RESS) / 6.2.1:
Electro-Spraying / 6.2.2:
Particle Characterization Methods / 6.3:
In Situ Characterization with FTIR Spectroscopy / 6.3.1:
Characterization of the RESS Process / 6.3.1.1:
In Situ Characterization with 3-WEM / 6.3.2:
Characterization with SMPS and SEM / 6.3.3:
Determination of Refractive Index Data in the Mid-infrared Region / 6.4:
Examples / 6.5:
Phenanthrene Particles: Size, Shape, Optical Data / 6.5.1:
Sugar Nanoparticles / 6.5.2:
Drug Nanoparticles / 6.5.3:
Summary and Conclusion / 6.6:
Acknowledgment
Characterization of Nanoscaled Drug Delivery Systems by Electron Spin Resonance (ESR) / Karsten Mader7:
ESR Basics and Requirements / 7.1:
Information from ESR Spectroscopy and Imaging / 7.3:
Nitroxide Concentration / 7.3.1:
Micropolarity and Microviscosity / 7.3.2:
Monitoring of Microacidity / 7.3.3:
ESR Imaging / 7.3.4:
In Vivo ESR / 7.4:
X-ray Absorption and Emission Spectroscopy in Nanoscience and Lifesciences / Jinghua Guo7.5:
Soft X-ray Spectroscopy / 8.1:
Soft X-ray Absorption Edges / 8.2.1:
Soft X-ray Emission Spectroscopy / 8.2.2:
Soft X-ray Absorption Spectroscopy / 8.2.3:
Resonant Soft X-ray Emission Spectroscopy / 8.2.4:
Experimental Details / 8.2.5:
Chemical Sensitivity of Soft X-ray Spectroscopy / 8.3:
Electronic Structure and Geometrical Structure / 8.3.1:
Hydrogen Bonding Effect / 8.3.2:
Charge and Spin States of Transition Metals / 8.3.3:
Electronic Structure and Nanostructure / 8.4:
Wide Bandgap Nanostructured Semiconductors / 8.4.1:
Cu Nanoclusters / 8.4.2:
ZnO Nanocrystals / 8.4.3:
Electronic Structure and Molecular Structure / 8.5:
Hydrogen Bonding in Liquid Water / 8.5.1:
Molecular Structure in Liquid Alcohol and Water Mixture / 8.5.2:
Electronic Structure and Ion Solvations / 8.5.3:
Drugs in Water Solution / 8.5.4:
Electronic Structure of Bases in DNA Duplexes / 8.5.5:
Some New Advances and Challenges in Biological and Biomedical Materials Characterization / Filip Braet ; Lilian Soon ; Thomas F. Kelly ; David J. Larson ; Simon P. Ringer9:
Modern Atom Probe Tomography: Principles, Applications in Biomaterials and Potential Applications for Biology / 9.1:
The Need for an Ideal Microscope / 9.2.1:
Field Ion Microscopy and the Modern Atom Probe Instrument / 9.2.1.1:
Applications in Biomaterials / 9.2.1.2:
Applications and Challenges for Biological Science / 9.2.1.3:
Instrumentation / 9.3:
Live Cell Imaging / 9.3.2.1:
Summary / 9.3.3:
Cryo-electron Microscopy / 9.4:
Cryo-electron Microscopy Imaging / 9.4.1:
Conclusions / 9.4.3:
Dynamic Light Scattering Microscopy / Rhonda Dzakpasu ; Daniel Axelrod10:
Theory / 10.1:
Single Scattering Center / 10.2.1:
Multiple Scattering Centers / 10.2.2:
Temporal Autocorrelation of Intensity / 10.2.3:
Phase Fluctuation Factors / 10.2.4:
Number Fluctuation Factors / 10.2.5:
Characteristic Times and Distances / 10.2.6:
Spatial Autocorrelation of Intensity / 10.2.7:
Variance of Intensity Fluctuations: Mobile Fraction / 10.2.8:
Experimental Design / 10.3:
Optical Setup / 10.3.1:
Data Acquisition / 10.3.2:
Sample Preparation: Polystyrene Beads / 10.3.3:
Sample Preparation: Living Macrophages / 10.3.4:
Buffer Changes during Data Acquisition / 10.3.5:
Data Analysis / 10.4:
Temporal Intensity Autocorrelation Function / 10.4.1:
Spatial Intensity Autocorrelation Function / 10.4.2:
Mobile Fraction / 10.4.3:
Experimental Results / 10.5:
Polystyrene Beads: Temporal Phase Autocorrelation / 10.5.1:
Variance of Intensity Fluctuations on Beads: Phase Fluctuations / 10.5.2:
Polystyrene Beads: Number Fluctuations / 10.5.3:
Polystyrene Beads: Spatial Autocorrelation / 10.5.4:
Polystyrene Beads: Mobile Fractions / 10.5.5:
Living Macrophage Cells: Temporal Autocorrelation / 10.5.6:
Living Macrophage Cells: Mobile Fraction / 10.5.7:
Discussion / 10.6:
Polystyrene Beads / 10.6.1:
Macrophages / 10.6.2:
Improvements for DLSM / 10.6.3:
X-ray Scattering Techniques for Characterization of Nanosystems in Lifesciences / Cheng K. Saw11:
Brief Historical Background and Unique Properties / 11.1:
Scattering of X-rays / 11.3:
Crystallography / 11.4:
Scattering from a Powder Sample / 11.5:
Scattering by Atomic Aggregates / 11.6:
Crystallite Size and Paracrystallinity / 11.7:
Production of X-rays / 11.8:
Absorption of X-rays / 11.9:
Instrumentation: WAXS / 11.10:
Small Angle X-ray Scattering / 11.11:
Dilute Systems / 11.11.1:
Highly Correlating Systems / 11.11.2:
SAXS Instrumentation / 11.12:
Synchrotron Radiation / 11.13:
Concluding Remarks / 11.14:
Index
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
17.

図書

図書
Clive D. Rodgers
出版情報: Singapore : World Scientific, 2008, c2000  xvi, 240 p. ; 26 cm
シリーズ名: Series on atmospheric, oceanic and planetary physics ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
The Beginnings / 1.1:
Atmospheric Remote Sounding Methods / 1.2:
Thermal emission nadir and limb sounders / 1.2.1:
Scattered solar radiation / 1.2.2:
Absorption of solar radiation / 1.2.3:
Active techniques / 1.2.4:
Simple Solutions to the Inverse Problem / 1.3:
Information Aspects / Chapter 2:
Formal Statement of the Problem / 2.1:
State and measurement vectors / 2.1.1:
The forward model / 2.1.2:
Weighting function matrix / 2.1.3:
Vector spaces / 2.1.4:
Linear Problems without Measurement Error / 2.2:
Subspaces of state space / 2.2.1:
Identifying the null space and the row space / 2.2.2:
Linear Problems with Measurement Error / 2.3:
Describing experimental error / 2.3.1:
The Bayesian approach to inverse problems / 2.3.2:
Bayes' theorem / 2.3.2.1:
Example: The Linear problem with Gaussian statistics / 2.3.2.2:
Degrees of Freedom / 2.4:
How many independent quantities can be measured? / 2.4.1:
Degrees of freedom for signal / 2.4.2:
Information Content of a Measurement / 2.5:
The Fisher information matrix / 2.5.1:
Shannon information content / 2.5.2:
Entropy of a probability density function / 2.5.2.1:
Entropy of a Gaussian distribution / 2.5.2.2:
Information content in the linear Gaussian case / 2.5.2.3:
The Standard Example: Information Content and Degrees of Freedom / 2.6:
Probability Density Functions and the Maximum Entropy Principle / 2.7:
Error Analysis and Characterisation / Chapter 3:
Characterisation / 3.1:
The retrieval method / 3.1.1:
The transfer function / 3.1.3:
Linearisation of the transfer function / 3.1.4:
Interpretation / 3.1.5:
Retrieval method parameters / 3.1.6:
Error Analysis / 3.2:
Smoothing error / 3.2.1:
Forward model parameter error / 3.2.2:
Forward model error / 3.2.3:
Retrieval noise / 3.2.4:
Random and systematic error / 3.2.5:
Representing covariances / 3.2.6:
Resolution / 3.3:
The Standard Example: Linear Gaussian Case / 3.4:
Averaging kernels / 3.4.1:
Error components / 3.4.2:
Modelling error / 3.4.3:
Optimal Linear Inverse Methods / 3.4.4:
The Maximum a Posteriori Solution / 4.1:
Several independent measurements / 4.1.1:
Independent components of the state vector / 4.1.2:
Minimum Variance Solutions / 4.2:
Best Estimate of a Function of the State Vector / 4.3:
Separately Minimising Error Components / 4.4:
Optimising Resolution / 4.5:
Optimal Methods for Non-linear Inverse Problems / Chapter 5:
Determination of the Degree of Nonlinearity / 5.1:
Formulation of the Inverse Problem / 5.2:
Newton and Gauss-Newton Methods / 5.3:
An Alternative Linearisation / 5.4:
Convergence / 5.5:
Expected convergence rate / 5.6.1:
A popular mistake / 5.6.2:
Testing for convergence / 5.6.3:
Testing for correct convergence / 5.6.4:
Recognising and dealing with slow convergence / 5.6.5:
Levenberg-Marquardt Method / 5.7:
Numerical Efficiency / 5.8:
Which formulation for the linear algebra? / 5.8.1:
The n-form / 5.8.1.1:
The m-form / 5.8.1.2:
Sequential updating / 5.8.1.3:
Computation of derivatives / 5.8.2:
Optimising representations / 5.8.3:
Approximations, Short Cuts and Ad-hoc Methods / Chapter 6:
The Constrained Exact Solution / 6.1:
Least Squares Solutions / 6.2:
The overconstrained case / 6.2.1:
The underconstrained case / 6.2.2:
Truncated Singular Vector Decomposition / 6.3:
Twomey-Tikhonov / 6.4:
Approximations for Optimal Methods / 6.5:
Approximate a priori and its covariance / 6.5.1:
Approximate measurement error covariance / 6.5.2:
Approximate weighting functions / 6.5.3:
Direct Multiple Regression / 6.6:
Linear Relaxation / 6.7:
Nonlinear Relaxation / 6.8:
Maximum Entropy / 6.9:
Onion Peeling / 6.10:
The Kalman Filter / Chapter 7:
The Basic Linear Filter / 7.1:
The Kalman Smoother / 7.2:
The Extended Filter / 7.3:
Characterisation and Error Analysis / 7.4:
Validation / 7.5:
Global Data Assimilation / Chapter 8:
Assimilation as a Inverse Problem / 8.1:
Methods for Data Assimilation / 8.2:
Successive correction methods / 8.2.1:
Optimal interpolation / 8.2.2:
Adjoint methods / 8.2.3:
Kalman filtering / 8.2.4:
Preparation of Indirect Measurements for Assimilation / 8.3:
Choice of profile representation / 8.3.1:
Linearised measurements / 8.3.2:
Systematic errors / 8.3.3:
Transformation of a characterised retrieval / 8.3.4:
Numerical Methods for Forward Models and Jacobians / Chapter 9:
The Equation of Radiative Transfer / 9.1:
The Radiative Transfer Integration / 9.2:
Derivatives of Forward Models: Analytic Jacobians / 9.3:
Ray Tracing / 9.4:
Choosing a coordinate system / 9.4.1:
Ray tracing in radial coordinates / 9.4.2:
Horizontally homogeneous case / 9.4.3:
The general case / 9.4.4:
Transmittance Modelling / 9.5:
Line-by-line modelling / 9.5.1:
Band transmittance / 9.5.2:
Inhomogeneous paths / 9.5.3:
Curtis--Godson approximation / 9.5.3.1:
Emissivity growth approximation / 9.5.3.2:
McMillin--Fleming method / 9.5.3.3:
Multiple absorbers / 9.5.3.4:
Construction and Use of Prior Constraints / Chapter 10:
Nature of a Priori / 10.1:
Effect of Prior Constraints on a Retrieval / 10.2:
Choice of Prior Constraints / 10.3:
Retrieval grid / 10.3.1:
Transformation between grids / 10.3.1.1:
Choice of grid for maximum likelihood retrieval / 10.3.1.2:
Choice of grid for maximum a priori retrieval / 10.3.1.3:
Ad hoc Soft constraints / 10.3.2:
Smoothness constraints / 10.3.2.1:
Markov process / 10.3.2.2:
Estimating a priori from real data / 10.3.3:
Estimating a priori from independent sources / 10.3.3.1:
Maximum entropy and the estimation of a priori / 10.3.3.2:
Validating and improving a priori with indirect measurements / 10.3.4:
The nearly linear case / 10.3.4.1:
The moderately non-linear case / 10.3.4.2:
Using Retrievals Which Contain a Priori / 10.4:
Taking averages of sets of retrievals / 10.4.1:
Removing a priori / 10.4.2:
Designing an Observing System / Chapter 11:
Design and Optimisation of Instruments / 11.1:
Forward model construction / 11.1.1:
Retrieval method and diagnostics / 11.1.2:
Optimisation / 11.1.3:
Specifying requirements for the accuracy of parameters / 11.1.4:
Operational Retrieval Design / 11.2:
State vector choice / 11.2.1:
Choice of vertical grid coordinate / 11.2.3:
Choice of parameters describing constitutents / 11.2.3.1:
A priori information / 11.2.4:
Retrieval method / 11.2.5:
Diagnostics / 11.2.6:
Testing and Validating an Observing System / Chapter 12:
The X[superscript 2] Test / 12.1:
Quantities to be Compared and Tested / 12.3:
Internal consistency / 12.3.1:
Does the retrieval agree with the measurement? / 12.3.2:
Consistency with the a priori / 12.3.3:
Measured signal and a priori / 12.3.3.1:
Retrieval and a priori / 12.3.3.2:
Comparison of the retrieved signal and the a priori / 12.3.3.3:
Intercomparison of Different Instruments / 12.4:
Basic requirements for intercomparison / 12.4.1:
Direct comparison of indirect measurements / 12.4.2:
Comparison of linear functions of measurements / 12.4.3:
Algebra of Matrices and Vectors / Appendix A:
Vector Spaces / A.1:
Eigenvectors and Eigenvalues / A.2:
Principal Axes of a Quadratic Form / A.3:
Singular Vector Decomposition / A.4:
Determinant and Trace / A.5:
Calculus with Matrices and Vectors / A.6:
Answers to Exercises / Appendix B:
Terminology and Notation / Appendix C:
Summary of Terminology / C.1:
List of Symbols Used / C.2:
Bibliography
Index
Preface
Introduction / Chapter 1:
The Beginnings / 1.1:
18.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
19.

図書

図書
Andrea S. Foulkes
出版情報: New York : Springer, c2009  xxiii, 252 p. ; 24 cm
シリーズ名: Use R! / series editors, Robert Gentleman, Kurt Hornik, Giovanni Parmigiani
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Tables
List of Figures
Acronyms
Genetic Association Studies / 1:
Overview of population-based investigations / 1.1:
Types of investigations / 1.1.1:
Genotype versus gene expression / 1.1.2:
Population-versus family-based investigations / 1.1.3:
Assocation versus population genetics / 1.1.4:
Data components and terminology / 1.2:
Genetic information / 1.2.1:
Traits / 1.2.2:
Covariates / 1.2.3:
Data examples / 1.3:
Complex disease association studies / 1.3.1:
HIV genotype association studies / 1.3.2:
Publicly available data used throughout the text / 1.3.3:
Problems
Elementary Statistical Principles / 2:
Background / 2.1:
Notation and basic probability concepts / 2.1.1:
Important epidemiological concepts / 2.1.2:
Measures and tests of association / 2.2:
Contingency table analysis for a binary trait / 2.2.1:
M-sample tests for a quantitative trait / 2.2.2:
Generalized linear model / 2.2.3:
Analytic challenges / 2.3:
Multiplicity and high dimensionality / 2.3.1:
Missing and unobservable data considerations / 2.3.2:
Race and ethnicity / 2.3.3:
Genetic models and models of association / 2.3.4:
Genetic Data Concepts and Tests / 3:
Linkage disequilibrium (LD) / 3.1:
Measures of LD: D' and r2 / 3.1.1:
LD blocks and SNP tagging / 3.1.2:
LD and population stratification / 3.1.3:
Hardy-Weinberg equilibrium (HWE) / 3.2:
Pearson's X2-test and Fisher's exact test / 3.2.1:
HWE and population substructure / 3.2.2:
Quality control and preprocessing / 3.3:
SNP chips / 3.3.1:
Genotyping errors / 3.3.2:
Identifying population substructure / 3.3.3:
Relatedness / 3.3.4:
Accounting for unobservable substructure / 3.3.5:
Multiple Comparison Procedures / 4:
Measures of error / 4.1:
Family-wise error rate / 4.1.1:
False discovery rate / 4.1.2:
Single-step and step-down adjustments / 4.2:
Bonferroni adjustment / 4.2.1:
Tukey and Scheffe tests / 4.2.2:
False discovery rate control / 4.2.3:
The q-value / 4.2.4:
Resampling-based methods / 4.3:
Free step-down resampling / 4.3.1:
Null unrestricted bootstrap / 4.3.2:
Alternative paradigms / 4.4:
Effective number of tests / 4.4.1:
Global tests / 4.4.2:
Methods for Unobservable Phase / 5:
Haplotype estimation / 5.1:
An expectation-maximization algorithm / 5.1.1:
Bayesian haplotype reconstruction / 5.1.2:
Estimating and testing for haplotype-trait association / 5.2:
Two-stage approaches / 5.2.1:
A fully likelihood-based approach / 5.2.2:
Supplemental notes
Supplemental R scripts
Classification and Regression Trees / 6:
Building a tree / 6.1:
Recursive partitioning / 6.1.1:
Splitting rules / 6.1.2:
Defining inputs / 6.1.3:
Optimal trees / 6.2:
Honest estimates / 6.2.1:
Cost-complexity pruning / 6.2.2:
Additional Topics in High-Dimensional Data Analysis / 7:
Random forests / 7.1:
Variable importance / 7.1.1:
Missing data methods / 7.1.2:
Logic regression / 7.1.3:
Multivariate adaptive regression splines / 7.3:
Bayesian variable selection / 7.4:
Further readings / 7.5:
Appendix R Basics
Getting started / A.1:
Types of data objects / A.2:
Importing data / A.3:
Managing data / A.4:
Installing packages / A.5:
Additional help / A.6:
References
Glossary of Terms
Glossary of Select R Packages
Subject Index
Index of R Functions and Packages
Preface
List of Tables
List of Figures
20.

図書

図書
Jeremy Dale
出版情報: Chichester ; New York : Wiley, c1989  vii, 222 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
DNA / 1.1.1:
Mutation and Variation
Regulation and Gene Expression / 1.1.2:
RNA
Genetics of Bacteriophages / 4:
Hydrophobic interactions / 5:
Plasmids
Gene Transfer / 1.1.4:
Different forms of the double helix
Genomic Plasticity: Movable Genes and Phase Variation / 7:
Supercoiling / 8:
Genetic Modification: Exploiting the Potential of Bacteria
Genetic Methods for Investigating Bacteria / 1.1.6:
Denaturation and hybridization
Gene Mapping to Genomics / 10:
Orientation of nucleic acid strands / Appendix A:
Further Reading
Abbreviations / 1.2:
Replication of DNA
Glossary / Appendix C:
Unwinding and rewinding / Appendix D:
Enzymes
Genes / 1.2.2:
Fidelity of replication: proof-reading
Standard Genetic Code / Appendix F:
Chromosome replication and cell division / Appendix G:
Bacterial Species
Index / 1.4:
DNA repair
Mismatch repair / 1.4.1:
Excision repair / 1.4.2:
Recombination (post-replication) repair / 1.4.3:
SOS repair / 1.4.4:
Gene expression / 1.5:
Transcription / 1.5.1:
Translation / 1.5.2:
Post-translational events / 1.5.3:
Gene organization / 1.6:
Variation and evolution / 2.1:
Fluctuation test / 2.1.1:
Directed mutation in bacteria? / 2.1.2:
Types of mutations / 2.2:
Point mutations / 2.2.1:
Conditional mutants / 2.2.2:
Variation due to larger scale DNA alterations / 2.2.3:
Extrachromosomal agents and horizontal gene transfer / 2.2.4:
Phenotypes / 2.3:
Restoration of phenotype / 2.4:
Reversion and suppression / 2.4.1:
Complementation / 2.4.2:
Recombination / 2.5:
Mechanisms of mutation / 2.6:
Spontaneous mutation / 2.6.1:
Chemical mutagens / 2.6.2:
Ultraviolet irradiation / 2.6.3:
Isolation and identification of mutants / 2.7:
Mutation and selection / 2.7.1:
Replica plating / 2.7.2:
Penicillin enrichment / 2.7.3:
Isolation of other mutants / 2.7.4:
Molecular methods / 2.7.5:
Regulation of Gene Expression
Gene copy number / 3.1:
Transcriptional control / 3.2:
Promoters / 3.2.1:
Terminators, attenuators and anti-terminators / 3.2.2:
Induction and repression: regulatory proteins / 3.2.3:
Attenuation: trp operon / 3.2.4:
Two-component regulatory systems / 3.2.5:
Global regulatory systems / 3.2.6:
Feast or famine and the RpoS regulon / 3.2.7:
Quorum sensing / 3.2.8:
Translational control / 3.3:
Ribosome binding / 3.3.1:
Codon usage / 3.3.2:
Stringent response / 3.3.3:
Regulatory RNA / 3.3.4:
Phase variation / 3.3.5:
Single-stranded DNA bacteriophages / 4.1:
oX174 / 4.1.1:
M13 / 4.1.2:
RNA-containing phages: MS2 / 4.2:
Double-stranded DNA phages / 4.3:
Bacteriophage T4 / 4.3.1:
Bacteriophage lambda / 4.3.2:
Lytic and lysogenic regulation of bacteriophage lambda / 4.3.3:
Restriction and modification / 4.4:
Complementation and recombination / 4.5:
Why are bacteriophages important? / 4.6:
Phage typing / 4.6.1:
Phage therapy / 4.6.2:
Phage display / 4.6.3:
Bacterial virulence and phage conversion / 4.6.4:
Some bacterial characteristics are determined by plasmids / 5.1:
Antibiotic resistance / 5.1.1:
Colicins and bacteriocins / 5.1.2:
Virulence determinants / 5.1.3:
Plasmids in plant-associated bacteria / 5.1.4:
Metabolic activities / 5.1.5:
Molecular properties of plasmids / 5.2:
Plasmid replication and control / 5.2.1:
Plasmid stability / 5.3:
Plasmid integrity / 5.3.1:
Partitioning / 5.3.2:
Differential growth rate / 5.3.3:
Methods for studying plasmids / 5.4:
Associating a plasmid with a phenotype / 5.4.1:
Classification of plasmids / 5.4.2:
Transformation / 6.1:
Conjugation / 6.2:
Mechanism of conjugation / 6.2.1:
The F plasmid / 6.2.2:
Conjugation in other bacteria / 6.2.3:
Transduction / 6.3:
Specialized transduction / 6.3.1:
General (homologous) recombination / 6.4:
Site-specific and non-homologous (illegitimate) recombination / 6.4.2:
Mosaic genes and chromosome plasticity / 6.5:
Insertion sequences / 7.1:
Structure of insertion sequences / 7.1.1:
Occurrence of insertion sequences / 7.1.2:
Transposons / 7.2:
Structure of transposons / 7.2.1:
Integrons / 7.2.2:
Mechanisms of transposition / 7.3:
Replicative transposition / 7.3.1:
Non-replicative (conservative) transposition / 7.3.2:
Regulation of transposition / 7.3.3:
Activation of genes by transposable elements / 7.3.4:
Mu: a transposable bacteriophage / 7.3.5:
Conjugative transposons and other transposable elements / 7.3.6:
Variation mediated by simple DNA inversion / 7.4:
Variation mediated by nested DNA inversion / 7.4.2:
Antigenic variation in the gonococcus / 7.4.3:
Phase variation by slipped strand mispairing / 7.4.4:
Phase variation mediated by differential DNA methylation / 7.4.5:
Strain development / 8.1:
Generation of variation / 8.1.1:
Selection of desired variants / 8.1.2:
Overproduction of primary metabolites / 8.2:
Simple pathways / 8.2.1:
Branched pathways / 8.2.2:
Overproduction of secondary metabolites / 8.3:
Gene cloning / 8.4:
Cutting and joining DNA / 8.4.1:
Plasmid vectors / 8.4.2:
Bacteriophage lambda vectors / 8.4.3:
Cloning larger fragments / 8.4.5:
Bacteriophage M13 vectors / 8.4.6:
Gene libraries / 8.5:
Construction of genomic libraries / 8.5.1:
Screening a gene library / 8.5.2:
Construction of a cDNA library / 8.5.3:
Products from cloned genes / 8.6:
Expression vectors / 8.6.1:
Making new genes / 8.6.2:
Other bacterial hosts / 8.6.3:
Novel vaccines / 8.6.4:
Other uses of gene technology / 8.7:
Metabolic pathways / 9.1:
Cross-feeding / 9.1.1:
Microbial physiology / 9.2:
Reporter genes / 9.2.1:
Lysogeny / 9.2.2:
Cell division / 9.2.3:
Motility and chemotaxis / 9.2.4:
Cell differentiation / 9.2.5:
Bacterial virulence / 9.3:
Wide range mechanisms of bacterial pathogenesis / 9.3.1:
Detection of virulence genes / 9.3.2:
Specific mutagenesis / 9.4:
Gene replacement / 9.4.1:
Antisense RNA / 9.4.2:
Taxonomy, evolution and epidemiology / 9.5:
Molecular taxonomy / 9.5.1:
Diagnostic use of PCR / 9.5.2:
Molecular epidemiology / 9.5.3:
Gene mapping / 10.1:
Conjugational analysis / 10.1.1:
Co-transformation and co-transduction / 10.1.2:
Molecular techniques for gene mapping / 10.1.3:
Gene sequencing / 10.2:
DNA sequence determination / 10.2.1:
Genome sequencing / 10.2.2:
Comparative genomics / 10.2.3:
Bioinformatics / 10.2.4:
Physical and genetic maps / 10.3:
Deletions and insertions / 10.3.1:
Transposon mutagenesis / 10.3.2:
Site-directed mutagenesis / 10.3.3:
Analysis of gene expression / 10.4:
Transcriptional analysis / 10.4.1:
Translational analysis / 10.4.2:
Systematic analysis of gene function / 10.4.3:
Conclusion / 10.5:
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
DNA / 1.1.1:
21.

図書

図書
Alfredo H-S. Ang, Wilson H. Tang
出版情報: New York : Wiley, c2007  xiii, 406 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Roles of Probability and Statistics in Engineering / Chapter 1:
Introduction / 1.1:
Uncertainty in Engineering / 1.2:
Uncertainty Associated with Randomness-The Aleatory Uncertainty / 1.2.1:
Uncertainty Associated with Imperfect Knowledge-The Epistemic Uncertainty / 1.2.2:
Design and Decision Making under Uncertainty / 1.3:
Planning and Design of Transportation Infrastructures / 1.3.1:
Design of Structures and Machines / 1.3.2:
Planning and Design of Hydrosystems / 1.3.3:
Design of Geotechnical Systems / 1.3.4:
Construction Planning and Management / 1.3.5:
Photogrammetric, Geodetic, and Surveying Measurements / 1.3.6:
Applications in Quality Control and Assurance / 1.3.7:
Concluding Summary / 1.4:
References
Fundamentals of Probability Models / Chapter 2:
Events and Probability / 2.1:
Characteristics of Problems Involving Probabilities / 2.1.1:
Estimating Probabilities / 2.1.2:
Elements of Set Theory-Tools for Defining Events / 2.2:
Important Definitions / 2.2.1:
Mathematical Operations of Sets / 2.2.2:
Mathematics of Probability / 2.3:
The Addition Rule / 2.3.1:
Conditional Probability / 2.3.2:
The Multiplication Rule / 2.3.3:
The Theorem of Total Probability / 2.3.4:
The Bayes' Theorem / 2.3.5:
Problems / 2.4:
Analytical Models of Random Phenomena / Chapter 3:
Random Variables and Probability Distribution / 3.1:
Random Events and Random Variables / 3.1.1:
Probability Distribution of a Random Variable / 3.1.2:
Main Descriptors of a Random Variable / 3.1.3:
Useful Probability Distributions / 3.2:
The Gaussian (or Normal) Distribution / 3.2.1:
The Lognormal Distribution / 3.2.2:
The Bernoulli Sequence and the Binomial Distribution / 3.2.3:
The Geometric Distribution / 3.2.4:
The Negative Binomial Distribution / 3.2.5:
The Poisson Process and the Poisson Distribution / 3.2.6:
The Exponential Distribution / 3.2.7:
The Gamma Distribution / 3.2.8:
The Hypergeometric Distribution / 3.2.9:
The Beta Distribution / 3.2.10:
Other Useful Distributions / 3.2.11:
Multiple Random Variables / 3.3:
Joint and Conditional Probability Distributions / 3.3.1:
Covariance and Correlation / 3.3.2:
Functions of Random Variables / 3.4:
Derived Probability Distributions / 4.1:
Function of a Single Random Variable / 4.2.1:
Function of Multiple Random Variables / 4.2.2:
Extreme Value Distributions / 4.2.3:
Moments of Functions of Random Variables / 4.3:
Mathematical Expectations of a Function / 4.3.1:
Mean and Variance of a General Function / 4.3.2:
Computer-Based Numerical and Simulation Methods in Probability / 4.4:
Numerical and Simulations Methods / 5.1:
Essentials of Monte Carlo Simulation / 5.2.1:
Numerical Examples / 5.2.2:
Problems Involving Aleatory and Epistemic Uncertainties / 5.2.3:
MCS Involving Correlated Random Variables / 5.2.4:
References and Softwares / 5.3:
Statistical Inferences from Observational Data / Chapter 6:
Role of Statistical Inference in Engineering / 6.1:
Statistical Estimation of Parameters / 6.2:
Random Sampling and Point Estimation / 6.2.1:
Sampling Distributions / 6.2.2:
Testing of Hypotheses / 6.3:
Hypothesis Test Procedure / 6.3.1:
Confidence Intervals / 6.4:
Confidence Interval of the Mean / 6.4.1:
Confidence Interval of the Proportion / 6.4.2:
Confidence Interval of the Variance / 6.4.3:
Measurement Theory / 6.5:
Determination of Probability Distribution Models / 6.6:
Probability Papers / 7.1:
Utility and Plotting Position / 7.2.1:
The Normal Probability Paper / 7.2.2:
The Lognormal Probability Paper / 7.2.3:
Construction of General Probability Papers / 7.2.4:
Testing Goodness-of-Fit of Distribution Models / 7.3:
The Chi-Square Test for Goodness-of-Fit / 7.3.1:
The Kolmogorov-Smirnov (K-S) Test for Goodness-of-Fit / 7.3.2:
The Anderson-Darling Test for Goodness-of-Fit / 7.3.3:
Invariance in the Asymptotic Forms of Extremal Distributions / 7.4:
Regression and Correlation Analyses / 7.5:
Fundamentals of Linear Regression Analysis / 8.1:
Regression with Constant Variance / 8.2.1:
Variance in Regression Analysis / 8.2.2:
Confidence Intervals in Regression / 8.2.3:
Correlation Analysis / 8.3:
Estimation of the Correlation Coefficient / 8.3.1:
Regression of Normal Variates / 8.3.2:
Linear Regression with Nonconstant Variance / 8.4:
Multiple Linear Regression / 8.5:
Nonlinear Regression / 8.6:
Applications of Regression Analysis in Engineering / 8.7:
The Bayesian Approach / 8.8:
Estimation of Parameters / 9.1:
Basic Concepts-The Discrete Case / 9.2:
The Continuous Case / 9.3:
General Formulation / 9.3.1:
A Special Application of the Bayesian Updating Process / 9.3.2:
Bayesian Concept in Sampling Theory / 9.4:
Sampling from Normal Populations / 9.4.1:
Error in Estimation / 9.4.3:
The Utility of Conjugate Distributions / 9.4.4:
Estimation of Two Parameters / 9.5:
Bayesian Regression and Correlation Analyses / 9.6:
Linear Regression / 9.6.1:
Updating the Regression Parameters / 9.6.2:
Elements of Quality Assurance and Acceptance Sampling / 9.6.3:
Appendices
Probability Tables / Appendix A:
Standard Normal Probabilities / Table A.1:
CDF of the Binomial Distribution / Table A.2:
Critical Values of t-Distribution at Confidence Level (1-[alpha]) = p / Table A.3:
Critical Values of the x[superscript 2] Distribution at probability Level [alpha] / Table A.4:
Critical Values of D[superscript alpha subscript n] at Significance Level [alpha] in the K-S Test / Table A.5:
Critical Values of the Anderson-Darling Goodness-of-Fit Test / Table A.6:
Combinatorial Formulas / Appendix B:
The Basic Relation / B.1:
The Binomial Coefficient / B.3:
The Multinomial Coefficient / B.4:
Stirling's Formula / B.5:
Derivation of the Poisson Distribution / Appendix C:
Index
Preface
Roles of Probability and Statistics in Engineering / Chapter 1:
Introduction / 1.1:
22.

図書

図書
Ilkka Havukkala
出版情報: Singapore : World Scientific, c2010  xv, 307 p. ; 24 cm
シリーズ名: Science, engineering, and biology informatics ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgement
About the Author
Introduction to Modern Molecular Biology / 1:
Cells store large amounts of information in DNA / 1.1:
Cells process complex information / 1.2:
Cellular life is chemically complex and somewhat stochastic / 1.3:
Challenges in analyzing complex biodata / 1.4:
References
Biodata Explosion / 2:
Primary sequence and structure data / 2.1:
DNA sequence databases / 2.1.1:
Protein sequence databases / 2.1.2:
Molecular structure databases / 2.1.3:
Secondary annotation data / 2.2:
Motif annotations / 2.2.1:
Gene function annotations / 2.2.2:
Genomic annotations / 2.2.3:
Inter-species phylogeny and gene family annotations / 2.2.4:
Experimental and personalized data / 2.3:
DNA expression profiles / 2.3.1:
Proteomics data and degradomics / 2.3.2:
Protein expression profiles, 2D gel and protein interaction data / 2.3.3:
Metabolomics and metabolic pathway databases / 2.3.4:
Personalized data / 2.3.5:
Semantic and processed text data / 2.4:
Ontologies / 2.4.1:
Text-mined annotation data / 2.4.2:
Integrated and federated databases / 2.5:
Local Pattern Discovery and Comparing Genes and Proteins / 3:
DNA/RNA motif discovery / 3.1:
Single motif models: MEME, AlignAce etc. / 3.1.1:
Multiple motif models: LOGOS and MotifRegressor / 3.1.2:
Informative k-mers approach / 3.1.3:
Protein motif discovery / 3.2:
InterProScan and other traditional methods / 3.2.1:
Protein k-mer and other string based methods / 3.2.2:
Genetic algorithms, particle swarms and ant colonies / 3.3:
Genetic algorithms / 3.3.1:
Particle swarm optimization / 3.3.2:
Ant colony optimization / 3.3.3:
Sequence visualization / 3.4:
Global Pattern Discovery and Comparing Genomes / 4:
Alignment-based methods / 4.1:
Pairwise genome-wide search algorithms: LAGAN, AVID etc. / 4.1.1:
Multiple alignment methods: MLAGAN, MAVID, MULTIZ etc. / 4.1.2:
Dotplots / 4.1.3:
Visualization of genome comparisons / 4.1.4:
Global motif maps / 4.1.5:
Alignmentless methods / 4.2:
K-mer based methods / 4.2.1:
Average common substring and compressibility based methods / 4.2.2:
2D portraits of genomes / 4.2.3:
Genome scale non-sequence data analysis / 4.3:
DNA physical structure based methods / 4.3.1:
Secondary structure based comparisons / 4.3.2:
Molecule Structure Based Searching and Comparison / 5:
Molecule structures as graphs or strings / 5.1:
3D to 1D transformations / 5.1.1:
Graph matching methods / 5.1.2:
Graph visualization / 5.1.3:
Graph grammars / 5.1.4:
RNA structure comparison and prediction / 5.2:
Image comparison based methods / 5.3:
Gabor filter based methods / 5.3.1:
Image symmetry set based methods / 5.3.2:
Other graph topology based methods / 5.3.3:
Function Annotation and Ontology Based Searching and Classification / 6:
Annotation ontologies / 6.1:
Gene Ontology based mining / 6.2:
Sequence similarity based function prediction / 6.3:
Cellular location prediction / 6.4:
New integrative methods: Utilizing networks / 6.5:
Text mining bioliterature for automated annotation / 6.6:
Natural language processing (NLP) / 6.6.1:
Semantic profiling / 6.6.2:
Matrix factorization methods / 6.6.3:
New Methods for Genomics Data: SVM and Others / 7:
SVM kernels / 7.1:
SVM trees / 7.2:
Methods for microarray data / 7.3:
Gene selection algorithms / 7.3.1:
Gene selection by consistency methods / 7.3.2:
Genome as a time series and discrete wavelet transform / 7.4:
Parameterless clustering for gene expression / 7.5:
Transductive confidence machines, conformal predictors and ROC isometrics / 7.6:
Text compression methods for biodata analysis / 7.7:
Integration of Multimodal Data: Toward Systems Biology / 8:
Comparative genome annotation systems / 8.1:
Phylogenetics methods / 8.2:
Network inference from interaction and coexpression data / 8.3:
Bayesian inference, association rule mining and Petri nets / 8.4:
Future Challenges / 9:
Network analysis methods / 9.1:
Unsupervised and supervised clustering / 9.2:
Neural networks and evolutionary methods / 9.3:
Semantic web and ontologization of biology / 9.4:
Biological data fusion / 9.5:
Rise of the GPU machines / 9.6:
Index
Preface
Acknowledgement
About the Author
23.

図書

図書
Bernard Valeur
出版情報: Weinheim : Wiley-VCH, c2002  xiv, 387 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Today's Chemical Industry
Which Way is Up?
Prologue
Today's Challenge -Value Creation
Strategic Choices for the Chemical Industry in the New Millenium / 1:
Managing Commodity PortfoliosHow to Succeed in the Rapidly Maturing Specialty Chemicals Industry
Introduction
Chemical Companies and Biotechnology
The Impact of E-Commerce on the Chemical Industry / 1.1:
The Alchemy of Leveraged Buyouts
What is luminescence?
Revitalizing Innovation
Managing the Organizational Context / 1.2:
Creating an Entrepreneurial Procurement Organization
A brief history of fluorescence and phosphorescence
Achieving Excellence in Production
A Customer-centric Approach to Sales and Marketing / 1.3:
The Role of Mergers and Acquisitions
Fluorescence and other de-excitation processes of excited molecules
The Delicate Game of Post-merger Management
Cyclicality: Trying to Manage the Unmanageable / 1.4:
Index
Fluorescent probes
Molecular fluorescence as an analytical tool / 1.5:
Ultimate spatial and temporal resolution: femtoseconds, femtoliters, femtomoles and single-molecule detection / 1.6:
Bibliography / 1.7:
Absorption of UV-visible light / 2:
Types of electronic transitions in polyatomic molecules / 2.1:
Probability of transitions. The Beer-Lambert Law. Oscillator strength / 2.2:
Selection rules / 2.3:
The Franck-Condon principle / 2.4:
Characteristics of fluorescence emission / 2.5:
Radiative and non-radiative transitions between electronic states / 3.1:
Internal conversion / 3.1.1:
Fluorescence / 3.1.2:
Intersystem crossing and subsequent processes / 3.1.3:
Intersystem crossing / 3.1.3.1:
Phosphorescence versus non-radiative de-excitation / 3.1.3.2:
Delayed fluorescence / 3.1.3.3:
Triplet-triplet transitions / 3.1.3.4:
Lifetimes and quantum yields / 3.2:
Excited-state lifetimes / 3.2.1:
Quantum yields / 3.2.2:
Effect of temperature / 3.2.3:
Emission and excitation spectra / 3.3:
Steady-state fluorescence intensity / 3.3.1:
Emission spectra / 3.3.2:
Excitation spectra / 3.3.3:
Stokes shift / 3.3.4:
Effects of molecular structure on fluorescence / 3.4:
Extent of [pi]-electron system. Nature of the lowest-lying transition / 3.4.1:
Substituted aromatic hydrocarbons / 3.4.2:
Internal heavy atom effect / 3.4.2.1:
Electron-donating substituents: -OH, -OR, -NHR, -NH[subscript 2] / 3.4.2.2:
Electron-withdrawing substituents: carbonyl and nitro compounds / 3.4.2.3:
Sulfonates / 3.4.2.4:
Heterocyclic compounds / 3.4.3:
Compounds undergoing photoinduced intramolecular charge transfer (ICT) and internal rotation / 3.4.4:
Environmental factors affecting fluorescence / 3.5:
Homogeneous and inhomogeneous broadening. Red-edge effects / 3.5.1:
Solid matrices at low temperature / 3.5.2:
Fluorescence in supersonic jets / 3.5.3:
Effects of intermolecular photophysical processes on fluorescence emission / 3.6:
Overview of the intermolecular de-excitation processes of excited molecules leading to fluorescence quenching / 4.1:
Phenomenological approach / 4.2.1:
Dynamic quenching / 4.2.2:
Stern-Volmer kinetics / 4.2.2.1:
Transient effects / 4.2.2.2:
Static quenching / 4.2.3:
Sphere of effective quenching / 4.2.3.1:
Formation of a ground-state non-fluorescent complex / 4.2.3.2:
Simultaneous dynamic and static quenching / 4.2.4:
Quenching of heterogeneously emitting systems / 4.2.5:
Photoinduced electron transfer / 4.3:
Formation of excimers and exciplexes / 4.4:
Excimers / 4.4.1:
Exciplexes / 4.4.2:
Photoinduced proton transfer / 4.5:
General equations / 4.5.1:
Determination of the excited-state pK / 4.5.2:
Prediction by means of the Forster cycle / 4.5.2.1:
Steady-state measurements / 4.5.2.2:
Time-resolved experiments / 4.5.2.3:
pH dependence of absorption and emission spectra / 4.5.3:
Excitation energy transfer / 4.6:
Distinction between radiative and non-radiative transfer / 4.6.1:
Radiative energy transfer / 4.6.2:
Non-radiative energy transfer / 4.6.3:
Fluorescence polarization. Emission anisotropy / 4.7:
Characterization of the polarization state of fluorescence (polarization ratio, emission anisotropy) / 5.1:
Excitation by polarized light / 5.1.1:
Vertically polarized excitation / 5.1.1.1:
Horizontally polarized excitation / 5.1.1.2:
Excitation by natural light / 5.1.2:
Instantaneous and steady-state anisotropy / 5.2:
Instantaneous anisotropy / 5.2.1:
Steady-state anisotropy / 5.2.2:
Additivity law of anisotropy / 5.3:
Relation between emission anisotropy and angular distribution of the emission transition moments / 5.4:
Case of motionless molecules with random orientation / 5.5:
Parallel absorption and emission transition moments / 5.5.1:
Non-parallel absorption and emission transition moments / 5.5.2:
Effect of rotational Brownian motion / 5.6:
Free rotations / 5.6.1:
Hindered rotations / 5.6.2:
Applications / 5.7:
Principles of steady-state and time-resolved fluorometric techniques / 5.8:
Steady-state spectrofluorometry / 6.1:
Operating principles of a spectrofluorometer / 6.1.1:
Correction of excitation spectra / 6.1.2:
Correction of emission spectra / 6.1.3:
Measurement of fluorescence quantum yields / 6.1.4:
Problems in steady-state fluorescence measurements: inner filter effects and polarization effects / 6.1.5:
Measurement of steady-state emission anisotropy. Polarization spectra / 6.1.6:
Time-resolved fluorometry / 6.2:
General principles of pulse and phase-modulation fluorometries / 6.2.1:
Design of pulse fluorometers / 6.2.2:
Single-photon timing technique / 6.2.2.1:
Stroboscopic technique / 6.2.2.2:
Other techniques / 6.2.2.3:
Design of phase-modulation fluorometers / 6.2.3:
Phase fluorometers using a continuous light source and an electro-optic modulator / 6.2.3.1:
Phase fluorometers using the harmonic content of a pulsed laser / 6.2.3.2:
Problems with data collection by pulse and phase-modulation fluorometers / 6.2.4:
Dependence of the instrument response on wavelength. Color effect / 6.2.4.1:
Polarization effects / 6.2.4.2:
Effect of light scattering / 6.2.4.3:
Data analysis / 6.2.5:
Pulse fluorometry / 6.2.5.1:
Phase-modulation fluorometry / 6.2.5.2:
Judging the quality of the fit / 6.2.5.3:
Global analysis / 6.2.5.4:
Complex fluorescence decays. Lifetime distributions / 6.2.5.5:
Lifetime standards / 6.2.6:
Time-dependent anisotropy measurements / 6.2.7:
Time-resolved fluorescence spectra / 6.2.7.1:
Lifetime-based decomposition of spectra / 6.2.9:
Comparison between pulse and phase fluorometries / 6.2.10:
Appendix: Elimination of polarization effects in the measurement of fluorescence intensity and lifetime / 6.3:
Effect of polarity on fluorescence emission. Polarity probes / 6.4:
What is polarity? / 7.1:
Empirical scales of solvent polarity based on solvatochromic shifts / 7.2:
Single-parameter approach / 7.2.1:
Multi-parameter approach / 7.2.2:
Photoinduced charge transfer (PCT) and solvent relaxation / 7.3:
Theory of solvatochromic shifts / 7.4:
Examples of PCT fluorescent probes for polarity / 7.5:
Effects of specific interactions / 7.6:
Effects of hydrogen bonding on absorption and fluorescence spectra / 7.6.1:
Examples of the effects of specific interactions / 7.6.2:
Polarity-induced inversion of n-[pi] and [pi]-[pi] states / 7.6.3:
Polarity-induced changes in vibronic bands. The Py scale of polarity / 7.7:
Conclusion / 7.8:
Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes / 7.9:
What is viscosity? Significance at a microscopic level / 8.1:
Use of molecular rotors / 8.2:
Methods based on intermolecular quenching or intermolecular excimer formation / 8.3:
Methods based on intramolecular excimer formation / 8.4:
Fluorescence polarization method / 8.5:
Choice of probes / 8.5.1:
Homogeneous isotropic media / 8.5.2:
Ordered systems / 8.5.3:
Practical aspects / 8.5.4:
Concluding remarks / 8.6:
Resonance energy transfer and its applications / 8.7:
Determination of distances at a supramolecular level using RET / 9.1:
Single distance between donor and acceptor / 9.2.1:
Distributions of distances in donor-acceptor pairs / 9.2.2:
RET in ensembles of donors and acceptors / 9.3:
RET in three dimensions. Effect of viscosity / 9.3.1:
Effects of dimensionality on RET / 9.3.2:
Effects of restricted geometries on RET / 9.3.3:
RET between like molecules. Excitation energy migration in assemblies of chromophores / 9.4:
RET within a pair of like chromophores / 9.4.1:
RET in assemblies of like chromophores / 9.4.2:
Lack of energy transfer upon excitation at the red-edge of the absorption spectrum (Weber's red-edge effect) / 9.4.3:
Overview of qualitative and quantitative applications of RET / 9.5:
Fluorescent molecular sensors of ions and molecules / 9.6:
Fundamental aspects / 10.1:
pH sensing by means of fluorescent indicators / 10.2:
Principles / 10.2.1:
The main fluorescent pH indicators / 10.2.2:
Coumarins / 10.2.2.1:
Pyranine / 10.2.2.2:
Fluorescein and its derivatives / 10.2.2.3:
SNARF and SNAFL / 10.2.2.4:
PET (photoinduced electron transfer) pH indicators / 10.2.2.5:
Fluorescent molecular sensors of cations / 10.3:
General aspects / 10.3.1:
PET (photoinduced electron transfer) cation sensors / 10.3.2:
Crown-containing PET sensors / 10.3.2.1:
Cryptand-based PET sensors / 10.3.2.3:
Podand-based and chelating PET sensors / 10.3.2.4:
Calixarene-based PET sensors / 10.3.2.5:
PET sensors involving excimer formation / 10.3.2.6:
Examples of PET sensors involving energy transfer / 10.3.2.7:
Fluorescent PCT (photoinduced charge transfer) cation sensors / 10.3.3:
PCT sensors in which the bound cation interacts with an electron-donating group / 10.3.3.1:
PCT sensors in which the bound cation interacts with an electron-withdrawing group / 10.3.3.3:
Excimer-based cation sensors / 10.3.4:
Miscellaneous / 10.3.5:
Oxyquinoline-based cation sensors / 10.3.5.1:
Further calixarene-based fluorescent sensors / 10.3.5.2:
Fluorescent molecular sensors of anions / 10.3.6:
Anion sensors based on collisional quenching / 10.4.1:
Anion sensors containing an anion receptor / 10.4.2:
Fluorescent molecular sensors of neutral molecules and surfactants / 10.5:
Cyclodextrin-based fluorescent sensors / 10.5.1:
Boronic acid-based fluorescent sensors / 10.5.2:
Porphyrin-based fluorescent sensors / 10.5.3:
Towards fluorescence-based chemical sensing devices / 10.6:
Spectrophotometric and spectrofluorometric pH titrations / Appendix A.:
Determination of the stoichiometry and stability constant of metal complexes from spectrophotometric or spectrofluorometric titrations / Appendix B.:
Advanced techniques in fluorescence spectroscopy / 10.7:
Time-resolved fluorescence in the femtosecond time range: fluorescence up-conversion technique / 11.1:
Advanced fluorescence microscopy / 11.2:
Improvements in conventional fluorescence microscopy / 11.2.1:
Confocal fluorescence microscopy / 11.2.1.1:
Two-photon excitation fluorescence microscopy / 11.2.1.2:
Near-field scanning optical microscopy (NSOM) / 11.2.1.3:
Fluorescence lifetime imaging spectroscopy (FLIM) / 11.2.2:
Time-domain FLIM / 11.2.2.1:
Frequency-domain FLIM / 11.2.2.2:
Confocal FLIM (CFLIM) / 11.2.2.3:
Two-photon FLIM / 11.2.2.4:
Fluorescence correlation spectroscopy / 11.3:
Conceptual basis and instrumentation / 11.3.1:
Determination of translational diffusion coefficients / 11.3.2:
Chemical kinetic studies / 11.3.3:
Determination of rotational diffusion coefficients / 11.3.4:
Single-molecule fluorescence spectroscopy / 11.4:
General remarks / 11.4.1:
Single-molecule detection in flowing solutions / 11.4.2:
Single-molecule detection using advanced fluorescence microscopy techniques / 11.4.3:
Epilogue / 11.5:
Preface
Today's Chemical Industry
Which Way is Up?
24.

図書

図書
Aidong Zhang
出版情報: Hackensack, NJ : World Scientific, c2006  xv, 339 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
Applications of Microarray / 1.2:
Gene Expression Profiles in Different Tissues / 1.2.1:
Developmental Genetics / 1.2.2:
Gene Expression Patterns in Model Systems / 1.2.3:
Differential Gene Expression Patterns in Diseases / 1.2.4:
Gene Expression Patterns in Pathogens / 1.2.5:
Gene Expression in Response to Drug Treatments / 1.2.6:
Genotypic Analysis / 1.2.7:
Mutation Screening of Disease Genes / 1.2.8:
Framework of Microarray Data Analysis / 1.3:
Summary / 1.4:
Basic Concepts of Molecular Biology / 2:
Cells / 2.1:
Proteins / 2.3:
Nucleic Acids / 2.4:
DNA / 2.4.1:
RNA / 2.4.2:
Central Dogma of Molecular Biology / 2.5:
Genes and the Genetic Code / 2.5.1:
Transcription and Gene Expression / 2.5.2:
Translation and Protein Synthesis / 2.5.3:
Genotype and Phenotype / 2.6:
Overview of Microarray Experiments / 2.7:
Microarray Chip Manufacture / 3.1:
Deposition-Based Manufacture / 3.2.1:
In Situ Manufacture / 3.2.2:
The Affymetrix GeneChip / 3.2.2.1:
Steps of Microarray Experiments / 3.3:
Sample Preparation and Labeling / 3.3.1:
Hybridization / 3.3.2:
Image Scanning / 3.3.3:
Image Processing / 3.4:
Microarray Data Cleaning and Preprocessing / 3.5:
Data Transformation / 3.5.1:
Missing Value Estimation / 3.5.2:
Data Normalization / 3.6:
Global Normalization Approaches / 3.6.1:
Standardization / 3.6.1.1:
Iterative linear regression / 3.6.1.2:
Intensity-Dependent Normalization / 3.6.2:
LOWESS: Locally weighted linear regression / 3.6.2.1:
Distribution normalization / 3.6.2.2:
Analysis of Differentially-Expressed Genes / 3.7:
Basic Concepts in Statistics / 4.1:
Statistical Inference / 4.2.1:
Hypothesis Test / 4.2.2:
Fold Change Methods / 4.3:
k-fold Change / 4.3.1:
Unusual Ratios / 4.3.2:
Model-Based Methods / 4.3.3:
Parametric Tests / 4.4:
Paired t-Test / 4.4.1:
Unpaired t-Test / 4.4.2:
Variants of t-Test / 4.4.3:
Non-Parametric Tests / 4.5:
Classical Non-Parametric Statistics / 4.5.1:
Other Non-Parametric Statistics / 4.5.2:
Bootstrap Analysis / 4.5.3:
Multiple Testing / 4.6:
Family-Wise Error Rate / 4.6.1:
Sidak correction and Bonferroni correction / 4.6.1.1:
Holm's step-wise correction / 4.6.1.2:
False Discovery Rate / 4.6.2:
Permutation Correction / 4.6.3:
SAM: Significance Analysis of Microarrays / 4.6.4:
ANOVA: Analysis of Variance / 4.7:
One-Way ANOVA / 4.7.1:
Two-Way ANOVA / 4.7.2:
Gene-Based Analysis / 4.8:
Proximity Measurement for Gene Expression Data / 5.1:
Euclidean Distance / 5.2.1:
Correlation Coefficient / 5.2.2:
Pearson's correlation coefficient / 5.2.2.1:
Jackknife correlation / 5.2.2.2:
Spearman's rank-order correlation / 5.2.2.3:
Kullback-Leibler Divergence / 5.2.3:
Partition-Based Approaches / 5.3:
K-means and its Variations / 5.3.1:
SOM and its Extensions / 5.3.2:
Graph-Theoretical Approaches / 5.3.3:
HCS and CLICK / 5.3.3.1:
CAST: Cluster affinity search technique / 5.3.3.2:
Model-Based Clustering / 5.3.4:
Hierarchical Approaches / 5.4:
Agglomerative Algorithms / 5.4.1:
Divisive Algorithms / 5.4.2:
DAA: Deterministic annealing algorithm / 5.4.2.1:
SPC: Super-paramagnetic clustering / 5.4.2.2:
Density-Based Approaches / 5.5:
DBSCAN / 5.5.1:
OPTICS / 5.5.2:
DENCLUE / 5.5.3:
GPX: Gene Pattern eXplorer / 5.6:
The Attraction Tree / 5.6.1:
The distance measure / 5.6.1.1:
The density definition / 5.6.1.2:
The attraction tree / 5.6.1.3:
An example of attraction tree / 5.6.1.4:
Interactive Exploration of Coherent Patterns / 5.6.2:
Generating the index list / 5.6.2.1:
The coherent pattern index and its graph / 5.6.2.2:
Drilling down to subgroups / 5.6.2.3:
Experimental Results / 5.6.3:
Interactive exploration of Iyer's data and Spellman's data / 5.6.3.1:
Comparison with other algorithms / 5.6.3.2:
Efficiency and Scalability / 5.6.4:
Cluster Validation / 5.7:
Homogeneity and Separation / 5.7.1:
Agreement with Reference Partition / 5.7.2:
Reliability of Clusters / 5.7.3:
P-value of a cluster / 5.7.3.1:
Prediction strength / 5.7.3.2:
Sample-Based Analysis / 5.8:
Selection of Informative Genes / 6.1:
Supervised Approaches / 6.2.1:
Differentially expressed genes / 6.2.1.1:
Gene pairs / 6.2.1.2:
Virtual genes / 6.2.1.3:
Genetic algorithms / 6.2.1.4:
Unsupervised Approaches / 6.2.2:
PCA: Principal component analysis / 6.2.2.1:
Gene shaving / 6.2.2.2:
Class Prediction / 6.3:
Linear Discriminant Analysis / 6.3.1:
Instance-Based Classification / 6.3.2:
KNN: k-Nearest Neighbor / 6.3.2.1:
Weighted voting / 6.3.2.2:
Decision Trees / 6.3.3:
Support Vector Machines / 6.3.4:
Class Discovery / 6.4:
Problem statement / 6.4.1:
CLIFF: CLustering via Iterative Feature Filtering / 6.4.2:
The sample-partition process / 6.4.2.1:
The gene-filtering process / 6.4.2.2:
ESPD: Empirical Sample Pattern Detection / 6.4.3:
Measurements for phenotype structure detection / 6.4.3.1:
Algorithms / 6.4.3.2:
Experimental results / 6.4.3.3:
Classification Validation / 6.5:
Prediction Accuracy / 6.5.1:
Prediction Reliability / 6.5.2:
Pattern-Based Analysis / 6.6:
Mining Association Rules / 7.1:
Concepts of Association-Rule Mining / 7.2.1:
The Apriori Algorithm / 7.2.2:
The FP-Growth Algorithm / 7.2.3:
The CARPENTER Algorithm / 7.2.4:
Generating Association Rules in Microarray Data / 7.2.5:
Rule filtering / 7.2.5.1:
Rule grouping / 7.2.5.2:
Mining Pattern-Based Clusters in Microarray Data / 7.3:
Heuristic Approaches / 7.3.1:
Coupled two-way clustering (CTWC) / 7.3.1.1:
Plaid model / 7.3.1.2:
Biclustering and 5-Clusters / 7.3.1.3:
Deterministic Approaches / 7.3.2:
[delta]-pCluster / 7.3.2.1:
OP-Cluster / 7.3.2.2:
Mining Gene-Sample-Time Microarray Data / 7.4:
Three-dimensional Microarray Data / 7.4.1:
Coherent Gene Clusters / 7.4.2:
Problem description / 7.4.2.1:
Maximal coherent sample sets / 7.4.2.2:
The mining algorithms / 7.4.2.3:
Tri-Clusters / 7.4.2.4:
The tri-cluster model / 7.4.3.1:
Properties of tri-clusters / 7.4.3.2:
Mining tri-clusters / 7.4.3.3:
Visualization of Microarray Data / 7.5:
Single-Array Visualization / 8.1:
Box Plot / 8.2.1:
Histogram / 8.2.2:
Scatter Plot / 8.2.3:
Gene Pies / 8.2.4:
Multi-Array Visualization / 8.3:
Global Visualizations / 8.3.1:
Optimal Visualizations / 8.3.2:
Projection Visualization / 8.3.3:
VizStruct / 8.4:
Fourier Harmonic Projections / 8.4.1:
Discrete-time signal paradigm / 8.4.1.1:
The Fourier harmonic projection algorithm / 8.4.1.2:
Properties of FHPs / 8.4.2:
Basic properties / 8.4.2.1:
Advanced properties / 8.4.2.2:
Harmonic equivalency / 8.4.2.3:
Effects of harmonic twiddle power index / 8.4.2.4:
Enhancements of Fourier Harmonic Projections / 8.4.3:
Exploratory Visualization of Gene Profiling / 8.4.4:
Microarray data sets for visualization / 8.4.4.1:
Identification of informative genes / 8.4.4.2:
Classifier construction and evaluation / 8.4.4.3:
Dimension arrangement / 8.4.4.4:
Visualization of various data sets / 8.4.4.5:
Comparison of FFHP to Sammon's mapping / 8.4.4.6:
Confirmative Visualization of Gene Time-series / 8.4.5:
Data sets for visualization / 8.4.5.1:
The harmonic projection approach / 8.4.5.2:
Rat kidney data set / 8.4.5.3:
Yeast-A data set / 8.4.5.4:
Yeast-B data set / 8.4.5.5:
New Trends in Mining Gene Expression Microarray Data / 8.5:
Meta-Analysis of Microarray Data / 9.1:
Meta-Analysis of Differential Genes / 9.2.1:
Meta-Analysis of Co-Expressed Genes / 9.2.2:
Semi-Supervised Clustering / 9.3:
General Semi-Supervised Clustering Algorithms / 9.3.1:
A Seed-Generation Approach / 9.3.2:
Seed-generation methods / 9.3.2.1:
Pattern-selection rules / 9.3.2.2:
The framework for the seed-generation approach / 9.3.2.3:
Integration of Gene Expression Data with Other Data / 9.4:
A Probabilistic Model for Joint Mining / 9.4.1:
A Graph-Based Model for Joint Mining / 9.4.2:
Conclusion / 9.5:
Bibliography
Index
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
25.

図書

図書
Peter Bigler
出版情報: Weinheim : Wiley-VCH, c2000  xviii, 253 p. ; 25 cm.
シリーズ名: Spectroscopic techniques : an interactive course
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Scope and Audience / 1.1:
Organisation / 1.2:
Personal Qualifications / 1.3:
Content / 1.4:
Recommended Reading / 1.5:
Your Personal "PC-NMR Processing Station" / 2:
Technical Requirements / 2.1:
Software Tools / 2.3:
General / 2.3.1:
Installation of 1D WIN-NMR, 2D WIN-NMR and GETFILE / 2.3.2:
Starting GETFILE, 1D WIN-NMR and 2D WIN-NMR / 2.3.3:
Software- and Hardwareproblems / 2.4:
NMR Data / 2.5:
Samples / 2.5.1:
Experiments / 2.5.2:
Experimental Conditions / 2.5.3:
Directory Structure / 2.5.4:
Copying the NMR Data from the CD to your Hard Disk / 2.5.5:
Useful Options in the MS WINDOWS 95 Operating System / 2.5.6:
Data Formats / 2.6:
WINNMR Format / 2.6.1:
UXNMR/XWINNMR Format / 2.6.2:
DISNMR Format / 2.6.3:
NMR Data Formats of other Manufacturers: Varian, JEOL, GE / 2.6.4:
Other Formats: ASCII, JCAMP-DX / 2.6.5:
Data Import and Export / 2.7:
Network-Example / 2.7.1:
Transfer and Conversion of NMR Data stored on Remote Computers / 2.7.2:
UXNMR/XWINNMR-Format / 2.7.2.1:
DISNMR-Format / 2.7.2.2:
Decomposition of 2D Data Files / 2.7.3:
References / 2.8:
Modern Homo- and Heteronuclear 1D and 2D NMR Experiments: A Short Overview / 3:
The NMR Experiment / 3.1:
1D Experiments / 3.3:
[superscript 1]H Experiments / 3.3.1:
[superscript 1]H One Pulse Experiment / 3.3.1.1:
[superscript 1]H {[superscript 1]H} Selective Decoupling Experiment / 3.3.1.2:
[superscript 1]H {[superscript 1]H} Total Correlation Spectroscopy (TOCSY) Experiment / 3.3.1.3:
[superscript 1]H {[superscript 1]H} Nuclear Overhauser (NOE) Experiment / 3.3.1.4:
[superscript 1]H {[superscript 1]H} Nuclear Overhauser Experiment in the Rotating Frame (ROE) / 3.3.1.5:
[superscript 13]C Experiments / 3.3.2:
[superscript 13]C One-Pulse Experiment / 3.3.2.1:
[superscript 13]C DEPT Experiment / 3.3.2.2:
[superscript 13]C JMOD (APT) Experiment / 3.3.2.3:
[superscript 13]C T[subscript 1] Inversion-Recovery Experiment / 3.3.2.4:
2D Experiments / 3.4:
[superscript 1]H/[superscript 1]H Experiments / 3.4.1:
[superscript 1]H/[superscript 1]H COSY Experiment / 3.4.1.1:
[superscript 1]H/[superscript 1]H TOCSY Experiment / 3.4.1.2:
[superscript 1]H/[superscript 1]H NOESY and [superscript 1]H/[superscript 1]H ROESY Experiments / 3.4.1.3:
[superscript 1]H/[superscript 1]H J-Resolved Spectroscopy Experiment / 3.4.1.4:
[superscript 1]H/[superscript 13]C Experiments / 3.4.2:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript 1]J[subscript CH] / 3.4.2.1:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript n]J[subscript CH] / 3.4.2.2:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript 1]J[subscript CH] and [superscript 1]H/[superscript 1]H TOCSY Transfer / 3.4.2.3:
How to Display and Plot 1D and 2D Spectra / 3.5:
Help Routines / 4.1:
Application Windows for 1D WIN-NMR and 2D WIN-NMR / 4.3:
File Handling / 4.4:
Display of 1D Spectra with 1D WIN-NMR / 4.5:
Buttons with 1D WIN-NMR [Spectrum] / 4.5.1:
Additional Display Options with 1D WIN-NMR / 4.5.2:
The Use of Scroll Bars, Keys and Function Keys with 1D WIN-NMR / 4.5.3:
Basic Processing Steps with 1D Spectra / 4.6:
Calibration / 4.6.1:
Peak Picking / 4.6.2:
Integration / 4.6.3:
Simple Spectral Analysis / 4.6.4:
Plotting 1D Spectra / 4.7:
Define Plot / 4.7.1:
Page Layout / 4.7.2:
Page Layout Dialog Box in Normal 1D Display Mode / 4.7.2.1:
Page Layout Dialog Box in the Dual and Multiple Display Mode / 4.7.2.2:
Preview / 4.7.3:
Printer Setup..., Print... / 4.7.4:
Copy / 4.7.5:
Metafile... / 4.7.6:
ACQ., PROC., PLOT and A3000-Parameters / 4.7.7:
Title... / 4.7.8:
Pulse Program..., AU Program... / 4.7.9:
History... / 4.7.10:
Data Base Parameters... / 4.7.11:
Display of 2D Spectra with 2D WIN-NMR / 4.8:
Buttons with 2D WIN-NMR / 4.8.1:
Setting Contour Levels / 4.8.2:
Additional Display Options with 2D WIN-NMR / 4.8.3:
Basic Processing Steps with 2D Spectra / 4.9:
Plotting 2D Spectra / 4.9.1:
Layout / 4.10.1:
Page Setup... / 4.10.2:
Print..., Print all, Printer Setup... / 4.10.3:
Copy, Copy all, Paste / 4.10.4:
2D Layout with 1D WIN-NMR / 4.10.5:
History / 4.10.6:
How to Process 1D and 2D NMR Data / 5:
Basic Processing / 5.1:
The Parameters TD and SI / 5.2.1:
Fourier Transformation of 1D Data / 5.2.2:
Phasing of 1D Spectra / 5.2.3:
Fourier Transformation of 2D Data / 5.2.4:
Phasing of 2D Spectra / 5.2.5:
Advanced Processing in the Time Domain / 5.3:
Multiplication with a Processing Function: s(t) . f(t) "Weighting", "Filtering", "Apodization" / 5.3.1:
Addition of a Processing Function: s(t) + f(t) / 5.3.3:
DC-Correction/Baseline-Correction / 5.3.3.1:
Zero Filling / 5.3.3.2:
Linear Prediction / 5.3.3.3:
FID Shift/Adjust Points/Zero Points / 5.3.4:
Adding two FIDs: s[subscript 1](t) + s[subscript 2](t) / 5.3.5:
Advanced Processing in the Frequency Domain / 5.4:
Baseline Correction / 5.4.1:
Additional 1D Specific Processing / 5.4.2:
Deconvolution / 5.4.2.1:
Smoothing / 5.4.2.2:
Derivative / 5.4.2.3:
Adjust Point / 5.4.2.4:
Inverse FT / 5.4.2.5:
Additional 2D Specific Processing / 5.4.3:
Symmetrization / 5.4.3.1:
Tilt / 5.4.3.2:
Remove Ridge / 5.4.3.3:
Remove Diagonal / 5.4.3.4:
Remove Peak / 5.4.3.5:
Shift/Wrap / 5.4.3.6:
Automatic Processing / 5.5:
Automatic Processing with Single Files / 5.5.1:
Automatic Processing with a Series of Files / 5.5.3:
Tables / 5.6:
Recommended 1D Processing Parameters / 5.6.1:
Recommended 2D Processing Parameters / 5.6.1.1:
[superscript 13]C/[superscript 1]H Experiments / 5.6.2.1:
NMR Data of an Unknown Oligosaccharide / 5.7:
Strategy to Solve Structural Problems / 6.1:
General Scheme for an NMR Analysis / 6.2.1:
Signal Assignments / 6.2.1.1:
NMR Parameter Evaluation / 6.2.1.2:
Processing the NMR Data of the Unknown Oligosaccharide / 6.3:
Reference Data / 6.3.1:
NMR Data Characteristic of Carbohydrates / 6.3.3:
Processing and Analysis of the NMR Data / 6.3.4:
The Structure of the Oligosaccharide / 6.4:
Glossary / 6.5:
Index
Introduction / 1:
Scope and Audience / 1.1:
Organisation / 1.2:
26.

図書

図書
[by] Tateo Yamanaka
出版情報: Tokyo : Springer, c2008  xii, 157 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
General Considerations / 1:
Chemoheterotrophic Bacteria / 1.1:
Chemolithoautotrophic Bacteria / 1.2:
Ammonia-Oxidizing Bacteria / 1.2.1:
Nitrite-Oxidizing Bacteria / 1.2.2:
Denitrifying Bacteria / 1.2.3:
Sulfate-Reducing Bacteria / 1.2.4:
Sulfur-Oxidizing Bacteria / 1.2.5:
Iron-Oxidizing and -Reducing Bacteria / 1.2.6:
Methanogens / 1.2.7:
Cytochromes / 2:
Hemes / 2.1:
Kinds of Cytochromes / 2.2:
Heme A-Containing Cytochromes / 2.2.1:
Heme B-Containing Cytochromes / 2.2.2:
Heme C-Containing Cytochromes / 2.2.3:
Heme D[subscript 1]-Containing Cytochromes / 2.2.4:
Heme O-Containing Cytochromes / 2.2.5:
Heme D-Containing Cytochromes / 2.2.6:
Nitrogen Circulation on Earth and Bacteria / 3:
Bacterial Nitrification / 3.1:
Oxidation of Ammonia / 3.1.1:
Oxidation of Hydroxylamine / 3.1.2:
Hydroxylamine Oxidoreductase / (a):
Cytochrome c-554 / (b):
Cytochrome c-552 / (c):
Cytochrome c Oxidase / (d):
Electron Transfer Pathway Coupled to the Oxidation of Ammonia / 3.1.3:
Dehalogenation of Chloroethylenes by Bacteria / 3.1.4:
Various Growth Features of Ammonia-Oxidizing Bacteria / 3.1.5:
Bacterial Oxidation of Nitrite / 3.1.6:
Nitrite Oxidoreductase
Cytochromes c-550(s) and c-550(m)
Reconstitution of Nitrite Oxidation System
Nitrification by Heterotrophic Bacteria / 3.1.7:
Applications of Nitrifying Bacteria / 3.2:
Bacterial Production of Gunpowder / 3.2.1:
Removal of Ammonia from Sewage / 3.2.2:
Interaction Between Ammonia-Oxidizing and Nitrite-Oxidizing Bacteria / 3.3:
Was Earth Previously Polluted by Nitrite? / 3.3.1:
An Agricultural Incident Caused by Incomplete Nitrification / 3.3.2:
Herbicides and Nitrification / 3.3.3:
Reduction of Nitrate and Nitrogen Gas / 3.4:
Bacteria That Reduce Nitrate to Nitrogen Gas / 3.4.1:
Nitric Oxide Is also Produced in Human Tissues / 3.4.2:
Bacteria Reducing Nitrogen Gas to Ammonia / 3.4.3:
Rhizobia
Azotobacter
Cyanobacteria
Sulfur Circulation on Earth and Bacteria / 4:
Bacteria Forming Hydrogen Sulfide / 4.1:
Bacterial Reduction Mechanisms of Sulfate / 4.1.1:
Components Participating in Bacterial Reduction of Sulfate / 4.1.2:
Hydrogenase
Adenylylsulfate Reductase
Sulfite Reductase
Siroheme / (e):
Sulfate-Reducing Bacteria and Molecular Oxygen / 4.1.3:
Sulfur Respiration / 4.1.4:
Autumnal Dying of Rice Plants / 4.1.5:
Checking How Old the Origin of Life Is / 4.1.6:
Bacterial Oxidation Mechanisms of Sulfur Compounds / 4.2:
Oxidation of Sulfide and Elemental Sulfur
Oxidation of Thiosulfate
Oxidation of Sulfite
Cytochrome c
Oxidation Systems of Sulfite and Thiosulfate / (f):
Sulfur-Oxidizing Bacteria Support Animals in the Dark on the Deep-Sea Bottom / 4.2.2:
Bacterial Corrosion of Concrete / 4.2.3:
Oxidation and Reduction of Iron by Bacteria / 5:
Bacteria That Oxidize or Reduce Iron / 5.1:
Mechanisms in Bacterial Oxidation of Iron / 5.1.1:
Fe(II)-Cytochrome c Oxidoreductase
Cytochromes c
Rusticyanin
Electron Transfer System Coupled to Oxidation of Ferrous Ion
Oxidation of Sulfur Compounds by Iron-Oxidizing Bacteria / 5.1.2:
Various Growth Aspects of Acidothiobacillus Ferrooxidans / 5.1.3:
Iron-Oxidizing Bacteria Requiring No Oxygen / 5.1.4:
Bacterial Reduction of Ferric Compounds / 5.1.5:
Bacteria Containing Magnetism / 5.1.6:
Applications of Iron-Oxidizing Bacteria / 5.2:
Bacterial Leaching / 5.2.1:
Etching of Copper Plate / 5.2.2:
Concentration of Gold from Pyrite Containing a Trace of Gold / 5.2.3:
Biohydrometallurgy / 5.2.4:
Cleaning of Mine Sewage / 5.2.5:
Upheaval of House Foundations: Damage Caused by Bacteria / 5.3:
Carbon Circulation on Earth and Microorganisms / 6:
Mechanisms of Formation of Organic Compounds from Carbon Dioxide / 6.1:
Calvin-Benson Cycle (Reductive Pentose Phosphate Cycle) / 6.1.1:
Hatch-Slack Pathway / 6.1.2:
Carbon Dioxide-Fixing Pathways Other than the Calvin-Benson Cycle in the Lithoautotrophs / 6.1.3:
Mechanism of Lithoautotrophic Methane Formation: Respiration but Not Fermentation / 6.2:
Formation of Methane from Acetate / 6.2.2:
Methanogens and Cytochromes / 6.2.3:
Methanogens and the Environment / 6.2.4:
Bacteria Utilizing Carbon Monoxide / 6.3:
Organisms Evolutionarily Closest to the Origin of Life / 7:
Archaea and Their Energy-Acquiring Reactions / 7.1:
Biological Evolution at Earlier Stages / 7.2:
References
Index
Preface
Abbreviations
General Considerations / 1:
27.

図書

図書
Guozhong Cao, Ying Wang
出版情報: Singapore : World Scientific, c2011  xiii, 581 p. ; 23 cm
シリーズ名: World scientific series in nanoscience and nanotechnology ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
Bottom-Up and Top-Down Approaches / 1.3:
Challenges in Nanotechnology / 1.4:
Scope of the Book / 1.5:
References
Physical Chemistry of Solid Surfaces / Chapter 2:
Surface Energy / 2.1:
Chemical Potential as a Function of Surface Curvature / 2.3:
Electrostatic Stabilization / 2.4:
Surface charge density / 2.4.1:
Electric potential at the proximity of solid surface / 2.4.2:
Van der Waals attraction potential / 2.4.3:
Interactions between two particles: DLVO theory / 2.4.4:
Steric Stabilization / 2.5:
Solvent and polymer / 2.5.1:
Interactions between polymer layers / 2.5.2:
Mixed steric and electric interactions / 2.5.3:
Summary / 2.6:
Zero-Dimensional Nanostructures: Nanoparticles / Chapter 3:
Nanoparticles Through Homogeneous Nucleation / 3.1:
Fundamentals of homogeneous nucleation / 3.2.1:
Subsequent growth of nuclei / 3.2.2:
Growth controlled by diffusion / 3.2.2.1:
Growth controlled by surface process / 3.2.2.2:
Synthesis of metallic nanoparticles / 3.2.3:
Influences of reduction reagents / 3.2.3.1:
Influences by other factors / 3.2.3.2:
Influences of polymer stabilizer / 3.2.3.3:
Synthesis of semiconductor nanoparticles / 3.2.4:
Synthesis of oxide nanoparticles / 3.2.5:
Introduction to sol-gel processing / 3.2.5.1:
Forced hydrolysis / 3.2.5.2:
Controlled release of ions / 3.2.5.3:
Vapor phase reactions / 3.2.6:
Solid-state phase segregation / 3.2.7:
Nanoparticles Through Heterogeneous Nucleation / 3.3:
Fundamentals of heterogeneous nucleation / 3.3.1:
Synthesis of nanoparticles / 3.3.2:
Kinetically Confined Synthesis of Nanoparticles / 3.4:
Synthesis inside micelles or using microemulsions / 3.4.1:
Aerosol synthesis / 3.4.2:
Growth termination / 3.4.3:
Spray pyrolysis / 3.4.4:
Template-based synthesis / 3.4.5:
Epitaxial Core-Shell Nanoparticles / 3.5:
One-Dimensional Nanostructures: Nanowires and Nanorods / 3.6:
Spontaneous Growth / 4.1:
Evaporation (dissolution)-condensation growth / 4.2.1:
Fundamentals of evaporation (dissolution)-condensation growth / 4.2.1.1:
Evaporation-condensation growth / 4.2.1.2:
Dissolution-condensation growth / 4.2.1.3:
Vapor (or solution)-liquid-solid (VLS or SLS) growth / 4.2.2:
Fundamental aspects of VLS and SLS growth / 4.2.2.1:
VLS growth of various nanowires / 4.2.2.2:
Control of the size of nanowires / 4.2.2.3:
Precursors and catalysts / 4.2.2.4:
Solution-liquid-solid growth / 4.2.2.5:
Stress-induced recrystallization / 4.2.3:
Template-Based Synthesis / 4.3:
Electrochemical deposition / 4.3.1:
Electrophoretic deposition / 4.3.2:
Template filling / 4.3.3:
Colloidal dispersion filling / 4.3.3.1:
Melt and solution filling / 4.3.3.2:
Chemical vapor deposition / 4.3.3.3:
Deposition by centrifugation / 4.3.3.4:
Converting through chemical reactions / 4.3.4:
Electrospinning / 4.4:
Lithography / 4.5:
Two-Dimensional Nanostructures: Thin Films / 4.6:
Fundamentals of Film Growth / 5.1:
Vacuum Science / 5.3:
Physical Vapor Deposition (PVD) / 5.4:
Evaporation / 5.4.1:
Molecular beam epitaxy (MBE) / 5.4.2:
Sputtering / 5.4.3:
Comparison of evaporation and sputtering / 5.4.4:
Chemical Vapor Deposition (CVD) / 5.5:
Typical chemical reactions / 5.5.1:
Reaction kinetics / 5.5.2:
Transport phenomena / 5.5.3:
CVD methods / 5.5.4:
Diamond films by CVD / 5.5.5:
Atomic Layer Deposition / 5.6:
Superlattices / 5.7:
Self-Assembly / 5.8:
Monolayers of organosilicon or alkylsilane derivatives / 5.8.1:
Monolayers of alkanethiols and sulfides / 5.8.2:
Monolayers of carboxylic acids, amines, and alcohols / 5.8.3:
Langmuir-Blodgett Films / 5.9:
Electrochemical Deposition / 5.10:
Sol-Gel Films / 5.11:
Special Nanomaterials / 5.12:
Carbon Fullerenes and Nanotubes / 6.1:
Carbon fullerenes / 6.2.1:
Fullerene-derived crystals / 6.2.2:
Carbon nanotubes / 6.2.3:
Micro and Mesoporous Materials / 6.3:
Ordered mesoporous structures / 6.3.1:
Random mesoporous structures / 6.3.2:
Crystalline microporous materials: Zeolites / 6.3.3:
Core-Shell Structures / 6.4:
Metal-oxide structures / 6.4.1:
Metal-polymer structures / 6.4.2:
Oxide-polymer nanostructures / 6.4.3:
Organic-Inorganic Hybrids / 6.5:
Class 1 hybrids / 6.5.1:
Class 2 hybrids / 6.5.2:
Intercalation Compounds / 6.6:
Nanocomposites and Nanograined Materials / 6.7:
Inverse Opals / 6.8:
Bio-Induced Nanomaterials / 6.9:
Nanostructures Fabricated by Physical Techniques / 6.10:
Photolithography / 7.1:
Phase-shifting photolithography / 7.2.2:
Electron beam lithography / 7.2.3:
X-ray lithography / 7.2.4:
Focused ion beam (FIB) lithography / 7.2.5:
Neutral atomic beam lithography / 7.2.6:
Nanomanipulation and Nanolithography / 7.3:
Scanning tunneling microscopy (STM) / 7.3.1:
Atomic force microscopy (AFM) / 7.3.2:
Near-field scanning optical microscopy (NSOM) / 7.3.3:
Nanomanipulation / 7.3.4:
Nanolithography / 7.3.5:
Soft Lithography / 7.4:
Microcontact printing / 7.4.1:
Molding / 7.4.2:
Nanoimprint / 7.4.3:
Dip-pen nanolithography / 7.4.4:
Assembly of Nanoparticles and Nanowires / 7.5:
Capillary forces / 7.5.1:
Dispersion interactions / 7.5.2:
Shear-force-assisted assembly / 7.5.3:
Electric-field-assisted assembly / 7.5.4:
Covalently linked assembly / 7.5.5:
Gravitational-field-assisted assembly / 7.5.6:
Template-assisted assembly / 7.5.7:
Other Methods for Microfabrication / 7.6:
Characterization and Properties of Nanomaterials / 7.7:
Structural Characterization / 8.1:
X-ray diffraction (XRD) / 8.2.1:
Small angle X-ray scattering (SAXS) / 8.2.2:
Scanning electron microscopy (SEM) / 8.2.3:
Transmission electron microscopy (TEM) / 8.2.4:
Scanning probe microscopy (SPM) / 8.2.5:
Gas adsorption / 8.2.6:
Chemical Characterization / 8.3:
Optical spectroscopy / 8.3.1:
Electron spectroscopy / 8.3.2:
Ion spectrometry / 8.3.3:
Physical Properties of Nanomaterials / 8.4:
Melting points and lattice constants / 8.4.1:
Mechanical properties / 8.4.2:
Optical properties / 8.4.3:
Surface plasmon resonance / 8.4.3.1:
Quantum size effects / 8.4.3.2:
Electrical conductivity / 8.4.4:
Surface scattering / 8.4.4.1:
Change of electronic structure / 8.4.4.2:
Quantum transport / 8.4.4.3:
Effect of microstructure / 8.4.4.4:
Ferroelectrics and dielectrics / 8.4.5:
Superparamagnetism / 8.4.6:
Applications of Nanomaterials / 8.5:
Molecular Electronics and Nanoelectronics / 9.1:
Nanobots / 9.3:
Biological Applications of Nanoparticles / 9.4:
Catalysis by Gold Nanoparticles / 9.5:
Bandgap Engineered Quantum Devices / 9.6:
Quantum well devices / 9.6.1:
Quantum dot devices / 9.6.2:
Nanomechanics / 9.7:
Carbon Nanotube Emitters / 9.8:
Energy Applications of Nanomaterials / 9.9:
Photoelectrochemical cells / 9.9.1:
Lithium-ion rechargeable batteries / 9.9.2:
Hydrogen storage / 9.9.3:
Thermoelectrics / 9.9.4:
Environmental Applications of Nanomaterials / 9.10:
Photonic Crystals and Plasmon Waveguides / 9.11:
Photonic crystals / 9.11.1:
Plasmon waveguides / 9.11.2:
Appendices / 9.12:
Index
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
28.

