close
1.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
2.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
3.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
4.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
5.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
6.

図書

図書
Stephen I. Gallant
出版情報: Cambridge, Mass. : MIT Press, c1993  xvi, 365 p. ; 24 cm
シリーズ名: Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Basics / I:
Introduction and Important Definitions / 1:
Why Connectionist Models? / 1.1:
The Grand Goals of Al and Its Current Impasse / 1.1.1:
The Computational Appeal of Neural Networks / 1.1.2:
The Structure of Connectionist Models / 1.2:
Network Properties / 1.2.1:
Cell Properties / 1.2.2:
Dynamic Properties / 1.2.3:
Learning Properties / 1.2.4:
Two Fundamental Models: Multilayer Perceptrons (MLP's) and Backpropagation Networks (BPN's) / 1.3:
Multilayer Perceptrons (MLP's) / 1.3.1:
Backpropagation Networks (BPN's) / 1.3.2:
Gradient Descent / 1.4:
The Algorithm / 1.4.1:
Practical Problems / 1.4.2:
Comments / 1.4.3:
Historic and Bibliographic Notes / 1.5:
Early Work / 1.5.1:
The Decline of the Perceptron / 1.5.2:
The Rise of Connectionist Research / 1.5.3:
Other Bibliographic Notes / 1.5.4:
Exercises / 1.6:
Programming Project / 1.7:
Representation Issues / 2:
Representing Boolean Functions / 2.1:
Equivalence of {+1, -1,0} and {1,0} Forms / 2.1.1:
Single-Cell Models / 2.1.2:
Nonseparable Functions / 2.1.3:
Representing Arbitrary Boolean Functions / 2.1.4:
Representing Boolean Functions Using Continuous Connectionist Models / 2.1.5:
Distributed Representations / 2.2:
Definition / 2.2.1:
Storage Efficiency and Resistance to Error / 2.2.2:
Superposition / 2.2.3:
Learning / 2.2.4:
Feature Spaces and ISA Relations / 2.3:
Feature Spaces / 2.3.1:
Concept-Function Unification / 2.3.2:
ISA Relations / 2.3.3:
Binding / 2.3.4:
Representing Real-Valued Functions / 2.4:
Approximating Real Numbers by Collections of Discrete Cells / 2.4.1:
Precision / 2.4.2:
Approximating Real Numbers by Collections of Continuous Cells / 2.4.3:
Example: Taxtime! / 2.5:
Programming Projects / 2.6:
Learning In Single-Layer Models / II:
Perceptron Learning and the Pocket Algorithm / 3:
Perceptron Learning for Separable Sets of Training Examples / 3.1:
Statement of the Problem / 3.1.1:
Computing the Bias / 3.1.2:
The Perceptron Learning Algorithm / 3.1.3:
Perceptron Convergence Theorem / 3.1.4:
The Perceptron Cycling Theorem / 3.1.5:
The Pocket Algorithm for Nonseparable Sets of Training Examples / 3.2:
Problem Statement / 3.2.1:
Perceptron Learning Is Poorly Behaved / 3.2.2:
The Pocket Algorithm / 3.2.3:
Ratchets / 3.2.4:
Examples / 3.2.5:
Noisy and Contradictory Sets of Training Examples / 3.2.6:
Rules / 3.2.7:
Implementation Considerations / 3.2.8:
Proof of the Pocket Convergence Theorem / 3.2.9:
Khachiyan's Linear Programming Algorithm / 3.3:
Winner-Take-All Groups or Linear Machines / 3.4:
Generalizes Single-Cell Models / 4.1:
Perceptron Learning for Winner-Take-All Groups / 4.2:
The Pocket Algorithm for Winner-Take-All Groups / 4.3:
Kessler's Construction, Perceptron Cycling, and the Pocket Algorithm Proof / 4.4:
Independent Training / 4.5:
Autoassociators and One-Shot Learning / 4.6:
Linear Autoassociators and the Outer-Product Training Rule / 5.1:
Anderson's BSB Model / 5.2:
Hopfieid's Model / 5.3:
Energy / 5.3.1:
The Traveling Salesman Problem / 5.4:
The Cohen-Grossberg Theorem / 5.5:
Kanerva's Model / 5.6:
Autoassociative Filtering for Feedforward Networks / 5.7:
Concluding Remarks / 5.8:
Mean Squared Error (MSE) Algorithms / 5.9:
Motivation / 6.1:
MSE Approximations / 6.2:
The Widrow-Hoff Rule or LMS Algorithm / 6.3:
Number of Training Examples Required / 6.3.1:
Adaline / 6.4:
Adaptive Noise Cancellation / 6.5:
Decision-Directed Learning / 6.6:
Unsupervised Learning / 6.7:
Introduction / 7.1:
No Teacher / 7.1.1:
Clustering Algorithms / 7.1.2:
k-Means Clustering / 7.2:
Topology-Preserving Maps / 7.2.1:
Example / 7.3.1:
Demonstrations / 7.3.4:
Dimensionality, Neighborhood Size, and Final Comments / 7.3.5:
Art1 / 7.4:
Important Aspects of the Algorithm / 7.4.1:
Art2 / 7.4.2:
Using Clustering Algorithms for Supervised Learning / 7.6:
Labeling Clusters / 7.6.1:
ARTMAP or Supervised ART / 7.6.2:
Learning In Multilayer Models / 7.7:
The Distributed Method and Radial Basis Functions / 8:
Rosenblatt's Approach / 8.1:
The Distributed Method / 8.2:
Cover's Formula / 8.2.1:
Robustness-Preserving Functions / 8.2.2:
Hepatobiliary Data / 8.3:
Artificial Data / 8.3.2:
How Many Cells? / 8.4:
Pruning Data / 8.4.1:
Leave-One-Out / 8.4.2:
Radial Basis Functions / 8.5:
A Variant: The Anchor Algorithm / 8.6:
Scaling, Multiple Outputs, and Parallelism / 8.7:
Scaling Properties / 8.7.1:
Multiple Outputs and Parallelism / 8.7.2:
A Computational Speedup for Learning / 8.7.3:
Computational Learning Theory and the BRD Algorithm / 8.7.4:
Introduction to Computational Learning Theory / 9.1:
PAC-Learning / 9.1.1:
Bounded Distributed Connectionist Networks / 9.1.2:
Probabilistic Bounded Distributed Concepts / 9.1.3:
A Learning Algorithm for Probabilistic Bounded Distributed Concepts / 9.2:
The BRD Theorem / 9.3:
Polynomial Learning / 9.3.1:
Noisy Data and Fallback Estimates / 9.4:
Vapnik-Chervonenkis Bounds / 9.4.1:
Hoeffding and Chernoff Bounds / 9.4.2:
Pocket Algorithm / 9.4.3:
Additional Training Examples / 9.4.4:
Bounds for Single-Layer Algorithms / 9.5:
Fitting Data by Limiting the Number of Iterations / 9.6:
Discussion / 9.7:
Exercise / 9.8:
Constructive Algorithms / 9.9:
The Tower and Pyramid Algorithms / 10.1:
The Tower Algorithm / 10.1.1:
Proof of Convergence / 10.1.2:
A Computational Speedup / 10.1.4:
The Pyramid Algorithm / 10.1.5:
The Cascade-Correlation Algorithm / 10.2:
The Tiling Algorithm / 10.3:
The Upstart Algorithm / 10.4:
Other Constructive Algorithms and Pruning / 10.5:
Easy Learning Problems / 10.6:
Decomposition / 10.6.1:
Expandable Network Problems / 10.6.2:
Limits of Easy Learning / 10.6.3:
Backpropagation / 10.7:
The Backpropagation Algorithm / 11.1:
Statement of the Algorithm / 11.1.1:
A Numerical Example / 11.1.2:
Derivation / 11.2:
Practical Considerations / 11.3:
Determination of Correct Outputs / 11.3.1:
Initial Weights / 11.3.2:
Choice of r / 11.3.3:
Momentum / 11.3.4:
Network Topology / 11.3.5:
Local Minima / 11.3.6:
Activations in [0,1] versus [-1, 1] / 11.3.7:
Update after Every Training Example / 11.3.8:
Other Squashing Functions / 11.3.9:
NP-Completeness / 11.4:
Overuse / 11.5:
Interesting Intermediate Cells / 11.5.2:
Continuous Outputs / 11.5.3:
Probability Outputs / 11.5.4:
Using Backpropagation to Train Multilayer Perceptrons / 11.5.5:
Backpropagation: Variations and Applications / 11.6:
NETtalk / 12.1:
Input and Output Representations / 12.1.1:
Experiments / 12.1.2:
Backpropagation through Time / 12.1.3:
Handwritten Character Recognition / 12.3:
Neocognitron Architecture / 12.3.1:
The Network / 12.3.2:
Robot Manipulator with Excess Degrees of Freedom / 12.3.3:
The Problem / 12.4.1:
Training the Inverse Network / 12.4.2:
Plan Units / 12.4.3:
Simulated Annealing and Boltzmann Machines / 12.4.4:
Simulated Annealing / 13.1:
Boltzmann Machines / 13.2:
The Boltzmann Model / 13.2.1:
Boltzmann Learning / 13.2.2:
The Boltzmann Algorithm and Noise Clamping / 13.2.3:
Example: The 4-2-4 Encoder Problem / 13.2.4:
Remarks / 13.3:
Neural Network Expert Systems / 13.4:
Expert Systems and Neural Networks / 14:
Expert Systems / 14.1:
What Is an Expert System? / 14.1.1:
Why Expert Systems? / 14.1.2:
Historically Important Expert Systems / 14.1.3:
Critique of Conventional Expert Systems / 14.1.4:
Neural Network Decision Systems / 14.2:
Example: Diagnosis of Acute Coronary Occlusion / 14.2.1:
Example: Autonomous Navigation / 14.2.2:
Other Examples / 14.2.3:
Decision Systems versus Expert Systems / 14.2.4:
MACIE, and an Example Problem / 14.3:
Diagnosis and Treatment of Acute Sarcophagal Disease / 14.3.1:
Network Generation / 14.3.2:
Sample Run of Macie / 14.3.3:
Real-Valued Variables and Winner-Take-All Groups / 14.3.4:
Not-Yet-Known versus Unavailable Variables / 14.3.5:
Applicability of Neural Network Expert Systems / 14.4:
Details of the MACIE System / 14.5:
Inferencing and Forward Chaining / 15.1:
Discrete Multilayer Perceptron Models / 15.1.1:
Continuous Variables / 15.1.2:
Winner-Take-All Groups / 15.1.3:
Using Prior Probabilities for More Aggressive Inferencing / 15.1.4:
Confidence Estimation / 15.2:
A Confidence Heuristic Prior to Inference / 15.2.1:
Confidence in Inferences / 15.2.2:
Information Acquisition and Backward Chaining / 15.3:
Concluding Comment / 15.4:
Noise, Redundancy, Fault Detection, and Bayesian Decision Theory / 15.5:
The High Tech Lemonade Corporation's Problem / 16.1:
The Deep Model and the Noise Model / 16.2:
Generating the Expert System / 16.3:
Probabilistic Analysis / 16.4:
Noisy Single-Pattern Boolean Fault Detection Problems / 16.5:
Convergence Theorem / 16.6:
Extracting Rules from networks / 16.7:
Why Rules? / 17.1:
What Kind of Rules? / 17.2:
Criteria / 17.2.1:
Inference Justifications versus Rule Sets / 17.2.2:
Which Variables in Conditions / 17.2.3:
Inference Justifications / 17.3:
MACIE's Algorithm / 17.3.1:
The Removal Algorithm / 17.3.2:
Key Factor Justifications / 17.3.3:
Justifications for Continuous Models / 17.3.4:
Rule Sets / 17.4:
Limiting the Number of Conditions / 17.4.1:
Approximating Rules / 17.4.2:
Conventional + Neural Network Expert Systems / 17.5:
Debugging an Expert System Knowledge Base / 17.5.1:
The Short-Rule Debugging Cycle / 17.5.2:
Appendix Representation Comparisons / 17.6:
DNF Expressions / A.1 DNF Expressions and Polynomial Representability:
Polynomial Representability / A.1.2:
Space Comparison of MLP and DNF Representations / A.1.3:
Speed Comparison of MLP and DNF Representations / A.1.4:
MLP versus DNF Representations / A.1.5:
Decision Trees / A.2:
Representing Decision Trees by MLP's / A.2.1:
Speed Comparison / A.2.2:
Decision Trees versus MLP's / A.2.3:
p-lDiagrams / A.3:
Symmetric Functions and Depth Complexity / A.4:
Bibliography / A.5:
Index
Foreword
Basics / I:
Introduction and Important Definitions / 1:
7.