図書

図書
Maurice W. Long
出版情報: Lexington, Mass. : Lexington Books, c1975  xxvi, 366 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
References
Acknowledgments
Remote Sensing by Radar / 1:
State of the Art / 1.1:
Overview / 1.1.1:
Radar Capabilities at the End of World War II / 1.1.2:
Strip Maps and Side-Looking Radar / 1.1.3:
Spaceborne Radar / 1.1.4:
Surface Effects and Emerging Techniques / 1.2:
Effects of Surface Characteristics / 1.2.1:
Modern Techniques for Sensing Surface Characteristics / 1.2.2:
Basic Concepts and Definitions / 2:
Radar Reflectivity / 2.1:
The Radar Equation for Free Space / 2.1.1:
Radar Cross Section of Targets / 2.1.2:
Normalized Radar Cross Section / 2.1.3:
Coherence and Incoherence of a Scattered Field / 2.1.4:
Rayleigh Roughness Criterion, Specular Reflection, and Scattering / 2.1.5:
Far Field of Radar Targets / 2.1.6:
Effects of Radar Frequency Changes / 2.1.7:
Echo Fluctuations / 2.1.8:
The Earth and Its Effects on Radar / 2.2:
Effects of the Earth's Curvature and Refraction / 2.2.1:
The Effect of Interference on a Target / 2.2.2:
Nature of the Sea Surface and Wind Speed Statistics / 2.2.3:
Propagation over the Horizon / 2.2.4:
Attenuation and Scattering by the Atmosphere / 2.2.5:
Polarization, Depolarization, and Theories of Scattering / 3:
Polarization and Depolarization / 3.1:
Polarization Scattering Matrix / 3.1.1:
Relationships Between Linear and Circular Polarizations / 3.1.2:
A Randomly Oriented Dipole / 3.1.3:
A Dihedral Reflector / 3.1.4:
Depolarization Caused by an Ensemble of Randomly Oriented Dipoles / 3.1.5:
Theories for Radar Cross Section of Rough Surfaces / 3.2:
Simple Models Including the Constant Gamma Model / 3.2.1:
Classical Interference Theory / 3.2.2:
The Tangent Plane Approximation / 3.2.3:
Very Rough Surfaces / 3.2.4:
The Facet Model / 3.2.5:
The Slightly Rough Planar Surface / 3.2.6:
Ripples on Water / 3.2.7:
Vegetation Model / 3.2.8:
Composite Surfaces / 3.2.9:
Doppler Spectra of Sea Echo / 3.2.10:
Effects of the Earth's Surface / 4:
Fundamental Concepts / 4.1:
Reflections from a Rough, Spherical Earth / 4.1.1:
Reflection Coefficient for a Flat, Smooth Earth / 4.1.3:
Effect of a Flat, Smooth Earth on Target Echo / 4.1.4:
Echo from Targets That Are Above a Flat, Smooth Earth / 4.2:
Range and Depression Angle Dependencies for a Small Object Above a Smooth Earth / 4.2.1:
Vertically Extensive Objects Above a Smooth Earth / 4.2.2:
Propagation Factors for Circular, Horizontal, and Vertical Polarizations Above a Smooth Earth / 4.2.3:
Propagation Factors for a Cloud of Scatterers Above a Smooth Earth / 4.2.4:
Effects of Surface Roughness on Forward-Scattered Fields / 4.3:
Reflection Coefficient for Rough Surfaces / 4.3.1:
Shadowing / 4.3.2:
Depolarization / 4.3.3:
Echo from Targets That Are Above a Physically Rough Earth / 4.4:
Variation of Echo Power with Range / 4.4.1:
Range at Which Idealized R[superscript -4] and R[superscript -8] Curves Intersect / 4.4.2:
Relative Cross Sections for Circular Polarizations / 4.4.3:
A Cloud of Scatterers / 4.4.4:
Effects of the Diffuse Component on Target Echo / 4.4.5:
Multipath Effects on Echo from Land and Sea / 4.5:
Effects of Multipath Interference / 4.5.1:
Multipath Interference and Shadowing / 4.5.2:
Echo Fluctuations and Spectra / 5:
Introduction / 5.1:
Spectra and Autocorrelation Functions / 5.1.1:
Amplitude Statistics / 5.1.2:
Ground Echo Fluctuations / 5.2:
Nature of Ground Echoes / 5.2.1:
Temporal Amplitude Distributions for Terrain / 5.2.2:
Spatial Amplitude Statistics / 5.2.3:
Noncoherent Spectra and Autocorrelation Functions of Land / 5.2.4:
Coherent Land Doppler Spectra / 5.2.5:
Lincoln Laboratory Spectral Model / 5.2.6:
Power in Fast and Slow Land Spectra / 5.2.7:
Bragg Spectra from Inland Water / 5.2.8:
Concluding Remarks on Ground Echo Fluctuations / 5.2.9:
Visual Observations of Sea Echo / 5.3:
Characteristics Revealed by an A-Scope Display / 5.3.1:
Results from Fixed Range Sampling / 5.3.2:
Subjective Radar/Optical Comparisons and Anomalies / 5.3.3:
Observations of Bishop and of Lewis and Olin / 5.3.4:
Sea Echo Statistics and Spectra / 5.4:
Amplitude Distributions / 5.4.1:
Spectra Observed with Noncoherent Radar / 5.4.2:
Autocorrelation Functions / 5.4.3:
Noncoherent Spectra and Relationships with Sea Surface Mechanisms / 5.4.4:
Relative Power in Fast and Slow Fluctuations / 5.4.5:
Phase Coherent Doppler Spectra / 5.4.6:
Super Events / 5.4.7:
Sea Spikes / 5.4.8:
Concluding Remarks on Sea Echo Fluctuations and Spectra / 5.4.9:
Space-Time Clutter Amplitude Statistics / 5.5:
Compound Distributions / 5.5.1:
The K-Distribution / 5.5.2:
Rayleigh Modulated by Weibull Statistics / 5.5.3:
Average and Median Cross Sections / 6:
General Characteristics of [sigma degree] / 6.1:
Differences Between Average and Median Values / 6.1.2:
Smooth Surfaces and Small Grazing Angles / 6.1.3:
Classical Interference Effect / 6.1.4:
Problems Associated with Measuring [sigma degree] / 6.1.5:
Radar Cross Section for Land / 6.2:
Nature of [sigma degree] for Land / 6.2.1:
Sample [sigma degree] Land Measurements / 6.2.2:
Terrain Within Near Vertical and Plateau Regions / 6.2.3:
Ulaby and Dobson Tables for Terrain / 6.2.4:
Terrain Within Plateau and Low Grazing Angle Regions / 6.2.5:
Terrain at Extremely Low Grazing Angles / 6.2.6:
Concluding Remarks on Average Land Echo / 6.2.7:
Radar Cross Section for the Sea / 6.3:
Nature of [sigma degree] for the Sea / 6.3.1:
Range Dependence at Small Grazing Angles / 6.3.2:
Dependence on Grazing Angle / 6.3.3:
Grazing Angle Dependence at Low Frequencies / 6.3.4:
Nathanson Sea Clutter Tables / 6.3.5:
Extremely Low Grazing Angles / 6.3.6:
Dependence of [sigma degree] on Polarization / 6.3.7:
Dependence of [sigma degree] on the Wind and Sea / 6.3.8:
GIT Sea Clutter Models / 6.3.9:
Wavelength Dependence for the Sea / 6.3.10:
A Two-Scatterer Sea Clutter Model / 6.3.11:
Oil Slicks and Rain on Water / 6.3.12:
Concluding Remarks on Average Sea Echo / 6.3.13:
Interdependence of Polarization Characteristics / 7:
General Observations / 7.1:
Coherency, Statistical Independence, and Correlation / 7.1.2:
A Simplified Polarization Model for Rough Terrain / 7.1.3:
Use of the Polarization Model for the Moon / 7.1.4:
Polarization Model with Different Propagation Factors / 7.1.5:
Echo from Land, Principally Trees / 7.2:
Amplitude Fluctuations / 7.2.1:
Interdependence of Amplitude and Phase of Orthogonally Polarized Echoes / 7.2.2:
Average and Median Value Data, and Depression Angle Dependence / 7.2.3:
Relative Magnitude of Coherent and Incoherent Scattering from Trees / 7.2.4:
Sea Echo / 7.3:
Fluctuations of Orthogonally Polarized Components / 7.3.1:
Averages and Medians for Linear Polarization / 7.3.2:
Interdependence of Averages and Medians for Linear and Circular Polarizations / 7.3.3:
Coherent and Incoherent Scattering from the Sea / 7.3.4:
Bistatic Land and Sea Clutter / 8:
Bistatic RCS / 8.1:
Effective Illuminated Area / 8.2:
Depolarization and Reduction in RCS / 8.3:
In-Plane ([phis] = 0 and 180[degree]) Clutter / 8.4:
The Barton Model / 8.5:
Ulaby et al. Indoor Measurements / 8.6:
Out-of-Plane, Small Grazing Angle Data / 8.7:
Statistical Parameters / Appendix:
Basics / A.1:
Probability Density Functions and Distributions / A.2:
Normal or Gaussian Distribution / A.2.1:
Rayleigh Distribution / A.2.2:
Ricean Distribution / A.2.3:
Lognormal Distribution / A.2.4:
Weibull Distribution / A.2.5:
Chi-Square, Gamma, and Weinstock Distributions / A.2.6:
Standard Deviation of 10 log [sigma] When [sigma] Is Rayleigh Power Distributed / A.3:
Relationship Between 10 log([characters not reproducible]igma]/[sigma subscript m]) and Its Variance When [sigma] Is Lognormal / A.4:
About the Author
Index
Preface
References
Acknowledgments
29.

図書

図書
K. C. Patil ... [et al.]
出版情報: New Jersey : World Scientific, c2008  xvi, 345 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
General / 1.1:
Preparative Methods / 1.2:
Scope of the Book / 1.3:
Combustible Solid Precursors to Nanocrystalline Oxide Materials / 2:
Combustible Metal Hydrazine and Metal Hydrazine Carboxylate Complexes / 2.1:
Metal Hydrazine Carboxylates: Precursors to Simple Metal Oxides / Part I:
Preparation of Metal Formate, Acetate, Oxalate, and Hydrazine Carboxylates / 2.3:
Thermal Analysis and Combustion of Metal Hydrazine Carboxylates / 2.3.1:
Single Source Precursors to Mixed Metal Oxides / Part II:
Mixed Metal Oxides / 2.4:
Mixed Metal Acetate and Oxalate Hydrazinates: Precursors to Cobaltites / 2.4.1:
Mixed Metal Oxalate Hydrazinates: Precursors to Spinel Ferrites / 2.4.2:
Mixed Metal Oxalate Hydrates: Precursors to Metal Titanates / 2.4.3:
Mixed Metal Hydrazinium Hydrazine Carboxylates / 2.5:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Nano-Cobaltites and Ferrites / 2.5.1:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Mixed Ferrites / 2.5.2:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Manganites / 2.5.3:
Concluding Remarks / 2.6:
Solution Combustion Synthesis of Oxide Materials / 3:
Solution Combustion Synthesis (SCS) / 3.1:
Synthesis of Alumina / 3.2.1:
Mechanism of Aluminum Nitrate-Urea Combustion Reaction / 3.2.2:
Thermodynamic Calculation / 3.2.3:
Role of Fuels / 3.3:
A Recipe for the Synthesis of Various Classes of Oxides / 3.4:
Recipe for Nanomaterials / 3.4.1:
Salient Features of Solution Combustion Method / 3.5:
Alumina and Related Oxide Materials / 4:
[alpha]-Alumina / 4.1:
Metal Aluminates (MAl[subscript 2]O[subscript 4]) / 4.4:
Rare Earth Orthoaluminates (LnAlO[subscript 3]) / 4.5:
Garnets / 4.6:
Aluminum Borate / 4.7:
Tialite ([beta]-Al[subscript 2]TiO[subscript 5]) / 4.8:
Aluminum Phosphate / 4.9:
Alumina Composites / 4.10:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Mullite / 4.10.1:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Cordierite / 4.10.2:
Al[subscript 2]O[subscript 3]-Si[subscript 3]N[subscript 4] System: SiAlON / 4.10.3:
Alumina Nanocomposites / 4.11:
Nanocatalysts, Dispersion of Nano-metals (Ag, Au, Pd, and Pt) in Al[subscript 2]O[subscript 3] / 4.11.1:
Nanopigments / 4.12:
Cobalt-Based Blue Alumina and Aluminates / 4.12.1:
Chromium-Doped Pink Alumina (Cr[superscript 3+]/Al[subscript 2]O[subscript 3]): Ruby / 4.12.2:
Chromium-Doped Aluminates and Orthoaluminates (Cr[superscript 3+]/MAl[subscript 2]O[subscript 4](M = Mg & Zn)) and LaAlO[subscript 3]) / 4.12.3:
Nanophosphors / 4.13:
Phosphor Materials (Luminescence in Aluminum Oxide Hosts) / 4.13.1:
Nano-Ceria and Metal-Ion-Substituted Ceria / 4.14:
Synthesis and Properties of Nano-Ceria / 5.1:
Synthesis of Metal-Ion-Substituted Ceria / 5.3:
Characterization of Metal-Ion-Substituted Ceria / 5.4:
Oxygen Storage Materials / 5.5:
Metal-Ion-Substituted Ceria as Nanocatalysts / 5.6:
Ce[subscript 1-x]Pd[subscript x]O[subscript 2-delta] as a Three-Way Catalyst / 5.6.1:
Ce[subscript 1-x]Pt[subscript x]O[subscript 2-delta] / 5.6.2:
Ce[subscript 1-x]Rh[subscript x]O[subscript 2-delta] / 5.6.3:
Bimetal Ionic Catalysts (Ce[subscript 1-x]Pt[subscript x/2]O[subscript 2-delta]) / 5.6.4:
Nanocrystalline Fe[subscript 2]O[subscript 3] and Ferrites / 5.7:
Magnetic Materials / 6.1:
[gamma]-Fe[subscript 2]O[subscript 3] / 6.2:
Spinel Ferrites (MFe[subscript 2]O[subscript 4]) / 6.3:
Mixed Metal Ferrites / 6.4:
Li-Zn Ferrites / 6.4.1:
Mg-Zn Ferrites / 6.4.2:
Ni-Zn Ferrites / 6.4.3:
Rare Earth Orthoferrites / 6.5:
Garnets (Ln[subscript 3]Fe[subscript 5]O[subscript 12]) / 6.6:
Barium and Strontium Hexaferrites / 6.7:
Nano-Titania and Titanates / 6.8:
Nano-TiO[subscript 2] (Anatase) / 7.1:
Synthesis and Properties of Nano-TiO[subscript 2] (Anatase) / 7.2.1:
Photocatalytic Properties of Nano-TiO[subscript 2] / 7.3:
Metal-Ion-Substituted TiO[subscript 2] / 7.4:
Synthesis and Photocatalytic Properties of Ti[subscript 1-x]M[subscript x]O[subscript 2-delta] (M = Ag, Ce, Cu, Fe, V, W, and Zr) / 7.4.1:
Synthesis and Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.2:
Catalytic Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.3:
Titanates for Nuclear Waste Immobilization / 7.5:
Sintering and Microstructure Studies / 7.5.1:
Zirconia and Related Oxide Materials / 7.6:
Zirconia / 8.1:
Preparation and Properties of ZrO[subscript 2] / 8.2.1:
Stabilized Zirconia / 8.3:
Magnesia-Stabilized Zirconia / 8.3.1:
Calcia-Stabilized Zirconia / 8.3.2:
Yttria-Stabilized Zirconia (YSZ) / 8.3.3:
Nickel in Yttria-Stabilized Zirconia (Ni-YSZ) / 8.3.4:
Nano-Zirconia Pigments / 8.4:
ZrO[subscript 2]-Al[subscript 2]O[subscript 3] System: ZTA / 8.5:
ZrO[subscript 2]-CeO[subscript 2] System / 8.6:
ZrO[subscript 2]-TiO[subscript 2] System (ZrTiO[subscript 4] and Zr[subscript 5]Ti[subscript 7]O[subscript 24]) / 8.7:
ZrO[subscript 2]-Ln[subscript 2]O[subscript 3] System: Pyrochlores / 8.8:
NASICONs / 8.9:
MZr[subscript 2]P[subscript 3]O[subscript 12](M = Na, K, 1/2 Ca, and 1/4 Zr) and NbZrP[subscript 3]O[subscript 12] / 8.9.1:
NASICON (Na Superionic Conductor) Materials (Na[subscript 1+x]Zr[subscript 2]P[subscript 3-x]Si[subscript x]O[subscript 12]) / 8.9.2:
Perovskite Oxide Materials / 8.10:
Dielectric Materials / 9.1:
MTiO[subscript 3], MZrO[subscript 3] (M = Ca, Sr, and Ba) / 9.2.1:
Lead-Based Dielectric Materials (PbTiO[subscript 3], PbZrO[subscript 3], PZT, and PLZT) / 9.2.2:
Relaxor Materials (PFN, PMN, PNN, and PZN) / 9.3:
Microwave Resonator Materials / 9.4:
Preparation and Properties of LnMO[subscript 3] (M = Cr, Mn, Fe, Co, and Ni) / 9.5:
Preparation and Properties of La[subscript 1-x]Sr[subscript x]MO[subscript 3] (M = Mn and Fe) / 9.6:
Nanocrystalline Oxide Materials for Special Applications / 9.7:
Synthesis and Properties of Simple Oxides / 10.1:
Metal Silicates / 10.2:
Ceramic Pigments / 10.3:
Borate Pigments / 10.3.1:
Metal Chromite Pigments / 10.3.2:
Silicate Pigments / 10.3.3:
Ceria-Based Pigment-Ce[subscript 1-x]Pr[subscript x]O[subscript 2-delta] / 10.3.4:
Eu[superscript 3+]-Ion-Doped Red Phosphors / 10.4:
Metal Vanadates / 10.5:
Rare Earth Metal Oxides (La[subscript 2]MO[subscript 4]) / 10.6:
Appendix A / 10.7:
Oxidizers (Metal Nitrates) / A.1:
Preparation of Titanyl Nitrate (TiO(NO[subscript 3])[subscript 2]) / A.1.1:
Fuels / A.2:
Carbohydrazide (CH), CH[subscript 6]N[subscript 4]O / A.2.1:
Oxalyl Dihydrazide (ODH), C[subscript 2]H[subscript 6]N[subscript 4]O[subscript 2] / A.2.2:
Tetraformal Trisazine (TFTA), C[subscript 4]H[subscript 16]N[subscript 6]O[subscript 2] / A.2.3:
N, N'-Diformyl Hydrazine (DFH), C[subscript 2]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.4:
Maleic Hydrazide (MH), C[subscript 4]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.5:
Malonic Acid Dihydrazide (MDH), C[subscript 3]H[subscript 8]N[subscript 4]O[subscript 2] / A.2.6:
3-Methyl Pyrazole 5-One (3MP5O), C[subscript 4]H[subscript 6]N[subscript 2]O / A.2.7:
Useful Suggestions / A.3:
Index
Foreword
Preface
Introduction / 1:
30.

図書

図書
Jacques Thuery ; edited by Edward H. Grant
出版情報: Boston : Artech House, c1992  xviii, 670 p. ; 24 cm
シリーズ名: The Artech House microwave library
所蔵情報: loading…
目次情報: 続きを見る
Preface to the English Edition
Foreword
Microwaves / Part I:
Electromagnetism and Radiation / 1:
Electromagnetic spectrum, ISM bands / 1.1:
Electromagnetism / 1.2:
Radio broadcasting / 1.3:
Electromagnetic detection / 1.4:
Thermal applications / 1.5:
Microwaves in industry / 1.6:
The Laws of Radiation / 2:
Basic definitions / 2.1:
Maxwell's equations / 2.2:
Propagation equation / 2.3:
Plane wave / 2.4:
Spherical and cylindrical waves / 2.5:
Propagation media / 2.6:
Boundary conditions / 2.7:
Reflection and transmission / 2.8:
Guided propagation / 2.9:
Stationary wave / 2.10:
Electromagnetic cavities / 2.11:
Resonant modes / 2.11.1:
Energy balance / 2.11.2:
Power loss in the walls / 2.11.3:
Quality factor / 2.11.4:
Radiation sources / 2.12:
Characteristics / 2.12.1:
Radiation from a slot / 2.12.2:
Radiation of an aperture / 2.12.3:
Radiation from a horn / 2.12.4:
Radiation zones / 2.12.5:
Microwaves and Matter / 3:
Dielectric polarization / 3.1:
Polarization by dipole alignment in a static field / 3.2:
Polar and nonpolar media / 3.2.1:
Induced dipole moment / 3.2.2:
Permanent dipole moment / 3.2.3:
Dipole alignment polarization in an alternating field / 3.3:
Dielectric relaxation / 3.4:
Hysteresis / 3.4.1:
Debye equation / 3.4.2:
Intermolecular bonds / 3.4.3:
Relaxation time / 3.4.4:
Debye and Cole-Cole diagrams / 3.4.5:
Different types of dielectrics / 3.5:
Permittivity measurements / 3.5.1:
Lowloss dielectrics / 3.5.2:
Aqueous dielectrics / 3.5.3:
Mixtures / 3.5.4:
Saline solutions and biological constituents / 3.5.5:
Heat generation / 3.6:
Thermal runaway / 3.7:
Generators and applicators / 4:
Introduction / 4.1:
Microwave generators / 4.2:
The magnetron / 4.2.1:
Klystron and TWT / 4.2.2:
RF energy transmission / 4.2.3:
Applicators / 4.3:
Different types / 4.3.1:
Design constraints / 4.3.2:
Conclusion / 4.4:
Industrial Applications / Part II:
Drying
Humidity and drying
Drying kinetics
Microwave drying
Paper and printing industries
Paper / 1.4.1:
Printing inks / 1.4.2:
Glued products / 1.4.3:
Leather and textile industries
Leathers / 1.5.1:
Tufts and yarns / 1.5.2:
Dyeing and finishing / 1.5.3:
Tufted carpets / 1.5.4:
Construction
Wood and plywood / 1.6.1:
Plaster, concrete, and ceramics / 1.6.2:
Foundries / 1.7:
Rubbers and plastics / 1.8:
Drying of polymers / 1.8.1:
Photographic film and magnetic tape / 1.8.2:
Pharmaceutical industry / 1.9:
Drying of tobacco / 1.10:
Regeneration of zeolites / 1.11:
The treatment of elastomers
Macromolecules and
Principles of interaction / 2.1.1:
Relaxation mechanisms / 2.1.2:
Dielectric properties of elastomers / 2.1.3:
Vulcanization
Microwave vulcanization
Formulation of mixtures / 2.3.1:
Advantages and disadvantages of microwave vulcanization / 2.3.2:
Materials available / 2.3.3:
Thawing and preheating of rubber
Microwave devulcanization
Miscellaneous applications
Polymerization
Thermosetting and thermoplastic polymers / 3.1.1:
Microwave reticulation of thermosetting resins / 3.1.2:
Thermoplastic polymers / 3.1.3:
Fusion
Dewaxing of casting moulds
Viscous materials in metal
Oil and shale oil
Road repairs / 3.2.4:
Defrosting of soil / 3.2.5:
Consolidation
Hardening of foundry mouldings / 3.3.1:
Fast-setting concrete / 3.3.2:
Sintering of ferrites and ceramics / 3.3.3:
Emulsification
Crushing
Purification of coal
Nuclear waste treatment
Cellulosic waste treatment / 3.8:
Applications in the Food Industry / Part III:
Cooking
Mechanisms
Animal products
Red meat / 1.2.1:
Poultry / 1.2.2:
Bacon and fat / 1.2.3:
Meat patties / 1.2.4:
Fish / 1.2.5:
Dairy products / 1.2.6:
Vegetable products
Vegetables / 1.3.1:
Cereals and soya / 1.3.2:
Roasting / 1.3.3:
Catering
Baking
Bread
Doughnuts
Digestibility of foods cooked by microwaves
Thawing and tempering
Conventional thawing
Mechanisms of microwave
Dielectric properties of frozen products / 2.2.1:
Energy limitations / 2.2.2:
Surface cooling / 2.2.4:
Available equipment
896 and 915 MHz
2.45 GHz
Advantages of microwave processing
Industrial aspects / 2.4.1:
Qualitative aspects / 2.4.2:
Vaporization
Drying at atmospheric pressure
Final drying of potato chips
The drying of pasta
Miscellaneous food products
Drying at low pressure
Freeze drying
Expansion in vacuum
Various processes
Determination of dry content
Preservation
Enzymatic inactivation
Blanching of fruits and vegetables / 4.1.1:
Inactivation of [alpha]-amylase in wheat / 4.1.2:
Treatment of grains and soya beans / 4.1.3:
Sterilization
Prepared meals
Disinfestation / 5:
Soil treatment / 5.2:
Germination / 5.3:
Crop protection / 5.4:
Wine-making by carbonic fermentation / 5.5:
Opening of oysters / 5.6:
Biological Effects and Medical Applications / Part IV:
Interactions with the organism
Dielectric behavior of biological material
Biomolecules / 1.1.1:
Cells and membranes / 1.1.2:
Tissues / 1.1.3:
Quantum aspects
Basic interaction with cell membranes
Continuous wave
The modulated wave
Pearl chain formation
Thermal interaction with the living organism
Absorption and dosimetry
Experimental aspects
Modeling / 1.4.4:
Near-field interaction / 1.4.5:
Main results / 1.4.6:
Biological effects
Cells and micro-organisms
Blood and hematopoiesis
Immune system
Natural resistance
Lymphopoiesis
Multiplication of lymphocytes FcR[superscript +] and CR[superscript +]
Stimulation of the response of lymphocytes to mitogens / 2.3.4:
Modulation of the activity of activator T lymphocytes / 2.3.5:
Nervous system
Fluxes of calcium ions
Neurons and synapses
Blood-brain barrier / 2.4.3:
Central nervous system / 2.4.4:
Peripheral nervous system and sensory perception / 2.4.5:
Auditory perception / 2.4.6:
Autonomic nervous system / 2.4.7:
Psychophysiology / 2.4.8:
Endocrine system
Pituitary-thyroid axis / 2.5.1:
Pituitary-suprarenal axis / 2.5.2:
Pituitary-ovarian and pituitary-testicular axes / 2.5.3:
Growth hormones / 2.5.4:
Thermal regulation and metabolism
Effects on growth
Insects / 2.7.1:
Birds / 2.7.2:
Mammals / 2.7.3:
Lesions and cataracts
Safety standards
Soviet Union
United States of America
Eastern Europe
Canada
Australia
Sweden
European Community
International organisations
Biomedical applications
Hyperthermia for cancer treatment
Historical development
Mode of action
Integrated systems / 4.1.4:
Clinical results / 4.1.5:
Specific effects
Bioelectric vibrations
Antigenicity
Immune response
Clinical
Biological
Addresses
Index
Preface to the English Edition
Foreword
Microwaves / Part I:
31.

図書

図書
edited by Bernd Plietker
出版情報: Weinheim : Wiley-VCH, c2008  xv, 279 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
Introduction / 1.1:
General Aspects of Iron Complex Chemistry / 1.2:
Electronic Configuration, Oxidation States, Structures / 1.2.1:
Fundamental Reactions / 1.2.2:
Organoiron Complexes and Their Applications / 1.3:
Binary Carbonyl-Iron Complexes / 1.3.1:
Alkene-Iron Complexes / 1.3.2:
Allyl- and Trimethylenemethane-Iron Complexes / 1.3.3:
Acyl- and Carbene-Iron Complexes / 1.3.4:
Diene-Iron Complexes / 1.3.5:
Ferrocenes / 1.3.6:
Arene-Iron Complexes / 1.3.7:
Catalysis Using Iron Complexes / 1.4:
Iron Complexes as Substrates and/or Products in Catalytic Reactions / 1.4.1:
Iron Complexes as Ligands for Other Transition Metal Catalysts / 1.4.2:
Iron Complexes as Catalytically Active Species / 1.4.3:
References
Iron Catalysis in Biological and Biomimetic Reactions / 2:
Non-heme Iron Catalysts in Biological and Biomimetic Transformations / Jens Muller2.1:
Introduction: Iron in Biological Processes / 2.1.1:
Non-heme Iron Proteins / 2.1.2:
Mononuclear Iron Sites / 2.1.2.1:
Dinuclear Iron Sites / 2.1.2.2:
Summary / 2.1.3:
Organic Reactions Catalyzed by Heme Proteins / Martin Broring2.2:
Classification and General Reactivity Schemes of Heme Proteins Used in Organic Synthesis / 2.2.1:
Organic Reactions Catalyzed by Cytochromes P450 / 2.2.2:
Organic Reactions Catalyzed by Heme Peroxidases / 2.2.3:
Dehydrogenations ("Peroxidase Reactivity") / 2.2.3.1:
Sulfoxidations ("Peroxygenase Reactivity") / 2.2.3.2:
Peroxide Disproportionation ("Catalase Reactivity") / 2.2.3.3:
Halogenation ("Haloperoxidase Reactivity") / 2.2.3.4:
Epoxidations ("Monoxygenase Activity") / 2.2.3.5:
Iron-catalyzed Oxidation Reactions / 3:
Oxidations of C-H and C=C Bonds / Agathe Christine Mayer ; Carsten Bolm3.1:
Gif Chemistry / 3.1.1:
Alkene Epoxidation / 3.1.2:
Alkene Dihydroxylation / 3.1.3:
The Kharasch Reaction and Related Reactions / 3.1.4:
Aziridination and Diamination / 3.1.5:
Oxidative Allylic Oxygenation and Amination / Sabine Laschat ; Volker Rabe ; Angelika Baro3.2:
Iron-catalyzed Allylic Oxidations / 3.2.1:
Simple Iron Salts / 3.2.2.1:
Fe(III) Complexes with Bidentate Ligands / 3.2.2.2:
Fe[superscript 3+]/Fe[superscript 2+] Porphyrin and Phthalocyanine Complexes / 3.2.2.3:
Iron(III) Salen Complexes / 3.2.2.4:
Non-heme Iron Complexes with Tetra- and Pentadentate Ligands / 3.2.2.5:
Oxidative Allylic Aminations / 3.2.3:
Conclusion / 3.2.4:
Oxidation of Heteroatoms (N and S) / Olga Garcia Mancheno3.3:
Oxidation of Nitrogen Compounds / 3.3.1:
Oxidation of Hydroxylamines to Nitroso Compounds / 3.3.1.1:
Oxidation of Arylamines / 3.3.1.2:
Other N-Oxidations / 3.3.1.3:
Oxidation of Sulfur Compounds / 3.3.2:
Oxidation of Thiols to Disulfides / 3.3.2.1:
Oxidation of Sulfides / 3.3.2.2:
Oxidative Imination of Sulfur Compounds / 3.3.2.3:
Reduction of Unsaturated Compounds with Homogeneous Iron Catalysts / Stephan Enthaler ; Kathrin Junge ; Matthias Beller4:
Hydrogenation of Carbonyl Compounds / 4.1:
Hydrogenation of Carbon-Carbon Double Bonds / 4.3:
Hydrogenation of Imines and Similar Compounds / 4.4:
Catalytic Hydrosilylations / 4.5:
Iron-catalyzed Cross-coupling Reactions / Andreas Leitner4.6:
Cross-coupling Reactions of Alkenyl Electrophiles / 5.1:
Cross-coupling Reactions of Aryl Electrophiles / 5.3:
Cross-coupling Reactions of Alkyl Electrophiles / 5.4:
Cross-coupling Reactions of Acyl Electrophiles / 5.5:
Iron-catalyzed Carbometallation Reactions / 5.6:
Iron-catalyzed Aromatic Substitutions / Jette Kischel ; Kristin Mertins ; Irina Jovel ; Alexander Zapf5.7:
General Aspects / 6.1:
Electrophilic Aromatic Substitutions / 6.2:
Halogenation Reactions / 6.2.1:
Nitration Reactions / 6.2.2:
Sulfonylation Reactions / 6.2.3:
Friedel-Crafts Acylations / 6.2.4:
Friedel-Crafts Alkylations / 6.2.5:
Alkylation with Alcohols, Ethers and Esters / 6.2.5.1:
Alkylation with Alkenes / 6.2.5.2:
Nucleophilic Aromatic Substitutions / 6.3:
Iron-catalyzed Substitution Reactions / Bernd Plietker7:
Iron-catalyzed Nucleophilic Substitutions / 7.1:
Nucleophilic Substitutions of Non-activated C-X Bonds / 7.2.1:
Nucleophilic Substitutions Using Lewis Acidic Fe Catalysts / 7.2.1.1:
Substitutions Catalyzed by Ferrate Complexes / 7.2.1.3:
Nucleophilic Substitution of Allylic and Propargylic C-X Bonds / 7.2.2:
Reactions Catalyzed by Lewis Acidic Fe Salts / 7.2.2.1:
Nucleophilic Substitutions Involving Ferrates / 7.2.2.2:
Addition and Conjugate Addition Reactions to Carbonyl Compounds / Jens Christoffers ; Herbert Frey ; Anna Rosiak7.3:
Additions to Aldehydes and Ketones / 8.1:
Oxygen Nucleophiles / 8.2.1:
Carbon Nucleophiles / 8.2.2:
Additions to Imines and Iminium Ions / 8.3:
Additions to Carboxylic Acids and Their Derivatives / 8.4:
Conjugate Addition to [alpha],[beta]-Unsaturated Carbonyl Compounds / 8.4.1:
Michael Reactions / 8.5.1:
Vinylogous Michael Reactions / 8.5.1.2:
Asymmetric Michael Reactions / 8.5.1.3:
Michael Reactions in Ionic Liquids and Heterogeneous Catalysis / 8.5.1.4:
Nitrogen Nucleophiles / 8.5.2:
Synthesis of Heterocycles / 8.6:
Pyridine and Quinoline Derivatives / 8.6.1:
Pyrimidine and Pyrazine Derivatives / 8.6.2:
Benzo- and Dibenzopyrans / 8.6.3:
Iron-catalyzed Cycloadditions and Ring Expansion Reactions / Gerhard Hilt ; Judith Janikowski9:
Cycloisomerization and Alder-Ene Reaction / 9.1:
[2+1]-Cycloadditions / 9.3:
Iron-catalyzed Aziridine Formation / 9.3.1:
Iron-catalyzed Epoxide Formation / 9.3.2:
Iron-catalyzed Cyclopropane Formation / 9.3.3:
[2+2]-Cycloaddition / 9.4:
[4+1]-Cycloadditions / 9.5:
[4+2]-Cycloadditions / 9.6:
Diels-Alder Reactions with Normal Electron Demand / 9.6.1:
Diels-Alder Reactions with Neutral Electron Demand / 9.6.2:
Diels-Alder Reactions with Inverse Electron Demand / 9.6.3:
Cyclotrimerization / 9.7:
[3+2]-Cycloadditions / 9.8:
[3+3]-Cycloadditions / 9.9:
Ring Expansion Reactions / 9.10:
Index / 9.11:
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
32.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
33.

図書

図書
edited by Stanley M. Roberts, John Whittall
出版情報: Chichester : J. Wiley & Sons, c2007  xxii, 312 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 5
Abbreviations
Industrial Catalysts for Regio- or Stereo-Selective Oxidations and Reductions A Review of Key Technologies and Targets / John Whittall1:
Introduction / 1.1:
Reduction of Carbon-Carbon Double Bonds / 1.2:
Privileged structures: [alpha]-amino acids and itaconic acids / 1.2.1:
[beta]-Amino acids / 1.2.2:
[alpha]-Alkyl substituted acids / 1.2.3:
[alpha]-Alkoxy substituted acids / 1.2.4:
Unsaturated nitriles / 1.2.5:
Alkenes and allyl alcohols / 1.2.6:
[alpha],[beta]-Unsaturated aldehyde reduction / 1.2.7:
Ketone and Imine Reduction / 1.3:
Catalytic hydrogenation of ketones and imines / 1.3.1:
Asymmetric transfer hydrogenation (ATH) catalysts / 1.3.2:
Modified borane reagents / 1.3.3:
Biocatalysts (alcohol dehydrogenases and ketoreductases) / 1.3.4:
Oxidation / 1.4:
Sharpless chiral epoxidation of allyl alcohols / 1.4.1:
Dioxirane catalyzed epoxidation / 1.4.2:
Amines and iminium salts / 1.4.3:
Phase transfer catalysts / 1.4.4:
The Julia-Colonna method (polyleucine oxidation) / 1.4.5:
Organocatalytic [alpha]-hydroxylation of ketones / 1.4.6:
Baeyer-Villiger oxidation / 1.4.7:
Chiral sulfoxides / 1.4.8:
References
Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids / 2:
(S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl as a ligand for rhodium-catalyzed asymmetric hydrogenation / Ildiko Gergely ; Csaba Hegedus ; Jozsef Bakos2.1:
Synthesis of (S)-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-Octahydro-1,1[prime]-bi-2-naphthol / 2.1.1:
Synthesis of (S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl / 2.1.2:
Asymmetric hydrogenation of Dimethyl itaconate / 2.1.3:
Conclusion
Synthesis and application of phosphinite oxazoline iridium complexes for the asymmetric hydrogenation of alkenes / Frederik Menges ; Andreas Pfaltz2.2:
Synthesis of (4S,5S)-2-(5-Methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-propan-2-ol / 2.2.1:
Synthesis of (4S,5S)-O-[1-Benzyl-1-(5-methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-2-phenyl-ethyl]-diphenylphosphinite / 2.2.2:
Synthesis of (4S,5S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{2-(2-phenyl-5-methyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-2-diphenylphosphinite-propane}iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate / 2.2.3:
Asymmetric hydrogenation of trans-[alpha]-Methylstilbene / 2.2.4:
Synthesis and application of heterocyclic phosphine oxazoline (HetPHOX) iridium complexes for the asymmetric hydrogenation of alkenes / Pier Giorgio Cozzi2.3:
Synthesis of (4S)-tert-Butyl-2-(thiophene-2-yl)-4,5-dihydrooxazole / 2.3.1:
Synthesis of (4S)-tert-Butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole / 2.3.2:
Synthesis of (4S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{4-tert-butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole}iridium(I)]-tetrakis [3,5-bis(trifluoromethyl)phenyl]borate / 2.3.3:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos] as a ligand for rhodium-catalyzed asymmetric hydrogenation of [alpha]-dehydroamino acids / Jing Wu ; Albert S.C. Chan2.3.4:
Synthesis of 3-Bromo-2,6-dimethoxypyridine / 2.4.1:
Synthesis of Bis(3,5-dimethylphenyl)phosphine chloride / 2.4.2:
Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridine / 2.4.3:
2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphinoyl]-3,3[prime]-bipyridine / 2.4.4:
Optical resolution of ([plus or minus])-6 with (-) or (+)-2,3-0,0[prime]-Dibenzoyltartaric acid monohydrate [(R)-6 or (S)-6)] / 2.4.6:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos, (R)-1] / 2.4.7:
Preparation of the stock solution of [Rh(R-Xyl-P-Phos)(COD)]BF[subscript 4] / 2.4.8:
A typical procedure for the asymmetric hydrogenation of methyl (Z)-2-Acetamidocinnamate / 2.4.9:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoXP) as a ligand for rhodium-catalyzed asymmetric hydrogenation of prochiral amino acid and amine derivatives / Tsuneo Imamoto ; Aya Koide2.5:
Synthesis of (R)-tert-Butyl(hydroxymethyl)methylphosphine-borane / 2.5.1:
Synthesis of (R)-Benzoyloxy(tert-butyl)methylphosphine-borane / 2.5.2:
Synthesis of (S)-tert-Butylmethylphosphine-borane / 2.5.3:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoxP) / 2.5.4:
Asymmetric hydrogenation of Methyl (E)-3-acetylamino-2-butenoate catalyzed by Rh(I)-(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline / 2.5.5:
Rhodium-catalyzed asymmetric hydrogenation of indoles / Ryoichi Kuwano ; Masaya Sawamura2.6:
Synthesis of (R)-2-[(S)-1-(Dimethylamino)ethyl]-1-iodoferrocene / 2.6.1:
Synthesis of (R)-2-[(S)-1-(Diphenylphosphinyl)ethyl]-1-iodoferrocene / 2.6.2:
Synthesis of (R,R)-2,2[prime]-Bis[(S)-1-(diphenylphosphinyl)ethyl]-1,1[Prime]-biferrocene / 2.6.3:
Synthesis of (R,R)-2,2[Prime]-Bis[(S)-1-(diphenylphosphino)ethyl]-1,1[Prime]-biferrocene [abbreviated to (S,S)-(R,R)-PhTRAP] / 2.6.4:
Catalytic asymmetric hydrogenation of N-Acetyl-2-butylindole / 2.6.5:
Catalytic asymmetric hydrogenation of 3-Methyl-N-(p-toluenesulfonyl)indole / 2.6.6:
Asymmetric Reduction of Ketones / 3:
(R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane as a versatile ligand for enantioselective hydrogenations / Natalia Dubrovina ; Armin Borner3.1:
Synthesis of (S,S)-1,3-Diphenylpropane-1,3-diol / 3.1.1:
Synthesis of (S,S)-Methanesulfonyloxy-1,3-diphenylpropane-1,3-diol / 3.1.2:
Synthesis of (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane / 3.1.3:
Synthesis of both enantiomers of 1-Phenylethanol by reduction of acetophenone with Geotrichum candidum IFO 5767 / Kaoru Nakamura ; Mikio Fujii ; Yoshiteru Ida3.2:
Cultivation of G. candidum IFO 5767 / 3.2.1:
Synthesis of (S)-1-Phenylethanol / 3.2.2:
Synthesis of (R)-1-Phenylethanol / 3.2.3:
Titanocene-catalyzed reduction of ketones in the presence of water. A convenient procedure for the synthesis of alcohols via free-radical chemistry / Antonio Rosales ; Juan M. Cuerva ; J. Enrique Oltra3.3:
Titanocene-catalyzed reduction of Acetophenone in the presence of water / 3.3.1:
Titanocene-catalyzed synthesis of Methyl 4-deuterio-4-phenyl-4-hydroxybutanoate / 3.3.2:
Xyl-tetraPHEMP: a highly efficient biaryl ligand in the [diphosphine RuCl[subscript 2] diamine]-catalyzed hydrogenation of simple aromatic ketones / Paul H. Moran ; Julian P. Henschke ; Antonio Zanotti-Gerosa ; Ian C. Lennon3.4:
Synthesis of Tri(3,5-dimethylphenyl)phosphine oxide / 3.4.1:
Synthesis of Bis(3,5-dimethylphenyl)-(2-iodo-3,5-dimethylphenyl)phosphine oxide / 3.4.2:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphinoyl]-biphenyl / 3.4.3:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (rac)-Xyl-tetraPHEMP] / 3.4.4:
Synthesis of [(R)-N,N-Dimethyl(1-methyl)benzylaminato-C[superscript 2],N]-{rac-4,4[prime],6,6[prime]-tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl}-palladium(II) tetrafluoroborate and separation of the diastereomers / 3.4.5:
Synthesis of (S)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl: [abbreviated to (S)-Xyl-tetraPHEMP) and (R)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (R)-Xyl-tetraPHEMP] / 3.4.6:
Synthesis of [(R)-Xyl-tetraPHEMP RuCl[subscript 2] (R,R)-DPEN] and [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] / 3.4.7:
Reduction of Acetophenone using [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] as a precatalyst / 3.4.8:
N-Arenesulfonyl- and N-Alkylsulfamoyl-1,2-diphenylethylenediamine ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of activated ketones / Michel (Massoud S.) Stephan ; Barbara Mohar3.5:
Synthesis of N-Arenesulfonyl-1,2-diphenylethylenediamines / 3.5.1:
Preparation of Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes / 3.5.2:
Asymmetric transfer hydrogenation of Ethyl benzoylacetate / 3.5.3:
The synthesis and application of BrXuPHOS: a novel monodentate phosphorus ligand for the asymmetric hydrogenation of ketones / Martin Wills ; Yingjian Xu ; Garden Docherty ; Gary Woodward3.6:
Synthesis of (S)-BrXuPHOS / 3.6.1:
Synthesis of (S,S,SS)-BrXuPHOS-Ru-DPEN / 3.6.2:
General procedure of asymmetric hydrogenation of acetophenone / 3.6.3:
Acknowledgement
In Situ formation of ligand and catalyst: application in ruthenium-catalyzed enantioselective reduction of ketones / Jenny Wettergren ; Hans Adolfsson3.7:
Synthesis of (S)-3-Fluoro-1-phenylethanol / 3.7.1:
Synphos and Difluorphos as ligands for ruthenium-catalyzed hydrogenation of alkenes and ketones / Severine Jeulin ; Virginie Ratovelomanana-Vidal ; Jean-Pierre Genet3.8:
Synthesis of [RuCl((S)-SYNPHOS)(p-cymene)]Cl / 3.8.1:
Synthesis of [RuCl((S)-DIFLUORPHOS)(p-cymene)]Cl / 3.8.2:
Synthesis of [RuI((S)-DIFLUORPHOS)(p-cymene)]I / 3.8.3:
Synthesis of [NH[subscript 2]R[subscript 2]] [(RuCl(PP))[subscript 2]([Mu]-Cl)[subscript 3]] PP = SYNPHOS or DIFLUORPHOS and R = Me or Et / 3.8.4:
Synthesis of [NH[subscript 2]Me[subscript 2]][RuCl-(S)-DIFLUORPHOS][subscript 2][[Mu]-Cl][subscript 3] / 3.8.5:
Synthesis of in situ generated [RuBr[subscript 2]((S)-SYNPHOS)] and [RuBr[subscript 2]((S)-DIFLUORPHOS)] / 3.8.6:
An arene ruthenium complex with polymerizable side chains for the synthesis of immobilized catalysts / Estelle Burri ; Silke B. Wendicke ; Kay Severin3.9:
Synthesis of 2-Methyl-cyclohexa-2,5-dienecarboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester / 3.9.1:
Synthesis of [[eta superscript 6]-(2-Methyl-benzoic acid 2-(2-methyl-acryloyloxy)-ethyl ester)RuCl[subscript 2]][subscript 2] / 3.9.2:
Selective reduction of carbonyl group in [beta], [gamma]-unsaturated [alpha]-alpha-ketoesters by transfer hydrogenation with Ru-(p-cymene) (TsDPEN) / Minjie Guo ; Dao Li ; Yanhui Sun ; Zhaoguo Zhang3.10:
Synthesis of Di-[Mu]-chloro-bis[chloro([eta superscript 6]-1-isopropyl-4-methyl-benzene)ruthenium(II) / 3.10.1:
Synthesis of ([plus or minus])-Monotosylate-1,2-diphenyl-1,2-ethylenediamine / 3.10.2:
Synthesis of Ru complex Ru(p-cymene)(TsDPEN) / 3.10.3:
Ru-TsDPEN catalyzed transfer hydrogenation reaction of [beta],[gamma]-unsaturated-[alpha]-ketoesters / 3.10.4:
Preparation of polymer-supported Ru-TsDPEN catalysts and their use for the enantioselective synthesis of (S)-fluoxetine / Liting Chai ; Yangzhou Li ; Quanrui Wang3.11:
Synthesis of the supported ligand 9 / 3.11.1:
Synthesis of ligand 17 / 3.11.2:
General procedure for asymmetric transfer hydrogenation / 3.11.3:
Preparation of (S)-Fluoxetine hydrochloride / 3.11.4:
Polymer-supported chiral sulfonamide-catalyzed reduction of [beta]-keto nitriles: a practical synthesis of (R)-Fluoxetine / Guang-yin Wang ; Gang Zhao3.12:
Synthesis of (R)-3-Amino-1-phenyl-propan-1-ol / 3.12.1:
Synthesis of (R)-ethyl 3-hydroxy-3-phenylpropylcarbamate / 3.12.2:
Synthesis of (R)-3-(Methylamino)-1-phenylpropan-1-ol / 3.12.3:
Synthesis of (R)-Fluoxetine / 3.12.4:
Imine Reduction and Reductive Amination / 4:
Metal-free reduction of imines: enantioselective Bronsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts / Magnus Rueping ; Erli Sugiono ; Cengiz Azap ; Thomas Theissmann4.1:
Synthesis of (R)-2,2[prime]-Bis-methoxymethoxy-[1,1[prime]] binaphthalene (MOM-BINOL) / 4.1.1:
Synthesis of (R)-3,3[prime]-Diiodo-2,2[prime]-bis(methoxymethoxy)-1,1[prime]-binaphthalene / 4.1.2:
Synthesis of 3,3[prime]-Bis-(3,5[prime]-bis-trifluoromethyl-phenyl)-2,2[prime]-bismethoxymethoxy [1,1[prime]-binaphthalene] / 4.1.3:
Synthesis of (R)-3,3[prime]-[3,5-Bis(trifluoromethyl)phenyl]-1,1[prime]-binaphthylphosphate / 4.1.4:
General procedure for the transfer hydrogenation of ketimines / 4.1.5:
Synthesis of [1-(2,4-Dimethyl-phenyl)-ethyl]-(4-methoxy-phenyl)-amine / 4.1.6:
Metal-free Bronsted acid-catalyzed transfer hydrogenation: enantioselective synthesis of tetrahydroquinolines / Andrey P. Antonchick4.2:
General procedure for the transfer hydrogenation of quinolines / 4.2.1:
Synthesis of 7-Chloro-4-phenyl-1,2,3,4-tetrahydroquinoline / 4.2.2:
Synthesis of (S)-2-Phenyl-1,2,3,4-tetrahydroquinoline / 4.2.3:
Synthesis of (R)-2-(2-(Benzo[1,3]dioxol-5-yl)ethyl)-1,2.3,4-tetrahydro-quinoline / 4.2.4:
A highly stereoselective synthesis of 3[alpha]-Amino-23,24-bisnor-5[alpha]-cholane via reductive amination / Sharaf Nawaz Khan ; Nam Ju Cho ; Hong-Seok Kim4.3:
Synthesis of Tris[(2-ethylhexanoyl)oxy]borohydride / 4.3.1:
Synthesis of 3[alpha]-Acetamino-23,24-bisnor-5[alpha]-cholane / 4.3.2:
Synthesis of 3[alpha]-N-1-[N(3-[4-Aminobutyl])-1,3-diaminopropane]-23,24-bisnor-5[alpha]-cholane / 4.3.3:
Acknowledgements
Oxidation of Primary and Secondary Alcohols / 5:
Copper(Il) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen / Suribabu Jammi ; Tharmalingan Punniyamurthy5.1:
Synthesis of copper(II) complex 1 / 5.1.1:
Typical procedure for the oxidation of primary alcohols to aldehydes / 5.1.2:
Solvent-free dehydrogenation of secondary alcohols in the absence of hydrogen abstractors using Robinson's catalyst / G.B.W.L Ligthart ; R.H. Meijer ; J. v. Buijtenen ; J. Meuldijk ; J.A.J.M. Vekemans ; L.A. Hulshof5.2:
Dehydrogenation of 2-Octanol using Ru(OCOCF[subscript 3])[subscript 2](CO)(PPh[subscript 3])[subscript 2] as a catalyst / 5.2.1:
2-Iodoxybenzoic acid (IBX)/n-Bu[subscript 4]NBr/CH[subscript 2]Cl[subscript 2]-H[subscript 2]O: a mild system for the selective oxidation of secondary alcohols / Krisada Kittigowittana ; Manat Pohmakotr ; Vichai Reutrakul ; Chutima Kuhakarn5.3:
Synthesis of 1-Hydroxy-5-decanone / 5.3.1:
Hydroxylation, Epoxidation and Related Reactions / 6:
Proline-catalyzed [alpha]-aminoxylation of aldehydes and ketones / Yujiro Hayashi ; Mitsuru Shoji6.1:
Synthesis of (R)-2-Anilinoxypropanol / 6.1.1:
Synthesis of (R)-7-Anilinoxy-1,4-dioxaspiro[4.5]decan-8-one / 6.1.2:
Ru/Silia Cat TEMPO-mediated oxidation of alkenes to [alpha]-hydroxyacids / Rosaria Ciriminna ; Mario Pagliaro6.2:
Synthesis of Silia Cat TEMPO / 6.2.1:
Synthesis of 2-(4-Chlorophenyl)-1,2-propanediol / 6.2.2:
Synthesis of 2-(4-Chlorophenyl)-1,2-hydroxypropanoic acid / 6.2.3:
Catalytic enantioselective epoxidation of trans-disubstituted and trisubstituted alkenes with arabinose-derived ulose / Tony K. M. Shing ; Gulice Y.C. Leung ; To Luk6.3:
Synthesis of 2[prime],3[prime]-Diisobutyl acetal / 6.3.1:
Synthesis of ulose / 6.3.2:
Asymmetric epoxidation of trans-[alpha]-Methylstilbene using ulose as catalyst at 0 [degree]C / 6.3.3:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(2-Alkenyl)phenols. highly regio- and diastereoselective oxidative cyclisation to 2,3-Dihydrobenzofuranols and 3-Chromanols / Alessandra Lattanzi ; Arrigo Scettri6.4:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.1:
VO(acac)[subscript 2]/TBHP/TFA catalyzed oxidative cyclization of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.2:
An Oxalolidinone ketone catalyst for the asymmetric epoxidation of cis-olefins / David Goeddel ; Yian Shi6.5:
Amadori rearrangement to give 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.1:
Acetal protection of 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.2:
Hydrogenation of the Dibenzylamine / 6.5.3:
Phosgene cyclization of aminoalcohol / 6.5.4:
Alcohol oxidation / 6.5.5:
Synthesis of ketone 2 / 6.5.6:
Asymmetric epoxidation of cis-[beta]-Methylstyrene / 6.5.7:
[alpha]-Fluorotropinone immobilised on silica: a new stereoselective heterogeneous catalyst for epoxidation of alkenes with oxone / Giovanni Sartori ; Alan Armstrong ; Raimondo Maggi ; Alessandro Mazzacani ; Raffaella Sartorio ; France Bigi ; Belen Dominguez-Fernandez6.6:
Synthesis of silica KG-60-supported enantiomerically enriched [alpha]-Fluorotropinone / 6.6.1:
Synthesis of enantiomerically enriched epoxides / 6.6.2:
Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions / Kazushige Hori ; Keita Tani ; Yasuo Tohda6.7:
Synthesis of precursor of the azacrown ether / 6.7.1:
Synthesis of the azacrown ether / 6.7.2:
Synthesis of the azacrown ether-type quaternary ammonium salt / 6.7.3:
Asymmetric epoxidation of (E)-Chalcone catalyzed by the azacrown ether-type quaternary ammonium salt as chiral PTC / 6.7.4:
Enantioselective epoxidation of olefins using phase transfer conditions and a chiral [azepinium][TRISPHAT] salt as catalyst / Jerome Vachon ; Celine Perollier ; Alexandre Martinez ; Jerome Lacour6.8:
Enantioselective epoxidation of 1-Phenyl-3,4-dihydronaphthalene / 6.8.1:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters promoted by a Yttrium-biphenyldiol complex / Masakatsu Shibasaki ; Hiroyuki Kakei ; Shigeki Matsunaga6.9:
Synthesis of (aS,R)-6,6[prime]-[(Propylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.1:
Synthesis of (aS,R)-2,2-[Oxybis(ethylene)dioxy]-6,6[prime]-[(propylene)dioxy]biphenyl / 6.9.2:
Synthesis of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.3:
Enantiomeric enrichment of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.4:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters / 6.9.5:
Catalytic enantioselective epoxidation of [alpha],[beta]-enones with a binol-zinc-complex / Ana Minatti ; Karl Heinz Dotz6.10:
Synthesis of (E)-(2S,3R)-Phenyl-(3-phenyloxiran-2-yl)methanone / 6.10.1:
Asymmetric epoxidation of Phenyl-2-(3[prime]-pyridylvinyl)sulfone using polyleucine hydrogen peroxide gel / Mike R. Pitts6.11:
Preparation of polyleucine-hydrogen peroxide gel / 6.11.1:
Synthesis of Phenyl-2-(3[prime]-pyridylvinyl) sulfone (2) / 6.11.2:
Oxidation of Ketones to Lactones or Enones / 7:
Synthesis of 2-(Phosphinophenyl)pyrindine ligand and its application to palladium-catalyzed asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanones / Katsuji Ito ; Tsutomu Katsuki7.1:
Synthesis of (7R)-2-(2-Hydroxyphenyl)-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.1:
2-[2-(Diphenylphosphinoyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.2:
2-[2-(Diphenylphosphanyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.3:
Asymmetric Baeyer-Villiger oxidation of 3-Phenylcyclobutanone / 7.1.4:
(D)-Codeinone from (D)-Dihydrocodeinone via the use of modified o-iodoxybenzoic acid (IBX). A convenient oxidation of ketones to enones / Paul Mather7.2:
Synthesis of IBX / 7.2.1:
Synthesis of codeinone / 7.2.2:
Oxidative C-C Coupling / 8:
Enantioselective oxidative coupling of 2-Naphthols catalyzed by a novel chiral vanadium complex / Nan-Sheng Xie ; Quan-Zhong Liu ; Zhi-Bin Luo ; Liu-Zhu Gong ; Ai-Qiao Mi ; Yao-Zhong Jiang8.1:
Synthesis of 3,3-Diformyl-2,2[prime]-biphenol / 8.1.1:
Synthesis of chiral vanadium complexes / 8.1.2:
Catalytic oxidative coupling of 7-Alkoxy-1-naphthols by chiral vanadium complexes / 8.1.3:
Reference
Catalytic oxidative cross-coupling reaction of 2-Naphthol derivatives / Shigeki Habaue ; Tomohisa Temma8.2:
Synthesis of Methyl 2,2[prime]-dihydroxy-1,1[prime]-binaphthalene-3-carboxylate / 8.2.1:
Oxidative coupling of benzenes with [alpha],[beta]-unsaturated aldehydes by Pd(OAc)[subscript 2]/ HPMoV/ O[subscript 2] system / Tomoyuki Yamada ; Satoshi Sakaguchi ; Yasutaka Ishii8.3:
Synthesis of Cinnamaldehyde / 8.3.1:
Oxidation of Sulfides and Sulfoxides / 9:
The first example of direct oxidation of sulfides to sulfones by an osmate-molecular oxygen system / Boyapati M. Choudary ; Chinta Reddy ; V. Reddy ; Billakanti V. Prakash ; Mannepalli L. Kantam ; B. Sreedhar9.1:
Synthesis of osmate exchanged Mg-Al layered double hydroxides (LDH-OsO[subscript 4]) / 9.1.1:
Synthesis of Methyl phenyl sulfone or Methylsulfonylbenzene / 9.1.2:
Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide in the presence of zirconium tetrachloride / Kiumar Bahrami9.2:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfoxide using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.1:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfone using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.2:
WO[subscript 3]-30 % H[subscript 2]O[subscript 2]-cinchona alkaloids: a new heterogeneous catalytic system for asymmetric oxidation and kinetic resolution of racemic sulfoxides / Vinay V. Thakur ; A. Sudalai9.3:
Synthesis of (R)-2-[[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimadazole {(R)-(+)-Lansoprazole} / 9.3.1:
Synthesis of (R)-(+)-Phenyl benzyl sulfoxide / 9.3.2:
Benzyl-4,6-O-isopropylidene-[alpha]-(D)-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]amino] as a ligand for vanadium-catalyzed asymmetric oxidation of sulfides / Raffaella Del Litto ; Guiseppina Roviello ; Francesco Ruffo9.4:
Synthesis of Benzyl-4,6-O-isopropylidene-[alpha]-D-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]imine] / 9.4.1:
Oxidation of Thioanisole / 9.4.2:
Asymmetric sulfoxidation of aryl methyl sulfides with hydrogen peroxide in water / Alessando Scarso ; Giorgio Strukul9.5:
Synthesis of complex (R)-BINAP)PtCl[subscript 2] / 9.5.1:
Synthesis of complex [((R)-BINAP)Pt((OH)][subscript 2](BF[subscript 4])[subscript 2] / 9.5.2:
Stereoselective catalytic oxidation of aryl methyl sulfides / 9.5.3:
Index
Series Preface
Preface to Volume 5
Abbreviations
34.

図書

図書
Gerald Burns
出版情報: Boston : Academic Press, c1992  xiii, 199 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Introduction / Chapter 1:
Problems
Review of Conventional Superconductors / Chapter 2:
Two-Fluid Model / 2-1:
London Equation / 2-3:
Nonlocal Fields / 2-4:
Nonlocal Electrodynamics Sketched / 2-4a:
Various Situations and Dirty Superconductors / 2-4b:
Ginzburg-Landau Theory / 2-5:
GL Free Energy / 2-5a:
GL Differential Equations / 2-5c:
Flux Quantization / 2-5d:
GL Coherence Length / 2-5e:
Type II Superconductors / 2-5f:
BCS Theory / 2-6:
Cooper Pairs and BCS Introduction / 2-6a:
BCS Results / 2-6c:
Specific Heat / 2-6d:
Anisotropic Superconducting Gap / 2-6e:
Coherence Effects / 2-6f:
Strong-Coupled Superconductors / 2-7:
McMillan Equation / 2-7a:
Maximum T[subscript c]? / 2-7c:
Electron-Phonon Parameter Calculations / 2-7d:
Tunneling / 2-8:
Tunneling Review / 2-8a:
Tunneling Experiments / 2-8b:
Phonon Structure / 2-8c:
Other Topics / 2-9:
Magnetic Superconductors / 2-9a:
Earlier Oxide Superconductors / 2-9b:
Heavy-Electron Metals / 2-9c:
Organic Superconductors / 2-9d:
[superscript 3]He / 2-9e:
Structures / Chapter 3:
Overview / 3-1:
La(n = 1) / 3-2:
2-Tl(n) / 3-2b:
2-Bi(n) / 3-2c:
1-Tl(n) / 3-2d:
Distances / 3-2e:
Y123 / 3-2f:
Other High-T[subscript c] Structures / 3-2g:
Other Phases / 3-3:
Y123 with Intermediate Oxygen Content / 3-3a:
Other Distortions / 3-3d:
Conventional Superconductors / 3-4:
Normal-State Properties / Chapter 4:
Cu-Charge State / 4-1:
Charges / 4-2a:
Molecular Orbitals / 4-2b:
Resistance / 4-3:
Conventional Resistivity Behavior / 4-3a:
Resistivity of High-T[subscript c] Materials / 4-3b:
Hall Effect / 4-4:
Magnetism / 4-5:
Insulator Phase / 4-5a:
Superconducting Phase / 4-5b:
Structural Phase Transitions / 4-6:
Bands--General / 4-7:
Fermi Liquid / 4-7a:
Resonating-Valence-Band State / 4-7b:
Band Theory / 4-7c:
Simple Two-Dimensional Bands / 4-7d:
More Advanced Two-Dimensional Bands / 4-7e:
One-Electron Bands / 4-8:
Photoemission Spectroscopy / 4-9:
PES 2-Bi(n = 2) Results / 4-9a:
PES Y123 Results / 4-9c:
PES Summary / 4-9d:
Superconducting Properties / Chapter 5:
T[subscript c] Values / 5-1:
Cooper Pairs and BCS / 5-2:
Paired Electrons? / 5-2a:
Spin Singlet or Triplet Pairing? / 5-2c:
Symmetry of Electron Pairs / 5-2d:
BCS Superconductors? / 5-3:
Superconducting Energy Gap and Other Properties / 5-4:
PES Results / 5-4a:
Tunneling Spectroscopy / 5-4b:
Infrared Results / 5-4c:
Raman Results / 5-4e:
NMR Results / 5-4f:
Isotope Effect / 5-5:
The Pairing Mechanism / 5-6:
Soft Phonon Modes / 5-6a:
Temperature-Dependent Phonon Modes / 5-6c:
Neutron Measurements / 5-6d:
High-Energy Tunneling Results / 5-6e:
Electron-Phonon Coupling Parameter Calculations / 5-6f:
Electron-Phonon Coupling Parameter Measurements / 5-6g:
Phonons plus Electron Density of States Singularity / 5-6h:
Phonons Alone / 5-6i:
Magnetic Properties / 5-7:
Type II Materials / 5-7a:
Penetration Depth / 5-7b:
H[subscript c1] / 5-7c:
Coherence Length and H[subscript c2] / 5-7d:
Anisotropic Ginzburg-Landau Results / 5-7e:
Torque Magnetometry / 5-7f:
Postscript / 5-8:
Vortex Behavior, J[subscript c], and Applications / Chapter 6:
Flux Lattice, Flux Glass, and Pinning / 6-1:
Flux Lattice and Glass / 6-2a:
Pinning / 6-2b:
Films and Critical Currents / 6-3:
Films / 6-3a:
Superlattices / 6-3b:
Wires / 6-3c:
Critical Current / 6-3d:
Macroscopic Magnetic Properties / 6-4:
Vortex Glass / 6-4a:
Flux Creep / 6-4c:
A True Zero Resistance State? / 6-4d:
Experimental Vortex Glass-Liquid Measurements / 6-4e:
Irreversibility Line / 6-4f:
Applications Introduction / 6-5:
Large-Scale Applications / 6-6:
Wires and Superconducting Magnets / 6-6a:
Levitation / 6-6c:
Small-Scale Applications / 6-7:
Bibliography
Notes for the Chapters
Index
Preface
Acknowledgements
Introduction / Chapter 1:
35.

図書

図書
Kiyoko F. Aoki-Kinoshita
出版情報: Boca Raton : CRC Press, c2010  xvii, 244 p. ; 25 cm
シリーズ名: Chapman and Hall/CRC mathematical & computational biology series / series editors Alison M. Etheridge ... [et al.] ; 28
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
About the Author
Introduction to Glycobiology / 1:
Roles of carbohydrates / 1.1:
Glycan structures / 1.2:
Glycan classes / 1.3:
Glycan biosynthesis / 1.4:
N-linked glycans / 1.4.1:
O-linked glycans / 1.4.2:
Glycosaminoglycans (GAGs) / 1.4.3:
Glycosphingolipids (GSLs) / 1.4.4:
GPI anchors / 1.4.5:
LPS / 1.4.6:
Glycan motifs / 1.5:
Potential for drug discovery / 1.6:
Background / 2:
Glycan nomenclature / 2.1:
InChIÖ / 2.1.1:
(Extended) IUPAC format / 2.1.2:
CarbBank format / 2.1.3:
KCF format / 2.1.4:
LINUCS format / 2.1.5:
BCSDB format / 2.1.6:
Linear Code" / 2.1.7:
GlycoCT format / 2.1.8:
XML representations / 2.1.9:
Lectin-glycan interactions / 2.2:
Families and types of lectins / 2.2.1:
Carbohydrate-binding mechanism of lectins / 2.2.2:
Carbohydrate-carbohydrate interactions / 2.3:
Databases / 3:
Glycan structure databases / 3.1:
KEGG GLYCAN / 3.1.1:
GLYCOSCIENCES.de / 3.1.2:
CFG / 3.1.3:
BCSDB / 3.1.4:
GLYCO3D / 3.1.5:
MonoSaccharideDB / 3.1.6:
GlycomeDB / 3.1.7:
Glyco-gene databases / 3.2:
KEGG BRITE / 3.2.1:
GGDB / 3.2.2:
CAZy / 3.2.4:
Lipid databases / 3.3:
SphingoMAP© / 3.3.1:
LipidBank / 3.3.2:
LMSD / 3.3.3:
Lectin databases / 3.4:
Lectines / 3.4.1:
Animal Lectin DB / 3.4.2:
Others / 3.5:
GlycoEpitopeDB / 3.5.1:
ECODAB / 3.5.2:
SugarBindDB / 3.5.3:
Glycome Informatics / 4:
Terminology and notations / 4.1:
Algorithmic techniques / 4.2:
Tree structure alignment / 4.2.1:
Linkage analysis using score matrices / 4.2.2:
Glycan variation map / 4.2.3:
Bioinformatic methods / 4.3:
Glycan structure prediction from glycogene microarrays / 4.3.1:
Glyco-gene sequence and structure analysis / 4.3.2:
Glyco-related pathway analysis / 4.3.3:
Mass spectral data annotation / 4.3.4:
Data mining techniques / 4.4:
Kernel methods / 4.4.1:
Frequent subtree mining / 4.4.2:
Probabilistic models / 4.4.3:
Glycomics tools / 4.5:
Visualization tools / 4.5.1:
Pathway analysis tools / 4.5.2:
PDB data analysis / 4.5.3:
3D analysis tools / 4.5.4:
Molecular dynamics / 4.5.5:
Spectroscopic tools / 4.5.6:
NMR tools / 4.5.7:
Potential Research Projects / 5:
Sequence and structural analyses / 5.1:
Glycan score matrix / 5.1.1:
Visualization / 5.1.2:
Databases and techniques to integrate heterogeneous data sets / 5.2:
Automated characterization of glycans from MS data / 5.3:
Prediction of glycans from data other than MS / 5.4:
Biomarker prediction / 5.5:
Systems analyses / 5.6:
Drug discovery / 5.7:
Sequence Analysis Methods / A:
Pairwise sequence alignment (dynamic programming) / A.1:
Dynamic programming / A.1.1:
Sequence alignment / A.1.2:
BLOSUM (BLOcks Substitution Matrix) / A.2:
Machine Learning Methods / B:
Kernel methods and SVMs / B.1:
Hidden Markov models / B.2:
The three problems of interest for HMMs / B.2.1:
Expectation-Maximization (EM) algorithm / B.2.2:
Hidden tree Markov models / B.2.3:
Profile Hidden Markov models (profile HMMs) / B.2.4:
Glycomics Technologies / C:
Mass spectrometry (MS) / C.1:
MALDI-MS / C.1.l:
FT-ICR / C.1.2:
LC-MS (HPLC) / C.1.3:
Tandem MS / C.1.4:
Nuclear magnetic resonance (NMR) / C.2:
References
Index
List of Tables
List of Figures
About the Author
36.

図書

図書
Brian R. Eggins
出版情報: Chichester, West Sussex : Wiley, c2002  xxi, 273 p. ; 23 cm
シリーズ名: Analytical Techniques in the Sciences(AnTS)
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface
Acronyms, Abbreviations and Symbols
About the Author
Introduction / 1:
Introduction to Sensors / 1.1:
What are Sensors? / 1.1.1:
The Nose as a Sensor / 1.1.2:
Sensors and Biosensors--Definitions / 1.2:
Aspects of Sensors / 1.3:
Recognition Elements / 1.3.1:
Transducers--the Detector Device / 1.3.2:
Methods of Immobilization / 1.3.3:
Performance Factors / 1.3.4:
Areas of Application / 1.3.5:
Transduction Elements / 2:
Electrochemical Transducers--Introduction / 2.1:
Potentiometry and Ion-Selective Electrodes: The Nernst Equation / 2.2:
Cells and Electrodes / 2.2.1:
Reference Electrodes / 2.2.2:
Quantitative Relationships: The Nernst Equation / 2.2.3:
Practical Aspects of Ion-Selective Electrodes / 2.2.4:
Measurement and Calibration / 2.2.5:
Voltammetry and Amperometry / 2.3:
Linear-Sweep Voltammetry / 2.3.1:
Cyclic Voltammetry / 2.3.2:
Chronoamperometry / 2.3.3:
Amperometry / 2.3.4:
Kinetic and Catalytic Effects / 2.3.5:
Conductivity / 2.4:
Field-Effect Transistors / 2.5:
Semiconductors--Introduction / 2.5.1:
Semiconductor--Solution Contact / 2.5.2:
Field-Effect Transistor / 2.5.3:
Modified Electrodes, Thin-Film Electrodes and Screen-Printed Electrodes / 2.6:
Thick-Film--Screen-Printed Electrodes / 2.6.1:
Microelectrodes / 2.6.2:
Thin-Film Electrodes / 2.6.3:
Photometric Sensors / 2.7:
Optical Techniques / 2.7.1:
Ultraviolet and Visible Absorption Spectroscopy / 2.7.3:
Fluorescence Spectroscopy / 2.7.4:
Luminescence / 2.7.5:
Optical Transducers / 2.7.6:
Device Construction / 2.7.7:
Solid-Phase Absorption Label Sensors / 2.7.8:
Applications / 2.7.9:
Further Reading
Sensing Elements / 3:
Ionic Recognition / 3.1:
Ion-Selective Electrodes--Introduction / 3.2.1:
Interferences / 3.2.2:
Conducting Devices / 3.2.3:
Modified Electrodes and Screen-Printed Electrodes / 3.2.4:
Molecular Recognition--Chemical Recognition Agents / 3.3:
Thermodynamic--Complex Formation / 3.3.1:
Kinetic--Catalytic Effects: Kinetic Selectivity / 3.3.2:
Molecular Size / 3.3.3:
Molecular Recognition--Spectroscopic Recognition / 3.4:
Infrared Spectroscopy--Molecular / 3.4.1:
Ultraviolet Spectroscopy--Less Selective / 3.4.3:
Nuclear Magnetic Resonance Spectroscopy--Needs Interpretation / 3.4.4:
Mass Spectrometry / 3.4.5:
Molecular Recognition--Biological Recognition Agents / 3.5:
Enzymes / 3.5.1:
Tissue Materials / 3.5.3:
Micro-Organisms / 3.5.4:
Mitochondria / 3.5.5:
Antibodies / 3.5.6:
Nucleic Acids / 3.5.7:
Receptors / 3.5.8:
Immobilization of Biological Components / 3.6:
Adsorption / 3.6.1:
Microencapsulation / 3.6.3:
Entrapment / 3.6.4:
Cross-Linking / 3.6.5:
Covalent Bonding / 3.6.6:
Selectivity / 4:
Ion-Selective Electrodes / 4.2.1:
Others / 4.2.2:
Sensitivity / 4.3:
Range, Linear Range and Detection Limits / 4.3.1:
Time Factors / 4.4:
Response Times / 4.4.1:
Recovery Times / 4.4.2:
Lifetimes / 4.4.3:
Precision, Accuracy and Repeatability / 4.5:
Different Biomaterials / 4.6:
Different Transducers / 4.7:
Urea Biosensors / 4.7.1:
Amino Acid Biosensors / 4.7.2:
Glucose Biosensors / 4.7.3:
Uric Acid / 4.7.4:
Some Factors Affecting the Performance of Sensors / 4.8:
Amount of Enzyme / 4.8.1:
Immobilization Method / 4.8.2:
pH of Buffer / 4.8.3:
Electrochemical Sensors and Biosensors / 5:
Potentiometric Sensors--Ion-Selective Electrodes / 5.1:
Concentrations and Activities / 5.1.1:
Calibration Graphs / 5.1.2:
Examples of Ion-Selective Electrodes / 5.1.3:
Gas Sensors--Gas-Sensing Electrodes / 5.1.4:
Potentiometric Biosensors / 5.2:
pH-Linked / 5.2.1:
Ammonia-Linked / 5.2.2:
Carbon Dioxide-Linked / 5.2.3:
Iodine-Selective / 5.2.4:
Silver Sulfide-Linked / 5.2.5:
Amperometric Sensors / 5.3:
Direct Electrolytic Methods / 5.3.1:
The Three Generations of Biosensors / 5.3.2:
First Generation--The Oxygen Electrode / 5.3.3:
Second Generation--Mediators / 5.3.4:
Third Generation--Directly Coupled Enzyme Electrodes / 5.3.5:
NADH/NAD[superscript +] / 5.3.6:
Examples of Amperometric Biosensors / 5.3.7:
Amperometric Gas Sensors / 5.3.8:
Conductometric Sensors and Biosensors / 5.4:
Chemiresistors / 5.4.1:
Biosensors Based on Chemiresistors / 5.4.2:
Semiconducting Oxide Sensors / 5.4.3:
Applications of Field-Effect Transistor Sensors / 5.5:
Chemically Sensitive Field-Effect Transistors (CHEMFETs) / 5.5.1:
Ion-Selective Field-Effect Transistors (ISFETs) / 5.5.2:
FET-Based Biosensors (ENFETs) / 5.5.3:
Photometric Applications / 6:
Techniques for Optical Sensors / 6.1:
Modes of Operation of Waveguides in Sensors / 6.1.1:
Immobilized Reagents / 6.1.2:
Visible Absorption Spectroscopy / 6.2:
Measurement of pH / 6.2.1:
Measurement of Carbon Dioxide / 6.2.2:
Measurement of Ammonia / 6.2.3:
Examples That Have Been Used in Biosensors / 6.2.4:
Fluorescent Reagents / 6.3:
Fluorescent Reagents for pH Measurements / 6.3.1:
Halides / 6.3.2:
Sodium / 6.3.3:
Potassium / 6.3.4:
Gas Sensors / 6.3.5:
Indirect Methods Using Competitive Binding / 6.4:
Reflectance Methods--Internal Reflectance Spectroscopy / 6.5:
Evanescent Waves / 6.5.1:
Reflectance Methods / 6.5.2:
Attenuated Total Reflectance / 6.5.3:
Total Internal Reflection Fluorescence / 6.5.4:
Surface Plasmon Resonance / 6.5.5:
Light Scattering Techniques / 6.6:
Types of Light Scattering / 6.6.1:
Quasi-Elastic Light Scattering Spectroscopy / 6.6.2:
Photon Correlation Spectroscopy / 6.6.3:
Laser Doppler Velocimetry / 6.6.4:
Mass-Sensitive and Thermal Sensors / 7:
The Piezo-Electric Effect / 7.1:
Principles / 7.1.1:
Gas Sensor Applications / 7.1.2:
Biosensor Applications / 7.1.3:
The Quartz Crystal Microbalance / 7.1.4:
Surface Acoustic Waves / 7.2:
Plate Wave Mode / 7.2.1:
Evanescent Wave Mode / 7.2.2:
Lamb Mode / 7.2.3:
Thickness Shear Mode / 7.2.4:
Thermal Sensors / 7.3:
Thermistors / 7.3.1:
Catalytic Gas Sensors / 7.3.2:
Thermal Conductivity Devices / 7.3.3:
Specific Applications / 8:
Determination of Glucose in Blood--Amperometric Biosensor / 8.1:
Survey of Biosensor Methods for the Determination of Glucose / 8.1.1:
Aim / 8.1.2:
Determination of Nanogram Levels of Copper(I) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent / 8.2:
Background to Stripping Voltammetry--Anodic and Cathodic / 8.2.1:
Determination of Several Ions Simultaneously--'The Laboratory on a Chip' / 8.2.2:
Sensor Arrays and 'Smart' Sensors / 8.3.1:
Background to Ion-Selective Field-Effect Transistors / 8.3.3:
Determination of Attomole Levels of a Trinitrotoluene--Antibody Complex with a Luminescent Transducer / 8.3.4:
Background to Immuno--Luminescent Assays / 8.4.1:
Determination of Flavanols in Beers / 8.4.2:
Background / 8.5.1:
Responses to Self-Assessment Questions / 8.5.2:
Bibliography
Glossary of Terms
SI Units and Physical Constants
Periodic Table
Index
Series Preface
Preface
Acronyms, Abbreviations and Symbols
37.

図書

図書
edited by Noritaka Mizuno
出版情報: Weinheim : Wiley-VCH, c2009  xv, 341 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Concepts in Selective Oxidation of Small Alkane Molecules / Robert Schlogl1:
Introduction / 1.1:
The Research Field / 1.2:
Substrate Activation / 1.3:
Active Oxygen Species / 1.4:
Catalyst Material Science / 1.5:
Conclusion / 1.6:
References
Active Ensemble Structures for Selective Oxidation Catalyses at Surfaces / Mizuki Tada ; Yasuhiro Iwasawa2:
Asymmetric Heterogeneous Catalysis Using Supported Metal Complexes / 2.1:
Asymmetric Catalysis for Oxidative Coupling of 2-Naphthol to BINOL / 2.2.2:
Active Re Clusters Entrapped in ZSM-5 Pores / 2.3:
Unique Catalytic Performance of Supported Gold Nanoparticles in Oxidation / Yunbo Yu ; Jiahui Huang ; Tamao Ishida ; Masatake Haruta2.4.4:
Low-Temperature CO Oxidation / 3.1:
Low-Temperature CO Oxidation in Air / 3.2.1:
Junction Perimeter Between Au Particles and the Support / 3.2.1.1:
Selection of Suitable Supports / 3.2.1.2:
Sensitivity to the Size of the Gold Particles / 3.2.1.3:
Mechanism for CO Oxidation Over Supported Gold Nanoparticles / 3.2.2:
Mechanisms Involving Junction Perimeter Between Gold and the Metal-Oxide Supports / 3.2.3.1:
Mechanisms Involving Specific Size or Thickness of Gold Clusters or Thin Layers / 3.2.3.2:
Mechanisms Involving Cationic Gold / 3.2.3.3:
Complete Oxidation of Volatile Organic Compounds / 3.3:
Gas-Phase Selective Oxidation of Organic Compounds / 3.4:
Gas-Phase Selective Oxidation of Aliphatic Alkanes / 3.4.1:
Gas-Phase Selective Oxidation of Alcohols / 3.4.2:
Gas-Phase Propylene Epoxidation / 3.4.3:
Liquid-Phase Selective Oxidation of Organic Compounds / 3.4.3.1:
Oxidation of Mono-Alcohols / 3.5.1:
Oxidation of Diols / 3.5.2:
Oxidation of Glycerol / 3.5.3:
Aerobic Oxidation of Glucose / 3.5.4:
Oxidation of Alkanes and Alkenes / 3.5.5:
Conclusions / 3.6:
Metal-Substituted Zeolites as Heterogeneous Oxidation Catalysts / Takashi Tatsumi4:
Introduction - Two Ways to Introduce Hetero-Metals into Zeolites / 4.1:
Titanium-Containing Zeolites / 4.2:
TS-1 / 4.2.1:
Ti-Beta / 4.2.2:
Ti-MWW / 4.2.3:
Other Titanium-Containing Zeolites / 4.2.4:
Solvent Effects and Reaction Intermediate / 4.2.5:
Other Metal-Containing Zeolites / 4.3:
Design of Well-Defined Active Sites on Crystalline Materials for Liquid-Phase Oxidations / Kiyotomi Kaneda ; Takato Mitsudome4.4:
Oxidation of Alcohols / 5.1:
Ru Catalyst / 5.2.1:
Pd Catalyst / 5.2.2:
Au Catalyst / 5.2.3:
Au-Pd Catalyst / 5.2.4:
Epoxidation of Olefins / 5.3:
Epoxidation with Hydrogen Peroxide / 5.3.1:
Titanium-Based Catalysts / 5.3.1.1:
Tungsten-Based Catalysts / 5.3.1.2:
Base Catalyst / 5.3.1.3:
Epoxidation with Molecular Oxygen / 5.3.2:
Cis-Dihydroxylation / 5.4:
Baeyer-Villiger Oxidation / 5.5:
C-H Activation Using Molecular Oxygen / 5.6:
Liquid-Phase Oxidations with Hydrogen Peroxide and Molecular Oxygen Catalyzed by Polyoxometalate-Based Compounds / Noritaka Mizuno ; Keigo Kamata ; Sayaka Uchida ; Kazuya Yamaguchi5.7:
Isopoly- and Heteropolyoxometalates / 6.1:
Peroxometalates / 6.2.2:
Lacunary Polyoxometalates / 6.2.3:
Transition-Metal-Substituted Polyoxometalates / 6.2.4:
Heterogenization of Polyoxometalates / 6.3:
Solidification of Polyoxometalates with Appropriate Cations / 6.3.1:
Metal and Alkylammonium Cations / 6.3.1.1:
Polycations / 6.3.1.2:
Cationic Organometallic Complexes / 6.3.1.3:
Immobilization of Polyoxometalate-Based Compounds / 6.3.2:
Wet Impregnation / 6.3.2.1:
Solvent-Anchoring and Covalent Linkage / 6.3.2.2:
Anion Exchange / 6.3.2.3:
Nitrous Oxide as an Oxygen Donor in Oxidation Chemistry and Catalysis / Gennady I. Panov ; Konstantin A. Dubkov ; Alexander S. Kharitonov6.4:
Molecular Structure and Physical Properties of Nitrous Oxide / 7.1:
Catalytic Oxidation by Nitrous Oxide in the Gas Phase / 7.3:
Oxidation of Lower Alkanes Over Oxide Catalysts / 7.3.1:
Oxidation Over Zeolites / 7.3.2:
Oxidation by Dioxygen / 7.3.2.1:
Nature of Zeolite Activity, a-Sites / 7.3.2.2:
Hydroxylation of Alkanes and Benzene Derivatives / 7.3.2.4:
Other Types of Oxidation Reactions / 7.3.2.6:
Liquid-Phase Oxidation of Alkenes / 7.4:
Linear Alkenes / 7.5.1.1:
Cyclic Alkenes / 7.5.1.2:
Cyclodienes / 7.5.1.3:
Bicyclic Alkenes / 7.5.1.4:
Heterocyclic Alkenes / 7.5.1.5:
Carboxidation of Polymers / 7.5.2:
Carboxidation of Polyethylene / 7.5.2.1:
Carboxidation of Polybutadiene Rubber / 7.5.2.2:
Direct Synthesis of Hydrogen Peroxide: Recent Advances / Gabriele Centi ; Siglinda Perathoner ; Salvatore Abate7.6:
Industrial Production / 8.1:
Uses of Hydrogen Peroxide / 8.1.2:
Status of Development and Perspectives of Industrial Production / 8.2:
Fundamental Studies / 8.2.2:
Intrinsically Safe Operations and Microreactors / 8.3.1:
Nature of the Catalyst and Reaction Network / 8.3.2:
Role of the Solvent and of Promoters / 8.3.3:
Recent Achievements and Challenges for a Greener Chemical Industry / Fabrizio Cavani ; Nicola Ballarini8.4:
Introduction: Old and New Challenges for Oxidation Catalysis in Industry / 9.1:
Recent Successful Examples of Alkanes Oxidation / 9.2:
Oxidation of Ethane to Acetic Acid / 9.2.1:
Ammoxidation of Propane to Acrylonitrile / 9.2.2:
New Oxidation Technologies: Oxidative Desulfurization (ODS) of Gas Oil / 9.3:
Process Intensification in Catalytic Oxidation / 9.4:
An Alternative Approach: Anaerobic Oxidation with Metal Oxides in a Cycle Process (from an Oxidation Catalyst to a Reusable Stoichiometric Oxidant) / 9.5:
Anaerobic Oxidation of Propene to Acrolein in a CFBR Reactor / 9.5.1:
Anaerobic Synthesis of 2-Methyl-1,4-Naphthoquinone (Menadione) / 9.5.2:
Anaerobic Oxidative Dehydrogenation of Propane to Propene / 9.5.3:
Production of Hydrogen from Methane with Oxide Materials and Inherent Segregation of Carbon Dioxide / 9.5.4:
Current and Developing Processes for the Transformation of Bioplatform Molecules into Chemicals by Catalytic Oxidation / 9.6:
Glycerol: A Versatile Building Block / 9.6.1:
Index / 9.7:
Preface
List of Contributors
Concepts in Selective Oxidation of Small Alkane Molecules / Robert Schlogl1:
38.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
39.

図書

図書
Alfredo H-S. Ang, Wilson H. Tang
出版情報: New York : Wiley, 1975  xiii, 409 p. ; 24 cm
シリーズ名: Probability concepts in engineering planning and design ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
Uncertainty Associated with Randomness / 1.2.1:
Uncertainty Associated with Imperfect Modeling and Estimation / 1.2.2:
Design and Decision-Making Under Uncertainty / 1.3:
Planning and Design of Airport Pavement / 1.3.1:
Hydrologic Design / 1.3.2:
Design of Structures and Machines / 1.3.3:
Geotechnical Design / 1.3.4:
Construction Planning and Management / 1.3.5:
Photogrammetric, Geodetic, and Surveying Measurements / 1.3.6:
Control and Standards / 1.4:
Concluding Remarks / 1.5:
Basic Probability Concepts / 2:
Events and Probability / 2.1:
Characteristics of Probability Problems / 2.1.1:
Calculation of Probability / 2.1.2:
Elements of Set Theory / 2.2:
Definitions / 2.2.1:
Combination of Events / 2.2.2:
Operational Rules / 2.2.3:
Mathematics of Probability / 2.3:
Basic Axioms of Probability Addition Rule / 2.3.1:
Conditional Probability Multiplication Rule / 2.3.2:
Theorem of Total Probability / 2.3.3:
Bayes' Theorem / 2.3.4:
Concluding Remarks Problems / 2.4:
Analytical Models of Random Phenomena / 3:
Random Variables / 3.1:
Probability Distribution of a Random Variable / 3.1.1:
Main Descriptors of a Random Variable / 3.1.2:
Useful Probability Distributions / 3.2:
The Normal Distribution / 3.2.1:
The Logarithmic Normal Distribution / 3.2.2:
Bernoulli Sequence and the Binomial Distribution / 3.2.3:
The Geometric Distribution / 3.2.4:
The Negative Binomial Distribution / 3.2.5:
The Poisson Process and Poisson Distribution / 3.2.6:
The Exponential Distribution / 3.2.7:
The Gamma Distribution / 3.2.8:
The Hypergeometric Distribution / 3.2.9:
The Beta Distribution / 3.2.10:
Other Distributions / 3.2.11:
Multiple Random Variables / 3.3:
Joint and Conditional Probability Distributions / 3.3.1:
Covariance and Correlation / 3.3.2:
Conditional Mean and Variance / 3.3.3:
Functions of Random Variables / 3.4:
Derived Probability Distributions / 4.1:
Function of Single Random Variable / 4.2.1:
Function of Multiple Random Variables / 4.2.2:
Moments of Functions of Random Variables / 4.3:
Mean and Variance of a Linear Function / 4.3.1:
Product of Independent Variates / 4.3.3:
Mean and Variance of a General Function / 4.3.4:
Estimating Parameters from Observational Data / 4.4:
The Role of Statistical Inference in Engineering / 5.1:
Inherent Variability and Estimation Error / 5.1.1:
Classical Approach to Estimation of Parameters / 5.2:
Random Sampling and Point Estimation / 5.2.1:
Interval Estimation of the Mean / 5.2.2:
Problems of Measurement Theory / 5.2.3:
Interval Estimation of the Variance / 5.2.4:
Estimation of Proportion / 5.2.5:
Empirical Determination of Distribution Models / 5.3:
Probability Paper / 6.1:
The Normal Probability Paper / 6.2.1:
The Log-Normal Probability Paper / 6.2.2:
Construction of General Probability Paper / 6.2.3:
Testing Validity of Assumed Distribution / 6.3:
Chi-Square Test for Distribution / 6.3.1:
Kolmogorov-Smirnov Test for Distribution / 6.3.2:
Regression and Correlation Analyses / 6.4:
Basic Formulation of Linear Regression / 7.1:
Regression with Constant Variance / 7.1.1:
Regression with Nonconstant Variance / 7.1.2:
Multiple Linear Regression / 7.2:
Nonlinear Regression / 7.3:
Applications of Regression Analysis in Engineering / 7.4:
Correlation Analysis / 7.5:
Estimation of Correlation Coefficient / 7.5.1:
The Bayesian Approach / 7.6:
Basic Concepts-The Discrete Case / 8.1:
The Continuous Case / 8.3:
General Formulation / 8.3.1:
A Special Application of Bayesian Up-dating Process / 8.3.2:
Bayesian Concepts in Sampling Theory / 8.4:
Sampling from Normal Population / 8.4.1:
Error in Estimation / 8.4.3:
Use of Conjugate Distributions / 8.4.4:
Elements of Quality Assurance and Acceptance Sampling / 8.5:
Acceptance Sampling by Attributes / 9.1:
The Operating Characteristic (OC) Curve / 9.1.1:
The Success Run / 9.1.2:
The Average Outgoing Quality Curve / 9.1.3:
Acceptance Sampling by Variables / 9.2:
Average Quality Criterion, sigma Known / 9.2.1:
Average Quality Criterion, sigma Unknown / 9.2.2:
Fraction Defective Criterion / 9.2.3:
Multiple-Stage Sampling / 9.3:
Probability Tables / 9.4:
Table of Standard Normal Probability / Table A.1:
p-Percentile Values of the t-Distribution / Table A.2:
p-Percentile Values of the x 2 -Distribution / Table A.3:
Critical Values of D alpha; in the Kolmogorov-Smirnov Test / Table A.4:
Combinatorial Formulas / Appendix B:
Derivation of the Poisson Distribution / Appendix C:
References
Index
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
40.

図書

図書
Govind P. Agrawal
出版情報: Boston ; Tokyo : Academic Press, c1989  xii, 342 p. ; 24 cm
シリーズ名: Quantum electronics : principles and applications
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical Perspective / 1.1:
Fiber Characteristics / 1.2:
Material and Fabrication / 1.2.1:
Fiber Losses / 1.2.2:
Chromatic Dispersion / 1.2.3:
Polarization-Mode Dispersion / 1.2.4:
Fiber Nonlinearities / 1.3:
Nonlinear Refraction / 1.3.1:
Stimulated Inelastic Scattering / 1.3.2:
Importance of Nonlinear Effects / 1.3.3:
Overview / 1.4:
Problems
References
Pulse Propagation in Fibers / 2:
Maxwell's Equations / 2.1:
Fiber Modes / 2.2:
Eigenvalue Equation / 2.2.1:
Single-Mode Condition / 2.2.2:
Characteristics of the Fundamental Mode / 2.2.3:
Pulse-Propagation Equation / 2.3:
Nonlinear Pulse Propagation / 2.3.1:
Higher-Order Nonlinear Effects / 2.3.2:
Numerical Methods / 2.4:
Split-Step Fourier Method / 2.4.1:
Finite-Difference Methods / 2.4.2:
Group-Velocity Dispersion / 3:
Different Propagation Regimes / 3.1:
Dispersion-Induced Pulse Broadening / 3.2:
Gaussian Pulses / 3.2.1:
Chirped Gaussian Pulses / 3.2.2:
Hyperbolic-Secant Pulses / 3.2.3:
Super-Gaussian Pulses / 3.2.4:
Experimental Results / 3.2.5:
Third-Order Dispersion / 3.3:
Changes in Pulse Shape / 3.3.1:
Broadening Factor / 3.3.2:
Arbitrary-Shape Pulses / 3.3.3:
Ultrashort-Pulse Measurements / 3.3.4:
Dispersion Management / 3.4:
GVD-Induced Limitations / 3.4.1:
Dispersion Compensation / 3.4.2:
Compensation of Third-Order Dispersion / 3.4.3:
Self-Phase Modulation / 4:
SPM-Induced Spectral Broadening / 4.1:
Nonlinear Phase Shift / 4.1.1:
Changes in Pulse Spectra / 4.1.2:
Effect of Pulse Shape and Initial Chirp / 4.1.3:
Effect of Partial Coherence / 4.1.4:
Effect of Group-Velocity Dispersion / 4.2:
Pulse Evolution / 4.2.1:
Optical Wave Breaking / 4.2.2:
Effect of Third-Order Dispersion / 4.2.4:
Self-Steepening / 4.3:
Effect of GVD on Optical Shocks / 4.3.2:
Intrapulse Raman Scattering / 4.3.3:
Optical Solitons / 5:
Modulation Instability / 5.1:
Linear Stability Analysis / 5.1.1:
Gain Spectrum / 5.1.2:
Experimental Observation / 5.1.3:
Ultrashort Pulse Generation / 5.1.4:
Impact on Lightwave Systems / 5.1.5:
Fiber Solitons / 5.2:
Inverse Scattering Method / 5.2.1:
Fundamental Soliton / 5.2.2:
Higher-Order Solitons / 5.2.3:
Experimental Confirmation / 5.2.4:
Soliton Stability / 5.2.5:
Other Types of Solitons / 5.3:
Dark Solitons / 5.3.1:
Dispersion-Managed Solitons / 5.3.2:
Bistable Solitons / 5.3.3:
Perturbation of Solitons / 5.4:
Perturbation Methods / 5.4.1:
Soliton Amplification / 5.4.2:
Soliton Interaction / 5.4.4:
Higher-Order Effects / 5.5:
Propagation of Femtosecond Pulses / 5.5.1:
Polarization Effects / 6:
Nonlinear Birefringence / 6.1:
Origin of Nonlinear Birefringence / 6.1.1:
Coupled-Mode Equations / 6.1.2:
Elliptically Birefringent Fibers / 6.1.3:
Nondispersive XPM / 6.2:
Optical Kerr Effect / 6.2.2:
Pulse Shaping / 6.2.3:
Evolution of Polarization State / 6.3:
Analytic Solution / 6.3.1:
Poincare-Sphere Representation / 6.3.2:
Polarization Instability / 6.3.3:
Polarization Chaos / 6.3.4:
Vector Modulation Instability / 6.4:
Low-Birefringence Fibers / 6.4.1:
High-Birefringence Fibers / 6.4.2:
Isotropic Fibers / 6.4.3:
Birefringence and Solitons / 6.4.4:
Soliton-Dragging Logic Gates / 6.5.1:
Vector Solitons / 6.5.4:
Random Birefringence / 6.6:
Polarization State of Solitons / 6.6.1:
Cross-Phase Modulation / 7:
XPM-Induced Nonlinear Coupling / 7.1:
Nonlinear Refractive Index / 7.1.1:
Coupled NLS Equations / 7.1.2:
Propagation in Birefringent Fibers / 7.1.3:
XPM-Induced Modulation Instability / 7.2:
XPM-Paired Solitons / 7.2.1:
Bright-Dark Soliton Pair / 7.3.1:
Bright-Gray Soliton Pair / 7.3.2:
Other Soliton Pairs / 7.3.3:
Spectral and Temporal Effects / 7.4:
Asymmetric Spectral Broadening / 7.4.1:
Asymmetric Temporal Changes / 7.4.2:
Applications of XPM / 7.4.3:
XPM-Induced Pulse Compression / 7.5.1:
XPM-Induced Optical Switching / 7.5.2:
XPM-Induced Nonreciprocity / 7.5.3:
Stimulated Raman Scattering / 8:
Basic Concepts / 8.1:
Raman-Gain Spectrum / 8.1.1:
Raman Threshold / 8.1.2:
Coupled Amplitude Equations / 8.1.3:
Quasi-Continuous SRS / 8.2:
Single-Pass Raman Generation / 8.2.1:
Raman Fiber Lasers / 8.2.2:
Raman Fiber Amplifiers / 8.2.3:
Raman-Induced Crosstalk / 8.2.4:
SRS with Short Pump Pulses / 8.3:
Pulse-Propagation Equations / 8.3.1:
Nondispersive Case / 8.3.2:
Effects of GVD / 8.3.3:
Synchronously Pumped Raman Lasers / 8.3.4:
Soliton Effects / 8.4:
Raman Solitons / 8.4.1:
Raman Soliton Lasers / 8.4.2:
Soliton-Effect Pulse Compression / 8.4.3:
Effect of Four-Wave Mixing / 8.5:
Stimulated Brillouin Scattering / 9:
Physical Process / 9.1:
Brillouin-Gain Spectrum / 9.1.2:
Quasi-CW SBS / 9.2:
Coupled Intensity Equations / 9.2.1:
Brillouin Threshold / 9.2.2:
Gain Saturation / 9.2.3:
Dynamic Aspects / 9.2.4:
Relaxation Oscillations / 9.3.1:
Modulation Instability and Chaos / 9.3.3:
Transient Regime / 9.3.4:
Brillouin Fiber Lasers / 9.4:
CW Operation / 9.4.1:
Pulsed Operation / 9.4.2:
SBS Applications / 9.5:
Brillouin Fiber Amplifiers / 9.5.1:
Fiber Sensors / 9.5.2:
Parametric Processes / 10:
Origin of Four-Wave Mixing / 10.1:
Theory of Four-Wave Mixing / 10.2:
Approximate Solution / 10.2.1:
Effect of Phase Matching / 10.2.3:
Ultrafast FWM / 10.2.4:
Phase-Matching Techniques / 10.3:
Physical Mechanisms / 10.3.1:
Phase Matching in Multimode Fibers / 10.3.2:
Phase Matching in Single-Mode Fibers / 10.3.3:
Phase Matching in Birefringent Fibers / 10.3.4:
Parametric Amplification / 10.4:
Gain and Bandwidth / 10.4.1:
Pump Depletion / 10.4.2:
Parametric Amplifiers / 10.4.3:
Parametric Oscillators / 10.4.4:
FWM Applications / 10.5:
Wavelength Conversion / 10.5.1:
Phase Conjugation / 10.5.2:
Squeezing / 10.5.3:
Supercontinuum Generation / 10.5.4:
Second-Harmonic Generation / 10.6:
Physical Mechanism / 10.6.1:
Simple Theory / 10.6.3:
Quasi-Phase-Matching Technique / 10.6.4:
Decibel Units / Appendix A:
Acronyms / Appendix B:
Index
Preface
Introduction / 1:
Historical Perspective / 1.1:
41.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xix, 431 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
Introduction / 1.1:
Biocompatible Coatings / 1.2:
Protein-Repellant Coatings / 1.2.1:
Pegylated Thin Films / 1.2.1.1:
Non-Pegylated Hydrophilic Thin Films / 1.2.1.2:
Thin Films of Hyperbranched Polymers / 1.2.1.3:
Multilayer Thin Films / 1.2.1.4:
Antithrombogenic Coatings / 1.2.2:
Surface Chemistry and Blood Compatibility / 1.2.2.1:
Membrane-Mimetic Thin Films / 1.2.2.2:
Heparin-Mimetic Thin Films / 1.2.2.3:
Clot-Lyzing Thin Films / 1.2.2.4:
Polyelectrolyte Multilayer Thin Films / 1.2.2.5:
Polyurethane Coatings / 1.2.2.6:
Vapor-Deposited Thin Films / 1.2.2.7:
Antimicrobial Coatings / 1.2.3:
Cationic Polymers / 1.2.3.1:
Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides / 1.2.3.2:
Antibiotic-Conjugated Polymer Thin Films / 1.2.3.3:
Biomimetic Antibacterial Coatings / 1.2.3.4:
Thin Films Resistant to the Adhesion of Viable Bacteria" / 1.2.3.5:
Coatings for Tissue Engineering Substrates / 1.3:
Zwitterionic Thin Films / 1.3.1:
Polysaccharide-Based Thin Films / 1.3.3:
Temperature-Responsive Polymer Coatings / 1.3.6:
Electroactive Thin Films / 1.3.8:
Other Functional Polymer Coatings / 1.3.9:
Multilayer Thin Films for Cell Encapsulation / 1.3.10:
Patterned Thin Films / 1.3.11:
Polymer Thin Films for Drug Delivery / 1.4:
Polymer Thin Films for Gene Delivery / 1.5:
Conclusions / 1.6:
References
Biofunctionalization of Polymeric Thin Films and Surfaces / Holger Schönherr2:
Introduction: The Case of Biofunctionalized Surfaces and Interfaces / 2.1:
Polymer-Based Biointerfaces / 2.2:
Requirements for Biofunctionalized Polymer Surfaces / 2.2.1:
Surface Modification Using Functional Polymers and Polymer-Based Approaches / 2.2.2:
Grafting of Polymers to Surfaces / 2.2.2.1:
Polymer Brushes by Surface-Initiated Polymerization / 2.2.2.2:
Physisorbed Multifunctional Polymers / 2.2.2.3:
Multipotent Covalent Coatings / 2.2.2.4:
Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches / 2.2.2.5:
Surface Modification of Polymer Surfaces, and Selected Examples / 2.2.3:
Coupling and Bioconjugation Strategies / 2.2.3.1:
Interaction with Cells / 2.2.3.2:
Patterned Polymeric Thin Films in Biosensor Applications / 2.2.3.3:
Summary and Future Perspectives / 2.3:
Stimuli-Responsive Polymer Nanocoatings / Ana L. Cordeiro3:
Stimuli-Responsive Polymers / 3.1:
Polymers Responsive to Temperature / 3.2.1:
Polymers Responsive to pH / 3.2.2:
Dual Responsive/Multiresponsive Polymers / 3.2.3:
Intelligent Bioconjugates / 3.2.4:
Responsive Biopolymers / 3.2.5:
Polymer Films and Interfacial Analysis / 3.3:
Applications / 3.4:
Release Matrices / 3.4.1:
Cell Sheet Engineering / 3.4.2:
Biofilm Control / 3.4.3:
Cell Sorting / 3.4.4:
Stimuli-Modulated Membranes / 3.4.5:
Chromatography / 3.4.6:
Microfluidics and Laboratory-on-a-Chip / 3.4.7:
Acknowledgments / 3.5:
Ceramic Nanocoatings and Their Applications in the Life Sciences / Eng San Thian4:
Magnetron Sputtering / 4.1:
Physical and Chemical Properties of SiHA Coatings / 4.3:
Biological Properties of SiHA Coatings / 4.4:
In Vitro Acellular Testing / 4.4.1:
In Vitro Cellular Testing / 4.4.2:
Future Perspectives / 4.5:
Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications / Shiho Tokonami ; Hiroshi Shiigi ; Tsutomu Nagaoka4.6:
Preparation of Various AuNPs / 5.1:
Functionalization of AuNPs and their Applications through Aggregation / 5.3:
AuNP Assemblies and Arrays / 5.4:
AuNP Assemblies Structured on Substrates / 5.4.1:
AuNP Assembly on Biotemplates / 5.4.2:
AuNP Arrays for Gas Sensing / 5.4.3:
AuNP Arrays for Biosensing / 5.4.4:
Thin Films on Titania, and Their Applications in the Life Sciences / Izabella Brand ; Martina Nullmeier5.5:
Titanium in Contact with a Biomaterial / 6.1:
Lipid Bilayers at the Titania Surface / 6.3:
Formation of Lipid Bilayers on the Titania Surface / 6.3.1:
Spreading of Vesicles on a TiO2 Surface: Comparison to a SiO2 Surface / 6.3.1.1:
Interactions: lipid Molecule-Titania Surface / 6.3.2:
Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface / 6.3.3:
Structure of Phosphatidylcholine on the Titania Surface / 6.3.3.1:
Characteristics of Extracellular Matrix Proteins on the Titania Surface / 6.4:
Collagen Adsorption on Titania Surfaces / 6.4.1:
Morphology of Collagen Adsorbed on an Oxidized Titanium Surface / 6.4.1.1:
Adsorption of Collagen on a Hydroxylated Titania Surface / 6.4.1.2:
Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface / 6.4.1.3:
Structure of Collagen on the Titania Surface: Theoretical Predictions / 6.4.1.4:
Fibronectin Adsorption on the Titania Surface / 6.4.2:
Morphology of Fibronectin Adsorbed on the Titania Surface / 6.4.2.1:
Fibronectin-Titania Interactions / 6.4.2.2:
Structure of Fibronectin Adsorbed onto the Titania Surface / 6.4.2.3:
Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions / 6.4.2.4:
Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films / Xuanyong Liu ; Ying Xu ; Paul K. Chu6.4.2.5:
Preparation and Characterization of Nano-ZrO2 Films / 7.1:
Cathodic Arc Plasma Deposition / 7.2.1:
Plasma Spraying / 7.2.2:
Sol-Gel Methods / 7.2.3:
Electrochemical Deposition / 7.2.4:
Anodic Oxidation and Micro-Arc Oxidation / 7.2.5:
Bioactivity of Nano-ZrO2 Coatings and Films / 7.2.6:
Cell Behavior on Nano-ZrO2 Coatings and Films / 7.4:
Applications of Nano-ZrO2 Films to Biosensors / 7.5:
Free-Standing Nanostructured Thin Films / Izumi Ichinose8:
The Roles of Free-Standing Thin Films / 8.1:
Films as Partitions / 8.2.1:
Nanoseparation Membranes / 8.2.2:
Biomembranes / 8.2.3:
Free-Standing Thin Films with Bilayer Structures / 8.3:
Supported Lipid Bilayers and "Black Lipid Membranes" / 8.3.1:
Foam Films and Newton Black Films / 8.3.2:
Dried Foam Film / 8.3.3:
Foam Films of Ionic Liquids / 8-3.4:
Free-Standing Thin Films Prepared with Solid Surfaces / 8.4:
Free-Standing Thin Films of Nanoparticles / 8.5:
Nanofibrous Free-Standing Thin Films / 8.6:
Electrospinning and Filtration Methods / 8.6.1:
Metal Hydroxide Nanostrands / 8.6.2:
Nanofibrous Composite Films / 8:6.3:
Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences / Euiseok Kim ; Yuan-Shin Lee ; Ravi Aggarwal ; Roger J. Narayan8.6.4:
Dip-Pen Nanolithography / 9.1:
Important Parameters / 9.2.1:
Applications of DPN / 9.2.2:
Direct and Indirect Patterning of Biomaterials Using DPN / 9.3:
Background / 9.3.1:
Direct Patterning / 9.3.2:
Indirect Patterning / 9.3.3:
Applications of DPN for Medical Diagnostics and Drug Development / 9.4:
General Methods of Nano/Micro Bioarray Patterning / 9.4.1:
Virus Array Generation and Detection Tests / 9.4.2:
Diagnosis of Allergic Disease / 9.4.3:
Cancer Detection Using Nano/Micro Protein Arrays / 9.4.4:
Drug Development / 9.4.5:
Lab-on-a-Chip Using Microarrays / 9.4.6:
Summary and Future Directions / 9.5:
Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales / Zuankai Wang ; Nikhil Koratkar10:
Wetting and Contact Angle / 10.1:
Design and Creation of Superhydrophobic Surfaces / 10.3:
Design Parameters for a Robust Composite Interface / 10.3.1:
Creation of Superhydrophobic Surfaces / 10.3.2:
Superhydrophobic Surfaces with Unitary Roughness / 10.3.3:
Superhydrophobic Surfaces with Two-Scale Roughness / 10.3.4:
Superhydrophobic Surfaces with Reentrant Structure / 10.3.5:
Impact Dynamics of Water on Superhydrophobic Surfaces / 10.4:
Impact Dynamics on Nanostructured MWNT Surfaces / 10.4.1:
Impact Dynamics on Micropattemed Surfaces / 10.4.2:
Electrically Controlled Wettability Switching on Superhydrophobic Surfaces / 10.5:
Reversible Control of Wettability Using Electrostatic Methods / 10.5.1:
Electrowetting on Superhydrophobic Surfaces / 10.5.2:
Novel Strategies for Reversible Electrowetting on Rough Surfaces / 10.5.3:
Electrochemically Controlled Wetting of Superhydrophobic Surfaces / 10.6:
Polarity-Dependent Wetting of Nanotube Membranes / 10.6.1:
Mechanism of Polarity-Dependent Wetting and Transport / 10.6.2:
Potential Applications of Electrochemically Controlled Wetting and Transport / 10.6.3:
Imaging of Thin Films, and Its Application in the Life Sciences / Silvia Mittler10.7:
Thin Film Preparation Methods / 11.1:
Dip-Coating / 11.2.1:
Spin-Coating / 11.2.2:
Langmuir-Blodgett (LB) Films
Self-Assembled Monolayers / 11.2.4:
Layer-by-Layer Assembly / 11.2.5:
Polymer Brushes: The "Grafting-From" Approach / 11.2.6:
Structuring: The Micro- and Nanostructuring of Thin Films / 11.3:
Photolithography / 11.3.1:
Ion Lithography and FIB Lithography / 11.3.2:
Electron lithography / 11.3.3:
Micro-Contact Printing and Nanoimprinting (NIL) / 11.3.4:
Near-Field Scanning Methods / 11.3.5:
Other Methods / 11.3.6:
Imaging Technologies / 11.4:
The Concept of Total Internal Reflection / 11.4.1:
The Concept of Waveguiding / 11.4.2:
Brewster Angle Microscopy (BAM) / 11.4.3:
Resonant Evanescent Methods / 11.4.4:
Surface Plasmon Resonance Microscopy / 11.4.4.1:
Waveguide Resonance Microscopy / 11.4.4.2:
Surface Plasmon Enhanced Fluorescence Microscopy / 11.4.4.3:
Waveguide Resonance Microscopy with Electro-Optical Response / 11.4.4.4:
Nonresonant Evanescent Methods / 11.4.5:
Total Internal Reflection Fluorescence (TIRF) Microscopy / 11.4.5.1:
Waveguide Scattering Microscopy / 11.4.5.2:
Waveguide Evanescent Field Fluorescence Microscopy (WEFFM) / 11.4.5.3:
Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy / 11.4.5.4:
Application of Thin Films in the Life Sciences / 11.5:
Sensors / 11.5.1:
Surface Functionalization for Biocompatibility / 11.5.2:
Drug Delivery / 11.5.3:
Bioreactors / 11.5.4:
Cell-Surface Mimicking / 11.5.5:
Summary / 11.6:
Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films / Takeshi Hasegawa12:
Characterization of Ultrathin Films of Soft Materials / 12.1:
X-Ray Diffraction Analysis / 12.2.1:
Infrared Transmission and Reflection Spectroscopy / 12.2.2:
Multiple-Angle Incidence Resolution Spectrometry (MAIRS) / 12.2.3:
Theoretical Background of MAIRS / 12.2.3.1:
Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS / 12.2.3.2:
Analysis of Metal Thin Films / 12.2.3.3:
Index
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
42.

図書

図書
edited by Thomas Wirth
出版情報: Weinheim : Wiley-VCH, c2012  xiv, 448 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
General Introduction / 1.1:
Synthesis of Electrophilic Selenium Reagents / 1.1.1:
Reactivity and Properties / 1.1.2:
Addition Reactions to Double Bonds / 1.2:
Addition Reaction Involving Oxygen Centered Nucleophiles / 1.2.1:
Addition Reaction Involving Nitrogen Centered Nucleophiles / 1.2.2:
Addition Reactions Involving Carbon Centered Nucleophiles / 1.2.3:
Addition Reaction Involving Chiral Nucleophiles or Chiral Substrates / 1.2.4:
Selenocyclizations / 1.3:
Oxygen Nucleophiles / 1.3.1:
Nitrogen Nucleophiles / 1.3.2:
Competition between Oxygen and Nitrogen Nucleophiles / 1.3.3:
Carbon Nucleophiles / 1.3.4:
Double Cyclization Reactions / 1.3.5:
References
Nucleophilic Selenium / Michio Iwaoka2:
Introduction / 2.1:
Development of Nucleophilic Selenium Reagents / 2.1.1:
Examples of Recent Applications / 2.1.2:
Properties of Selenols and Selenolates / 2.2:
Electronegativity of Selenium / 2.2.1:
Tautomerism of Selenols / 2.2.2:
Nudeophilicity of Selenolates / 2.2.3:
Inorganic Nucleophilic Selenium Reagents / 2.3:
Conventional Reagents / 2.3.1:
New Reagents / 2.3.2:
Organic Nucleophilic Selenium Reagents / 2.4:
Preparation / 2.4.1:
Structure / 2.4.2:
Ammonium Selenolates (NH4+) / 2.4.3:
Selenolates of Group 1 Elements (Li, Na, K, and Cs) / 2.4.4:
Selenolates of Group 2 Elements (Mg, Ca, and Ba) / 2.4.5:
Selenolates of Group 3 Elements (Sm, Ce, Pr, Nb, and U) / 2.4.6:
Selenolates of Group 4 Elements (Ti, Zr, and Hf) / 2.4.7:
Selenolates of Group 5 Elements (V, Nb, and Ta) / 2.4.8:
Selenolates of Group 6 Elements (Mo and W) / 2.4.9:
Selenolates of Group 7 Elements (Mn and Re) / 2.4.10:
Selenolates of Group 8 Elements (Fe,Ru, and Os) / 2.4.11:
Selenolates of Group 9 Elements (Co, Rh, and Ir) / 2.4.12:
Selenolates of Group 10 Elements (Ni,Pd, and Pt) / 2.4.13:
Selenolates of Group 11 Elements (Cu, Ag, and Au) / 2.4.14:
Selenolates of Group 12 Elements (Zn, Cd, and Hg) / 2.4.15:
Selenolates of Group 13 Elements (B, Al, Ga, and In) / 2.4.16:
Selenolates of Group 14 Elements (Si, Ge, Sn, and Pb) / 2.4.17:
Selenolates of Group 15 Elements (P, As, Sb, and Bi) / 2.4.18:
Selenium Compounds in Radical Reactions / W. Russell Bowman3:
Homolytic Substitution at Selenium to Generate Radical Precursors / 3.1:
Bimolecular SH2 Reactions: Synthetic Considerations / 3.1.1:
Radical Reagents / 3.1.1.1:
Alkyl Radicals from Selenide Precursors / 3.1.2:
Acyl Radicals from Acyl Selenide Precursors / 3.1.3:
Imidoyl Radicals from Imidoyl Selenides / 3.1.4:
Other Radicals from Selenide Precursors / 3.1.5:
Selenide Building Blocks / 3.2:
Solid Phase Synthesis / 3.3:
Selenide Precursors in Radical Domino Reactions / 3.4:
Homolytic Substitution at Selenium for the Synthesis of Se Containing Products / 3.5:
Intermolecular SH2 onto Se / 3.5.1:
Intramolecular SH2: Cyclization onto Se / 3.5.2:
Seleno Group Transfer onto Alkenes and Alkynes / 3.6:
Seleno Selenation / 3.6.1:
Seleno Sulfonation / 3.6.2:
Seleno Alkylation / 3.6.3:
PhSeH in Radical Reactions / 3.7:
Radical Clock Reactions / 3.7.1:
Problem of Unwanted Trapping of Intermediate Radicals / 3.7.2:
Catalysis of Starrnane-Mediated Reactions / 3.7.3:
Selenium Radical Anions, SRN1 Substitutions / 3.8:
Selenium Stabilized Carbanions / Joao V. Comasseto ; Alcindo A. Dos Santos ; Edison P. Wendler4:
Preparation of Selenium-Stabilized Carbanions / 4.1:
Deprotonation of Selenides / 4.2.1:
Element Lithium Exchange / 4.2.2:
Conjugate Addition of Organometallics to Vinyl and Alkynylselenides / 4.2.3:
Reactivity of the Selenium-Stabilized Carbanions with Electrophiles and Synthetic Transformations of the Products / 4.3:
Reaction of Selernum Stabilized Carbanions with Electrophiles / 4.3.1:
Selenium Based Transformations on the Reaction Products of Selenium Stabilized Carbanions with Electrophiles / 4.3.2:
Stereochemical Aspects / 4.4:
Cyclic Selenium Stabilized Carbanions / 4.4.1:
Acyclic Selenium Stabilized Carbanions / 4.4.2:
Application of Selenium Stabilized Carbanions in Total Synthesis / 4.5:
Examples Using Alkylation Reactions of Selenium Stabilized Carbanions / 4.5.1:
Examples Using the Addition of Selenium-Stabilized Carbanions to Carbonyl Compounds / 4.5.2:
Examples Using 1,4 Addition of Selenium-Stabihzed Carbanions to a,p-Unsaturated Carbonyl Compounds / 4.5.3:
Conclusion / 4.6:
Selenium Compounds with Valency Higher than Two / Jozef Drabowicz ; Jarosiaw Lewkowski ; Jacek Scianowski5:
Trivalent, Dicoordinated Selenonium Salts / 5.1:
Trivalent, Tricoordinated Derivatives / 5.3:
Tetravalent, Dicoordinated Derivatives / 5.4:
Tetravalent, Tricoordinated Derivatives / 5.5:
Pentavalent Derivatives / 5.6:
Hexavalent, Tetracoordinated Derivatives / 5.7:
Hypervalent Derivatives / 5.8:
Selenuranes / 5.8.1:
Selenurane Oxides / 5.8.2:
Perselenuranes / 5.8.3:
Acknowledgment
Selenocarbonyls / Toshiaki Murai6:
Overview / 6.1:
Theoretical Aspects of Selenocarbonyls / 6.2:
Molecular Structure of Selenocarbonyls / 6.3:
Synthetic Procedures of Selenocarbonyls / 6.4:
Manipulation of Selenocarbonyls / 6.5:
Metal Complexes of Selenocarbonyls / 6.6:
Future Aspects / 6.7:
Selenoxide Elimination and [2,3]-Sigmatropic Rearrangement / Yoshiaki Nishibayashi ; Sakae Uemura7:
Preparation and Properties of Chiral Selenoxides / 7.1:
Selenoxide Elimination / 7.3:
Enantioselective Selenoxide Elimination Producing Chiral Allenes and Unsaturated Ketones / 7.3.1:
Diastereoselective Selenoxide Elimination Producing Chiral Allenecarboxylic Esters / 7.3.2:
2,3-Sigmatropic Rearrangement via Allylic Selenoxides / 7.4:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.1:
Diastereoselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.2:
2,3-Sigmatropic Rearrangement via Allylic Selenimides / 7.5:
Preparation and Properties of Chiral Selenimides / 7.5.1:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Amines / 7.5.2:
Diastereoselective [2,3]-Sigmatropic Rearrangements Producing Chiral Allylic Amines / 7.5.3:
2,3-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6:
Preparation and Properties of Optically Active Selenium Ylides / 7.6.1:
Enantioselective [2,3]-Sigmatropic Rearrangements via Allylic Selenium Ylides / 7.6.2:
Diastereoselective [2,3]-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6.3:
Summary / 7.7:
Selenium Compounds as Ligands and Catalysts / Fateh V. Singh ; Thomas Wirth8:
Selenium-Catalyzed Reactions / 8.1:
Stereoselective Addition of Diorganozinc Reagents to Aldehydes / 8.2.1:
Diethylzinc Addition / 8.2.1.1:
Diphenylzinc Addition / 8.2.1.2:
Selenium-Ligated Transition Metal-Catalyzed Reactions / 8.2.2:
Selenium-Ligated Stereoselective Hydrosilylation of Ketones / 8.2.2.1:
Selenium-Ligated Copper-Catalyzed Addition of Organometallic Reagents to Enones / 8.2.2.2:
Selenium-Ligated Palladium-Catalyzed Asymmetric Allylic Alkylation / 8.2.2.3:
Selenium-Ligands in Palladium-Catalyzed Mizoroki-Heck Reactions / 8.2.2.4:
Selenium-Ligands in Palladium-Catalyzed Phenylselenenylation of Organohalides / 8.2.2.5:
Selenium-Ligands in Palladium-Catalyzed Substitution Reactions / 8.2.2.6:
Selenium-Ligands in the Palladium-Catalyzed Allylation of Aldehydes / 8.2.2.7:
Selenium-Ligands in Palladium-Catalyzed Condensation Reactions / 8.2.2.8:
Ruthenium-Catalyzed Substitution Reactions / 8.2.2.9:
Selenium-Ligands in Zinc-Catalyzed Intramolecular Hydroaminations / 8.2.2.10:
Selenium-Ligands in Organocatalytic Asymmetric Aldol Reactions / 8.2.3:
Selenium-Ligands in Stereoselective Darzens Reactions / 8.2.4:
Selenium-Catalyzed Carbonylation Reactions / 8.2.5:
Selective Reduction of a,p-Unsaturated Carbonyl Compounds / 8.2.6:
Selenium-Catalyzed Halogenations and Halocyclizations / 8.2.7:
Selenium-Catalyzed Staudinger-Vilarrasa Reaction / 8.2.8:
Selenium-Catalyzed Elimination Reactions of Diols / 8.2.9:
Selenium-Catalyzed Hydrostannylation of Alkenes / 8.2.10:
Selenium-Catalyzed Radical Chain Reactions / 8.2.11:
Selenium-Catalyzed Oxidation Reactions / 8.2.12:
Selenium-Catalyzed Epoxidation of Alkenes / 8.2.12.1:
Selenium-Catalyzed Dihydroxylation of Alkenes / 8.2.12.2:
Selenium-Catalyzed Oxidation of Alcohols / 8.2.12.3:
Baeyer-Villiger Oxidation / 8.2.12.4:
Selenium-Catalyzed Allylic Oxidation of Alkenes / 8.2.12.5:
Selenium-Catalyzed Oxidation of ArylAlkyl Ketones / 8.2.12.6:
Selenium-Catalyzed Oxidation of Primary Aromatic Amines / 8.2.12.7:
Selenium-Catalyzed Oxidation of Alkynes / 8.2.12.8:
Selenium-Catalyzed Oxidation of Halide Anions / 8.2.12.9:
Stereoselective Catalytic Selenenylation-Elimination Reactions / 8.2.13:
Selenium-Catalyzed Diels-Alder Reactions / 8.2.14:
Selenium-Catalyzed Synthesis of Thioacetals / 8.2.15:
Selenium-Catalyzed Baylis-Hillman Reaction / 8.2.16:
Biological and Biochemical Aspects of Selenium Compounds / Bhaskar J. Bhuyan ; Govindasamy Mugesh9:
Biological Importance of Selenium / 9.1:
Selenocysteine: The 21st Amino Acid / 9.3:
Biosynthesis of Selenocysteine / 9.4:
Chemical Synthesis of Selenocysteine / 9.5:
Chemical Synthesis of Sec-Containing Proteins and Peptides / 9.6:
Selenoenzymes / 9.7:
Glutathione Peroxidases / 9.7.1:
Iodothyronine Deiodinase / 9.7.2:
Synthetic Mimics of IDs / 9.7.3:
Thioredoxirn Reductase / 9.7.4:
öSe NMR Values / 9.8:
Index
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
43.

図書

図書
edited by Patrick J. Hussey
出版情報: Oxford, UK : Blackwell , Boca Raton, FL : CRC Press, 2004  xiii, 325 p. ; 25 cm
シリーズ名: Annual plant reviews ; v. 10
所蔵情報: loading…
目次情報: 続きを見る
List of contributors
Preface
The cytoskeleton: the machinery and key molecules / Part 1:
Microtubules and microtubule-associated proteins / Clive Lloyd ; Jordi Chan ; Patrick J. Hussey1:
Introduction / 1.1:
Plant tubulin / 1.2:
Microtubule-associated proteins / 1.3:
Cross-bridging MAPs / 1.3.1:
Proteins that link microtubules to the plasma membrane / 1.3.2:
Microtubule motor proteins / 1.3.3:
Kinesin-related proteins in cytokinesis / 1.3.3.1:
Kinesin-related proteins in mitosis / 1.3.3.2:
Kinesin-related proteins in interphase / 1.3.3.3:
Dynein / 1.3.3.4:
Proteins involved in microtubule nucleation and release: the formation of the cortical array / 1.3.4:
Microtubule-interacting proteins / 1.3.5:
Concluding remarks / 1.4:
References
Actin and actin-modulating proteins / Christopher J. Staiger2:
Actin / 2.1:
Myosin / 2.3:
Actin-binding proteins: overview / 2.4:
Monomer-binding proteins / 2.5:
ADF/cofilin / 2.5.1:
Profilin / 2.5.2:
Adenylyl cyclase-associated protein / 2.5.3:
Cross-linking and bundling factors / 2.6:
Fimbrin / 2.6.1:
Villin and gelsolin-related proteins / 2.6.2:
115-ABP / 2.6.3:
eEF-1[alpha] / 2.6.4:
Spectrin / 2.6.5:
Capping factors / 2.7:
Capping protein (CP) / 2.7.1:
CapG / 2.7.2:
Others / 2.7.3:
Nucleation complexes / 2.8:
Arp2/3 / 2.8.1:
Other F-actin binding proteins / 2.9:
SuSy / 2.9.1:
ABP/MAP190 / 2.9.2:
AIP1 / 2.9.3:
Annexin / 2.9.4:
Gephyrin/AtCNX1 / 2.9.5:
AtSH3P / 2.9.6:
Caldesmon / 2.9.7:
Tropomyosin / 2.9.8:
Vinculin / 2.9.9:
LIM proteins / 2.9.10:
Acknowledgements / 2.10:
Fundamental cytoskeletal activities / Part 2:
Expanding beyond the great divide: the cytoskeleton and axial growth / Geoffrey O. Wasteneys ; David A. Collings3:
Division planes and the establishment of axiality / 3.1:
Cell plate formation and expansion / 3.2.1:
Phragmoplast microtubule and microfilament organization / 3.2.2:
Motor proteins during phragmoplast formation and expansion / 3.2.3:
Vesicle transport in the phragmoplast could be kinesin-based / 3.2.3.1:
Structural MAPs and kinesins function in phragmoplast formation and expansion / 3.2.3.2:
Expansion of the phragmoplast and cell plate requires both kinesins and myosins / 3.2.3.3:
Cytoskeletal mutants defective in cytokinesis / 3.2.4:
Setting up for axial growth: distinguishing lateral and end walls / 3.3:
The cytoskeleton at end walls of elongating cells / 3.3.1:
Establishing axial growth / 3.4:
A transverse cortical microtubule array is essential for axial growth / 3.4.1:
Microtubules and their relationship with cellulose microfibrils and xyloglucans / 3.4.2:
Does the cytoskeleton regulate wall polysaccharide and protein composition? / 3.4.3:
Hormones, cytoskeleton and wall extensibility / 3.4.4:
How does the actin cytoskeleton contribute to cell elongation? / 3.4.5:
Polar auxin transport and its regulation by the actin cytoskeleton / 3.5:
Auxin transport and the chemiosmotic theory / 3.5.1:
Important questions concerning auxin transport and the actin cytoskeleton / 3.5.2:
Small GTPases may be a key to the shuttling of auxin efflux carriers / 3.5.3:
Auxin and gene expression / 3.5.4:
Bending and twisting--the consequences of differential growth / 3.6:
Tropic bending responses / 3.6.1:
Twisting / 3.6.2:
Conclusions and future perspectives / 3.7:
Re-staging plant mitosis / Magdalena Weingarner ; Laszlo Bogre ; John H. Doonan4:
The cyclin dependent protein kinases / 4.1:
Cdk structure and diversity / 4.2.1:
Regulation of Cdk activity / 4.2.2:
Sequence of events during mitosis / 4.3:
Stage 1: preparation for mitosis / 4.3.1:
Stage 2: commitment to mitosis / 4.3.2:
Stage 3: preventing premature genome separation / 4.3.3:
Stage 4: separating the genome / 4.3.4:
Stage 5: exit from mitosis / 4.3.5:
Preparing for mitosis / 4.4:
Animal A-type cyclins / 4.4.1:
Plant A-type cyclins / 4.4.2:
The DNA damage checkpoint / 4.4.3:
Commitment to mitosis / 4.5:
Commitment to mitosis in animal cells / 4.5.1:
Commitment to mitosis in plant cells / 4.5.2:
The role of animal B-type cyclins / 4.5.3:
The role of plant B-type cyclins / 4.5.4:
Condensation of chromatin / 4.6:
Condensation of chromatin in animal cells / 4.6.1:
Condensation of chromatin in plant cells / 4.6.2:
Spindle formation / 4.7:
Spindle formation in animal cells / 4.7.1:
Spindle formation in plant cells / 4.7.2:
The spindle assembly checkpoint pathway / 4.8:
Regulation of APC / 4.8.1:
Separating the genome / 4.9:
Onset of APC-mediated proteolysis in animal cells / 4.9.1:
Onset of APC-mediated proteolysis in plant cells / 4.9.2:
Exit from mitosis and cytokinesis / 4.10:
Regulators of late mitotic events in animal cells / 4.10.1:
Late mitotic events in plant cells / 4.10.2:
Concluding remarks and perspectives / 4.11:
Organelle movements: transport and positioning / Franz Grolig5:
Transport and positioning of particular organelles / 5.1:
Peroxisome / 5.2.1:
Endoplasmic reticulum / 5.2.2:
Golgi / 5.2.3:
Vacuoles / 5.2.4:
Mitochondria / 5.2.5:
Chloroplasts / 5.2.6:
Algae / 5.2.6.1:
Mosses / 5.2.6.2:
Ferns / 5.2.6.3:
Seed plants / 5.2.6.4:
Nucleus / 5.2.7:
Premitotic nuclear positioning / 5.2.7.1:
Nuclear migrations elicited by external stimuli / 5.2.7.2:
Light-governed nuclear migration / 5.2.7.3:
Phragmoplast/cytokinesis / 5.2.8:
The cell wall: a sensory panel for signal transduction / Keiko Sugimoto-Shirasu ; Nicholas C. Carpita ; Maureen C. McCann5.3:
Plant cell wall composition and architecture / 6.1:
Cellulose / 6.2.1:
Cross-linking glycans / 6.2.2:
Pectins / 6.2.3:
Structural proteins / 6.2.4:
Aromatic substances / 6.2.5:
Cell growth and wall extensibility / 6.3:
The biophysics of growth underpins cell wall dynamics / 6.3.1:
The biochemical determinants of yield threshold and extensibility / 6.3.2:
Functional architecture revealed by mutation and transgenic approaches / 6.4:
The cellulose--cross-linking glycan network / 6.4.1:
The role of the cytoskeleton / 6.4.3:
Targeting of cell wall components / 6.5.1:
Mechanical connections / 6.5.2:
Sensing through the plasma membrane / 6.5.3:
The cytoskeleton and plant cell morphogenesis / 6.6:
Development of root hairs / Claire Grierson ; Tijs Ketelaar7:
Roles of the cytoskeleton in root hair morphogenesis / 7.1:
Microtubules / 7.2.1:
Microtubules affect root hair cell fate / 7.2.1.1:
Microtubules and root hair initiation / 7.2.1.2:
Microtubules control direction of root hair tip growth and prevent hairs from branching / 7.2.1.3:
Microtubules help to move the nucleus during tip growth in some species, but not in others / 7.2.1.4:
Actin filaments / 7.2.2:
Actin limits the size of the initiation site / 7.2.2.1:
Actin mediates tip growth by targeting vesicle delivery / 7.2.2.2:
F-actin is essential for the Arabidopsis nucleus to move during and after tip growth / 7.2.2.3:
Actin mediates cytoplasmic streaming in roots hairs / 7.2.2.4:
Actin at the end of tip growth / 7.2.2.5:
Mechanisms that regulate the cytoskeleton during root hair development / 7.3:
Mechanisms regulating root hair patterning / 7.3.1:
Mechanisms that regulate initiation / 7.3.2:
Mechanisms regulating tip growth / 7.3.3:
Mechanisms acting at the end of tip growth / 7.3.4:
The genetic network controlling root hair morphogenesis in Arabidopsis / 7.4:
Genes involved in root hair patterning / 7.4.1:
Genes affecting initiation / 7.4.2:
Genes required for tip growth to be established / 7.4.3:
Genes required to sustain and direct tip growth / 7.4.4:
Genes involved in nuclear movement / 7.4.5:
Genes with roles at the end of tip growth / 7.4.6:
Signaling the cytoskeleton in pollen tube germination and growth / Rui Malho ; Luisa Camacho7.5:
Different signaling pathways converge in the cytoskeleton / 8.1:
The actin cytoskeleton is the major motor driving force in pollen tube growth / 8.3:
Microtubules and microtubule-associated proteins in pollen tube growth / 8.4:
Ca[superscript 2+], modulator of the cytoskeleton / 8.5:
Signaling the cytoskeleton through phosphoinositides / 8.6:
Calmodulin, a primary Ca[superscript 2+] sensor / 8.7:
Protein kinases and phosphatases / 8.8:
14-3-3 proteins / 8.9:
The role of cyclic nucleotides / 8.10:
GTPases, the signaling switches / 8.11:
Transducons - the unity for signaling / 8.12:
Cytoskeletal requirements during Arabidopsis trichome development / Mark Beilstein ; Dan Szymanski8.13:
Trichome morphogenesis / 9.1:
Arabidopsis / 9.2.1:
Members of the Brassicaceae / 9.2.2:
Arabidopsis trichome development / 9.3:
Initiation and leaf development / 9.3.1:
Genetics of initiation / 9.3.2:
Arabidopsis trichome morphogenesis / 9.4:
Cytoskeletal inhibitors / 9.4.1:
Cytoskeletal organization in developing trichomes / 9.4.2:
Genetics of trichome morphogenesis / 9.4.2.1:
Reduced branching mutants: microtubule-based functions / 9.5.1:
ZWICHEL (ZWI) / 9.5.1.1:
Tubulin folding cofactors (TFCs) / 9.5.1.2:
Arabidopsis katanin small subunit (AtKSS) / 9.5.1.3:
ANGUSTIFOLIA (AN) / 9.5.1.4:
SPIKE1 (SPK1) / 9.5.1.5:
The distorted trichome shape mutants: actin-based functions / 9.5.2:
Signaling and the cytoskeleton in guard cells / Paula Duque ; Juan-Pablo Sanchez ; Nam-Hai Chua9.6:
Guard cell signaling / 10.1:
Cytosolic calcium / 10.2.1:
Cytosolic pH / 10.2.2:
Cyclic ADP-ribose / 10.2.3:
Inositol 1,4,5-trisphosphate and other lipid-derived second messengers / 10.2.4:
Membrane trafficking / 10.2.5:
New key intermediates / 10.2.7:
The cytoskeleton in guard cell function / 10.3:
(Re)organization of actin filaments / 10.3.1:
Rho GTPases / 10.3.1.1:
Cell volume regulation / 10.3.1.4:
Other hints of signaling to the guard cell actin cytoskeleton / 10.3.1.5:
Involvement of microtubules / 10.3.2:
Conclusions and perspectives / 10.4:
Acknowledgments
Index
The cytoskeleton: the machinery and key moleculesMicrotubules and microtubule-associated proteins / Jordi Chan, John Innes Centre, Norwich, UK ; Patrick J. Hussey, Department of Biological Sciences, University of Durham, UK
Actin and actinmodulating proteins / Chris J. Staiger, Department of Biological Sciences, Purdue University, Indiana, USA
Fundamental cytoskeleton activities
The cytoskeleton and plant cell morphogenesisDevelopment of root hairs / David A. Collings, Research School of Biological Sciences, The Australian National University, Canberra, Australia ; Magdalena Weingarner, Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany ; Laszlo Bgre, School of Biological Sciences, University of London, Surrey, UK ; John Doonan, John Innes Centre, Norwich, UK ; Franz Grolig, Fachbereich Biologie / Botanik, Philipps-Universitt, Marburg, Germany ; Nicholas C. Carpita, Department of Botany and Plant Pathology, Purdue University, Indiana, USA ; Maureen McCann, John Innes Centre, Norwich, UK ; Tijs Ketelaar, School of Biological Sciences, University of Bristol, UK
List of contributors
Preface
The cytoskeleton: the machinery and key molecules / Part 1:
44.

図書

図書
Ewen Smith, Geoffrey Dent
出版情報: Chichester : J. Wiley & Sons, c2005  x, 210 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction, Basic Theory, and Principles / Chapter 1:
Introduction / 1:
History / 1.1:
Basic Theory / 1.2:
Molecular Vibrations / 1.3:
Group Vibrations / 1.4:
An Approach to Interpretation / 1.5:
Summary / 1.6:
Bibliography and Refs / 1.7:
The Raman Experiment - Raman Instrumentation, Data Handling and Practical Aspects of Interpretation / Chapter 2:
Choice of Instruments / 2.1:
Visible Excitation / 2.3:
Raman Microscopes / 2.3.1:
Fibre Optic Couplings and Wave Guides / 2.3.2:
Near Infrared Excitation / 2.4:
Raman Sample Preparation and Handling / 2.5:
Raman Sample Handling / 2.5.1:
Sample Mounting - Optical Considerations / 2.5.2:
Sample Mounting Accessories / 2.6:
Small fibres, films, liquids and powders / 2.6.1:
Variable Temperature and Pressure Cells / 2.6.2:
Special Applications - Thin films, catalysts / 2.6.3:
Flow through/reaction cells, sample changers/automated mounts / 2.6.4:
Fibre Optic and Guided Wave Sensing / 2.6.5:
Microscopy and Imaging / 2.7:
Depth Profiling / 2.7.1:
Imaging and Mapping / 2.7.2:
Calibration / 2.8:
Data Handling, Manipulation and Quantitation / 2.9:
Production of Spectra / 2.9.1:
Display of Spectra / 2.9.2:
Spectrum Scales / 2.9.2.1:
Spectral Enhancement/Loss of Data / 2.9.2.2:
Quantitation / 2.9.3:
Quantitation - Hardware and Sampling Features / 2.9.3.1:
Quantitation - Data Handling Considerations / 2.9.3.2:
Practical Aspects of Qualitative Interpretation / 2.10:
Approach to Interpretation of a Raman Spectrum of an Unknown Sample / 2.10.1:
Knowledge of the Sample / 2.10.1.1:
Sample Preparation Effects / 2.10.1.2:
Instrument/Software Effects / 2.10.1.3:
The Spectrum / 2.10.1.4:
Computer Aided Spectrum Interpretation / 2.10.2:
Library Search Systems / 2.10.2.1:
Structural Determination Aids / 2.10.2.2:
Spectra Formats for Transfer and Exchange of Data / 6.4.1.1:
The Internet / 2.10.2.4:
Bibliography / 2.11:
Hard Copy Spectra Collections
Software Interpretation Tools, Databases, and Internet Sites
Refs
Theory of Raman Spectroscopy / Chapter 3:
Absorption and Scattering / 3.1:
States of a system and Hookes Law / 3.3:
The nature of polarisability and the measurement of polarisation / 3.4:
The basic selection rule / 3.5:
Number and symmetry of vibrations / 3.6:
Symmetry elements and point groups / 3.7:
The mutual exclusion rule / 3.8:
The Kramer Heisenberg Dirac Expression / 3.9:
Conclusions to be drawn from theory / 3.10:
Resonance Raman Scattering / Chapter 4:
Theorectical Aspects / 4.1:
The Basic Process / 4.2.1:
Electronic information / 4.2.2:
Resonance Excitation Profile / 4.2.3:
Practical Aspects / 4.2.4:
Examples Of The Use Of Resonance Raman Scattering / 4.4:
Small Molecules / 4.4.1:
Larger Molecules / 4.4.2:
Conclusions / 4.5:
Surface Enhanced Raman Scattering / Chapter 5:
Theory / 5.1:
Electromagnetic and charge transfer enhancement / 5.3:
Electromagnetic Excitation / 5.4:
Charge Transfer / 5.5:
Selection Rules / 5.6:
Applications of SERS / 5.7:
Applications of SERRS / 5.8:
The Basic Method / 5.9:
Applications / Chapter 6:
Inorganics / 6.1:
Art and Archaeology / 6.3:
Polymers / 6.4:
Overview / 6.4.1:
Simple Qualitative polymer Studies / 6.4.2:
Quantitative Polymer Studies / 6.4.3:
Colour / 6.5:
Raman Colour Probes / 6.5.1:
Insitu Analysis / 6.5.2:
Raman studies of Tautomerism in azo dyes / 6.5.3:
Polymorphism in Dyes / 6.5.4:
Electronics / 6.6:
Biological and Pharmaceuticals / 6.7:
Biological / 6.7.1:
Solid Phase Organic Chemistry / 6.7.3:
Pharmaceuticals / 6.7.4:
Non Contact Insitu Measurements / 6.7.4.1:
Molecular Specificity / 6.7.4.2:
Polymorphism / 6.7.4.3:
Forensics / 6.8:
Process Analysis and Catalysts / 6.9:
Electronics and Semiconductors / 6.9.1:
PCl3 Production Monitoring / 6.9.3:
Anatase and Rutile forms of Titanium Dioxide / 6.9.4:
Polymers and Emulsions / 6.9.5:
Pharmaceutical Industry / 6.9.6:
Fermentations / 6.9.7:
Gases / 6.9.8:
Catalysts / 6.9.9:
More Advanced Techniques / 6.10:
Flexible Optics / 7.1:
Tuneable Lasers, Frequency Doubling and Pulsed Lasers / 7.2:
Spatially resolved systems / 7.3:
Non linear Raman spectroscopy / 7.4:
Time Resolved Scattering / 7.8:
Raman optical activity / 7.9:
Ultraviolet spectroscopy / 7.10:
Acknowledgements
Introduction, Basic Theory, and Principles / Chapter 1:
Introduction / 1:
45.

図書

図書
D. Curtis Schleher
出版情報: Dedham, Mass. : Artech House, c1986  xii, 559 p. ; 24 cm
シリーズ名: The Artech House radar library
所蔵情報: loading…
目次情報: 続きを見る
Electronic Warfare (EW) Principles and Overview / Chapter 1:
Electronic Warfare Taxonomy / 1.1:
Electronic Warfare Definitions and Areas / 1.1.1:
Electronic Warfare Support Measures (ESM) / 1.1.1.1:
Signals Intelligence (SIGINT) / 1.1.1.2:
Electronic Countermeasures (ECM) / 1.1.1.3:
Electronic Counter Countermeasures (ECCM) / 1.1.1.4:
Electronic Warfare Simulators / 1.1.1.5:
Defense Suppression / 1.1.1.6:
Signal Security (SIGSEC) / 1.1.1.7:
Electronic Warfare Frequency Bands and Channels / 1.1.1.8:
EW Missions and Scenarios / 1.2:
The EW Radar Threat Scenario / 1.2.1:
The EW Communications Threat Scenario / 1.2.2:
Electronic Support Measures (ESM) Receivers / Chapter 2:
Radar Warning Receivers (RWR) / 2.1:
Current ESM Receivers / 2.2:
The Crystal Video Receiver / 2.2.1:
The Superheterodyne Receiver / 2.2.2:
Instantaneous Frequency Measurement (IFM) Receiver / 2.2.3:
Advanced ESM Receivers / 2.3:
The Channelized Receiver / 2.3.1:
The Compressive Receiver / 2.3.2:
The Acousto-Optic Bragg Cell Receiver / 2.3.3:
Passive Direction Finding and Emitter Location / 2.4:
Noise Jamming / Chapter 3:
Noise Jammer Effectiveness / 3.1.1:
Jammer Look-Through / 3.1.2:
Power Management / 3.1.3:
Deception Electronic Countermeasures (DECM) / 3.2:
Range Gate Deception / 3.2.1:
Angle Deception / 3.2.2:
ECM against Conical Scanning Tracking Radars / 3.2.2.1:
ECM against Monopulse Tracking Radars / 3.2.2.2:
Velocity Deception / 3.2.3:
Modern ECM Systems / 3.3:
ECM against Pulse Compression and Low Probability of Intercept (LPI) Radars / 3.3.1:
Expendable Electronic Countermeasures / 3.4:
Chaff / 3.4.1:
Radar and Electronic Counter-Countermeasures (ECCM) / Chapter 4:
Radar Applications in Weapon Systems / 4.1:
Surveillance Radars / 4.2:
Surveillance Radar Design Principles / 4.2.1:
Surveillance Radar Detection Range--Clear and Jamming Environments / 4.2.1.1:
Low Altitude Detection--Radar Clutter / 4.2.1.2:
Surveillance Radar--Data Rate and Accuracy / 4.2.1.3:
Surveillance Radar Frequency Trade-Offs / 4.2.1.4:
Surveillance Radars--ECCM Considerations / 4.2.1.5:
Target Acquisition Radars / 4.3:
Weapon Control Radars / 4.4:
Tracking Radar Design Principles / 4.4.1:
Target Tracking Radar / 4.4.2:
Track-While-Scan Tracking Systems / 4.4.3:
Phased Array Tracking Radars / 4.4.4:
Tracking Radar--ECCM Considerations / 4.4.5:
Aircraft Control Radars / 4.5:
Weapon Location Radars / 4.6:
Missile Guidance Radars / 4.7:
Navigation and Mapping Radars / 4.8:
Radar Types and Characteristics / 4.9:
2-D Search Radars / 4.9.1:
3-D Search Radars / 4.9.2:
Moving Target Indicator (MTI) Radar / 4.9.3:
Pulsed Doppler Radar / 4.9.4:
Special Purpose Radar Types / 4.9.5:
Millimeter-Wave (MMW) Radar / 4.9.5.1:
Low Probability of Intercept (LPI) Radar / 4.9.5.2:
Over-the-Horizon (OTH) Radar / 4.9.5.3:
Bistatic Radar / 4.9.5.4:
Automatic Detection Radar / 4.9.5.5:
Command, Control, and Communications (C[superscript 3]) Systems / Chapter 5:
Strategic C[superscript 3] Systems / 5.1:
Tactical C[superscript 3] Systems / 5.2:
Naval Tactical Data System (NTDS) / 5.2.1:
Tactical Air Control System (TACS) / 5.2.2:
Rapid Deployment Force C[superscript 3]I / 5.2.3:
Tactical Data Links / 5.2.4:
Tactical Communication Radio Nets / 5.2.5:
C[superscript 3] Navigation Systems / 5.2.6:
Command, Control, and Communications Countermeasures (C[superscript 3]CM) / 5.3:
Air Defense Systems / 5.4:
Early Warning Radars / 5.4.1:
Airborne Early Warning Radars / 5.4.2:
Ground Control Intercept Radars / 5.4.3:
Air-to-Air Missile Guidance Systems / 5.4.4:
Surface-to-Air Missile (SAM) Systems / 5.4.5:
Missile Control Laws / 5.4.5.1:
Modern SAM System / 5.4.5.2:
Radar and ECM Performance Analysis / Chapter 6:
Radar Detection Performance / 6.1:
Search Radar Detection Performance / 6.1.1:
Propagation Absorption Loss (L[subscript a]) / 6.1.1.1:
Beam Shape Loss (L[subscript b]) / 6.1.1.2:
Pattern Propagation Factor (F[subscript t],F[subscript r]) / 6.1.1.3:
System Noise Temperature (T[subscript s]) / 6.1.1.4:
Transmission Line Loss (L[subscript t]) / 6.1.1.5:
Receiver Matching Loss (C[subscript B]) / 6.1.1.6:
Collapsing Loss (L[subscript c]) / 6.1.1.7:
MTI Processing Loss / 6.1.1.8:
Signal-to-Noise Power Ratio / 6.1.1.9:
Search Radar Detection Range Calculation / 6.1.1.10:
The Cumulative Probability of Detection / 6.1.2:
ECM Jamming Equations / 6.2:
Repeater Jammer Equations / 6.2.1:
EW Receiver Sensitivity / 6.3:
Scanning Superheterodyne Receiver Sensitivity / 6.3.1:
EW Signal Processing / Chapter 7:
Input Signal Processing / 7.1:
Signal Environment / 7.1.1:
Processing of Multiple-Pulse Emitters / 7.1.1.1:
EM Sensor Subsystems / 7.1.2:
Large Aperture Antennas for ESM / 7.1.2.1:
Low Radar Cross Section (RCS) Antenna Systems / 7.1.2.2:
Sparse Arrays / 7.1.2.3:
The Receiver Subsystem / 7.1.3:
Transform Receivers / 7.1.3.1:
Conventional Channelizers / 7.1.3.2:
Digital Transforms / 7.1.3.3:
Parameter Encoding / 7.1.3.4:
Intrapulse Parameters
The Preprocessor / 7.1.4:
Mapping, Binning, or Histogramming / 7.1.4.1:
Associative Memories / 7.1.4.2:
Window Addressable Memories
Content Addressable Memories
Random Accessible Memories (RAMs)
The Data Servo Loop / 7.1.4.3:
Single-Instruction Multiple Data Arrays / 7.1.4.4:
Agile Parameter Tracking / 7.1.4.5:
High Duty Factor Emitters
Agile Pulse Repetition Interval (PRI) Emitters
Agile RF Emitters
Wideband Intrapulse RF Emitters
Output Signal Processing / 7.2:
The Computer / 7.2.1:
Jamming Logic / 7.2.2:
Advanced Fully Power-Managed Jamming / 7.2.2.1:
Time-Managed Jamming
RF Management
Coherent RF
Digital Exciters
Coherent Repetition
Amplitude Management
Direction Management
Generating Control Signals / 7.2.2.2:
Programmable Techniques Generator / 7.2.2.3:
Time-Ordered File / 7.2.2.4:
EW Technology and Future Trends / Chapter 8:
Antenna Technology / 8.1:
Fixed-Beam EW Antennas / 8.1.1:
Spiral Antennas / 8.1.1.1:
Horn Antennas / 8.1.1.2:
Helical Antennas / 8.1.1.3:
Log-Periodic Dipole Array Antennas / 8.1.1.4:
ECM Phased Array Antennas / 8.1.2:
Lens-Fed Multiple Beam Array / 8.1.3:
ECM Transmitter Power Source Technology / 8.2:
ECM Traveling Wave Tubes (TWTs) / 8.2.1:
Gallium Arsenide (GaAs) FET Amplifiers / 8.2.2:
Voltage Controlled Oscillators / 8.2.3:
Digital Radio Frequency Memories / 8.2.4:
EW Receiver Technology / 8.3:
Low-Noise Receivers / 8.3.1:
Surface Acoustic Wave (SAW) Delay Lines / 8.3.2:
EW at Millimeter Wavelengths / 8.4:
Low Observability EW Technology / 8.5:
Very High Speed Integrated Circuits (VHSIC) / 8.6:
Artificial Intelligence / 8.7:
Index
Electronic Warfare (EW) Principles and Overview / Chapter 1:
Electronic Warfare Taxonomy / 1.1:
Electronic Warfare Definitions and Areas / 1.1.1:
46.

図書

図書
Edmond de Hoffmann, Vincent Stroobant
出版情報: Chichester, U.K. : J. Wiley, c2007  xii, 489 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Principles
Diagram of a Mass Spectrometer
History
Ion Free Path
Ion Sources / 1:
Electron Ionization / 1.1:
Chemical Ionization / 1.2:
Proton transfer / 1.2.1:
Adduct formation / 1.2.2:
Charge-transfer chemical ionization / 1.2.3:
Reagent gas / 1.2.4:
Negative ion formation / 1.2.5:
Desorption chemical ionization / 1.2.6:
Field Ionization / 1.3:
Fast Atom Bombardment and Liquid Secondary Ion Mass Spectrometry / 1.4:
Field Desorption / 1.5:
Plasma Desorption / 1.6:
Laser Desorption / 1.7:
Matrix-Assisted Laser Desorption Ionization / 1.8:
Principle of MALDI / 1.8.1:
Practical considerations / 1.8.2:
Fragmentations / 1.8.3:
Atmospheric pressure matrix-assisted laser desorption ionization / 1.8.4:
Thermospray / 1.9:
Atmospheric Pressure Ionization / 1.10:
Electrospray / 1.11:
Multiply charged ions / 1.11.1:
Electrochemistry and electric field as origins of multiply charged ions / 1.11.2:
Sensitivity to concentration / 1.11.3:
Limitation of ion current from the source by the electrochemical process / 1.11.4:
Atmospheric Pressure Chemical Ionization / 1.11.5:
Atmospheric Pressure Photoionization / 1.13:
Atmospheric Pressure Secondary Ion Mass Spectrometry / 1.14:
Desorption electrospray ionization / 1.14.1:
Direct analysis in real time / 1.14.2:
Inorganic Ionization Sources / 1.15:
Thermal ionization source / 1.15.1:
Spark source / 1.15.2:
Glow discharge source / 1.15.3:
Inductively coupled plasma source / 1.15.4:
Gas-Phase Ion-Molecule Reactions / 1.15.5:
Formation and Fragmentation of Ions: Basic Rules / 1.17:
Electron ionization and photoionization under vacuum / 1.17.1:
Ionization at low pressure or at atmospheric pressure / 1.17.2:
Formation of aggregates or clusters / 1.17.3:
Reactions at the interface between source and analyser / 1.17.6:
Mass Analysers / 2:
Quadrupole Analysers / 2.1:
Description / 2.1.1:
Equations of motion / 2.1.2:
Ion guide and collision cell / 2.1.3:
Spectrometers with several quadrupoles in tandem / 2.1.4:
Ion Trap Analysers / 2.2:
The 3D ion trap / 2.2.1:
The 2D ion trap / 2.2.2:
The Electrostatic Trap or 'Orbitrap' / 2.3:
Time-of-Flight Analysers / 2.4:
Linear time-of-flight mass spectrometer / 2.4.1:
Delayed pulsed extraction / 2.4.2:
Reflectrons / 2.4.3:
Tandem mass spectrometry with time-of-flight analyser / 2.4.4:
Orthogonal acceleration time-of-flight instruments / 2.4.5:
Magnetic and Electromagnetic Analysers / 2.5:
Action of the magnetic field / 2.5.1:
Electrostatic field / 2.5.2:
Dispersion and resolution / 2.5.3:
Tandem mass spectrometry in electromagnetic analysers / 2.5.4:
Ion Cyclotron Resonance and Fourier Transform Mass Spectrometry / 2.6:
General principle / 2.6.1:
Ion cyclotron resonance / 2.6.2:
Fourier transform mass spectrometry / 2.6.3:
MS[superscript n] in ICR/FTMS instruments / 2.6.4:
Hybrid Instruments / 2.7:
Electromagnetic analysers coupled to quadrupoles or ion trap / 2.7.1:
Ion trap analyser combined with time-of-flight or ion cyclotron resonance / 2.7.2:
Hybrids including time-of-flight with orthogonal acceleration / 2.7.3:
Detectors and Computers / 3:
Detectors / 3.1:
Photographic plate / 3.1.1:
Faraday cup / 3.1.2:
Electron multipliers / 3.1.3:
Electro-optical ion detectors / 3.1.4:
Computers / 3.2:
Functions / 3.2.1:
Instrumentation / 3.2.2:
Data acquisition / 3.2.3:
Data conversion / 3.2.4:
Data reduction / 3.2.5:
Library search / 3.2.6:
Tandem Mass Spectrometry / 4:
Tandem Mass Spectrometry in Space or in Time / 4.1:
Tandem Mass Spectrometry Scan Modes / 4.2:
Collision-Activated Decomposition or Collision-Induced Dissociation / 4.3:
Collision energy conversion to internal energy / 4.3.1:
High-energy collision (keV) / 4.3.2:
Low-energy collision (between 1 and 100 eV) / 4.3.3:
Other Methods of Ion Activation / 4.4:
Reactions Studied in MS/MS / 4.5:
Tandem Mass Spectrometry Applications / 4.6:
Structure elucidation / 4.6.1:
Selective detection of target compound class / 4.6.2:
Ion-molecule reaction / 4.6.3:
The kinetic method / 4.6.4:
Mass Spectrometry/Chromatography Coupling / 5:
Elution Chromatography Coupling Techniques / 5.1:
Gas chromatography/mass spectrometry / 5.1.1:
Liquid chromatography/mass spectrometry / 5.1.2:
Capillary electrophoresis/mass spectrometry / 5.1.3:
Chromatography Data Acquisition Modes / 5.2:
Data Recording and Treatment / 5.3:
Data recording / 5.3.1:
Instrument control and treatment of results / 5.3.2:
Analytical Information / 6:
Mass Spectrometry Spectral Collections / 6.1:
High Resolution / 6.2:
Information at different resolving powers / 6.2.1:
Determination of the elemental composition / 6.2.2:
Isotopic Abundances / 6.3:
Low-mass Fragments and Lost Neutrals / 6.4:
Number of Rings or Unsaturations / 6.5:
Mass and Electron Parities, Closed-shell Ions and Open-shell Ions / 6.6:
Electron parity / 6.6.1:
Mass parity / 6.6.2:
Relationship between mass and electron parity / 6.6.3:
Quantitative Data / 6.7:
Specificity / 6.7.1:
Sensitivity and detection limit / 6.7.2:
External standard method / 6.7.3:
Sources of error / 6.7.4:
Internal standard method / 6.7.5:
Isotopic dilution method / 6.7.6:
Fragmentation Reactions / 7:
Electron Ionization and Fragmentation Rates / 7.1:
Quasi-Equilibrium and RRKM Theory / 7.2:
Ionization and Appearance Energies / 7.3:
Fragmentation Reactions of Positive Ions / 7.4:
Fragmentation of odd-electron cations or radical cations (OE[superscript [middle dot]+]) / 7.4.1:
Fragmentation of cations with an even number of electrons (EE[superscript +]) / 7.4.2:
Fragmentations obeying the parity rule / 7.4.3:
Fragmentations not obeying the parity rule / 7.4.4:
Fragmentation Reactions of Negative Ions / 7.5:
Fragmentation mechanisms of even electron anions (EE[superscript -]) / 7.5.1:
Fragmentation mechanisms of radical anions (OE[superscript [middle dot]-]) / 7.5.2:
Charge Remote Fragmentation / 7.6:
Spectrum Interpretation / 7.7:
Typical ions / 7.7.1:
Presence of the molecular ion / 7.7.2:
Typical neutrals / 7.7.3:
A few examples of the interpretation of mass spectra / 7.7.4:
Analysis of Biomolecules / 8:
Biomolecules and Mass Spectrometry / 8.1:
Proteins and Peptides / 8.2:
ESI and MALDI / 8.2.1:
Structure and sequence determination using fragmentation / 8.2.2:
Applications / 8.2.3:
Oligonucleotides / 8.3:
Mass spectra of oligonucleotides / 8.3.1:
Applications of mass spectrometry to oligonucleotides / 8.3.2:
Fragmentation of oligonucleotides / 8.3.3:
Characterization of modified oligonucleotides / 8.3.4:
Oligosaccharides / 8.4:
Mass spectra of oligosaccharides / 8.4.1:
Fragmentation of oligosaccharides / 8.4.2:
Degradation of oligosaccharides coupled with mass spectrometry / 8.4.3:
Lipids / 8.5:
Fatty acids / 8.5.1:
Acylglycerols / 8.5.2:
Bile acids / 8.5.3:
Metabolomics / 8.6:
Mass spectrometry in metabolomics / 8.6.1:
Exercises / 8.6.2:
Questions
Answers
Appendices
Nomenclature
Units
Definitions
Analysers
Detection
Ionization
Ion types
Fragmentation
Acronyms and abbreviations
Fundamental Physical Constants
Table of Isotopes in Ascending Mass Order / 4A:
Table of Isotopes in Alphabetical Order / 4B:
Isotopic Abundances (in %) for Various Elemental Compositions CHON
Gas-Phase Ion Thermochemical Data of Molecules
Gas-Phase Ion Thermochemical Data of Radicals
Literature on Mass Spectrometry
Mass Spectrometry on Internet
Index
Preface
Introduction
Principles
47.

図書

図書
A. De Stefanis and A.A.G. Tomlinson
出版情報: Uetikon-Zuerich, Switzerland : Trans Tech Publications, c2001  94, iv p. ; 25 cm
シリーズ名: Materials science foundations ; 14
所蔵情報: loading…
目次情報: 続きを見る
Scanning Tunnelling Microscopy / 1:
Introduction and history / 1.1:
The physical basis of STM / 1.2:
Instrumentation, past and present / 1.3:
STM Image interpretation / 1.4:
STM spectroscopy / 1.5:
Atomic Force and Related Force Microscopies / 2:
History / 2.1:
Principles / 2.2:
Instrumentation and an AFM Sitting / 2.3:
Other Microscopy Techniques Comparison / 2.4:
Applications of SPM / 2.5:
Scientific / 2.5.1:
Solid state structure / 2.5.1.1:
Films, layers coatings / 2.5.1.2:
Tribology / 2.5.1.3:
Interatomic Forces / 2.5.2:
Technological / 2.5.3:
Micro and nanoelectronic / 2.5.3.1:
Magnetic Force Microscopy (MFM) / 2.5.3.2:
Plastics and Polymers / 2.5.3.3:
Industrial coatings / 2.5.3.4:
Nanofabrication / 2.5.3.5:
New techniques and the future / 2.5.3.6:
References / 3:
1 SCANNING TUNNELLING MICROSCOPY 1.1 Introduction and History / A. De Stefanis; A.A.G. Tomlinson
1.2 The Physical Basis of STM
1.3 Instrumentation, Past and Present
1.4 STM Image Interpretation
1.5 STM Spectroscopy
2 ATOMIC FORCE AND RELATED FORCE MICROSCOPIES. 2.1 History
2.2 Principles
2.3 Instrumentation and an AFM Sitting
2.4 Other Microscopy Techniques Comparison
2.5 Applications of SPM
Scanning Tunnelling Microscopy / 1:
Introduction and history / 1.1:
The physical basis of STM / 1.2:
48.