図書

図書
Yoshiharu Doi
出版情報: New York, N.Y. : VCH, c1990  ix, 156 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
Environmentally Degradable Polyesters / 1.3:
References
Fermentation and Analysis of Microbial Polyesters / Chapter 2:
Fermentation Production / 2.1:
Poly(3-hydroxybutyrate) / 2.1.1:
Poly(hydroxyalkanoates) / 2.1.2:
Polymer Isolation / 2.2:
Solvent Extraction / 2.2.1:
Alkaline Hypochlorite Treatment / 2.2.2:
Enzyme Treatment / 2.2.3:
Analysis / 2.3:
Polyester Content of Cells / 2.3.1:
Composition of Copolymers / 2.3.2:
Molecular Weight? / 2.3.3:
Microorganisms and Poly(3-hydroxyalkanoates) / Chapter 3:
Poly(3-hydroxybutyrate) in Microorganisms / 3.1:
Functions of Poly(3-hydroxybutyrate) / 3.1.1:
Structure of Native P(3HB) Granules / 3.1.2:
Biosynthesis of Poly(3-hydroxyalkanoates) / 3.2:
Alcaligenes eutrophus / 3.2.1:
Pseudomonas oleovorans / 3.2.2:
Other Bacterial Strains / 3.2.3:
Molecular Structures of Poly(3-hydroxyalkanoates) / 3.3:
Poly(3-hydroxybutyrate-co-3-hydroxyalerate) / 3.3.1:
Poly(3-hydroxyalkanoates-co-3-hydroxy--chloroalkanoates) / 3.3.2:
Poly(3-hydroxyalkanoates) Metabolism / Chapter 4:
Pathways of Poly(3-hydroxybutyrate) Synthesis / 4.1:
Pathways of Poly(3-hydroxyalkanoates) Synthesis / 4.2:
Enzymology of Poly(3-hydroxyalkanoates) Synthesis / 4.3:
3-Ketothiolase / 4.3.1:
Acetoacetyl-CoA Reductase / 4.3.2:
P(3HB) Synthase / 4.3.3:
Pathways of P(3-hydroxybutyrate) Degradation / 4.4:
Cyclic Nature of Poly(3-hydroxyalkanoates) Metabolism / 4.5:
Replacement of P(3HB) by P(3HB-co-3HV) / 4.5.1:
Replacement of P(3HB-co-3HV) by P(3HB) / 4.5.2:
Application to PHA Fermentation / 4.5.3:
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) / Chapter 5:
Alcaligenes eutrophus and Carbon Substrates / 5.1:
Molecular Structure / 5.2:
Biosynthetic Pathway? / 5.3:
Structure and Properties of Poly(3-hydroxybutyrate) / Chapter 6:
Crystal Structure and Properties / 6.1:
Crystal Structure / 6.1.1:
Solid-State Properties / 6.1.2:
Solution Properties / 6.2:
Solid-State Properties of Copolyesters / Chapter 7:
Composition and Physical Properties / 7.1:
X-Ray Diffraction Analysis / 7.1.1:
Solid-State CP/MAS 13C-NMR Analysis / 7.1.2:
Mechanical Properties / 7.1.3:
Thermal Properties / 7.2:
Melting Temperatures / 7.2.1:
Glass-Transition Temperatures / 7.2.2:
Thermal Stability / 7.2.3:
Kinetics of Crystallization / 7.3:
Biodegradation of Microbial Polyesters / Chapter 8:
Extracellular P(3HB) Depolymerase / 8.1:
Pseudomonas lemoignei / 8.1.1:
Alcaligenes faecalis / 8.1.2:
Enzymatic Hydrolysis of Copolyesters / 8.2:
Simple Hydrolysis of Polyesters / 8.3:
Applications and Prospects / 8.4:
Environmentally Degradable Plastics / 8.4.1:
Medical Applications / 8.4.2:
Index
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
8.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
9.

図書

図書
出版情報: Providence, R.I. : American Mathematical Society, 1955-  v. ; 26 cm
所蔵情報: loading…
10.