図書

図書
P. M. Gresho, R. L. Sani in collaboration with M. S. Engelman
出版情報: Chichester : Wiley, c1998  xx, 1021p ; 25cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Glossary of Abbreviations
Introduction / 1:
Incompressible Flow / 1.1:
The Finite Element Method / 1.3:
Incompressible Flow and the Finite Element Method / 1.4:
Overview of this Book; Some Subjective Discussion / 1.5:
Why Finite Elements? Why not Finite Volume? / 1.6:
The Advection-Diffusion Equation / 2:
The Continuum Equation / 2.1:
The Advective (Convective) Form / 2.1.1:
Dimensionless Forms and Limiting Cases of the Equation / 2.1.2:
The Divergence (Conservation) Form / 2.1.3:
Conservation Laws / 2.1.4:
Weak forms of PDE's/Natural Boundary Conditions / 2.1.5:
The Finite Element Equations/Discretization of the Weak Form / 2.2:
Advective Form / 2.2.1:
Divergence Form / 2.2.2:
An Absolutely Conserving Form / 2.2.3:
A Finite Difference Interpretation / 2.2.5:
A Control Volume FEM... / 2.2.6:
Some Semi-Discrete Equations / 2.3:
One Dimension / 2.3.1:
Two Dimensions with Bilinear Elements / 2.3.2:
Two Dimension with Biquadratic Elements / 2.3.3:
Two Dimensions with Serendipity Elements / 2.3.4:
Open Boundary Conditions (OBC's) / 2.4:
Two Dimensions / 2.4.1:
Some Non-Galerkin Results / 2.5:
The Lumped Mass Approximation / 2.5.1:
One-point Quadrature / 2.5.2:
Control Volume Finite Element (CVFEM) / 2.5.3:
The Group FEM/Product Approximation / 2.5.4:
The Petrov-Galerkin FEM / 2.5.5:
Dispersion, Dissipation, Phase Speed, Group Velocity, Mesh Design, and - Wiggles / 2.6:
Qualitative Discussion / 2.6.1:
Qualitative Discussion for some 1D Problems / 2.6.2:
Extension to 2D / 2.6.3:
Time Integration / 2.7:
Some Explicit ODE Methods / 2.7.1:
Application to Advection Diffusion (Scalar Transport) / 2.7.2:
Some Implicit ODE Methods / 2.7.3:
A Variable-Step Implicit Method for Advection-Diffusion / 2.7.4:
A Semi-Implicit Method / 2.7.5:
Dispersion (et al.) Errors for some Fully Discrete Methods / 2.7.6:
Concluding remarks and Suggestions / 2.7.8:
Additional Numerical Examples / 2.8:
Unstable ODE Examples / 2.8.1:
Advection-Diffusion of a Puff (Point Source) / 2.8.2:
The Rotating Cone - A Pure Advection Test Problem / 2.8.3:
The Navier-Stokes Equations / 3:
Notational Introduction / 3.1:
The Continuum, Equations (PDE's) / 3.2:
Alternate Forms of the Viscous Term / 3.3:
Stress-Divergence Form / 3.3.1:
Div-Curl Form / 3.3.2:
Curl Form / 3.3.3:
Alternate Forms of the Non-Linear Term / 3.4:
Rotational Form / 3.4.1:
Skew-Symmetric Form / 3.4.3:
A Symmetric Form / 3.4.4:
Derived Equations / 3.5:
The Pressure Poisson Equation (PPE) / 3.5.1:
The Vorticity Transport Equation / 3.5.2:
The Penalized Momentum Equation / 3.5.3:
Alternate Statements of the NS Equations / 3.6:
Velocity-Pressure in Divergence Form / 3.6.1:
Velocity-Pressure in Rotational Form / 3.6.2:
PPE Form / 3.6.3:
The Stream Function-Vorticity (-) / 3.6.4:
The Velocity-Vorticity Formulation / 3.6.5:
Other Formulations / 3.6.6:
Special Cases of Interest / 3.7:
Stokes Flow / 3.7.1:
Inviscid Flow / 3.7.2:
Potential Flow / 3.7.3:
Axisymmetric Flow / 3.7.4:
Boundary Conditions / 3.8:
u-P Equations / 3.8.1:
The Pressure Poisson Equation and Pressure Boundary Conditions / 3.8.2:
The Vorticity Transport Equation and Boundary Conditions on the Vorticity / 3.8.3:
Initial Conditions (and Well-Posedness) / 3.9:
The u-P Formulation / 3.9.1:
The PPE Formulation / 3.9.2:
Vorticity-Based Methods / 3.9.3:
Interim Summary / 3.10:
A Well-Posed IBVP for Incompressible Flow, and the Equivalence Theorem / 3.10.1:
Some Ill-Posed Problems / 3.10.2:
The Simplified PPE is also Ill-Posed / 3.10.3:
Fixing the SPPE and PPE Paradox / 3.10.4:
PPE Solutions that are not NSE Solutions / 3.10.5:
A Remark on the Penalty Method / 3.10.6:
Key Features of Incompressible Flow / 3.10.7:
Global Conservation Laws / 3.11:
Preface
Glossary of Abbreviations
Introduction / 1:
49.

図書

東工大
目次DB

図書
東工大
目次DB
edited and published by the Architectural Institute of Japan (AIJ)
出版情報: Tokyo : The Architectural Institute of Japan, 1993  4, 5, 596 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
AIJ Committee Members
Editors and Authors
PART I. FUNDAMENTAL ASPECTS OF EARTHQUAKE MOTION
   1. Earthquake Source Mechanisms and Their Characteristics 1
   1.1 Overview of earthquake sources [R. Inoue, K. Shimazaki, and M. Takeo] 2
   1.1.1 Fault models 2
   1.1.2 Quantification of earthquakes 9
   1.1.3 Seismicity 15
   1.1.4 Earthquakes and active faults 19
   1.2 Earthquake source spectrum from complex faulting processes [J. Koyama] 22
   1.2.1 Earthquake source spectra 22
   1.2.2 Acceleration spectra 35
   1.2.3 Earthquake magnitude and complex faulting processes 45
   2. Propagation and Attenuation of Seismic Waves 65
   2.1 Observed attenuation of seismic waves [M. Takemura] 65
   2.1.1 Definition of a Q-value 65
   2.1.2 Evaluation of Q-values from observed records 66
   2.1.3 Attenuation curves 73
   2.2 Seismic wave propagation in a homogeneous random medium [M. Kawano] 79
   2.2.1 Review of the problems 79
   2.2.2 Effective wave number 80
   2.2.3 Average wave motion 81
   2.2.4 Numerical example 82
   3. Amplification of Seismic Waves 97
   3.1 Amplification of body waves [J. Shibuya] 98
   3.1.1 Effects of local site conditions on damages and earthquake motion 98
   3.1.2 Body waves in layered media 102
   3.1.3 Nonlinear response of soil layers 105
   3.2 Excitation of surface waves in multilayered ground [S. Noda] 106
   3.2.1 Significance of surface waves 106
   3.2.2 Surface waves in layered media 107
   3.2.3 Spatial and temporal variation of earthquake motion 111
   3.2.4 Simulation of surface waves 112
   3.2.5 Site amplification factors 115
   3.3 Effects of surface and subsurface irregularities [H. Kawase] 118
   3.3.1 Various types of irregularities 118
   3.3.2 Material heterogeneity 119
   3.3.3 Input wave type 120
   3.3.4 Surface irregularities 120
   3.3.5 Subsurface irregularities 134
   4. Intensity of Earthquake Motion 157
   4.1 Ground motion severity measures and structure damage [S.Midorikawa] 157
   4.1.1 Ground motion severity measures 157
   4.1.2 Damage and ground motion intensity 161
   4.2 Seismic intensity distribution of large earthquakes [H. Kagami] 166
   4.2.1 Spatial patterns of isoseismals and factors affecting them 167
   4.2.2 Utilization of seismic intensity data 172
   4.3 Seismic intensity measurement and its application [S. Okada] 176
   4.3.1 Advantage of using seismic intensity measurements 176
   4.3.2 Seismic intensity scales 177
   4.3.3 Prospects of an advanced seismic intensity scale 184
   4.3.4 Seismic intensity measurements as the key to seismic disaster management 184
PART II. EARTHQUAKE MOTION OBSERVATION AND GEOTECHNICAL SURVEY
   1. Observation of Strong Ground Motion 191
   1.1 Historical review, instrumentation, and observation system [Y. Kitagawa] 191
   1.1.1 Strong ground motion accelerographs 191
   1.1.2 Observation of subsurface earthquake motion 198
   1.2 Array observation of strong ground motion [K. Kudo and T. Tanaka] 199
   1.2.1 Brief historical review 199
   1.2.2 Purpose and method 200
   1.2.3 Examples 201
   1.3 Data processing and databases for strong motion records [S. Sugito] 206
   1.3.1 Digitization and correction 206
   1.3.2 Databases 211
   1.3.3 Current situation regarding the release of data in Japan 216
   1.4 Application of strong ground motion records and future tasks [K. Ishida and M. Tohdo] 217
   1.4.1 Application of strong ground motion records 217
   1.4.2 Future tasks of strong motion recording systems 225
   1.4.3 Future development of a world-wide data exchange system 227
   2. Subsurface Investigation and Soil Dynamics 231
   2.1 Geophysical properties and soil investigation [N. Yoshida] 231
   2.1.1 In-situ tests 232
   2.1.2 Laboratory tests 234
   2.2 Deformation characteristics of soils [N. Yoshida] 237
   2.2.1 Evaluation at small strains 238
   2.2.2 Evaluation at large strains 242
   2.2.3 Strength characteristics 246
   2.3 Modeling the stress-strain relationship of soils [N. Yoshida] 250
   2.3.1 1-dimensional analysis 250
   2.3.2 2- and 3-dimensional analysis 255
   2.3.3 Equivalent linear method 256
   2.4 Soil liquefaction [N. Yoshida] 258
   2.4.1 Mechanism of liquefaction 258
   2.4.2 Damage caused by soil liquefaction 259
   2.4.3 Evaluation of liquefaction potential 261
   2.4.4 Effective stress analysis for liquefaction 266
   2.4.5 Liquefaction-induced large ground displacement 271
   3. Survey of Deep Subsurface Structure 277
   3.1 Artificial seismic sources [H. Yamanaka] 277
   3.2 Surveying methods [H. Yamanaka and S. Zama] 281
   3.2.1 Seismic refraction method 281
   3.2.2 Seismic reflection method 283
   3.2.3 Other geophysical methods 288
   3.3 Exploration results in Japan [S. Zama] 292
   3.3.1 Examples 292
   3.3.2 Comparison of exploration results obtained by different methods 300
   3.4 Applications to earthquake engineering problems [H. Yamanaka] 304
   3.5 Future prospects [K. Seo] 308
   4. Measurement of Microtremors 315
   4.1 Microtremor or microvibration [N. Taga] 315
   4.1.1 Definition 315
   4.1.2 Measurement 315
   4.1.3 Nature 317
   4.1.4 Applications 319
   4.1.5 Examples 322
   4.1.6 Special cases 323
   4.2 Long-period microtremors [H. Kagami] 324
   4.2.1 Observation scheme 324
   4.2.2 Analysis and interpretation 325
PART III. PREDICTION OF STRONG GROUND MOTION AND ITS APPLICATION TO EARTHQUAKE ENGINEERING
   1. Simulation and Prediction of Strong Ground Motion 335
   1.1 Theoretical approach [K. Irikura and T. Iwata] 335
   1.1.1 Basic theory for simulating ground motion 335
   1.1.2 Characterization of earthquake ground motions 337
   1.1.3 Numerical simulations of earthquake ground motions 345
   1.2 Semi-empirical approach [K. Irikura, T. Iwata, and M. Takemura] 349
   1.2.1 Basic theory and review 349
   1.2.2 Modeling of heterogeneous faulting 363
   1.2.3 Stochastic modeling and scaling relation of strong motion spectra 370
   1.3 Empirical approach [M. Takemura] 377
   1.3.1 Attenuation curves in near-source regions 377
   1.3.2 Duration time of strong ground motion 383
   1.3.3 Stochastic simulation of high-frequency ground motion 386
   2. Effects of Surface Geology on Strong Ground Motion 395
   2.1 General review of site effects studies [M. Motosaka and T. Ohta] 395
   2.1.1 Effects of soil irregularity and heterogeneity on strong ground motion 395
   2.1.2 Average characteristics and effects of surface geology 402
   2.2 Effects of surface geology on strong motion during destructive earthquakes [Y. Hisada and S. Midorikawa] 406
   2.2.1 Strong ground motion in Mexico City during the 1985 Mexico earthquake 406
   2.2.2 Strong ground motion during the 1989 Loma Prieta, California, earthquake 412
   2.3 International experiments on ground motion prediction [C. Cramer and K. Kudo] 416
   2.3.1 The Turkey Flat, California, experiment 416
   2.3.2 The Ashigara Valley, Japan, experiment 420
   3. Seismic Zonation 435
   3.1 Seismic macrozonation [H. Murakami] 435
   3.1.1 Purpose and overview of macrozonation 435
   3.1.2 Statistical and probabilistic approach 437
   3.1.3 An approach that reflects geological fault information 439
   3.1.4 Linkage to microzonation and future research needs 442
   3.2 Seismic microzonation map [H. Kagami] 443
   3.2.1 Evaluation of seismic input motions and ground failure 443
   3.2.2 Risk zonation map 448
   3.2.3 Recent trends and future problems 453
   3.3 Seismic zonation and earthquake risk management [M. Naganoh] 455
   3.3.1 Critical need for earthquake risk management 455
   3.3.2 Seismic disaster processes 456
   3.3.3 Damage assessment and earthquake planning scenarios 458
   3.3.4 Countermeasures and studies implemented by the government 463
   3.3.5 Countermeasures and studies implemented by the business community 464
   3.3.6 Urban disaster prevention planning 465
   4. Strong Ground Motion in Seismic Design 471
   4.1 Seismic design in current codes [S. Nagahashi, M. Tohdo, K. Wakamatsu, and M. Yamada] 471
   4.1.1 Philosophy behind earthquake resistant design 471
   4.1.2 The Building Standard Law of Japan 472
   4.1.3 High-rise buildings 476
   4.1.4 Specialized buildings 479
   4.2 Approaches to new seismic design codes [M. Hisano, Y. Inoue, M. Kawano, M. Niwa, S. Ohba, T. Ohta, M. Tohdo, K. Ukai, and H. Yokota] 481
   4.2.1 Strong ground motion in seismic design in Japan 481
   4.2.2 Strong ground motion in the Tokyo bay area 483
   4.2.3 Strong ground motion in the Osaka bay area 491
   4.2.4 Strong ground motion for new types of buildings 499
   4.3 Needs and prospects for design earthquake motion [K. Hagio] 502
APPENDICES : FINDINGS FROM RECENT EARTHQUAKES
   A1. Overview [H. Kagami] 507
   A2. Lessons learned from the destructive damage of recent earthquakes in Japan [N. Taga] 515
   A3. Accumulation of strong ground motion records in Japan [T. Watanabe] 527
   A4. Review of recent earthquakes 534
   (1) The 1968 Tokachi-oki earthquake [Y. Kitagawa] 534
   (2) The 1978 Miyagiken-oki earthquake [J. Shibuya] 537
   (3) The 1979 Imperial Valley earthquake [S. Midorikawa] 542
   (4) The 1982 Urakawa-oki earthquake [H. Kagami] 546
   (5) The 1983 Nihonkai-chubu earthquake [S. Noda] 550
   (6) The 1984 Naganoken-seibu earthquake [K. Imaoka and N. Taga] 560
   (7) The 1985 Central Chile earthquake [S. Midorikawa] 565
   (8) The 1985 Michoacan-Guerrero, Mexico, earthquake [T. Ohta] 568
   (9) The 1987 Chibaken Toho-oki earthquake [S. Zama] 575
   (10) The 1989 Loma Prieta, California, earthquake [M. Naganoh] 583
   Index 593
Preface
AIJ Committee Members
Editors and Authors
50.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
51.

図書

図書
Georg Hager and Gerhard Wellein
出版情報: Boca Raton, Fla. : CRC Press, c2011  xxv, 330 p., [4] p. of plates ; 24 cm
シリーズ名: Chapman & Hall/CRC computational science series / series editer, Horst Simon
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
About the authors
List of acronyms and abbreviations
Modern processors / 1:
Stored-program computer architecture / 1.1:
General-purpose cache-based microprocessor architecture / 1.2:
Performance metrics and benchmarks / 1.2.1:
Transistors galore: Moore's Law / 1.2.2:
Pipelining / 1.2.3:
Superscalarity / 1.2.4:
SIMD / 1.2.5:
Memory hierarchies / 1.3:
Cache / 1.3.1:
Cache mapping / 1.3.2:
Prefetch / 1.3.3:
Multicore processors / 1.4:
Multithreaded processors / 1.5:
Vector processors / 1.6:
Design principles / 1.6.1:
Maximum performance estimates / 1.6.2:
Programming for vector architectures / 1.6.3:
Basic optimization techniques for serial code / 2:
Scalar profiling / 2.1:
Function- and line-based runtime profiling / 2.1.1:
Hardware performance counters / 2.1.2:
Manual instrumentation / 2.1.3:
Common sense optimizations / 2.2:
Do less work! / 2.2.1:
Avoid expensive operations! / 2.2.2:
Shrink the working set! / 2.2.3:
Simple measures, large impact / 2.3:
Elimination of common subexpressions / 2.3.1:
Avoiding branches / 2.3.2:
Using SIMD instruction sets / 2.3.3:
The role of compilers / 2.4:
General optimization options / 2.4.1:
Inlining / 2.4.2:
Aliasing / 2.4.3:
Computational accuracy / 2.4.4:
Register optimizations / 2.4.5:
Using compiler logs / 2.4.6:
C++ optimizations / 2.5:
Temporaries / 2.5.1:
Dynamic memory management / 2.5.2:
Loop kernels and iterators / 2.5.3:
Data access optimization / 3:
Balance analysis and lightspeed estimates / 3.1:
Bandwidth-based performance modeling / 3.1.1:
The STREAM benchmarks / 3.1.2:
Storage order / 3.2:
Case study: The Jacobi algorithm / 3.3:
Case study: Dense matrix transpose / 3.4:
Algorithm classification and access optimizations / 3.5:
O(N)/O(N) / 3.5.1:
Case study: Sparse matrix-vector multiply / 3.5.2:
Sparse matrix storage schemes / 3.6.1:
Optimizing JDS sparse MVM / 3.6.2:
Parallel computers / 4:
Taxonomy of parallel computing paradigms / 4.1:
Shared-memory computers / 4.2:
Cache coherence / 4.2.1:
UMA / 4.2.2:
ccNUMA / 4.2.3:
Distributed-memory computers / 4.3:
Hierarchical (hybrid) systems / 4.4:
Networks / 4.5:
Basic performance characteristics of networks / 4.5.1:
Buses / 4.5.2:
Switched and fat-tree networks / 4.5.3:
Mesh networks / 4.5.4:
Hybrids / 4.5.5:
Basics of parallelization / 5:
Why parallelize? / 5.1:
Parallelism / 5.2:
Data parallelism / 5.2.1:
Functional parallelism / 5.2.2:
Parallel scalability / 5.3:
Factors that limit parallel execution / 5.3.1:
Scalability metrics / 5.3.2:
Simple scalability laws / 5.3.3:
Parallel efficiency / 5.3.4:
Serial performance versus strong scalability / 5.3.5:
Refined performance models / 5.3.6:
Choosing the right scaling baseline / 5.3.7:
Case study: Can slower processors compute faster? / 5.3.8:
Load imbalance / 5.3.9:
Shared-memory parallel programming with OpenMP / 6:
Short introduction to OpenMP / 6.1:
Parallel execution / 6.1.1:
Data scoping / 6.1.2:
OpenMP worksharing for loops / 6.1.3:
Synchronization / 6.1.4:
Reductions / 6.1.5:
Loop scheduling / 6.1.6:
Tasking / 6.1.7:
Miscellaneous / 6.1.8:
Case study: OpenMP-parallel Jacobi algorithm / 6.2:
Advanced OpenMP: Wavefront parallelization / 6.3:
Efficient OpenMP programming / 7:
Profiling OpenMP programs / 7.1:
Performance pitfalls / 7.2:
Ameliorating the impact of OpenMP worksharing constructs / 7.2.1:
Determining OpenMP overhead for short loops / 7.2.2:
Serialization / 7.2.3:
False sharing / 7.2.4:
Case study: Parallel sparse matrix-vector multiply / 7.3:
Locality optimizations on ccNUMA architectures / 8:
Locality of access on ccNUMA / 8.1:
Page placement by first touch / 8.1.1:
Access locality by other means / 8.1.2:
Case study: ccNUMA optimization of sparse MVM / 8.2:
Placement pitfalls / 8.3:
NUMA-unfriendly OpenMP scheduling / 8.3.1:
File system cache / 8.3.2:
ccNUMA issues with C++ / 8.4:
Arrays of objects / 8.4.1:
Standard Template Library / 8.4.2:
Distributed-memory parallel programming with MPI / 9:
Message passing / 9.1:
A short introduction to MPI / 9.2:
A simple example / 9.2.1:
Messages and point-to-point communication / 9.2.2:
Collective communication / 9.2.3:
Nonblocking point-to-point communication / 9.2.4:
Virtual topologies / 9.2.5:
Example: MPI parallelization of a Jacobi solver / 9.3:
MPI implementation / 9.3.1:
Performance properties / 9.3.2:
Efficient MPI programming / 10:
MPI performance tools / 10.1:
Communication parameters / 10.2:
Synchronization, serialization, contention / 10.3:
Implicit serialization and synchronization / 10.3.1:
Contention / 10.3.2:
Reducing communication overhead / 10.4:
Optimal domain decomposition / 10.4.1:
Aggregating messages / 10.4.2:
Nonblocking vs. asynchronous communication / 10.4.3:
Understanding intranode point-to-point communication / 10.4.4:
Hybrid parallelization with MPI and OpenMP / 11:
Basic MPI/OpenMP programming models / 11.1:
Vector mode implementation / 11.1.1:
Task mode implementation / 11.1.2:
Case study: Hybrid Jacobi solver / 11.1.3:
MPI taxonomy of thread interoperability / 11.2:
Hybrid decomposition and mapping / 11.3:
Potential benefits and drawbacks of hybrid programming / 11.4:
Topology and affinity in multicore environments / A:
Topology / A.l:
Thread and process placement / A.2:
External affinity control / A.2.1:
Affinity under program control / A.2.2:
Page placement beyond first touch / A.3:
Solutions to the problems / B:
Bibliography
Index
Foreword
Preface
About the authors
52.

図書

図書
V J Morris, A R Kirdy, A P Gunning
出版情報: London : Imperial College Press, c1999  xiv, 332 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
An Introduction / Chapter 1:
Apparatus / Chapter 2:
The atomic force microscope / 2.1.:
Piezoelectric scanners / 2.2.:
Probes and cantilevers / 2.3.:
Cantilever geometry / 2.3.1.:
Tip shape / 2.3.2.:
Tip functionality / 2.3.3.:
Sample holders / 2.4.:
Liquid cells / 2.4.1.:
Detection methods / 2.5.:
Optical detectors: laser beam deflection / 2.5.1.:
Optical detectors: interferometry / 2.5.2.:
Electrical detectors: electron tunnelling / 2.5.3.:
Electrical detectors: capacitance / 2.5.4.:
Electrical detectors: piezoelectric cantilevers / 2.5.5.:
Control systems / 2.6.:
AFM electronics / 2.6.1.:
Operation of the electronics / 2.6.2.:
Feedback control loops / 2.6.3.:
Design limitations / 2.6.4.:
Enhancing the performance of large scanners / 2.6.5.:
Vibration isolation: thermal and mechanical / 2.7.:
Calibration / 2.8.:
Piezoelectric scanner non-linearity / 2.8.1.:
Tip related factors / 2.8.2.:
Determining cantilever force constants / 2.8.3.:
Calibration standards / 2.8.4.:
Tips for scanning a calibration specimen / 2.8.5.:
Integrated AFMs / 2.9.:
Combined AFM-light microscope (AFM-LM) / 2.9.1.:
'Submarine' AFM-the combined AFM-Langmuir Trough / 2.9.2.:
Combined AFM-surface plasmon resonance (AFM-SPR) / 2.9.3.:
Cryo-AFM / 2.9.4.:
Basic Principles / Chapter 3:
Forces / 3.1.:
The Van der Waals force and force-distance curves / 3.1.1.:
The electrostatic force / 3.1.2.:
Capillary and adhesive forces / 3.1.3.:
Double layer forces / 3.1.4.:
Imaging modes / 3.2.:
Contact dc mode / 3.2.1.:
Non-contact ac modes / 3.2.2.:
Error signal or deflection mode / 3.2.3.:
Image types / 3.3.:
Topographical / 3.3.1.:
Frictional force / 3.3.2.:
Phase / 3.3.3.:
Substrates / 3.4.:
Mica / 3.4.1.:
Glass / 3.4.2.:
Graphite / 3.4.3.:
Common problems / 3.5.:
Thermal drift / 3.5.1.:
Multiple tip effects / 3.5.2.:
Tip convolution and probe broadening / 3.5.3.:
Sample roughness / 3.5.4.:
Sample mobility / 3.5.5.:
Imaging under liquid / 3.5.6.:
Getting started / 3.6.:
DNA / 3.6.1.:
Troublesome large samples / 3.6.2.:
Image optimisation / 3.7.:
Grey levels and colour tables / 3.7.1.:
Brightness and contrast / 3.7.2.:
High and low pass filtering / 3.7.3.:
Normalisation and plane fitting / 3.7.4.:
Despike / 3.7.5.:
Fourier filtering / 3.7.6.:
Correlation averaging / 3.7.7.:
Stereographs / 3.7.8.:
Do your homework! / 3.7.9.:
Macromolecules / Chapter 4:
Imaging methods / 4.1.:
Tip adhesion, molecular damage and displacement / 4.1.1.:
Depositing macromolecules onto substrates / 4.1.2.:
Metal coated samples / 4.1.3.:
Imaging in air / 4.1.4.:
Imaging under non aqueous liquids / 4.1.5.:
Binding molecules to the substrate / 4.1.6.:
Imaging under water or buffers / 4.1.7.:
Nucleic acids: DNA / 4.2.:
Imaging DNA / 4.2.1.:
DNA conformation, size and shape / 4.2.2.:
DNA-protein interactions / 4.2.3.:
Location and mapping of specific sites / 4.2.4.:
Chromosomes / 4.2.5.:
Nucleic acids: RNA / 4.3.:
Polysaccharides / 4.4.:
Imaging polysaccharides / 4.4.1.:
Size, shape, structure and conformation / 4.4.2.:
Aggregates, networks and gels / 4.4.3.:
Cellulose, plant cell walls and starch / 4.4.4.:
Proteoglycans / 4.4.5.:
Proteins / 4.5.:
Globular proteins / 4.5.1.:
Antibodies / 4.5.2.:
Fibrous proteins / 4.5.3.:
Interfacial Systems / Chapter 5:
Introduction to interfaces / 5.1.:
Surface activity / 5.1.1.:
AFM of interfacial systems / 5.1.2.:
The Langmuir trough / 5.1.3.:
Langmuir-Blodgett film transfer / 5.1.4.:
Sample preparation / 5.2.:
Cleaning protocols: glassware and trough / 5.2.1.:
Performing the dip / 5.2.2.:
Phospholipids / 5.3.:
AFM studies / 5.3.1.:
Modification of phospholipid bilayers with the AFM / 5.3.2.:
Studying intrinsic bilayer properties by AFM / 5.3.3.:
Ripple phases in phospholipid bilayers / 5.3.4.:
Mixed phospholipid films / 5.3.5.:
Effect of supporting layers / 5.3.6.:
Dynamic processes of phopholipid layers / 5.3.7.:
Liposomes and intact vesicles / 5.4.:
Lipid-protein mixed films / 5.5.:
Miscellaneous lipid films / 5.6.:
Interfacial protein films / 5.7.:
Specific precautions / 5.7.1.:
AFM studies of interfacial protein films / 5.7.2.:
Ordered Macromolecules / Chapter 6:
Three dimensional crystals / 6.1:
Crystalline cellulose / 6.1.1.:
Protein crystals / 6.1.2.:
Nucleic acid crystals / 6.1.3.:
Viruses and virus crystals / 6.1.4.:
Two dimensional protein crystals / 6.2.:
What does AFM have to offer? / 6.2.1.:
Sample preparation: membrane proteins / 6.2.2.:
Sample preparation: soluble proteins / 6.2.3.:
AFM studies of 2D membrane protein crystals / 6.3.:
Purple membrane / 6.3.1.:
Gap junctions / 6.3.2.:
Photosynthetic protein membranes / 6.3.3.:
ATPase in kidney membranes / 6.3.4.:
OmpF porin / 6.3.5.:
Bacterial S layers / 6.3.6.:
Bacteriophage [phis]29 head-tail connector / 6.3.7.:
Gas vesicle protein / 6.3.8.:
AFM studies of 2D crystals of soluble proteins / 6.4.:
Imaging conditions / 6.4.1.:
Electrostatic considerations / 6.4.2.:
Cells, Tissue and Biominerals / Chapter 7:
Force mapping and mechanical measurements / 7.1.:
Microbial cells: bacteria, spores and yeasts / 7.2.:
Bacteria / 7.2.1.:
Yeasts / 7.2.2.:
Blood cells / 7.3.:
Erythrocytes / 7.3.1.:
Leukocytes and lymphocytes / 7.3.2.:
Platelets / 7.3.3.:
Neurons and Glial cells / 7.4.:
Epithelial cells / 7.5.:
Non-confluent renal cells / 7.6.:
Endothelial cells / 7.7.:
Cardiocytes / 7.8.:
Other mammalian cells / 7.9.:
Plant cells / 7.10.:
Tissue / 7.11.:
Embedded sections / 7.11.1.:
Embedment-free sections / 7.11.2.:
Hydrated sections / 7.11.3.:
Freeze-fracture replicas / 7.11.4.:
Immunolabelling / 7.11.5.:
Biominerals / 7.12.:
Bone, tendon and cartilage / 7.12.1.:
Teeth / 7.12.2.:
Shells / 7.12.3.:
Other Probe Microscopes / Chapter 8:
Overview / 8.1.:
Scanning tunnelling microscope (STM) / 8.2.:
Scanning near-field optical microscope (SNOM) / 8.3.:
Scanning ion conductance microscope (SICM) / 8.4.:
Scanning thermal microscope (SThM) / 8.5.:
Optical tweezers and the photonic force microscope (PFM) / 8.6.:
SPM books
Index
An Introduction / Chapter 1:
Apparatus / Chapter 2:
The atomic force microscope / 2.1.:
53.

図書

図書
Rolf Eligehausen, Rainer Mallée, John F. Silva
出版情報: Berlin : Ernst & Sohn, c2006  xiii, 378 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
A historical review / 1.1:
Requirements for fastenings / 1.2:
Nature and direction of actions / 1.3:
Fastening systems / 2:
General / 2.1:
Cast-in-place systems / 2.2:
Lifting inserts / 2.2.1:
Anchor channels / 2.2.2:
Headed studs / 2.2.3:
Threaded sleeves / 2.2.4:
Drilled-in systems / 2.3:
Drilling techniques / 2.3.1:
Installation configurations / 2.3.2:
Drilled-in anchor types / 2.3.3:
Mechanical expansion anchors / 2.3.3.1:
Undercut anchors / 2.3.3.2:
Bonded anchors / 2.3.3.3:
Screw anchors / 2.3.3.4:
Ceiling hangers / 2.3.3.5:
Plastic anchors / 2.3.3.6:
Direct installation / 2.4:
Principles / 3:
Behaviour of concrete in tension / 3.1:
Failure mechanisms of fastenings / 3.3:
Theoretical studies / 3.3.1:
Experimental studies / 3.3.2:
Conclusions drawn from theoretical and experimental studies / 3.3.3:
Cracked concrete / 3.4:
Why anchors may use the tensile strength of concrete / 3.5:
Prestressing of anchors / 3.6:
Loads on anchors / 3.7:
Calculation according to elastic theory / 3.7.1:
Tension load / 3.7.1.1:
Shear loads / 3.7.1.2:
Calculation according to non-linear methods / 3.7.2:
Calculation of loads on anchors of anchor channels / 3.7.3:
Tension loads / 3.7.3.1:
Behaviour of headed studs, undercut anchors and metal expansion anchors in non-cracked and cracked concrete / 3.7.3.2:
Non-cracked concrete / 4.1:
Load-displacement behaviour and modes of failure / 4.1.1:
Failure load associated with steel rupture / 4.1.1.2:
Failure load associated with concrete cone breakout / 4.1.1.3:
Failure load for local concrete side blow-out failure / 4.1.1.4:
Failure loads associated with pull-out and pull-through failures / 4.1.1.5:
Failure load associated with splitting of the concrete / 4.1.1.6:
Shear / 4.1.2:
Failure load associated with pry-out / 4.1.2.1:
Concrete edge failure for a shear load perpendicular to the edge / 4.1.2.4:
Concrete edge breakout load associated with shear loads oriented at an angle [alpha] < 90[degree] to the edge / 4.1.2.5:
Combined tension and shear (oblique loading) / 4.1.3:
Failure load / 4.1.3.1:
Bending of the baseplate / 4.1.4:
Sustained loads / 4.1.5:
Fatigue loading / 4.1.6:
Tension / 4.2:
Failure load corresponding to steel failure / 4.2.1.1:
Failure load associated with local blow-out failure / 4.2.1.3:
Failure load associated with pull-out/pull-through failure / 4.2.1.5:
Failure load associated with steel failure / 4.2.1.6:
Failure load associated with pry-out failure / 4.2.2.3:
Failure load associated with concrete edge breakout / 4.2.2.4:
Combined tension and shear / 4.2.3:
Behaviour of cast-in anchor channels in non-cracked and cracked concrete / 4.2.3.1:
Failure load associated with local concrete side blow-out failure / 5.1:
Failure load associated with pull-out failure / 5.1.1.5:
Failure load associated with concrete edge failure / 5.1.1.6:
Sustained and fatigue loading / 5.1.3:
Behaviour of bonded anchors in non-cracked and cracked concrete / 5.2:
Failure load associated with concrete breakout/pull-out failure / 6.1:
Failure load associated with splitting / 6.1.1.4:
Shear load / 6.1.2:
Combined tension and shear load / 6.1.2.1:
Environmental factors / 6.1.4:
Failure load corresonding to steel failure / 6.2:
Failure load corresponding to pull-out failure / 6.2.1.3:
Failure loads corresponding to concrete cone failure and splitting of the concrete / 6.2.1.4:
Sustained and fatigue loads / 6.2.2:
Bonded undercut anchors and bonded expansion anchors / 6.2.5:
Shear and combined tension and shear load / 6.3.1:
Behaviour of plastic anchors in non-cracked and cracked concrete / 7:
Long-term behaviour / 7.1:
Behaviour of power actuated fasteners in non-cracked and cracked concrete / 7.2:
Sustained and repetitive loading / 8.1:
Behaviour of screw anchors in non-cracked and cracked concrete / 8.2:
Installation / 9.1:
Load-displacement behaviour and failure modes / 9.2:
Failure loads associated with steel failure / 9.2.1.2:
Failure loads associated with pull-out failure / 9.2.1.3:
Failure loads associated with concrete cone failure / 9.2.1.4:
Shear load and combined tension and shear load / 9.2.2:
Behaviour of anchors under seismic loading / 9.3.3:
Anchor applications / 10.1:
Seismic actions / 10.2:
Assumptions regarding the condition of the concrete / 10.3:
Behaviour of anchors under seismic conditions / 10.4:
Tension cycling / 10.4.1:
Shear cycling / 10.4.2:
Combined tension and shear cycling / 10.4.3:
Loading rate / 10.4.4:
Load cycle sequence / 10.4.5:
Crack cycling / 10.4.6:
Behaviour of anchors in fire / 11:
Corrosion of anchors / 12:
Influence of fastenings on the capacity of components in which they are installed / 13:
Design of fastenings / 14:
Verifying the suitability of an anchor system / 14.1:
Design of fastenings with post-installed metal expansion, undercut and bonded expansion anchors according to the EOTA Guideline / 14.3:
Scope / 14.3.1:
Design concept / 14.3.3:
Analysis for the ultimate limit state / 14.3.3.1:
Analysis for the serviceability limit state / 14.3.3.2:
Forces on anchors / 14.3.4:
Characteristic resistances / 14.3.5:
Tension resistances / 14.3.5.1:
Shear resistances / 14.3.5.2:
Serviceability limit state / 14.3.5.3:
Anchor displacements / 14.3.6.1:
Shear load with changing sign / 14.3.6.2:
Additional analyses for ensuring the characteristic resistance of concrete member / 14.3.7:
Shear resistance of the concrete member / 14.3.7.1:
Resistance to splitting forces / 14.3.7.3:
Design of fastenings according to the CEN Technical Specification / 14.4:
Basis of design / 14.4.1:
Partial safety factors / 14.4.4:
Static actions, indirect actions and fatigue actions / 14.4.4.1:
Resistances / 14.4.4.2:
Ultimate limit state (static loading) and seismic loading / 14.4.4.2.1:
Limit state of fatigue / 14.4.4.2.2:
Forces acting on fasteners / 14.4.4.2.3:
Distribution of loads / 14.4.5.1:
Shear loads without lever arm / 14.4.5.2.2:
Shear loads with lever arm / 14.4.5.2.3:
Design of headed fasteners / 14.4.6:
Determination of action effects / 14.4.6.1:
Verification of ultimate limit state by elastic analysis / 14.4.6.2:
Combined tension and shear loads / 14.4.6.2.1:
Design of anchor channels / 14.4.7:
Derivation of forces acting on the anchors of the anchor channel / 14.4.7.1:
Tension forces in the supplementary reinforcement / 14.4.7.1.1:
Anchor channels without supplementary reinforcement / 14.4.7.2.1:
Anchor channels with supplementary reinforcement / 14.4.7.3.3.2:
Design of post-installed fasteners - mechanical systems / 14.4.8:
Design of post-installed fasteners - chemical systems / 14.4.8.1:
Fatigue loads / 14.4.9.1:
Seismic loads / 14.4.11:
Actions / 14.4.11.1:
Verification of serviceability limit state / 14.4.11.3:
Fire / 14.4.13:
Resistance / 14.4.13.1:
Tension loading / 14.4.13.3.1:
Shear loading / 14.4.13.3.2:
Combined tension and shear loading / 14.4.13.3.3:
Plastic design of fastenings with headed fasteners and post-installed fasteners / 14.4.14:
Field of application / 14.4.14.1:
Loads on fastenings / 14.4.14.2:
Resistance to tension load / 14.4.14.3:
Resistance to shear load / 14.4.14.3.3:
Resistance to combined tension and shear load / 14.4.14.3.4:
Design of fastenings with cast-in and post-installed metal anchors according to ACI 318-05 Appendix D / 14.5:
Tension resistance / 14.5.1:
Shear resistance / 14.5.5.3:
Required edge distances, spacings and member thicknesses to preclude splitting failure / 14.5.5.4:
Resistance where load cases include seismic forces / 14.5.7:
Provisions of ACI 349-01 Appendix B / 14.5.8:
Ductile design requirements / 14.5.8.1:
Baseplate design / 14.5.8.3:
References
Subject Index
Introduction / 1:
A historical review / 1.1:
Requirements for fastenings / 1.2:
54.

図書

図書
R. Paul Drake
出版情報: Berlin : Springer, c2006  xv, 534 p. ; 25 cm
シリーズ名: Shock wave and high pressure phenomena
所蔵情報: loading…
目次情報: 続きを見る
Introduction to High-Energy-Density Physics / 1:
Some Historical Remarks / 1.1:
Regimes of High-Energy-Density Physics / 1.2:
An Introduction to Inertial Confinement Fusion / 1.3:
An Introduction to Experimental Astrophysics / 1.4:
Some Connections to Prior Work / 1.5:
Variables and Notation / 1.6:
Descriptions of Fluids and Plasmas / 2:
The Euler Equations for a Polytropic Gas / 2.1:
The Maxwell Equations / 2.2:
More General and Complete Single-Fluid Equations / 2.3:
General Single-Fluid Equations / 2.3.1:
Magnetohydrodynamics / 2.3.2:
Single Fluid, Three Temperature / 2.3.3:
Approaches to Computer Simulation / 2.3.4:
Plasma Theories / 2.4:
Regimes of Validity of Traditional Plasma Theory / 2.4.1:
The Two-Fluid Equations / 2.4.2:
The Kinetic Description / 2.4.3:
Single-Particle Motions / 2.5:
Properties of High-Energy-Density Plasmas / 3:
Simple Equations of State / 3.1:
Polytropic Gases / 3.1.1:
Radiation-Dominated Plasma / 3.1.2:
Fermi-Degenerate EOS / 3.1.3:
Ionizing Plasmas / 3.2:
Ionization Balance from the Saha Equation / 3.2.1:
Continuum Lowering and the Ion Sphere Model / 3.2.2:
Coulomb Interactions / 3.2.3:
Thermodynamics of Ionizing Plasmas / 3.3:
Generalized Polytropic Indices / 3.3.1:
Pressure, Energy, and Their Consequences / 3.3.2:
The EOS Landscape / 3.3.3:
Equations of State for Computations / 3.4:
The Thomas-Fermi Model and QEOS / 3.4.1:
Tabular Equations of State / 3.4.2:
Equations of State in the Laboratory and in Astrophysics / 3.5:
The Astrophysical Context for EOS / 3.5.1:
Connecting EOS from the Laboratory to Astrophysics / 3.5.2:
Experiments to Measure Equations of State / 3.6:
Direct Flyer-Plate Measurements / 3.6.1:
Impedance Matching / 3.6.2:
Other Techniques / 3.6.3:
Shocks and Rarefactions / 4:
Shock Waves / 4.1:
Jump Conditions / 4.1.1:
The Shock Hugoniot and Equations of State / 4.1.2:
Useful Shock Relations / 4.1.3:
Entropy Changes Across Shocks / 4.1.4:
Oblique Shocks / 4.1.5:
Shocks and Interfaces, Flyer Plates / 4.1.6:
Rarefaction Waves / 4.2:
The Planar Isothermal Rarefaction and Self-Similar Analysis / 4.2.1:
Riemann Invariants / 4.2.2:
Planar Adiabatic Rarefactions / 4.2.3:
Blast Waves / 4.3:
Energy Conservation in Blast Waves / 4.3.1:
A General Discussion of Self-Similar Motions / 4.3.2:
The Sedov-Taylor Spherical Blast Wave / 4.3.3:
Phenomena at Interfaces / 4.4:
Shocks at Interfaces and Their Consequences / 4.4.1:
Overtaking Shocks / 4.4.2:
Reshocks in Rarefactions / 4.4.3:
Blast Waves at Interfaces / 4.4.4:
Rarefactions at Interfaces / 4.4.5:
Oblique Shocks at Interfaces / 4.4.6:
Hydrodynamic Instabilities / 5:
Introduction to the Rayleigh-Taylor Instability / 5.1:
Buoyancy as a Driving Force / 5.1.1:
Fundamentals of the Fluid-Dynamics Description / 5.1.2:
Applications of the Linear Theory of the Rayleigh-Taylor Instability / 5.2:
Rayleigh-Taylor Instability with Two Uniform Fluids / 5.2.1:
Effects of Viscosity on the Rayleigh-Taylor Instability / 5.2.2:
Rayleigh-Taylor with Density Gradients and the Global Mode / 5.2.3:
The Convective Instability or the Entropy Mode / 5.3:
Buoyancy-Drag Models of the Nonlinear Rayleigh-Taylor State / 5.4:
Mode Coupling / 5.5:
The Kelvin-Helmholtz Instability / 5.6:
Fundamental Equations for Kelvin-Helmholtz Instabilities / 5.6.1:
Uniform Fluids with a Sharp Boundary / 5.6.2:
Otherwise Uniform Fluids with a Distributed Shear Layer / 5.6.3:
Uniform Fluids with a Transition Region / 5.6.4:
Shock Stability and Richtmyer-Meskov Instability / 5.7:
Shock Stability / 5.7.1:
Interaction of Shocks with Rippled Interfaces / 5.7.2:
Postshock Evolution of the Interface; Richtmyer Meshkov Instability / 5.7.3:
Hydrodynamic Turbulence / 5.8:
Radiative Transfer / 6:
Basic Concepts / 6.1:
Properties and Description of Radiation / 6.1.1:
Thermal Radiation / 6.1.2:
Types of Interaction Between Radiation and Matter / 6.1.3:
Description of the Net Interaction of Radiation and Matter / 6.1.4:
Radiation Transfer / 6.2:
The Radiation Transfer Equation / 6.2.1:
Radiative Transfer Calculations / 6.2.2:
Opacities in Astrophysics and the Laboratory / 6.2.3:
Radiation Transfer in the Equilibrium Diffusion Limit / 6.2.4:
Nonequilibrium Diffusion and Two-Temperature Models / 6.2.5:
Relativistic Considerations for Radiative Transfer / 6.3:
Radiation Hydrodynamics / 7:
Radiation Hydrodynamic Equations / 7.1:
Fundamental Equations / 7.1.1:
Thermodynamic Relations / 7.1.2:
Radiation and Fluctuations / 7.2:
Radiative Acoustic Waves; Optically Thick Case / 7.2.1:
Cooling When Transport Matters / 7.2.2:
Optically Thin Acoustic Waves / 7.2.3:
Radiative Thermal Instability / 7.2.4:
Radiation Diffusion and Marshak Waves / 7.3:
Marshak Waves / 7.3.1:
Ionizing Radiation Wave / 7.3.2:
Constant-Energy Radiation Diffusion Wave / 7.3.3:
Radiative Shocks / 7.4:
Regimes of Radiative Shocks / 7.4.1:
Fluid Dynamics of Radiative Shocks / 7.4.2:
Models of Radiative Precursors / 7.4.3:
Optically Thin Radiative Shocks / 7.4.4:
Radiative Shocks that are Thick Downstream and Thin Upstream / 7.4.5:
Fluid Dynamics of Optically Thick Radiative Shocks / 7.4.6:
Optically Thick Shocks-Radiative-Flux Regime / 7.4.7:
Radiation-Dominated Optically Thick Shocks / 7.4.8:
Electron-Ion Coupling in Shocks / 7.4.9:
Ionization Fronts / 7.5:
Creating High-Energy-Density Conditions / 8:
Direct Laser Irradiation / 8.1:
Laser Technology / 8.1.1:
Laser Focusing / 8.1.2:
Propagation and Absorption of Electromagnetic Waves / 8.1.3:
Laser Scattering and Laser-Plasma Instabilities / 8.1.4:
Electron Heat Transport / 8.1.5:
Ablation Pressure / 8.1.6:
Hohlraums / 8.2:
X-Ray Conversion of Laser Light / 8.2.1:
X-Ray Production by Ion Beams / 8.2.2:
X-Ray Ablation / 8.2.3:
Problems with Hohlraums / 8.2.4:
Z-Pinches and Related Methods / 8.3:
Z-Pinches for High-Energy-Density Physics / 8.3.1:
Dynamic Hohlraums / 8.3.2:
Magnetically Driven Flyer Plates / 8.3.3:
Inertial Confinement Fusion / 9:
The Final State / 9.1:
What Fuel, Under What Conditions? / 9.1.1:
Energy Gain: Is This Worth Doing? / 9.1.2:
Properties of Compressed DT Fuel / 9.1.3:
Creating and Igniting the Final State / 9.2:
Achieving a Highly Compressed State / 9.2.1:
Igniting the Fuel / 9.2.2:
Igniting from a Central Hot Spot / 9.2.3:
Fast Ignition / 9.2.4:
Pitfalls and Problems / 9.3:
Rayleigh Taylor / 9.3.1:
Symmetry / 9.3.2:
Laser-Plasma Instabilities / 9.3.3:
Experimental Astrophysics / 10:
Scaling in Hydrodynamic Systems / 10.1:
A Thorough Example: Interface Instabilities in Type II Supernovae / 10.2:
The Astrophysical Context for Type II Supernovae / 10.2.1:
The Scaling Problem for Interface Instabilities in Supernovae / 10.2.2:
Experiments on Interface Instabilities in Type II Supernovae / 10.2.3:
A Second Example: Cloud-Crushing Interactions / 10.3:
Scaling in Radiation Hydrodynamic Systems / 10.4:
Radiative Astrophysical Jets: Context and Scaling / 10.5:
The Context for Jets in Astrophysics / 10.5.1:
Scaling from Radiative Astrophysical Jets to the Laboratory / 10.5.2:
Radiative Jet Experiments / 10.5.3:
Relativistic High-Energy-Density Systems / 11:
Development of Ultrafast Lasers / 11.1:
Single-Electron Motion in Intense Electromagnetic Fields / 11.2:
Initiating Relativistic Laser-Plasma Interactions / 11.3:
Absorption Mechanisms / 11.4:
Harmonic Generation / 11.5:
Relativistic Self-Focusing and Induced Transparency / 11.6:
Particle Acceleration / 11.7:
Acceleration Within Plasmas / 11.7.1:
Acceleration by Surface Potentials on Solid Targets / 11.7.2:
Acceleration by Coulomb Explosions / 11.7.3:
Hole Drilling and Collisionless Shocks / 11.8:
Other Phenomena / 11.9:
Appendix A: Constants, Acronyms, and Standard Variables / 12:
Appendix B: Sample Mathematica Code / 13:
Appendix C: A List of the Homework Problems / 14:
Index
Introduction to High-Energy-Density Physics / 1:
Some Historical Remarks / 1.1:
Regimes of High-Energy-Density Physics / 1.2:
55.

図書

図書
Fred V. Brock, Scott J. Richardson and Oklahoma Climatological Survey
出版情報: Oxford : Tokyo : Oxford University Press, 2001  xi, 290 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Overview / 1:
Instrument Design and Selection / 1.1:
Performance Characteristics / 1.1.1:
Functional Model / 1.1.2:
Sources of Error / 1.1.3:
Standards / 1.2:
Calibration / 1.2.1:
Performance / 1.2.2:
Exposure / 1.2.3:
Procedural / 1.2.4:
System Integration / 1.3:
Instrument Platforms / 1.3.1:
Communication Systems / 1.3.2:
Power Source / 1.3.3:
Human Aspects of Measurement / 1.4:
Human Perception versus Sensor Measurements / 1.4.1:
Reasons for Automation / 1.4.2:
Design, Implementation, and Maintenance of Measurement Systems / 1.4.3:
Interpretation of Sensor Specifications / 1.4.4:
Interpretation of Results / 1.4.5:
Human Judgment / 1.4.6:
Quality Assurance / 1.5:
Laboratory Calibrations / 1.5.1:
Field Intercomparisons / 1.5.2:
Data Monitoring / 1.5.3:
Documentation / 1.5.4:
Independent Review / 1.5.5:
Publication of Data Quality Assessment / 1.5.6:
Scope of this Text / 1.6:
Questions
Bibliography
General Instrumentation References
Barometry / 2:
Atmospheric Pressure / 2.1:
Direct Measurement of Pressure / 2.2:
Mercury Barometers / 2.2.1:
Aneroid Barometers / 2.2.2:
Indirect Measurement of Pressure / 2.3:
Boiling Point of a Liquid / 2.3.1:
Comparison of Barometer Types / 2.4:
Hypsometer / 2.4.1:
Exposure Error / 2.5:
Laboratory Experiment / 2.6:
Calibration of Barometers / 2.7:
Static Performance Characteristics / 3:
Some Definitions / 3.1:
Static Calibration / 3.2:
Definition of Terms Related to the Transfer Plot / 3.2.1:
Calibration Procedure / 3.2.2:
Example of a Static Calibration / 3.3:
Multiple Sources of Error / 3.4:
Significant Figures / 3.5:
Questions and Problems
Thermometry / 4:
Thermal Expansion / 4.1:
Bimetallic Strip / 4.1.1:
Liquid-in-Glass Thermometer / 4.1.2:
Thermoelectric Sensors / 4.2:
Electrical Resistance Sensors / 4.3:
Resistance Temperature Detectors / 4.3.1:
Thermistors / 4.3.2:
Comparison of Temperature Sensors / 4.4:
Exposure of Temperature Sensors / 4.5:
Notes
Hygrometry / 5:
Water Vapor Pressure / 5.1:
Definitions / 5.2:
Methods for Measuring Humidity / 5.3:
Removal of Water Vapor from Moist Air / 5.3.1:
Addition of Water Vapor to Air / 5.3.2:
Equilibrium Sorption of Water Vapor / 5.3.3:
Measurement of Physical Properties of Moist Air / 5.3.4:
Attainment of Vapor-Liquid or Vapor-Solid Equilibrium / 5.3.5:
Chemical Reactions / 5.3.6:
Choice of Humidity Sensor / 5.4:
Calibration of Humidity Sensors / 5.5:
Exposure of Humidity Sensors / 5.6:
Laboratory Exercises
Dynamic Performance Characteristics, Part 1 / 6:
First-Order Systems / 6.1:
Step-Function Input / 6.1.1:
Ramp Input / 6.1.2:
Sinusoidal Input / 6.1.3:
Experimental Determination of Dynamic Performance Parameters / 6.2:
Application to Temperature Sensors / 6.3:
Anemometry / 7:
Methods of Measurement / 7.1:
Wind Force / 7.1.1:
Heat Dissipation / 7.1.2:
Speed of Sound / 7.1.3:
Wind Data Processing / 7.2:
Dynamic Performance Characteristics, Part 2 / 8:
Generalized Dynamic Performance Models / 8.1:
Energy Storage Reservoirs / 8.2:
Second-Order Systems / 8.3:
Step Function Input / 8.3.1:
Application to Sensors / 8.3.2:
Precipitation Rate / 8.5:
Point Precipitation Measurement / 9.1:
Radar Rain Measurement / 9.2.2:
Solar and Earth Radiation / 10:
Pyrheliometers / 10.1:
Pyranometers / 10.2.2:
Pyrgeometers / 10.2.3:
Pyrradiometers / 10.2.4:
Measurement Errors / 10.3:
Visibility and Cloud Height / 10.4:
Measurement of Visibility / 11.1:
Transmissometer / 11.2.1:
Forward Scatter Meters / 11.2.2:
Measurement of Cloud Height / 11.3:
Rotating Beam Ceilometer / 11.3.1:
Laser Ceilometer / 11.3.2:
Upper Air Measurements / 12:
Methods for Making Upper Air Measurements / 12.1:
Remote Sensing / 12.1.1:
In-Situ Platforms / 12.1.2:
Balloons / 12.2:
Wind Measurement / 12.3:
Theodolites / 12.3.1:
Radar / 12.3.2:
Navigation Aids / 12.3.3:
Radiosondes / 12.4:
Sampling and Analog-to-Digital Conversion / 12.5:
Signal Path / 13.1:
Drift / 13.2:
Sampling / 13.3:
Analog-to-Digital Conversion / 13.4:
Information Content of a Signal / 13.5:
Units and Constants / A:
International System of Units (SI)
Numerical Values
Thermistor Circuit Analysis / B:
A Thermistor / B.1:
A Circuit / B.2:
An Alternative Calibration Equation / B.3:
A Data Logger / C:
The Data Logger / C.1:
Application in a Measurement System / C.2:
Circuits / D:
Fundamentals / D.1:
Simple Circuits / D.2:
Geophysical Coordinate System / E:
Geophysical versus Mathematical Coordinate System / E.1:
Mathematical Coordinates / E.2:
Geophysical Coordinates / E.3:
Instrumentation Glossary / F:
Index
Overview / 1:
Instrument Design and Selection / 1.1:
Performance Characteristics / 1.1.1:
56.

図書

図書
Jan Flusser, Tomás Suk, Barbara Zitov
出版情報: Chichester : John Wiley & Sons, 2009  xiv, 296 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Authors' biographies
Preface
Acknowledgments
Introduction to moments / 1:
Motivation / 1.1:
What are invariants? / 1.2:
Categories of invariant / 1.2.1:
What are moments? / 1.3:
Geometric and complex moments / 1.3.1:
Orthogonal moments / 1.3.2:
Outline of the book / 1.4:
References
Moment invariants to translation, rotation and scaling / 2:
Introduction / 2.1:
Invariants to translation / 2.1.1:
Invariants to uniform scaling / 2.1.2:
Traditional invariants to rotation / 2.1.3:
Rotation invariants from complex moments / 2.2:
Construction of rotation invariants / 2.2.1:
Construction of the basis / 2.2.2:
Basis of invariants of the second and third orders / 2.2.3:
Relationship to the Hu invariants / 2.2.4:
Pseudoinvariants / 2.3:
Combined invariants to TRS and contrast changes / 2.4:
Rotation invariants for recognition of symmetric objects / 2.5:
Logo recognition / 2.5.1:
Recognition of simple shapes / 2.5.2:
Experiment with a baby toy / 2.5.3:
Rotation invariants via image normalization / 2.6:
Invariants to nonuniform scaling / 2.7:
TRS invariants in 3D / 2.8:
Conclusion / 2.9:
Affine moment invariants / 3:
Projective imaging of a 3D world / 3.1:
Projective moment invariants / 3.1.2:
Affine transformation / 3.1.3:
AMJs / 3.1.4:
AMIs derived from the Fundamental theorem / 3.2:
AMIs generated by graphs / 3.3:
The basic concept / 3.3.1:
Representing the invariants by graphs / 3.3.2:
Independence of the AMIs / 3.3.3:
The AMIs and tensors / 3.3.4:
Robustness of the AMIs / 3.3.5:
AMIs via image normalization / 3.4:
Decomposition of the affine transform / 3.4.1:
Violation of stability / 3.4.2:
Relation between the normalized moments and the AMIs / 3.4.3:
Affine invariants via half normalization / 3.4.4:
Affine invariants from complex moments / 3.4.5:
Derivation of the AMIs from the Cayley-Aronhold equation / 3.5:
Manual solution / 3.5.1:
Automatic solution / 3.5.2:
Numerical experiments / 3.6:
Digit recognition / 3.6.1:
Recognition of symmetric patterns / 3.6.2:
The children's mosaic / 3.6.3:
Affine invariants of color images / 3.7:
Generalization to three dimensions / 3.8:
Method of geometric primitives / 3.8.1:
Normalized moments in 3D / 3.8.2:
Half normalization in 3D / 3.8.3:
Direct solution of the Cayley-Aronhold equation / 3.8.4:
Appendix / 3.9:
Implicit invariants to elastic transformations / 4:
General moments under a polynomial transform / 4.1:
Explicit and implicit invariants / 4.3:
Implicit invariants as a minimization task / 4.4:
Invariance and robustness test / 4.5:
ALOI classification experiment / 4.5.2:
Character recognition on a bottle / 4.5.3:
Invariants to convolution / 4.6:
Blur invariants for centrosymmetric PSFs / 5.1:
Template matching experiment / 5.2.1:
Invariants to linear motion blur / 5.2.2:
Extension to n dimensions / 5.2.3:
Possible applications and limitations / 5.2.4:
Blur invariants for W-fold symmetric PSFs / 5.3:
Blur invariants for circularly symmetric PSFs / 5.3.1:
Blur invariants for Gaussian PSFs / 5.3.2:
Combined invariants / 5.4:
Combined invariants to convolution and rotation / 5.4.1:
Combined invariants to convolution and affine transform / 5.4.2:
Moments orthogonal on a rectangle / 5.5:
Hypergeometric functions / 6.2.1:
Legendre moments / 6.2.2:
Chebyshev moments / 6.2.3:
Other moments orthogonal on a rectangle / 6.2.4:
OG moments of a discrete variable / 6.2.5:
Moments orthogonal on a disk / 6.3:
Zernike and Pseudo-Zernike moments / 6.3.1:
Orthogonal Fourier-Mellin moments / 6.3.2:
Other moments orthogonal on a disk / 6.3.3:
Object recognition by ZMs / 6.4:
Image reconstruction from moments / 6.5:
Reconstruction by the direct calculation / 6.5.1:
Reconstruction in the Fourier domain / 6.5.2:
Reconstruction from OG moments / 6.5.3:
Reconstruction from noisy data / 6.5.4:
Numerical experiments with image reconstruction from OG moments / 6.5.5:
Three-dimensional OG moments / 6.6:
Algorithms for moment computation / 6.7:
Moments in a discrete domain / 7.1:
Geometric moments of binary images / 7.3:
Decomposition methods for binary images / 7.3.1:
Boundary-based methods for binary images / 7.3.2:
Other methods for binary images / 7.3.3:
Geometric moments of graylevel images / 7.4:
Intensity slicing / 7.4.1:
Approximation methods / 7.4.2:
Efficient methods for calculating OG moments / 7.5:
Methods using recurrent relations / 7.5.1:
Decomposition methods / 7.5.2:
Boundary-based methods / 7.5.3:
Generalization to n dimensions / 7.6:
Applications / 7.7:
Object representation and recognition / 8.1:
Image registration / 8.3:
Registration of satellite images / 8.3.1:
Image registration for image fusion / 8.3.2:
Robot navigation / 8.4:
Indoor robot navigation based on circular landmarks / 8.4.1:
Recognition of landmarks using fish-eye lens camera / 8.4.2:
Image retrieval / 8.5:
Watermarking / 8.6:
Watermarking based on the geometric moments / 8.6.1:
Medical imaging / 8.7:
Landmark recognition in the scoliosis study / 8.7.1:
Forensic applications / 8.8:
Detection of near-duplicated image regions / 8.8.1:
Miscellaneous applications / 8.9:
Noise-resistant optical flow estimation / 8.9.1:
Focus measure / 8.9.2:
Edge detection / 8.9.3:
Gas-liquid flow categorization / 8.9.4:
3D objects visualization / 8.9.5:
Index / 8.10:
Authors' biographies
Preface
Acknowledgments
57.

図書

図書
editor, Gerald D. Fasman
出版情報: Cleveland, Ohio ; Boca Raton, Fla. : CRC Press, c1976  2 v. ; 26 cm
シリーズ名: CRC handbook of biochemistry and molecular biology / editor, Gerald D. Fasman ; [D]
所蔵情報: loading…
目次情報: 続きを見る
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
Process equipment / 1.2.1:
Sensors and actuators / 1.2.2:
Electrical cabling, fieldbus technology and smart devices / 1.2.3:
Programmable logic controllers / 1.2.4:
Soft programmable logic controllers and embedded controllers / 1.2.5:
Supervisory control and data acquisition / 1.2.6:
Network communications and systems integration / 1.2.7:
Manufacturing execution systems / 1.2.8:
Enterprise resource planning / 1.2.9:
Designing an automated process line / 1.3:
User requirements specification / 1.3.1:
Functional design specification / 1.3.2:
Design implementation: project management / 1.3.3:
The future / 1.4:
Further reading
Primary milk production / A. L. Kelly2:
Introduction / 2.1:
Global milk production trends / 2.1.1:
Farm production trends / 2.1.2:
Husbandry management and milk quality / 2.2:
Lactation cycle and milk quality / 2.2.1:
Effect of diet on milk composition / 2.2.3:
Influence of genetic factors and breed on milk quality / 2.2.4:
Mastitis, somatic cell counts and milk quality / 2.2.5:
Milking and feeding systems / 2.3:
Milking machines and effects on milk quality / 2.3.1:
Automated concentrate feeding systems / 2.3.2:
Bulk storage, collection and transportation / 2.4:
Milk cooling and storage / 2.4.1:
Milk collection and handling in developing countries / 2.4.2:
Quality payment schmes and quality optimization / 2.5:
Mastitis control strategies / 2.5.1:
Other animal welfare issues / 2.5.2:
Milk payment and acceptance schemes / 2.5.3:
Acknowledgements
References
Liquid milk / D. D. Muir ; A. Y. Tamime3:
Milk composition / 3.1:
Proteins in milk / 3.1.1:
Lactose and minerals / 3.1.2:
Milk fat / 3.1.3:
Heat-treated milk products / 3.2:
Chemical effects / 3.2.1:
Destruction of microorganisms and enzymes / 3.2.2:
Effects on other milk constituents / 3.2.3:
From farm to factory / 3.3:
Milk collection / 3.3.1:
Milk distribution / 3.3.2:
Delivery to the factory / 3.3.3:
Extension of the shelf-life of raw milk / 3.3.4:
At the factory / 3.3.5:
Milk handling in dairies / 3.4:
Reception of milk / 3.4.1:
Milk processing / 3.4.2:
Pasteurisation systems / 3.4.3:
Extended-shelf-life milk / 3.4.4:
High-temperature pasteurisation / 3.4.5:
In-container sterilisation / 3.4.6:
Ultra high temperature (UHT) / 3.4.7:
Recombination technology / 3.5:
Packaging lines and storage / 3.6:
Statistical process control / 3.7:
Acknowledgement
Concentrated and dried dairy products / P. De Jong ; R. E. M. Verdurmen4:
Evaporation / 4.1:
Drying / 4.1.2:
Product and process technology / 4.2:
Evaporated and dried products / 4.2.1:
Process design and operation / 4.2.2:
Quality control / 4.3:
Control of process conditions / 4.3.1:
Control of product properties / 4.3.2:
High fat content dairy products / H. M. P. Ranjith ; K. K. Rajah5:
Properties of milk fat / 5.1:
Melting and crystallisation / 5.1.2:
High fat content emulsions: oil-in-water type / 5.2:
Centrifugal separation / 5.2.1:
Control of fat content in creams / 5.2.2:
Cleaning of milk separators / 5.2.3:
Description of creams / 5.2.4:
Processing of cream / 5.2.5:
Factors affecting cream quality / 5.2.6:
Processing recommendations for high fat content products / 5.3:
Properties required of high fat emulsions for table spreads / 5.3.1:
Butter manufacture / 5.3.2:
Anhydrous milk fat / 5.3.3:
Ghee / 5.3.4:
Butterschmalz / 5.3.5:
Fractionation of milk fat / 5.4:
Yoghurt and other fermented milks / R. K. Robinson ; E. Latrille6:
Background / 6.1:
Classification of fermented milks / 6.2:
Mesophilic microfloras / 6.2.1:
Thermophilic and/or therapeutic microfloras / 6.2.2:
Microfloras including yeasts and lactic acid bacteria / 6.2.3:
Microfloras including moulds and lactic acid bacteria / 6.2.4:
Manufacture of fermented milks / 6.3:
Raw materials / 6.3.1:
Fortification of the milk / 6.3.2:
Heat treatment of the milk / 6.3.3:
Microbiology of the processes / 6.3.4:
Fermentation / 6.3.5:
Final processing / 6.3.6:
Retail products / 6.3.7:
Options for automation and mechanisation / 6.4:
Processing plants / 6.4.1:
Quick chilling, cold storage and retrieval of products / 6.4.4:
Product recovery / 6.4.5:
Automation in handling systems for finished product / 6.4.6:
Recent developments in some fermented-milk products / 6.5:
Long-life yoghurt / 6.5.1:
Strained or concentrated yoghurt / 6.5.2:
Dried fermented milks / 6.5.3:
Frozen yoghurt / 6.5.4:
Drinking yoghurt / 6.5.5:
Process control systems / 6.6:
Controlled variables / 6.6.1:
New reliable sensors for fermentation monitoring / 6.6.3:
Advanced monitoring: prediction of the final process time / 6.6.4:
Statistical process control and future trends / 6.6.5:
Cheddar cheese production / B. A. Law7:
Cheesemaking as process engineering / 7.1:
Coagulation of milk and curd formation / 7.3:
Vat design / 7.3.1:
Cutting and stirring / 7.3.2:
Theoretical aids to the optimisation of the cutting and scalding stage / 7.3.3:
Curd draining, cheddaring, milling and salting / 7.4:
Production of pressed cheese blocks ready for maturation / 7.5:
Storage and maturation of cheese / 7.6:
Semi-hard cheeses / G. Van Den Berg8:
Cheese varieties involved / 8.1:
General technology / 8.1.2:
General historical background / 8.1.3:
Basic technology / 8.2:
Milk handling and processing / 8.3:
Milk fat standardisation / 8.3.1:
Control of sporeformers by bactofugation and microfiltration / 8.3.2:
Pasteurisation / 8.3.3:
Cheese vats and curd production / 8.4:
Horizontal vats / 8.4.1:
Vertical vats / 8.4.2:
Preparation of the curd / 8.4.3:
Instrumentation to control and automate curd cutting time / 8.4.4:
Curd drainage and moulding / 8.5:
Buffer tanks / 8.5.1:
Casomatic systems / 8.5.2:
Pre-pressing vats / 8.5.3:
Pressing / 8.6:
Cheese pressing / 8.6.1:
Mould handling / 8.6.2:
Brining / 8.7:
Brine composition / 8.7.1:
Hygiene measures / 8.7.2:
Brining systems / 8.7.3:
Dry salting / 8.7.4:
Treatment during natural ripening / 8.8:
Cheese handling systems / 8.8.1:
Conditioning of the ripening room / 8.8.2:
Soft fresh cheese and soft ripened cheese / H. Pointurier9:
Characteristics of ripened and fresh soft cheeses / 9.1:
Soft ripened cheeses (les fromages a pate molle) / 9.2.1:
Fresh cheese (fromage frais) / 9.2.2:
The key phases in the process plant for soft cheese manufacture / 9.3:
Soft ripened cheeses / 9.3.1:
Soft fresh cheeses / 9.3.2:
Cottage cheese / 9.3.3:
Mechanisation and automation solutions / 9.4:
Pasta Filata cheeses / O. Salvadori del Prato9.4.1:
General introduction and basic classification / 10.1:
Technology of Pasta Filata cheeses / 10.2:
Mozzarella and soft Pasta Filata cheeses / 10.2.1:
Provolone and hard Pasta Filata cheeses / 10.2.2:
Mechanisation and control of Pasta Filata cheese production / 10.3:
Coagulators or cheese vats / 10.3.1:
Filatrici and moulding machines / 10.3.2:
Hardening and brining / 10.3.3:
Packaging / 10.3.4:
Miscellaneous systems / 10.3.5:
Quality control of Pasta Filata cheese processing / 10.4:
Rheological properties / 10.4.1:
Microstructure / 10.4.2:
Hazard analysis critical control points / 10.4.3:
Membrane processing / H.C. Van der Horst11:
Principles of membrane processes / 11.1:
Process control and automation of membrane processes / 11.2:
Membrane applications for milk / 11.3:
Milk concentration by reverse osmosis / 11.3.1:
Demineralisation by nanofiltration / 11.3.2:
Milk protein standardisation by ultrafiltration / 11.3.3:
Milk protein concentration by ultrafiltration and microfiltration / 11.3.4:
Removal of bacteria, spores and somatic cells from raw milk by microfiltration / 11.3.5:
Applications to cheese / 11.4:
Soft and hard cheese varieties / 11.4.1:
Applications for whey / 11.5:
Concentration of whey by reverse osmosis / 11.5.1:
Demineralisation of whey by nanofiltration / 11.5.2:
Whey protein concentrate production by ultrafiltration / 11.5.3:
Whey protein fractionation / 11.5.4:
Miscellaneous processes / 11.6:
Clarification of brine / 11.6.1:
Recycling of cleaning solutions / 11.6.2:
Nonproduct operations, services and waste handling / L. Robertson12:
Nonproduct operation and maintenance / 12.1:
Plant commissioning / 12.1.1:
Start-up and shut-down / 12.1.2:
Maintenance, including predictive or planned maintenance / 12.1.3:
Cleaning-in-place operation, control and automation / 12.1.4:
Supply and control of services / 12.2:
Water quality / 12.2.1:
Electricity / 12.2.2:
Steam / 12.2.3:
Hot water / 12.2.4:
Chilled water / 12.2.5:
Compressed air / 12.2.6:
Dryer air / 12.2.7:
Cogeneration / 12.2.8:
Waste heat recovery and re-use / 12.2.9:
Waste handling / 12.3:
Legal issues / 12.3.1:
Waste minimisation / 12.3.2:
Waste characterisation / 12.3.3:
Waste product and by-product treatment / 12.3.4:
Nutrient and biological oxygen demand reduction / 12.3.5:
Index
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
58.

図書

図書
Vitalij K. Pecharsky, Peter Y. Zavalij
出版情報: New York : Springer, c2009  xxiii, 741 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Fundamentals of Crystalline State and Crystal Lattice / 1:
Crystalline State / 1.1:
Crystal Lattice and Unit Cell / 1.2:
Shape of the Unit Cell / 1.3:
Crystallographic Planes, Directions, and Indices / 1.4:
Crystallographic Planes / 1.4.1:
Crystallographic Directions / 1.4.2:
Reciprocal Lattice / 1.5:
Additional Reading / 1.6:
Problems / 1.7:
Finite Symmetry Elements and Crystallographic Point Groups / 2:
Content of the Unit Cell / 2.1:
Asymmetric Part of the Unit Cell / 2.2:
Symmetry Operations and Symmetry Elements / 2.3:
Finite Symmetry Elements / 2.4:
Onefold Rotation Axis and Center of Inversion / 2.4.1:
Twofold Rotation Axis and Mirror Plane / 2.4.2:
Threefold Rotation Axis and Threefold Inversion Axis / 2.4.3:
Fourfold Rotation Axis and Fourfold Inversion Axis / 2.4.4:
Sixfold Rotation Axis and Sixfold Inversion Axis / 2.4.5:
Interaction of Symmetry Elements / 2.5:
Generalization of Interactions Between Finite Symmetry Elements / 2.5.1:
Symmetry Groups / 2.5.2:
Fundamentals of Group Theory / 2.6:
Crystal Systems / 2.7:
Stereographic Projection / 2.8:
Crystallographic Point Groups / 2.9:
Laue Classes / 2.10:
Selection of a Unit Cell and Bravais Lattices / 2.11:
Infinite Symmetry Elements and Crystallographic Space Groups / 2.12:
Glide Planes / 3.1:
Screw Axes / 3.2:
Interaction of Infinite Symmetry Elements / 3.3:
Crystallographic Space Groups / 3.4:
Relationships Between Point Groups and Space Groups / 3.4.1:
Full International Symbols of Crystallographic Space Groups / 3.4.2:
Visualization of Space-Group Symmetry in Three Dimensions / 3.4.3:
Space Groups in Nature / 3.4.4:
International Tables for Crystallography / 3.5:
Equivalent Positions (Sites) / 3.6:
General and Special Equivalent Positions / 3.6.1:
Special Sites with Points Located on Mirror Planes / 3.6.2:
Special Sites with Points Located on Rotation and Inversions Axes / 3.6.3:
Special Sites with Points Located on Centers of Inversion / 3.6.4:
Formalization of Symmetry / 3.7:
Symbolic Representation of Symmetry / 4.1:
Finite Symmetry Operations / 4.1.1:
Infinite Symmetry Operations / 4.1.2:
Algebraic Treatment of Symmetry Operations / 4.2:
Transformation of Coordinates of a Point / 4.2.1:
Rotational Transformations of Vectors / 4.2.2:
Translational Transformations of Vectors / 4.2.3:
Combined Symmetrical Transformations of Vectors / 4.2.4:
Augmentation of Matrices / 4.2.5:
Algebraic Representation of Crystallographic Symmetry / 4.2.6:
Interaction of Symmetry Operations / 4.2.7:
Nonconventional Symmetry / 4.3:
Commensurate Modulation / 5.1:
Incommensurate Modulation / 5.2:
Composite Crystals / 5.3:
Symmetry of Modulated Structures / 5.4:
Quasicrystals / 5.5:
Properties, Sources, and Detection of Radiation / 5.6:
Nature of X-Rays / 6.1:
Production of X-Rays / 6.2:
Conventional Sealed X-Ray Sources / 6.2.1:
Continuous and Characteristic X-Ray Spectra / 6.2.2:
Rotating Anode X-Ray Sources / 6.2.3:
Synchrotron Radiation Sources / 6.2.4:
Other Types of Radiation / 6.3:
Detection of X-Rays / 6.4:
Detector Efficiency, Linearity, Proportionality and Resolution / 6.4.1:
Classification of Detectors / 6.4.2:
Point Detectors / 6.4.3:
Line and Area Detectors / 6.4.4:
Fundamentals of Diffraction / 6.5:
Scattering by Electrons, Atoms and Lattices / 7.1:
Scattering by Electrons / 7.1.1:
Scattering by Atoms and Atomic Scattering Factor / 7.1.2:
Scattering by Lattices / 7.1.3:
Geometry of Diffraction by Lattices / 7.2:
Laue Equations / 7.2.1:
Braggs' Law / 7.2.2:
Reciprocal Lattice and Ewald's Sphere / 7.2.3:
The Powder Diffraction Pattern / 7.3:
Origin of the Powder Diffraction Pattern / 8.1:
Representation of Powder Diffraction Patterns / 8.2:
Understanding of Powder Diffraction Patterns / 8.3:
Positions of Powder Diffraction Peaks / 8.4:
Peak Positions as a Function of Unit Cell Dimensions / 8.4.1:
Other Factors Affecting Peak Positions / 8.4.2:
Shapes of Powder Diffraction Peaks / 8.5:
Peak-Shape Functions / 8.5.1:
Peak Asymmetry / 8.5.2:
Intensity of Powder Diffraction Peaks / 8.6:
Integrated Intensity / 8.6.1:
Scale Factor / 8.6.2:
Multiplicity Factor / 8.6.3:
Lorentz-Polarization Factor / 8.6.4:
Absorption Factor / 8.6.5:
Preferred Orientation / 8.6.6:
Extinction Factor / 8.6.7:
Structure Factor / 8.7:
Structure Amplitude / 9.1:
Population Factor / 9.1.1:
Temperature Factor (Atomic Displacement Factor) / 9.1.2:
Atomic Scattering Factor / 9.1.3:
Phase Angle / 9.1.4:
Effects of Symmetry on the Structure Amplitude / 9.2:
Friedel Pairs and Friedel's Law / 9.2.1:
Friedel's Law and Multiplicity Factor / 9.2.2:
Systematic Absences / 9.3:
Lattice Centering / 9.3.1:
Space Groups and Systematic Absences / 9.3.2:
Solving the Crystal Structure / 9.5:
Fourier Transformation / 10.1:
Phase Problem / 10.2:
Patterson Technique / 10.2.1:
Direct Methods / 10.2.2:
Structure Solution from Powder Diffraction Data / 10.2.3:
Total Scattering Analysis Using Pair Distribution Function / 10.3:
Powder Diffractometry / 10.4:
Brief History of the Powder Diffraction Method / 11.1:
Beam Conditioning in Powder Diffractometry / 11.2:
Collimation / 11.2.1:
Monochromatization / 11.2.2:
Principles of Goniometer Design in Powder Diffractometry / 11.3:
Goniostats with Strip and Point Detectors / 11.3.1:
Goniostats with Area Detectors / 11.3.2:
Nonambient Powder Diffractometry / 11.4:
Variable Temperature Powder Diffractometry / 11.4.1:
Principles of Variable Pressure Powder Diffractometry / 11.4.2:
Powder Diffractometry in High Magnetic Fields / 11.4.3:
Collecting Quality Powder Diffraction Data / 11.5:
Sample Preparation / 12.1:
Powder Requirements and Powder Preparation / 12.1.1:
Powder Mounting / 12.1.2:
Sample Size / 12.1.3:
Sample Thickness and Uniformity / 12.1.4:
Sample Positioning / 12.1.5:
Effects of Sample Preparation on Powder Diffraction Data / 12.1.6:
Data Acquisition / 12.2:
Wavelength / 12.2.1:
Incident Beam Aperture / 12.2.2:
Diffracted Beam Aperture / 12.2.4:
Variable Aperture / 12.2.5:
Power Settings / 12.2.6:
Classification of Powder Diffraction Experiments / 12.2.7:
Step Scan / 12.2.8:
Continuous Scan / 12.2.9:
Scan Range / 12.2.10:
Quality of Experimental Data / 12.3:
Quality of Intensity Measurements / 12.3.1:
Factors Affecting Resolution / 12.3.2:
Preliminary Data Processing and Phase Analysis / 12.4:
Interpretation of Powder Diffraction Data / 13.1:
Preliminary Data Processing / 13.2:
Background / 13.2.1:
Smoothing / 13.2.2:
Peak Search / 13.2.3:
Profile Fitting / 13.2.5:
Phase Identification and Quantitative Analysis / 13.3:
Crystallographic Databases / 13.3.1:
Phase Identification / 13.3.2:
Quantitative Analysis / 13.3.3:
Phase Contents from Rietveld Refinement / 13.3.4:
Determination of Amorphous Content or Degree of Crystallinity / 13.3.5:
Determination and Refinement of the Unit Cell / 13.4:
The Indexing Problem / 14.1:
Known Versus Unknown Unit Cell Dimensions / 14.2:
Indexing: Known Unit Cell / 14.3:
High Symmetry Indexing Example / 14.3.1:
Other Crystal Systems / 14.3.2:
Reliability of Indexing / 14.4:
Introduction to Ab Initio Indexing / 14.4.1:
Cubic Crystal System / 14.6:
Tetragonal and Hexagonal Crystal Systems / 14.6.1:
Automatic Ab Initio Indexing Algorithms / 14.7.1:
Indexing in Direct Space / 14.8.1:
Indexing in Reciprocal Space / 14.8.2:
Unit Cell Reduction Algorithms / 14.9:
Delaunay-Ito Transformation / 14.9.1:
Niggli Reduction / 14.9.2:
Automatic Ab Initio Indexing: Computer Codes / 14.10:
TREOR / 14.10.1:
DICVOL / 14.10.2:
ITO / 14.10.3:
Selecting a Solution / 14.10.4:
Ab Initio Indexing Examples / 14.11:
Precise Lattice Parameters and Linear Least Squares / 14.11.1:
Linear Least Squares / 14.12.1:
Precise Lattice Parameters from Linear Least Squares / 14.12.2:
Concluding Remarks / 14.13:
Solving Crystal Structure from Powder Diffraction Data / 14.14:
Ab Initio Methods of Structure Solution / 15.1:
Conventional Reciprocal Space Methods / 15.1.1:
Conventional Direct Space Modeling / 15.1.2:
Unconventional Direct, Reciprocal, and Dual Space Methods / 15.1.3:
Validation and Completion of the Model / 15.1.4:
The Content of the Unit Cell / 15.2:
Pearson's Classification / 15.3:
Finding Structure Factors from Powder Diffraction Data / 15.4:
Nonlinear Least Squares / 15.5:
Quality of Profile Fitting / 15.6:
Visual Assessment of the Quality of Profile Fitting / 15.6.1:
Figures of Merit / 15.6.2:
The Rietveld Method / 15.7:
Fundamentals of the Rietveld Method / 15.7.1:
Classes of Rietveld Refinement Parameters / 15.7.2:
Restraints, Constraints, and Rigid-Bodies / 15.7.3:
Figures of Merit and Quality of Rietveld Refinement / 15.7.4:
Common Problems and How to Deal with Them / 15.7.5:
Termination of Rietveld Refinement / 15.7.6:
Full Pattern Decomposition / 15.8:
Scale Factor and Profile Parameters / 16.2:
Overall Atomic Displacement Parameter / 16.3.2:
Individual Parameters, Free and Constrained Variables / 16.3.3:
Anisotropic Atomic Displacement Parameters / 16.3.4:
Multiple Phase Refinement / 16.3.5:
Refinement Results / 16.3.6:
Combined Refinement Using Different Sets of Diffraction Data / 16.4:
Solving the Crystal Structure from X-Ray Data / 17:
Highest Symmetry Attempt / 17.2.1:
Low-Symmetry Model / 17.2.2:
Solving the Crystal Structure from Neutron Data / 17.3:
Rietveld Refinement / 17.4:
X-Ray Data, Correct Low Symmetry Model / 17.4.1:
X-Ray Data, Wrong High-Symmetry Model / 17.4.2:
Neutron Data / 17.4.3:
Empirical Methods of Solving Crystal Structures / 18:
Structure-Property Relationships / 19.1:
Observed Structure Factors from Experimental Data / 20:
A Few Notes About Using GSAS / 20.2:
Completion of the Model and Rietveld Refinement / 20.4:
Initial Refinement Steps / 20.4.1:
Where Is Mn and Where Is Ni? / 20.4.2:
Finalizing the Refinement of the Model Without Hydrogen / 20.4.3:
Locating Hydrogen / 20.4.4:
Combined Rietveld Refinement / 20.4.5:
Observed Structure Factors / 21:
Unrestrained Rietveld Refinement / 21.2:
Rietveld Refinement with Restraints / 21.3.2:
Possible Model of the Crystal Structure / 22:
Rietveld Refinement and Completion of the Model / 22.2:
Determining Chemical Composition / 23:
Building and Optimizing the Model of the Crystal Structure / 24:
Ab Initio Indexing and Le Bail Fitting / 24.2:
Creating a Model / 25.2:
Optimizing the Model (Solving the Structure) / 25.2.2:
Restrained Rietveld Refinement / 25.3:
Chapters 15-25: Additional Reading / 25.4:
Chapters 15-25: Problems / 25.5:
Index
Fundamentals of Crystalline State and Crystal Lattice / 1:
Crystalline State / 1.1:
Crystal Lattice and Unit Cell / 1.2:
59.