図書

図書
Werner Massa ; translated into English by Robert O. Gould
出版情報: New York : Springer, 2000  xi, 206 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
The Unit Cell / 2.1.1:
Atom Parameters / 2.1.2:
The Seven Crystal Systems / 2.1.3:
The Fourteen Bravais Lattices / 2.2:
The Hexagonal, Trigonal and Rhombohedral Systems / 2.2.1:
The Reduced Cell / 2.2.2:
The Geometry of X-Ray Diffraction / 3:
X-Rays / 3.1:
Interference by a One-Dimensional Lattice / 3.2:
The Laue Equations / 3.3:
Lattice Planes and hkl-Indices / 3.4:
The Bragg Equation / 3.5:
Higher Orders of Diffraction / 3.6:
The Quadratic Form of the Bragg Equation / 3.7:
The Reciprocal Lattice / 4:
From the Direct to the Reciprocal Lattice / 4.1:
The Ewald Construction / 4.2:
Structure Factors / 5:
Atom Formfactors / 5.1:
Atom Displacement Factors / 5.2:
Crystal Symmetry / 5.3:
Simple Symmetry Elements / 6.1:
Coupling of Symmetry Elements / 6.1.1:
Combination of Symmetry Elements / 6.1.2:
Symmetry Directions / 6.2:
Symmetry Elements Involving Translation / 6.3:
Combination of Translation with Other Symmetry Elements / 6.3.1:
Coupling of Translation with Other Symmetry Elements / 6.3.2:
The 230 Space Groups / 6.4:
Space-group Notation in International Tables for Crystallography / 6.4.1:
Centrosymmetric Crystal Structures / 6.4.2:
The Asymmetric Unit / 6.4.3:
Space Group Types / 6.4.4:
Group-Subgroup Relationships / 6.4.5:
Visible Effects of Symmetry / 6.5:
Microscopic Structure / 6.5.1:
Macroscopic Properties and Crystal Classes / 6.5.2:
Symmetry of the Lattice / 6.5.3:
Symmetry of the Diffraction Pattern--The Laue Groups / 6.5.4:
Determination of the Space Group / 6.6:
Determination of the Laue Group / 6.6.1:
Systematic Absences / 6.6.2:
Transformations / 6.7:
Experimental Methods / 7:
Growth, Choice and Mounting of a Single Crystal / 7.1:
Measuring the Diffraction Pattern of Single Crystals / 7.2:
Film Methods / 7.2.1:
The Four-circle (serial) Diffractometer / 7.2.2:
Reflection profile and scan type / 7.2.3:
Area Detector Systems / 7.3:
Data Reduction / 7.4:
Lp correction / 7.4.1:
Standard Uncertainty / 7.4.2:
Absorption Correction / 7.4.3:
Other Diffraction Methods / 7.5:
Neutron Scattering / 7.5.1:
Electron Scattering / 7.5.2:
Structure Solution / 8:
Fourier Transforms / 8.1:
Patterson Methods / 8.2:
Symmetry in Patterson Space / 8.2.1:
Structure Solution Using Harker Peaks / 8.2.2:
Patterson shift methods / 8.2.3:
Direct Methods / 8.3:
Harker-Kasper Inequalities / 8.3.1:
Normalized Structure Factors / 8.3.2:
The Sayre Equation / 8.3.3:
The Triplet Relationship / 8.3.4:
Origin Fixation / 8.3.5:
Strategies of Phase Determination / 8.3.6:
Structure Refinement / 9:
The Method of Least Squares / 9.1:
Refinement Based on F[subscript o] or F[superscript 2 subscript o] Data / 9.1.1:
Weights / 9.2:
Crystallographic R-Values / 9.3:
Refinement Techniques / 9.4:
Location and Treatment of Hydrogen Atoms / 9.4.1:
Restricted Refinement / 9.4.2:
Damping / 9.4.3:
Symmetry Restrictions / 9.4.4:
Residual Electron Density / 9.4.5:
Rietveld Refinement / 9.5:
Additional Topics / 10:
Disorder / 10.1:
Site Occupancy Disorder / 10.1.1:
Positional and Orientational Disorder / 10.1.2:
One- and Two-Dimensional Disorder / 10.1.3:
Modulated Structures / 10.1.4:
Quasicrystals / 10.1.5:
Anomalous Dispersion and "Absolute Structure" / 10.2:
Chiral and Polar Space Groups / 10.2.1:
Extinction / 10.3:
The Renninger Effect / 10.4:
The [lambda]/2-Effect / 10.5:
Thermal Diffuse Scattering (TDS) / 10.6:
Errors and Pitfalls / 11:
Wrong Atom-Types / 11.1:
Twinning / 11.2:
Classification by the Twin-Element / 11.2.1:
Classification According to Macroscopic Appearance / 11.2.2:
Classification According to Origin / 11.2.3:
Diffraction Patterns of Twinned Crystals and their Interpretation / 11.2.4:
Twinning or Disorder? / 11.2.5:
False Unit Cells / 11.3:
Space Group Errors / 11.4:
Misplaced Origins / 11.5:
Poor Atom Displacement Parameters / 11.6:
Interpretation and Presentation of Results / 12:
Bond Lengths and Bond Angles / 12.1:
Best Planes and Torsion Angles / 12.2:
Structural Geometry and Symmetry / 12.3:
Structural Diagrams / 12.4:
Electron Density / 12.5:
Crystallographic Databases / 13:
The Inorganic Crystal Structure Database (ICSD) / 13.1:
The Cambridge Structural Database (CSD) / 13.2:
The Metals Crystallographic Data File (CRYST-MET) / 13.3:
Other Collections of Crystal Structure Data / 13.4:
Deposition of Structural Data in Data Bases / 13.5:
Crystallography on the Internet / 13.6:
Outline of a Crystal Structure Determination / 14:
Worked Example of a Structure Determination / 15:
Bibliography
Index
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
11.

図書

図書
Peter Y. Yu, Manuel Cardona
出版情報: Berlin : Springer Verlag, 2005, c2001  xviii, 639 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
A Survey of Semiconductors / 1.1:
Elemental Semiconductors / 1.1.1:
Binary Compounds / 1.1.2:
Oxides / 1.1.3:
Layered Semiconductors / 1.1.4:
Organic Semiconductors / 1.1.5:
Magnetic Semiconductors / 1.1.6:
Other Miscellaneous Semiconductors / 1.1.7:
Growth Techniques / 1.2:
Czochralski Method / 1.2.1:
Bridgman Method / 1.2.2:
Chemical Vapor Deposition / 1.2.3:
Molecular Beam Epitaxy / 1.2.4:
Liquid Phase Epitaxy / 1.2.5:
Summary
Electronic Band Structures / 2:
Quantum Mechanics / 2.1:
Translational Symmetry and Brillouin Zones / 2.2:
A Pedestrian's Guide to Group Theory / 2.3:
Definitions and Notations / 2.3.1:
Symmetry Operations of the Diamond and Zinc-Blende Structures / 2.3.2:
Representations and Character Tables / 2.3.3:
Some Applications of Character Tables / 2.3.4:
Empty Lattice or Nearly Free Electron Energy Bands / 2.4:
Nearly Free Electron Band Structure in a Zinc-Blende Crystal / 2.4.1:
Nearly Free Electron Energy Bands in Diamond Crystals / 2.4.2:
Band Structure Calculation by Pseudopotential Methods / 2.5:
Pseudopotential Form Factors in Zinc-Blende- and Diamond-Type Semiconductors / 2.5.1:
Empirical and Self-Consistent Pseudopotential Methods / 2.5.2:
The kċp Method of Band-Structure Calculations / 2.6:
Effective Mass of a Nondegenerate Band Using the kċp Method / 2.6.1:
Band Dispersion near a Degenerate Extremum: Top Valence Bands in Diamondand Zinc-Blende-Type Semiconductors / 2.6.2:
Tight-Binding or LCAO Approach to the Band Structure of Semiconductors / 2.7:
Molecular Orbitals and Overlap Parameters / 2.7.1:
Band Structure of Group-IV Elements by the Tight-Binding Method / 2.7.2:
Overlap Parameters and Nearest-Neighbor Distances / 2.7.3:
Problems
Vibrational Properties of Semiconductors, and Electron-Phonon Interactions / 3:
Phonon Dispersion Curves of Semiconductors / 3.1:
Models for Calculating Phonon Dispersion Curves of Semiconductors / 3.2:
Force Constant Models / 3.2.1:
Shell Model / 3.2.2:
Bond Models / 3.2.3:
Bond Charge Models / 3.2.4:
Electron-Phonon Interactions / 3.3:
Strain Tensor and Deformation Potentials / 3.3.1:
Electron-Acoustic-Phonon Interaction at Degenerate Bands / 3.3.2:
Piezoelectric Electron-Acoustic-Phonon Interaction / 3.3.3:
Electron-Optical-Phonon Deformation Potential Interactions / 3.3.4:
Frohlich Interaction / 3.3.5:
Interaction Between Electrons and Large-Wavevector Phonons: Intervalley Electron-Phonon Interaction / 3.3.6:
Electronic Properties of Defects / 4:
Classification of Defects / 4.1:
Shallow or Hydrogenic Impurities / 4.2:
Effective Mass Approximation / 4.2.1:
Hydrogenic or Shallow Donors / 4.2.2:
Donors Associated with Anisotropic Conduction Bands / 4.2.3:
Acceptor Levels in Diamond-and Zinc-Blende-Type Semiconductors / 4.2.4:
Deep Centers / 4.3:
Green's Function Method for Calculating Defect Energy Levels / 4.3.1:
An Application of the Green's Function Method: Linear Combination of Atomic Orbitals / 4.3.2:
Another Application of the Green's Function Method: Nitrogen in GaP and Ga AsP Alloys / 4.3.3:
Final Note on Deep Centers / 4.3.4:
Electrical Transport / 5:
Quasi-Classical Approach / 5.1:
Carrier Mobility for a Nondegenerate Electron Gas / 5.2:
Relaxation Time Approximation / 5.2.1:
Nondegenerate Electron Gas in a Parabolic Band / 5.2.2:
Dependence of Scattering and Relaxation Times on Electron Energy / 5.2.3:
Momentum Relaxation Times / 5.2.4:
Temperature Dependence of Mobilities / 5.2.5:
Modulation Doping / 5.3:
High-Field Transport and Hot Carrier Effects / 5.4:
Velocity Saturation / 5.4.1:
Negative Differential Resistance / 5.4.2:
Gunn Effect / 5.4.3:
Magneto-Transport and the Hall Effect / 5.5:
Magneto-Conductivity Tensor / 5.5.1:
Hall Effect / 5.5.2:
Hall Coefficient for Thin Film Samples (van der Pauw Method) / 5.5.3:
Hall Effect for a Distribution of Electron Energies / 5.5.4:
Optical Properties I / 6:
Macroscopic Electrodynamics / 6.1:
Digression: Units for the Frequency of Electromagnetic Waves / 6.1.1:
Experimental Determination of Optical Constants / 6.1.2:
Kramers-Kronig Relations / 6.1.3:
The Dielectric Function / 6.2:
Experimental Results / 6.2.1:
Microscopic Theory of the Dielectric Function / 6.2.2:
Joint Density of States and Van Hove Singularities / 6.2.3:
Van Hove Singularities in ϵi / 6.2.4:
Direct Absorption Edges / 6.2.5:
Indirect Absorption Edges / 6.2.6:
""""Forbidden"""" Direct Absorption Edges / 6.2.7:
Excitons / 6.3:
Exciton Effect at M0 Critical Points / 6.3.1:
Absorption Spectra of Excitons / 6.3.2:
Exciton Effect at M1 Critical Points or Hyperbolic Excitons / 6.3.3:
Exciton Effect at M3 Critical Points / 6.3.4:
Phonon-Polaritons and Lattice Absorption / 6.4:
Phonon-Polaritons / 6.4.1:
Lattice Absorption and Reflection / 6.4.2:
Multiphonon Lattice Absorption / 6.4.3:
Dynamic Effective Ionic Charges in Heteropolar Semiconductors / 6.4.4:
Absorption Associated with Extrinsic Electrons / 6.5:
Free-Carrier Absorption in Doped Semiconductors / 6.5.1:
Absorption by Carriers Bound to Shallow Donors and Acceptors / 6.5.2:
Modulation Spectroscopy / 6.6:
Frequency Modulated Reflectance and Thermoreflectance / 6.6.3:
Piezoreflectance / 6.6.4:
Electroreflectance (Franz-Keldysh Effect) / 6.6.5:
Photoreflectance / 6.6.6:
Reflectance Difference Spectroscopy / 6.6.7:
Optical Properties II / 7:
Emission Spectroscopies / 7.1:
Band-to-Band Transitions / 7.1.1:
Free-to-Bound Transitions / 7.1.2:
Donor-Acceptor Pair Transitions / 7.1.3:
Excitons and Bound Excitons / 7.1.4:
Luminescence Excitation Spectroscopy / 7.1.5:
Light Scattering Spectroscopies / 7.2:
Macroscopic Theory of Inelastic Light Scattering by Phonons / 7.2.1:
Raman Tensor and Selection Rules / 7.2.2:
Experimental Determination of Raman Spectra / 7.2.3:
Microscopic Theory of Raman Scattering / 7.2.4:
A Detour into the World of Feynman Diagrams / 7.2.5:
Brillouin Scattering / 7.2.6:
Experimental Determination of Brillouin Spectra / 7.2.7:
Resonant Raman and Brillouin Scattering / 7.2.8:
Photoelectron Spectroscopy / 8:
Photoemission / 8.1:
Angle-Integrated Photoelectron Spectra of the Valence Bands / 8.1.1:
Angle-Resolved Photoelectron Spectra of the Valence Bands / 8.1.2:
Core Levels / 8.1.3:
Inverse Photoemission
Surface Effects / 8.2:
Surface States and Surface Reconstruction / 8.3.1:
Surface Energy Bands / 8.3.2:
Fermi Level Pinning and Space Charge Layers / 8.3.3:
Effect of Quantum Confinement on Electrons and Phonons in Semiconductors / 9:
Quantum Confinement and Density of States / 9.1:
Quantum Confinement of Electrons and Holes / 9.2:
Semiconductor Materials for Quantum Wells and Superlattices / 9.2.1:
Classification of Multiple Quantum Wells and Superlattices / 9.2.2:
Confinement of Energy Levels of Electrons and Holes / 9.2.3:
Some Experimental Results / 9.2.4:
Phonons in Superlattices / 9.3:
Phonons in Superlattices: Folded Acoustic and Confined Optic Modes / 9.3.1:
Folded Acoustic Modes: Macroscopic Treatment / 9.3.2:
Confined Optical Modes: Macroscopic Treatment / 9.3.3:
Electrostatic Effects in Polar Crystals: Interface Modes / 9.3.4:
Raman Spectra of Phonons in Semiconductor Superlattices / 9.4:
Raman Scattering by Folded Acoustic Phonons / 9.4.1:
Raman Scattering by Confined Optical Phonons / 9.4.2:
Raman Scattering by Interface Modes / 9.4.3:
Macroscopic Models of Electron-LO Phonon (Fröhlich) Interaction in Multiple Quantum Wells / 9.4.4:
Electrical Transport: Resonant Tunneling / 9.5:
Resonant Tunneling Through a Double-Barrier Quantum Well / 9.5.1:
I-V Characteristics of Resonant Tunneling Devices / 9.5.2:
Quantum Hall Effects in Two-Dimensional Electron Gases / 9.6:
Landau Theory of Diamagnetism in a Three-Dimensional Free Electron Gas / 9.6.1:
Magneto-Conductivity of a Two-Dimensional Electron Gas: Filling Factor / 9.6.2:
The Experiment of von Klitzing, Pepper and Dorda / 9.6.3:
Explanation of the Hall Plateaus in the Integral Quantum Hall Effect / 9.6.4:
Concluding Remarks / 9.7:
Appendix: Pioneers of Semiconductor Physics Remember
Ultra-Pure Germanium: From Applied to Basic Research or an Old Semiconductor Offering New Opportunities / Eugene E. Haller
Two Pseudopotential Methods: Empirical and Ab Initio / Marvin L. Cohen
The Early Stages of Band-Structures Physics and Its Struggles for a Place in the Sun / Conyers Herring
Cyclotron Resonance and Structure of Conduction and Valence Band Edges in Silicon and Germanium / Charles Kittel
Optical Properties of Amorphous Semiconductors and Solar Cells / Jan Tauc
Optical Spectroscopy of Shallow Impurity Centers / Elias Burstein
On the Prehistory of Angular Resolved Photoemission / Neville V. Smith
The Discovery and Very Basics of the Quantum Hall Effect / Klaus von Klitzing
The Birth of the Semiconductor Superlattice / Leo Esaki
References
Subject Index
Table of Fundamental Physical Constants (Inside Front Cover)
Table of Units (Inside Back Cover)
Introduction / 1:
A Survey of Semiconductors / 1.1:
Elemental Semiconductors / 1.1.1:
12.