図書

図書
Michael Lappert ... [et al.]
出版情報: Chichester : Wiley, c2009  xii, 355 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Biographies
Preface
Introduction / 1:
Scope and Organisation of Subject Matter / 1.1:
Developments and Perspectives / 1.2:
Alkali Metal Amides / 2:
Lithium Amides / 2.1:
Monomeric Lithium Amides / 2.2.1:
Dimeric Lithium Amides / 2.2.3:
Trimeric Lithium Amides / 2.2.4:
Tetrameric Lithium Amides / 2.2.5:
Higher Aggregate Lithium Amides / 2.2.6:
Laddering / 2.2.7:
Heterometallic Derivatives / 2.2.8:
Sodium Amides / 2.3:
Monomeric and Dimeric Sodium Amides / 2.3.1:
Higher Aggregate Sodium Amides / 2.3.3:
Heterometallic Sodium Amides / 2.3.4:
Potassium Amides / 2.4:
Potassium Parent Amides (-NH2 as Ligand) / 2.4.1:
Potassium Primary and Secondary Amides / 2.4.3:
Heterometallic Potassium Amides / 2.4.4:
Rubidium Amides / 2.5:
Caesium Amides / 2.6:
References
Beryllium and the Alkaline Earth Metal Amides / 3:
Beryllium Amides / 3.1:
Magnesium Amides / 3.3:
Monomeric Magnesium Amides / 3.3.1:
Dimeric Magnesium Amides / 3.3.3:
Higher Aggregates and Related Magnesium Amides / 3.3.4:
Heterometallic Magnesium Amides / 3.3.5:
Magnesium Inverse Crown Complexes / 3.3.6:
Magnesium Imides / 3.3.7:
Calcium Amides / 3.4:
Monomeric Calcium Amides / 3.4.1:
Dimeric Calcium Amides and Higher Aggregates / 3.4.3:
Heterometallic Calcium Amide Derivatives / 3.4.4:
Strontium Amides / 3.5:
Monomeric Strontium Amides / 3.5.1:
Higher Aggregate Strontium Amides / 3.5.3:
Barium Amides / 3.6:
Monomeric Barium Amides / 3.6.1:
Dimeric Barium Amides / 3.6.3:
Heterometallic Barium Amides / 3.6.4:
Amides of the Group 3 and Lanthanide Metals / 4:
The Pre-1996 Literature: Anwander's Review / 4.1:
Ln2+III Complexes with N-Hydrocarbyl-Amido Ligands / 4.2.1:
Ln2+III Complexes having Silylamido Ligands / 4.2.3:
Bis(Trimethylsilyl) Amido-Ln2+II Complexes and a Ce2+IV Analogue / 4.2.4:
Ln2+III Complexes having Donor-Functionalised Amido Ligands / 4.2.5:
Ln Amides as Precursors for Ln Coordination or Organometallic Compounds / 4.2.6:
Applications as Materials or Catalysts / 4.2.7:
The Recent (Post-1995) Literature / 4.3:
Ln2+III Complexes with N-Hydrocarbyl Substituted Ligands / 4.3.1:
Ln2+II and Ce2+IV Amides / 4.3.3:
Ln Complexes having Donor-Functionalised Amido Ligands / 4.3.5:
Ln Complexes having 1,4-Disubstituted-1,4-Diazabutadiene Ligands, R2-DAD / 4.3.6:
Amides of the Actinide Metals / 5:
Neutral Amidouranium(IV) and Thorium(IV) Complexes / 5.1:
Hydrocarbylamido-An2+IV Compounds Free of π-Centred Ligands / 5.2.1:
Silylamido-An2+IV Compounds Free of π-Centred Co-ligands / 5.2.3:
An2+IV Amides Containing π-Centred Co-ligands / 5.2.4:
Neutral U2+III Amides / 5.3:
Neutral Mixed Valence (U2+III/U2+IV), U2+II, U2+V and U2+VI Amides / 5.4:
Amidouranates / 5.5:
Amidouranium Tetraphenylborates / 5.6:
Amides of the Transition Metals / 6:
Transition Metal Derivatives of Monodentate Amides / 6.1:
Overview / 6.2.1:
Synthesis / 6.2.2:
Structure and Bonding / 6.2.3:
Parent Amido (-NH2) Derivatives / 6.2.4:
Low-coordinate Transition Metal Amides / 6.2.5:
'Two-sided' Amido Ligands / 6.2.6:
Transition Metal Complexes of Polydentate Amido Ligands / 6.3:
Amido Phosphine Ligands / 6.3.1:
Multidentate Podand Ligands / 6.3.3:
Other Chelating Amido Ligands / 6.4:
Amides of Zinc, Cadmium and Mercury / 7:
Neutral Homoleptic Zinc, Cadmium and Mercury Amides / 7.1:
Ionic Metal Amides / 7.3:
Amidometallates / 7.3.1:
Zincation Mediated by Amidozinc Complexes / 7.3.2:
Other Ionic Group 12 Metal Amido Salts / 7.3.3:
Lewis Base Complexes, Chelated Metal Amides and Heteroleptic Amido Complexes / 7.4:
Amides of the Group 13 Metals / 8:
M-N Bonding (M = Al, Ga, In or Tl) / 8.1:
Multiple Character in M-N (M = Al - Tl) Bonds / 8.1.3:
Aluminium Amides / 8.2:
Aluminium Parent Amides (-NH2 as Ligand) / 8.2.1:
Monomeric Aluminium Amides / 8.2.2:
Dimeric Aluminium Amides / 8.2.3:
Higher Aggregate Aluminium Amides / 8.2.4:
Heterometallic Aluminium Amides / 8.2.5:
Aluminium Imides (Iminoalanes) / 8.2.6:
Aluminium(I) Amides / 8.2.7:
Gallium Amides / 8.3:
Monomeric Gallium Amides / 8.3.1:
Associated Gallium Amides / 8.3.3:
Heterometallic Gallium Amides / 8.3.4:
Iminogallanes (Gallium Imides) / 8.3.5:
Gallium Amides in Low (<+3) Oxidation States / 8.3.6:
Indium Amides / 8.4:
Monomeric Indium(III) Amides / 8.4.1:
Associated Indium Amides / 8.4.3:
Heterometallic Indium Amides / 8.4.4:
Iminoindanes (Indium Imides) / 8.4.5:
Indium Amides in Oxidation States <+3 / 8.4.6:
Thallium Amides / 8.5:
Thallium(I) Amides / 8.5.1:
Thallium(III) Derivatives / 8.5.3:
Thallium Amides in Mixed Oxidation States / 8.5.4:
Subvalent Amides of Silicon and the Group 14 Metals / 8.5.5:
Subvalent Amidosilicon Compounds / 9.1:
Bis(amino)silylenes: Pre-2001 / 9.2.1:
Bis(amino)silylenes: 2001-2004 / 9.2.3:
Bis(amino)silylenes: Post-2004 / 9.2.4:
Amidometal(II) Chemistry [Ge(II), Sn(II), Pb(II)] / 9.3:
Homoleptic Metal(II) Amides: Synthesis, Structures and Physical Properties / 9.3.1:
Protonolyses of Homoleptic Metal(II) Amides / 9.3.3:
Heteroleptic Metal(II) Amides / 9.3.4:
Metathetical Exchange Reactions / 9.3.5:
Reactions with Heterocumulenes / 9.3.6:
Oligomeric Metal(II) Imides / 9.3.7:
Metal(II) Amides based on 1,4-Diazabutadienes or a Related Compound / 9.3.8:
Oxidative Addition and Redox Reactions / 9.3.9:
Reactions with Transition Metal Complexes / 9.3.10:
Dimeric Metal(III) Imides: Biradicaloid Compounds / 9.4:
Higher-Nuclearity Group 14 Metalloid Clusters having Amido Ligands / 9.5:
Amides of the Group 15 Metals (As, Sb, Bi) / 10:
Mononuclear Group 15 Metal(III) Amides / 10.1:
Synthesis, Structures and Protolyses of Metal(III) Amides / 10.2.1:
Synthesis, Structures and Reactions of Heteroleptic Mononuclear Bis(amido) Metal(III) Compounds / 10.2.3:
Synthesis, Structures and Reactions of Heteroleptic Mononuclear Amidometal(III) Compounds / 10.2.4:
Bis(amido)Metal(III) Salts / 10.2.5:
Oligomeric Group 15 Metal Imides / 10.3:
Binuclear and Oligomeric Group 15 Metal(III) Imides / 10.3.1:
Binuclear Group 15 Metal(V) Imides / 10.3.2:
Mononuclear Group 15 Metal(V) Amides / 10.4:
Group 15 Metal(III) Macrocyclic Imides / 10.5:
Miscellaneous Group 15 Metal-Nitrogen Compounds / 10.6:
Index
Biographies
Preface
Introduction / 1:
60.

図書

図書
U. Heiz, U. Landman (eds.)
出版情報: Berlin : Springer, c2007  xvi, 503 p. ; 24 cm
シリーズ名: Nanoscience and technology
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters / T.M. Bernhardt ; U. Heiz ; U. Landman1:
Introduction / 1.1:
Experimental Techniques / 1.2:
Cluster Sources / 1.2.1:
Mass-Selection and Soft-Landing / 1.2.2:
Gas-Phase Analysis Techniques / 1.2.3:
Surface Analysis Techniques / 1.2.4:
Computational Techniques / 1.3:
Electronic Structure Calculations Via Density Functional Theory / 1.3.1:
Computational Methods and Techniques / 1.3.2:
Concepts for Understanding Chemical Reactions and Catalytic Properties of Finite Systems / 1.4:
Basic Mechanisms of Catalytic Reactions / 1.4.1:
Cluster-Specific Mechanisms / 1.4.2:
Specific Examples / 1.5:
Chemical Reactions on Point Defects of Oxide Surfaces / 1.5.1:
The Oxidation of CO on Small Gold Clusters / 1.5.2:
The Oxidation of CO on Small Platinum and Palladium Clusters / 1.5.3:
The Reduction of NO by CO on Pd Clusters: Cooler Cluster Catalysis / 1.5.4:
The Polymerization of Acetylene on Pd Clusters / 1.5.5:
References
Theory of Metal Clusters on the MgO Surface: The Role of Point Defects / G. Pacchioni2:
Oxide Surfaces: Single Crystals, Powders, Thin Films / 2.1:
Metal Particles on Oxides / 2.1.2:
The Role of Defects in Nucleation and Growth / 2.1.3:
Theoretical Models / 2.2:
Periodic Models / 2.2.1:
Local Cluster Models / 2.2.2:
Embedding Schemes / 2.2.3:
Electronic Structure Methods / 2.2.4:
Density Functional Theory Versus Wave Function Methods: Cu on MgO / 2.2.5:
Defects on MgO / 2.3:
Low-Coordinated Cations / 2.3.1:
Low-Coordinated Anions / 2.3.2:
Hydroxyl Groups / 2.3.3:
Anion Vacancies / 2.3.4:
Cation Vacancies / 2.3.5:
Divacancies / 2.3.6:
Impurity Atoms / 2.3.7:
O[superscript minus] Radical Anions / 2.3.8:
M Centers (Anion Vacancy Aggregates) / 2.3.9:
Shallow Electron Traps / 2.3.10:
(M[superscript plus])(e[superscript minus]) Centers / 2.3.11:
(111) Microfacets / 2.3.12:
Metal Deposition on MgO / 2.4:
Transition Metal Atoms on MgO(001) / 2.4.1:
Small Metal Clusters on MgO(001) / 2.4.2:
Metal Atoms on MgO: Where Are They? / 2.4.3:
Reactivity of Supported Metal Atoms: The Role of Defects / 2.5:
Summary / 2.6:
Catalysis by Nanoparticles / C.R. Henry3:
Specific Physical Properties of Free and Supported Nanoparticles / 3.1:
Surface Energy and Surface Stress / 3.2.1:
Lattice Parameter / 3.2.2:
Equilibrium Shape / 3.2.3:
Melting Temperature / 3.2.4:
Electronic Band Structure / 3.2.5:
Reactivity of Supported Metal Nanoparticles / 3.3:
Support Effect: Reverse-sillover / 3.3.1:
Morphology Effect / 3.3.2:
Effect of the Edges / 3.3.3:
The Peculiar Case of Gold Nanoparticles / 3.3.4:
Conclusions and Future Prospects / 3.4:
Lithographic Techniques in Nanocatalys / L. Osterlund ; A.W. Grant ; B. Kasemo4:
Methods to Make Model Nanocatalysts: A Brief Overview / 4.1:
Lithographic Techniques: An Introduction / 4.2.1:
The Surface Science Approach: In Situ Vapor Deposition Methods / 4.2.2:
Spin Coating / 4.2.3:
Self-Assembly / 4.2.4:
Fabrication of Supported Model Catalysts by Lithography / 4.3:
Electron-Beam Lithography / 4.3.1:
Colloidal Lithography / 4.3.2:
Microfabrication of TEM Membrane Windows / 4.4:
Preparation Procedures / 4.4.1:
Chemical and Structural Characterization of TEM Windows / 4.4.2:
Nanofabrication of Model Catalysts on TEM Windows / 4.4.3:
Experimental Case Studies with Nanofabricated Model Catalysts: Catalytic Reactions and Reaction-Induced Restructuring / 4.5:
Model Catalysts Fabricated by Electron-Beam Lithography / 4.5.1:
Catalytic Reaction Studies with Model Catalysts Made by Colloidal Lithography / 4.5.2:
Summary and Future Directions / 4.6:
Nanometer and Subnanometer Thin Oxide Films at Surfaces of Late Transition Metals / K. Reuter5:
Initial Oxidation of Transition-Metal Surfaces / 5.1:
Formation of Adlayers / 5.2.1:
Oxygen Accommodation Below the Top Metal Layer / 5.2.2:
Oxygen Accumulation in the Surface Region and Surface Oxide Formation / 5.2.3:
Formation of the Bulk Oxide / 5.2.4:
Implications for Oxidation Catalysis / 5.3:
The Role of the Gas Phase / 5.3.1:
Stability of Surface Oxides in an Oxygen Environment / 5.3.2:
Constrained Equilibrium / 5.3.3:
Kinetically Limited Film Thickness / 5.3.4:
Surface Oxidation and Sabatier Principle / 5.3.5:
Conclusions / 5.4:
Catalytic Applications for Gold Nanotechnology / Sonia A.C. Carabineiro ; David T. Thompson6:
Preparative Methods / 6.1:
Naked Gold, Including Gold Single Crystals and Colloidal Gold / 6.2.1:
Co-Precipitation / 6.2.2:
Deposition Precipitation / 6.2.3:
Impregnation / 6.2.4:
Vapour-Phase Methods and Grafting / 6.2.5:
Ion-Exchange / 6.2.6:
Sol-Gel Method / 6.2.7:
Gold Alloy Catalysts / 6.2.8:
Properties of Nanoparticulate Gold Catalysts / 6.3:
Activity / 6.3.1:
Selectivity / 6.3.2:
Durability / 6.3.3:
Poison Resistance / 6.3.4:
Reactions Catalysed by Nanocatalytic Gold and Gold Alloys / 6.4:
Water-Gas Shift / 6.4.1:
Vinyl Acetate Synthesis / 6.4.2:
Hydrochlorination of Ethyne / 6.4.3:
Carbon Monoxide Oxidation / 6.4.4:
Selective Oxidation / 6.4.5:
Selective Hydrogenation / 6.4.6:
Hydrogen Peroxide Formation / 6.4.7:
Reduction of NO[subscript x] with Propene, Carbon Monoxide or Hydrogen / 6.4.8:
Oxidative Decomposition of Dioxins and VOCs / 6.4.9:
Catalytic Combustion of Hydrocarbons / 6.4.10:
Ozone Decomposition / 6.4.11:
SO[subscript 2] Removal / 6.4.12:
Heck Reaction / 6.4.13:
CO[subscript 2] Activation / 6.4.14:
Other Reactions / 6.4.15:
Potential Commercial Applications for Gold Nanocatalysts / 6.5:
Methyl Glycolate Synthesis / 6.5.1:
Vinyl Chloride Synthesis / 6.5.3:
Gluconic Acid / 6.5.4:
Hydrogen Peroxide Production / 6.5.5:
Air Cleaning / 6.5.6:
Autocatalysts / 6.5.7:
Fuel Cell Technology / 6.5.8:
Sensors / 6.5.9:
Future Prospects / 6.6:
Index
List of Contributors
Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters / T.M. Bernhardt ; U. Heiz ; U. Landman1:
Introduction / 1.1:
61.

図書

図書
Stephen I. Gallant
出版情報: Cambridge, Mass. : MIT Press, c1993  xvi, 365 p. ; 24 cm
シリーズ名: Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Basics / I:
Introduction and Important Definitions / 1:
Why Connectionist Models? / 1.1:
The Grand Goals of Al and Its Current Impasse / 1.1.1:
The Computational Appeal of Neural Networks / 1.1.2:
The Structure of Connectionist Models / 1.2:
Network Properties / 1.2.1:
Cell Properties / 1.2.2:
Dynamic Properties / 1.2.3:
Learning Properties / 1.2.4:
Two Fundamental Models: Multilayer Perceptrons (MLP's) and Backpropagation Networks (BPN's) / 1.3:
Multilayer Perceptrons (MLP's) / 1.3.1:
Backpropagation Networks (BPN's) / 1.3.2:
Gradient Descent / 1.4:
The Algorithm / 1.4.1:
Practical Problems / 1.4.2:
Comments / 1.4.3:
Historic and Bibliographic Notes / 1.5:
Early Work / 1.5.1:
The Decline of the Perceptron / 1.5.2:
The Rise of Connectionist Research / 1.5.3:
Other Bibliographic Notes / 1.5.4:
Exercises / 1.6:
Programming Project / 1.7:
Representation Issues / 2:
Representing Boolean Functions / 2.1:
Equivalence of {+1, -1,0} and {1,0} Forms / 2.1.1:
Single-Cell Models / 2.1.2:
Nonseparable Functions / 2.1.3:
Representing Arbitrary Boolean Functions / 2.1.4:
Representing Boolean Functions Using Continuous Connectionist Models / 2.1.5:
Distributed Representations / 2.2:
Definition / 2.2.1:
Storage Efficiency and Resistance to Error / 2.2.2:
Superposition / 2.2.3:
Learning / 2.2.4:
Feature Spaces and ISA Relations / 2.3:
Feature Spaces / 2.3.1:
Concept-Function Unification / 2.3.2:
ISA Relations / 2.3.3:
Binding / 2.3.4:
Representing Real-Valued Functions / 2.4:
Approximating Real Numbers by Collections of Discrete Cells / 2.4.1:
Precision / 2.4.2:
Approximating Real Numbers by Collections of Continuous Cells / 2.4.3:
Example: Taxtime! / 2.5:
Programming Projects / 2.6:
Learning In Single-Layer Models / II:
Perceptron Learning and the Pocket Algorithm / 3:
Perceptron Learning for Separable Sets of Training Examples / 3.1:
Statement of the Problem / 3.1.1:
Computing the Bias / 3.1.2:
The Perceptron Learning Algorithm / 3.1.3:
Perceptron Convergence Theorem / 3.1.4:
The Perceptron Cycling Theorem / 3.1.5:
The Pocket Algorithm for Nonseparable Sets of Training Examples / 3.2:
Problem Statement / 3.2.1:
Perceptron Learning Is Poorly Behaved / 3.2.2:
The Pocket Algorithm / 3.2.3:
Ratchets / 3.2.4:
Examples / 3.2.5:
Noisy and Contradictory Sets of Training Examples / 3.2.6:
Rules / 3.2.7:
Implementation Considerations / 3.2.8:
Proof of the Pocket Convergence Theorem / 3.2.9:
Khachiyan's Linear Programming Algorithm / 3.3:
Winner-Take-All Groups or Linear Machines / 3.4:
Generalizes Single-Cell Models / 4.1:
Perceptron Learning for Winner-Take-All Groups / 4.2:
The Pocket Algorithm for Winner-Take-All Groups / 4.3:
Kessler's Construction, Perceptron Cycling, and the Pocket Algorithm Proof / 4.4:
Independent Training / 4.5:
Autoassociators and One-Shot Learning / 4.6:
Linear Autoassociators and the Outer-Product Training Rule / 5.1:
Anderson's BSB Model / 5.2:
Hopfieid's Model / 5.3:
Energy / 5.3.1:
The Traveling Salesman Problem / 5.4:
The Cohen-Grossberg Theorem / 5.5:
Kanerva's Model / 5.6:
Autoassociative Filtering for Feedforward Networks / 5.7:
Concluding Remarks / 5.8:
Mean Squared Error (MSE) Algorithms / 5.9:
Motivation / 6.1:
MSE Approximations / 6.2:
The Widrow-Hoff Rule or LMS Algorithm / 6.3:
Number of Training Examples Required / 6.3.1:
Adaline / 6.4:
Adaptive Noise Cancellation / 6.5:
Decision-Directed Learning / 6.6:
Unsupervised Learning / 6.7:
Introduction / 7.1:
No Teacher / 7.1.1:
Clustering Algorithms / 7.1.2:
k-Means Clustering / 7.2:
Topology-Preserving Maps / 7.2.1:
Example / 7.3.1:
Demonstrations / 7.3.4:
Dimensionality, Neighborhood Size, and Final Comments / 7.3.5:
Art1 / 7.4:
Important Aspects of the Algorithm / 7.4.1:
Art2 / 7.4.2:
Using Clustering Algorithms for Supervised Learning / 7.6:
Labeling Clusters / 7.6.1:
ARTMAP or Supervised ART / 7.6.2:
Learning In Multilayer Models / 7.7:
The Distributed Method and Radial Basis Functions / 8:
Rosenblatt's Approach / 8.1:
The Distributed Method / 8.2:
Cover's Formula / 8.2.1:
Robustness-Preserving Functions / 8.2.2:
Hepatobiliary Data / 8.3:
Artificial Data / 8.3.2:
How Many Cells? / 8.4:
Pruning Data / 8.4.1:
Leave-One-Out / 8.4.2:
Radial Basis Functions / 8.5:
A Variant: The Anchor Algorithm / 8.6:
Scaling, Multiple Outputs, and Parallelism / 8.7:
Scaling Properties / 8.7.1:
Multiple Outputs and Parallelism / 8.7.2:
A Computational Speedup for Learning / 8.7.3:
Computational Learning Theory and the BRD Algorithm / 8.7.4:
Introduction to Computational Learning Theory / 9.1:
PAC-Learning / 9.1.1:
Bounded Distributed Connectionist Networks / 9.1.2:
Probabilistic Bounded Distributed Concepts / 9.1.3:
A Learning Algorithm for Probabilistic Bounded Distributed Concepts / 9.2:
The BRD Theorem / 9.3:
Polynomial Learning / 9.3.1:
Noisy Data and Fallback Estimates / 9.4:
Vapnik-Chervonenkis Bounds / 9.4.1:
Hoeffding and Chernoff Bounds / 9.4.2:
Pocket Algorithm / 9.4.3:
Additional Training Examples / 9.4.4:
Bounds for Single-Layer Algorithms / 9.5:
Fitting Data by Limiting the Number of Iterations / 9.6:
Discussion / 9.7:
Exercise / 9.8:
Constructive Algorithms / 9.9:
The Tower and Pyramid Algorithms / 10.1:
The Tower Algorithm / 10.1.1:
Proof of Convergence / 10.1.2:
A Computational Speedup / 10.1.4:
The Pyramid Algorithm / 10.1.5:
The Cascade-Correlation Algorithm / 10.2:
The Tiling Algorithm / 10.3:
The Upstart Algorithm / 10.4:
Other Constructive Algorithms and Pruning / 10.5:
Easy Learning Problems / 10.6:
Decomposition / 10.6.1:
Expandable Network Problems / 10.6.2:
Limits of Easy Learning / 10.6.3:
Backpropagation / 10.7:
The Backpropagation Algorithm / 11.1:
Statement of the Algorithm / 11.1.1:
A Numerical Example / 11.1.2:
Derivation / 11.2:
Practical Considerations / 11.3:
Determination of Correct Outputs / 11.3.1:
Initial Weights / 11.3.2:
Choice of r / 11.3.3:
Momentum / 11.3.4:
Network Topology / 11.3.5:
Local Minima / 11.3.6:
Activations in [0,1] versus [-1, 1] / 11.3.7:
Update after Every Training Example / 11.3.8:
Other Squashing Functions / 11.3.9:
NP-Completeness / 11.4:
Overuse / 11.5:
Interesting Intermediate Cells / 11.5.2:
Continuous Outputs / 11.5.3:
Probability Outputs / 11.5.4:
Using Backpropagation to Train Multilayer Perceptrons / 11.5.5:
Backpropagation: Variations and Applications / 11.6:
NETtalk / 12.1:
Input and Output Representations / 12.1.1:
Experiments / 12.1.2:
Backpropagation through Time / 12.1.3:
Handwritten Character Recognition / 12.3:
Neocognitron Architecture / 12.3.1:
The Network / 12.3.2:
Robot Manipulator with Excess Degrees of Freedom / 12.3.3:
The Problem / 12.4.1:
Training the Inverse Network / 12.4.2:
Plan Units / 12.4.3:
Simulated Annealing and Boltzmann Machines / 12.4.4:
Simulated Annealing / 13.1:
Boltzmann Machines / 13.2:
The Boltzmann Model / 13.2.1:
Boltzmann Learning / 13.2.2:
The Boltzmann Algorithm and Noise Clamping / 13.2.3:
Example: The 4-2-4 Encoder Problem / 13.2.4:
Remarks / 13.3:
Neural Network Expert Systems / 13.4:
Expert Systems and Neural Networks / 14:
Expert Systems / 14.1:
What Is an Expert System? / 14.1.1:
Why Expert Systems? / 14.1.2:
Historically Important Expert Systems / 14.1.3:
Critique of Conventional Expert Systems / 14.1.4:
Neural Network Decision Systems / 14.2:
Example: Diagnosis of Acute Coronary Occlusion / 14.2.1:
Example: Autonomous Navigation / 14.2.2:
Other Examples / 14.2.3:
Decision Systems versus Expert Systems / 14.2.4:
MACIE, and an Example Problem / 14.3:
Diagnosis and Treatment of Acute Sarcophagal Disease / 14.3.1:
Network Generation / 14.3.2:
Sample Run of Macie / 14.3.3:
Real-Valued Variables and Winner-Take-All Groups / 14.3.4:
Not-Yet-Known versus Unavailable Variables / 14.3.5:
Applicability of Neural Network Expert Systems / 14.4:
Details of the MACIE System / 14.5:
Inferencing and Forward Chaining / 15.1:
Discrete Multilayer Perceptron Models / 15.1.1:
Continuous Variables / 15.1.2:
Winner-Take-All Groups / 15.1.3:
Using Prior Probabilities for More Aggressive Inferencing / 15.1.4:
Confidence Estimation / 15.2:
A Confidence Heuristic Prior to Inference / 15.2.1:
Confidence in Inferences / 15.2.2:
Information Acquisition and Backward Chaining / 15.3:
Concluding Comment / 15.4:
Noise, Redundancy, Fault Detection, and Bayesian Decision Theory / 15.5:
The High Tech Lemonade Corporation's Problem / 16.1:
The Deep Model and the Noise Model / 16.2:
Generating the Expert System / 16.3:
Probabilistic Analysis / 16.4:
Noisy Single-Pattern Boolean Fault Detection Problems / 16.5:
Convergence Theorem / 16.6:
Extracting Rules from networks / 16.7:
Why Rules? / 17.1:
What Kind of Rules? / 17.2:
Criteria / 17.2.1:
Inference Justifications versus Rule Sets / 17.2.2:
Which Variables in Conditions / 17.2.3:
Inference Justifications / 17.3:
MACIE's Algorithm / 17.3.1:
The Removal Algorithm / 17.3.2:
Key Factor Justifications / 17.3.3:
Justifications for Continuous Models / 17.3.4:
Rule Sets / 17.4:
Limiting the Number of Conditions / 17.4.1:
Approximating Rules / 17.4.2:
Conventional + Neural Network Expert Systems / 17.5:
Debugging an Expert System Knowledge Base / 17.5.1:
The Short-Rule Debugging Cycle / 17.5.2:
Appendix Representation Comparisons / 17.6:
DNF Expressions / A.1 DNF Expressions and Polynomial Representability:
Polynomial Representability / A.1.2:
Space Comparison of MLP and DNF Representations / A.1.3:
Speed Comparison of MLP and DNF Representations / A.1.4:
MLP versus DNF Representations / A.1.5:
Decision Trees / A.2:
Representing Decision Trees by MLP's / A.2.1:
Speed Comparison / A.2.2:
Decision Trees versus MLP's / A.2.3:
p-lDiagrams / A.3:
Symmetric Functions and Depth Complexity / A.4:
Bibliography / A.5:
Index
Foreword
Basics / I:
Introduction and Important Definitions / 1:
62.

図書

図書
edited by R. Morris Bullock
出版情報: Weinheim : Wiley-VCH, c2010  xviii, 290 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
H* Transfer Between M-H Bonds and Organic Radicals / 1.1:
H* Transfer Between Ligands and Organic Radicals / 1.2:
H* Transfer Between M-H and C-C Bonds / 1.3:
Chain Transfer Catalysis / 1.4:
Catalysis of Radical Cydizations / 1.5:
Competing Methods for the Cyclization of Dienes / 1.6:
Summary and Conclusions / 1.7:
References
Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum / Richard R. Schrock2:
Some Characteristics of Triamidoamine Complexes / 2.1Introduction:
Possible [HIPTN3N]Mo Intermediates in a Catalytic Reduction of Molecular Nitrogen / 2.3:
MoN2 and MoN2- / 2.3.1:
Mo-N=NH / 2.3.2:
Conversion of Mo(N2) into Mo-N=NH / 2.3.3:
[Mo=N-NH2]+ / 2.3.4:
Mo=N and [Mo=NH]+ / 2.3.5:
Mo(NH3) and [Mo(NH3)+ / 2.3.6:
Interconversion of Mo(NH3) and Mo(N2) / 2.4:
Catalytic Reduction of Dinitrogen / 2.5:
MoH and Mo(H2) / 2.6:
Ligand and Metal Variations / 2.7:
Comments / 2.8:
Acknowledgements
Molybdenum and Tungsten Catalysts for Hydrogenation, Hydrosilylation and Hydrolysis / R. Morris Bullock3:
Introduction / 3.1:
Proton Transfer Reactions of Metal Hydrides / 3.2:
Hydride Transfer Reactions of Metal Hydrides / 3.3:
Stoichiometric Hydride Transfer Reactivity of Anionic Metal Hydride Complexes / 3.4:
Catalytic Hydrogenation of Ketones with Anionic Metal Hydrides / 3.5:
Ionic Hydrogenation of Ketones Using Metal Hydrides and Added Acid / 3.6:
Ionic Hydrogenations from Dihydrides: Delivery of the Proton and Hydride from One Metal / 3.7:
Catalytic Ionic Hydrogenations With Mo and W Catalysts / 3.8:
Mo Phosphine Catalysts With Improved lifetimes / 3.9:
Tungsten Hydrogenation Catalysts with N-Heterocyclic Carbene Ligands / 3.10:
Catalysts for Hydrosilylation of Ketones / 3.11:
Cp2Mo Catalysts for Hydrolysis, Hydrogenations and Hydrations / 3.12:
Conclusion / 3.13:
Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions / Paul J. Chink4:
Alkene Hydrogenation / 4.1:
Iron Carbonyl Complexes / 4.2.1:
Iron Phosphine Compounds / 4.2.2:
Bis(imino)pyridine Iron Complexes / 4.2.3:
α-Diimine Iron Complexes / 4.2.4:
Carbonyl Hydrogenation / 4.3:
Hydrosilylation / 4.3.1:
Bifunctional Complexes / 4.3.2:
Outlook / 4.4:
Olefin Oligomerizations and Polymerizations Catalyzed by Iron and Cobalt Complexes Bearing Bis(imino)pyridine Ligands / Vernon C. Gibson ; Gregory A. Solan5:
Precatalyst Synthesis / 5.1:
Ligand Preparation / 5.2.1:
Complexation with MX2 (M = Fe, Co) / 5.2.2:
Precatalyst Activation and Catalysis / 5.3:
Olefin Polymerization / 5.3.1:
Catalytic Evaluation / 5.3.1.1:
Steric Versus Electronic Effects / 5.3.1.2:
Effect of MAO Concentration / 5.3.1.3:
Effects of Pressure and Temperature / 5.3.1.4:
α-Olefin Monomers / 5.3.1.5:
Olefin Oligomerization / 5.3.2:
Substituent Effects / 5.3.2.1:
Schulz-Flory Distributions / 5.3.2.3:
Poisson Distributions / 5.3.2.4:
The Active Catalyst and Mechanism / 5.3.2.5:
Active Species / 5.4.:
Iron Catalyst / 5.4.1.1:
Cobalt Catalyst / 5.4.1.2:
Propagation and Chain Transfer Pathways/Theoretical Studies / 5.4.2:
Well-Defined Iron and Cobalt Alkyls / 5.4.3:
Other Applications / 5.5:
Immobilization / 5.5.1:
Reactor Blending and Tandem Catalysis / 5.5.2:
Conclusions and Outlook / 5.6:
Cobalt and Nickel Catalyzed Reactions Involving C-H and C-N Activation Reactions / Renee Becker ; William D. Jones6:
Catalysis with Cobal / 6.1:
Catalysis with Nickel / 6.3:
A Modular Approach to the Development of Molecular Electrocatalysts for H2 Oxidation and Production Based on Inexpensive Metals / M. Rakowski DuBois ; Daniel L. DuBois7:
Concepts in Catalyst Design Based on Structural Studies of Hydrogenase Enzymes / 7.1:
A Layered or Modular Approach to Catalyst Design / 7.3:
Using the First Coordination Sphere to Control the Energies of Catalytic Intermediates / 7.4:
Using the Second Coordination Sphere to Control the Movement of Protons between the Metal and the Exterior of the Molecular Catalyst / 7.5:
Integration of the First and Second Coordination Spheres / 7.6:
Summary / 7.7:
Nickel-Catalyzed Reductive Couplings and Cyclizations / Hasnain A. Malik ; Ryan D. Baxter ; John Montgomery8:
Couplings of Alkynes with α,β-Unsaturated Carbonyls / 8.1:
Three-Component Couplings via Alkyl Group Transfer-Methods Development / 8.2.1:
Reductive Couplings via Hydrogen Atom Transfer-Methods Development / 8.2.2:
Mechanistic Insights / 8.2.3:
Metallacycle-Based Mechanistic Pathway / 8.2.3.1:
Use in Natural Product Synthesis / 8.2.4:
Couplings of Alkynes with Aldehydes / 8.3:
Three-Component Couplings via Alkyl Group Transfer-Method Development / 8.3.1:
Reductive Couplings via Hydrogen Atom Transfer-Method Development / 8.3.2:
Simple Aldehyde and Alkyne Reductive Couplings / 8.3.2.1:
Directed Processes / 8.3.2.2:
Diastereoselective Variants: Transfer of Chirality / 8.3.2.3:
Asymmetric Variants / 8.3.2.4:
Cydocondensations via Hydrogen Gas Extrusion / 8.3.3:
Copper-Catalyzed Ligand Promoted Ullmann-type Coupling Reactions / Yongwen Jiang ; Dawei Ma8.3.5:
C-N Bond Formation / 9.1:
Arylation of Amines / 9.2.1:
Arylation of Aliphatic Primary and Secondary Amines / 9.2.1.1:
Arylation of Aryl Amines / 9.2.1.2:
Arylation of Ammonia / 9.2.1.3:
Arylation and Vinylation of N-Heterocycles / 9.2.2:
Coupling of Aryl Halides and N-Heterocycles / 9.2.2.1:
Coupling of Vinyl Bromides and N-Heterocycles / 9.2.2.2:
Aromatic Amidation / 9.2.3:
Cross-Coupling of aryl Halides with Amides and Carbamates / 9.2.3.1:
Cross-Coupling of Vinyl Halides with Amides or Carbamates / 9.2.3.2:
Cross-Coupling of Alkynl Halides with Amides or Carbamates / 9.2.3.3:
Azidation / 9.2.4:
C-0 Bond Formation / 19.3:
Synthesis of Diaryl Ethers / 9.3.1:
Aryloxylation of Vinyl Halides / 9.3.2:
Cross-Coupling of Aryl Halides with Aliphatic Alcohols / 9.3.3:
C-C Bond Formation / 9.4:
Cross-Coupling with Terminal Acetylene / 9.4.1:
The Arylation of Activated Methylene Compounds / 9.4.2:
Cyanation / 9.4.3:
C-S Bond Formation / 9.5:
The Formation of Bisaryl- and Arylalkyl-Thioethers / 9.5.1:
The Synthesis of Alkenylsulfides / 9.5.2:
Assembly of aryl Sulfones / 9.5.3:
C-P Bond Formation / 9.6:
Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) / M.G. Finn ; Valery V. Fokin9.7:
Azide-Alkyne Cycloaddition: Basics / 10.1:
Copper-Catalyzed Cycloadditions / 10.3:
Catalysts and Ligands / 10.3.1:
CuAAC with In Situ Generated Azides / 10.3.2:
Mechanistic Aspects of the CuAAC / 10.3.3:
Reactions of Sulfonyl Azides / 10.3.4:
Copper-Catalyzed Reactions with Other Dipolar Species / 10.3.5:
Examples of Application of the CuAAC Reaction / 10.3.6:
Synthesis of Compound libraries for Biological Screening / 10.3.6.1:
Copper-Binding Adhesives / 10.3.6.2:
Representative Experimental Procedures / 10.3.7:
"Frustrated Lewis Pairs": A Metal-Free Strategy for Hydrogenation Catalysis / Douglas W. Stephan11:
Phosphine-Borane Activation of H2 / 11.1:
"Frustrated Lewis Pairs" / 11.2:
Metal-Free Catalytic Hydxogenation / 11.3:
Future Considerations / 11.4:
Index
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
63.

図書

図書
Frank Schwierz, Hei Wong, Juin J. Liou
出版情報: Singapore : Pan Stanford Publishing, 2010  ix, 340 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Evolution of Silicon Electronics / 1:
Introduction / 1.1:
The Early Days of Semiconductor Electronics / 1.2:
Moore's Law / 1.3:
Further trends and the ITRS / 1.4:
Improved MOSFET Designs / 1.5:
MOSFETs for High-Frequency Operation? / 1.6:
MOSFET Theory / 2:
Different MOSFET Versions / 2.1:
Definitions of Threshold Voltage / 2.1.2:
MOS Fundamentals / 2.2:
Conventional Two-Terminal MOS Structure / 2.2.1:
Single-Gate and Double-Gate SOI MOS Structures / 2.2.2:
An Approximated Sheet Concentration Versus Gate Voltage Relationship / 2.2.3:
MOSFET Current -- Voltage Characteristics / 2.3:
Classical MOSFET Model / 2.3.1:
Two-Region MOSFET Model / 2.3.3:
Modified Two-Region Model / 2.3.4:
Effective Mobility / 2.3.5:
Scattering Model / 2.3.6:
Comparison and Assessment of the Four Transistor Models / 2.3.7:
Subthreshold Current / 2.3.8:
Series Resistances / 2.3.9:
Short-Channel Effects / 2.3.10:
The Concept of Scale Lengths / 2.3.12:
Nanoscale MOSFETs / 3:
MOSFET Scaling Theory / 3.1:
Constant-Field and Constant-Voltage Scaling / 3.1.1:
Generalized Scaling Approaches / 3.1.2:
Good Technology Rules / 3.1.3:
Nanoscale MOSFET Concepts -- An Overview / 3.2:
Nanoscale Bulk MOSFETs / 3.3:
Basic Structure / 3.3.1:
Doping Profiles / 3.3.2:
Mobility Enhancement Techniques / 3.4:
Strained Silicon / 3.4.1:
Hybrid-Orientation Technology / 3.4.2:
High-k Dielectrics and Metal Gates / 3.5:
Nanoscale Single-Gate SOI MOSFETs / 3.6:
Nanoscale Multiple-Gate MOSFETs / 3.7:
Double-Gate MOSFETs / 3.7.1:
Tri-Gate MOSFETs and Gate-All-Around MOSFETs / 3.7.2:
Nanowire MOSFETs / 3.7.3:
MOSFETs with Alternative Channel Materials / 3.8:
The Effect of Multiple Technology Boosters / 3.9:
MOSFETs for RF Applications / 4:
RF Transistor Figures of Merit / 4.1:
Gains / 4.2.1:
Minimum Noise Figure and Associated Gain / 4.2.2:
Output Power and Power-Added Efficiency / 4.2.4:
Small-Signal Equivalent Circuits / 4.3:
RF MOSFET Design and Performance / 4.4:
RF Small-Signal MOSFETs / 4.4.1:
RF Power MOSFETs / 4.4.2:
Comparison of RF CMOS and Competing RF Transistor Technologies / 4.4.3:
Why are Si MOSFETs so Fast? / 4.4.4:
Overview of Nanometer CMOS Technology / 5:
Lithography / 5.1:
Optical Lithography / 5.2.1:
Extremely Ultraviolet Lithography (EUV) / 5.2.3:
Electron Beam Lithography (E-Beam) / 5.2.4:
Imprint Lithography / 5.2.5:
Plasma Etching / 5.3:
Thin Film Formation Techniques / 5.4:
Overview / 5.4.1:
Chemical Vapor Deposition (CVD) / 5.4.2:
Metal-Organic Chemical Vapor Deposition (MOCVD) / 5.4.3:
Molecular Beam Epitaxy (MBE) / 5.4.4:
Atomic Layer Deposition (ALD) / 5.4.5:
Metal Film Deposition / 5.4.6:
Junction Formation / 5.5:
Ion Implantation / 5.5.1:
Plasma Doping / 5.5.2:
Interconnects / 5.6:
Summary / 5.7:
Outlook / 6:
Critical Scaling Issues / 6.1:
Issues Related to Device Physics / 6.2.1:
Power Consumption and Self-Heating / 6.2.2:
Interconnect Delays / 6.2.3:
Will There be a Mainstream Beyond-Scaling, Post-CMOS Technology? / 6.3:
Frequently Used Symbols / Appendix A:
Physical Constants and Unit Conversions / Appendix B:
Carrier Concentrations, Energy, and Potential / Appendix C:
Frequently Used Abbreviations / Appendix E:
Index
Preface
The Evolution of Silicon Electronics / 1:
Introduction / 1.1:
64.

図書

図書
Ricardo García
出版情報: Weinheim : Wiley-VCH-Verl, c2010  xiv, 179 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Annotation List
Introduction / 1:
Historical Perspective / 1.1:
Evolution Periods and Milestones / 1.2:
Early Times 1987-1992 / 1.2.1:
Exploration and Expansion 1993-1999 / 1.2.2:
Cantilever Tip Dynamics 2000-2006 / 1.2.3:
Multifrequency AFM 2007 to Present / 1.2.4:
Tapping Mode or Amplitude Modulation Force Microscopy? / 1.3:
Other Dynamic APM Methods / 1.4:
Frequency Modulation AFM / 1.4.1:
Amplitude Modulation versus Frequency Modulation AFM / 1.4.2:
Instrumental and Conceptual Aspects / 2:
Amplitude Modulation AFM / 2.1:
Elements of an Amplitude Modulation AFM / 2.3:
Feedback Controller / 2.3.1:
Optical Beam Deflection / 2.3.2:
Other Detection Methods / 2.3.3:
Tip Sample Motion System / 2.3.4:
Imaging Acquisition and Display / 2.3.5:
Cantilever-Tip System / 2.4:
Cantilevers / 2.4.1:
Tips / 2.4.2:
Excitation of Cantilever-Tip Oscillations / 2.4.3:
Calibration Protocols / 2.5:
Optical Sensitivity / 2.5.1:
Calibration of the Cantilever Force Constant / 2.5.2:
Thermal Noise Method / 2.5.2.1:
Sader Method / 2.5.2.2:
Common Experimental Curves / 2.6:
Resonance Curves in Air and liquids / 2.6.1:
Amplitude and Phase Shift Distance Curves / 2.6.2:
Displacements and Distances / 2.7:
Tip-Surface Interaction Forces / 3:
Van der Waals Forces / 3.1:
Contact Mechanics Forces / 3.3:
Derjaguin-Muller-Toporov Model / 3.3.1:
Johnson-Kendall-Roberts Model / 3.3.2:
Capillary Force / 3.4:
Forces in Liquid / 3.5:
Electrostatic Double-Layer Force / 3.5.1:
Derjaguin-Landau-Verwey-Overbeek Forces / 3.5.2:
Solvation Forces / 3.5.3:
Other Forces in Aqueous Solutions / 3.5.4:
Electrostatic Forces / 3.6:
Nonconservative Forces / 3.7:
Net Tip-Surface Force / 3.8:
Tip-Surface Force for a Stiff Material with Surface Adhesion Hysteresis / 3.8.1:
Tip-Surface Force for a Viscoelastic Material / 3.8.2:
Theory of Amplitude Modulation AFM / 4:
Equation of Motion / 4.1:
The Point-Mass Model: Elemental Aspects / 4.3:
The Harmonic Oscillator / 4.3.1:
Dynamics of a Weakly Perturbed Harmonic Oscillator / 4.3.2:
The Point-Mass Model: Analytical Approximations / 4.4:
Perturbed Harmonic Oscillator / 4.4.1:
Wang Model / 4.4.2:
Virial Dissipation Method / 4.4.3:
Peak and Average Forces / 4.5:
Peak Forces / 4.5.1:
Average Forces / 4.5.2:
The Point-Mass Model: Numerical Solutions / 4.6:
Attractive and Repulsive Interaction Regimes / 4.6.1:
Driving the Cantilever Below Resonance / 4.6.2:
The Effective Model / 4.7:
Appendix: The Runge-Kutta Algorithm
Advanced Theory of Amplitude Modulation AFM / 5:
Q-Control / 5.1:
Nonlinear Dynamics / 5.3:
Continuous Cantilever Beam Model / 5.4:
One-Dimensional Model / 5.4.1:
Equivalence between Point-Mass and Continuous Models / 5.5:
Systems Theory Description / 5.6:
Force Reconstruction Methods: Force versus Distance / 5.7:
Lee-Jhe Method / 5.7.1:
Hölscher Method / 5.7.2:
Time-Resolved Force / 5.8:
Acceleration / 5.8.1:
Higher Harmonics Method / 5.8.2:
Direct Time-Resolved Force Measurements / 5.8.3:
Amplitude Modulation AFM in Liquid / 6:
Qualitative Aspects of the Cantilever Dynamics in Liquid / 6.1:
Dynamics Far from the Surface / 6.2.1:
Dynamics Close to the Surface / 6.2.2:
Interaction Forces in Liquid / 6.3:
Some Experimental and Conceptual Considerations / 6.4:
Theoretical Descriptions of Dynamic AFM in Liquid / 6.5:
Analytical Descriptions: Far from the Surface / 6.5.1:
Analytical and Numerical Descriptions in the Presence of Tip-Surface Forces / 6.5.2:
Semianalytical Models / 6.5.3:
Finite Element Simulations / 6.5.4:
Phase Imaging Atomic Force Microscopy / 7:
Theory of Phase Imaging AFM / 7.1:
Phase Imaging Atomic AFM: High Q / 7.3.1:
Phase Imaging AFM: Low Q / 7.3.2:
Energy Dissipation Measurements at the Nanoscale / 7.4:
Energy Dissipation and Observables / 7.4.1:
Identification of Energy Dissipation Processes / 7.4.2:
Atomic and Nanoscale Dissipation Processes / 7.4.3:
Resolution, Noise, and Sensitivity / 8:
Spatial Resolution / 8.1:
Vertical Resolution and Noise / 8.2.1:
Lateral Resolution / 8.2.2:
Image Distortion and Surface Reconstruction / 8.3:
Force-Induced Surface Deformations / 8.4:
Atomic, Molecular, and Subnanometer Lateral Resolution / 8.5:
True Resolution / 8.5.1:
High-Resolution Imaging of Isolated Molecules / 8.6:
Conditions for High-Resolution Imaging / 8.7:
Image Artifacts / 8.8:
Multifrequency Atomic Force Microscopy / 9:
Normal Modes and Harmonics / 9.1:
Generation of Higher Harmonics / 9.2.1:
Coupling Eigenmodes and Harmonics / 9.2.2:
Imaging Beyond the Fundamental Mode / 9.2.3:
Bimodal AFM / 9.3:
Intermodulation Frequencies / 9.3.1:
Mode-Synthesizing Atomic Force Microscopy / 9.4:
Torsional Harmonic AFM / 9.5:
Band Excitation / 9.6:
Beyond Topographic Imaging / 10:
Scattering Near Field Optical Microscopy / 10.1:
Topography and Recognition Imaging / 10.3:
Tip Functionalization / 10.3.1:
Nanofabrication by AFM / 10.4:
AFM Oxidation Nanolithography / 10.4.1:
Patterning and Devices / 10.4.2:
References
Index
Preface
Annotation List
Introduction / 1:
65.

図書

図書
Rob Phillips
出版情報: Cambridge, UK ; New York : Cambridge University Press, 2001  xxvi, 780 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Notes on Units, Scales and Conventions
Thinking About the Material World / Part 1:
Idealizing Material Response / 1:
A Material World / 1.1:
Materials: A Databook Perspective / 1.1.1:
The Structure-Properties Paradigm / 1.1.2:
Controlling Structure: The World of Heat and Beat / 1.1.3:
Modeling of Materials / 1.2:
The Case for Modeling / 1.2.1:
Modeling Defined: Contrasting Perspectives / 1.2.2:
Case Studies in Modeling / 1.2.3:
Modeling and the Computer: Numerical Analysis vs Simulation / 1.2.4:
Further Reading / 1.3:
Continuum Mechanics Revisited / 2:
Continuum Mechanics as an Effective Theory / 2.1:
Kinematics: The Geometry of Deformation / 2.2:
Deformation Mappings and Strain / 2.2.1:
Geometry of Rigid Deformation / 2.2.2:
Geometry of Slip and Twinning / 2.2.3:
Geometry of Structural Transformations / 2.2.4:
Forces and Balance Laws / 2.3:
Forces Within Continua: Stress Tensors / 2.3.1:
Equations of Continuum Dynamics / 2.3.2:
Configurational Forces and the Dynamics of Defects / 2.3.3:
Continuum Descriptions of Deformation and Failure / 2.4:
Constitutive Modeling / 2.4.1:
Linear Elastic Response of Materials / 2.4.2:
Plastic Response of Crystals and Polycrystals / 2.4.3:
Continuum Picture of Fracture / 2.4.4:
Boundary Value Problems and Modeling / 2.5:
Principle of Minimum Potential Energy and Reciprocal Theorem / 2.5.1:
Elastic Green Function / 2.5.2:
Method of Eigenstrains / 2.5.3:
Numerical Solutions: Finite Element Method / 2.5.4:
Difficulties with the Continuum Approach / 2.6:
Problems / 2.7:
Quantum and Statistical Mechanics Revisited / 3:
Background / 3.1:
Quantum Mechanics / 3.2:
Background and Formalism / 3.2.1:
Catalog of Important Solutions / 3.2.2:
Finite Elements and Schrodinger / 3.2.3:
Quantum Corrals: A Finite Element Analysis / 3.2.4:
Metals and the Electron Gas / 3.2.5:
Quantum Mechanics of Bonding / 3.2.6:
Statistical Mechanics / 3.3:
Entropy of Mixing / 3.3.1:
The Canonical Distribution / 3.3.3:
Information Theoretic Approach to Statistical Mechanics / 3.3.4:
Statistical Mechanics Models for Materials / 3.3.5:
Bounds and Inequalities: The Bogoliubov Inequality / 3.3.6:
Correlation Functions: The Kinematics of Order / 3.3.7:
Computational Statistical Mechanics / 3.3.8:
Energetics of Crystalline Solids / 3.4:
Energetic Description of Cohesion in Solids / 4:
The Role of the Total Energy in Modeling Materials / 4.1:
Conceptual Backdrop for Characterizing the Total Energy / 4.2:
Atomistic and Continuum Descriptions Contrasted / 4.2.1:
The Many-Particle Hamiltonian and Degree of Freedom Reduction / 4.2.2:
Pair Potentials / 4.3:
Generic Pair Potentials / 4.3.1:
Free Electron Pair Potentials / 4.3.2:
Potentials with Environmental and Angular Dependence / 4.4:
Diagnostics for Evaluating Potentials / 4.4.1:
Pair Functionals / 4.4.2:
Angular Forces: A First Look / 4.4.3:
Tight-Binding Calculations of the Total Energy / 4.5:
The Tight-Binding Method / 4.5.1:
An Aside on Periodic Solids: k-space Methods / 4.5.2:
Real Space Tight-Binding Methods / 4.5.3:
First-Principles Calculations of the Total Energy / 4.6:
Managing the Many-Particle Hamiltonian / 4.6.1:
Total Energies in the Local Density Approximation / 4.6.2:
Choosing a Description of the Total Energy: Challenges and Conundrums / 4.7:
Thermal and Elastic Properties of Crystals / 4.8:
Thermal and Elastic Material Response / 5.1:
Mechanics of the Harmonic Solid / 5.2:
Total Energy of the Thermally Fluctuating Solid / 5.2.1:
Atomic Motion and Normal Modes / 5.2.2:
Phonons / 5.2.3:
Buckminsterfullerene and Nanotubes: A Case Study in Vibration / 5.2.4:
Thermodynamics of Solids / 5.3:
Harmonic Approximation / 5.3.1:
Beyond the Harmonic Approximation / 5.3.2:
Modeling the Elastic Properties of Materials / 5.4:
Linear Elastic Moduli / 5.4.1:
Nonlinear Elastic Material Response: Cauchy-Born Elasticity / 5.4.2:
Structural Energies and Phase Diagrams / 5.5:
Structures in Solids / 6.1:
Atomic-Level Geometry in Materials / 6.2:
Structural energies of solids / 6.3:
Pair Potentials and Structural Stability / 6.3.1:
Structural Stability in Transition Metals / 6.3.2:
Structural Stability Reconsidered: The Case of Elemental Si / 6.3.3:
Elemental Phase Diagrams / 6.4:
Free Energy of the Crystalline Solid / 6.4.1:
Free Energy of the Liquid / 6.4.2:
Putting It All Together / 6.4.3:
An Einstein Model for Structural Change / 6.4.4:
A Case Study in Elemental Mg / 6.4.5:
Alloy Phase Diagrams / 6.5:
Constructing the Effective Energy: Cluster Expansions / 6.5.1:
Statistical Mechanics for the Effective Hamiltonian / 6.5.2:
The Effective Hamiltonian Revisited: Relaxations and Vibrations / 6.5.3:
The Alloy Free Energy / 6.5.4:
Case Study: Oxygen Ordering in High T[subscript C] Superconductors / 6.5.5:
Summary / 6.6:
Geometric Structures in Solids: Defects and Microstructures / 6.7:
Point Defects in Solids / 7:
Point Defects and Material Response / 7.1:
Material Properties Related to Point Disorder / 7.1.1:
Diffusion / 7.2:
Effective Theories of Diffusion / 7.2.1:
Geometries and Energies of Point Defects / 7.3:
Crystallographic Preliminaries / 7.3.1:
A Continuum Perspective on Point Defects / 7.3.2:
Microscopic Theories of Point Defects / 7.3.3:
Point Defects in Si: A Case Study / 7.3.4:
Point Defect Motions / 7.4:
Material Parameters for Mass Transport / 7.4.1:
Diffusion via Transition State Theory / 7.4.2:
Diffusion via Molecular Dynamics / 7.4.3:
A Case Study in Diffusion: Interstitials in Si / 7.4.4:
Defect Clustering / 7.5:
Line Defects in Solids / 7.6:
Permanent Deformation of Materials / 8.1:
Yield and Hardening / 8.1.1:
Structural Consequences of Plastic Deformation / 8.1.2:
Single Crystal Slip and the Schmid Law / 8.1.3:
The Ideal Strength Concept and the Need for Dislocations / 8.2:
Geometry of Slip / 8.3:
Topological Signature of Dislocations / 8.3.1:
Crystallography of Slip / 8.3.2:
Elastic Models of Single Dislocations / 8.4:
The Screw Dislocation / 8.4.1:
The Volterra Formula / 8.4.2:
The Edge Dislocation / 8.4.3:
Mixed Dislocations / 8.4.4:
Interaction Energies and Forces / 8.5:
The Peach-Koehler Formula / 8.5.1:
Interactions and Images: Peach-Koehler Applied / 8.5.2:
The Line Tension Approximation / 8.5.3:
Modeling the Dislocation Core: Beyond Linearity / 8.6:
Dislocation Dissociation / 8.6.1:
The Peierls-Nabarro Model / 8.6.2:
Structural Details of the Dislocation Core / 8.6.3:
Three-Dimensional Dislocation Configurations / 8.7:
Dislocation Bow-Out / 8.7.1:
Kinks and Jogs / 8.7.2:
Cross Slip / 8.7.3:
Dislocation Sources / 8.7.4:
Dislocation Junctions / 8.7.5:
Wall Defects in Solids / 8.8:
Interfaces in Materials / 9.1:
Interfacial Confinement / 9.1.1:
Free Surfaces / 9.2:
Crystallography and Energetics of Ideal Surfaces / 9.2.1:
Reconstruction at Surfaces / 9.2.2:
Steps on Surfaces / 9.2.3:
Stacking Faults and Twins / 9.3:
Structure and Energetics of Stacking Faults / 9.3.1:
Planar Faults and Phase Diagrams / 9.3.2:
Grain Boundaries / 9.4:
Bicrystal Geometry / 9.4.1:
Grain Boundaries in Polycrystals / 9.4.2:
Energetic Description of Grain Boundaries / 9.4.3:
Triple Junctions of Grain Boundaries / 9.4.4:
Diffuse Interfaces / 9.5:
Modeling Interfaces: A Retrospective / 9.6:
Microstructure and its Evolution / 9.7:
Microstructures in Materials / 10.1:
Microstructural Taxonomy / 10.1.1:
Microstructural Change / 10.1.2:
Models of Microstructure and its Evolution / 10.1.3:
Inclusions as Microstructure / 10.2:
Eshelby and the Elastic Inclusion / 10.2.1:
The Question of Equilibrium Shapes / 10.2.2:
Precipitate Morphologies and Interfacial Energy / 10.2.3:
Equilibrium Shapes: Elastic and Interfacial Energy / 10.2.4:
A Case Study in Inclusions: Precipitate Nucleation / 10.2.5:
Temporal Evolution of Two-Phase Microstructures / 10.2.6:
Microstructure in Martensites / 10.3:
The Experimental Situation / 10.3.1:
Geometrical and Energetic Preliminaries / 10.3.2:
Twinning and Compatibility / 10.3.3:
Fine-Phase Microstructures and Attainment / 10.3.4:
The Austenite-Martensite Free Energy Reconsidered / 10.3.5:
Microstructural Evolution in Polycrystals / 10.4:
Phenomenology of Grain Growth / 10.4.1:
Modeling Grain Growth / 10.4.2:
Microstructure and Materials / 10.5:
Facing the Multiscale Challenge of Real Material Behavior / 10.6:
Points, Lines and Walls: Defect Interactions and Material Response / 11:
Defect Interactions and the Complexity of Real Material Behavior / 11.1:
Diffusion at Extended Defects / 11.2:
Background on Short-Circuit Diffusion / 11.2.1:
Diffusion at Surfaces / 11.2.2:
Mass Transport Assisted Deformation / 11.3:
Phenomenology of Creep / 11.3.1:
Nabarro-Herring and Coble Creep / 11.3.2:
Dislocations and Interfaces / 11.4:
Dislocation Models of Grain Boundaries / 11.4.1:
Dislocation Pile-Ups and Slip Transmission / 11.4.2:
Cracks and Dislocations / 11.5:
Variation on a Theme of Irwin / 11.5.1:
Dislocation Screening at a Crack Tip / 11.5.2:
Dislocation Nucleation at a Crack Tip / 11.5.3:
Dislocations and Obstacles: Strengthening / 11.6:
Conceptual Overview of the Motion of Dislocations Through a Field of Obstacles / 11.6.1:
The Force Between Dislocations and Glide Obstacles / 11.6.2:
The Question of Statistical Superposition / 11.6.3:
Solution Hardening / 11.6.4:
Precipitate Hardening / 11.6.5:
Dislocation-Dislocation Interactions and Work Hardening / 11.6.6:
Bridging Scales: Effective Theory Construction / 11.7:
Problems Involving Multiple Length and Time Scales / 12.1:
Problems with Multiple Temporal Scales: The Example of Diffusion / 12.1.1:
Problems with Multiple Spatial Scales: The Example of Plasticity / 12.1.2:
Generalities on Modeling Problems Involving Multiple Scales / 12.1.3:
Historic Examples of Multiscale Modeling / 12.2:
Effective Theory Construction / 12.3:
Degree of Freedom Selection: State Variables, Order Parameters and Configurational Coordinates / 12.3.1:
Dynamical Evolution of Relevant Variables: Gradient Flow Dynamics and Variational Principles / 12.3.2:
Inhomogeneous Systems and the Role of Locality / 12.3.3:
Models with Internal Structure / 12.3.4:
Effective Hamiltonians / 12.3.5:
Bridging Scales in Microstructural Evolution / 12.4:
Hierarchical Treatment of Diffusive Processes / 12.4.1:
From Surface Diffusion to Film Growth / 12.4.2:
Solidification Microstructures / 12.4.3:
Two-Phase Microstructures Revisited / 12.4.4:
A Retrospective on Modeling Microstructural Evolution / 12.4.5:
Bridging Scales in Plasticity / 12.5:
Mesoscopic Dislocation Dynamics / 12.5.1:
A Case Study in Dislocations and Plasticity: Nanoindentation / 12.5.2:
A Retrospective on Modeling Plasticity Using Dislocation Dynamics / 12.5.3:
Bridging Scales in Fracture / 12.6:
Atomic-Level Bond Breaking / 12.6.1:
Cohesive Surface Models / 12.6.2:
Cohesive Surface Description of Crack Tip Dislocation Nucleation / 12.6.3:
Universality and Specificity in Materials / 12.7:
Materials Observed / 13.1:
What is a Material: Another Look / 13.1.1:
Structural Observations / 13.1.2:
Concluding Observations on the Observations / 13.1.3:
How Far Have We Come? / 13.2:
Universality in Materials / 13.2.1:
Specificity in Materials / 13.2.2:
The Program Criticized / 13.2.3:
Intriguing Open Questions / 13.3:
In Which the Author Takes His Leave / 13.4:
References
Index
Preface
Acknowledgements
Notes on Units, Scales and Conventions
66.

図書

図書
S. Morita, R. Wiesendanger, E. Meyer (eds.)
出版情報: Berlin : Springer-Verlag, c2002-2015  2 v. ; 24 cm
シリーズ名: Nanoscience and technology
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
Future Prospects for NC-AFM / 1.3:
References
Principle of NC-AFM / Franz J. Giessibl2:
Basics / 2.1:
Relation to the Scanning Tunneling Microscope (STM) / 2.1.1:
Atomic Force Microscope (AFM) / 2.1.2:
Operating Modes of AFMs / 2.1.3:
Scanning Speed, Signal Bandwidth and Noise / 2.1.4:
The Four Additional Challenges Faced by AFM / 2.2:
Jump-to-Contact and Other Instabilities / 2.2.1:
Contribution of Long-Range Forces / 2.2.2:
Noisein theImagingSignal / 2.2.3:
Non-MonotonicImaging Signal / 2.2.4:
Frequency-Modulation AFM (FM-AFM) / 2.3:
Experimental Setup / 2.3.1:
Applications / 2.3.2:
Relation between Frequency Shift and Forces / 2.4:
Generic Calculation / 2.4.1:
Frequency Shift for a Typical Tip-Sample Force / 2.4.2:
Calculation of the Tunneling Current for Oscillating Tips / 2.4.3:
Noise in Frequency-Modulation AFM / 2.5:
Noisein theFrequencyMeasurement / 2.5.1:
Optimal Amplitude for Minimal Vertical Noise / 2.5.3:
A Novel Force Sensor Based on a Quartz Tuning Fork / 2.6:
Quartz Versus Silicon as a Cantilever Material / 2.6.1:
Benefits in Clamping One of the Beams (qPlus Configuration) / 2.6.2:
Conclusion and Outlook / 2.7:
Semiconductor Surfaces / Yasuhiro Sugawara3:
Instrumentation / 3.1:
Three-Dimensional Mapping of Atomic Force / 3.2:
Control ofAtomic Force / 3.3:
Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H / 3.4:
Surface Strain on an Atomic Scale / 3.5:
Low Temperature Image of Si(100) Clean Surface / 3.6:
Mechanical Control ofAtomPosition / 3.7:
Atom Identification Using Covalent Bonding Force / 3.8:
Charge Imaging with Atomic Resolution / 3.9:
Mechanical Atom Manipulation / 3.10:
Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces / Toyoko Arai ; Masahiko Tomitori4:
Experimental Conditions / 4.1:
Bias Dependence of NC-AFM Images for Si(111)7×7 / 4.2:
MechanismofInvertedAtomicCorrugation / 4.2.1:
NC-AFM Imaging and Tunneling Current / 4.2.2:
NC-AFM Images for Ge/Si(111) / 4.3:
Concluding Remarks / 4.4:
Alkali Halides / Roland Bennewitz ; Martin Bammerlin ; Ernst Meyer5:
Experimental Techniques / 5.1:
Relevant Forces / 5.1.2:
Imaging of Single Crystals / 5.2:
Sample Preparation / 5.2.1:
Atomic Corrugation / 5.2.2:
Imaging of Defects / 5.2.3:
Mixed Alkali Halide Crystals / 5.2.4:
Imaging of Thin Films / 5.3:
Preparation of Thin Films / 5.3.1:
Atomic Resolutionat Low-Coordinated Sites / 5.3.2:
Radiation Damage / 5.4:
Metallization and Bubble Formation in CaF2 / 5.4.1:
Monatomic Pits in KBr / 5.4.2:
Dissipation Measurements / 5.5:
Material and Site-Specific Contrast / 5.5.1:
Using Damping for Distance Control / 5.5.2:
Atomic Resolution Imaging on Fluorides / Michael Reichling ; Clemens Barth6:
Tip Instabilities / 6.1:
Flat Surfaces / 6.3:
Step Edges / 6.4:
Atomically Resolved Imaging of a NiO(001) Surface / Hirotaka Hosoi ; Kazuhisa Sueoka ; Kazunobu Hayakawa ; Koichi Mukasa7:
Antiferromagnetic Nickel Oxide / 7.1:
ExperimentalConsiderations / 7.2:
Morphology ofthe Cleaved Surface / 7.3:
Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips / 7.4:
Short-Range Magnetic Interaction / 7.5:
Analysis ofthe Cross-Section / 7.6:
Conclusion / 7.7:
Atomic Structure, Order and Disorder on High Temperature Reconstructed α-Al2O3(0001) / 8:
TheCleanSurface / 8.1:
Defect Formation upon Water Exposure / 8.2:
Self-Organized Formation of Nanoclusters / 8.3:
NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides / Chi Lun Pang ; Geoff Thornton9:
1×1 to 1×3 Phase Transition of TiO2(100) / 9.1:
Surface Reconstructions of TiO2(110) / 9.3:
The 1×2 Reconstruction of SnO2(110) / 9.4:
Imaging Thin Film Alumina: NiAl(110)-Al2O3 / 9.5:
Growth of Cu and Pd on α-Al2O3(0001)- <$$> / 9.6:
A Short-Range-Ordered Overlayer of K on TiO2(110) / 9.7:
Conclusions / 9.8:
Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces / Ken-ichi Fukui ; Yasuhiro Iwasawa10:
Background / 10.1:
Brief Description of Experiments / 10.2:
Surface Structures of TiO2(110) / 10.3:
Adsorbed Atoms and Molecules on TiO2(110) / 10.4:
Carboxylate Ions on TiO2(110) / 10.4.1:
Hydrogen Adatoms on TiO2(110) / 10.4.2:
Fluctuation ofAcetate Ions on TiO2(110) / 10.5:
Surface Structures of CeO2(111) / 10.6:
NC-AFM Imaging of Adsorbed Molecules / 10.7:
NucleicAcidBasesonaGraphiteSurface / 11.1:
Double-StrandedDNAonaMicaSurface / 11.2:
Alkanethiol on a Au(111) Surface / 11.3:
Organic Molecular Films / Hirofumi Yamada12:
AFM Imaging of Molecular Films / 12.1:
Fullerenes / 12.1.1:
AlkanethiolSAMs / 12.1.2:
Ferroelectric Molecular Films / 12.1.3:
Surface Potential Measurements / 12.2:
Technical Developments in NC-AFM Imaging ofMolecules / 12.3:
Single-Molecule Analysis / Akira Sasahara ; Hiroshi Onishi12.4:
Molecules and Surface / 13.1:
Experimental Methods / 13.3:
Alkyl-Substituted Carboxylates / 13.4:
Numerical Simulation ofPropiolate Topography / 13.5:
Sphere-Substrate Force / 13.5.1:
Sphere-Carboxylate Force / 13.5.2:
Cluster-Substrate Force / 13.5.3:
Cluster-Carboxylate Force / 13.5.4:
Simulated Topography / 13.5.5:
Fluorine-Substituted Acetates / 13.6:
Conclusions and Perspectives / 13.7:
Low-Temperature Measurements: Principles, Instrumentation, and Application / Wolf Allers ; Alexander Schwarz ; Udo D. Schwarz14:
Microscope Operation at Low Temperatures / 14.1:
Drift / 14.2.1:
Noise / 14.2.2:
Van der Waals Surfaces / 14.3:
HOPG(0001) / 14.4.1:
Xenon / 14.4.2:
Nickel Oxide / 14.5:
Semiconductors / 14.6:
Δf(z) Curves on Specific Atomic Sites / 14.6.1:
Tip-Dependent Atomic Scale Contrast / 14.6.2:
Tip-Induced Relaxation / 14.6.3:
Magnetic Force Microscopy at Low Temperatures / 14.7:
MFM Data Acquisition / 14.7.1:
Domain Structure of La0.7Ca0.3MnO3-δ / 14.7.2:
Vortices on YBa2Cu3O7-δ / 14.7.3:
Theory of Non-Contact Atomic Force Microscopy / Masaru Tsukada ; Naruo Sasaki ; Michel Gauthier ; Katsunori Tagami ; Satoshi Watanabe14.8:
Cantilever Dynamics / 15.1:
Theoretical Simulation of NC-AFM Images / 15.3:
Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces / 15.4:
Effect of Tip on Image for the Si(100)2×1: H Surface / 15.5:
Effect of Tip on Surface Structure Change and its Relation to Dissipation / 15.6:
Chemical Interaction in NC-AFM on Semiconductor Surfaces / San-Huang Ke ; Tsuyoshi Uda ; Kiyoyuki Terakura ; Ruben Pérez ; Ivan Štich15.7:
First-Principles Calculation of Tip-Surface Chemical Interaction / 16.1:
Simulation of NC-AFM Images / 16.3:
Simulations on Various Surfaces / 16.4:
Tip-Induced Surface Relaxation on the GaAs(110) Surface / 16.5:
Vertical Scan Over an As Atom / 16.5.1:
Vertical Scan Over a Ga Atom / 16.5.2:
RelevancetoNear-Contact STM Observations / 16.5.3:
Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM / 16.5.4:
Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence / 16.6:
Effect of Tip Morphology on NC-AFM Images / 16.7:
Image Contrast for the Ga/Si Tip / 16.7.1:
Image Contrast for the As/Si Tip / 16.7.2:
Contrast Mechanisms on InsulatingSurfaces / Adam Foster ; Alexander Shluger16.8:
Model ofAFM and Main Forces / 17.1:
Tip-Surface Setup / 17.2.1:
Forces / 17.2.2:
Simulating Scanning / 17.3:
TheSurface / 17.3.1:
TheTip / 17.3.2:
Tip-Surface Interaction / 17.3.3:
Modelling Oscillations / 17.3.4:
Generating a Theoretical Surface Image / 17.3.5:
The Calcium Fluoride (111) Surface / 17.4:
Calcite: Surface Deformations During Scanning / 17.4.2:
Studying Surface and Defect Properties / 17.5:
Analysis of Microscopy and Spectroscopy Experiments / Hendrik Hölscher17.6:
BasicPrinciples / 18.1:
Origin ofthe Frequency Shift / 18.2.1:
Calculation ofthe FrequencyShift / 18.2.3:
Frequency Shift for Conservative Tip-Sample Forces / 18.2.4:
Experimental NC-AFM Images of van der Waals Surfaces 355 / 18.3:
BasicPrinciplesoftheSimulationMethod / 18.3.2:
Applications ofthe Simulation Method / 18.3.3:
Dynamic Force Spectroscopy / 18.4:
Determining Forces fromFrequencies / 18.4.1:
Analysis ofTip-Sample Interaction Forces / 18.4.2:
Theory of Energy Dissipation into Surface Vibrations / Lev Kantorovich18.5:
Possible Dissipation Mechanisms / 19.1:
Adhesion Hysteresis / 19.2.1:
Stochastic Dissipation / 19.2.2:
Other Mechanisms / 19.2.3:
Brownian Particle MechanismofEnergy Dissipation / 19.3:
Brownian Particle / 19.3.1:
Fluctuation-Dissipation Theorem / 19.3.2:
Oscillating Tip as a Brownian Particle / 19.3.3:
Energy Dissipated Per Oscillation Cycle / 19.3.4:
Nonequilibrium Considerations for NC-AFM Systems / 19.4:
Preliminary Remarks / 19.4.1:
Mixed Quantum-Classical Representation / 19.4.2:
Equation ofMotion for the Tip / 19.4.3:
Estimation ofDissipation Energies in NC-AFM / 19.5:
Comparison with STM / 19.6:
Conclusions and Future Directions / 19.7:
Measurement of Dissipation Induced by Tip-Sample Interactions / H.J. Hug ; A. Baratoff20:
Experimental Aspects of Energy Dissipation / 20.1:
ExperimentalMethods / 20.3:
ApparentEnergyDissipation / 20.4:
Velocity-DependentDissipation / 20.5:
Electric-Field-MediatedJouleDissipation / 20.5.1:
Magnetic-Field-MediatedJouleDissipation / 20.5.2:
Magnetic-Field-MediatedDissipation / 20.5.3:
Brownian Dissipation / 20.5.4:
Hysteresis-Related Dissipation / 20.6:
Magnetic-Field-Induced Hysteresis / 20.6.1:
Hysteresis Due to Adhesion / 20.6.2:
Hysteresis Due to Atomic Instabilities / 20.6.3:
DissipationImagingwithAtomicResolution / 20.7:
DissipationSpectroscopy / 20.8:
Index / 20.9:
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
67.

図書

図書
by R.V. Ostrovityanov & F.A. Basalov ; translated by William F. Barton and David K. Barton
出版情報: Dedham, MA : Artech House, 1985  xviii, 364 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1.0:
Purpose
Objective / 1.2:
Orientation / 1.3:
Scope / 1.4:
Sources and Coupling of Em Energy / 2.0:
The Environment / 2.1:
Environment Sources / 2.2:
General Signal Characteristics / 2.2.1:
Pulse Signal / 2.2.2:
Signal Transmission / 2.2.3:
Radiated Energy / 2.3:
The Radiation Field / 2.3.1:
Distinction Between Induction and Radiation Fields / 2.3.2:
Nonlinear Environmental Effects / 2.3.3:
Propagation Effects / 2.3.4:
The GSE Radiated Environments / 2.3.5:
Conducted Energy / 2.4:
Conducted Routes / 2.4.1:
The GSE Conducted Environment / 2.4.2:
Combined Effects / 2.5:
Design Considerations / 3.0:
General Guidelines / 3.1:
Electrical Design / 3.1.1:
Physical Layout of Components / 3.1.2:
Mechanical Factors / 3.1.3:
Safety / 3.2:
The Effects of High RF Fields / 3.2.1:
Safety Procedures and Design Criteria / 3.2.2:
Factors Influencing Gse Emc / 3.3:
EMC Maintenance Considerations / 3.3.1:
Cost Benefit Considerations / 3.3.2:
Microprocessors and Digital Systems / 3.3.3:
Examples of Avionic and Gse Designs / 3.4:
Flight or Hangar Deck Operation / 3.4.1:
Shop Testing / 3.4.2:
Control and Test Planning / 4.0:
General / 4.1:
The Emc Control Plan / 4.2:
The Role of the Control Plan / 4.2.1:
The Contents of the Control Plan / 4.2.2:
Control Plan Checklist / 4.2.3:
The Emc Test Plan / 4.3:
Shielding / 5.0:
General Shield Design Considerations / 5.1:
Solid Shielding Materials / 5.2:
Shielding Analysis / 5.2.1:
Additional Comments on Magnetic Shielding / 5.2.2:
Multiple Solid Shields / 5.2.3:
Coating and Thin-Film Shielding / 5.2.4:
Non-Solid Shielding Materials / 5.3:
Types of Discontinuities / 5.3.1:
Composite Materials / 5.3.2:
Cables and Connectors / 5.4:
Cable Shielding / 5.4.1:
Cable Shield Terminations and Connectors / 5.4.2:
New Connector Technology / 5.4.3:
Fiber Optics / 5.4.4:
Other Design Techniques to Maintain Shielding Effectiveness / 5.5:
Seams Without Gaskets / 5.5.1:
Seams With Gaskets / 5.5.2:
Use of Waveguide Attenuators / 5.5.3:
Panel Openings / 5.5.4:
Required Visual Openings / 5.5.5:
Shielding Tests / 5.6:
Low Impedance Magnetic Field Testing Using Small Loops / 5.6.1:
Low Impedance Magnetic Field Testing Using a Helmholtz Coil / 5.6.3:
High Impedance Electric Field Testing Using Rod Antennas / 5.6.4:
High Impedance Electric Field Testing Using a Parallel Line Radiator / 5.6.5:
Plane Wave Testing Using Antennas / 5.6.6:
Plane Wave Testing Using a Parallel Plate Transmission Line / 5.6.7:
MIL-STD-1377 Testing / 5.6.8:
Summary of Good Shielding Practices / 5.7:
Bonding / 6.0:
Surface Treatment / 6.1:
Corrosion / 6.3:
Bonding Effectiveness Characteristics / 6.4:
Bond Jumper Equivalent Circuit / 6.4.1:
Equipment Effects on Indirect Bonds / 6.4.2:
Bonding Resistance / 6.4.3:
Bonding Tests / 6.5:
DC Resistance Measurement / 6.5.1:
Swept Frequency/Shunt-T Insertion Loss Measurement / 6.5.3:
Single Vs. Multi-Point Bonding / 6.6:
Bonding Design Guidelines / 6.7:
Grounding / 7.0:
Grounding Techniques / 7.1:
Circuit Grounding Considerations / 7.3:
Power Supply Considerations / 7.4:
Prime Power Considerations / 7.5:
Cabling Considerations / 7.6:
Grounding Design Guidelines / 7.7:
Fil Tering / 8.0:
Filter Desing / 8.1:
Low-Pass Filters / 8.2.1:
High Pass Filters / 8.2.2:
Bandpass Filters / 8.2.3:
Band-Rejection Filters / 8.2.4:
Transient Suppression / 8.3:
Inductive Loads / 8.3.1:
Mechanical Switches / 8.3.2:
Transformer Switching / 8.3.3:
Semiconductor Transients / 8.3.4:
Active Power Line Filters / 8.4:
Noise Blanking, Cancelling, And Limiting circuits / 8.5:
Noise Blanking / 8.5.1:
Cancellation / 8.5.2:
Limiting / 8.5.3:
Filter Tests / 8.6:
MIL-STD-220A Insertion Loss Test / 8.6.1:
Filter Admittance Transfer Test / 8.6.3:
Parallel Signal Injection Test / 8.6.4:
Series Signal Injection Test / 8.6.5:
Current Injection Probes / 8.6.6:
Leakage Current Test / 8.6.7:
Filter Installation And Mounting / 8.7:
Specifying Fil Ters / 8.8:
Testing Requirements and Techniques / 9.0:
Shielded Enclosure Requirements / 9.1:
Enclosure Limitations / 9.2.1:
Enclosure Design Considerations / 9.2.2:
Microwave Absorbers / 9.2.3:
Testing Guidelines / 9.3:
Signal Sources / 9.3.1:
Sweep Generators and Oscillators / 9.3.3:
Attenuators / 9.3.4:
Detectors / 9.3.5:
Radiated And Conducted Equipment Testing / 9.4:
Emission Tests / 9.4.1:
Susceptibility Tests / 9.4.3:
Transient Testing / 9.4.4:
Specifications and Standards / 10.0:
Applicable Specifications / 10.1:
Obtaining Specifications / 10.3:
Tables And Nomographs / 11.0:
Order Of Contents / 11.1:
Introduction / 1.0:
Purpose
Objective / 1.2:
68.