図書

東工大
目次DB

図書
東工大
目次DB
Satoshi Kawata, Motoichi Ohtsu, Masahiro Irie (eds.)
出版情報: Berlin : Springer, c2002  xv, 321 p. ; 24 cm
シリーズ名: Springer series in optical sciences ; v. 84
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
   1.1.2 Resonant SNOM 9
   1.1.3 Coupling of Cavity Modes and Matter Excitation 11
   1.2 Quantization of Evanescent Waves and Optical Near-Rield Interaction of Atoms 13
   1.2.1 State of Vector Fields 14
   1.2.2 Radiative Fields Near a Planar Dielectric Surface 17
   1.2.3 Detector-Mode Functions and Field Quantization 19
   1.2.4 Multipole Radiation near a Dielectric Surface 23
   1.2.5 Spontaneous Radiative Lifetime in an Optical Near-Field 25
   1.3 Quantum Mechanical Aspects of Optical Near-Field Problems 27
   1.3.1 Properties of Near-Field Optical Interactions 27
   1.3.2 Observations and Transport Properties in the Near-Field 29
   1.3.3 Local Mode Descriptions and Compatibility with Macroscopic Descriptions 30
   References 32
2 Electromagnetism Theory and Analysis for Near-Field Nano-Optics S. Kawata, K. Tanaka, N. Takahashi 35
   2.1 Finite-Difference Time-Domain Analysis of a Near-Field Microscope System 36
   2.1.1 Near-Field Microscope as a Multiple Scattering System 36
   2.1.2 Finite-Difference Time-Domain Algorithm for NSOM Imaging 37
   2.1.3 NSOM Image Without Effects of Probe-Sample Interaction 39
   2.1.4 NSOM Image When the Probe-Sample Interaction in Included 41
   2.1.5 Effect of the Probe-Sample Distance on the Generated NSOM Images 44
   2.1.6 Dependence of NSOM Image on the Spatial Frequency Content of Sample Surface 45
   2.2 Reconstruction of an Optical Image from NSOM Data 47
   2.2.1 Necessity for Numerical Inversion of the NSOM System 47
   2.2.2 NSOM Image of Dielectric Strips 47
   2.2.3 Deconvolution of Dielectric Strips with Nonnegativity Constraint 49
   2.2.4 Reconstruction of Metal Strips 50
   2.3 Radiation Force Exerted near a Nano-Aperture 51
   2.3.1 Radiation Force to Trap a Small Particle 51
   2.3.2 Force Distribution Exerted on the Sphere near a Subwavelength Aperture 54
   2.3.3 Force Exerted on Two Spheres in the Near-Field of a Small Aperture 57
   References 58
3 High-Resolution and High-Throughput Probes M. Ohtsu, K. Sawada 61
   3.1 Excitation of a HE-Plasmon Mode 64
   3.1.1 Mode Analysis 64
   3.1.2 Edged Probes for Exciting a HE-Plasmon Mode 64
   3.2 Multiple-Tapered Probes 66
   3.2.1 Double-Tapered Probe 66
   3.2.2 Triple-Tapered Probe 70
   References 73
Apertureless Near-Field Probes S. Kawata, Y. Inouye, T. Kataoka, T. Okamoto 75
   4.1 Local Plasmon in a Metallic Nanoparticle 76
   4.1.1 Local Plasmon Resonance in a Metallic Nanoparticle 76
   4.1.2 Local Plasmon Resonance in a Metallic Nanoparticle above a Substrate 79
   4.1.3 Optical Sensor Using Colloidal Gold Monolayers 82
   4.1.4 Gold Nanoparticle Probe 85
   4.2 Laser-Trapping of a Metallic Particle for a Near-Field Microscope Probe 87
   4.2.1 Mechanism of Laser Trapping 88
   4.2.2 Laser Trapping of a Probe for NSOM 89
   4.2.3 Experimental Setup 90
   4.2.4 Feedback Stabilization of a Particle 90
   4.2.5 Experimental Results 91
   4.3 Near-Field Enhancement at a Metallic Probe 93
   4.3.1 Field Enhancement at the Tip 93
   4.3.2 Near-Field Raman Spectroscopy 96
   4.4 Scattering Near-Field Optical Microscope with a Microcavity 101
   4.4.1 Resonant Microcavity Probe 101
   4.4.2 FDTD Simulation of a Resonant Microcavity Probe 102
   4.4.3 Fabrication of a "Resonant Microcavity Probe" 104
   4.4.4 Observation of a Vacuum-Evaporated Gold Film 106
   References 107
5 Integrated and Functional Probes T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, K. Hane 111
   5.1 Micromachined Probes 111
   5.1.1 Fabrication of a Miniature Aperture 112
   5.1.2 Throughput Measurement 116
   5.1.3 Fabrication of an Aperture Having a Metal Nanowire at the Center 117
   5.1.4 Imaging with a Fabricated Aperture Probe 119
   5.2 Light Detection from Force 120
   5.2.1 Method of Measuring Optical Near-Field Using Force 121
   5.2.2 Imaging Properties 124
   5.3 High Efficiency Light Transmission Through a Nano-Waveguide 126
   5.3.1 Low-Dimensional Optical Wave and Negative Dielectric 126
   5.3.2 One-Dimensional Optical Waveguides 127
   5.3.3 Negative-Dielectric Pin and Hole 128
   5.3.4 Negative-Dielectric Tube 131
   5.3.5 Lossy Waveguides and Applications 132
   References 133
6 High-Density Optical Memory and Ultrafine Photofabrication M. Irie 137
   6.1 Photochromic Memory Media 138
   6.2 Near-Field Optical Memory 141
   6.2.1 Diarylethenes 141
   6.2.2 Perinaphthothioindigo 142
   6.3 Future Prospects for Near-Field Optical Memory 144
   6.4 Nanofabrication: Chemical Vapor Deposition 144
   6.5 Nanofabrication: Organic Film 147
   References 149
7 Near-Field Imaging of Molecules and Thin Films M. Fujihira, S. Itoh, A. Takahara, O. Karthaus, S. Okazaki, K. Kajikawa 151
   7.1 Near-Field Imaging of Molecules and Thin Films 151
   7.1.1 Preparation of Organic Thin Films 151
   7.1.2 Control of Tip-Sample Separation 151
   7.1.3 Various Modes of Observations 152
   7.1.4 Optical Recording on Organic Thin Films 152
   7.2 Two-Dimensional Morphology of Ultrathin Polymer Films 152
   7.2.1 Materials, Preparation of Films, and Apparatus 153
   7.2.2 Observation of Two-Dimensional Morphology 156
   7.2.3 Conclusion 161
   7.3 Observation of Polyethylene (PE) Crystals 161
   7.3.1 AFM and NSOM Observation of PE Single Crystals 161
   7.3.2 AFM and NSOM Observation of Melt-Crystallized PE Thin Films 163
   7.3.3 Conclusions 167
   7.4 Preparation of Micrometer-Sized Chromophore Aggregates 168
   7.4.1 Control of Aggregation 168
   7.4.2 Mesoscopic Patterns 169
   7.4.3 Mechanism of Pattern Formation 169
   7.4.4 Chromophore-Containing Mesoscopic Patterns 170
   7.4.5 Azobenzene-Containing Polyion Complex 171
   7.4.6 Mesoscopic Line Pattern of Poly (hexylthiophene) 173
   7.5 Application to Electrochemical Research 174
   7.5.1 Fabrication of an Aluminum Nanoelectrode SNOM Probe to Stimulate Electroluminescent (EL) Polymers 174
   7.5.2 Integration of STM with SNOM Microscopy by Fabricating Original Chemically Etched Conducting Hybrid Probes 176
   7.5.3 Development of a New Type of AFM/SNOM Integrated System 178
   7.5.4 Biological Applications 180
   7.6 Second-Harmonic Generation in Near-Field Optics 184
   7.6.1 Materials and Apparatus 186
   7.6.2 SHG Observation 186
   7.6.3 Conclusion 187
   References 187
8 Near-Field Microscopy for Biomolecular Systems T. Yanagida, E. Tamiya, H. Muramatsu, P. Degenaar, Y. Ishii, Y. Sako, K. Saito, S. Ohta-Iino, S. Ogawa, G. Marriott, A. Kusumi, H. Tatsumi 191
   8.1 Near-Field Imaging of Human Chromosomes and Single DNA Molecules 192
   8.1.1 SNOAM System 193
   8.1.2 SNOAM Imaging of Human Chromosomes [19] 194
   8.1.3 SNOAM Imaging of a Single DNA Molecule [20} 198
   8.2 Imaging of Biological Molecules 199
   8.2.1 Myosin-Actin Motors 199
   8.2.2 Membrane Receptors 209
   8.2.3 ATP Synthase 215
   8.3 Cell and Cellular Functions 220
   8.3.1 Near-Field Fluorescent Microscopy of Living Cells 220
   8.3.2 Dynamics of Cell Membranes 222
   8.3.3 Near-Field Imaging of Neuronal Cell and Transmitter 229
   References 233
9 Near-Field Imaging of Quantum Devices and Photonic Structures M. Gonokami, H. Akiyama, M. Fukui 237
   9.1 Spectroscopy of Quantum Devices and Structures 237
   9.1.1 Near-Field Microscopy with a Solid-Immersion Lens 238
   9.1.2 Solid-Immersion Microscopy of GaAs Nanostructures 242
   9.1.3 Time-Resolved Spectroscopy of Single Quantum Dots Using NSOM 247
   9.2 Observation of Polysilane by Near-Field Scanning Optical Microscope in the Ultraviolet (UV) Region 251
   9.2.1 Morphologies and Quantum Size Effects of Single InAs Quantum Dots Studied by Scanning Tunneling Microscopy/Spectroscopy 255
   9.2.2 Photonic Structures Consisting of Dielectric Spheres 257
   9.2.3 Interaction of a Near-Field Light with Two-Dimensionally Ordered Spheres 265
   9.2.4 Photonic-Band Effect on Near-Field Optical Images of 2-D Sphere Arrays 270
   9.3 Near-Field Photon Tunneling 275
   9.3.1 What is Photon Tunneling? 275
   9.3.2 Resonant Photon Tunneling Through a Photonic Double-Barrier Structure 277
   9.3.3 Resonant Photon Tunneling Mediated by a Photonic Dot 280
   9.3.4 Concluding Remarks 281
   References 281
10 Other Imaging and Applications N. Umeda, A. Yamamoto, R. Nishitani, J. Bae, T. Tanaka, S. Yamamoto 287
   10.1 Birefringent Imaging with an Illumination-Mode Near-Field Scanning Optical Microscope 287
   10.1.1 Principle 288
   10.1.2 Apparatus 289
   10.1.3 System Performance 291
   10.1.4 Observation of Sample 292
   10.1.5 Conclusion 294
   10.2 Plain-Type Low-Temperature NSOM System 294
   10.2.1 Experimental Setup 295
   10.2.2 Results and Discussion 296
   10.2.3 Conclusion 298
   10.3 STM-Induced Luminescence 298
   10.3.1 Theoretical Model 298
   10.3.2 Experimental Method 299
   10.3.3 Results 300
   10.3.4 Conclusion 304
   10.4 Energy Modulation of Electrons with Evanescent Waves 304
   10.4.1 Sensing an Optical Near-Field with Electrons 304
   10.4.2 Metal Microslit 304
   10.4.3 Experiment 306
   10.4.4 Conclusion 308
   10.5 Manipulation of Particles by Photon Force 308
   10.5.1 Method 308
   10.5.2 Experiments 309
   10.5.3 Conclusion 314
   References 315
Index 317
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
13.