図書

図書
Bhagwan D. Agarwal, Lawrence J. Broutman
出版情報: New York : J. Wiley, c1980  ix, 355 p. ; 24 cm
シリーズ名: SPE monographs
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction. / 1:
Definition / 1.1:
Characteristics / 1.2:
Classification / 1.3:
Particulate Composites / 1.4:
Fiber-Reinforced Composites / 1.5:
Applications of Fiber Composites / 1.6:
Exercise Problems
References
Fibers, Matrices, and Fabrication of Composites. / 2:
Advanced Fibers / 2.1:
Glass Fibers / 2.1.1:
Carbon and Graphite Fibers / 2.1.2:
Aramid Fibers / 2.1.3:
Boron Fibers / 2.1.4:
Other Fibers / 2.1.5:
Matrix Materials / 2.2:
Polymers / 2.2.1:
Metals / 2.2.2:
Fabrication of Composites / 2.3:
Fabrication of Thermosetting Resin Matrix Composites / 2.3.1:
Fabrication of Thermoplastic-Resin Matrix Composites (Short-Fiber Composites / 2.3.2:
Fabrication of Metal Matrix Composites / 2.3.3:
Fabrication of Ceramic Matrix Composites / 2.3.4:
Suggested Reading
Behavior of Unidirectional Composites. / 3:
Introduction / 3.1:
Nomenclature / 3.1.1:
Volume and Weight Fractions / 3.1.2:
Longitudinal Behavior of Unidirectional Composites / 3.2:
Initial Stiffness / 3.2.1:
Load Sharing / 3.2.2:
Behavior beyond Initial Deformation / 3.2.3:
Failure Mechanism and Strength / 3.2.4:
Factors Influencing Longitudinal Strength and Stiffness / 3.2.5:
Transverse Stiffness and Strength / 3.3:
Constant-Stress Model / 3.3.1:
Elasticity Methods of Stiffness Prediction / 3.3.2:
Halpin-Tsai Equations for Transverse Modulus / 3.3.3:
Transverse Strength / 3.3.4:
Prediction of Shear Modulus / 3.4:
Prediction of Poisson's Ratio / 3.5:
Failure Modes / 3.6:
Failure under Longitudinal Tensile Loads / 3.6.1:
Failure under Longitudinal Compressive Loads / 3.6.2:
Failure under Transverse Tensile Loads / 3.6.3:
Failure under Transverse Compressive Loads / 3.6.4:
Failure under In-Plane Shear Loads / 3.6.5:
Expansion Coefficients and Transport Properties / 3.7:
Thermal Expansion Coefficients / 3.7.1:
Moisture Expansion Coefficients / 3.7.2:
Transport Properties / 3.7.3:
Mass Diffusion / 3.7.4:
Typical Unidirectional Fiber Composite Properties / 3.8:
Short-Fiber Composites. / 4:
Theories of Stress Transfer / 4.1:
Approximate Analysis of Stress Transfer / 4.2.1:
Stress Distributions from Finite-Element Analysis / 4.2.2:
Average Fiber Stress / 4.2.3:
Modulus and Strength of Short-Fiber Composites / 4.3:
Prediction of Modulus / 4.3.1:
Prediction of Strength / 4.3.2:
Effect of Matrix Ductility / 4.3.3:
Ribbon-Reinforced Composites / 4.4:
Analysis of an Orthotropic Lamina. / 5:
Orthotropic Materials / 5.1:
Stress-Strain Relations and Engineering Constants / 5.2:
Stress-Strain Relations for Specially Orthotropic Lamina / 5.2.1:
Stress-Strain Relations for Generally Orthotropic Lamina / 5.2.2:
Transformation of Engineering Constants / 5.2.3:
Hooke's Law and Stiffness and Compliance Matrices / 5.3:
General Anisotropic Material / 5.3.1:
Specially Orthotropic Material / 5.3.2:
Transversely Isotropic Material / 5.3.3:
Isotropic Material / 5.3.4:
Specially Orthotropic Material under Plane Stress / 5.3.5:
Compliance Tensor and Compliance Matrix / 5.3.6:
Relations between Engineering Constants and Elements of Stiffness and Compliance Matrices / 5.3.7:
Restrictions on Elastic Constants / 5.3.8:
Transformation of Stiffness and Compliance Matrices / 5.3.9:
Invariant Forms of Stiffness and Compliance Matrices / 5.3.10:
Strengths of an Orthotropic Lamina / 5.4:
Maximum-Stress Theory / 5.4.1:
Maximum-Strain Theory / 5.4.2:
Maximum-Work Theory / 5.4.3:
Importance of Sign of Shear Stress on Strength of Composites / 5.4.4:
Analysis of Laminated Composites. / 6:
Laminate Strains / 6.1:
Variation of Stresses in a Laminate / 6.3:
Resultant Forces and Moments: Synthesis of Stiffness Matrix / 6.4:
Laminate Description System / 6.5:
Construction and Properties of Special Laminates / 6.6:
Symmetric Laminates / 6.6.1:
Unidirectional, Cross-Ply, and Angle-Ply Laminates / 6.6.2:
Quasi-isotropic Laminates / 6.6.3:
Determination of Laminae Stresses and Strains / 6.7:
Analysis of Laminates after Initial Failure / 6.8:
Hygrothermal Stresses in Laminates / 6.9:
Concepts of Thermal Stresses / 6.9.1:
Hygrothermal Stress Calculations / 6.9.2:
Laminate Analysis Through Computers / 6.10:
Analysis of Laminated Plates and Beams. / 7:
Governing Equations for Plates / 7.1:
Equilibrium Equations / 7.2.1:
Equilibrium Equations in Terms of Displacements / 7.2.2:
Application of Plate Theory / 7.3:
Bending / 7.3.1:
Buckling / 7.3.2:
Free Vibrations / 7.3.3:
Deformations Due to Transverse Shear / 7.4:
First-Order Shear Deformation Theory / 7.4.1:
Higher-Order Shear Deformation Theory / 7.4.2:
Analysis of Laminated Beams / 7.5:
Governing Equations for Laminated Beams / 7.5.1:
Application of Beam Theory / 7.5.2:
Advanced Topics in Fiber Composites. / 8:
Interlaminar Stresses and Free-Edge Effects / 8.1:
Concepts of Interlaminar Stresses / 8.1.1:
Determination of Interlaminar Stresses / 8.1.2:
Effect of Stacking Sequence on Interlaminar Stresses / 8.1.3:
Approximate Solutions for Interlaminar Stresses / 8.1.4:
Summary / 8.1.5:
Fracture Mechanics of Fiber Composites / 8.2:
Fracture Mechanics Concepts and Measures of Fracture Toughness / 8.2.1:
Fracture Toughness of Composite Laminates / 8.2.3:
Whitney-Nuismer Failure Criteria for Notched Composites / 8.2.4:
Joints for Composite Structures / 8.3:
Adhesively Bonded Joints / 8.3.1:
Mechanically Fastened Joints / 8.3.2:
Bonded-Fastened Joints / 8.3.3:
Performance of Fiber Composites: Fatigue, Impact, and Environmental Effects. / 9:
Fatigue / 9.1:
Fatigue Damage / 9.1.1:
Factors Influencing Fatigue Behavior of Composites / 9.1.3:
Empirical Relations for Fatigue Damage and Fatigue Life / 9.1.4:
Fatigue of High-Modulus Fiber-Reinforced Composites / 9.1.5:
Fatigue of Short-Fiber Composites / 9.1.6:
Impact / 9.2:
Introduction and Fracture Process / 9.2.1:
Energy-Absorbing Mechanisms and Failure Models / 9.2.2:
Effect of Materials and Testing Variables on Impact Properties / 9.2.3:
Hybrid Composites and Their Impact Strength / 9.2.4:
Damage Due to Low-Velocity Impact / 9.2.5:
Environmental-Interaction Effects / 9.3:
Fiber Strength / 9.3.1:
Matrix Effects / 9.3.2:
Experimental Characterization of Composites. / 10:
Measurement of Physical Properties / 10.1:
Density / 10.2.1:
Constituent Weight and Volume Fractions / 10.2.2:
Void Volume Fraction / 10.2.3:
Moisture Absorption and Diffusivity / 10.2.4:
Measurement of Mechanical Properties / 10.2.6:
Properties in Tension / 10.3.1:
Properties in Compression / 10.3.2:
In-Place Shear Properties / 10.3.3:
Flexural Properties / 10.3.4:
Measures of In-Plane Fracture Toughness / 10.3.5:
Interlaminar Shear Strength and Fracture Toughness / 10.3.6:
Impact Properties / 10.3.7:
Damage Identification Using Nondestructive Evaluation Techniques / 10.4:
Ultrasonics / 10.4.1:
Acoustic Emission / 10.4.2:
x-Radiography / 10.4.3:
Thermography / 10.4.4:
Laser Shearography / 10.4.5:
General Remarks on Characterization / 10.5:
Emerging Composite Materials. / 11:
Nanocomposites / 11.1:
Carbon-Carbon Composites / 11.2:
Biocomposites / 11.3:
Biofibers / 11.3.1:
Wood-Plastic Composites (WPCs / 11.3.2:
Biopolymers / 11.3.3:
Composites in ''Smart'' Structures / 11.4:
Matrices and Tensors. / Appendix 1:
Equations of Theory of Elasticity. / Appendix 2:
Laminate Orientation Code. / Appendix 3:
Properties of Fiber Composites. / Appendix 4:
Computer Programs for Laminate Analysis. / Appendix 5:
Index.
Preface
Introduction. / 1:
Definition / 1.1:
69.

図書

図書
Alexey Kavokin ... [et al.]
出版情報: Oxford ; New York : Oxford University Press, 2007  xvii, 430 p. ; 24 cm
シリーズ名: Series on semiconductor science and technology ; no. 16
所蔵情報: loading…
目次情報: 続きを見る
Overview of Microcavities / 1:
Properties of microcavities / 1.1:
Q-factor and finesse / 1.1.1:
Intracavity field enhancement and field distribution / 1.1.2:
Tuneability and mode separation / 1.1.3:
Angular mode pattern / 1.1.4:
Low-threshold lasing / 1.1.5:
Purcell factor and lifetimes / 1.1.6:
Strong vs. weak coupling / 1.1.7:
Microcavity realizations / 1.2:
Planar microcavities / 1.3:
Metal microcavities / 1.3.1:
Dielectric Bragg mirrors / 1.3.2:
Spherical mirror microcavities / 1.4:
Pillar microcavities / 1.5:
Whispering-gallery modes / 1.6:
Two-dimensional whispering galleries / 1.6.1:
Three-dimensional whispering-galleries / 1.6.2:
Photonic-crystal cavities / 1.7:
Random lasers / 1.7.1:
Plasmonic cavities / 1.8:
Microcavity lasers / 1.9:
Conclusion / 1.10:
Classical description of light / 2:
Free space / 2.1:
Light-field dynamics in free space / 2.1.1:
Propagation in crystals / 2.2:
Plane waves in bulk crystals / 2.2.1:
Absorption of light / 2.2.2:
Kramers-Kronig relations / 2.2.3:
Coherence / 2.3:
Statistical properties of light / 2.3.1:
Spatial and temporal coherence / 2.3.2:
Wiener-Khinchin theorem / 2.3.3:
Hanbury Brown-Twiss effect / 2.3.4:
Polarization-dependent optical effects / 2.4:
Birefringence / 2.4.1:
Magneto-optical effects / 2.4.2:
Propagation of light in multilayer planar structures / 2.5:
Photonic eigenmodes of planar systems / 2.6:
Photonic bands of 1D periodic structures / 2.6.1:
Stripes, pillars, and spheres: photonic wires and dots / 2.7:
Cylinders and pillar cavities / 2.8.1:
Spheres / 2.8.2:
Further reading / 2.9:
Quantum description of light / 3:
Pictures of quantum mechanics / 3.1:
Historical background / 3.1.1:
Schrodinger picture / 3.1.2:
Antisymmetry of the wavefunction / 3.1.3:
Symmetry of the wavefunction / 3.1.4:
Heisenberg picture / 3.1.5:
Dirac (interaction) picture / 3.1.6:
Other formulations / 3.2:
Density matrix / 3.2.1:
Second quantization / 3.2.2:
Quantization of the light field / 3.2.3:
Quantum states / 3.3:
Fock states / 3.3.1:
Coherent states / 3.3.2:
Glauber-Sudarshan representation / 3.3.3:
Thermal states / 3.3.4:
Mixture states / 3.3.5:
Quantum correlations of quantum fields / 3.3.6:
Statistics of the field / 3.3.7:
Polarization / 3.3.8:
Outlook on quantum mechanics for microcavities / 3.4:
Semiclassical description of light-matter coupling / 3.5:
Light-matter interaction / 4.1:
Classical limit / 4.1.1:
Einstein coefficients / 4.1.2:
Optical transitions in semiconductors / 4.2:
Excitons in semiconductors / 4.3:
Frenkel and Wannier-Mott excitons / 4.3.1:
Excitons in confined systems / 4.3.2:
Quantum wells / 4.3.3:
Quantum wires and dots / 4.3.4:
Exciton-photon coupling / 4.4:
Surface polaritons / 4.4.1:
Exciton-photon coupling in quantum wells / 4.4.2:
Exciton-photon coupling in quantum wires and dots / 4.4.3:
Dispersion of polaritons in planar microcavities / 4.4.4:
Motional narrowing of cavity polaritons / 4.4.5:
Microcavities with quantum wires or dots / 4.4.6:
Quantum description of light-matter coupling in semiconductors / 5:
Rabi dynamics / 5.1:
Bloch equations / 5.3:
Full quantum picture / 5.3.1:
Dressed bosons / 5.3.2:
Lindblad dissipation / 5.4:
Jaynes-Cummings model / 5.5:
Dicke model / 5.6:
Quantization of the exciton field / 5.7:
Excitons as bosons / 5.7.2:
Excitons in quantum dots / 5.7.3:
Dispersion of polaritons / 5.8:
The polariton Hamiltonian / 5.8.2:
Coupling in quantum dots / 5.8.3:
Weak-coupling microcavities / 6:
Purcell effect / 6.1:
The physics of weak coupling / 6.1.1:
Spontaneous emission / 6.1.2:
The case of QDs, 2D excitons and 2D electron-hole pairs / 6.1.3:
Fermi's golden rule / 6.1.4:
Dynamics of the Purcell effect / 6.1.5:
Case of QDs and QWs / 6.1.6:
Experimental realizations / 6.1.7:
Lasers / 6.2:
The physics of lasers / 6.2.1:
Semiconductors in laser physics / 6.2.2:
Vertical-cavity surface-emitting lasers / 6.2.3:
Resonant-cavity LEDs / 6.2.4:
Quantum theory of the laser / 6.2.5:
Nonlinear optical properties of weak-coupling microcavities / 6.3:
Bistability / 6.3.1:
Phase matching / 6.3.2:
Strong coupling: resonant effects / 6.4:
Optical properties background / 7.1:
Quantum well microcavities / 7.1.1:
Variations on a theme / 7.1.2:
Motional narrowing / 7.1.3:
Polariton emission / 7.1.4:
Near-resonant-pumped optical nonlinearities / 7.2:
Pulsed stimulated scattering / 7.2.1:
Quasimode theory of parametric amplification / 7.2.2:
Microcavity parametric oscillators / 7.2.3:
Resonant excitation case and parametric amplification / 7.3:
Semiclassical description / 7.3.1:
Stationary solution and threshold / 7.3.2:
Theoretical approach: quantum model / 7.3.3:
Three-level model / 7.3.4:
Threshold / 7.3.5:
Two-beam experiment / 7.4:
One-beam experiment and spontaneous symmetry breaking / 7.4.1:
Dressing of the dispersion induced by polariton condensates / 7.4.2:
Bistable behaviour / 7.4.3:
Strong coupling: polariton Bose condensation / 8:
Introduction / 8.1:
Basic ideas about Bose-Einstein condensation / 8.2:
Einstein proposal / 8.2.1:
Experimental realization / 8.2.2:
Modern definition of Bose-Einstein condensation / 8.2.3:
Specificities of excitons and polaritons / 8.3:
Thermodynamic properties of cavity polaritons / 8.3.1:
Interacting bosons and Bogoliubov model / 8.3.2:
Polariton superfluidity / 8.3.3:
Quasicondensation and local effects / 8.3.4:
High-power microcavity emission / 8.4:
Thresholdless polariton lasing / 8.5:
Kinetics of formation of polariton condensates: semiclassical picture / 8.6:
Qualitative features / 8.6.1:
The semiclassical Boltzmann equation / 8.6.2:
Numerical solution of Boltzmann equations, practical aspects / 8.6.3:
Effective scattering rates / 8.6.4:
Numerical simulations / 8.6.5:
Kinetics of formation of polariton condensates: quantum picture in the Born-Markov approximation / 8.7:
Density matrix dynamics of the ground-state / 8.7.1:
Discussion / 8.7.2:
Coherence dynamics / 8.7.3:
Kinetics of formation of polariton condensates: quantum picture beyond the Born-Markov approximation / 8.8:
Two-oscillator toy theory / 8.8.1:
Coherence of polariton-laser emission / 8.8.2:
Order parameter and phase diffusion coefficient / 8.8.3:
Semiconductor luminescence equations / 8.9:
Claims of exciton and polariton Bose-Einstein condensation / 8.10:
Spin and polarization / 8.11:
Spin relaxation of electrons, holes and excitons in semiconductors / 9.1:
Microcavities in the presence of a magnetic field / 9.2:
Resonant Faraday rotation / 9.3:
Spin relaxation of exciton-polaritons in microcavities: experiment / 9.4:
Spin relaxation of exciton-polaritons in microcavities: theory / 9.5:
Optical spin Hall effect / 9.6:
Optical induced Faraday rotation / 9.7:
Interplay between spin and energy relaxation of exciton-polaritons / 9.8:
Polarization of Bose condensates and polariton superfluidity / 9.9:
Magnetic-field effect and superfluidity / 9.10:
Finite-temperature case / 9.11:
Spin dynamics in parametric oscillators / 9.12:
Classical nonlinear optics consideration / 9.13:
Polarized OPO: quantum model / 9.14:
Conclusions / 9.15:
Glossary / 9.16:
Linear algebra / A:
Scattering rates of polariton relaxation / B:
Polariton-phonon interaction / B.1:
Interaction with longitudinal optical phonons / B.1.1:
Interaction with acoustic phonons / B.1.2:
Polariton-electron interaction / B.2:
Polariton-polariton interaction / B.3:
Polariton decay / B.3.1:
Polariton-structural-disorder interaction / B.4:
Derivation of the Landau criterion of superfluidity and Landau formula / C:
Landau quantization and renormalization of Rabi splitting / D:
References
Overview of Microcavities / 1:
Properties of microcavities / 1.1:
Q-factor and finesse / 1.1.1:
70.

図書

図書
edited by John M. Chalmers, Howell G.M. Edwards, Michael D. Hargreaves
出版情報: Chichester : Wiley, 2012  xxviii, 618 p., [32] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
About the Editors
List of Contributors
Preface
Introduction / Section I:
Introduction and Scope / John M. Chalmers ; Howell G.M. Edwards ; Michael D. Hargreaves1:
Historical Prologue / 1.1:
The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science / 1.2:
References
Vibrational Spectroscopy Techniques: Basics and Instrumentation / 2:
Vibrational Spectroscopy Techniques / 2.1:
The basics and some comparisons / 2.2.1:
Wavelength/Wavenumber Ranges and Selection Rules / 2.2.1.1:
Sampling Considerations / 2.2.1.2:
Sensitivity, Surfaces and Signal Enhancement Techniques / 2.2.1.3:
IR and Raman Bands / 2.2.1.4:
Quantitative and classification analyses / 2.2.2:
Multivariate Data Analyses / 2.2.2.1:
Data Pre-Processing / 2.2.2.2:
Reference databases and search libraries/algorithms / 2.2.3:
Vibrational Spectroscopy: Instrumentation / 2.3:
Spectrometers / 2.3.1:
Sources / 2.3.1.1:
Detectors / 2.3.1.2:
Spectrometers and Interferometers / 2.3.1.3:
Vibrational spectroscopy-microscopy systems / 2.3.2:
Mapping and Imaging / 2.3.2.1:
Fibre optics and fibre-optic probes / 2.3.3:
Remote, portable, handheld, field-use, and stand-off vibrational spectroscopy instrumentation / 2.3.4:
Closing Remarks / 2.4:
Vibrational Spectroscopy Sampling Techniques / 3:
Vibrational Spectroscopy: Sampling Techniques / 3.1:
Raman spectroscopy / 3.2.1:
Raman Spectroscopy: Sampling Techniques and Considerations / 3.2.1.1:
Resonance Raman Spectroscopy / 3.2.1.2:
Surface Enhanced Raman Spectroscopy and Surface Enhanced Resonance Raman Spectroscopy / 3.2.1.3:
Spatially Offset Raman Spectroscopy / 3.2.1.4:
Transmission Raman Spectroscopy / 3.2.1.5:
Raman Microscopy/Microspectroscopy and Imaging / 3.2.1.6:
Remote and Fibre-Optic Probe Raman Spectroscopy / 3.2.1.7:
Mid-infrared spectroscopy / 3.2.2:
Mid-Infrared Transmission Spectroscopy: Sampling Techniques / 3.2.2.1:
Mid-Infrared Reflection Spectroscopy Sampling Techniques / 3.2.2.2:
Mid-Infrared Photoacoustic Spectroscopy / 3.2.2.3:
Mid-Infrared Microscopy/Microspectroscopy and Imaging / 3.2.2.4:
Near-infrared spectroscopy: sampling techniques / 3.2.3:
Near-Infrared Transmission Spectroscopy / 3.2.3.1:
Near-Infrared Diffuse Reflection Spectroscopy / 3.2.3.2:
Near-Infrared Transflection Spectroscopy / 3.2.3.3:
Near-Infrared Spectroscopy: Interactance and Fibre-Optic Probe Measurements / 3.2.3.4:
Near-Infrared Microscopy and Imaging / 3.2.3.5:
Terahertz/far-infrared spectroscopy: sampling techniques / 3.2.4:
Acknowledgements / 3.3:
Criminal Scene / Section II:
Criminal Forensic Analysis / Edward G. Bartick4:
Forensic Analysis / 4.1:
General Use of IR and Raman Spectroscopy in Forensic Analysis / 4.3:
Progression of infrared spectroscopy development in forensic analysis / 4.3.1:
Progression of Raman spectroscopy development in forensic analysis / 4.3.2:
Sampling methods / 4.3.3:
Microscopes / 4.3.3.1:
Reflection Methods / 4.3.3.2:
Gas Chromatography/IR / 4.3.3.3:
Spectral Imaging / 4.3.3.4:
Applications of Evidential Material Analysis / 4.4:
Polymers / 4.4.1:
General / 4.4.1.1:
Copy Toners / 4.4.1.2:
Fibres / 4.4.1.3:
Paints / 4.4.1.4:
Tapes / 4.4.1.5:
Drugs / 4.4.2:
Explosives / 4.4.3:
Fingerprint analysis / 4.4.4:
Summary and Future Direction / 4.5:
Forensic Analysis of Hair by Infrared Spectroscopy / Kathryn S. Kalasinsky
Basic Forensic Hair Analysis / 4.1.1:
Uniqueness of Hair to Chemical Analysis / 4.1.3:
Mechanism for Chemical Substance Incorporation into Hair / 4.1.4:
Applications / 4.1.5:
Disease Diagnosis / 4.1.6:
Summary / 4.1.7:
Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints / Steven E.J. Bell ; Samantha P. Stewart ; W.J. Armstrong
Paint Composition / 4.2.1:
Analysis of Resin Bases / 4.2.3:
White Paint / 4.2.4:
Coloured Household Paints / 4.2.5:
Multi-Layer Paints / 4.2.6:
Automotive Paint / 4.2.7:
Conclusions / 4.2.8:
Raman Spectroscopy for the Characterisation of Inks on Written Documents / A. Guedes ; A.C. Prieto
Experimental
Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups
Ink Discrimination / 4.3.4:
Forensic Test / 4.3.5:
Forensic Analysis of Fibres by Vibrational Spectroscopy / Peter M. Fredericks4.3.6:
Forensic importance of fibres
Types of fibres
Dyes
Why use vibrational spectroscopy?
Infrared Spectroscopy
Instrumentation and sample preparation / 4.4.2.1:
Transmission mid-IR microspectroscopy / 4.4.2.2:
ATR IR microspectroscopy / 4.4.2.3:
IR synchrotron radiation / 4.4.2.4:
Mid-IR imaging / 4.4.2.5:
Raman Spectroscopy
Application to fibres / 4.4.3.1:
Surface-enhanced Raman scattering / 4.4.3.2:
Raman spectroscopy of titania filler / 4.4.3.3:
Data Analysis
Acknowledgement / 4.4.5:
In Situ Crime Scene Analysis
Instrumentation / 4.5.1:
Raman spectrometers / 4.5.2.1:
Infrared spectrometers / 4.5.2.2:
Conditions of analysis / 4.5.3:
General chemical analysis / 4.5.3.2:
Conclusion / 4.5.3.3:
Raman spectroscopy gains currency / R. Withnall ; A. Reip ; J. Silver4.6:
Banknotes / 4.6.1:
Postage Stamps / 4.6.3:
Potential Forensic Applications / 4.6.4:
Counter Terrorism And Homeland Security / 4.6.5:
Counter Terrorism and Homeland Security / Vincent Otieno-Alego ; Naomi Speers5:
Infrared and Raman Spectroscopy for Explosives Identification / 5.1:
Level of chemical identification / 5.2.1:
Capability to analyse a large range of explosives and related chemicals / 5.2.2:
Other positive features of IR and Raman spectroscopy in explosive analysis / 5.2.3:
Case Studies - Example 1 / 5.2.4:
Portable IR and Raman Instruments / 5.3:
Case Studies - Example 2 / 5.3.1:
Post-Blast Examinations / 5.4:
Detection of Explosives in Fingerprints / 5.5:
Applications of SORS in explosive analysis / 5.6:
Terahertz Spectroscopy of Explosives / 5.7:
Sampling modes and sample preparation / 5.7.1:
THz spectroscopy of explosives and explosive related materials / 5.7.2:
Glossary / 5.8:
Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents / P. R€osch ; U. M€unchberg ; S. St€ockel ; J. Popp
Toxins / 5.1.1:
Viruses / 5.1.3:
Bacteria / 5.1.4:
Bulk samples / 5.1.4.1:
Single bacterium identification / 5.1.4.2:
Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation / Mary L. Lewis ; Ian R. Lewis ; Peter R. Griffiths5.1.5:
Background
UV Excited Raman Studies of Explosives
FT-Raman Studies of Explosives
Neither FT-Raman nor Traditional Dispersive Raman / 5.2.5:
Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives / 5.2.6:
Dispersive Raman Studies of Explosives / 5.2.7:
Compact Dispersive Raman Spectrometers for the Study of Explosives / 5.2.8:
Stand-Off Raman of Explosives / 5.2.9:
Raman Microscopy and Imaging / 5.2.11:
Vehicle-Mounted Raman Analysers / 5.2.12:
Classification Schema for Explosives / 5.2.13:
Handheld Raman and FT-IR Spectrometers / Robert L. Green ; Wayne Jalenak ; Christopher D. Brown ; Craig Gardner5.2.14:
Handheld/Portable Raman and FT-IR Devices / 5.3.2:
Tactical Considerations / 5.3.3:
Sample Considerations / 5.3.5:
Raman and FT-IR Spectroscopy Explosive Identification Capabilities / 5.3.6:
Performance Characterisation / 5.3.7:
Disclaimer / 5.3.8:
Non-Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy / Kevin Buckley ; Pavel Matousek
Discussion and Examples / 5.4.1:
Terahertz Frequency Spectroscopy and its Potential for Security Applications / A.D. Burnett ; A.G. Davies ; P. Dean ; J.E. Cunningham ; E.H. Linfield5.4.3:
Terahertz Frequency Radiation / 5.5.1:
Terahertz Time-Domain Spectroscopy / 5.5.3:
Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest / 5.5.4:
Drugs of abuse / 5.5.4.1:
Terahertz frequency imaging / 5.5.4.3:
Spectroscopy and imaging of concealed materials / 5.5.4.4:
Conclusions and Future Outlook / 5.5.5:
Drugs And Drugs Of Abuse / Section IV:
Raman Spectroscopy of Drugs of Abuse / S.J. Speers6:
Bulk Drugs / 6.1:
General Introduction / 6.2.1:
Experimental considerations / 6.2.2:
Laboratory-based methods / 6.2.3:
Screening and Identification / 6.2.3.1:
Quantitative Analysis / 6.2.3.2:
Composition Profiling / 6.2.3.3:
Raman outside the laboratory / 6.2.4:
Trace Detection / 6.3:
Drug microparticles / 6.3.1:
Surface-enhanced Raman spectroscopy / 6.3.2:
Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers / 6.4:
Advantages of Vibrational Spectroscopy / 6.1.1:
General Drugs of Abuse - Introduction / 6.1.3:
Vibrational Spectroscopy / 6.1.4:
Analysis of Street Samples / 6.1.5:
Considerations when analysing in situ / 6.1.5.1:
Considerations when analysing in the laboratory / 6.1.5.2:
New Narcotic Threats / 6.1.6:
Identification of Drug Precursors / 6.1.7:
Case Studies / 6.1.8:
Case study I / 6.1.8.1:
Case study II / 6.1.8.2:
Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman Spectroscopy / 6.1.9:
Application Examples
Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering / Karen Faulds ; W. Ewen Smith
Substrates
Direct Detection / 6.3.3:
Indirect Detection / 6.3.4:
Art / 6.3.5:
Vibrational Spectroscopy as a Tool for Tracing Art Forgeries / A. Deneckere ; P. Vandenabeele ; L. Moens7:
How to Trace Art Forgeries with Vibrational Spectroscopy? / 7.1:
Detection of anachronisms / 7.2.1:
Examples / 7.2.1.1:
Differentiation Between the Natural or Synthetic Form of a Pigment / 7.2.1.2:
Comparing with the artist's palette / 7.2.2:
Impurities / 7.2.3:
The Mercatellis Manuscripts / 7.2.3.1:
Spectroscopic Pigment Investigation of the Mayer van den Bergh Breviary / 7.2.3.2:
Identification of Dyes and Pigments by Vibrational Spectroscopy / Juan Manuel Madariaga7.3:
Review of the Scientific Literature / 7.1.1:
Databases of Reference Materials / 7.1.3:
Chemometric analysis of the spectral information / 7.1.3.1:
FT-IR and Raman Spectroscopy Applications / 7.1.4:
Identification of dyes, pigments and bulk materials / 7.1.4.1:
Attribution, authentication and counterfeit detection / 7.1.4.2:
Identification of degradation products and degradation mechanisms / 7.1.4.3:
The Vinland Map: An Authentic Relic of Early Exploration or a Modern Forgery - Raman Spectroscopy in a Pivotal Role?
The Scientific Analysis of the Vinland Map and Tartar Relation
Raman Microspectroscopic Study
Study of Manuscripts by Vibrational Spectroscopy / Lucia Burgio
Why Raman Microscopy? / 7.3.1:
Dating and Authentication / 7.3.3:
Provenance and Trade Routes / 7.3.4:
Archaeology And Mineralogy / 7.3.5:
Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy / J. Jehlicka8:
Applications of Raman Spectroscopy for Provenancing / 8.1:
Raman Spectroscopy of Minerals / 8.3:
Class 1: Elements / 8.3.1:
Carbon / 8.3.1.1:
Carbon and Graphitisation / 8.3.1.2:
Minerals from other groups of the mineralogical classification system / 8.3.2:
Class 2: Sulfides / 8.3.2.1:
Class 3: Halogenides / 8.3.2.2:
Class 4: Oxides and Hydroxides / 8.3.2.3:
Class 5: Carbonates and Nitrates / 8.3.2.4:
Class 6: Borates / 8.3.2.5:
Class 7: Sulfates / 8.3.2.6:
Class 8: Phosphates / 8.3.2.7:
Class 9: Silicates / 8.3.2.8:
Class 10: Organic Compounds / 8.3.2.9:
Opals / 8.4:
Natural Glass / 8.5:
Meteorites / 8.6:
Identification and Provenancing of Gemstones / 8.7:
Synthetic gemstones / 8.7.1:
Semi-precious minerals / 8.7.2:
Garnets / 8.7.3:
Common Minerals / 8.8:
Clays / 8.8.1:
Databases / 8.9:
Identification of Inclusions in Minerals / 8.10:
Raman Mapping Techniques / 8.11:
Analyses Outdoors and On Site / 8.12:
Applications of Raman Spectroscopy to the Provenancing of Rocks / 8.13:
Identification of Ivory by Conventional Backscatter Raman and SORS / 8.14:
Application of Raman Spectroscopy / 8.1.1:
Preliminary screening method / 8.1.2.1:
Fake sample analysis / 8.1.2.2:
Concealed materials screening / 8.1.2.3:
Applications to the Study of Gems and Jewellery / Lore Kiefert ; Marina Epelboym ; Hpone-Phyo Kan-Nyunt ; Susan Paralusz8.1.3:
Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds / 8.2.1:
Infrared spectroscopy of diamonds / 8.2.2.1:
Photoluminescence spectroscopy / 8.2.2.4:
Case Study Example II: Detection of Fissure Fillings in Emeralds / 8.2.2.5:
Detection of emerald fissure fillings using FT-IR spectroscopy / 8.2.3.1:
Detection of emerald fissure fillings using Raman spectroscopy / 8.2.3.3:
Case Study Example III: The Raman Identification of Turquoise / 8.2.3.4:
Advanced analysis of turquoise / 8.2.4.1:
Raman Spectroscopy of Ceramics and Glasses / Paola Ricciardi ; Philippe Colomban8.2.5:
The Raman spectroscopic signature of ceramics, glasses and enamels
How to Discriminate Between Genuine Artifacts and Copies and Fakes
On-Site Measurements and Procedures / 8.3.3:
Tools for the identification of crystalline and amorphous phases in ceramics and glasses / 8.3.3.1:
Alhambra vases (Granada, Spain, fourteenth century) / 8.3.4:
Iznik fritware (Ottoman empire, fifteenth-seventeenth century) / 8.3.4.2:
Celadons (Vi^et Nam, thirteenth-fifteenth century) / 8.3.4.3:
Medici porcelain (Florence, sixteenth century) / 8.3.4.4:
Glass cup with handles (Low Countries, sixteenth-seventeenth century) / 8.3.4.5:
Meissen porcelains (Saxony, eighteenth century) / 8.3.4.6:
Enamels on metal: Chinese cloisonnes and Limoges painted enamels (fifteenth-nineteenth century) / 8.3.4.7:
Raman Spectroscopy at Longer Excitation Wavelengths Applied to the Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic Geoscience / 8.3.5:
Results and Discussion / 8.4.1:
Resins / 8.4.3.1:
Ivories / 8.4.3.2:
Buried skeletal remains / 8.4.3.3:
Human Tissues and Skeletal Remains / 8.4.4:
Nail / 8.4.4.1:
Skin / 8.4.4.2:
Calcified tissues / 8.4.4.3:
Teeth / 8.4.4.4:
Bone / 8.4.4.5:
Counterfeit Consumer Products / 8.4.5:
Anti-Counterfeiting Organisations / Andrew J. O'Neil9:
Definition of a Counterfeit Product / 9.3:
Counterfeit Product Spectroscopic Analysis / 9.4:
Counterfeit alcoholic beverages and whisky / 9.4.1:
Counterfeit stamps / 9.4.2:
Counterfeit currency / 9.4.3:
Counterfeit medicines / 9.4.4:
Near-Infrared Spectroscopy and Imaging Microscopy / 9.4.4.1:
Attenuated Total Reflection Mid-Infrared Spectroscopy and Imaging Microscopy / 9.4.4.2:
Raman Spectroscopy, Spatially Offset Raman Spectroscopy and Mapping Microscopy / 9.4.4.3:
Use of Portable Spectrometers for Medicines Authentication / 9.4.4.4:
Combined Uses of Molecular Spectroscopic Techniques for Medicines Authentication / 9.4.4.5:
Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies and NIR Multispectral Imaging / 9.5:
Case Study I: Counterfeit Clothing / 9.6:
Case study Ia: counterfeit Burberry Classic Check Scarf / 9.6.1:
Near-Infrared Spectroscopic Analysis / 9.6.1.1:
ATR/FT-IR Analysis / 9.6.1.2:
Case study Ib: counterfeit New Era 59fifty baseball caps / 9.6.2:
Case Study II: Counterfeit Aftershave / 9.6.2.1:
Case Study III: Counterfeit Medicines / 9.8:
Near-infrared spectrometry / 9.8.1:
Raman spectrometry / 9.8.2:
NIR Multispectral Imaging / 9.8.3:
Case Study IV: Counterfeit Product Packaging / 9.9:
ATR/FT-IR Spectroscopy / 9.9.1:
Tablet Blister-Strip Polymer / 9.9.1.1:
Tablet Carton / 9.9.1.2:
Case Study V: Counterfeit Royal Mail First Class Stamps / 9.10:
Near-infrared spectroscopic analysis / 9.10.1:
Near-infrared multispectral imaging / 9.10.2:
Case Study VI: Counterfeit Bank of England Banknotes / 9.11:
ATR/FT-IR Spectroscopic Analysis / 9.11.1:
Raman Spectroscopy for the Analysis of Counterfeit Tablets / Kaho Kwok ; Lynne S. Taylor9.11.2:
The Pharmaceutical Counterfeiting Problem / 9.1.1:
Analytical Techniques to Detect Counterfeit Products / 9.1.2:
Using Raman Spectroscopy to Characterise Genuine and Counterfeit Tablets-A Case Study / 9.1.3:
Examination of Counterfeit Pharmaceutical Labels / Mark R. Witkowski ; Mary W. Carrabba9.1.4:
Counterfeit Packaging Analysis / 9.2.1:
Case Study I: Counterfeit LipitorLabels / 9.2.3:
Case Study II: Counterfeit ZyprexaLabels / 9.2.4:
Vibrational Spectroscopy for "Food Forensics" / Victoria L. Brewster ; Royston Goodacre9.2.5:
Adulteration / 9.3.1:
Provenance / 9.3.3:
Food Spoilage / 9.3.4:
Micro-Organism Identification / 9.3.5:
Infrared Spectroscopy for the Detection of Adulteration in Foods / Banu Özen ; Figen Tokatli9.3.6:
Adulteration of Food Products and Application of IR Spectroscopy in the Detection of Adulteration
Case Study: Adulteration of Extra Virgin Olive Oils with Refined Hazelnut Oil
Index
About the Editors
List of Contributors
Preface
71.

図書

図書
authorized translation from the Russian by Herbert Lashinsky ; edited by M.A. Leontovich
出版情報: New York : Consultants Bureau, 1965-  v. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
Waves and Particles / 3:
Plasma in a Magnetic Field / 4:
Linear Waves / 5:
Relativistic Interaction of Laser Pulse With Plasmas / S.V. Bulanov ; F. Califano ; G.I. Dudnikova ; T.Zh. Esirkepov ; I.N. Inovenkov ; F.F. Kamenets ; T.V. Liseikina ; M. Lontano ; K. Mima ; N. M. Naumova ; K. Nishihara ; F. Pegoraro ; H. Ruhl ; A.S. Sakharov ; Y. Sentoku ; V.A. Vshivkov ; V.V. ZhakhovskiiPart 2:
Introduction
Relativistically strong electromagnetic waves in underdense plasmas
Acceleration of charged particles and photons
Filamentation of the laser light and magnetic interaction of filaments and electromagnetic radiation
Relativistic solitons
Interactions of an ultrashort, relativistically strong, laser pulse with an overdense plasma
Nonlinear interactions of laser pulses with a foil / 6:
Coulomb explosion of a cluster irradiated by a high intensity laser pulse / 7:
Conclusions / 8:
References
Theoretical Principles of the Plasma-Equilibrium Control in Stellarators / V. D. Pustovitov
History of the problem and a general review of the theory / 1.:
The first problems of tokamaks and stellarators / 1.1.:
The problem of high [beta] / 1.2.:
Development of the MHD theory of stellarators / 1.3.:
High [beta] and the problem of plasmaequilibrium control / 1.4.:
Free-boundary plasma equilibrium / 1.5.:
Plasma-shape control in stellarators / 1.6.:
General equations of the theory of plasma equilibrium in conventional stellarators / 2.:
Stellarator approximation and the magnetic differential equation / 2.1.:
Real and averaged magnetic surfaces / 2.2.:
Integral quantities / 2.3.:
Currents in equilibrium configurations / 2.4.:
Longitudinal current in a stellarator / 2.5.:
Two-dimensional equation of plasma equilibrium in stellarators / 2.6.:
Analytical models / 3.:
Two-dimensional model of a stellarator / 3.1.:
Minimal set of parameters / 3.2.:
Description of the inner part of the plasma / 3.3.:
Effect of satellite harmonics on the stellarator configuration / 3.4.:
Control of plasma equilibrium using a vertical magnetic field / 4.:
Boundary conditions in equilibrium problems / 4.1.:
Reduction of the boundary conditions / 4.2.:
Effect of a vertical field on the plasmacolumn position in stellarators / 4.3.:
Suppression of the Pfirsch-Schluter current in conventional stellarators / 4.4.:
Integral independence on [beta] and "overcompensation" / 4.5.:
The influence of a quadrupole field on the stellarator configuration / 5.:
Control of the vacuum stellarator configuration using a quadrupole field / 5.1.:
Doublet-like stellarator configurations / 5.2.:
Control of the rotational-transform profile with the help of the quadrupole field / 5.3.:
Elongation of the plasma column as a means of increasing [beta][subscript eq] in stellarators / 5.4.:
List of main symbols
Fundamentals of Stationary Plasma Thruster Theory / A. I. Morozov ; V. V. Savelyev
General picture of processes in SPTs
Principal scheme of an SPT
Specifics of physical processes in SPTs
Quasi-autonomous functional units of SPTs
General system of equations and boundary conditions for SPT processes
Magnetic and electric fields in SPTs
Magnetic fields in SPTs
"Equipotentialization" of the magnetic force lines. Magnetic drift surfaces
The "loading" of magnetic force lines
Plasma electric field for the quasi-Maxwellian electron component
Remarks
Electron kinetics in the SPT channel
Characteristics of particle collisions with each other and with the surfaces
Electron distribution functions in the SPT channel
Debye layers on the SPT channel walls
The near-wall conductivity (NWC)
UHF-oscillations in the SPT channel / 3.5.:
Some conclusions / 3.6.:
Erosion of insulators in SPTs
The role and form of insulator erosion
Ion sputtering
Mathematical modeling of the anomalous erosion
Heavy particle dynamics in the SPT channel
Dynamics of single heavy particles
A kinetic description of ionizing heavy particles
Similarity criteria for discharges in SPT
The "inverse" problem of heavy particle dynamics
An analysis of processes using the emerging flux characteristics / 5.5.:
Estimate of energetic balance components in the SPT-ATON / 5.6.:
Low-frequency oscillations in SPTs / 6.:
Experimental data on LF-oscillations in the SPT channel / 6.1.:
Linear oscillations in a one-dimensional flux model without ionization / 6.2.:
One-dimensional self-consistent models for plasma flow in an SPT channel / 7.:
Modeling an SPT in the one-dimensional hydrodynamic approximation / 7.1.:
The results of calculations in the hydrodynamic model / 7.2.:
Dynamics of oscillations / 7.3.:
A hybrid model for the plasma flow in an SPT / 7.4.:
SPTs in real conditions / 8.:
The particle influx from the VC into the SPT / 8.1.:
Preventing particle influx from the VC / 8.2.:
Supersynchronization phenomenon / 8.3.:
Appendix
The necessity of electric propulsion thrusters / A.:
Preface
Mechanisma of Transverse Conductivity and Generation of Self-Consistent Electric Fields in Strongly Ionized Magnetized Plasma / V. Rozhansky
Conductivity Tensor in Partially Ionized Plasma / 1.1:
Main Mechanisms of Perpendicular Conductivity in Fully Ionized Plasma: Currents Caused by Viscosity, Inertia, Collisions with Neutrals, and [down triangle, open]B, and Mass-Loading Currents / 1.3:
Inertia Currents / 1.3.1:
Currents Caused by Ion-Neutral Collisions / 1.3.2:
Diamagnetic Currents / 1.3.3:
Viscosity-Driven Currents / 1.3.4:
Mass-Loading Current / 1.3.5:
Inertial (Polarization) and [down triangle, open]B Currents. Acceleration of Plasma Clouds in an Inhomogeneous Magnetic Field / 1.4:
Alfven Conductivity / 1.5:
Perpendicular Viscosity, Radial Current, and Radial Electric Field in an Infinite Cylinder / 1.6:
Current Systems in Front of a Biased Electrode (Flush-Mounted Probe) and Spot of Emission / 1.7:
Viscosity-Driven Perpendicular Currents / 1.7.1:
Currents Driven by Ion-Neutral Collisions / 1.7.2:
General Situation / 1.7.3:
Spot of Emission / 1.7.5:
Currents in the Vicinity of a Biased Electrode That is Smaller Than the Ion Gyroradius / 1.8:
Neoclassical Perpendicular Conductivity in a Tokamak / 1.9:
Steady State Current / 1.9.1:
Time-Dependent Current / 1.9.2:
Transverse Conductivity in a Reversed Field Pinch / 1.10:
Modeling of Electric Field and Currents in the Tokamak Edge Plasma / 1.11:
Mechanisms of Anomalous Perpendicular Viscosity and Viscosity-Driven Currents / 1.12:
Transverse Conductivity in a Stochastic Magnetic Field / 1.13:
Nonstochastic Magnetic Field / 1.13.1:
Stochastic Magnetic Field / 1.13.2:
Electric Fields Generated in the Shielding Layer between Hot Plasma and a Solid State / 1.14:
Correlations and Anomalous Transport Models / O.G. Bakunin
Turbulent Diffusion and Transport / 2.1:
The Correlation Function and the Taylor Diffusivity / 2.2.1:
The Richardson Law / 2.2.2:
The Davydov Model of Turbulent Diffusion / 2.2.3:
The Batchelor Approximation for the Diffusion Coefficient / 2.2.4:
Nonlocal Effects and Diffusion Equations / 2.3:
The Functional Equation for Random Walks / 2.3.1:
Nonlocality and the Levy Distribution / 2.3.2:
The Monin Fractional Differential Equation / 2.3.3:
The Corrsin Conjecture / 2.4:
The Corrsin Independence Hypothesis / 2.4.1:
The Simplified Corrsin Conjecture / 2.4.2:
The Correlation Function and Scalings / 2.4.3:
Effects of Seed Diffusivity / 2.5:
Seed Diffusivity and Correlations / 2.5.1:
"Returns" and Correlations / 2.5.2:
The Stochastic Magnetic Field and Scalings / 2.5.3:
The Howells Result / 2.5.4:
The Diffusive Tracer Equation and Averaging / 2.6:
The Taylor Shear Flow Model / 2.6.1:
Generalization of the Taylor Model / 2.6.2:
The Zeldovich Flow and the Kubo Number / 2.6.3:
Advection and Zeldovich Scaling / 2.6.4:
The System of Random Shear Flows / 2.7:
The Dreizin-Dykhne Superdiffusion Regime / 2.7.1:
The Matheron-de Marsily Model / 2.7.2:
The "Manhattan Grid" Flow and Transport / 2.7.3:
The Quasi-Linear Approximation / 2.8:
Quasi-Linear Equations / 2.8.1:
Short-Range and Long-Range Correlations / 2.8.2:
The Telegraph Equation / 2.8.3:
Magnetic Diffusivity and the Kubo Number / 2.8.4:
The Diffusive Renormalization / 2.9:
The Dupree Approximation / 2.9.1:
The Dupree Theory Revisited / 2.9.2:
The Taylor-McNamara Correlation Function / 2.9.3:
The Kadomtsev-Pogutse Renormalization and the Stochastic Magnetic Field / 2.9.4:
Anomalous Transport and Convective Cells / 2.10:
Bohm Scaling and Electric Field Fluctuations / 2.10.1:
The Bohm Regime and Correlations / 2.10.2:
Convective Cells and Transport / 2.10.3:
Complex Structures and Convective Transport / 2.10.4:
Stochastic Instability and Transport / 2.11:
Stochastic Instability and Correlations / 2.11.1:
The Rechester-Rosenbluth Model / 2.11.2:
Collisional Effects and the Stix Formula / 2.11.3:
The Quasi-Isotropic Stochastic Magnetic Field and Transport / 2.11.4:
Quasi-Linear Scaling for the Stochastic Instability Increment / 2.11.5:
Fractal Conceptions and Turbulence / 2.12:
Fractality and Transport / 2.12.1:
The Richardson Law and Fractality / 2.12.2:
Intermittency and the Kolmogorov Law / 2.12.3:
Percolation and Scalings / 2.13:
Continuum Percolation and Transport / 2.13.1:
Renormalization and Percolation / 2.13.2:
Graded Percolation / 2.13.3:
Percolation and Turbulent Transport Scalings / 2.14:
Random Steady Flows and Seed Diffusivity / 2.14.1:
The Spatial Hierarchy of Scales and Stochastic Instability / 2.14.2:
Low Frequency Regimes / 2.14.3:
The Temporal Hierarchy of Scales and Correlations / 2.15:
The Spatial and Temporal Hierarchy of Scales / 2.15.1:
The Isichenko Intermediate Regime / 2.15.2:
Dissipation and Percolation Transport / 2.15.3:
The Stochastic Magnetic Field and Percolation Transport / 2.16:
Percolation and the Kadomtsev-Pogutse Scaling / 2.16.1:
Percolation Renormalization and the Stochastic Instability Increment / 2.16.3:
Percolation in Drift Flows / 2.17:
Graded Percolation and Drift Flows / 2.17.1:
Low Frequency Regimes and Drift Effects / 2.17.2:
Compressibility and Percolation / 2.17.3:
Multiscale Flows / 2.18:
The Nested Hierarchy of Scales and Drift Effects / 2.18.1:
The Brownian Landscape and Percolation / 2.18.2:
Correlations and Transport Scalings / 2.18.3:
The Diffusive Approximation and the Multiscale Model / 2.18.4:
Stochastic Instability and Time Scales / 2.18.5:
Isotropic and Anisotropic Turbulent Energy Spectra / 2.18.6:
The Multiscale Model of Transport in a Tangled Magnetic Field / 2.18.7:
Subdiffusion and Traps / 2.19:
The Balagurov and Vaks Model of Diffusion with Traps / 2.19.1:
Subdiffusion and Fractality / 2.19.2:
Comb Structures and Transport / 2.19.3:
Continuous Time Random Walks / 2.20:
The Montroll and Weiss Approach and Memory Effects / 2.20.1:
Fractional Differential Equations / 2.20.2:
The Taylor Definition and Memory Effects / 2.20.3:
Fractional Differential Equations and Scalings / 2.21:
The Klafter, Blumen, and Shlesinger Approximation / 2.21.1:
The Stochastic Magnetic Field and Balescu Approach / 2.21.2:
Longitudinal Correlations and the Diffusive Approximation / 2.21.3:
Vortex Structures and Trapping / 2.21.4:
Correlations and Trapping / 2.21.5:
Correlation and Phase-Space / 2.22:
The Corrsin Conjecture and Phase-Space / 2.22.1:
The Hamiltonian Nature of the Universal Hurst Exponent / 2.22.2:
The One-Flight Model and Transport / 2.22.3:
Correlations and Nonlocal Velocity Distribution / 2.22.4:
The Arrhenius Law and Phase-Space Distribution / 2.22.5:
Conclusion / 2.23:
Acknowledgements
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
72.

図書

図書
Francis G. McCabe
出版情報: Englewood Cliffs, NJ : Prentice Hall, c1992  xxii, 289 p. ; 24 cm
シリーズ名: Prentice-Hall International series in computer science
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction and background / 1:
What is logic programming? / 1.1:
Extensions to logic programming / 1.2:
Functions and relations / 1.2.1:
Programming on a larger scale / 1.2.2:
Object oriented and logic programming / 1.3:
Logic programming and static objects / 1.3.1:
Dynamic objects / 1.3.2:
Summary / 1.4:
Elements of LandO / 2:
Class templates / 2.1:
Syntax of LandO programs / 2.1.1:
Computing with class rules / 2.1.2:
Functions and conditional equalities / 2.2:
Expressions in programs / 2.2.1:
Mutable theories / 2.3:
assert, retract and LandO programs / 2.3.1:
Dynamic variables in LandO programs / 2.3.2:
Programming techniques / 2.4:
Class templates and modules / 3.1:
Generic modules / 3.1.1:
Data driven programming / 3.2:
The structure of objects / 3.3:
Inclusion and broadcasting / 3.3.1:
Specialization and inheritance / 3.3.2:
LandO programming methodology / 3.4:
Logic programming methodologies / 4.1:
The 'divide and conquer' programming methodology / 4.1.1:
The 'browse and modify' programming methodology / 4.1.2:
Application classification / 4.2:
Single-function applications / 4.2.1:
Multi-function applications / 4.2.2:
Abstract pipelines / 4.2.3:
Composite applications / 4.3:
LandO graphics / 4.4:
Introduction / 5.1:
Objects versus command sequences / 5.1.1:
Denoting pictures by terms / 5.2:
Simple pictures / 5.2.1:
Computing with pictures / 5.2.2:
More complex pictures / 5.3:
Aggregate pictures / 5.3.1:
Recursively defined pictures / 5.3.2:
Graphics calculations and aggregate pictures / 5.3.3:
Drawing modified pictures / 5.3.4:
Graphics and applications / 5.4:
The link between an application and its tools / 5.4.1:
Displaying graphic edit windows / 5.4.2:
Related work / 5.5:
Helm and Marriott / 5.5.1:
The travelling salesman / 5.6:
Two solutions to the travelling salesman / 6.1:
Incremental algorithms / 6.1.1:
Analysis of route in Program 6.3 / 6.1.2:
The driving salesman / 6.1.3:
The travelling salesman application / 6.2:
The representation of a town / 6.2.1:
The application's tools / 6.2.2:
A general purpose packer/scheduler / Tony Solomonides6.3:
The problems / 7.1:
Attributes and features: a wish list / 7.2:
The nature of boxes / 7.2.1:
Constraints / 7.3:
Three kinds of constraints / 7.3.1:
Content-related constraints / 7.3.2:
The underlying engine / 7.4:
How to stack boxes / 7.4.1:
The geometry of planar arrangements / 7.4.2:
Interval operations and their computation / 7.4.3:
Interval problems in three dimensions / 7.4.4:
Stacking boxes in three dimensions / 7.4.5:
The user interface / 7.5:
Semantics / 7.6:
Semantics of class templates / 8.1:
The fundamental intuition / 8.1.1:
The approach to understanding / 8.1.2:
A proof theory for LandO programs / 8.1.3:
Mapping LandO programs into clausal form / 8.1.4:
The soundness of LandO inference / 8.1.5:
The completeness of LandO inference / 8.1.6:
Conventional logic programs and LandO programs / 8.1.7:
A model theory for LandO programs / 8.1.8:
The logic of functions / 8.2:
Functions, terms and canonical forms / 8.2.1:
A simple evaluator for canon / 8.2.2:
The effect of evaluation order / 8.2.3:
Compiling expressions / 8.2.4:
Quoted expressions and evaluation / 8.2.5:
Implementing LandO / 8.3:
A preprocessor for LandO programs / 9.1:
Constraints on the translated programs / 9.1.1:
A strategy for compiling LandO programs / 9.1.2:
The label phase / 9.1.3:
The body phase / 9.1.4:
Class rules / 9.1.5:
A complete example / 9.1.6:
Equations and expressions / 9.1.7:
Dynamic variables / 9.1.8:
Tracing and debugging LandO programs / 9.1.9:
Dynamic LandO programs / 9.2:
A performance comparison of LandO programs / 9.3:
The LandO preprocessor / 9.4:
The top-level of the LandO preprocessor / A.1:
Consulting an LandO file / A.1.1:
The translator proper / A.1.2:
A single class body / A.1.3:
Examples of LandO programs / A.1.4:
The benchmark programs / B.1:
Naive reverse / B.1.1:
Quicksorting a list / B.1.2:
An air-line planner / B.2:
The travelling salesman program / C:
The packer algorithms / D:
Two-dimensional arrangements / D.1:
Three dimensional arrangements / D.2:
Interval algebra in three dimensions / D.3:
One-dimensional interval algebra / D.3.1:
Two dimensional interval algebra / D.3.2:
Three dimensional interval algebra / D.3.3:
General library programs / D.4:
Bibliography
Index
Preface
Introduction and background / 1:
What is logic programming? / 1.1:
73.

図書

図書
M. Warner and E. M. Terentjev
出版情報: Oxford : Oxford University Press, c2003  xiv, 407 p. ; 24 cm
シリーズ名: The international series of monographs on physics ; 120
所蔵情報: loading…
目次情報: 続きを見る
A bird's eye view of liquid crystal elastomers / 1:
Liquid crystals / 2:
Ordering of rod and disc fluids / 2.1:
Nematic order / 2.2:
Free energy and phase transitions of nematics / 2.3:
Molecular theory of nematics / 2.4:
Distortions of nematic order / 2.5:
Transitions driven by external fields / 2.6:
Anisotropic viscosity and dissipation / 2.7:
Cholesteric liquid crystals / 2.8:
Smectic liquid crystals / 2.9:
Polymers, elastomers and rubber elasticity / 3:
Configurations of polymers / 3.1:
Liquid crystalline polymers / 3.2:
Shape of liquid crystalline polymers / 3.2.1:
Frank elasticity of nematic polymers / 3.2.2:
Classical rubber elasticity / 3.3:
Manipulating the elastic response of rubber / 3.4:
Finite extensibility and entanglements in elastomers / 3.5:
Classical elasticity / 4:
Deformation tensor and Cauchy-Green strain / 4.1:
Non-linear and linear elasticity / 4.2:
Geometry of deformations and rotations / 4.3:
Rotations / 4.3.1:
Shears and their decomposition / 4.3.2:
Square roots and polar decomposition of tensors / 4.3.3:
Compressibility of rubbery networks / 4.4:
Nematic elastomers / 5:
Structure and examples of nematic elastomers / 5.1:
Stress-optical coupling / 5.2:
Polydomain textures and alignment by stress / 5.3:
Monodomain 'single-crystal' nematic elastomers / 5.4:
Spontaneous shape changes / 5.4.1:
Nematic photoelastomers / 5.4.2:
Field-induced director rotation / 5.5:
Applications of liquid crystalline elastomers / 5.6:
Nematic rubber elasticity / 6:
Neo-classical theory / 6.1:
Spontaneous distortions / 6.2:
Equilibrium shape of nematic elastomers[Dagger] / 6.3:
Photo-mechanical effects / 6.4:
Thermal phase transitions / 6.5:
Effect of strain on nematic order / 6.6:
Mechanical and nematic instabilities / 6.7:
Mechanical Freedericks transition / 6.7.1:
The elastic low road / 6.7.2:
Finite extensibility and entanglements / 6.8:
Soft elasticity / 7:
Director anchoring to the bulk / 7.1:
Director rotation without strain / 7.1.1:
Coupling of rotations to pure shear / 7.1.2:
Soft modes of deformation / 7.2:
Principal symmetric strains and body rotations / 7.2.2:
Forms of the free energy allowing softness / 7.2.3:
Optimal deformations / 7.3:
A practical method of calculating deformations / 7.3.1:
Stretching perpendicular to the director / 7.3.2:
Semi-soft elasticity / 7.4:
Example: random copolymer networks / 7.4.1:
A practical geometry of semi-soft deformation / 7.4.2:
Experiments on long, semi-soft strips / 7.4.3:
Unconstrained elastomers in external fields / 7.4.4:
Semi-soft free energy and stress / 7.5:
Thermomechanical history and general semi-softness / 7.6:
Thermomechanical history dependence / 7.6.1:
Forms of the free energy violating softness / 7.6.2:
Distortions of nematic elastomers / 8:
Freedericks transitions in nematic elastomers / 8.1:
Strain-induced microstracture: stripe domains / 8.2:
General distortions of nematic elastomers / 8.3:
One-dimensional quasi-convexification / 8.3.1:
Full quasi-convexification / 8.3.2:
Numerical and experimental studies / 8.3.3:
Random disorder in nematic networks / 8.4:
Nematic ordering with quenched disorder / 8.4.1:
Characteristic domain size / 8.4.2:
Polydomain-monodomain transition / 8.4.3:
Cholesteric elastomers / 9:
Cholesteric networks / 9.1:
Intrinsically chiral networks / 9.1.1:
Chirally imprinted networks / 9.1.2:
Mechanical deformations / 9.2:
Uniaxial transverse elongation / 9.2.1:
Stretching along the pitch axis / 9.2.2:
Piezoelectricity of cholesteric elastomers / 9.3:
Imprinted cholesteric elastomers / 9.4:
Photonics of cholesteric elastomers / 9.5:
Photonics of liquid cholesterics / 9.5.1:
Photonics of elastomers / 9.5.2:
Experimental observations / 9.5.3:
Lasing in cholesterics / 9.5.4:
Continuum description of nematic elastomers / 10:
From molecular theory to continuum elasticity / 10.1:
Compressibility effects / 10.1.1:
The limit of linear elasticity / 10.1.2:
The role of nematic anisotropy / 10.1.3:
Phenomenological theory for small deformations / 10.2:
Strain-induced rotation / 10.3:
Symmetry arguments / 10.4:
The mechanism of soft deformation / 10.4.2:
Continuum representation of semi-softness / 10.5:
Unconstrained director fluctuations / 10.6:
Unconstrained phonons / 10.7:
Light scattering from director fluctuations / 10.8:
Dynamics of liquid crystal elastomers / 11:
Classical rubber dynamics / 11.1:
Rouse model and entanglements / 11.1.1:
Dynamical response of entangled networks / 11.1.2:
Long time stress relaxation / 11.1.3:
Nematohydrodynamics of elastic solids / 11.2:
Viscous coefficients and relaxation times / 11.2.1:
Balance of forces and torques / 11.2.2:
Symmetries and order parameter / 11.2.3:
Response to oscillating strains / 11.3:
Oscillating shear / 11.4:
Steady stress relaxation / 11.4.2:
Smectic elastomers / 12:
Materials and preparation / 12.1:
Smectic A elastomers / 12.1.1:
Smectic C and ferroelectric C elastomers / 12.1.2:
Physical properties of smectic elastomers / 12.2:
Smectic-A elastomers / 12.2.1:
Smectic-C elastomers / 12.2.2:
A molecular model of Smectic-A rubber elasticity / 12.3:
The geometry of affine layer deformations / 12.3.1:
Response to principal deformations / 12.3.2:
General deformations of a SmA elastomer / 12.3.3:
Instability and CMHH microstructure / 12.4:
Comparison with experiment / 12.5:
Smectic-C rubber elasticity / 12.6:
SmC soft deformations / 12.6.1:
SmC deformations with microstructure / 12.6.2:
Continuum description of smectic elastomers / 13:
Continuum description of smectic A elastomers / 13.1:
Relative translations in smectic networks revisited / 13.1.1:
Nematic -strain, -rotation and -smectic couplings / 13.1.2:
Effective smectic elasticity of elastomers / 13.2:
Effective rubber elasticity of smectic elastomers / 13.3:
Layer elasticity and fluctuations in smectic A elastomers / 13.4:
Layer buckling instabilities: the CMHH effect / 13.5:
Quenched layer disorder and the N-A phase transition / 13.6:
References / 13.7:
Index
Author Index
Online Appendices: (www.lcelastomer.org.uk)
Nematic order in elastomers under strain / A:
Biaxial soft elasticity / B:
Stripe microstructure / C:
Couple-stress and Cosserat elasticity / D:
Expansion at small deformations and rotations / E:
Smectic C soft elasticity / F:
A bird's eye view of liquid crystal elastomers / 1:
Liquid crystals / 2:
Ordering of rod and disc fluids / 2.1:
74.

図書

図書
edited by Jack G. Calvert
出版情報: Boston : Butterworth Publishers, c1984  xiv, 254 p. ; 25 cm
シリーズ名: Acid precipitation series ; v. 3
所蔵情報: loading…
75.

図書

図書
edited by Robert M Glaeser, Eva Nogales, Wah Chiu
出版情報: Bristol : IOP Publishing, c2021  1 v. ; 27 cm
シリーズ名: Biophysical Society-IOP series
所蔵情報: loading…
目次情報: 続きを見る
Editor biographies
Section authors
Introduction and overview / 1:
Visualizing biological molecules to understand life's principles / 1.1:
A brief historical perspective on scattering-based structural biology methods / 1.1.1:
Unique capabilities of cryo-EM: polymers and viruses / 1.1.2:
Unique capabilities of cryo-EM: integral membrane proteins / 1.1.3:
Unique capabilities of cryo-EM: large assemblies / 1.1.4:
Unique capabilities of cryo-EM: scarce samples / 1.1.5:
Unique capabilities of cryo-EM: compositionally heterogeneous samples / 1.1.6:
Unique capabilities of cryo-EM: conformationally complex samples / 1.1.7:
Current limits of cryo-EM and things yet to come / 1.1.8:
Recovery of 3D structures from images of weak-phase objects / 1.2:
The signal that we care about is attributed to elastic scattering of electrons / 1.2.1:
The electron accumulates information as it passes through a specimen / 1.2.2:
The image wave function, and thus the image intensity, suffers from imperfections in the microscope optics / 1.2.3:
Intermediate summary: the image intensity is linear in the projected Coulomb potential of the object / 1.2.4:
Structure-factor phases, as well as amplitudes, are retained in the computed Fourier transforms of image intensities / 1.2.5:
The projection theorem: the Fourier transform of an image corresponds to a 2D 'central' section within the 3D Fourier transform of the object / 1.2.6:
The 3D object can be reconstructed from multiple projections / 1.2.7:
Similarities and differences between sub-tomogram averaging and single-particle cryo-EM / 1.2.8:
References
Sample preparation / 2:
Overview / 2.1:
Initial screening of samples in negative stain / 2.2:
Introduction / 2.2.1:
Negative staining for TEM / 2.2.2:
Purpose of negative staining when starting a project / 2.2.3:
Techniques for the preparation of negatively stained samples / 2.2.4:
Use of data processing to provide feedback to optimize samples for cryo-EM / 2.2.5:
Standard method of making grids for cryo-EM / 2.3:
Grids and support films / 2.3.1:
Plasma cleaning or 'glow discharging' grids / 2.3.2:
Types of apparatus used for plunge freezing / 2.3.3:
Blotting and plunging the grid using plunge freezers / 2.3.4:
Common issues faced in making grids for cryo-EM imaging / 2.3.5:
Requirement to make very thin specimens for cryo-EM / 2.4:
Inelastic electron scattering causes the image quality to deteriorate with increasing sample thickness values / 2.4.1:
The projection approximation may fail if the sample is too thick / 2.4.2:
Areas of a grid where the sample is obviously too thick can, and should be, avoided during data collection / 2.4.3:
Areas where the sample is much too thin, perhaps even air-dried, can sometimes be avoided just on the basis of their subjective appearance / 2.4.4:
Current strategies for optimizing preparation of cryo-grids / 2.5:
Behavior of particles in the thin film environment / 2.5.1:
Approaches to alter particle behavior in the thin film / 2.5.2:
New technologies for sample preparation / 2.5.3:
Data collection / 3:
Radiation damage in cryo-EM / 3.1:
Interaction cross sections, elastic, and inelastic interactions / 3.2.1:
Cryoprotection and primary, secondary, and tertiary radiation damage / 3.2.3:
Radiation damage dependence on electron energy / 3.2.4:
Practical implications of radiation damage: image averaging in cryo-EM / 3.2.5:
Resolution dependence and exposure weighting / 3.2.6:
Radiation damage versus beam-induced motion and charging / 3.2.7:
Low-dose protocols for recording images / 3.3:
Automated low-dose imaging / 3.3.1:
Improving throughput / 3.3.2:
Electron exposure levels used during high-resolution data collection / 3.3.3:
Practical considerations: defocus. stigmation, coma-free illumination, and phase plates / 3.4:
Why do we need to defocus the microscope? / 3.4.1:
Effects of defocus on the image and its information content / 3.4.2:
Defocus variation is necessary to obtain uniform information coverage in reciprocal space / 3.4.3:
Optical correction of astigmatism and coma aberrations / 3.4.4:
Use of phase plates to improve image contrast and the expected benefits / 3.4.5:
Practical considerations: movie-mode data acquisition / 3.5:
Magnification and resolution / 3.5.1:
Dose rate / 3.5.2:
Strategies for motion correction / 3.5.3:
Total dose or exposure time / 3.5.4:
File size of movie datasets / 3.5.5:
Summary / 3.5.6:
Data processing / 4:
Automated extraction of particles / 4.1:
From micrographs to particles / 4.2.1:
Manual selection / 4.2.2:
Unbiased automated approaches / 4.2.3:
Particle extraction / 4.2.4:
Cleaning up the results through classification / 4.2.5:
CTF estimation and image correction (restoration) / 4.3:
CTF estimation / 4.3.1:
Image correction / 4.3.2:
Magnification distortion / 4.3.3:
Concluding remarks / 4.3.4:
Merging data from structurally homogeneous subsets / 4.4:
How many particle images are needed for a 3D reconstruction? / 4.4.1:
Obtaining a 3D reconstruction / 4.4.2:
Acknowledgments
3D classification of structurally heterogeneous particles / 4.5:
Global 3D classification / 4.5.1:
Masked 3D classification / 4.5.3:
3D classification of particles with pseudo-symmetry / 4.5.4:
Dealing with continuous motions / 4.5.5:
Conclusion / 4.5.6:
Preferred orientation: how to recognize and deal with adverse effects / 4.6:
Protein interaction with the air-water interface / 4.6.1:
Preferred orientation and its effects in cryo-EM / 4.6.2:
Quantifying preferred orientation and its effects on cryo-EM reconstructions / 4.6.3:
Overcoming the effects of preferred orientation / 4.6.4:
Areas of research / 4.6.5:
B factors and map sharpening / 4.7:
An ideal 3D reconstruction has a predictable radial amplitude spectrum / 4.7.1:
Actual 3D reconstructions feature dampened amplitudes at high frequencies / 4.7.2:
Several factors contribute to signal decay at high frequencies / 4.7.3:
Gaussian falloff, parametrized by a B factor, is a useful model of signal loss / 4.7.4:
Estimating B factors / 4.7.5:
Sharpening a map / 4.7.6:
A single inverse Gaussian filter using a global B factor does not always lead to the optimal map / 4.7.7:
Optical aberrations and Ewald sphere curvature / 4.8:
Further considerations on the aberration function ¿(s) / 4.8.1:
Common types of aberrations / 4.8.2:
Practical considerations for aberration correction / 4.8.3:
Thick objects and the Ewald sphere / 4.8.4:
Ewald sphere correction / 4.8.5:
Map validation / 5:
Measures of resolution: FSC and local resolution / 5.1:
The 'gold-standard' FSC / 5.2.1:
Resolution thresholds / 5.2.2:
FSC artifacts due to masking, filtration, and CTF / 5.2.3:
Local resolution / 5.2.4:
Resolution anisotropy / 5.2.5:
Recognizing the effect of bias and over-fitting / 5.3:
Introduction and nature of the problem arising from iterative refinement / 5.3.1:
Assessing the consistency of maps with projection data / 5.3.2:
Detecting over-fitting at high resolution in maps and effect on the FSC / 5.3.3:
Local over-fitting / 5.3.4:
Estimates of alignment accuracy / 5.3.5:
Correlation and the signal-to-noise ratio (SNR) / 5.4.1:
Analysis of alignment accuracy with synthetic data / 5.4.2:
The relationship between alignment accuracy and resolution / 5.4.3:
Estimating alignment accuracy from tilt pairs / 5.4.4:
Estimating alignment accuracy from the reconstructed map / 5.4.5:
Estimating alignment accuracy from projection-matching results / 5.4.6:
Discussion / 5.5:
Acknowledgements
Model building and validation / 6:
Using known components or homologs: model building / 6.1:
Identifying known/modeled structures of individual subunits / 6.2.1:
Rigid-body fitting / 6.2.2:
Flexible fitting / 6.2.3:
Building atomistic models in cryo-EM density maps / 6.3:
Building models into cryo-EM density maps / 6.3.1:
Model refinement / 6.3.3:
Model validation / 6.3.4:
Model uncertainty / 6.3.5:
Model deposition / 6.3.6:
Revisiting the cryo-EM model challenge / 6.3.7:
Toward the future / 6.3.8:
Conclusions / 6.3.9:
Quality evaluation of cryo-EM map-derived models / 6.4:
Map-model metrics / 6.4.1:
Model-only metrics / 6.4.3:
Summary and conclusions / 6.4.4:
Acknowledgment
How algorithms from crystallography are helping electron cryo-microscopy / 6.5:
Map improvement / 6.5.1:
Map interpretation and model building / 6.5.3:
Model optimization / 6.5.4:
Validation / 6.5.5:
Validation-guided corrections / 6.5.6:
Archiving structures and data / 6.5.7:
Single-particle cryo-EM structure deposition / 6.6.1:
Preparing files for deposition / 6.6.3:
Data validation / 6.6.4:
Sample sequence and ligands / 6.6.5:
Deposition using OneDep / 6.6.6:
Post-deposition: what happens next? / 6.6.7:
Accessing cryo-EM structure data / 6.6.8:
Editor biographies
Section authors
Introduction and overview / 1:
76.

図書

図書
Alireza Zolfaghari
出版情報: Boston : Kluwer Academic Publishers, c2003  xvi, 106 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1.:
Wireless Networks / 1.1:
GPS / 1.2:
Overview of Topics / 1.3:
Transceiver Architecture / 2.:
Receiver Architectures / 2.1:
Heterodyne Receivers / 2.2.1:
Homodyne Receivers / 2.2.2:
Image-Reject Receivers / 2.2.3:
Transmitter Architectures / 2.3:
Direct-Conversion Transmitters / 2.3.1:
Two-Step Transmitters / 2.3.2:
Proposed Transceiver Architecture / 2.4:
Compatibility with GPS / 2.5:
Stacked Inductors and Transformers / 3.:
Definitions of the Quality Factor / 3.1:
Large inductors with high self-resonance frequencies / 3.3:
Derivation of Self-Resonance Frequency / 3.4:
Modification of Stacked Inductors / 3.5:
Stacked Transformers / 3.6:
Experimental Results / 3.7:
Receiver Front End / 4.:
Low-Noise Amplifier / 4.1:
RF Mixers / 4.3:
First Downconversion / 4.4:
Second Downconversion / 4.5:
Divide-by-Two Circuit / 4.5.1:
Passive Mixers / 4.5.2:
Transmitter / 5.:
First Upconversion / 5.1:
Second Upconversion / 5.3:
Power Amplifier / 5.4:
Channel-Select Filter / 6.:
Noninvasive Filtering / 6.1:
General Idea / 6.2.1:
Noise Performance / 6.2.2:
Filter Tuning / 6.2.3:
Filter Design / 6.3:
Bluetooth Signal / 6.3.1:
Single-Tone Interferers / 6.3.2:
Intermodulation Specification / 6.3.3:
Order of Filter / 6.3.4:
Filter Realization / 6.4:
Transconductor Stage / 6.4.1:
Input Transconductor and Parallel Resistor / 6.4.2:
Capacitors / 6.4.3:
Test Setup / 6.4.4:
Equipment / 7.2.1:
Test Board / 7.2.2:
Noise Figure Measurements at Low Frequencies / 7.2.3:
First Prototype: RF Front-End Chip / 7.3:
Second Prototype: Transmitter/Receiver Chip / 7.4:
Conclusion / 8.:
References
Introduction / 1.:
Wireless Networks / 1.1:
GPS / 1.2:
77.

図書

図書
Didier Sornette
出版情報: Berlin : Springer, c2006  xxii, 528 p. ; 24 cm
シリーズ名: Springer series in synergetics
Springer complexity
所蔵情報: loading…
目次情報: 続きを見る
Useful Notions of Probability Theory / 1:
What Is Probability? / 1.1:
First Intuitive Notions / 1.1.1:
Objective Versus Subjective Probability / 1.1.2:
Bayesian View Point / 1.2:
Introduction / 1.2.1:
Bayes' Theorem / 1.2.2:
Bayesian Explanation for Change of Belief / 1.2.3:
Bayesian Probability and the Dutch Book / 1.2.4:
Probability Density Function / 1.3:
Measures of Central Tendency / 1.4:
Measure of Variations from Central Tendency / 1.5:
Moments and Characteristic Function / 1.6:
Cumulants / 1.7:
Maximum of Random Variables and Extreme Value Theory / 1.8:
Maximum Value Among N Random Variables / 1.8.1:
Stable Extreme Value Distributions / 1.8.2:
First Heuristic Derivation of the Stable Gumbel Distribution / 1.8.3:
Second Heuristic Derivation of the Stable Gumbel Distribution / 1.8.4:
Practical Use and Expression of the Coefficients of the Gumbel Distribution / 1.8.5:
The Gnedenko-Pickands-Balkema-de Haan Theorem and the pdfofPeaks-Over-Threshold / 1.8.6:
Sums of Random Variables, Random Walks and the Central Limit Theorem / 2:
TheRandomWalkProblem / 2.1:
AverageDrift / 2.1.1:
Diffusion Law / 2.1.2:
Brownian Motion as Solution of a Stochastic ODE / 2.1.3:
FractalStructure / 2.1.4:
Self-Affinity / 2.1.5:
Master and Diffusion (Fokker-Planck) Equations / 2.2:
Simple Formulation / 2.2.1:
GeneralFokker-PlanckEquation / 2.2.2:
ItoVersusStratonovich / 2.2.3:
Extracting Model Equations from Experimental Data / 2.2.4:
TheCentralLimit Theorem / 2.3:
Convolution / 2.3.1:
Statement / 2.3.2:
Conditions / 2.3.3:
CollectivePhenomenon / 2.3.4:
Renormalization Group Derivation / 2.3.5:
Recursion Relation and Perturbative Analysis / 2.3.6:
Large Deviations / 3:
CumulantExpansion / 3.1:
LargeDeviationTheorem / 3.2:
Quantification of the Deviation from the Central Limit Theorem / 3.2.1:
Heuristic Derivation of the Large Deviation Theorem(3.9) / 3.2.2:
Example: the Binomial Law / 3.2.3:
Non-identically Distributed Random Variables / 3.2.4:
Large Deviations with Constraints and the Boltzmann Formalism / 3.3:
Frequencies Conditioned byLargeDeviations / 3.3.1:
PartitionFunctionFormalism / 3.3.2:
LargeDeviationsintheDiceGame / 3.3.3:
Model Construction from Large Deviations / 3.3.4:
Large Deviations in the Gutenberg-Richter Law and the Gamma Law / 3.3.5:
Extreme Deviations / 3.4:
The "Democratic" Result / 3.4.1:
Application to the Multiplication of Random Variables: a Mechanism for Stretched Exponentials / 3.4.2:
Application to Turbulence and to Fragmentation / 3.4.3:
Large Deviations in the Sum of Variables with Power Law Distributions / 3.5:
General Case with Exponent ? > 2 / 3.5.1:
Borderline Case with Exponent ? = 2 / 3.5.2:
Power Law Distributions / 4:
Stable Laws: Gaussian and Lévy Laws / 4.1:
Definition / 4.1.1:
The Gaussian Probability Density Function / 4.1.2:
TheLog-NormalLaw / 4.1.3:
The Lévy Laws / 4.1.4:
Truncated Lévy Laws101 / 4.1.5:
PowerLaws / 4.2:
How Does One Tame "Wild" Distributions? / 4.2.1:
Multifractal Approach / 4.2.2:
Anomalous Diffusion of Contaminants in the Earth's Crust and the Atmosphere / 4.3:
General Intuitive Derivation / 4.3.1:
More Detailed Model of Tracer Diffusion in the Crust / 4.3.2:
Anomalous Diffusion in a Fluid / 4.3.3:
Intuitive Calculation Tools for Power Law Distributions / 4.4:
Fox Function, Mittag-Leffler Function and Lévy Distributions / 4.5:
Fractals and Multifractals / 5:
Fractals / 5.1:
A First Canonical Example: the Triadic Cantor Set / 5.1.1:
How Long Is the Coast of Britain? / 5.1.3:
The Hausdorff Dimension / 5.1.4:
ExamplesofNaturalFractals / 5.1.5:
Multifractals / 5.2:
Correction Method for Finite Size Effects and Irregular Geometries / 5.2.1:
Origin of Multifractality and Some Exact Results / 5.2.3:
Generalization of Multifractality: Infinitely Divisible Cascades / 5.2.4:
ScaleInvariance / 5.3:
Relation with Dimensional Analysis / 5.3.1:
TheMultifractalRandomWalk / 5.4:
A First Step: the Fractional Brownian Motion / 5.4.1:
Definition and Properties of the Multifractal Random Walk / 5.4.2:
Complex Fractal Dimensions and Discrete Scale Invariance / 5.5:
Definition of Discrete Scale Invariance / 5.5.1:
Log-Periodicity and Complex Exponents / 5.5.2:
Importance and Usefulness of Discrete Scale Invariance / 5.5.3:
Scenarii Leading to Discrete Scale Invariance / 5.5.4:
Rank-Ordering Statistics and Heavy Tails / 6:
Probability Distributions / 6.1:
Definition of Rank Ordering Statistics / 6.2:
NormalandLog-NormalDistributions / 6.3:
TheExponentialDistribution / 6.4:
PowerLawDistributions / 6.5:
MaximumLikelihoodEstimation / 6.5.1:
QuantilesofLargeEvents / 6.5.2:
Power Laws with a Global Constraint: "Fractal Plate Tectonics" / 6.5.3:
The Gamma Law / 6.6:
The Stretched Exponential Distribution / 6.7:
Maximum Likelihood and Other Estimators ofStretchedExponentialDistributions / 6.8:
Two-Parameter Stretched Exponential Distribution / 6.8.1:
Three-Parameter Weibull Distribution / 6.8.3:
GeneralizedWeibullDistributions / 6.8.4:
Statistical Mechanics: Probabilistic Point of View and the Concept of "Temperature" / 7:
Statistical Derivation of the Concept of Temperature / 7.1:
Statistical Thermodynamics / 7.2:
Statistical Mechanics as Probability Theory with Constraints / 7.3:
GeneralFormulation / 7.3.1:
First Law of Thermodynamics / 7.3.2:
ThermodynamicPotentials / 7.3.3:
Does the Concept of Temperature Apply to Non-thermal Systems? / 7.4:
Formulation of the Problem / 7.4.1:
AGeneralModelingStrategy / 7.4.2:
DiscriminatingTests / 7.4.3:
Stationary Distribution with External Noise / 7.4.4:
Effective Temperature Generated byChaoticDynamics / 7.4.5:
Principle of Least Action for Out-Of-Equilibrium Systems / 7.4.6:
Superstatistics / 7.4.7:
Long-Range Correlations / 8:
Criterion for the Relevance of Correlations / 8.1:
StatisticalInterpretation / 8.2:
An Application: Super-Diffusion in a Layered Fluid with Random Velocities / 8.3:
AdvancedResultsonCorrelations / 8.4:
CorrelationandDependence / 8.4.1:
Statistical Time Reversal Symmetry / 8.4.2:
Fractional Derivation and Long-Time Correlations / 8.4.3:
Phase Transitions: Critical Phenomena and First-Order Transitions / 9:
SpinModelsat TheirCriticalPoints / 9.1:
Definition of the Spin Model / 9.2.1:
CriticalBehavior / 9.2.2:
Long-Range Correlations of Spin Models at their Critical Points / 9.2.3:
First-OrderVersusCriticalTransitions / 9.3:
Definition and Basic Properties / 9.3.1:
Dynamical Landau-Ginzburg Formulation / 9.3.2:
The Scaling Hypothesis: Dynamical Length Scales for Ordering / 9.3.3:
Transitions, Bifurcations and Precursors / 10:
"Supercritical" Bifurcation / 10.1:
Critical PrecursoryFluctuations / 10.2:
"Subcritical" Bifurcation / 10.3:
Scaling and Precursors Near Spinodals / 10.4:
SelectionofanAttractorintheAbsence of a Potential / 10.5:
The Renormalization Group / 11:
General Framework / 11.1:
An Explicit Example: Spins on a Hierarchical Network / 11.2:
Renormalization Group Calculation / 11.2.1:
Fixed Points, Stable Phases and Critical Points / 11.2.2:
Singularities and Critical Exponents / 11.2.3:
Complex Exponents and Log-Periodic Correctionsto Scaling / 11.2.4:
"Weierstrass-Type Functions" from Discrete Renormalization Group Equations / 11.2.5:
Criticality and the Renormalization Group on Euclidean Systems / 11.3:
A Novel Application to the Construction of Functional Approximants / 11.4:
GeneralConcepts / 11.4.1:
Self-Similar Approximants / 11.4.2:
Towards a Hierarchical View of the World / 11.5:
The Percolation Model / 12:
Percolationas a Model ofCracking / 12.1:
Effective Medium Theory and Percolation / 12.2:
Renormalization Group Approach to Percolation and Generalizations / 12.3:
Cell-to-Site Transformation / 12.3.1:
A Word of Caution on Real Space Renormalization Group Techniques / 12.3.2:
The Percolation Model on the Hierarchical Diamond Lattice / 12.3.3:
Directed Percolation / 12.4:
Definitions / 12.4.1:
UniversalityClass / 12.4.2:
Field Theory: Stochastic Partial Differential Equation with Multiplicative Noise / 12.4.3:
Self-Organized Formulation of Directed Percolation and Scaling Laws / 12.4.4:
Rupture Models / 13:
TheBranchingModel / 13.1:
Mean Field Version or Branching on the Bethe Lattice / 13.1.1:
A Branching-Aggregation Model Automatically Functioning at Its Critical Point / 13.1.2:
Generalization of Critical Branching Models / 13.1.3:
Fiber Bundle Models and the Effects of Stress Redistribution / 13.2:
One-Dimensional System of Fibers Associated in Series / 13.2.1:
Democratic Fiber Bundle Model (Daniels, 1945) / 13.2.2:
Hierarchical Model / 13.3:
The Simplest Hierarchical Model of Rupture / 13.3.1:
Quasi-Static Hierarchical Fiber Rupture Model / 13.3.2:
Hierarchical Fiber Rupture Model with Time-Dependence / 13.3.3:
Quasi-Static Models in Euclidean Spaces / 13.4:
A Dynamical Model of Rupture Without Elasto-Dynamics: the "Thermal Fuse Model" / 13.5:
Time-to-Failure and Rupture Criticality / 13.6:
Critical Time-to-Failure Analysis / 13.6.1:
Time-to-Failure Behavior in the Dieterich Friction Law / 13.6.2:
Mechanisms for Power Laws / 14:
Temporal Copernican Principle and ? = 1 Universal Distribution of Residual Lifetimes / 14.1:
Change of Variable / 14.2:
Power Law Change of Variable Close to the Origin / 14.2.1:
CombinationofExponentials / 14.2.2:
Maximization of the Generalized Tsallis Entropy / 14.3:
Superposition of Distributions / 14.4:
Power Law Distribution ofWidths / 14.4.1:
Sum of Stretched Exponentials (Chap. 3) / 14.4.2:
Double Pareto Distribution by Superposition of Log-Normalpdf's / 14.4.3:
Random Walks: Distribution of Return Times to the Origin / 14.5:
Derivation / 14.5.1:
Applications / 14.5.2:
Sweeping of a Control Parameter Towards an Instability / 14.6:
Growth with Preferential Attachment / 14.7:
Multiplicative Noise with Constraints / 14.8:
Definition of the Process / 14.8.1:
The Kesten Multiplicative Stochastic Process / 14.8.2:
Random Walk Analogy / 14.8.3:
Exact Derivation, Generalization and Applications / 14.8.4:
The "Coherent-Noise" Mechanism / 14.9:
Avalanches in Hysteretic Loops and First-Order Transitions with Randomness / 14.10:
"Highly Optimized Tolerant" (HOT) Systems / 14.11:
Mechanism for the Power Law Distribution of Fire Sizes / 14.11.1:
"Constrained Optimization with Limited Deviations" (COLD) / 14.11.2:
HOT versus Percolation / 14.11.3:
Self-Organized Criticality / 15:
What Is Self-OrganizedCriticality? / 15.1:
SandpileModels / 15.1.1:
Generalities / 15.2.1:
TheAbelianSandpile / 15.2.2:
Threshold Dynamics / 15.3:
Generalization / 15.3.1:
Illustration of Self-Organized Criticality Within the Earth's Crust / 15.3.2:
Scenarios for Self-Organized Criticality / 15.4:
Nonlinear Feedback of the "Order Parameter" onto the "Control Parameter" / 15.4.1:
Generic Scale Invariance / 15.4.3:
Mapping onto a Critical Point / 15.4.4:
Mapping to Contact Processes / 15.4.5:
Critical Desynchronization / 15.4.6:
Extremal Dynamics / 15.4.7:
Dynamical System Theory of Self-Organized Criti-cality / 15.4.8:
Tests of Self-Organized Criticality in Complex Systems: the Example of the Earth'sCrust / 15.5:
Introduction to the Physics of Random Systems / 16:
The Random Energy Model / 16.1:
Non-Self-Averaging Properties / 16.3:
Fragmentation Models / 16.3.1:
Randomness and Long-Range Laplacian Interactions / 17:
Levy Distributions from Random Distributions of Sources with Long-Range Interactions / 17.1:
Holtsmark's Gravitational Force Distribution / 17.1.1:
Generalization to Other Fields (Electric, Elastic, Hydrodynamics) / 17.1.2:
Long-Range Field Fluctuations Due to Irregular Arrays of Sources at Boundaries / 17.2:
Problem and Main Results / 17.2.1:
Calculation Methods / 17.2.2:
References / 17.2.3:
Index
Useful Notions of Probability Theory / 1:
What Is Probability? / 1.1:
First Intuitive Notions / 1.1.1:
78.

図書

図書
Michael Köhler, Wolfgang Fritzsche
出版情報: Weinheim : Wiley-VCH, c2004  ix, 272 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
Definition of Nanostructures / 1.1.2:
Insight into the Nanoworld / 1.1.3:
Intervention into the Nanoworld / 1.1.4:
Building Blocks of Nanotechnology / 1.2:
Interactions and Topology / 1.3:
The Microscopic Environment of the Nanoworld / 1.4:
Molecular Basics / 2:
Particles and Bonds / 2.1:
Chemical Bonds in Nanotechnology / 2.1.1:
Van der Waals Interactions / 2.1.2:
Dipole-Dipole Interactions / 2.1.3:
Ionic Interactions / 2.1.4:
Metal Bonds / 2.1.5:
Covalent Bonds / 2.1.6:
Coordinative Bonds / 2.1.7:
Hydrogen Bridge Bonds / 2.1.8:
Polyvalent Bonds / 2.1.9:
Chemical Structure / 2.2:
Binding Topologies / 2.2.1:
Building Blocks of Covalent Architecture / 2.2.2:
Units for a Coordinated Architecture / 2.2.3:
Building Blocks for Weakly Bound Aggregates / 2.2.4:
Assembly of Complex Structures through the Internal Hierarchy of Binding Strengths / 2.2.5:
Reaction Probability and Reaction Equilibrium / 2.2.6:
Microtechnological Foundations / 3:
Planar Technology / 3.1:
Preparation of Thin Layers / 3.2:
Condition and Preprocessing of the Substrate Surface / 3.2.1:
Layer Deposition from the Gas Phase / 3.2.2:
Evaporation / 3.2.3:
Sputtering / 3.2.4:
Chemical Vapor Deposition / 3.2.5:
Galvanic Deposition / 3.2.6:
Deposition by Spinning (Spin Coating) / 3.2.7:
Shadow-mask Deposition Techniques / 3.2.8:
Preparation of Ultrathin Inorganic Layers and Surface-bound Nanoparticles / 3.3:
Ultrathin Layers by Vacuum Deposition Processes / 3.3.1:
Deposition of Ultrathin Films from the Liquid Phase / 3.3.2:
In Situ Generation of Ultrathin Inorganic Films by Chemical Surface Modification / 3.3.3:
In Situ Formation of Ultrathin Inorganic Layers on Heteroorganic Materials / 3.3.4:
Immobilization of Nanoparticles / 3.3.5:
In Situ Formation of Inorganic Nanoparticles / 3.3.6:
Structure Generation and Fabrication of Lithographic Masks / 3.4:
Adhesive Mask Technique / 3.4.1:
Role of Resist in Photolithography / 3.4.2:
Serial Pattern Transfer / 3.4.3:
Group Transfer Processes / 3.4.4:
Maskless Structure Generation / 3.4.5:
Soft Lithography / 3.4.6:
Etching Processes / 3.5:
Etching Rate and Selectivity / 3.5.1:
Isotropic and Anisotropic Etching Processes / 3.5.2:
Lithographic Resolution in Etching Processes / 3.5.3:
Wet Etching Processes / 3.5.4:
Dry Etching Processes / 3.5.5:
High-resolution Dry Etching Techniques / 3.5.6:
Choice of Mask for Nanolithographic Etching Processes / 3.5.7:
Packaging / 3.6:
Biogenic and Bioanalogue Molecules in Technical Microstructures / 3.7:
Preparation of Nanostructures / 4:
Principles of Fabrication / 4.1:
Subtractive and Additive Creation of Nanostructures / 4.1.1:
Nanostructure Generation by Lift-off Processes / 4.1.2:
Principles of Nanotechnical Shape-definition and Construction / 4.1.3:
Nanomechanical Structure Generation / 4.2:
Scaling Down of Mechanical Processing Techniques / 4.2.1:
Local Mechanical Cutting Processes / 4.2.2:
Surface Transport Methods / 4.2.3:
Reshaping Processes / 4.2.4:
Printing Processes / 4.2.5:
Nanolithography / 4.3:
Structure Transfer by Electromagnetic Radiation / 4.3.1:
Nanolithographic Transfer of Groups of Elements by Optical Projection / 4.3.2:
EUV and X-ray Lithography / 4.3.3:
Multilayer Resists Techniques with Optical Pattern Transfer / 4.3.4:
Near-field Optical Structure Techniques with Contact Masks / 4.3.5:
Energetic Particles in Nanolithographic Structure Transfer / 4.3.6:
Electron Beam Lithography / 4.3.7:
Ion Beam Lithography / 4.3.8:
Atomic Beam Lithography / 4.3.9:
Molecular and Nanoparticle Beam Lithography / 4.3.10:
Direct Writing of Structures by a Particle Beam / 4.3.11:
Single-particle Beam Processes / 4.3.12:
Nanofabrication by Self-structuring Masks / 4.3.13:
Nanofabrication by Scanning Probe Techniques / 4.4:
Scanning Force Probes / 4.4.1:
Particle Manipulation With a Scanning Tunneling Microscope (STM) / 4.4.2:
Thermo-mechanical Writing of Nanostructures / 4.4.3:
Electrically Induced Structure Generation by Scanning Probe Techniques / 4.4.4:
Chemical Electrodeless Induced Scanning Probe Structure Generation / 4.4.5:
Nanostructure Generation by Optical Near-field Probes / 4.4.6:
Nanotechnical Structures / 5:
Inorganic Solids / 5.1:
Influence of Material Morphology on Nanoscale Pattern Processes / 5.1.1:
Inorganic Dielectrics / 5.1.2:
Metals / 5.1.3:
Semiconductors / 5.1.4:
Carbon / 5.1.5:
Organic Solids and Layer Structures / 5.2:
Solids Composed of Smaller Molecules / 5.2.1:
Organic Monolayer and Multilayer Stacks / 5.2.2:
Synthetic Organic Polymers / 5.2.3:
Biopolymers / 5.2.4:
Molecular Monolayer and Layer Architectures / 5.3:
Langmuir-Blodgett Films / 5.3.1:
Self-assembled Surface Films / 5.3.2:
Binding of Molecules on Solid Substrate Surfaces / 5.3.3:
Secondary Coupling of Molecular Monolayers / 5.3.4:
Categories of Molecular Layers / 5.3.5:
Molecular Coupling Components (Linkers) and Distance Components (Spacers) / 5.3.6:
Definition of Binding Spots on Solid Substrates / 5.3.7:
Architectures with Single Molecules / 5.4:
Single Molecules as Nanostructures / 5.4.1:
Strategies of Molecular Construction / 5.4.2:
Biogenic and Bioanalogous Nanoarchitectures / 5.4.3:
DNA Nanoarchitectures / 5.4.4:
Synthetic Supramolecules / 5.4.5:
Nanoparticles and Nanocompartments / 5.4.6:
Combination of Molecular Architectures and Nanoparticles with Planar Technical Structures / 5.5:
Characterization of Nanostructures / 6:
Geometrical Characterization / 6.1:
Layer Thickness and Vertical Structure Dimensions / 6.1.1:
Lateral Dimensions / 6.1.2:
Structures that Assist Measurement / 6.1.3:
Characterization of Composition of Layers and Surfaces / 6.2:
Atomic Composition / 6.2.1:
Characterization of the Chemical Surface / 6.2.2:
Functional Characterization of Nanostructures / 6.3:
Nanotransducers / 7:
Design of Nanotransducers / 7.1:
Nanomechanical Elements / 7.2:
Nanomechanical Sensors / 7.2.1:
Nanometer-precision Position Measurements with Conventional Techniques / 7.2.2:
Electrically Controlled Nanoactuators / 7.2.3:
Chemically Driven Nanoactuators / 7.2.4:
Rigidity of Nanoactuators / 7.2.5:
Nanoelectronic Devices / 7.3:
Electrical Contacts and Nanowires / 7.3.1:
Nanostructured Tunneling Barriers / 7.3.2:
Quantum Dots and Localization of Elementary Particles / 7.3.3:
Nanodiodes / 7.3.4:
Electron Islands and Nanotransistors / 7.3.5:
Nanoswitches, Molecular Switches and Logic Elements / 7.3.6:
Nanooptical Devices / 7.4:
Nanostructures as Optical Sensors / 7.4.1:
Nanostructured Optical Actuators / 7.4.2:
Nanooptical Switching and Conversion Elements / 7.4.3:
Magnetic Nanotransducers / 7.5:
Chemical Nanoscale Sensors and Actuators / 7.6:
Technical Nanosystems / 8:
What are Nanosystems? / 8.1:
Systems with Nanocomponents / 8.2:
Entire Systems with Nanometer Dimensions / 8.3:
Table of Examples
References
Index
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
79.

図書

図書
Yoshiharu Doi
出版情報: New York, N.Y. : VCH, c1990  ix, 156 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
Environmentally Degradable Polyesters / 1.3:
References
Fermentation and Analysis of Microbial Polyesters / Chapter 2:
Fermentation Production / 2.1:
Poly(3-hydroxybutyrate) / 2.1.1:
Poly(hydroxyalkanoates) / 2.1.2:
Polymer Isolation / 2.2:
Solvent Extraction / 2.2.1:
Alkaline Hypochlorite Treatment / 2.2.2:
Enzyme Treatment / 2.2.3:
Analysis / 2.3:
Polyester Content of Cells / 2.3.1:
Composition of Copolymers / 2.3.2:
Molecular Weight? / 2.3.3:
Microorganisms and Poly(3-hydroxyalkanoates) / Chapter 3:
Poly(3-hydroxybutyrate) in Microorganisms / 3.1:
Functions of Poly(3-hydroxybutyrate) / 3.1.1:
Structure of Native P(3HB) Granules / 3.1.2:
Biosynthesis of Poly(3-hydroxyalkanoates) / 3.2:
Alcaligenes eutrophus / 3.2.1:
Pseudomonas oleovorans / 3.2.2:
Other Bacterial Strains / 3.2.3:
Molecular Structures of Poly(3-hydroxyalkanoates) / 3.3:
Poly(3-hydroxybutyrate-co-3-hydroxyalerate) / 3.3.1:
Poly(3-hydroxyalkanoates-co-3-hydroxy--chloroalkanoates) / 3.3.2:
Poly(3-hydroxyalkanoates) Metabolism / Chapter 4:
Pathways of Poly(3-hydroxybutyrate) Synthesis / 4.1:
Pathways of Poly(3-hydroxyalkanoates) Synthesis / 4.2:
Enzymology of Poly(3-hydroxyalkanoates) Synthesis / 4.3:
3-Ketothiolase / 4.3.1:
Acetoacetyl-CoA Reductase / 4.3.2:
P(3HB) Synthase / 4.3.3:
Pathways of P(3-hydroxybutyrate) Degradation / 4.4:
Cyclic Nature of Poly(3-hydroxyalkanoates) Metabolism / 4.5:
Replacement of P(3HB) by P(3HB-co-3HV) / 4.5.1:
Replacement of P(3HB-co-3HV) by P(3HB) / 4.5.2:
Application to PHA Fermentation / 4.5.3:
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) / Chapter 5:
Alcaligenes eutrophus and Carbon Substrates / 5.1:
Molecular Structure / 5.2:
Biosynthetic Pathway? / 5.3:
Structure and Properties of Poly(3-hydroxybutyrate) / Chapter 6:
Crystal Structure and Properties / 6.1:
Crystal Structure / 6.1.1:
Solid-State Properties / 6.1.2:
Solution Properties / 6.2:
Solid-State Properties of Copolyesters / Chapter 7:
Composition and Physical Properties / 7.1:
X-Ray Diffraction Analysis / 7.1.1:
Solid-State CP/MAS 13C-NMR Analysis / 7.1.2:
Mechanical Properties / 7.1.3:
Thermal Properties / 7.2:
Melting Temperatures / 7.2.1:
Glass-Transition Temperatures / 7.2.2:
Thermal Stability / 7.2.3:
Kinetics of Crystallization / 7.3:
Biodegradation of Microbial Polyesters / Chapter 8:
Extracellular P(3HB) Depolymerase / 8.1:
Pseudomonas lemoignei / 8.1.1:
Alcaligenes faecalis / 8.1.2:
Enzymatic Hydrolysis of Copolyesters / 8.2:
Simple Hydrolysis of Polyesters / 8.3:
Applications and Prospects / 8.4:
Environmentally Degradable Plastics / 8.4.1:
Medical Applications / 8.4.2:
Index
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
80.

図書

図書
authors, Fritz Vögtle, Gabriele Richardt, Nicole Werner ; translator, Anthony J. Rackstraw
出版情報: Weinheim : Wiley-VCH, c2009  xi, 342 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical - Cascade molecules and dendrimers / 1.1:
Dendritic architectures / 1.2:
Perfection, defects, dispersity / 1.3:
Definition and classification of dendritic molecules / 1.4:
Nomenclature of dendritic molecules / 1.5:
Newkome nomenclature / 1.5.1:
Cascadane nomenclature / 1.5.2:
Bibliography and Notes for Chapter 1 "Introduction"
Synthetic methods for dendritic molecules / 2:
Divergent synthesis / 2.1:
Convergent synthesis / 2.2:
Recent synthetic methods / 2.3:
Orthogonal synthesis / 2.3.1:
Double-stage convergent method / 2.3.2:
Double-exponential method / 2.3.3:
Hypermonomer method / 2.3.4:
Click chemistry / 2.3.5:
Solid phase synthesis / 2.4:
Coordination-chemical synthesis / 2.5:
Metal complex as core unit / 2.5.1:
Metal complex as branching unit / 2.5.2:
Supramolecular synthesis / 2.6:
Hyperbranched polymers / 2.7:
Dendronised linear polymers / 2.8:
Polymer-analogous method / 2.8.1:
Macromonomer method / 2.8.2:
Dendro-Isomers / 2.9:
Bibliography and Notes for Chapter 2 "Synthetic methods for dendritic molecules"
Functional dendrimers / 3:
Monofunctional dendrimers / 3.1:
Functional core / 3.1.1:
Functional periphery / 3.1.2:
Functionalisation of terminal groups / 3.1.2.1:
Introduction of peripheral groups prior to dendrimer growth / 3.1.2.2:
Functional units in the dendrimer scaffold / 3.1.3:
Modification prior to dendrimer growth / 3.1.3.1:
Internal modification on conclusion of dendrimer growth / 3.1.3.2:
Multifunctional dendrimers
Bifunctionalised molecular periphery / 3.2.1:
Two different functional units in different parts of the molecule / 3.2.2:
More than two different functional units / 3.2.3:
Overview of functional dendrimers and their synthesis / 3.2.4:
Bibliography and Notes for Chapter 3 "Functional dendrimers"
Types of dendrimers and their syntheses / 4:
Achiral dendrimers / 4.1:
POPAM / 4.1.1:
PAMAM / 4.1.2:
POMAM / 4.1.3:
Polylysine dendrimers / 4.1.4:
Dendritic hydrocarbons / 4.1.5:
Condensed arene components - Iptyceness / 4.1.5.1:
Dendrimers from arene and multiply bonded building blocks / 4.1.5.2:
Stilbenoid dendrimers / 4.1.5.3:
Hyperbranched polybenzenes / 4.1.5.4:
Carbon/oxygen-based (and Fréchet) dendrimers / 4.1.6:
Polyether dendrimers / 4.1.6.1:
Polyester dendrimers / 4.1.6.2:
Carbohydrate dendrimers (glycodendrimers) / 4.1.6.3:
Porphyrin-based dendrimers / 4.1.7:
Ionic dendrimers / 4.1.8:
Polyanionic dendrimers / 4.1.8.1:
Silicon-based dendrimers / 4.1.8.2:
Silane dendrimers / 4.1.9.1:
Carbosilane dendrimers / 4.1.9.2:
Carbosiloxane dendrimers / 4.1.9.3:
Siloxane dendrimers / 4.1.9.4:
Hyperbranched silicon-based polymers / 4.1.9.5:
Phosphorus-based dendrimers / 4.1.10:
Metallodendrimers (and Newkome dendrimers) / 4.1.11:
Bibliography and Notes for Section 4.1 "Achiral dendrimers"
Chiral dendrimers / 4.2:
Classification of chiral dendrimers / 4.2.1:
Studies on the chirality of dendritic molecules / 4.2.2:
Chiroptical studies / 4.2.2.1:
Possible applications of chiral dendrimers / 4.2.2.2:
Dendrimers with chiral core and achiral branching scaffold / 4.2.3:
Chiroptical studies on dendrimers with chiral cores / 4.2.3.1:
Possible applications of chiral-core dendrimers / 4.2.3.2:
Dendrimers with chiral building blocks as spacers or branching units / 4.2.4:
Chiroptical studies on dendrimers with chiral dendrimer scaffold / 4.2.4.1:
Possible applications of dendrimers with chiral branching scaffold / 4.2.4.2:
Chirality in the periphery / 4.2.5:
Chiroptical studies on dendrimers with peripheral chiral units / 4.2.5.1:
Possible applications of dendrimers with peripheral chiral units / 4.2.5.2:
Chiral dendrimers for asymmetric catalysis / 4.2.6:
Interpretation of the chirality of dendritic molecules / 4.2.7:
Bibliography and Notes for Section 4.2 "Chiral Dendrimers"
Photophysical properties of dendirtic molecules / 5:
Luminescence and energy transfer / 5.1:
Luminescence / 5.1.1:
Energy transfer / 5.1.2:
Dexter mechanism: Energy transfer by radiative emission / 5.1.2.1:
Förster mechanism: Energy transfer by dipole-dipole interactions / 5.1.2.2:
Examples from the field of dendritic molecules / 5.1.2.3:
Antenna effect and photoisomerisation of dendrimers / 5.2:
Antenna effect / 5.2.1:
Photoisomerisation / 5.2.2:
Bibliography and Notes for Chapter 5 "Photophysical properties of dendritic molecules"
(Special) chemical reactions of dendritic molecules / 6:
Covalent chemical reactions / 6.1:
Metathesis / 6.1.1:
Molecular imprinting / 6.1.2:
Covalent introduction of functionalities in the interior of dendritic molecules / 6.1.3:
Supramolecular (host/guest) interactions / 6.2:
Non-covalent modification of a dendrimer periphery / 6.2.1:
Self-assembly of dendrimers / 6.2.2:
Inclusion of guest species in dendritic host molecules / 6.2.3:
Dendrimers with multiple receptor units / 6.2.3.1:
Guest inclusion by steric compression / 6.2.3.2:
Guest inclusion by dynamic processes (diffusion) / 6.2.3.3:
Dendritic stopper groups (in rotaxanes) / 6.2.4:
Dendritic effects / 6.3:
Dendritic effects in inclusion of guests / 6.3.1:
Dendritic effects in catalysis / 6.3.2:
Metal-containing dendritic catalysts / 6.3.2.1:
Metal-free dendritic catalysts / 6.3.2.2:
Dendritic effects on electrochemical properties / 6.3.3:
Redox gradients / 6.3.3.1:
Redox sensors / 6.3.3.3:
Redox potential and redox transfer kinetics / 6.3.3.4:
Charge-separation processes / 6.3.3.5:
Summary of the dendritic effect / 6.3.4:
Bibliography and Notes for Chapter 6 "(Special) chemical reactions of dendritic molecules"
Characterisation and analysis / 7:
Chromatography / 7.1:
Liquid chromatography / 7.1.1:
Preparative liquid chromatography / 7.1.1.1:
High-performance liquid chromatography / 7.1.1.2:
Gel permeation chromatography / 7.1.2:
Gel electrophoresis / 7.2:
NMR spectroscopy / 7.3:
(1D)-NMR spectroscopic studies / 7.3.1:
Multidimensional NMR spectroscopy in dendrimer research / 7.3.2:
Diffusion NMR spectroscopy / 7.3.3:
Dynamic NMR spectroscopy / 7.3.4:
Mass spectrometry / 7.4:
Gentle ionisation methods: MALDI and ESI / 7.4.1:
Study of dendrimers by MALDI and ESI-MS / 7.4.1.1:
X-ray crystal structure analysis / 7.5:
Small-angle scattering / 7.6:
Principle of small-angle scattering / 7.6.1:
Capability of small-angle scattering / 7.6.2:
Structural analysis of dissolved dendrimers with SANS and SAXS / 7.6.3:
Radial segment density distribution of flexible dendrimers / 7.6.3.1:
Distribution of end groups / 7.6.3.2:
Intermolecular interactions of flexible dendrimers in solution / 7.6.3.3:
Scanning probe microscopy / 7.7:
STM and AFM / 7.7.1:
AFM images of dendrimers / 7.7.1.1:
STM images of dendrimers / 7.7.1.2:
Transmission electron microscopy / 7.8:
TEM / 7.8.1:
TEM images of dendrimers / 7.8.1.1:
Chiroptical methods / 7.9:
Optical rotatory dispersion and circular dichroism / 7.9.1:
Chiroptical studies on chiral dendritic structures / 7.9.2:
Summary / 7.10:
Bibliography and Notes for Chapter 7 "Characterization and analysis"
Special properties and potential applications / 8:
Catalysis, membrane technology / 8.1:
Dendrimers as catalyst supports / 8.2.1:
Catalytic dendrimers for membrane reactors / 8.2.2:
Dendrimers in enantioselective catalysis / 8.2.3:
Dendrimers as phase transfer catalysts / 8.2.4:
Pigments, adhesives, additives in chemical materials / 8.3:
Dendrimers as additives / 8.3.1:
Dendritic polymers for printing inks / 8.3.2:
Dendritic polymers for paints / 8.3.3:
Dendritic polymers as additives in foam formulation / 8.3.4:
Network precursors for plastics / 8.3.5:
Dendrimers as nanocapsules for dyes and for molecular imprinting / 8.3.6:
Dendrimers for displays and (opto)electronics / 8.4:
Liquid-crystalline dendrimers / 8.4.1:
Biomimetics, sensor technology, diagnostics (fluorescence) / 8.5:
Protein dendrimers / 8.5.1:
Glycomimetics / 8.5.2:
Dendrimers in sensor technology / 8.5.3:
Quartz micro balance with dendritic sensor layers / 8.5.3.1:
Luminescent dendrimers as sensor materials / 8.5.3.2:
Fluorescing PET sensors / 8.5.3.3:
Dendrimers in medical diagnostics / 8.6:
Magnetic resonance imaging (MRI) processes / 8.6.1:
DNA dendrimers as biosensors for DNA hybridisation / 8.6.2:
Medical applications / 8.7:
Dendrimers as carriers for cytostatic agents / 8.7.1:
Gene therapy / 8.7.2:
Photodynamic therapy / 8.7.3:
Dendrimers in prevention against HIV / 8.7.4:
Culture of organs and tissue / 8.7.5:
Wound healing / 8.7.5.1:
Boron neutron capture therapy / 8.7.6:
Dendrimers in nanotechnology / 8.8:
Photoswitchable dendrimers / 8.8.1:
Dendrimers as impellers / 8.8.2:
Dendrimers as nanotubes / 8.8.3:
Dendritic polymers as templates / 8.8.4:
Bibliography and Notes for Chapter 8 "Special properties and potential applications"
Outlook
Subject Index
Preface
Introduction / 1:
Historical - Cascade molecules and dendrimers / 1.1:
81.

図書

図書
Michael R. Chernick, Robert A. LaBudde
出版情報: Hoboken, N.J. : Wiley, c2011  xvii, 216 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
List of Tables
Introduction / 1:
Historical Background / 1.1:
Definition and Relationship to the Delta Method and Other Resampling Methods / 1.2:
Jackknife / 1.2.1:
Delta Method / 1.2.2:
Cross-Validation / 1.2.3:
Subsampling / 1.2.4:
Wide Range of Applications / 1.3:
The Bootstrap and the R Language System / 1.4:
Historical Notes / 1.5:
Exercises / 1.6:
References
Estimation / 2:
Estimating Bias / 2.1:
Bootstrap Adjustment / 2.1.1:
Error Rate Estimation in Discriminant Analysis / 2.1.2:
Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation / 2.1.3:
Patch Data Example / 2.1.4:
Estimating Location / 2.2:
Estimating a Mean / 2.2.1:
Estimating a Median / 2.2.2:
Estimating Dispersion / 2.3:
Estimating an Estimate's Standard Error / 2.3.1:
Estimating Interquartile Range / 2.3.2:
Linear Regression / 2.4:
Overview / 2.4.1:
Bootstrapping Residuals / 2.4.2:
Bootstrapping Pairs (Response and Predictor Vector) / 2.4.3:
Heteroscedasticity of Variance: The Wild Bootstrap / 2.4.4:
A Special Class of Linear Regression Models: Multivariable Fractional Polynomials / 2.4.5:
Nonlinear Regression / 2.5:
Examples of Nonlinear Models / 2.5.1:
A Quasi-Optical Experiment / 2.5.2:
Nonparametric Regression / 2.6:
Examples of Nonparametric Regression Models / 2.6.1:
Bootstrap Bagging / 2.6.2:
Confidence Intervals / 2.7:
Subsampling, Typical Value Theorem, and Efron's Percentile Method / 3.1:
Bootstrap-t / 3.2:
Iterated Bootstrap / 3.3:
Bias-Corrected (BC) Bootstrap / 3.4:
BCa and ABC / 3.5:
Tilted Bootstrap / 3.6:
Variance Estimation with Small Sample Sizes / 3.7:
Hypothesis Testing / 3.8:
Relationship to Confidence Intervals / 4.1:
Why Test Hypotheses Differently? / 4.2:
Tendril DX Example / 4.3:
Klingenberg Example: Binary Dose-Response / 4.4:
Time Series / 4.5:
Forecasting Methods / 5.1:
Time Domain Models / 5.2:
Can Bootstrapping Improve Prediction Intervals? / 5.3:
Model-Based Methods / 5.4:
Bootstrapping Stationary Autoregressive Processes / 5.4.1:
Bootstrapping Explosive Autoregressive Processes / 5.4.2:
Bootstrapping Unstable Autoregressive Processes / 5.4.3:
Bootstrapping Stationary ARMA Processes / 5.4.4:
Block Bootstrapping for Stationary Time Series / 5.5:
Dependent Wild Bootstrap (DWB) / 5.6:
Frequency-Based Approaches for Stationary Time Series / 5.7:
Sieve Bootstrap / 5.8:
Bootstrap Variants / 5.9:
Bayesian Bootstrap / 6.1:
Smoothed Bootstrap / 6.2:
Parametric Bootstrap / 6.3:
Double Bootstrap / 6.4:
The m-Out-of-n Bootstrap / 6.5:
The Wild Bootstrap / 6.6:
Chapter Special Topics / 6.7:
Spatial Data / 7.1:
Kriging / 7.1.1:
Asymptotics for Spatial Data / 7.1.2:
Block Bootstrap on Regular Grids / 7.1.3:
Block Bootstrap on Irregular Grids / 7.1.4:
Subset Selection in Regression / 7.2:
Gong's Logistic Regression Example / 7.2.1:
Gunter's Qualitative Interaction Example / 7.2.2:
Determining the Number of Distributions in a Mixture / 7.3:
Censored Data / 7.4:
P-Value Adjustment / 7.5:
The Westfall-Young Approach / 7.5.1:
Passive Plus Example / 7.5.2:
Consulting Example / 7.5.3:
Bioequivalence / 7.6:
Individual Bioequivalence / 7.6.1:
Population Bioequivalence / 7.6.2:
Process Capability Indices / 7.7:
Missing Data / 7.8:
Point Processes / 7.9:
Bootstrap to Detect Outliers / 7.10:
Lattice Variables / 7.11:
Covariate Adjustment of Area Under the Curve Estimates for Receiver Operating Characteristic (ROC) Curves / 7.12:
Bootstrapping in SAS / 7.13:
When the Bootstrap is Inconsistent and How to Remedy It / 7.14:
Too Small of a Sample Size / 8.1:
Distributions with Infinite Second Moments / 8.2:
Example of Inconsistency / 8.2.1:
Remedies / 8.2.3:
Estimating Extreme Values / 8.3:
Survey Sampling / 8.3.1:
m-Dependent Sequences / 8.4.1:
Example of Inconsistency When Independence Is Assumed / 8.5.1:
Remedy / 8.5.3:
Unstable Autoregressive Processes / 8.6:
Long-Range Dependence / 8.6.1:
A Remedy / 8.7.1:
Bootstrap Diagnostics / 8.8:
Author Index / 8.9:
Subject Index
Preface
Acknowledgments
List of Tables
82.

図書

図書
D. Courjon
出版情報: London : Imperial College Press, c2003  xxi, 317 p ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
How to read this book
History of Near-field Optics / Chapter 1:
Notion of imaging system / 1.1:
Bases of imaging / 1.2:
Vision / 1.2.1:
Image / 1.2.2:
Far-field imaging systems / 1.2.3:
Notion of superresolution / 1.2.4:
Near-field imaging systems / 1.2.5:
History of near-field microscopy / 1.3:
Synge's speculation / 1.3.1:
J. O'Keefe's letter / 1.3.2:
E. Ash and G. Nicholls realization / 1.3.3:
Superresolution in imaging systems / 1.3.4:
Scanning tunnelling microscopy / 1.3.5:
Early optical near-field microscopes / 1.3.6:
Non-radiating Sources & Non-propagating Fields / Chapter 2:
Introduction / 2.1:
A few words of terminology / 2.1.1:
Various non-radiating sources / 2.2:
Non-radiating classical distributions / 2.3:
Non-radiating sources by destructive interference / 2.4:
Extension of the notion of non-radiating source / 2.5:
Evanescent fields / 2.5.1:
Evanescent field generated by total internal reflection / 2.5.2:
Destructive-interference device / 2.5.3:
Resonant evanescent fields / 2.5.4:
Resonant spherical devices / 2.5.5:
Evanescent Optics / Chapter 3:
Theory of Fresnel evanescent waves / 3.1:
Reflection and refraction laws / 3.1.1:
Total internal reflection / 3.1.2:
Energy flow and Poynting vector / 3.1.3:
Goos-Hanchen and transversal shifts / 3.1.4:
Evanescent fields generated by sub-wavelength diffraction / 3.2:
Light beam propagation / 3.3:
A particular case of evanescent waves: the plasmons / 3.4:
Definition of a plasmon / 3.4.1:
Theory / 3.4.2:
Scanning plasmon optical microscopy / 3.4.3:
Theories and Modellings / Chapter 4:
Early works / 4.1:
Recent works / 4.2:
Different ways of approaching the theory of near-field optics / 4.3:
Physical approach / 4.3.1:
Model space / 4.3.2:
Global or non-global approach / 4.3.3:
Tip description / 4.4:
Description in a non-global scheme / 4.4.1:
Description in a global scheme / 4.4.2:
Light-sample interaction / 4.5:
Rigorous grating theory / 4.5.1:
The reciprocal-space perturbative method (RSPM) / 4.5.2:
Direct-space-global approaches / 4.5.3:
Inverse Problem and Apparatus Function / Chapter 5:
Inverse problem solution in band-limited far-field imaging / 5.1:
Inverse propagator and reciprocity theorem / 5.3:
Reciprocity theorem / 5.3.1:
Inverse problem solution in near-field imaging / 5.4:
Apparatus functions / 5.5:
Impulse response / 5.5.1:
Transfer function / 5.5.2:
Criteria of Quality, Noise and Artifacts / Chapter 6:
Degrees of freedom of an optical system / 6.1:
Generalization of Lukosz's approach / 6.1.1:
Far-field case / 6.1.2:
Near-field case / 6.1.3:
Information capacity for noisy coherent signals / 6.1.4:
Noise in optical systems / 6.2:
Optical noises / 6.2.1:
External noises / 6.2.2:
Artifacts / 6.3:
Scanning modes in near-field microscopy / 6.3.1:
Notion of artifact / 6.3.2:
Comparison between the three scanning mode behaviours / 6.4:
Input parameters of the simulation / 6.4.1:
Constant distance mode / 6.4.2:
Constant height mode / 6.4.3:
Constant intensity mode / 6.4.4:
Notion of resolution / 6.5:
Detection / 6.5.1:
Localization / 6.5.2:
Resolution / 6.5.3:
The two-point criterion / 6.5.4:
Other estimates of resolution / 6.5.5:
Optical transfer function OTF / 6.5.6:
OTF in near-field optics / 6.5.7:
Experimental OTF in near-field optics / 6.5.8:
Contrast / 6.5.9:
New criteria of quality / 6.5.10:
Nano-collectors and Nano-emitters / Chapter 7:
Precursors / 7.1:
Near-field collection and emission / 7.2:
Principle / 7.2.1:
Distance of collection/emission / 7.2.2:
Shape of nano-collectors/emitters / 7.2.3:
Various technologies / 7.3:
Bare tapers / 7.4:
Shaping techniques / 7.4.1:
Etching techniques / 7.4.2:
Effect of parameters / 7.4.3:
More sophisticated procedures / 7.4.4:
High aperture angle conical tips / 7.4.5:
Hot stretching techniques / 7.4.6:
Advantages and drawbacks of the two techniques / 7.4.7:
Tapered metal wire and silicon AFM tips / 7.4.8:
Pyramidal tips / 7.4.9:
Coated materials / 7.5:
Flat nano-apertures / 7.5.1:
Tapered nano-apertures / 7.5.2:
Tapered/cleaved fibres / 7.5.3:
Efficiency of tapered metal coated fibres / 7.5.4:
Laser damages / 7.5.5:
Realization of the aperture by other techniques / 7.5.6:
Nano-antenna used as a near-field perturbing system / 7.6:
Variant of tapered fibres / 7.7:
Chemical sensors used as fluorescent tips / 7.8:
Instrumentation / Chapter 8:
Basic structure of near-field optical microscopes / 8.1:
Mechanical part / 8.2:
Translation stage / 8.2.1:
Practical case / 8.2.2:
Techniques for machining the piezo-electric tube / 8.2.3:
Compensation of the thermal drift / 8.2.4:
Connection of the wires on the electrodes / 8.2.5:
Holding of the nano-collector/emitter / 8.3:
Fibre as a nano-collector/emitter / 8.3.1:
Other collector/emitters / 8.3.2:
Anti-vibration devices / 8.4:
Distance control / 8.4.1:
Optical part / 8.5:
Source / 8.5.1:
Detector / 8.5.2:
Usual optical and opto-electronic components / 8.5.3:
Electronic stages / 8.6:
Synchronous detection / 8.6.1:
Distance control: the P.I.D. device / 8.6.2:
Main Near-field Microscope Configurations / Chapter 9:
Transmission microscopes / 9.1:
Reflection microscopy / 9.2:
Tunnelling microscopy / 9.3:
Optical tunnelling microscopy / 9.4:
Plasmon microscopy / 9.5:
Hybrid techniques / 9.6:
Near-field microscopy with shear-force control / 9.6.1:
Contact near-field optical microscopy / 9.6.2:
Near-field Image Processing / Chapter 10:
Generalities / 10.1:
Linear distortions / 10.1.1:
Non-linear distortions / 10.1.2:
Correction of distortions / 10.2:
Correction of linear distortions / 10.2.1:
Correction of non-linear distortions / 10.2.2:
Correction of tip-sample sticking / 10.2.3:
Filtering process / 10.3:
Direct or local filtering / 10.3.1:
Fourier or reciprocal filtering / 10.3.2:
Karhunen-Loeve transform and information extraction / 10.4:
Applications of Near-field Microscopy / Chapter 11:
First attempts: topography measurements / 11.1:
Local index variation measurement / 11.1.2:
Light trapping / 11.2:
Concept of nano-optics / 11.3:
A simple case: the frustrated reflection by a sphere or a tip / 11.4:
A second example: the resonant tunnelling effect / 11.5:
A more sophisticated example: a sub-wavelength periodic structure / 11.6:
Photonic transfer through segmented optical waveguides / 11.7:
Basis of Optics / Appendix A:
Unit Systems / A.0.1:
Basic functions and operators in optics / A.1:
Reminder on vectorial calculus / A.1.1:
Relations connecting gradient, divergence and rotational / A.1.2:
Dyadic analysis / A.1.3:
Maxwell's equations / A.2:
Material equations / A.2.1:
Maxwell's equation in the dyadic scheme / A.2.2:
Wave equation / A.3:
There is no charges or currents ([characters not reproducible] = 0 and j = 0) / A.3.1:
The medium is homogeneous, ([mu] and [epsilon] space-independent) / A.3.2:
The medium is homogeneous and there is no charges or currents / A.3.3:
Case of harmonic fields / A.3.4:
Scalar and vector potentials / A.4:
Static regimes / A.5:
Poisson's and Laplace's equations / A.5.1:
Field generated by a single charge / A.5.2:
Flux of an electric field through a surface element / A.5.3:
Gauss' theorem / A.5.4:
Green's functions and Green's theorem / A.6:
Green's functions in classical potential theory / A.6.1:
Time dependent fields: the Helmholtz equation / A.6.2:
Green's theorem / A.6.3:
Green's dyadic / A.6.4:
Expansion of a field in term of a set of plane waves / A.7:
Basis / A.7.1:
Angular spectrum expansion (A.S.E.) / A.7.2:
Propagation of light using A.S.E. / A.8:
Analysis of the results / A.9:
Nomenclature
List of Acronyms
Glossary
Index
Author Index
Bibliography
Preface
How to read this book
History of Near-field Optics / Chapter 1:
83.

図書

図書
A.P. Sutton and R.W. Balluffi
出版情報: Oxford : Clarendon Press , New York : Oxford University, 1995  xxxii, 819 p. ; 25 cm
シリーズ名: Monographs on the physics and chemistry of materials ; 51
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Glossary
Interfacial Structure / Part I:
The geometry of interfaces / 1:
Introduction / 1.1:
All the group theory we need / 1.2:
The relationship between two crystals / 1.3:
Crystals and lattices / 1.3.1:
Vector and coordinate transformations / 1.3.2:
Descriptions of lattice rotations / 1.3.3:
Vector and matrix representations / 1.3.3.1:
The Frank-Rodrigues map / 1.3.3.2:
Fundamental zones / 1.3.3.3:
Quaternions / 1.3.3.4:
Geometrical specification of an interface / 1.4:
Macroscopic and microscopic geometrical degrees of freedom / 1.4.1:
Macroscopic geometrical degrees of freedom of an arbitrary interface / 1.4.2:
Grain boundaries in cubic materials / 1.4.3:
The median lattice and the mean boundary plane / 1.4.3.1:
Tilt and twist components / 1.4.3.2:
Symmetric and asymmetric tilt boundaries / 1.4.3.3:
Bicrystallography / 1.5:
Outline of crystallographic methodology / 1.5.1:
Introduction to Seitz symbols / 1.5.3:
Symmetry of dichromatic patterns / 1.5.4:
Symmetry of dichromatic complexes / 1.5.5:
Symmetry of ideal bicrystals / 1.5.6:
Symmetry of real bicrystals / 1.5.7:
Two examples / 1.6:
Lattice matched polar-non-polar epitaxial interfaces / 1.6.1:
Lattice matched metal-silicide silicon interfaces / 1.6.2:
Classification of isolated interfacial line defects / 1.7:
General formulation / 1.7.1:
Interfacial dislocations / 1.7.2:
DSC dislocations / 1.7.2.1:
Supplementary displacement dislocations / 1.7.2.2:
Relaxation displacement dislocations / 1.7.2.3:
Non-holosymmetric crystals and interfacial defects / 1.7.2.4:
Interfacial disclinations and dispirations / 1.7.2.5:
The morphologies of embedded crystals / 1.8:
Quasiperiodicity and incommensurate interfaces / 1.9:
References
Dislocation models for interfaces / 2:
Classification of interfacial dislocations / 2.1:
The Frank-Bilby equation / 2.3:
Comments on the Frank-Bilby equation and the dislocation content of an interface / 2.4:
Frank's formula / 2.5:
The O-lattice / 2.6:
The geometry of discrete dislocation arrays in interfaces / 2.7:
The general interface / 2.7.1:
Application to a grain boundary with arbitrary geometrical parameters / 2.7.2:
Grain boundaries containing one and two sets of dislocations / 2.7.3:
Epitaxial interfaces / 2.7.4:
Local dislocation interactions / 2.8:
Pt-NiO interfaces / 2.9:
A1-A1[subscript 3] Ni eutectic interfaces / 2.9.2:
Elastic fields of interfaces / 2.10:
Stress and distortion fields of grain boundaries in isotropic elasticity / 2.10.1:
Grain boundary energies / 2.10.3:
Stress fields of heterophase interfaces in isotropic elasticity / 2.10.4:
Dislocation arrays at interfaces in anisotropic elasticity / 2.10.5:
Isotropic elastic analysis of epitaxial interfaces / 2.10.6:
Stress fields of precipitates and non-planar interfaces / 2.10.7:
Degree of localization of the cores of interfacial dislocations / 2.11:
Lattice theories of dislocation arrays / 2.11.1:
Peierls-Nabarro model for an isolated edge dislocation / 2.11.2.1:
Peierls-Nabarro model for a symmetrical tilt boundary / 2.11.2.3:
The van der Merwe model for a symmetrical tilt boundary / 2.11.2.4:
Atomistic models using computer simulation and interatomic forces / 2.11.3:
Experimental observations of arrays of interfacial dislocations / 2.12:
Mainly room-temperature observations / 2.12.1:
High-temperature observations / 2.12.2:
Models of interatomic forces at interfaces / 3:
Density functional theory / 3.1:
The variational principle and the Kohn-Sham equations / 3.2.1:
The Harris-Foulkes energy functional / 3.2.2:
Valence and core electrons: pseudopotentials / 3.3:
The force theorem and Hellmann-Feynman forces / 3.4:
Cohesion and pair potentials in sp-bonded metals / 3.5:
Effective medium theory / 3.6:
The embedded atom method / 3.7:
Tight binding models / 3.8:
The diatomic molecule / 3.8.1:
Bands, bonds, and Green functions / 3.8.3:
Moments of the spectral density matrix / 3.8.4:
The tight binding bond (TBB) model / 3.8.5:
The second moment approximation / 3.8.6:
Beyond the second moment approximation / 3.8.7:
Temperature dependence of atomic interactions / 3.9:
Ionic bonding / 3.10:
Interatomic forces at heterophase interfaces / 3.11:
Models and experimental observations of atomic structure / 4:
Introduction: classification of interfaces / 4.1:
Diffuse interfaces / 4.2:
Heterophase interfaces in systems with a miscibility gap / 4.2.1:
Antiphase domain boundaries in systems with long-range order / 4.2.2:
Displacive transformation interfaces in systems near a mechanical instability / 4.2.3:
Sharp homophase interfaces: large-angle grain boundaries / 4.3:
Large-angle grain boundaries in metals / 4.3.1:
The significance of the rigid body displacement parallel to the boundary plane / 4.3.1.1:
The significance of the expansion normal to the boundary plane / 4.3.1.2:
Testing the analytic model / 4.3.1.3:
The significance of individual atomic relaxation / 4.3.1.4:
Discussion: singular, vicinal, and general interfaces / 4.3.1.5:
Methods of computer simulation / 4.3.1.6:
The polyhedral unit model / 4.3.1.7:
The structural unit model / 4.3.1.8:
Three-dimensional grain boundary structures / 4.3.1.9:
The influence of temperature / 4.3.1.10:
Grain boundaries in ionic crystals / 4.3.2:
Grain boundaries in covalent crystals / 4.3.3:
Sharp heterophase interfaces / 4.4:
Metal-metal interfaces / 4.4.1:
Metal-insulator interfaces / 4.4.3:
Metal-semiconductor interfaces / 4.4.4:
Interfacial Thermodynamics / Part II:
Thermodynamics of interfaces / 5:
The interface free energy / 5.1:
Additional interface thermodynamic quantities and relationships between them / 5.3:
Introduction of the interface stress and strain variables / 5.4:
Introduction of the geometric thermodynamic variables / 5.5:
Dependence of [sigma] on the interface inclination / 5.6:
The Wulff plot / 5.6.1:
Equilibrium shape (Wulff form) of embedded second-phase particle / 5.6.2:
Faceting of initially flat interface / 5.6.3:
The capillarity vector, [xi] / 5.6.4:
Capillary pressure associated with smoothly curved interface / 5.6.5:
Equilibrium lattice solubility at a smoothly curved heterophase interface / 5.6.6:
Equilibrium solubility at embedded second-phase particle / 5.6.7:
Equilibrium interface configurations at interface junction lines / 5.6.8:
Further thermodynamic relationships involving changes in interface inclination / 5.6.9:
Dependence of [sigma] on the crystal misorientation / 5.7:
Dependence of [sigma] on simultaneous variations of the interface inclination and crystal misorientation / 5.8:
Chemical potentials and diffusion potentials, M[subscript i], in non-uniform systems containing interfaces / 5.9:
Analysis of system at equilibrium; introduction of the diffusion potential, M[subscript i] / 5.9.1:
Incoherent interface / 5.9.2.1:
Coherent interface / 5.9.2.2:
Summary / 5.9.2.3:
Diffusional transport in non-equilibrium systems / 5.9.3:
Interface phases and phase transitions / 6:
Interface phase equilibria / 6.1:
Interface phase transitions / 6.3:
Non-congruent phase transitions / 6.3.1:
Faceting of initially flat interfaces / 6.3.1.1:
Faceting of embedded particle interfaces / 6.3.1.2:
Interface dissociation / 6.3.1.3:
Congruent phase transitions / 6.3.2:
Various transitions induced by changes in temperature, composition, or crystal misorientation / 6.3.2.1:
Interface wetting by a solid phase / 6.3.2.2:
Interface wetting by a liquid phase in alloy systems / 6.3.2.3:
Grain boundary melting in a one-component system / 6.3.2.4:
Segregation of solute atoms to interfaces / 7:
Overview of some of the main features of interface segregation in metals / 7.1:
Physical models for the interaction between solute atoms and interfaces / 7.3:
Elastic interaction models / 7.3.1:
Size accommodation model / 7.3.2.1:
Hydrostatic pressure (P[Delta]V) and elastic inhomogeneity models / 7.3.2.2:
Further elastic models / 7.3.2.3:
Atomistic models at 0 K / 7.3.3:
Electronic interaction models / 7.3.4:
Statistical mechanical models of segregation / 7.4:
Regular solution model / 7.4.1:
Mean field models / 7.4.3:
McLean isotherm / 7.4.3.1:
Fowler-Guggenheim isotherm / 7.4.3.2:
Multiple segregation site models / 7.4.3.3:
Beyond mean field models / 7.4.4:
Some additional models / 7.4.5:
Atomistic models at a finite temperature / 7.5:
Interface segregation in ionic solids / 7.6:
Interfacial Kinetics / Part III:
Diffusion at interfaces / 8:
Fast diffusion along interfaces of species which are substitutional in the crystal lattice / 8.1:
Slab model and regimes of diffusion behaviour / 8.2.1:
Mathematical analysis of the diffusant distribution in the type A, B, and C regimes / 8.2.2:
Experimental observations / 8.2.3:
Some major results for diffusion along interfaces / 8.2.3.1:
Effects of interface structure / 8.2.3.2:
Mechanisms for fast grain boundary diffusion / 8.2.4:
Equilibrium point defects in the grain boundary core / 8.2.4.1:
'Ring', vacancy, interstitialcy, and interstitial mechanisms / 8.2.4.2:
Models for grain boundary self-diffusivities via the different mechanisms / 8.2.5:
Vacancy mechanism / 8.2.5.1:
Interstitialcy mechanism / 8.2.5.2:
Interstitial mechanism / 8.2.5.3:
General characteristics of the models for boundary self-diffusion / 8.2.6:
On the question of the mechanism (or mechanisms) of fast grain boundary diffusion / 8.2.7:
Metals / 8.2.7.1:
Ionic materials / 8.2.7.2:
Covalent materials / 8.2.7.3:
Diffusion along interfaces of solute species which are interstitial in the crystal lattice / 8.3:
Slow diffusion across interfaces in fast ion conductors / 8.4:
Diffusion-induced grain boundary motion (DIGM) / 8.5:
Conservative motion of interfaces / 9:
'Conservative' versus 'non-conservative' motion of interfaces / 9.1:
Driving pressures for conservative motion / 9.1.2:
Basic mechanisms: correlated versus uncorrelated processes / 9.1.3:
Impediments to interface motion / 9.1.4:
Mechanisms and models for sharp interfaces / 9.2:
Glissile motion of interfacial dislocations / 9.2.1:
Small-angle grain boundaries / 9.2.1.1:
Large-angle grain boundaries / 9.2.1.2:
Heterophase interfaces / 9.2.1.3:
Glide and climb of interfacial dislocations / 9.2.2:
Shuffling motion of pure steps / 9.2.2.1:
Uncorrelated atom shuffling and/or diffusional transport / 9.2.4:
Uncorrelated atom shuffling / 9.2.4.1:
Uncorrelated diffusional transport / 9.2.4.2:
Solute atom drag / 9.2.5:
Experimental observations of non-glissile (thermally activated) grain boundary motion in metals / 9.2.6:
General large-angle grain boundaries / 9.2.6.1:
Singular (or vicinal) large-angle grain boundaries / 9.2.6.2:
Solute atom drag effects / 9.2.6.3:
Mechanisms and models for diffuse interfaces / 9.2.6.4:
Propagation of non-linear elastic wave (or, alternatively, coherency dislocations) / 9.3.1:
Self-diffusion / 9.3.2:
Equations of interface motion / 9.4:
Motion when v = v(n) / 9.4.1:
Motion of curved interfaces under capillary pressure / 9.4.2:
More general conservative motion / 9.4.3:
Impediments to interface motion due to pinning / 9.5:
Pinning effects due to embedded particles / 9.5.1:
Pinning at stationary particles at low temperatures / 9.5.1.1:
Thermally activated unpinning / 9.5.1.2:
Diffusive motion of pinned particles along with the interface / 9.5.1.3:
Pinning at free surface grooves / 9.5.2:
Non-conservative motion of interfaces: interfaces as sources/sinks for diffusional fluxes of atoms / 10:
General aspects of interfaces as sources/sinks / 10.1:
'Diffusion-controlled', 'interface-controlled', and 'mixed' kinetics / 10.2.1:
Dissipation of energy during source/sink action / 10.2.2:
The maximum energy available to drive the source/sink action / 10.2.3:
Grain boundaries as sources/sinks for fluxes of atoms / 10.3:
Models / 10.3.1:
Models for singular or vicinal grain boundaries / 10.3.2.2:
Models for general grain boundaries / 10.3.3.2:
Sharp heterophase interfaces as sources/sinks for fluxes of atoms / 10.3.3.3:
Singular or vicinal heterophase interfaces / 10.4.1:
General heterophase interfaces / 10.4.1.2:
Growth, coarsening, shape-equilibration, and shrinkage of small precipitate particles / 10.4.2:
Growth of phases in the form of flat parallel layers / 10.4.2.2:
Annealing of supersaturated vacancies / 10.4.2.3:
Diffusional accommodation of boundary sliding at second phase particles / 10.4.2.4:
Diffuse heterophase interfaces as sources/sinks for solute atoms / 10.5:
On the question of interface stability during source/sink action / 10.6:
Interfacial Properties / Part IV:
Electronic properties of interfaces / 11:
The Schottky model / 11.1:
The Bardeen model / 11.2.3:
Metal-induced gap states (MIGS) / 11.2.4:
The defect model / 11.2.5:
The development of the Schottky barrier as a function of metal coverage / 11.2.6:
Schottky barriers on Si / 11.2.7:
Discussion of models for Schottky barriers / 11.2.8:
Inhomogeneous Schottky barriers / 11.2.9:
Semiconductor heterojunctions / 11.3:
The band offsets / 11.3.1:
Grain boundaries in metals / 11.4:
Grain boundaries in semiconductors / 11.5:
Grain boundaries in high temperature superconductors / 11.6:
Mechanical properties of interfaces / 12:
Compatibility stresses in bicrystals and polycrystals / 12.1:
Compatibility stresses caused by applied elastic stress / 12.2.1:
Compatibility stresses caused by plastic straining / 12.2.2:
Compatibility stresses caused by heating/cooling / 12.2.3:
Elastic interactions between dislocations and interfaces / 12.3:
Interfaces as sinks, or traps, for lattice dislocations / 12.4:
Large-angle grain boundaries and heterophase boundaries / 12.4.1:
Singular boundaries / 12.4.3.1:
General boundaries / 12.4.3.2:
On the global equilibration of impinged lattice dislocations / 12.4.4:
Interfaces as sources of both interfacial and lattice dislocations / 12.5:
Interfaces as sources of interfacial dislocations / 12.5.1:
Interfaces as sources of lattice dislocations / 12.5.2:
Singular interfaces / 12.5.2.1:
General interfaces / 12.5.2.2:
Interfaces as barriers to the glide of lattice dislocations (slip) / 12.6:
Grain boundaries / 12.6.1:
Effects of interfaces on the plastic deformation of bicrystals and polycrystals at low temperatures / 12.6.2:
Homophase bicrystals and polycrystals / 12.7.1:
Heterophase bicrystals and polycrystals / 12.7.2:
Role of interfaces in the plastic deformation of bicrystals and polycrystals at high temperatures / 12.8:
Interface sliding / 12.8.1:
Sliding at an ideally planar grain boundary / 12.8.1.1:
Sliding at a non-planar grain boundary by means of elastic accommodation / 12.8.1.2:
Sliding at a non-planar grain boundary by means of diffusional accommodation / 12.8.1.3:
Sliding at a non-planar grain boundary by means of plastic flow accommodation in the lattice / 12.8.1.4:
Experimental observations of sliding at interfaces / 12.8.1.5:
Creep of polycrystals / 12.8.2:
Creep of homophase polycrystals controlled by diffusional transport / 12.8.2.1:
Creep of homophase polycrystals controlled by boundary sliding / 12.8.2.2:
Creep of homophase polycrystals controlled by movement of lattice dislocations / 12.8.2.3:
Further aspects of the creep of polycrystals / 12.8.2.4:
Fracture at homophase interfaces / 12.9:
Overview of the different types of fracture observed experimentally in homophase polycrystals / 12.9.1:
Propagation of cleavage cracks / 12.9.2:
Crack propagation in a single crystal / 12.9.2.1:
Crack propagation along a grain boundary / 12.9.2.2:
Crack propagation in homophase polycrystals / 12.9.2.3:
Growth and coalescence of cavities at grain boundaries at low temperatures by plastic flow due to dislocation glide / 12.9.3:
Growth and coalescence of cavities at grain boundaries at high temperatures by diffusion, power-law creep, and boundary sliding / 12.9.4:
Initiation of cavities / 12.9.4.1:
Growth of cavities / 12.9.4.2:
Coalescence of cavities and complete intergranular fracture / 12.9.4.3:
Fracture at heterophase interfaces / 12.10:
Index
List of symbols
Glossary
Interfacial Structure / Part I:
84.

図書

図書
I.P. Grant
出版情報: New York : Springer, c2007  xxiii, 797 p. ; 24 cm
シリーズ名: Springer series on atomic, optical, and plasma physics ; 40
所蔵情報: loading…
目次情報: 続きを見る
Relativity in atomic and molecular physics / Part I:
Elementary ideas / 1:
The one-electron atom / 1.2:
Classical Kepler orbits / 1.2.1:
The Bohr atom / 1.2.2:
X-ray spectra and Moseley's Law / 1.2.3:
Transition to quantum mechanics / 1.2.4:
Sommerfeld's relativistic orbits and Dirac's wave equation / 1.2.5:
Dirac and Schrodinger charge distributions / 1.2.6:
The Dirac hydrogenic spectrum at high Z / 1.2.7:
Many-electron atoms / 1.3:
Central field models of the atom / 1.3.1:
Closed and open shells / 1.3.2:
Mean field potentials / 1.3.3:
Comparison of Hartree-Fock and Dirac-Hartree-Fock models for ground states / 1.3.4:
The mechanism of shell filling / 1.3.5:
Other approaches / 1.3.6:
Applications to atomic physics / 1.4:
X-ray spectra / 1.4.1:
Applications to astrophysics and plasma physics / 1.4.2:
Modelling atomic processes in plasmas / 1.4.3:
Relativistic molecular structure / 1.5:
Relativistic interpretations of chemical anomalies / 1.5.1:
Relativistic effective core potentials and other approximations / 1.5.2:
Dirac four-component methods for molecules / 1.5.3:
Parity violation and hyperfine interactions / 1.5.4:
High-precision spectroscopy of small molecules containing light elements / 1.5.5:
References
Foundations / Part II:
Relativistic wave equations for free particles / 2:
The special theory of relativity / 2.1:
The Lorentz group / 2.2:
* Spinor representation of Lorentz transformations / 2.2.1:
* Infinitesimal Lorentz transformations and their generators / 2.2.2:
* Representations of the Lorentz group / 2.2.3:
The Poincare group / 2.3:
* Representations of the Poincare group / 2.3.1:
* Space and time reflections / 2.3.2:
The Klein-Gordon equation / 2.4:
The Dirac equation / 2.5:
[gamma]-Matrices and covariant form of Dirac's equation / 2.5.1:
* Lagrangian formulation of Dirac's equation / 2.5.2:
Foldy canonical form and the Foldy-Wouthuysen transformation / 2.5.3:
* Position operators in Dirac theory / 2.5.4:
Dirac particles in electromagnetic fields / 2.5.5:
* Negative energy states / 2.5.6:
Maxwell's equations / 2.6:
Covariant form of Maxwell's equations / 2.6.1:
* Lagrangian formulation / 2.6.2:
Gauge invariance / 2.6.3:
* Motion of a test charge / 2.6.4:
* Symmetries and local conservation laws / 2.7:
* Global conservation laws / 2.8:
* Green's functions / 2.9:
Nonrelativistic Green's functions / 2.9.1:
Klein-Gordon operator / 2.9.2:
Maxwell's equations: the zero-mass case / 2.9.3:
Free-particle Dirac equation / 2.9.4:
The Dirac Equation / 3:
Free particles / 3.1:
Properties of Dirac matrices / 3.1.1:
Covariance properties / 3.1.2:
Bilinear covariants / 3.1.3:
Plane wave solutions / 3.1.4:
Energy and spin projectors / 3.1.5:
Charge conjugation / 3.1.6:
Spherical symmetry / 3.2:
Angular structure / 3.2.1:
The operator [sigma subscript r] / 3.2.2:
The operator c[sigma] . p / 3.2.3:
Separation of radial and spin-angular parts / 3.2.4:
Angular density distributions / 3.2.5:
Radial solutions for the free particle / 3.2.6:
Partial wave normalization / 3.2.7:
Hydrogenic atoms / 3.3:
Solution of the radial equations / 3.3.1:
The bound state solutions / 3.3.2:
Charge distributions and energy levels in hydrogenic atoms / 3.3.3:
* The continuum solutions / 3.3.4:
Scattering by a centre of force / 3.4:
Nonrelativistic potential scattering / 3.4.1:
* Relativistic Coulomb scattering / 3.4.2:
* Polarization effects in Coulomb scattering / 3.4.3:
Historical note / 3.4.4:
* Relativistic quantum defect theory / 3.5:
Green's functions / 3.6:
* Partial wave Green's functions / 3.6.1:
The partial wave Green's function for the free Dirac particle / 3.6.2:
Summation over partial waves in the free electron case / 3.6.3:
* Green's function for hydrogenic ions / 3.6.4:
The nonrelativistic limit: the Pauli approximation / 3.7:
The Pauli approximation / 3.7.1:
The Foldy-Wouthuysen and related transformations / 3.7.2:
Other aspects of Dirac theory / 3.8:
Quantum electrodynamics / 4:
Second quantization / 4.1:
Quantization of the Schrodinger equation / 4.1.1:
Identical particles: the symmetric case / 4.1.2:
Identical particles: the antisymmetric case / 4.1.3:
Quantization of the electron-positron field / 4.2:
The Furry picture / 4.2.1:
The free electron case / 4.2.2:
Quantization of the Maxwell field / 4.3:
Interaction of photons and electrons / 4.4:
The equations of motion / 4.4.1:
The interaction picture / 4.4.2:
Wick's theorems / 4.5:
Propagators / 4.6:
Photon propagators / 4.6.1:
Electron-positron propagators / 4.6.2:
Feynman diagrams / 4.6.3:
Second order interaction: U[superscript (2)] (t, t[subscript 0]) / 4.6.4:
Feynman rules / 4.6.5:
The S-matrix / 4.7:
Bound states / 4.8:
A perturbation expansion / 4.8.1:
Gell-Mann, Low, Sucher energy shift / 4.8.2:
Effective interactions / 4.9:
One-photon exchange: Feynman gauge / 4.9.1:
One-photon exchange: Coulomb gauge / 4.9.2:
* Off-shell potentials: heuristic argument / 4.9.3:
One-photon exchange: the first order energy shift / 4.9.4:
* Off-shell potentials / 4.10:
Many-body perturbation theory / 4.11:
Nonrelativistic many-body theory / 4.11.1:
MBPT for atoms and molecules / 4.12:
Particle-hole formalism / 4.12.1:
Computational methods / 4.12.2:
Relativistic approaches to atomic and molecular structure / 4.13:
The no-virtual-pair approximation (NVPA) / 4.13.1:
The NVPA as an antidote to "continuum dissolution" / 4.13.2:
The NVPA and "variational collapse" / 4.13.3:
Semirelativistic approaches / 4.13.4:
A strategy for atomic and molecular calculations / 4.14:
Density functional theories / 4.15:
Basic ideas of RDFT / 4.15.1:
The relativistic Hohenberg-Kohn theorem / 4.15.2:
The relativistic Kohn-Sham equations / 4.15.3:
Exchange and correlation functionals / 4.15.4:
The optimized potential method / 4.15.5:
Computational atomic and molecular structure / Part III:
Analysis and approximation of Dirac Hamiltonians / 5:
Self-adjointness of free particle Hamiltonians / 5.1:
Free particles: the Schrodinger case / 5.1.1:
Free particles: the Dirac case / 5.1.2:
Self-adjointness of Hamiltonians with a local potential / 5.2:
The Schrodinger case / 5.2.1:
The Dirac case / 5.2.2:
The radial Dirac differential operator / 5.3:
The boundary condition at a singular endpoint / 5.3.1:
The Dirac radial operator with one singular endpoint / 5.3.2:
The radial Dirac equation for atoms / 5.4:
Power series solutions near r = 0 / 5.4.1:
Power series solutions in the nonrelativistic limit / 5.4.2:
The boundary condition at the origin / 5.4.3:
Variational methods in quantum mechanics / 5.5:
Min-max theorems and the Ritz method / 5.5.1:
Convergence of the Rayleigh-Ritz eigenvalues in nonrelativistic quantum mechanics / 5.5.2:
Convergence of the Rayleigh-Ritz method in nonrelativistic quantum mechanics / 5.5.3:
The Rayleigh-Ritz method in relativistic quantum mechanics / 5.6:
The finite matrix method for the Dirac equation / 5.6.1:
Convergence of Rayleigh-Ritz methods for Dirac Hamiltonians / 5.6.2:
Spinor basis sets / 5.7:
L-spinors / 5.8:
Kinetic matching and the nonrelativistic limit / 5.8.1:
Orthogonality properties / 5.8.2:
Linear independence of L-spinors / 5.8.3:
Completeness of L-spinors / 5.8.4:
Charge conjugation and L-spinors / 5.8.5:
Construction of [Pi superscript Beta Beta prime], S[superscript Beta Beta prime], and U[superscript Beta Beta prime] matrices for hydrogenic atoms / 5.8.6:
Numerical study of L-spinor performance in hydrogenic atoms / 5.8.7:
S-spinors / 5.9:
Construction of [Pi superscript Beta Beta prime], S[superscript Beta Beta prime], and U[superscript Beta Beta prime] for hydrogenic atoms / 5.9.1:
G-spinors / 5.10:
Finite difference methods / 5.11:
Methods of solution / 5.11.1:
Acceptable solutions / 5.11.2:
Finite element methods / 5.12:
B-splines / 5.12.1:
Variational formulation of finite element schemes / 5.12.2:
Schrodinger equations / 5.12.3:
Dirac equations / 5.12.4:
Complex atoms / 6:
Dirac-Hartree-Fock theory / 6.1:
One-electron matrix elements of tensor operators / 6.2:
2-spinor matrix elements of even operators / 6.2.1:
2-spinor matrix elements of odd operators / 6.2.2:
Angular reduction of the Dirac Hamiltonian for a central potential / 6.3:
Matrix elements of 2-body operators / 6.4:
The Coulomb interaction / 6.4.1:
Relativistic corrections to the Coulomb interaction / 6.4.2:
The Gaunt interaction / 6.4.3:
The Moller interaction / 6.4.4:
The transverse photon interaction in Coulomb gauge / 6.4.5:
The Breit interaction / 6.4.6:
Interaction strengths for the magnetic interactions / 6.5:
The transverse photon interaction / 6.5.1:
Closed shells and configuration averages / 6.5.2:
The Dirac-Hartree-Fock model / 6.6.1:
Inclusion of magnetic interactions / 6.6.2:
Average of configuration models / 6.6.3:
DHF integro-differential equations / 6.7:
Construction of electrostatic potentials / 6.7.1:
Construction of magnetic potentials / 6.7.2:
Algorithms for potentials and Slater integrals / 6.7.3:
Configurations with incomplete subshells / 6.8:
Atomic states with incomplete subshells / 6.8.1:
Partially filled subshells in jj-coupling / 6.8.2:
Creation and annihilation operators as irreducible tensor operators. Quasispin / 6.8.3:
Double tensor operators / 6.8.4:
Parentage / 6.8.5:
Coefficients of fractional parentage in the seniority scheme / 6.8.6:
Equivalent electrons in LS-coupling / 6.8.7:
Atoms with complex configurations / 6.9:
Recoupling coefficients / 6.9.1:
Matrix elements between open shell states / 6.9.2:
Matrix elements of two-electron operators of type G / 6.9.3:
CI and MCDHF problems with large CSF sets / 6.10:
Decoupling active electrons / 6.10.1:
One-electron matrix elements / 6.10.2:
Two-electron matrix elements / 6.10.3:
Computation of atomic structures / 7:
Atomic structure calculations with GRASP / 7.1:
GRASP modules / 7.2:
MCDHF integro-differential equations / 7.3:
Solving the integro-differential equations / 7.4:
Starting the calculation / 7.5:
The radial grid / 7.5.1:
The nuclear mass / 7.5.2:
The nuclear size / 7.5.3:
Initial estimates for radial wavefunctions / 7.5.4:
An EAL calculation / 7.6:
Diagonal and off-diagonal energy parameters / 7.7:
Koopmans' theorem and Brillouin's theorem / 7.8:
Froese Fischer's analysis / 7.8.1:
Control of MCSCF iterations / 7.9:
Corrections to the Coulomb interaction: Breit and other approximations / 7.10:
QED corrections / 7.11:
Towards higher quality atomic models / 7.12:
CSF sets for electron correlation: active space methods / 7.12.1:
Example: intercombination transitions in Be-like ions / 7.12.2:
X-ray transition energies / 7.13:
Computation of atomic properties / 8:
Relativistic radiative transition theory / 8.1:
Line transitions / 8.1.1:
Multipole expansion of the radiation field / 8.1.2:
Emission and absorption by one-electron atoms / 8.2:
Evaluation of one-electron transition amplitudes / 8.2.1:
The nonrelativistic limit: Pauli approximation / 8.2.2:
Radiative transitions in many-electron atoms / 8.3:
Transitions in highly ionized atoms: Fe XXIII / 8.3.1:
Orbital relaxation / 8.4:
Application to atomic transition calculations / 8.5:
Large-scale calculations of energies and transition rates / 8.5.1:
Relativistic atomic photo-ionization theory / 8.6:
The differential cross-section for photo-ionization / 8.6.1:
Low energies: the electric dipole case / 8.6.2:
Angular distributions and polarization parameters for a single channel / 8.6.3:
Other aspects of photo-ionization / 8.6.4:
Hyperfine interactions / 8.7:
Hyperfine interactions in the many-electron atom / 8.7.1:
Isotope shifts / 8.8:
Nuclear motion / 8.8.1:
Nuclear volume effect / 8.8.2:
Continuum processes in many-electron atoms / 9:
Relativistic elastic electron-atom scattering / 9.1:
Model potentials / 9.1.1:
Computational issues / 9.1.2:
Determination of phase-shifts / 9.1.3:
Summation of the partial wave expansion / 9.1.5:
Electron-atom scattering: the close-coupling method / 9.2:
Low-energy elastic and inelastic collisions / 9.2.1:
The distorted wave approximation / 9.2.2:
The relativistic R-matrix method / 9.3:
The radial Dirac equation on a finite interval / 9.3.1:
Bloch operators / 9.3.2:
The inner region, r [Less than Equal] a / 9.3.3:
The outer region, r [Greater than] a / 9.3.4:
Matching inner and outer solutions / 9.3.5:
The Buttle correction / 9.4:
R-matrix theory of photo-ionization / 9.5:
The DARC relativistic R-matrix package / 9.6:
Truncation of the close-coupling expansion. The nonrelativistic CCC method / 9.7:
The R-matrix method at intermediate energies / 9.8:
Electron scattering from heavy atoms and ions / 9.9:
Early work / 9.9.1:
Electron scattering from the mercury atom / 9.9.2:
Scattering of polarized electrons from polarized atoms / 9.9.3:
The relativistic random phase approximation / 9.10:
The RRPA equations / 9.10.1:
Radial equations / 9.10.2:
Multipole transition amplitudes / 9.10.3:
RRPA rates for photo-excitation and photo-ionization / 9.11:
Photo-excitation / 9.11.1:
Photo-ionization / 9.11.2:
Comparison with experiment / 9.12:
Photo-ionization of outer atomic subshells at high Z / 9.12.1:
Beyond RRPA / 9.12.2:
Molecular structure methods / 10:
Molecular and atomic structure methods / 10.1:
Dirac-Hartree-Fock-Breit equations for closed shell atoms / 10.2:
DHFB energy of a closed shell atom / 10.2.1:
Spinor basis function representation / 10.2.2:
Matrix of the radial Dirac operator / 10.2.3:
Coulomb Slater integrals / 10.2.4:
Breit integrals for closed shells / 10.2.5:
The DHFB Fock matrix / 10.2.6:
One-centre interaction integrals / 10.3:
Numerical examples / 10.4:
The DHFB method for closed shell molecules / 10.5:
G-spinor basis functions / 10.6:
The charge-current density / 10.7:
Two-centre overlaps / 10.8:
Relativistic expansion coefficients / 10.8.1:
Symmetry properties of E[subscript q] coefficients / 10.8.2:
Multi-centre interaction integrals / 10.9:
Auxiliary integrals involving HGTFs / 10.9.1:
Multi-centre one-electron integrals / 10.9.2:
Multi-centre two-electron integrals / 10.9.3:
Fock matrix in terms of G-spinors / 10.10:
The BERTHA integral package / 10.10.1:
Electromagnetic field energy / 10.11:
Interaction energy in terms of internal fields / 10.11.1:
The nonrelativistic Fock matrix / 10.11.2:
The relativistic Fock matrix / 10.11.3:
Implementation of the field formulation / 10.11.4:
Relativistic density functional calculations / 10.12:
Computational strategies / 10.13:
The Roothaan bound / 10.13.1:
Integral-direct Fock matrix evaluation / 10.13.2:
Symmetry properties of interaction matrix elements / 10.13.3:
Stepwise refinement / 10.13.4:
Level-shifting / 10.13.5:
Multiconfigurational Dirac-Hartree-Fock theory / 10.14:
Orbital optimization / 10.14.1:
Relativistic calculation of molecular properties / 11:
Molecular symmetry / 11.1:
Diatomic molecules / 11.1.1:
Polyatomic molecules / 11.1.2:
Relativistic effects in light molecules / 11.2:
Nonrelativistic Breit-Pauli model / 11.2.1:
DHF and DHFB calculations for water using BERTHA / 11.2.2:
Second-order many-body corrections / 11.2.3:
Relativistic study of the potential energy surface and vibration-rotation levels of water / 11.2.4:
Electromagnetic properties of atoms and molecules / 11.3:
Gauge transformations in electromagnetic processes / 11.3.1:
B-spinors / 11.3.2:
The Zeeman effect / 11.4:
NMR shielding in small molecules / 11.5:
NMR shielding constants for [superscript 17]O in water / 11.6.1:
NMR shielding constants for [superscript 15]N in ammonia / 11.6.2:
Molecules with high-Z constituents / 11.7:
Electronic structure of TlF / 11.7.1:
Electronic structure of YbF / 11.7.2:
DHF+CI study of uranium hexafluoride / 11.7.3:
Frequently used formulae and data / A:
Relativistic notation / A.1:
Dirac matrices / A.2:
Special functions / A.3:
Spherical Bessel functions / A.3.1:
Confluent hypergeometric functions / A.3.2:
Generalized Laguerre polynomials / A.3.3:
Hermite polynomials / A.3.4:
Incomplete gamma functions / A.3.5:
Incomplete Beta functions / A.3.6:
Continued fraction evaluation / A.3.7:
Central field Dirac spinors and their interactions / A.4:
Central field Dirac spinors / A.4.1:
Matrix elements of simple ITOs / A.4.2:
Magnetic interactions / A.4.3:
Effective interaction strengths for two-body operators / A.4.4:
Open shells in jj-coupling / A.5:
Exponents for atomic and molecular G-spinors / A.6:
Software for relativistic molecular calculations / A.7:
BERTHA / A.7.1:
DIRAC / A.7.2:
MOLFDIR / A.7.3:
Supplementary mathematics / B:
Linear operators on Hilbert space / B.1:
Hilbert spaces / B.1.1:
Linear operators / B.1.2:
Spectrum and resolvent of linear operators / B.1.3:
Self-adjoint operators / B.1.4:
Observables and self-adjoint operators / B.1.5:
Commuting operators / B.1.6:
Unitary and anti-unitary operators / B.1.7:
Lie groups and Lie algebras / B.2:
Lie groups / B.2.1:
Lie algebras / B.2.2:
Representations of Lie groups and Lie algebras / B.2.3:
The Cartan-Weyl classification / B.2.4:
Casimir operators / B.2.5:
Kronecker products of group representations / B.2.6:
Tensor operators and the Wigner-Eckart theorem / B.2.7:
Quantum mechanical angular momentum theory / B.3:
The rotation group / B.3.1:
Abstract angular momentum / B.3.2:
Orbital angular momentum / B.3.3:
Representation functions / B.3.4:
Kronecker products of irreducible representations / B.3.5:
Coupling of three or more angular momenta / B.3.6:
The 3j-symbol / B.3.7:
The 6j-symbol / B.3.8:
The 9j-symbols / B.3.9:
Graphical treatment of angular momentum algebra / B.3.10:
Diagrammatic treatment of Clebsch-Gordan coefficients / B.3.11:
Diagrammatic treatment of 3jm-symbols / B.3.12:
Generalized angular momentum couphng schemes / B.3.13:
GCG and njm coefficients / B.3.14:
Manipulating angular momentum diagrams / B.3.15:
Composite tensor operators / B.3.16:
Diagrammatic representation of tensor operators / B.3.18:
Relativistic symmetry orbitals for double point groups / B.4:
Construction of symmetry orbitals / B.4.1:
Linear independence of molecular symmetry orbitals / B.4.2:
Reduction of operator matrices / B.4.3:
Time reversal / B.4.4:
The TSYM software package / B.4.5:
Basis sets in atomic and molecular physics / B.5:
The Coulomb Sturmian functions / B.5.1:
Completeness and linear independence of Coulomb Sturmians / B.5.2:
Basis sets of exponential-type functions / B.5.3:
Finite difference methods for Dirac equations / B.6:
An existence theorem / B.6.1:
Initial value methods / B.6.2:
Linear multistep methods / B.6.3:
The nodal structure of Dirac radial wavefunctions / B.6.4:
Discretization of two-point boundary value problems / B.6.5:
Two-point boundary value problems: the deferred correction method / B.6.6:
Construction of difference corrections / B.6.7:
Single stepping algorithms / B.6.8:
Stepping outwards from the origin / B.6.9:
Algorithm for the outer region / B.6.10:
The boundary condition at T = t[subscript N] / B.6.11:
Improving a trial solution / B.6.12:
Eigenfunction expansions for the radially reduced Dirac equation / B.7:
The fundamental lemma / B.7.1:
Boundary conditions: the two-point boundary value problem / B.7.2:
Boundary conditions at the nucleus / B.7.3:
Pauli approximation at R[subscript 2] / B.7.4:
The MIT bag model at R[subscript 2] / B.7.5:
The eigenvalue spectrum / B.7.6:
The inhomogeneous boundary value problem / B.7.7:
Eigenfunction expansions / B.7.8:
Iterative processes in nonlinear systems of equations / B.8:
Lagrangian and Hamiltonian methods / B.9:
Lagrange's equations / B.9.1:
Hamilton's equations / B.9.2:
Symmetries and conservation laws / B.9.3:
Construction of E coefficients / B.10:
E-coefficients through Cartesian intermediates / B.10.1:
Recurrence relations for E-coefficients / B.10.2:
Implementation issues / B.10.3:
Index
Relativity in atomic and molecular physics / Part I:
Elementary ideas / 1:
The one-electron atom / 1.2:
85.