図書

図書
Motoichi Ohtsu
出版情報: Boston : Artech House, c1992  xi, 340 p. ; 24 cm
シリーズ名: The Artech House optoelectronics library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
Five Requirements to Be Met / 1.2:
Structure and Oscillation Mechanisms / Chapter 2:
Coherence of Light / 2.1:
Device Structures / 2.2:
Formulation of Laser Oscillation / 2.3:
Noise Characteristics / 2.4:
Intensity Noise / 2.4.1:
Frequency Noise / 2.4.2:
Coherence Deterioration Induced in Semiconductor Lasers by Specific Noise / 2.5:
Oscillation Instabilities Induced by Reflected Lightwaves / 2.5.1:
Mode-Hopping and Mode-Partition Noise / 2.5.2:
Optical Frequency Discriminators, Detections, and Modulations / Chapter 3:
Optical Frequency Demodulators / 3.1:
Noise Sources in the FM Noise Detection System / 3.2:
Modulation Characteristics of a Semiconductor Laser / 3.3:
FM Noise Reduction and Improvement of Frequency Accuracy / Chapter 4:
Center Frequency Stabilization of the Field Spectrum / 4.1:
Improvements in the Accuracy and Reproducibility of the Stabilized Laser Frequency / 4.2:
Wideband FM Noise Reduction / 4.3:
Negative Electrical Feedback / 4.3.1:
Injection Locking and Optical Feedback / 4.3.2:
Optical Phase Locking and Frequency Sweep / Chapter 5:
Optical Phase- and Frequency-Locked Loops / 5.1:
Heterodyne Optical Phase-Locked Loop / 5.1.1:
Homodyne Optical Phase-Locked Loop / 5.1.2:
Other Promising Techniques / 5.1.3:
Stable, Accurate, and Wideband Optical Frequency Sweep / 5.2:
Fine Frequency Sweep / 5.2.1:
Wideband Coarse Frequency Sweep / 5.2.2:
Applications of Highly Coherent Semiconductor Lasers / Chapter 6:
Optical Communication Systems / 6.1:
Optical Measurements / 6.2:
Passive Ring Resonator-Type Fiber Gyroscope / 6.2.1:
Velocity and Displacement Measurements / 6.2.2:
Photon Scanning Tunneling Microscope / 6.3:
Analytical Spectroscopy / 6.4:
Laser Radar (Lidar) / 6.4.1:
Isotope Separation and Analysis of Radicals / 6.4.2:
Optical Pumping of Atomic Clocks / 6.5:
Cesium Atomic Clock at 9.2 GHz / 6.5.1:
Rubidium Atomic Clock at 6.8 GHz / 6.5.2:
Quantum Optics and Basic Physics / 6.6:
High-Resolution Spectroscopy of Atoms and Molecules / 6.6.1:
Test of Basic Principles of Physics / 6.6.2:
Manipulations of Atoms and Ions / 6.6.3:
Cavity Quantum Electrodynamics (Cavity QED) / 6.6.4:
Toward the Future / Chapter 7:
Improvement in Device Structure / 7.1:
Advanced Longitudinal-Mode Controlled Lasers / 7.1.1:
Narrow-Linewidth Lasers / 7.1.2:
Wideband Frequency Sweep / 7.1.3:
Realization of Novel Lasing Wavelengths / 7.1.4:
High-Power Laser Devices / 7.1.5:
Reduction of Chirping / 7.1.6:
Expansion of the Lasing Frequency Range / 7.2:
Short-Wavelength Lasers / 7.2.1:
Stable, Wideband Optical Sweep Generators / 7.2.2:
Ultrafast Detection of Lightwaves, Waveform Conversion, and Optical-Frequency Counting Systems / 7.3:
Generation and Application of Nonclassical Photons / 7.4:
Photon Antibunching and the Properties of the Squeezed State of Light / 7.4.1:
Quantum Nondemolition Measurements / 7.4.2:
Control and Manipulation of Atoms and Photons / 7.5:
High-Power Lasers and Optical Energy Storage / 7.6:
Conclusion / Chapter 8:
Quantization of the Light Field / Appendix I:
Definitions of the Measures for Evaluating the FM Noise Magnitude / Appendix II:
Methods for Measuring FM Noise and the Allan Variance Real-Time Processing System / Appendix III:
Rate Equation and Relaxation Oscillation / Appendix IV:
Theoretical Analyses of Optical Phase-Locked Loops / Appendix V:
Index
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
14.

図書

図書
edited by Hiroo Tominaga and Masakazu Tamaki
出版情報: Chichester : John Wiley, 1997  x, 403 p.; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
Introduction / 1.1:
Science and Engineering for Reactor Design / 1.2:
Theory of Chemical Reaction / 1.3:
Chemical Reaction Engineering and Reactor Design / 1.4:
Reactor Design for Industrial Processes / 1.5:
Naphtha Cracking / 1.5.1:
Tubular Steam Reforming / 1.5.2:
Epoxy Resin Production / 1.5.3:
Hydrotreating / 1.5.4:
Fluid Catalytic Cracking / 1.5.5:
Flue Gas Desulphurization / 1.5.6:
Equilibrium and Reaction Rate / Hiroshi KomiyamaChapter 2:
Nature of Chemical Reaction / 2.1:
Supply of Activation Energy / 2.1.1:
Elementary and Complex Reactions / 2.1.2:
Other Factors in Reactor Design / 2.1.3:
Direction of the Reaction Progress and Chemical Equilibrium / 2.2:
Direction of the Reaction Progress / 2.2.1:
Role of the Catalyst / 2.2.2:
Reversible and Irreversible Reactions / 2.2.3:
How to Calculate the Heat of Reaction and the Equilibrium Constant / 2.2.4:
Operating Conditions and Energy Efficiency of Chemical Reactions / 2.2.5:
The Rate of Reaction / 2.3:
Factors Governing the Rate of Reaction / 2.3.1:
Complex Reaction System / 2.4:
Rate-determining Step / 2.4.1:
Patterning of Reaction Systems / 2.4.2:
Relations with Other Transfer Processes / 2.4.3:
Fundamentals of Heat and Mass Transfer / Koichi AsanoChapter 3:
Rate Equations / 3.1:
Conduction of Heat / 3.1.1:
Diffusion / 3.1.2:
Diffusion Flux and Mass Flux / 3.1.3:
Mass and Heat Transfer Coefficients / 3.2:
Mass Transfer Coefficient / 3.2.1:
Overall Mass Transfer Coefficient / 3.2.2:
Heat Transfer Coefficient / 3.2.3:
Overall Heat Transfer Coefficient / 3.2.4:
Heat and Mass Transfer in a Laminar Boundary Layer along a Flat Plate / 3.3:
Governing Equations of Heat and Mass Transfer / 3.3.1:
Physical Interpretation of the Dimensionless Groups used in Heat and Mass Transfer Correlation / 3.3.2:
Similarity Transformation / 3.3.3:
Numerical Solutions for Heat and Mass Transfer / 3.3.4:
High Mass Flux Effect / 3.3.5:
Heat Transfer inside a Circular Tube in Laminar Flow / 3.4:
Heat Transfer inside a Circular Tube with Uniform Velocity Profile / 3.4.1:
Heat Transfer inside a Circular Tube with Parabolic Velocity Profile (Graetz problem) / 3.4.2:
Mass Transfer of Bubbles, Drops and Particles / 3.5:
Hadamard Flow / 3.5.1:
Evaporation of a Drop in the Gas Phase / 3.5.2:
Continuous Phase Mass Transfer of Bubbles or Drops in the Liquid Phase / 3.5.3:
Dispersed Phase Mass Transfer / 3.5.4:
Heat and Mass Transfer of a Group of Particles and the Void Function / 3.5.5:
Radiant Heat Transfer / 3.6:
Heat Radiation / 3.6.1:
Governing Equations of Radiant Heat Transfer / 3.6.2:
Fundamentals of Reactor Design / Chapter 4:
Reactor Types and Their Applications / Shintaro Furusaki4.1:
Homogeneous Reactors / 4.1.1:
Heterogeneous Reactors / 4.1.2:
Design of Homogeneous Reactors / Yukihiro Shimogaki4.2:
Material and Heat Balances in Reaction Systems / 4.2.1:
Design of Batch Stirred Tank Reactor / 4.2.2:
Design of Continuous Stirred Tank Reactors / 4.2.3:
Design of Tubular Reactors / 4.2.4:
Homogeneous and Heterogeneous Complex Reactions / 4.2.5:
Planning and Design of Multiphase Reactors / Masayuki Horio4.3:
Features of Planning and Design of Multiphase Reaction Processes / 4.3.1:
Model Description of Multiphase Processes / 4.3.2:
Concepts of Multiphase Reaction Processes / 4.3.3:
Development and Scale-up of Multiphase Reactors / 4.3.4:
Dynamic Analysis of Reaction System / Hisayoshi Matsuyama4.4:
Dynamics of Reactors / 4.4.1:
Stability of Reactors / 4.4.2:
Control of Reactors / 4.4.3:
Optimization of Reactor Systems / 4.4.4:
Design of an Industrial Reactor / Chapter 5:
Petrochemical Complex in Japan / Hiroshi Yagi5.1:
Cracking Furnace for Naphtha / 5.1.2:
Treatment of a Cracked Gas / 5.1.3:
Quench and Heat Recovery / 5.1.4:
Thermodynamics of Thermal Cracking Reaction / 5.1.5:
Mechanism of Thermal Cracking / 5.1.6:
Reaction Model for Yield Estimation / 5.1.7:
Design Procedure of Cracking Furnace / 5.1.8:
Results of Thermal Cracking Simulation / 5.1.9:
Technology Trend of a Cracking Furnace / 5.1.10:
The Reactions / J. R. Rostrup-Nielsen ; Lars J. Christiansen5.2:
The Tubular Reformer / 5.2.2:
The Catalyst and Reaction Rate / 5.2.3:
Poisoning / 5.2.4:
Carbon Formation / 5.2.5:
CO[subscript 2] Reforming / 5.2.6:
Reforming of High Hydrocarbons / 5.2.7:
Alternatives to Steam Reforming Technology / 5.2.8:
Epoxy Resin / Goro Soma ; Yasuo Hosono5.3:
Quality Parameters of Epoxy Resin / 5.3.2:
Elementary Reactions for Epoxy Resin Production / 5.3.3:
Epoxy Resin Production Processes / 5.3.4:
Process Operating Factors / 5.3.5:
The Reaction Model / 5.3.6:
Batch Operation / 5.3.7:
Simulation Using the Reaction Model / 5.3.8:
Design of the First-stage Reactor / 5.3.9:
Design of the Second-stage Reactor / 5.3.10:
Hydrotreating Reactor Design / Alan G. Bridge ; E. Morse Blue5.4:
Hydrotreating Objectives / 5.4.1:
Process Fundamentals / 5.4.2:
VGO Hydrotreating Reactions / 5.4.3:
VGO Hydrotreating Catalysts / 5.4.4:
VGO Hydrotreating Process Conditions / 5.4.5:
VGO Hydrotreating Reactor Design / 5.4.6:
VGO Hydrotreating Operation / 5.4.7:
VGO Hydrotreating Safety Procedures / 5.4.8:
Future Trends / 5.4.9:
Outline of the FCC Process / Toru Takatsuka ; Hideki Minami5.5:
Basic Theory of Fluid Catalytic Cracking / 5.5.2:
Theoretical Discussion of FCC Reactor Design / 5.5.3:
Practice of FCC Reactor Design / 5.5.4:
Material Balance and Heat Balance around Reactors / 5.5.5:
Wet Flue Gas Desulphurization / Hiroshi Yanagioka ; Teruo Sugiya5.6:
Process Description / 5.6.1:
Structure of JBR / 5.6.2:
Chemical Reactions in JBR / 5.6.3:
Heat and Material Balance around the Reactor / 5.6.4:
Reactive Impurities in the Flue Gas / 5.6.5:
Applicable Materials for the Wet FGD Plant / 5.6.6:
Index
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
15.

図書

図書
L. Ramdas Ram-Mohan
出版情報: Oxford : Oxford University Press, 2002  xviii, 605 p. ; 24 cm
シリーズ名: Oxford texts in applied and engineering mathematics ; 5
所蔵情報: loading…
目次情報: 続きを見る
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
Schrodinger's equation / 1.1.1:
Postulates of quantum mechanics / 1.1.2:
Principle of stationary action / 1.2:
The action integral / 1.2.1:
Examples / 1.2.2:
Finite elements / 1.3:
Historical comments / 1.4:
Problems / 1.5:
References
Simple quantum systems / 2:
The simple harmonic oscillator / 2.1:
The hydrogen atom / 2.2:
The Rayleigh-Ritz variational method / 2.3:
Programming considerations / 2.4:
Interpolation polynomials in one dimension / 2.5:
Lagrange interpolation polynomials / 3.1:
Hermite interpolation polynomials / 3.3:
Transition elements / 3.4:
Low order interpolation polynomials / 3.5:
Low order Lagrange interpolation / 3.5.1:
Low order Hermite interpolation / 3.5.2:
Interpolation polynomials in Mathematica / 3.6:
Lagrange interpolation / 3.6.1:
Hermite interpolation / 3.6.2:
Infinite elements / 3.7:
Simple quantum systems revisited / 3.8:
Adaptive FEM / 3.9:
Error in interpolation / 4.1:
Error in the discretized action / 4.3:
h-convergence / 4.3.1:
p-convergence / 4.3.2:
The action in adaptive calculations / 4.4:
An ordinary differential equation / 4.4.1:
The H atom again / 4.4.2:
Adaptive p-refinement / 4.4.3:
Concluding remarks / 4.5:
Applications in 1D / Part II:
Quantum mechanical tunneling / 5:
Mixed BCs: redefining the action / 5.1:
The Galerkin method / 5.3:
Tunneling calculations in the FEM / 5.4:
Evaluation of the residual / 5.4.1:
Applying mixed BCs / 5.4.2:
Comparing Galerkin FEM with WKB / 5.5:
Quantum states in asymmetric wells / 5.6:
Schrodinger-Poisson self-consistency / 5.7:
Schrodinger and Poisson equations / 6.1:
Source terms / 6.3:
The Fermi energy and charge neutrality / 6.4:
The Galerkin finite element approach / 6.5:
Boundary conditions / 6.5.1:
The iteration procedure / 6.5.2:
Numerical issues / 6.5.3:
Essential and natural boundary conditions / 6.5.4:
Further developments / 6.6:
Landau states in a magnetic field / 6.7:
Landau levels / 7.1:
Density of states / 7.1.2:
Heterostructures in a B-field / 7.2:
Faraday configuration / 7.2.1:
Voigt configuration / 7.2.2:
Comparison with experiments / 7.3:
Interband transitions / 7.3.1:
Energy dependence on the orbit center / 7.3.2:
Level mixing in superlattices with small band offsets / 7.3.3:
Density of states in the Voigt geometry / 7.3.4:
Voigt geometry and a semiclassical model / 7.4:
Landau orbit theory / 7.4.1:
Envelope functions and the FEM in k-space / 7.4.2:
Wavefunction engineering / 7.5:
k P theory of band structure / 8.1:
Designing mid-infrared lasers / 8.3:
The type-II W-laser / 8.3.1:
The interband cascade laser / 8.3.2:
Concluding comments / 8.4:
2D Applications of the FEM / Part III:
2D elements and shape functions / 9:
Rectangular elements / 9.1:
Lagrange elements / 9.2.1:
Hermite elements / 9.2.2:
Triangular elements / 9.3:
Defining curved edges / 9.4:
An element on a parametric curve / 9.4.1:
Parametric form of 2D surfaces / 9.4.2:
The action in 2D problems / 9.5:
Gauss integration in two dimensions / 9.6:
Mesh generation / 10:
Meshing simple regions / 10.1:
Distortion of regular regions / 10.1.1:
Using orthogonal curved coordinates / 10.1.2:
Regions of arbitrary shape / 10.2:
Delaunay meshing / 10.2.1:
Advancing front algorithms / 10.2.2:
The algebraic integer method / 10.2.3:
Applications in atomic physics / 11:
The H atom in a magnetic field / 11.1:
Schrodinger's equation and the action / 11.1.1:
Applying the FEM / 11.1.2:
Magnetic fields / 11.1.3:
Ground state energy in helium / 11.2:
Other results / 11.3:
Quantum wires / 12:
Quantum wires and the FEM / 12.1:
Symmetry properties of the square wire / 12.3:
The checkerboard superlattice / 12.4:
Optical nonlinearity in the CBSL / 12.5:
Quantum wires of any cross-section / 12.6:
Quantum waveguides / 13:
Quantization of resistance / 13.1:
The straight waveguide / 13.2:
Quantum bound states in waveguides / 13.3:
The quantum interference transistor / 13.4:
"Stealth" elements and absorbing BC / 13.5:
The Ginzburg-Landau equation / 13.6:
Time-dependent problems / 14:
Standard approaches to time evolution / 14.1:
Schrodinger's equation and the method of finite differences / 14.2.1:
The finite difference method for the wave equation / 14.2.2:
A transfer matrix for time evolution / 14.3:
Lanczos reduction of transfer matrices / 14.4:
Instability with initial conditions / 14.5:
Comparing IVBC and two-point BCs / 14.5.1:
The variational approach / 14.6:
A variational difficulty / 14.6.1:
Variations using adjoint functions / 14.6.2:
Adjoint variations for the wave equation / 14.6.3:
Connection with quantum field theory / 14.6.4:
Sparse Matrix Applications / 14.7:
Matrix solvers and related issues / 15:
Bandwidth reduction / 15.1:
Solution of linear equations / 15.3:
Gauss elimination / 15.3.1:
The conjugate gradient method / 15.3.2:
The standard eigenvalue problem / 15.4:
The generalized eigenvalue problem / 15.5:
Sturm sequence check / 15.5.1:
Inverse vector iteration / 15.5.2:
The subspace vectors / 15.5.3:
The Rayleigh quotient / 15.5.4:
Subspace iteration / 15.5.5:
The Davidson algorithm / 15.5.6:
Least square residual minimization / 15.5.7:
The Lanczos method / 15.5.8:
Boundary Elements / Part V:
The boundary element method / 16:
The boundary integral / 16.1:
An analytical approach / 16.3:
A Dirichlet problem / 16.3.1:
A Neumann problem / 16.3.2:
Infinite domain Green's function / 16.4:
Evaluation of the element integrals / 16.5:
Applying boundary conditions / 16.5.2:
Boundary condition at the corner node / 16.5.3:
Setting up the matrix equation / 16.5.4:
Construction of interior solution / 16.5.5:
A worked example / 16.6:
Two sum rules / 16.7:
Comparing the BEM with the FEM / 16.8:
The BEM and surface plasmons / 16.9:
Multiregion BEM: two regions / 17.1:
Linear interpolation / 17.2.1:
Bulk and surface plasmons / 17.2.2:
Bulk plasma oscillations / 17.3.1:
Surface plasmons at a single planar interface / 17.3.2:
Surface plasmons for slab geometry / 17.3.3:
Surface plasmons in a cylindrical wire / 17.3.4:
Two metallic wires / 17.3.5:
Metal wire on a substrate / 17.3.6:
Plasmons in other confining geometries / 17.3.7:
Surface-enhanced Raman scattering / 17.4:
The BEM and quantum applications / 17.5:
2D electron waveguides / 18.1:
Implementing boundary conditions / 18.2.1:
Multiregion waveguide problems / 18.2.2:
Multiple ports and transmission / 18.2.3:
The BEM and 2D scattering / 18.3:
Eigenvalue problems and the BEM / 18.4:
Hearing the shape of a drum / 18.4.1:
Concluding remarks on the BEM / 18.5:
Appendices / 18.6:
Gauss quadrature / A:
Gauss-Legendre quadrature / A.1:
Gauss-Legendre base points and weights / A.3:
An algorithm for adaptive quadrature / A.4:
Other Gauss formulas / A.5:
The Cauchy principal value of an integral / A.6:
Properties of Legendre functions / A.7:
Generalized functions / A.8:
The Dirac [delta]-function / B.1:
The [delta]-function as the limit of a "normal" function / B.2:
[delta]-functions in three dimensions / B.3:
Other generalized functions / B.4:
The step-function [theta](x) / B.4.1:
The sign-function [varepsilon](x) / B.4.2:
The Plemelj formula / B.4.3:
An integral representation for [theta](z) / B.4.4:
Green's functions / B.5:
Properties of Green's functions / C.1:
Sturm-Liouville differential operators / C.3:
Green's functions in electrostatics / C.4:
Boundary integral solutions: a comment / C.5:
Green's functions in electrodynamics / C.6:
The wave equation in one dimension / C.7:
The wave equation in two dimensions / C.8:
Green's functions and integral equations / C.9:
Physical constants / C.10:
Author index
Subject index
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
16.