図書

図書
A.M. Smith, J.A. Callow (eds.)
出版情報: Berlin ; New York : Springer, c2006  xvii, 284 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Development / Anthony P. Haag1:
Introduction / 1.1:
Adhesive Development / 1.2:
Mechanical Testing of Adhesive Bonds / 1.2.1:
Bacterial Exopolymer Adhesives / 1.2.2:
Related Polysaccharide-based Adhesives / 1.2.3:
Outlook / 1.3:
References
The Molecular Genetics of Bioadhesion and Biofilm Formation / Paolo Landini ; Gregory Jubelin ; Corinne Dorel-Flamant2:
Biofilm Formation and its Regulation / 2.1:
Environmental Factors Leading to Biofilm Formation / 2.1.1:
Quorum Sensing / 2.1.2:
Global Regulators / 2.1.3:
A Case of Complex Regulatory Control: The Curli Factors (Thin Aggregative Fimbriae) of Enterobacteria / 2.2:
Curli Fibers: A Major Determinant for Biofilm Formation in Enterobacteria / 2.2.1:
Conditions for the Expression of Curli / 2.2.2:
Regulation by Osmolarity / 2.2.3:
Regulation According to the Bacterial Growth Phase / 2.2.4:
Thermoregulation / 2.2.5:
Regulation as a Result of Oxygen Concentration / 2.2.6:
Other Regulatory Systems / 2.2.7:
GGDEF and EAL Regulatory Proteins: Regulation of Exopolysaccharide Biosynthesis at the Enzyme Level / 2.3:
The GGDEF-EAL Protein Family / 2.3.1:
Adhesion and Adhesives of Fungi and Oomycetes / Lynn Epstein ; Ralph L. Nicholson3:
Prevalence and Importance of Adhesion in Fungi and Oomycetes / 3.1:
Adhesion as Part of Many Stages of Morphogenesis in Many Fungi / 3.2.1:
Functions of Adhesion / 3.2.2:
Selected Examples / 3.2.3:
Challenges in Identifying Adhesives in Fungi / 3.3:
Genetic 'Knockout' and 'Knockin' Strategies / 3.3.1:
Biochemical Strategies / 3.3.2:
Fungal and Oomycete Glues / 3.4:
Features / 3.4.1:
Composition of Glues / 3.4.2:
Secretion and Crosslinking, with a Focus on Transglutaminase / 3.4.3:
Cell-surface Macromolecules with Apparent Adhesive Properties / 3.4.4:
Fungal Adhesins / 3.5:
Conclusions / 3.6:
The Ulva Spore Adhesive System / James A. Callow ; Maureen E. Callow4:
Cell Biological and Biochemical Aspects / 4.1:
The 'Adhesive Apparatus' / 4.2.1:
Use of Monoclonal Antibodies to Identify the Contents of Adhesive Vesicles / 4.2.2:
Biochemical Characteristics of the Adhesive Antigens / 4.2.3:
Experiments on Cross-linking / 4.2.4:
Molecular Aspects / 4.2.5:
Physical and Mechanical Properties of the Adhesive / 4.3:
Imaging the Adhesive by ESEM / 4.3.1:
The Influence of Surface Properties on Adhesion and Adhesive Spreading / 4.3.2:
Nanomechanical and Viscoelastic Properties of the Spore Adhesive / 4.3.3:
Adhesive Strength of the Whole Spore System / 4.3.4:
Conclusions and Further Perspectives / 4.4:
Diatom Adhesives: Molecular and Mechanical Properties / Anthony Chiovitti ; Tony M. Dugdale ; Richard Wetherbee5:
Diatoms and Adhesion / 5.1:
Diatom Morphology / 5.1.1:
Significance of Diatom Adhesion / 5.1.2:
Diatom Adhesion Strategies / 5.1.3:
General Composition of Diatom Mucilages / 5.1.4:
Adhesion and Gliding of Raphid Diatoms / 5.2:
Adhesion and Gliding Behaviour / 5.2.1:
Mechanism of Raphid Diatom Adhesion and Gliding / 5.2.2:
Fine Structure of Raphid Diatom Mucilages / 5.2.3:
Nanomechanical Properties Determined by AFM / 5.2.4:
Molecular Composition / 5.2.5:
Sessile Adhesion / 5.3:
Physical Properties of Adhesive Pads with AFM / 5.3.1:
Molecular Composition and Chemical Properties of Stalks: Achnanthes longipes / 5.3.2:
Concluding Remarks / 5.4:
Phenolic-based Adhesives of Marine Brown Algae / Philippe Potin ; Catherine Leblanc6:
Adhesion of Brown Algal Propagules / 6.1:
Settlement and Attachment of Brown Algal Spores / 6.2.1:
Adhesion of Fucoid Zygotes / 6.2.2:
Secretion of Brown Algal Phenolics and Adhesion / 6.3:
Curing Mechanisms Involving Brown Algal Vanadium Peroxidases / 6.4:
Brown Algal Vanadium-dependent Haloperoxidase / 6.4.1:
In vitro Investigations of Haloperoxidase-mediated Oxidative Cross-linking / 6.4.2:
Requirement for an Efficient Oxidation Mechanism In Situ / 6.4.3:
Industrial Potential of Brown Algal Adhesives / 6.5:
Conclusions and Future Prospects / 6.6:
Chemical Subtleties of Mussel and Polychaete Holdfasts / Jason Sagert ; Chengjun Sun ; J. Herbert Waite7:
Protein Deamidation / 7.1:
Protein Phosphorylation / 7.3:
Dopa Chemistry / 7.4:
Gradients / 7.4.1:
Metal Binding / 7.4.2:
Cross-linking / 7.4.3:
Michael Additions: Amines / 7.4.4:
Michael Thiol Additions / 7.4.5:
Conclusion / 7.5:
Barnacle Underwater Attachment / Kei Kamino8:
Barnacle Attachment / 8.1:
A Unique Sessile Crustacean / 8.2.1:
Attachment in the Life Cycle / 8.2.2:
Biosynthesis and Secretion of Underwater Cement / 8.2.3:
Barnacle Underwater Cement / 8.3:
Cement Layer / 8.3.1:
Cement Sample / 8.3.2:
Cement Nature / 8.3.3:
Multi-functionality in Underwater Attachment / 8.3.4:
Cement Proteins and Possible Functions / 8.3.5:
Possible Molecular Model for Barnacle Underwater Attachment / 8.3.6:
Comparison with Other Holdfast Proteins / 8.4:
Applications to Material Science / 8.5:
The Biochemistry and Mechanics of Gastropod Adhesive Gels / Andrew M. Smith8.6:
Background / 9.1:
Adhesive Gels Used by Different Animals / 9.3:
Principles of Gel Mechanics / 9.4:
Adhesive Gel Structure / 9.5:
The Role of Different Proteins in Adhesion / 9.6:
Mechanisms of Crosslinking / 9.7:
Comparison of Gel Structure Among Gastropods / 9.8:
Adhesive Secretions in Echinoderms: An Overview / Patrick Flammang9.9:
Tube Feet / 10.1:
Larval Adhesive Organs / 10.3:
Cuvierian Tubules / 10.4:
Comparisons of Echinoderm Adhesives with Other Marine Bioadhesives / 10.5:
An Adhesive Secreted by Australian Frogs of the Genus Notaden / Lloyd D. Graham ; Veronica Glattauer ; Yong Y. Peng ; Paul R. Vaughan ; Jerome A. Werkmeister ; Michael J. Tyler ; John A.M. Ramshaw10.6:
Preliminary Field and Laboratory Data / 11.1:
Adhesive Collection / 11.3:
Solubilisation and Solidification / 11.4:
Mechanical Properties / 11.5:
Biocompatibility / 11.6:
Biochemical Studies / 11.7:
Colour / 11.7.1:
CD Spectra / 11.7.2:
Amino Acid Analysis / 11.7.3:
Protein Fractionation / 11.7.4:
Applications / 11.8:
Properties, Principles, and Parameters of the Gecko Adhesive System / Kellar Autumn11.9:
Adhesive Properties of Gecko Setae / 12.1:
Properties (1) Anisotropic Attachment and (2) High Adhesion Coefficient [mu prime] / 12.2.1:
Property (3) Low Detachment Force / 12.2.2:
Integration of Body and Leg Dynamics with Setal Attachment and Detachment / 12.2.3:
Molecular Mechanism of Gecko Adhesion / 12.2.4:
Property (4) Material Independent Adhesion / 12.2.5:
Anti-adhesive Properties of Gecko Setae / 12.3:
Properties (5) Self-cleaning and (6) Anti-self-adhesion / 12.3.1:
Property (7) Nonsticky Default State / 12.3.2:
Modeling Adhesive Nanostructures / 12.4:
Effective Modulus of a Setal Array / 12.4.1:
Rough Surface and Antimatting Conditions / 12.4.2:
Scaling / 12.5:
Scaling of Pad Area and Spatular Size / 12.5.1:
Scaling of Stress / 12.5.2:
Comparison of Conventional and Gecko Adhesives / 12.6:
Gecko-inspired Synthetic Adhesive Nanostructures / 12.7:
Future Directions in the Study of the Gecko Adhesive System / 12.8:
Biomimetic Adhesive Polymers Based on Mussel Adhesive Proteins / Bruce P. Lee ; Jeffrey L. Dalsin ; Phillip B. Messersmith13:
Mussel Adhesive Proteins and DOPA / 13.1:
Medical Adhesives: Requirements and Existing Materials / 13.3:
MAP-Mimetic Adhesive Polymers / 13.4:
Extraction and Expression of MAPs / 13.4.1:
Chemical Synthesis of MAP Mimetic-Polymers / 13.4.2:
Antifouling MAP Mimetic Polymers / 13.5:
Subject Index / 13.6:
Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Development / Anthony P. Haag1:
Introduction / 1.1:
Adhesive Development / 1.2:
86.

図書

図書
Lionel Birglen, Thierry Laliberté, Clément Gosselin
出版情報: Berlin : Springer, c2008  xv, 241 p. ; 24 cm
シリーズ名: Springer tracts in advanced robotics ; v. 40
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Underactuation / 1.1:
Contributions of the Book / 1.2:
Overview of the Book / 1.3:
Grasping vs. Manipulating / 2:
Robotic Hands: Aims and Functions / 2.1:
Underactuation in Robotic Hands / 2.2:
Underactuation as a Solution to Grasping / 2.2.1:
Literature Review / 2.2.2:
Kinetostatic Analysis of Robotic Fingers / 3:
General Static Model / 3.1:
Computation of the Transmission Matrix / 3.3:
Expressions of the Contact Forces / 3.4:
Positive Definiteness of the Forces / 3.5:
Other Transmission Mechanisms / 3.6:
Double-Stage Mechanism / 3.6.1:
Tendon-Pulley Transmission / 3.6.2:
Gears / 3.6.3:
Da Vinci's Mechanism / 3.6.4:
Comparison / 3.6.5:
Less-than-n-phalanx Grasps / 3.7:
Conclusions / 3.8:
Grasp Stability of Underactuated Fingers / 4:
Grasp Stability of Two-Phalanx Underactuated Fingers / 4.1:
Grasp Stability for Single Point Contact / 4.2.1:
Contact Trajectories / 4.2.2:
Equation of the Equilibrium Point / 4.2.3:
Linear and Circular Contact / 4.2.4:
Application: Synthesis of an Optimally Unstable Finger / 4.2.5:
Application: Design Validation / 4.2.6:
On the Grasp-State Plane Necessity / 4.2.7:
Grasp Stability of Three-Phalanx Underactuated Fingers / 4.3:
Three-Phalanx Underactuated Fingers Ejection Theory / 4.3.1:
Loss of One Contact / 4.3.2:
Degeneracy Analysis / 4.3.3:
On the Validation Surfaces / 4.3.4:
Loss of Two Contacts / 4.3.5:
Optimal Design of Underactuated Fingers / 4.4:
Optimal Design of Two-Phalanx Underactuated Fingers / 5.1:
Force Properties and Ejection / 5.2.1:
Force Isotropic Design / 5.2.2:
Guidelines to Prevent Ejection / 5.2.3:
Optimal Design of Three-Phalanx Underactuated Fingers / 5.3:
Dimensional Analysis / 5.3.1:
Grasp-Stability Analysis / 5.3.3:
Underactuation between the Fingers / 5.4:
Design Solutions / 6.1:
Movable Pulley / 6.2.1:
Seesaw Mechanism / 6.2.2:
Fluidic T-Pipe / 6.2.3:
Planetary and Bevel Gear Differentials / 6.2.4:
Combining Multiple Stages / 6.3:
Transmission Tree Analysis / 6.3.1:
Performance Evaluation of the Transmission Tree / 6.3.2:
Exchanging Inputs and Outputs / 6.4:
Applications / 6.5:
Underactuated Gripper / 6.5.1:
Multiple Pulley Routing / 6.5.2:
Serial Routing / 6.5.3:
Symmetrical Routing / 6.5.4:
Other Transmission Solutions / 6.6:
The Floating Platform / 6.6.1:
The Spring-Loaded Slider / 6.6.2:
Design and Control of the Laval Underactuated Hands / 6.7:
Design of Laval Underactuated Hands / 7.1:
Location and Orientation of the Fingers / 7.2.1:
Pinch Grasp Mechanism / 7.2.2:
The MARS Hand / 7.2.3:
The SARAH Hands / 7.2.4:
Control and Experimentation of the Laval Underactuated Hands / 7.3:
Hybrid Control of the MARS Hand / 7.3.1:
Force Control of the MARS Hand / 7.3.2:
Control of the SARAH hands / 7.3.3:
Conclusion / 7.4:
Summary and Contributions of the Book / 8.1:
Perspectives / 8.2:
Mathematical Proofs / A:
Influence of the Base Joint Spring / A.1:
Influence of k[subscript 1] / A.2:
Relationship between Proximal and Intermediate Forces / A.3:
Transmission Tree Formulae / A.4:
Serial Transmission Tree / A.4.1:
Symmetrical Transmission Tree / A.4.2:
References
Index
Introduction / 1:
Underactuation / 1.1:
Contributions of the Book / 1.2:
87.

図書

図書
Pavel Hobza, Klaus Müller-Dethlefs
出版情報: Cambridge : Royal Society of Chemistry, c2010  xii, 225 p. ; 24 cm
シリーズ名: RSC theoretical and computational chemistry series
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
An Historical Remark / 1.1:
A Remark on Nomenclature of Molecular Complexes / 1.2:
Purpose and Scope: Theory and Experiment / 1.3:
Covalent Versus Non-covalent Bonds / 1.4:
Experimental Observables / 1.5:
Covalent and Non-covalent Interactions in Nature / 1.6:
Quantum-Chemical Methods for Non-covalent Complexes / 1.6.1:
Aims of this Book / 1.7:
References
Characteristics of Non-covalent Complexes and Their Determination by Experimental and Theoretical Techniques / Chapter 2:
Structure and Geometry / 2.1:
Microwave and Terahertz Spectroscopy / 2.2:
Ultrasoft Potentials: The Riddle of the Ammonia Dimer / 2.2.1:
From Water Clusters to a Potential for Liquid Water / 2.2.2:
Rotational Coherence Spectroscopy / 2.2.3:
Quantum-Chemical ab initio Methods / 2.2.4:
Gradient Optimisation and Basis Set Superposition Error / 2.2.5:
Stabilisation Energy / 2.3:
Experimental Methods for the Determination of the Binding Enthalpy / 2.3.1:
Computation of Stabilisation Energy / 2.3.2:
Is Density-Functional Theory Capable of Describing Non-covalent Interactions? / 2.4:
Quantum Monte Carlo / 2.5:
Vibrational Frequencies / 2.6:
Potential-Energy and Free-Energy Surfaces / Chapter 3:
Benzene Dimer / 3.1:
Benzene-Containing Complexes / 3.1.1:
Nucleic Acid-Base Pairs / 3.2:
Accurate Stabilisation Energies of H-Bonded and Stacked Nucleic Acid-Base Pairs / 3.2.1:
Verification of Accurate Stabilisation Energies / 3.2.2:
Decomposition of Stabilisation Energy Using the Perturbation Calculation / 3.2.3:
Microhydrated and Microsolvated Nucleic Acid Bases and Base Pairs / 3.2.4:
On the Role of Dispersion Energy on Stabilisation of DNA Double Helix / 3.2.5:
Amino Acid Pairs / 3.3:
On the Role of Dispersion and Electrostatic Energy on Stabilisation and Folding of Proteins / 3.3.1:
Carboxylic Acid Dimers / 3.4:
Peptides / 3.5:
JSCH-2005 and S22 Database Sets / 3.6:
Experimental Methods for Exploring Stationary Points on the PES: Stimulated-Emission Pumping / 3.7:
Classification of Non-covalent Complexes / Chapter 4:
Hydrogen Bonding and Improper Hydrogen Bonding / 4.1:
Dihydrogen Bonding / 4.2:
Halogen Bonding / 4.3:
Interpretation of Experimental Results and Types of Molecular Clusters / Chapter 5:
Molecule...Rare-Gas Atom Clusters / 5.1:
NO...Ar / 5.1.1:
Benzene...Ar / 5.1.2:
N-Butylbenzene...Ar (BB...Ar) / 5.1.3:
Fluorobenzene...Ar: Simulation of Rotational ZEKE/MATI Spectra / 5.1.6:
Aniline...Ar and Phenol...Ar / 5.3:
Trimer Clusters with Hydrogen and ?-Bonding / 5.3.2:
Phenol...Water...Ar / 5.4.1:
Benzene...Water...Ar / 5.4.2:
Benzene...Indole Complex / 5.5:
Nucleic Acid-Base Pairs in Vacuo / 5.7:
Ultrafast Hydrogen-Atom Transfer in Clusters of Aromatic Molecules Including Base Pairs / 5.8:
Photochemical Selectivity in Nucleic Acid Bases / 5.9:
Proton/Hydrogen Transfer and Hydrogen-Bonded Water Wires / 5.10:
Experimental and Theoretical Study of the Activity of Proton/Hydrogen Transfer in the 7-Azaindole...Ammonia Clusters / 5.10.1:
Helium Nanodroplets: Formic Acid Dimer and Glycine Dimer / 5.11:
Vibrational Energy Transfer and Predissociation / 5.11.1:
Aniline...Ar / 5.12.1:
Fluorobenzene...Ar / 5.12.2:
Extended Molecular Clusters in Chemistry, the Atmosphere and Stereospecific Molecular Recognition / 5.12.3:
Magic Numbers / 6.1:
Formation of Nanoscale Cages / 6.1.2:
Aerosols / 6.2:
Spontaneous Raman Scattering / 6.2.1:
Stimulated Raman Scattering / 6.2.3:
Chirality and Molecular Complexes / 6.3:
Theoretical Approaches to Chiral Recognition / 6.3.1:
Experiments in the Gas Phase and Supersonic Jets / 6.3.2:
Neurotransmitters: (1S, 2S)-N Methylpseudoephedrine / 6.3.3:
Subject Index
Introduction / Chapter 1:
An Historical Remark / 1.1:
A Remark on Nomenclature of Molecular Complexes / 1.2:
88.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
89.

図書

図書
Sune Svanberg
出版情報: Berlin ; Tokyo : Springer-Verlag, c1992  xiii, 405 p. ; 24 cm
シリーズ名: Springer series on atoms + plasmas ; 6
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Atomic Structure / 2:
One-Electron Systems / 2.1:
Alkali Atoms / 2.2:
Magnetic Effects / 2.3:
Precessional Motion / 2.3.1:
Spin-Orbit Interaction / 2.3.2:
General Many-Electron Systems / 2.4:
The Influence of External Fields / 2.5:
Magnetic Fields / 2.5.1:
Electric Fields / 2.5.2:
Hyperfine Structure / 2.6:
Magnetic Hyperfine Structure / 2.6.1:
Electric Hyperfine Structure / 2.6.2:
The Influence of External Fields (hfs) / 2.7:
Isotopic Shifts / 2.8:
Molecular Structure / 3:
Electronic Levels / 3.1:
Rotational Energy / 3.2:
Vibrational Energy / 3.3:
Polyatomic Molecules / 3.4:
Clusters / 3.5:
Other Molecular Structures / 3.6:
Radiation and Scattering Processes / 4:
Resonance Radiation / 4.1:
Spectra Generated by Dipole Transitions / 4.2:
Atoms / 4.2.1:
Molecules / 4.2.2:
Rayleigh and Raman Scattering / 4.3:
Raman Spectra / 4.4:
Vibrational Raman Spectra / 4.4.1:
Rotational Raman Spectra / 4.4.2:
Vibrational-Rotational Raman Spectra / 4.4.3:
Mie Scattering / 4.5:
Atmospheric Scattering Phenomena / 4.6:
Comparison Between Different Radiation and Scattering Processes / 4.7:
Collision-Induced Processes / 4.8:
Spectroscopy of Inner Electrons / 5:
X-Ray Spectroscopy / 5.1:
X-Ray Emission Spectroscopy / 5.1.1:
X-Ray Absorption Spectroscopy / 5.1.2:
X-Ray Imaging Applications / 5.1.3:
Photoelectron Spectroscopy / 5.2:
XPS Techniques and Results / 5.2.1:
Chemical Shifts / 5.2.2:
Auger Electron Spectroscopy / 5.3:
Optical Spectroscopy / 6:
Light Sources / 6.1:
Line Light Sources / 6.1.1:
Continuum Light Sources / 6.1.2:
Synchrotron Radiation / 6.1.3:
Natural Radiation Sources / 6.1.4:
Spectral Resolution Instruments / 6.2:
Prism Spectrometers / 6.2.1:
Grating Spectrometers / 6.2.2:
The Fabry-Pérot Interferometer / 6.2.3:
The Fourier Transform Spectrometer / 6.2.4:
Detectors / 6.3:
Optical Components and Materials / 6.4:
Interference Filters and Mirrors / 6.4.1:
Absorption Filters / 6.4.2:
Polarizers / 6.4.3:
Optical Materials / 6.4.4:
Influence of the Transmission Medium / 6.4.5:
Optical Methods of Chemical Analysis / 6.5:
The Beer-Lambert Law / 6.5.1:
Atomic Absorption/Emission Spectrophotometry / 6.5.2:
Burners, Flames, Sample Preparation and Measurements / 6.5.3:
Modified Methods of Atomization / 6.5.4:
Multi-Element Analysis / 6.5.5:
Molecular Spectrophotometry / 6.5.6:
Raman Spectroscopy / 6.5.7:
Optical Remote Sensing / 6.6:
Atmospheric Monitoring with Passive Techniques / 6.6.1:
Land and Water Measurements with Passive Techniques / 6.6.2:
Astrophysical Spectroscopy / 6.7:
Radio-Frequency Spectroscopy / 7:
Resonance Methods / 7.1:
Magnetic Resonance / 7.1.1:
Atomic-Beam Magnetic Resonance / 7.1.2:
Optical Pumping / 7.1.3:
Optical Double Resonance / 7.1.4:
Level-Crossing Spectroscopy / 7.1.5:
Resonance Methods for Liquids and Solids / 7.1.6:
Microwave Radiometry / 7.2:
Radio Astronomy / 7.3:
Lasers / 8:
Basic Principles / 8.1:
Coherence / 8.2:
Resonators and Mode Structure / 8.3:
Fixed-Frequency Lasers / 8.4:
The Ruby Laser / 8.4.1:
Four-Level Lasers / 8.4.2:
Pulsed Gas Lasers / 8.4.3:
The He-Ne Laser / 8.4.4:
Gaseous Ion Lasers / 8.4.5:
Tunable Lasers / 8.5:
Dye Lasers / 8.5.1:
Colour-Centre Lasers / 8.5.2:
Tunable Solid-State Lasers / 8.5.3:
Tunable CO2 Lasers / 8.5.4:
Semiconductor Lasers / 8.5.5:
Nonlinear Optical Phenomena / 8.6:
Ultra-short and Ultra-high-Power Laser Pulse Generation / 8.7:
Short-Pulse Generation by Mode-Locking / 8.7.1:
Generation of Ultra-high Power Pulses / 8.7.2:
Laser Spectroscopy / 9:
Comparison Between Conventional Light Sources and Lasers / 9.1:
Saturation / 9.1.2:
Excitation Methods / 9.1.3:
Detection Methods / 9.1.4:
Laser Wavelength Setting / 9.1.5:
Doppler-Limited Techniques / 9.2:
Absorption Measurements / 9.2.1:
Intracavity Absorption Measurements / 9.2.2:
Absorption Measurements on Excited States / 9.2.3:
Level Labelling / 9.2.4:
Two-Photon Absorption Measurements / 9.2.5:
Opto-Galvanic Spectroscopy / 9.2.6:
Single-Atom and Single-Molecule Detection / 9.2.7:
Opto-Acoustic Spectroscopy / 9.2.8:
Optical Double-Resonance and Level-Crossing Experiments with Laser Excitation / 9.3:
Time-Resolved Atomic and Molecular Spectroscopy / 9.4:
Generation of Short Optical Pulses / 9.4.1:
Measurement Techniques for Optical Transients / 9.4.2:
Background to Lifetime Measurements / 9.4.3:
Survey of Methods of Measurement for Radiative Properties / 9.4.4:
Quantum-Beat Spectroscopy / 9.4.5:
Ultrafast Spectroscopy / 9.5:
Ultrafast Measurement Techniques / 9.5.1:
Molecular Reaction Dynamics (Femtochemistry) / 9.5.2:
Coherent Control / 9.5.3:
High-Power Laser Experiments / 9.6:
Above Threshold Ionization (ATI) / 9.6.1:
High Harmonic Generation / 9.6.2:
X-Ray Laser Pumping / 9.6.3:
Broadband X-Ray Generation / 9.6.4:
Relativistic Effects and Laser Accelerators / 9.6.5:
Laser-Nuclear Interactions and Laser-Driven Fusion / 9.6.6:
High-Resolution Laser Spectroscopy / 9.7:
Spectroscopy on Collimated Atomic and Ionic Beams / 9.7.1:
Saturation Spectroscopy and Related Techniques / 9.7.2:
Doppler-Free Two-Photon Absorption / 9.7.3:
Cooling and Trapping of Ions and Atoms / 9.8:
Ion Traps / 9.8.1:
Basic Laser Cooling in Traps / 9.8.3:
Trapped Ion Spectroscopy / 9.8.4:
Atom Cooling and Trapping / 9.8.5:
Sub-Recoil Cooling / 9.8.6:
Atom Optics / 9.8.7:
Bose-Einstein Condensation and "Atom Lasers" / 9.8.8:
Fermionic "Condensation" / 9.8.9:
Laser-Spectroscopic Applications / 10:
Diagnostics of Combustion Processes / 10.1:
Background / 10.1.1:
Laser-Induced Fluorescence and Related Techniques / 10.1.2:
Coherent Anti-Stokes Raman Scattering / 10.1.3:
Velocity Measurements / 10.1.5:
Laser Remote Sensing of the Atmosphere / 10.2:
Optical Heterodyne Detection / 10.2.1:
Long-Path Absorption Techniques / 10.2.2:
Lidar Techniques / 10.2.3:
Laser-Induced Fluorescence and Raman Spectroscopy in Liquids and Solids / 10.3:
Hydrospheric Remote Sensing / 10.3.1:
Vegetation Monitoring / 10.3.2:
Monitoring of Surface Layers / 10.3.3:
Laser-Induced Chemical Processes / 10.4:
Laser-Induced Chemistry / 10.4.1:
Laser Isotope Separation / 10.4.2:
Spectroscopic Aspects of Lasers in Medicine / 10.5:
Thermal Interaction of Laser Light with Tissue / 10.5.1:
Photodynamic Tumour Therapy / 10.5.2:
Tissue Diagnostics with Laser-Induced Fluorescence / 10.5.3:
Scattering Spectroscopy and Tissue Transillumination / 10.5.4:
Questions and Exercises
References
Index
Introduction / 1:
Atomic Structure / 2:
One-Electron Systems / 2.1:
90.

図書

図書
Leon Lapidus, George F. Pinder
出版情報: New York : Wiley, c1982  677 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Fundamental Concepts / Chapter 1.:
Notation / 1.0.:
First-Order Partial Differential Equations / 1.1.:
First-Order Quasilinear Partial Differential Equations / 1.1.1.:
Initial Value or Cauchy Problem / 1.1.2.:
Application of Characteristic Curves / 1.1.3.:
Nonlinear First-Order Partial Differential Equations / 1.1.4.:
Second-Order Partial Differential Equations / 1.2.:
Linear Second-Order Partial Differential Equations / 1.2.1.:
Classification and Canonical Form of Selected Partial Differential Equations / 1.2.2.:
Quasilinear Partial Differential Equations and Other Ideas / 1.2.3.:
Systems of First-Order PDEs / 1.3.:
First-Order and Second-Order PDEs / 1.3.1.:
Characteristic Curves / 1.3.2.:
Applications of Characteristic Curves / 1.3.3.:
Initial and Boundary Conditions / 1.4.:
References
Basic Concepts in the Finite Difference and Finite Element Methods / Chapter 2.:
Introduction / 2.0.:
Finite Difference Approximations / 2.1.:
Taylor Series Expansions / 2.1.1.:
Operator Notation for u(x) / 2.1.3.:
Finite Difference Approximations in Two Dimensions / 2.1.4.:
Additional Concepts / 2.1.5.:
Introduction to Finite Element Approximations / 2.2.:
Method of Weighted Residuals / 2.2.1.:
Application of the Method of Weighted Residuals / 2.2.2.:
The Choice of Basis Functions / 2.2.3.:
Two-Dimensional Basis Functions / 2.2.4.:
Approximating Equations / 2.2.5.:
Relationship between Finite Element and Finite Difference Methods / 2.3.:
Finite Elements on Irregular Subspaces / Chapter 3.:
Triangular Elements / 3.0.:
The Linear Triangular Element / 3.1.1.:
Area Coordinates / 3.1.2.:
The Quadratic Triangular Element / 3.1.3.:
The Cubic Triangular Element / 3.1.4.:
Higher-Order Triangular Elements / 3.1.5.:
Isoparametric Finite Elements / 3.2.:
Transformation Functions / 3.2.1.:
Numerical Integration / 3.2.2.:
Isoparametric Serendipity Hermitian Elements / 3.2.3.:
Isoparametric Hermitian Elements in Normal and Tangential Coordinates / 3.2.4.:
Boundary Conditions / 3.3.:
Three-Dimensional Elements / 3.4.:
Parabolic Partial Differential Equations / Chapter 4.:
Partial Differential Equations / 4.0.:
Well-Posed Partial Differential Equations / 4.1.1.:
Model Difference Approximations / 4.2.:
Well-Posed Difference Forms / 4.2.1.:
Derivation of Finite Difference Approximations / 4.3.:
The Classic Explicit Approximation / 4.3.1.:
The Dufort-Frankel Explicit Approximation / 4.3.2.:
The Richardson Explicit Approximation / 4.3.3.:
The Backwards Implicit Approximation / 4.3.4.:
The Crank-Nicolson Implicit Approximation / 4.3.5.:
The Variable-Weighted Implicit Approximation / 4.3.6.:
Consistency and Convergence / 4.4.:
Stability / 4.5.:
Heuristic Stability / 4.5.1.:
Von Neumann Stability / 4.5.2.:
Matrix Stability / 4.5.3.:
Some Extensions / 4.6.:
Influence of Lower-Order Terms / 4.6.1.:
Higher-Order Forms / 4.6.2.:
Predictor-Corrector Methods / 4.6.3.:
Asymmetric Approximations / 4.6.4.:
Variable Coefficients / 4.6.5.:
Nonlinear Parabolic PDEs / 4.6.6.:
The Box Method / 4.6.7.:
Solution of Finite Difference Approximations / 4.7.:
Solution of Implicit Approximations / 4.7.1.:
Explicit versus Implicit Approximations / 4.7.2.:
Composite Solutions / 4.8.:
Global Extrapolation / 4.8.1.:
Some Numerical Results / 4.8.2.:
Local Combination / 4.8.3.:
Composites of Different Approximations / 4.8.4.:
Finite Difference Approximations in Two Space Dimensions / 4.9.:
Explicit Methods / 4.9.1.:
Irregular Boundaries / 4.9.2.:
Implicit Methods / 4.9.3.:
Alternating Direction Explicit (ADE) Methods / 4.9.4.:
Alternating Direction Implicit (ADI) Methods / 4.9.5.:
LOD and Fractional Splitting Methods / 4.9.6.:
Hopscotch Methods / 4.9.7.:
Mesh Refinement / 4.9.8.:
Three-Dimensional Problems / 4.10.:
ADI Methods / 4.10.1.:
Iterative Solutions / 4.10.2.:
Finite Element Solution of Parabolic Partial Differential Equations / 4.11.:
Galerkin Approximation to the Model Parabolic Partial Differential Equation / 4.11.1.:
Approximation of the Time Derivative / 4.11.2.:
Approximation of the Time Derivative for Weakly Nonlinear Equations / 4.11.3.:
Finite Element Approximations in One Space Dimension / 4.12.:
Formulation of the Galerkin Approximating Equations / 4.12.1.:
Linear Basis Function Approximation / 4.12.2.:
Higher-Degree Polynomial Basis Function Approximation / 4.12.3.:
Formulation Using the Dirac Delta Function / 4.12.4.:
Orthogonal Collocation Formulation / 4.12.5.:
Asymmetric Weighting Functions / 4.12.6.:
Finite Element Approximations in Two Space Dimensions / 4.13.:
Galerkin Approximation in Space and Time / 4.13.1.:
Galerkin Approximation in Space Finite Difference in Time / 4.13.2.:
Asymmetric Weighting Functions in Two Space Dimensions / 4.13.3.:
Lumped and Consistent Time Matrices / 4.13.4.:
Collocation Finite Element Formulation / 4.13.5.:
Treatment of Sources and Sinks / 4.13.6.:
Alternating Direction Formulation / 4.13.7.:
Finite Element Approximations in Three Space Dimensions / 4.14.:
Example Problem / 4.14.1.:
Summary / 4.15.:
Elliptic Partial Differential Equations / Chapter 5.:
Model Elliptic PDEs / 5.0.:
Specific Elliptic PDEs / 5.1.1.:
Further Items / 5.1.2.:
Finite Difference Solutions in Two Space Dimensions / 5.2.:
Five-Point Approximations and Truncation Error / 5.2.1.:
Nine-Point Approximations and Truncation Error / 5.2.2.:
Approximations to the Biharmonic Equation / 5.2.3.:
Boundary Condition Approximations / 5.2.4.:
Matrix Form of Finite Difference Equations / 5.2.5.:
Direct Methods of Solution / 5.2.6.:
Iterative Concepts / 5.2.7.:
Formulation of Point Iterative Methods / 5.2.8.:
Convergence of Point Iterative Methods / 5.2.9.:
Line and Block Iteration Methods / 5.2.10.:
Acceleration and Semi-Iterative Overlays / 5.2.11.:
Finite Difference Solutions in Three Space Dimensions / 5.3.:
Iteration Concepts / 5.3.1.:
Finite Element Methods for Two Space Dimensions / 5.3.3.:
Galerkin Approximation / 5.4.1.:
Collocation Approximation / 5.4.2.:
Mixed Finite Element Approximation / 5.4.4.:
Approximation of the Biharmonic Equation / 5.4.5.:
Boundary Integral Equation Methods / 5.5.:
Fundamental Theory / 5.5.1.:
Boundary Element Formulation / 5.5.2.:
Linear Interpolation Functions / 5.5.3.:
Poisson's Equation / 5.5.5.:
Nonhomogeneous Materials / 5.5.6.:
Combination of Finite Element and Boundary Integral Equation Methods / 5.5.7.:
Three-Dimensional Finite Element Simulation / 5.6.:
Hyperbolic Partial Differential Equations / 5.7.:
Equations of Hyperbolic Type / 6.0.:
Finite Difference Solution of First-Order Scalar Hyperbolic Partial Differential Equations / 6.2.:
Stability, Truncation Error, and Other Features / 6.2.1.:
Other Approximations / 6.2.2.:
Dissipation and Dispersion / 6.2.3.:
Hopscotch Methods and Mesh Refinement / 6.2.4.:
Finite Difference Solution of First-Order Vector Hyperbolic Partial Differential Equations / 6.3.:
Finite Difference Solution of First-Order Vector Conservative Hyperbolic Partial Differential Equations / 6.4.:
Finite Difference Solutions to Two- and Three-Dimensional Hyperbolic Partial Differential Equations / 6.5.:
Finite Difference Schemes / 6.5.1.:
Two-Step, ADI, and Strang-Type Algorithms / 6.5.2.:
Conservative Hyperbolic Partial Differential Equations / 6.5.3.:
Finite Difference Solution of Second-Order Model Hyperbolic Partial Differential Equations / 6.6.:
One-Space-Dimension Hyperbolic Partial Differential Equation / 6.6.1.:
Explicit Algorithms / 6.6.2.:
Implicit Algorithms / 6.6.3.:
Simultaneous First-Order Partial Differential Equations / 6.6.4.:
Mixed Systems / 6.6.5.:
Two- and Three-Space-Dimensional Hyperbolic Partial Differential Equations / 6.6.6.:
Implicit ADI and LOD Methods / 6.6.7.:
Finite Element Solution of First-Order Model Hyperbolic Partial Differential Equations / 6.7.:
Asymmetric Weighting Function Approximation / 6.7.1.:
An H[superscript -1] Galerkin Approximation / 6.7.3.:
Orthogonal Collocation with Asymmetric Bases / 6.7.4.:
Finite Element Solution of Two- and Three-Space-Dimensional First-Order Hyperbolic Partial Differential Equations / 6.7.6.:
Galerkin Finite Element Formulation / 6.8.1.:
Finite Element Solution of First-Order Vector Hyperbolic Partial Differential Equations / 6.8.2.:
Finite Element Solution of Two- and Three-Space-Dimensional First-Order Vector Hyperbolic Partial Differential Equations / 6.9.1.:
Finite Element Solution of One-Space-Dimensional Second-Order Hyperbolic Partial Differential Equations / 6.10.1.:
Time Approximations / 6.11.1.:
Finite Element Solution of Two- and Three-Space-Dimensional Second-Order Hyperbolic Partial Differential Equations / 6.11.3.:
Index / 6.12.1.:
Fundamental Concepts / Chapter 1.:
Notation / 1.0.:
First-Order Partial Differential Equations / 1.1.:
91.

図書

図書
Michael Griebel, Stephan Knapek, Gerhard Zumbusch
出版情報: Berlin : Springer, c2007  xi, 470 p. ; 24 cm
シリーズ名: Texts in computational science and engineering ; 5
所蔵情報: loading…
目次情報: 続きを見る
Computer Simulation - a Key Technology / 1:
From the Schrodinger Equation to Molecular Dynamics / 2:
The Schrodinger Equation / 2.1:
A Derivation of Classical Molecular Dynamics / 2.2:
TDSCF Approach and Ehrenfest Molecular Dynamics / 2.2.1:
Expansion in the Adiabatic Basis / 2.2.2:
Restriction to the Ground State / 2.2.3:
Approximation of the Potential Energy Hypersurface / 2.2.4:
An Outlook on Methods of Ab Initio Molecular Dynamics / 2.3:
The Linked Cell Method for Short-Range Potentials / 3:
Time Discretization - the Stormer-Verlet Method / 3.1:
Implementation of the Basic Algorithm / 3.2:
The Cutoff Radius / 3.3:
The Linked Cell Method / 3.4:
Implementation of the Linked Cell Method / 3.5:
First Application Examples and Extensions / 3.6:
Collision of Two Bodies I / 3.6.1:
Collision of Two Bodies II / 3.6.2:
Density Gradient / 3.6.3:
Rayleigh-Taylor Instability / 3.6.4:
Rayleigh-Benard Convection / 3.6.5:
Surface Waves in Granular Materials / 3.6.6:
Thermostats, Ensembles, and Applications / 3.7:
Thermostats and Equilibration / 3.7.1:
Statistical Mechanics and Thermodynamic Quantities / 3.7.2:
Phase Transition of Argon in the NVT Ensemble / 3.7.3:
The Parrinello-Rahman Method / 3.7.4:
Phase Transition of Argon in the NPT Ensemble / 3.7.5:
Parallelization / 4:
Parallel Computers and Parallelization Strategies / 4.1:
Domain Decomposition for the Linked Cell Method / 4.2:
Implementation / 4.3:
Performance Measurements and Benchmarks / 4.4:
Application Examples / 4.5:
Collision of Two Bodies / 4.5.1:
Extensions to More Complex Potentials and Molecules / 4.5.2:
Many-Body Potentials / 5.1:
Cracks in Metals - Finnis-Sinclair Potential / 5.1.1:
Phase Transition in Metals - EAM Potential / 5.1.2:
Fullerenes and Nanotubes - Brenner Potential / 5.1.3:
Potentials with Fixed Bond Structures / 5.2:
Membranes and Minimal Surfaces / 5.2.1:
Systems of Linear Molecules / 5.2.2:
Outlook to More Complex Molecules / 5.2.3:
Time Integration Methods / 6:
Errors of the Time Integration / 6.1:
Symplectic Methods / 6.2:
Multiple Time Step Methods - the Impulse Method / 6.3:
Constraints - the RATTLE Algorithm / 6.4:
Mesh-Based Methods for Long-Range Potentials / 7:
Solution of the Potential Equation / 7.1:
Boundary Conditions / 7.1.1:
Potential Equation and Potential Decomposition / 7.1.2:
Decomposition of the Potential Energy and of the Forces / 7.1.3:
Short-Range and Long-Range Energy and Force Terms / 7.2:
Short-Range Terms - Linked Cell Method / 7.2.1:
Long-Range Terms - Fast Poisson Solvers / 7.2.2:
Some Variants / 7.2.3:
Smooth Particle-Mesh Ewald Method (SPME) / 7.3:
Short-Range Terms / 7.3.1:
Long-Range Terms / 7.3.2:
Implementation of the SPME method / 7.3.3:
Application Examples and Extensions / 7.4:
Rayleigh-Taylor Instability with Coulomb Potential / 7.4.1:
Phase Transition in Ionic Microcrystals / 7.4.2:
Water as a Molecular System / 7.4.3:
Parallelization of the SPME Method / 7.5:
Example Application: Structure of the Universe / 7.5.2:
Tree Algorithms for Long-Range Potentials / 8:
Series Expansion of the Potential / 8.1:
Tree Structures for the Decomposition of the Far Field / 8.2:
Particle-Cluster Interactions and the Barnes-Hut Method / 8.3:
Method / 8.3.1:
Applications from Astrophysics / 8.3.2:
Parallel Tree Methods / 8.4:
An Implementation with Keys / 8.4.1:
Dynamical Load Balancing / 8.4.2:
Data Distribution with Space-Filling Curves / 8.4.3:
Applications / 8.4.4:
Methods of Higher Order / 8.5:
Cluster-Cluster Interactions and the Fast Multipole Method / 8.5.1:
Error Estimate / 8.6.1:
Comparisons and Outlook / 8.6.4:
Applications from Biochemistry and Biophysics / 9:
Bovine Pancreatic Trypsin Inhibitor / 9.1:
Membranes / 9.2:
Peptides and Proteins / 9.3:
Protein-Ligand Complex and Bonding / 9.4:
Prospects / 10:
Appendix / A:
Newton's, Hamilton's, and Euler-Lagrange's Equations / A.1:
Suggestions for Coding and Visualization / A.2:
Parallelization by MPI / A.3:
Maxwell-Boltzmann Distribution / A.4:
Parameters / A.5:
References
Index
Computer Simulation - a Key Technology / 1:
From the Schrodinger Equation to Molecular Dynamics / 2:
The Schrodinger Equation / 2.1:
92.

図書

図書
edited by Sabine Szunerits, Rabah Boukherroub
出版情報: Singapore : Pan Stanford Publishing, c2015  xix, 358 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Propagating Surface Plasmon Polaritons / Atef Shalabney1:
Introduction / 1.1:
Surface Plasmons on Smooth Surfaces / 1.2:
Surface Plasmon at Single Interface / 1.2.1:
Surface Plasmon in Multilayer Systems / 1.2.2:
Electromagnetic Energy Confinement and Field Enhancement / 1.2.3:
Excitation of Surface Plasmon Polaritons / 1.2.4:
Applications / 1.3:
Surface Plasmon Resonance-Based Sensors / 1.3.1:
Enhanced Spectroscopy and Emissive Processes / 1.3.2:
Concluding Remarks / 1.4:
Different Strategies for Glycan Immobilization onto Plasmonic Interfaces / Sabine Szunerits ; Rabah Boukherroub2:
Carboxymethylated Dextran Layers: The BiAcore Chip / 2.1:
Self-Assembled Monolayers Based on Thiolated Functional Groups / 2.3:
Polymer Films / 2.4:
Lamellar SPR Structures / 2.5:
Conclusion
Biophysics of DNA: DNA Melting Curve Analysis with Surface Plasmon Resonance Imaging / Arnaud Buhot ; Julia Pingel ; Jean-Bernard Fiche ; Roberto Calemczuk ; Thierry Livache3:
Temperature Regulation of SPRi for DNA Melting Curves Analysis / 3.1:
SPRi Apparatus with Temperature Regulation / 3.2.1:
Equilibrium versus Out-of-Equilibrium Melting Curves / 3.2.2:
Stability of Grafting Chemistries at High Temperatures / 3.2.3:
Electro-copolymerization of poly-pyrrole / 3.2.3.1:
Thiol self-assembling monolayer / 3.2.3.2:
Physico-Chemistry of DNA Melting at a Surface / 3.3:
Effects of Denaturant Molecules / 3.3.1:
Effects of Salt Concentration / 3.3.2:
Detection of Single Point Mutation from Melting Curve Analysis / 3.4:
Detection with Oligonucleotides Targets / 3.4.1:
Detection Limit of Somatic Mutations / 3.4.2:
Homozygous and Heterozygous Detection of PCR Products / 3.4.3:
Plasmon Waveguide Resonance Spectroscopy: Principles and Applications in Studies of Molecular Interactions within Membranes / Isabel D. Alves3.5:
Plasmon Spectroscopy / 4.1:
Description of Surface Plasmons / 4.2.1:
Types of Surface Plasmon Resonances / 4.2.2:
Conventional surface plasmon resonance / 4.2.2.1:
Plasmon-waveguide resonance / 4.2.2.2:
PWR Spectral Analysis / 4.2.3:
PWR Applications / 4.3:
Lipid Bilayers / 4.3.1:
Solid-supported lipid bilayers / 4.3.1.1:
Membranes composed of cellular membrane fragments / 4.3.1.2:
GPCR Insertion into Membranes, Activation and Signaling / 4.3.2:
Role of Lipids in GPCR Activation, Signaling, and Partition into Membrane Microdomains / 4.3.3:
Interaction of Membrane Active Peptides with Lipid Membranes / 4.3.4:
PWR Ongoing Developments / 4.4:
Surface-Wave Enhanced Biosensing / Wolfgang Knoll ; Amal Kasry ; Chun-Jen Huang ; Yi Wang ; Jakub Dostalek5:
Surface Plasmon Field-Enhanced Fluorescence Detection / 5.1:
Long-Range Surface Plasmon Fluorescence Spectroscopy / 5.3:
Optical Waveguide Fluorescence Spectroscopy / 5.4:
Conclusions / 5.5:
Infrared Surface Plasmon Resonance / Stefan Franzen ; Mark Losego ; Misun Kang ; Edward Sachet ; Jon-Paul Maria6:
The Hypothesis That Surface Plasmon Resonance Will Be Observed in Free Electron Conductors / 6.1:
Confirmation of the Hypothesis That Conducting Metal Oxides Can Support Surface Plasmon Resonance / 6.3:
The Effect of Carrier Concentration / 6.4:
The Effect of Mobility / 6.5:
Hybrid Plasmons: Understanding the Relationship between Localized LSPR and SPR / 6.6:
The Effect of Materials Properties on the Observed Surface Plasmon Polaritons / 6.7:
Detection of Mid-Infrared Surface Plasmon Polaritons / 6.8:
The Search for High Mobility Conducting Metal Oxides / 6.9:
The Unique Characteristics of Localized Surface Plasmon Resonance / Gaetan Leveque ; Abdellatif Akjouj6.10:
Localized Surface Plasmon Resonance of a Single Particle / 7.1:
Single Particle in the Quasi-Static Approximation / 7.1.1:
Case of the spherical particle / 7.1.1.1:
Case of the spheroidal particle / 7.1.1.2:
Beyond the Quasi-Static Approximation / 7.1.2:
Examples of Coupled Plasmonic Systems / 7.2:
Chain of Identical Particles / 7.2.1:
Chain of Different Particles / 7.2.2:
Localized Surface Plasmon for a Periodic Nano structure / 7.3:
Model and Simulation Method / 7.3.1:
Absorption Spectra for Au Nano structures Array / 7.3.2:
Influence of the Thickness of a Diamond Dielectric Overlayer on the LSPR / 7.3.3:
Advances in the Fabrication of Plasmonic Nanostructures: Plasmonics Going Down to the IManoscale / Thomas Maurer7.3.4:
Top-Down Techniques: A Mask-Based Process / 8.1:
Conventional Lithography Techniques: Photolithography and Particle Beam Lithography / 8.2.1:
Photolithography / 8.2.1.1:
Particle beam lithography / 8.2.1.2:
Advanced Lithography Techniques: Masks Coming from Researcher Imagination / 8.2.2:
Multilevel laser interference lithography / 8.2.2.1:
Nanostencil lithography / 8.2.2.2:
Self-assembly techniques for mask fabrication: nanosphere lithorgaphy and block copolymer lithography / 8.2.2.3:
Direct Writing / 8.2.3:
Particle beam-induced etching and particle beam-induced deposition / 8.2.3.1:
Laser ablation / 8.2.3.2:
3D laser lithography / 8.2.3.3:
Printing, Replica Molding and Embossing / 8.2.4:
Printing / 8.2.4.1:
Replica molding / 8.2.4.2:
Embossing / 8.2.4.3:
Conclusion about the Top-Down Strategy / 8.2.5:
Bottom-Up Techniques: Atom by Atom Building / 8.3:
The Bottom-Up Strategy / 8.3.1:
Physical route / 8.3.1.1:
Electrochemical route / 8.3.1.2:
Chemical route / 8.3.1.3:
Self-Organization, the Next Challenge of Plasmonics / 8.3.2:
Laboratory self-assembly techniques / 8.3.2.1:
Mass Production Using Wet Coating Processes / 8.3.3:
Mixing Top-Down and Bottom-Up Routes / 8.4:
Porous Membranes for Ordered Nanowires Growth / 8.4.1:
Copolymer Template Control of Plasmonic Nanoparticle Synthesis via Thermal Annealing / 8.4.2:
Let's Play Your Imagination / 8.4.3:
Conclusion: First, Choose Materials / 8.5:
Colorimetric Sensing Based on Metallic Nanostructures / Daniel Aili ; Borja Sepulveda9:
Introduction and Historical Perspective / 9.1:
Synthesis of Gold Nanoparticles / 9.2:
Optical Properties of Gold Nanoparticles / 9.3:
Colloidal Stability and Surface Chemistry of Gold Nanoparticles / 9.4:
Surface Functionalization / 9.4.1:
Molecular Recognition for Modulation of Nanoparticle Stability / 9.5:
Cross-Linking Assays / 9.5.1:
Redispersion Assays / 9.5.2:
Non-Cross-Linking Assays / 9.5.3:
Outlook and Challenges / 9.6:
Assays with Reversed Sensitivity and Plasmonic ELISA / 9.6.1:
Assays for the Future / 9.6.2:
Surface-Enhanced Raman Scattering: Principles and Applications for Single-Molecule Detection / Diego P. dos Santos ; Marcia I. A. Temperini ; Alexandre G. Brolo10:
Raman Scattering / 10.1:
SERS / 10.3:
SERS Substrates / 10.4:
Single-Molecule SERS / 10.5:
Graphene-Based Plasmonics / Sinan Balci ; Emre Ozan Polat ; Coskun Kocabas10.6:
Introduction: Plasmons in Reduced Dimensions / 11.1:
Optical Properties of Graphene / 11.2:
Synthesis of Graphene / 11.3:
Plasma Oscillations on Graphene-Metal Surface / 11.4:
Graphene Functionalized SPR Sensors / 11.5:
Graphene Passivation for SPR Sensors / 11.6:
Biomolecular Detection Using Graphene Functionalized SPR Sensors / 11.7:
Graphene Oxide Functionalization / 11.8:
Gate-Tunable Graphene Plasmonics / 11.9:
SPR: An Industrial Point of View / Iban Larroulet11.10:
Companies / 12.1:
Future Trends / 12.3:
Index
Foreword
Preface
Propagating Surface Plasmon Polaritons / Atef Shalabney1:
93.

図書

図書
Frimer, Aryeh A., 1946-
出版情報: Boca Raton, Fla. : CRC Press, c1985  2 v. ; 26 cm
シリーズ名: Singlet O[2] / editor, Aryeh A. Frimer ; v. 2-v. 3
所蔵情報: loading…
94.

図書

図書
出版情報: Providence, R.I. : American Mathematical Society, 1955-  v. ; 26 cm
所蔵情報: loading…
95.

図書

図書
Mario Pitteri, G. Zanzotto
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, c2002  385 p. ; 24 cm
シリーズ名: Applied mathematics / ed. R.J. Knops ; 19
所蔵情報: loading…
目次情報: 続きを見る
List of figures
List of tables
Foreword
Introduction / 1:
Outline of chapter contents / 1.1:
Some experimental observations / 1.2:
Preliminaries / 2:
Basic notation / 2.1:
Some notions of elementary group theory / 2.2:
Basic definitions / 2.2.1:
Conjugacy / 2.2.2:
Group actions and symmetry / 2.2.3:
Linear and orthogonal transformations / 2.3:
Tensors with period two / 2.3.1:
Simple shears / 2.3.2:
Finite groups of tensors or matrices / 2.3.3:
Affine transformations / 2.4:
Continuum mechanics / 2.5:
Deformation / 2.5.1:
Thermodynamic potentials and their invariance / 2.5.2:
Stability of equilibrium / 2.5.3:
Simple lattices / 3:
Definitions and global symmetry / 3.1:
Geometric symmetry and crystal systems / 3.2:
Crystallographic point groups and holohedries / 3.2.1:
Crystal classes and crystal systems / 3.2.2:
Laue groups / 3.2.3:
Arithmetic symmetry and Bravais lattice types / 3.3:
Lattice groups / 3.3.1:
Conjugacy in O (crystal systems) and in GL(3, Z) (Bravais lattice types) / 3.3.2:
Centerings / 3.3.3:
The fourteen Bravais lattices / 3.4:
Fixed sets of lattice groups / 3.5:
An example / 3.5.1:
Symmetry-preserving stretches for simple lattices / 3.6:
Commutation relations / 3.6.1:
Structure of the fixed sets / 3.6.2:
The Bain stretch in the centered cubic lattices / 3.6.3:
Lattice subspaces, packings and indices / 3.7:
Lattice rows and lattice planes / 3.7.1:
Close-packed structures / 3.7.2:
Miller indices and crystallographic equivalence / 3.7.3:
Miller-Bravais indices for hexagonal lattices / 3.7.4:
Lattice groups and fixed sets for planar lattices / 3.8:
Weak-transformation neighborhoods and variants / 4:
Reconciliatio of global and local symmetries / 4.1:
Symmetry-breaking stretches for simple lattices / 4.2:
Small deformations and weak phase transformations / 4.3:
Small symmetry-preserving stretches / 4.3.1:
Small symmetry-breaking stretches / 4.3.2:
Constructing the small symmetry-breaking stretches / 4.4:
Variant structures (local orbits) in the wt-nbhds / 4.5:
General definitions / 4.5.1:
Variants and cosets / 4.5.3:
Variant structures and conjugacy classes / 4.5.4:
Explicit variant structures / 5:
Variant structures in cubic wt-nbhds / 5.1:
Tetragonal conjugacy class and variant structure / 5.1.1:
Rhombohedral conjugacy class and variant structure / 5.1.2:
Orthorhombic conjugacy classes and variant structures / 5.1.3:
Orthorhombic 'cubic edges' variants / 5.1.3.1:
Orthorhombic 'mixed axes' variants / 5.1.3.2:
Monoclinic conjugacy classes / 5.1.4:
Monoclinic 'cubic edges' variants / 5.1.4.1:
Monoclinic 'face-diagonals' variants / 5.1.4.2:
Triclinic conjugacy class and variant structure / 5.1.5:
Variant structures in hexagonal wt-nbhds / 5.2:
Orthorhombic conjugacy class and variant structure / 5.2.1:
Monoclinic conjugacy classes and variant structures / 5.2.2:
Monoclinic 'basal diagonals' variants / 5.2.2.1:
Monoclinic 'basal side-axes' variants / 5.2.2.2:
Monoclinic 'optic axis' variants / 5.2.2.3:
Kinematics of weak phase transformations / 5.2.3:
Irreducible invariant subspaces for the holohedries / 5.4:
General properties / 5.4.1:
Reduced actions and reduced symmetry groups on the i.i. subspaces / 5.4.2:
Decompositions of Sym under the action of the holohedries / 5.4.3:
Triclinic decompositions / 5.4.3.1:
Monoclinic decompositions / 5.4.3.2:
Orthorhombic decompositions / 5.4.3.3:
Rhombohedral decompositions / 5.4.3.4:
Tetragonal decompositions / 5.4.3.5:
Hexagonal decompositions / 5.4.3.6:
Cubic decompositions / 5.4.3.7:
Energetics / 6:
Invariance of simple-lattice energies / 6.1:
The Cauchy-Born hypothesis / 6.2:
The Born rule / 6.2.1:
Failures of the Born rule / 6.2.2:
Thermoelastic constitutive equations for crystals / 6.3:
Invariance of the response functions of elastic crystals / 6.3.1:
Energy minimizers and their general properties / 6.4:
Multiplicity of the symmetry-related minimizers / 6.4.1:
Multiphase crystals: minimizers that are not symmetry-related / 6.4.2:
Lack of convexity and symmetry-induced instabilities / 6.4.3:
Constitutive functions for weak phase transitions / 6.5:
Weak and symmetry-breaking transformations / 6.5.1:
Domain restrictions for the constitutive functions / 6.5.2:
Energy wells in the wt-nbhds / 6.5.3:
In the vicinity of an energy well / 6.6:
Thermal expansion and compressibility of a crystal / 6.6.1:
The elasticity tensor / 6.6.2:
Temperature-dependence of the elastic moduli / 6.6.3:
Anisotropic elasticity / 6.7:
Bifurcation patterns / 7:
The Landau theory / 7.1:
Isolated critical points and bifurcation points / 7.2:
Neighborhoods of bifurcation points / 7.2.1:
Genericity / 7.2.2:
Reduced bifurcation problems; order parameters / 7.3:
Analysis of the reduced bifurcation problems / 7.4:
Reduced problem (1) / 7.4.1:
Reduced problem (2) / 7.4.2:
Reduced problem (3) / 7.4.3:
Reduced problem (4) / 7.4.4:
Reduced problem (5) / 7.4.5:
Reduced problem (6) / 7.4.6:
Comparison with the kinematic transitions of [section]5.3 / 7.4.7:
Behavior of the moduli along the transitions / 7.5:
Examples of energy functions for simple lattices / 7.6:
A schematic 1-dimensional example / 7.6.1:
Energies for cubic-to-tetragonal and for tetragonal-to-monoclinic transitions / 7.6.2:
Orientation relationships and lattice correspondence / 7.6.3:
Relation with the Landau theory / 7.7:
General references / 7.8:
Mechanical twinning / 8:
Coherence and rank-1 connections / 8.1:
The twinning equation / 8.2:
Solutions of the twinning equation / 8.3:
Different descriptions of the same twin and cosets / 8.3.1:
Crystallographically equivalent twins / 8.3.2:
Reciprocal twins / 8.3.3:
Generic twins / 8.3.4:
Type-1 and Type-2 (conventional) twins / 8.3.5:
Compound twins / 8.3.6:
Conventional twins and rationality conditions / 8.3.7:
Short remarks / 8.4:
Experimental data / 8.4.1:
Mechanical twinning and the Born rule / 8.4.2:
Growth twins / 8.4.3:
Transformation twins / 9:
Procedure to determine the transformation twins / 9.1:
Rk-1 connections in a cubic wt-nbhd / 9.2:
Tetragonal variant structure / 9.2.1:
Rhombohedral variant structure / 9.2.2:
Orthorhombic variant structures / 9.2.3:
Orthorhombic 'cubic edges' wells / 9.2.3.1:
Orthorhombic 'mixed axes' wells / 9.2.3.2:
Monoclinic variant structures / 9.2.4:
Monoclinic 'cubic edges' wells / 9.2.4.1:
Monoclinic 'face-diagonals' wells / 9.2.4.2:
Triclinic variant structure / 9.2.5:
Rk-1 connections in a hexagonal wt-nbhd / 9.3:
Orthorhombic variant structure / 9.3.1:
Monoclinic 'basal diagonals' wells / 9.3.2:
Monoclinic 'basal side-axes' wells / 9.3.2.2:
Monoclinic 'optic axis' wells / 9.3.2.3:
The Mallard law / 9.3.3:
Microstructures / 10:
Piecewise homogeneous equilibria / 10.1:
Generalized solutions / 10.2:
The minors relations / 10.2.1:
The N-well problem / 10.2.2:
Examples of microstructures that are not laminates / 10.3:
Habit planes in martensite / 10.4:
Geometrically nonlinear theory / 10.4.1:
Self-accommodation in shape memory alloys / 10.4.2:
Wedges and other microstructures / 10.4.3:
Kinematics of multilattices / 11:
Crystals as multilattices / 11.1:
Descriptors and configuration spaces for deformable multilattices / 11.1.1:
Essential descriptions of multilattices / 11.1.2:
The global symmetry of multilattices / 11.2:
Indeterminateness of the descriptors (P[subscript 0,...], P[subscript n-1], e[subscript a]) / 11.2.1:
Indeterminateness of the descriptors (P[subscript 0], [varepsilon subscript [sigma]) / 11.2.2:
Nonessential descriptors of multilattices / 11.2.3:
The affine symmetry of multilattices / 11.3:
Space groups; crystal class and crystal system of a multilattice / 11.3.1:
The arithmetic symmetry of multilattices / 11.4:
Lattice groups of multilattices / 11.4.1:
Relation between the arithmetic and the space-group symmetries / 11.4.2:
Examples / 11.5:
Three-dimensional 2-lattices and hexagonal close-packed structures / 11.5.1:
The structure of quartz as a 3-lattice / 11.5.2:
Weak-transformation neighborhoods / 11.6:
The energy of a multilattice and its invariance / 11.7:
Minimizing out the internal variables of complex crystals / 11.7.1:
Local invariance of multilattice energies; the example of quartz / 11.7.2:
Twinning in multilattices / 11.8:
A proposal for a class of twins / 11.8.1:
Two examples / 11.8.2:
A model for stress relaxation / 11.8.3:
References
Index
List of figures
List of tables
Foreword
96.

図書

図書
Werner Massa ; translated into English by Robert O. Gould
出版情報: New York : Springer, 2000  xi, 206 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
The Unit Cell / 2.1.1:
Atom Parameters / 2.1.2:
The Seven Crystal Systems / 2.1.3:
The Fourteen Bravais Lattices / 2.2:
The Hexagonal, Trigonal and Rhombohedral Systems / 2.2.1:
The Reduced Cell / 2.2.2:
The Geometry of X-Ray Diffraction / 3:
X-Rays / 3.1:
Interference by a One-Dimensional Lattice / 3.2:
The Laue Equations / 3.3:
Lattice Planes and hkl-Indices / 3.4:
The Bragg Equation / 3.5:
Higher Orders of Diffraction / 3.6:
The Quadratic Form of the Bragg Equation / 3.7:
The Reciprocal Lattice / 4:
From the Direct to the Reciprocal Lattice / 4.1:
The Ewald Construction / 4.2:
Structure Factors / 5:
Atom Formfactors / 5.1:
Atom Displacement Factors / 5.2:
Crystal Symmetry / 5.3:
Simple Symmetry Elements / 6.1:
Coupling of Symmetry Elements / 6.1.1:
Combination of Symmetry Elements / 6.1.2:
Symmetry Directions / 6.2:
Symmetry Elements Involving Translation / 6.3:
Combination of Translation with Other Symmetry Elements / 6.3.1:
Coupling of Translation with Other Symmetry Elements / 6.3.2:
The 230 Space Groups / 6.4:
Space-group Notation in International Tables for Crystallography / 6.4.1:
Centrosymmetric Crystal Structures / 6.4.2:
The Asymmetric Unit / 6.4.3:
Space Group Types / 6.4.4:
Group-Subgroup Relationships / 6.4.5:
Visible Effects of Symmetry / 6.5:
Microscopic Structure / 6.5.1:
Macroscopic Properties and Crystal Classes / 6.5.2:
Symmetry of the Lattice / 6.5.3:
Symmetry of the Diffraction Pattern--The Laue Groups / 6.5.4:
Determination of the Space Group / 6.6:
Determination of the Laue Group / 6.6.1:
Systematic Absences / 6.6.2:
Transformations / 6.7:
Experimental Methods / 7:
Growth, Choice and Mounting of a Single Crystal / 7.1:
Measuring the Diffraction Pattern of Single Crystals / 7.2:
Film Methods / 7.2.1:
The Four-circle (serial) Diffractometer / 7.2.2:
Reflection profile and scan type / 7.2.3:
Area Detector Systems / 7.3:
Data Reduction / 7.4:
Lp correction / 7.4.1:
Standard Uncertainty / 7.4.2:
Absorption Correction / 7.4.3:
Other Diffraction Methods / 7.5:
Neutron Scattering / 7.5.1:
Electron Scattering / 7.5.2:
Structure Solution / 8:
Fourier Transforms / 8.1:
Patterson Methods / 8.2:
Symmetry in Patterson Space / 8.2.1:
Structure Solution Using Harker Peaks / 8.2.2:
Patterson shift methods / 8.2.3:
Direct Methods / 8.3:
Harker-Kasper Inequalities / 8.3.1:
Normalized Structure Factors / 8.3.2:
The Sayre Equation / 8.3.3:
The Triplet Relationship / 8.3.4:
Origin Fixation / 8.3.5:
Strategies of Phase Determination / 8.3.6:
Structure Refinement / 9:
The Method of Least Squares / 9.1:
Refinement Based on F[subscript o] or F[superscript 2 subscript o] Data / 9.1.1:
Weights / 9.2:
Crystallographic R-Values / 9.3:
Refinement Techniques / 9.4:
Location and Treatment of Hydrogen Atoms / 9.4.1:
Restricted Refinement / 9.4.2:
Damping / 9.4.3:
Symmetry Restrictions / 9.4.4:
Residual Electron Density / 9.4.5:
Rietveld Refinement / 9.5:
Additional Topics / 10:
Disorder / 10.1:
Site Occupancy Disorder / 10.1.1:
Positional and Orientational Disorder / 10.1.2:
One- and Two-Dimensional Disorder / 10.1.3:
Modulated Structures / 10.1.4:
Quasicrystals / 10.1.5:
Anomalous Dispersion and "Absolute Structure" / 10.2:
Chiral and Polar Space Groups / 10.2.1:
Extinction / 10.3:
The Renninger Effect / 10.4:
The [lambda]/2-Effect / 10.5:
Thermal Diffuse Scattering (TDS) / 10.6:
Errors and Pitfalls / 11:
Wrong Atom-Types / 11.1:
Twinning / 11.2:
Classification by the Twin-Element / 11.2.1:
Classification According to Macroscopic Appearance / 11.2.2:
Classification According to Origin / 11.2.3:
Diffraction Patterns of Twinned Crystals and their Interpretation / 11.2.4:
Twinning or Disorder? / 11.2.5:
False Unit Cells / 11.3:
Space Group Errors / 11.4:
Misplaced Origins / 11.5:
Poor Atom Displacement Parameters / 11.6:
Interpretation and Presentation of Results / 12:
Bond Lengths and Bond Angles / 12.1:
Best Planes and Torsion Angles / 12.2:
Structural Geometry and Symmetry / 12.3:
Structural Diagrams / 12.4:
Electron Density / 12.5:
Crystallographic Databases / 13:
The Inorganic Crystal Structure Database (ICSD) / 13.1:
The Cambridge Structural Database (CSD) / 13.2:
The Metals Crystallographic Data File (CRYST-MET) / 13.3:
Other Collections of Crystal Structure Data / 13.4:
Deposition of Structural Data in Data Bases / 13.5:
Crystallography on the Internet / 13.6:
Outline of a Crystal Structure Determination / 14:
Worked Example of a Structure Determination / 15:
Bibliography
Index
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
97.

図書

図書
by Ivan I. Artobolevsky ; translated from the Russian by Nicholas Weinstein
出版情報: Moscow : Mir Publishers, 1975-1979  3v. ; 21 cm
シリーズ名: Mechanisms in modern engineering design : a handbook for engineers, designers, and inventors / by Ivan I. Artobolevsky ; translated from the Russian by Nicholas Weinstein ; v. 1-v. 2
所蔵情報: loading…
98.

図書

図書
editor, Sokrates T. Pantelides
出版情報: New York : Pergamon Press, c1978  xi, 488 p. ; 27 cm
所蔵情報: loading…
99.

図書

図書
edited by Shuji Nakamura and Shigefusa F. Chichibu
出版情報: London : Taylor & Francis, 2000  372 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Basics Physics and Materials Technology of GaN LEDs and LDs / Steven P. DenBaars1.:
Introduction / 1.1:
Historical Evolution of LED Technology / 1.1.1:
Basic Physics of LEDs: Injection Luminescence / 1.2:
Direct and Indirect Band-Gap Material / 1.2.1:
Radiative Recombination / 1.2.2:
External Quantum Efficiency / 1.2.3:
Luminous Efficiency / 1.2.4:
Injection Efficiency / 1.2.5:
Heterojunction vs. Homojunction LED Materials / 1.2.6:
Quantum Well LEDs / 1.2.7:
LED Materials Selection / 1.3:
Energy Band Structure/Lattice Constants / 1.3.1:
GaN Physical Properties / 1.3.2:
GaN Based LED Structures / 1.3.3:
Crystal Growth / 1.4:
MOCVD Growth / 1.4.1:
MOCVD Systems for Production / 1.4.2:
Molecular Beam Epitaxy (MBE) / 1.4.3:
Chloride Vapor Phase Epitaxy / 1.4.4:
Group-III Nitride Materials Growth Issues / 1.5:
Substrates / 1.5.1:
Nucleation Layer Technology / 1.5.2:
Growth and Doping of GaN / 1.5.3:
Growth of AlGaN and AlGaN/GaN Heterostructures / 1.5.4:
Growth of InGaN and InGaN/GaN Heterostructures / 1.5.5:
Conclusions / 1.6:
References / 1.7:
Theoretical Analysis of Optical Gain Spectra / Takeshi Uenoyama ; Masakatsu Suzuki2.:
Optical Gains Spectra by Many-Body Approach / 2.1:
Linear Response Theory / 2.2.1:
Screening Effects / 2.2.2:
Self-Energies of Electron Gas / 2.2.3:
Coulomb Enhancement / 2.2.4:
Electronic Band Structures / 2.3:
Electronic Band Structures of Bulk GaN and AlN / 2.3.1:
Strain Effect on Electronic Band Structures / 2.3.2:
k.p Theory for Wurtzite / 2.3.3:
Physical Parameters / 2.3.4:
Subband Structures of GaN/AlGaN Quantum Wells / 2.3.5:
Subband in Wurtzite Quantum Wells / 2.3.6:
Optical Gain Spectra of III-V Nitrides LD Structures / 2.4:
Free Carrier Model / 2.4.1:
Coulomb Enhancement (Excitonic Effects) in the Optical Gain / 2.4.2:
Optical Gain with Localized States / 2.4.3:
Electrical Conductivity Control / Chris G. Van de Walle2.5:
Doping / 3.1:
Theory of Native Defects and Impurities / 3.1.1:
n-type Doping / 3.1.2:
p-type Doping / 3.1.3:
Band Offsets / 3.2:
Theory of Band Offsets at Nitride Interfaces / 3.2.1:
Experimental Results for Band Offsets / 3.2.2:
Discussion / 3.2.3:
Acknowledgments / 3.3:
Crystal Defects and Device Performance in LEDs and LDs / Fernando A. Ponce3.4:
CrystalGrowth and Microstructure / 4.1:
Lattice Structure of the Nitride Semiconductors / 4.1.1:
Thin Film Epitaxy and Substrates / 4.1.2:
Epitaxy on SiC Substrates / 4.2:
Epitaxy on Sapphire Substrates / 4.3:
AlN as a Buffer Layer / 4.3.1:
GaN as a Buffer Layer / 4.3.2:
Homoepitaxial Growth of GaN / 4.4:
Defect Microstructurein LEDs and LDs / 4.5:
Large Defect Densities in High Performance Materials / 4.5.1:
Columnar Structure of GaN on Sapphire / 4.5.2:
Tilt Boundaries / 4.5.3:
Twist Boundaries / 4.5.4:
Polarity and Electronic Properties / 4.6:
The Nature of the Dislocation / 4.7:
Determination of the Burgers Vector / 4.7.1:
Nanopipes and Inversion Domains / 4.7.2:
Spatial Variation of Luminescence / 4.8:
Undoped Material / 4.8.1:
Doped Materials / 4.8.2:
Microscopic Properties of In[subscript x]Ga[subscript 1-x]N Quantum Wells / 4.9:
The Nature of the InGaN/GaN Interface / 4.9.1:
Microstructure of Quantum Wells / 4.9.2:
Spatial Variation of the luminescence of In[subscript x]Ga[subscript 1-x]N Quantum Wells / 4.9.3:
Microstructure and Device Performance / 4.10:
Stress and Point Defect Structure / 4.10.1:
Minimization of Strain by Maximizing Film Smoothness / 4.10.2:
The Role of Dislocations in Strain Relaxation / 4.10.3:
The Role of Nanopipes and Extension to ELOG Structures / 4.10.4:
Emission Mechanisms and Excitons in GaN and InGaN Bulk and QWs / Shigefusa F. Chichibu ; Yoichi Kawakami ; Takayuki Sota4.11:
GaN Bulk Crystals / 5.1:
Free and Bound Excitons / 5.2.1:
Biexcitons in GaN / 5.2.2:
Strain Effects / 5.2.3:
Phonons in Nitrides / 5.2.4:
InGaN Bulk and QWs for Practical Devices / 5.3:
Quantized Energy Levels / 5.3.1:
Piezoelectric Field / 5.3.2:
Spontaneous Emission of Localized Excitons / 5.3.3:
Localized Exciton Dynamics / 5.3.4:
Optical Gain in Nitrides / 5.3.5:
Life Testing and Degradation Mechanisms in InGaN LEDs / Marek Osinski ; Daniel L. Barton5.4:
Life Testing of InGaN/AlGaN/GaN LEDs / 6.1:
Life Testing Primer / 6.2.1:
Potential Degradation Regions in LEDs / 6.2.2:
Life Test System Considerations / 6.2.3:
Results of Life Tests on Nichia Blue InGaN/AlGaN/GaN Double Heterostructure LEDs / 6.2.4:
Analysis of Early Test Failures / 6.3:
Analysis of LED #19 / 6.3.1:
Analysis of LEDs #16 and 17 / 6.3.2:
Effects of UV Emission on Plastic Transparency / 6.4:
Thermal Degradation of Plastic Package Transparency / 6.5:
Degradation of GaN-Based LEDs Under High Current Stress / 6.6:
Double Heterostructure Device Testing / 6.7:
EBIC Analysis / 6.8:
Pulsed Current Stress Experiments and Results on Quantum Well LEDs / 6.9:
Failure Analysis of Degraded Quantum Well LEDs / 6.10:
Summary / 6.11:
Development and Future Prospects of GaN-based LEDs and LD / Shuji Nakamura6.13:
Properties of InGaN-based LEDs / 7.1:
Amber LEDs / 7.1.1:
UV/Blue/Green LEDs / 7.1.3:
Roles of Dislocations in InGaN-Based LEDs / 7.1.4:
LDs Grown on Sapphire Substrate / 7.2:
LDs Grown on Sapphire Substrates / 7.2.1:
ELOG Substrate / 7.2.3:
InGaN-Based LDs Grown on ELOG Substrates / 7.2.4:
LDs Grown on GaN Substrate / 7.3:
Free-Standing GaN Substrates / 7.3.1:
Characteristics of LDs / 7.3.2:
Future Prospects of InGaN-based Emitting Devices / 7.4:
Appendix / 7.5:
Parameters Table
Subject Index
Basics Physics and Materials Technology of GaN LEDs and LDs / Steven P. DenBaars1.:
Introduction / 1.1:
Historical Evolution of LED Technology / 1.1.1:
100.

図書

東工大
目次DB

図書
東工大
目次DB
Tamejiro Hiyama ; with contributions by Tamejiro Hiyama, Kiyoshi Kanie ... [et al.]
出版情報: Berlin ; Tokyo : Springer, c2000  xii, 272 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1 General Introduction 1
   1.1 Nature of Organofluorine Compounds 1
   1.1.1 Brief History 1
   1.1.2 Properties of the Fluorine Atom 2
   1.1.3 Fluorine Effects in Organic Compounds 3
   1.1.4 Properties of Fluoroorganic Compounds 10
   1.1.5 Properties of Perfluoroorganic Compounds 13
   1.1.6 Spectroscopic Properties 14
   1.2 Source of Fluorine 18
   1.2.1 Hydrogen Fluoride 18
   1.2.2 Fluorine Gas 18
   1.3 Toxicity of Fluorinating Reagents 19
   1.3.1 Hydrogen Fluoride and Fluorine Gas 19
   1.3.2 First-Aid Treatment 20
   1.3.3 Fluoroacetic Acid 21
Chapter 2 Reagents for Fluorination 25
   2.1 Electrophilic Fluorinating Reagents 25
   2.1.1 Fluorine Gas 25
   2.1.2 Xenon Difluoride 28
   2.1.3 Electrophilic Reagents Containing an O-F Bond 29
   2.1.4 Electrophilic Reagents Containing an N-F Bond 34
   2.2 Nucelophilic Fluorinating Reagents 39
   2.2.1 Hydrogen Fluoride and Derivatives 39
   2.2.2 Functional Group Transformation 43
   2.2.3 Fluoride Reagents 48
   2.3 Combination of an Electrophile and a Fluoride Reagent 56
   2.3.1 Halofluorination of Olefins and Acetylenes 56
   2.3.2 Thiofluorination and Selenofluorination of Olefins 58
   2.3.3 Nitrofluorination 59
   2.3.4 Oxidative Fluorination 58
   2.3.5 Oxidative Desulfurization-Fluorination 61
   2.3.6 Oxidative Fluorination of Amines 65
   2.4 Electrochemical Fluorination 66
Chapter 3 Organofluorine Building Blocks 77
   3.1 Fluorine-Substituted Nucleophilic Reagents 77
   3.1.1 Alkylmetals 77
   3.1.2 Alkenylmetals 84
   3.1.3 Alkynylmetals 91
   3.1.4 Metal Enolates 93
   3.2 Fluorine-Substituted Electrophilic Reagents 99
   3.3 Fluorine-Substituted Radicals 103
   3.4 Fluorine-Substituted Carbenes 107
   3.5 Electrophilic Perfluoroalkylating Reagents 111
   3.5.1 (Perfluoroalkyl)aryliodonium Salts 111
   3.5.2 (Polyfluoroalkyl)aryliodonium Salts 112
   3.5.3 (Trifluoromethyl)chalcogenium Salts 113
Chapter 4 Reactions of C-F Bonds 119
   4.1 Fluorine Leaving Group 119
   4.1.1 1-Fluoro Sugars 119
   4.1.2 Aromatic Nucleophilic Substitution 121
   4.2 C-F Bond Activation by Metal Complexes 125
   4.2.1 Activation of an Aliphatic C-F Bond 125
   4.2.2 Activation of an Aromatic C-F Bond 126
   4.3 Interaction of Fluorine with a Proton or Metal 128
   4.3.1 Fluorine-Hydrogen Interaction 128
   4.3.2 Fluorine-Metal Interaction 129
Chapter 5 Biologically Active Organofluorine Compounds 137
   5.1 Fluorine Effect in Biological Activity 137
   5.2 Strategies for Design and Synthesis 141
   5.2.1 Structure-Activity Relationship 141
   5.2.2 Commercially Available Fluorinated Materials 143
   5.3 Fluorinated Amino Acids and Carbohydrates 144
   5.3.1 Amino Acids 144
   5.3.2 Protease Inhibitors 148
   5.3.3 Carbohydrates 150
   5.3.4 Nucleosides 151
   5.4 Fluorine-Containing Pharmaceuticals 154
   5.4.1 Prostanoids 154
   5.4.2 Vitamin D3 157
   5.4.3 Central Nervous System Agents 160
   5.4.4 Antibacterials and Antifungals 161
   5.4.5 βーLactam Antibiotics 164
   5.4.6 Anesthetics 164
   5.4.7 Artificial Blood Substitutes 165
   5.4.8 18F-Labeled Tracers for Positron Emission Tomography 166
   5.5 Fluorine-Containing Agrochemicals 166
   5.5.1 Insecticides 167
   5.5.2 Herbicides 173
   5.5.3 Fungicides 177
Chapter 6 Fluorine-Containing Materials 183
   6.1 Fluorine Effect in Materials 183
   6.1.1 Boiling Points and Melting Points 184
   6.1.2 Solubility 186
   6.1.3 Surface Tension 186
   6.1.4 Refractive Index 187
   6.1.5 Viscosity 187
   6.2 Chlorofluorocarbons, Hydrochlorofluorocarbons, Hydrofluorocarbons, and Alternatives 188
   6.2.1 Brief History 188
   6.2.2 Production of Chlorofluorocarbons and Hydrochlorofluorocarbons 191
   6.2.3 Syntheses of CFC Alternatives 192
   6.2.4 Evaluation of Safety and Environmental Effects 195
   6.2.5 Alternatives to the Third Generation 196
   6.3 Fluorine-Containing Liquid Crystals 196
   6.3.1 Nematic Liquid Crystals 197
   6.3.2 Ferroelectric Liquid Crystals 202
   6.3.3 Antiferroelectric Liquid Crystals 209
   6.4 Fluorine-Containing Polymers 212
   6.4.1 Brief History 212
   6.4.2 Monomer Synthesis 214
   6.4.3 Fluoroplastics 216
   6.4.4 Fluoroelastomers 220
   6.4.5 Fluoropolymer Coatings 224
   6.4.6 Fluorosurfactants 225
   6.4.7 Fluorinated Membranes 228
Chapter 7 Fluorous Media 235
   7.1 Organic Reactions in Perfluorocarbons 235
   7.2 Fluorous Biphase Reactions 237
   7.2.1 Hydroformylation 237
   7.2.2 Oxidation 239
   7.3 Purification and Isolation by Phase Separation 243
Chapter 8 Organic Reactions with Fluorinated Reagents 249
   8.1 Fluoride Ion in Organic Synthesis 249
   8.1.1 Fluoride Base 249
   8.1.2 Desilylative Elimination and Deprotection 250
   8.1.3 Naked Anions and Fluorosilicates 252
   8.2 Trifluoroacetic Acid and Trifluoroperacetic Acid 255
   8.2.1 Trifluoroacetic Acid 255
   8.2.2 Trifluoroperacetic Acid 256
   8.3 Trifluoromethanesulfonic Acid and Derivatives 257
   8.3.1 Trifluoromethanesulfonic Acid 257
   8.3.2 Trimethylsilyl Trifluoromethanesulfonate 258
   8.3.3 Metal Trifluoromethanesulfonates 259
Subject Index 265
Chapter 1 General Introduction 1
   1.1 Nature of Organofluorine Compounds 1
   1.1.1 Brief History 1
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