図書

図書
Yoshimi Ito
出版情報: New York : McGraw-Hill, c2008  xxiii, 504 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Terminology and Abbreviations
Nomenclature
Conversion Table
Engineering Guides of Modular Design and Description Methodology of Machine Tools / Part 1:
Basic Knowledge: What Is the Modular Design? / Chapter 1:
Definition and Overall View of Modular Design / 1.1:
Advantageous and Disadvantageous Aspects of Modular Design / 1.2:
A Firsthand View of Developing History and Representative Applications / 1.3:
Application to TL and FTL / 1.3.1:
Application to conventional machine tools / 1.3.2:
Application to NC machine tools / 1.3.3:
Different-kind generating modular design / 1.3.4:
References
Engineering Guides and Future Perspectives of Modular Design / Chapter 2:
Four Principles and Further Related Subjects / 2.1:
Effective Tools and Methodology for Modular Design / 2.2:
Classification of Modular Design Including Future Perspectives / 2.3:
Modular design being widely employed / 2.3.1:
Modular design in the very near future-a symptom of upheaval of new concepts / 2.3.2:
Characteristic Features of Modular Design Being Used in Machine Tools of the Most Advanced Type / 2.4:
System machines / 2.4.1:
Machining complex and processing complex / 2.4.2:
Description of Machine Tools / Chapter 3:
Basic Knowledge about Functional and Structural Description Methods / 3.1:
Details of Functional Description / 3.2:
Details of Structural Description / 3.3:
Application of Machine Tool Description to Engineering Design / Chapter 4:
Application of Functional Description / 4.1:
Classification of machining centers and its application to marketability analysis / 4.1.1:
Analysis of machining function and its application to evaluate compatibility with production systems / 4.1.2:
Automated generation of concept drawing / 4.1.3:
Estimation of assembly accuracy in design stage / 4.1.4:
Application of Structural Description / 4.2:
Similarity evaluation of structural configuration-availability constraints of modular design / 4.2.1:
Variant design for structural configuration / 4.2.2:
Free design for structural configuration / 4.2.3:
Engineering Design for Machine Tool Joints-Interfacial Structural Configuration in Modular Design / Part 2:
Basic Knowledge of Machine Tool Joints / Chapter 5:
Classification of Machine Tool Joints / 5.1:
Definition of Machine Tool Joint and Representation of Joint Characteristics / 5.2:
External Applied Loads to Be Considered and Fundamental Factors Governing Joint Characteristics / 5.3:
Effects of Joint on Static and Dynamic Stiffness, and Thermal Behavior of Machine Tool as a Whole / 5.4:
Firsthand View of Research History / 5.5:
Fundamentals of Engineering Design and Characteristics of the Single Flat Joint / Chapter 6:
Quick Notes for Single Flat Joint, Determination of Mathematical Model, and Fundamental Knowledge about Engineering Design Formulas / 6.1:
Design Formulas for Normal Joint Stiffness and Related Research / 6.2:
Expressions for static normal joint stiffness / 6.2.1:
Representative researches into behavior of the single flat joint under normal loading / 6.2.2:
Design Formulas for Tangential Joint Stiffness, Related Researches, and Peculiar Behavior of Microslip / 6.3:
Expressions for static tangential joint stiffness / 6.3.1:
Representative researches into behavior of the static tangential joint stiffness and the microslip / 6.3.2:
Peculiar behavior of microslip / 6.3.3:
Design Formulas for Damping Capacity and Related Researches / 6.4:
Expressions for damping capacity / 6.4.1:
Representative research into dynamic behavior / 6.4.2:
Thermal Behavior of Single Flat Joint / 6.5:
Forerunning Research into Single Flat Joint with Local Deformation / 6.6:
Supplement: Theoretical Proof of Ostrovskii's Expression
Design Guides, Practices, and Firsthand View of Engineering Developments-Stationary Joints / Chapter 7:
Bolted Joint / 7.1:
Design guides and knowledge-pressure cone and reinforcement remedies from structural configuration / 7.1.1:
Engineering design for practices-suitable configuration of bolt pocket and arrangement of connecting bolts / 7.1.2:
Engineering calculation for damping capacity / 7.1.3:
Representative researches and their noteworthy achievements-static behavior / 7.1.4:
Representative researches and their noteworthy achievements-dynamic behavior / 7.1.5:
Representative researches and their noteworthy achievements-thermal behavior / 7.1.6:
Foundation / 7.2:
Engineering calculation for foundation / 7.2.1:
Stiffness of leveling block / 7.2.2:
Firsthand View for Researches in Engineering Design in Consideration of Joints / Supplement 1:
Influences of Joints on Positioning and Assembly Accuracy / Supplement 2:
Supplement References
Design Guides, Practices, and Firsthand View of Engineering Developments-Sliding Joints / Chapter 8:
Slideways / 8.1:
Design knowledge-slideway materials / 8.1.1:
Design knowledge-keep plate and gib configurations / 8.1.2:
Linear Rolling Guideways (Linear Guide and Rolling Guideways) / 8.2:
Main Spindle-Bearing Systems / 8.3:
Static stiffness of rolling bearing / 8.3.1:
Dynamic stiffness and damping capacity of rolling bearing / 8.3.2:
Sliding Joints of Special Types / 8.4:
Screw-and-nut feed driving systems / 8.4.1:
Boring spindle of traveling type / 8.4.2:
Supplement: Deflection and Interface Pressure Distribution of Slideway
Supplement Reference
Rudimentary Engineering Knowledge about Other Joints / Chapter 9:
Joints for Light-Weighted Structures / 9.1:
Welded joint / 9.1.1:
Bonded joint / 9.1.2:
Taper Connection / 9.2:
Chucking / 9.3:
Measurement of Interface Pressure by Means of Ultrasonic Waves / Appendix 1:
Principle of Measurement and Its Verification / A1.1:
Some Applications and Perspectives in the Very Near Future / A1.2:
Model Testing and Theory / Appendix 2:
Model Testing and Theory for Structural Body Component / A2.1:
Model Testing in Consideration of Joints / A2.2:
Index
Preface
Terminology and Abbreviations
Nomenclature
17.

図書

東工大
目次DB

図書
東工大
目次DB
Masao Kaneko, Ichiro Okura (eds.)
出版情報: Tokyo : Kodansha , Berlin ; London : Springer, c2002  xvi, 356 p. ; 25 cm
シリーズ名: Biological and medical physics series
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Preface
   1 Introduction 1
   1.1 Background 1
   1.2 Aim and Outline of This Volume 2
   1.3 Summary 4
   1.4 Future Perspectives 4
   References 5
Ⅰ Fundamental Aspects of Photocatalysts
   2 Photoelectrochemical Processes of Semiconductors 9
   2.1 Semiconductor Electrodes for Solar Energy Conversion 11
   2.2 Reduction of CO2 at Illuminated Semiconductor Electrodes 15
   2.3 Photocatalysis 18
   2.3.1 General Remarks 18
   2.3.2 Mechanistic Studies 19
   2.3.3 Low Intensity Illumination 22
   2.3.4 Applications 24
   References 26
   3 Design, Preparation and Characterization of Highly Active Metal Oxide Photocatalysts 29
   3.1 Introduction 29
   3.2 Photocatalytic Activity 29
   3.2.1 Effect of Surface Area on Photocatalytic Activity 30
   3.2.2 Effect of Electron-hole Recombination on Photocatalytic Activity 32
   3.2.3 Design of Photocatalysts of High Activity 33
   3.3 Preparation of Titanium (IV) Oxide Powders 33
   3.3.1 Sulfate Method 33
   3.3.2 Chloride Method (Vapor Method) 34
   3.3.3 Alkoxide Method 34
   3.3.4 Specific Methods 34
   3.3.5 Activation of TiO2 Photocatalysts 36
   3.4 Preparation of Other Photocatalysts 38
   3.5 Characterization of TiO2 Photocatalysts of Both High Crystallinity and Large Surface Area 38
   3.5.1 Photocatalytic Activity of HyCOM TiO2 in Aqueous Suspension Systems 38
   3.5.2 Correlation Between Physical Properties and Photocatalytic Activity of HyCOM TiO2 39
   3.5.3 Novel Hypothesis for Activity of Photocatalyst 43
   3.6 Preparation and Characterization of Photocatalytic Thin Films 44
   3.6.1 Preparation of Photocatalytic TiO2 Thin Films 44
   3.6.2 Characterization of Photocatalytic Thin Films Prepared from HyCOM TiO2 Powders 45
   3.7 Summary 47
   References 47
   4 Photoelectrochemistry at Semiconductor/Liquid Interfaces 51
   4.1 Introduction 51
   4.2 Basic Properties of Semiconductor/Liquid Interface 52
   4.2.1 Band Bending 52
   4.2.2 Barrier Height and Flat Band Potential 54
   4.2.3 Electron Transfer and Corrosion Reactions 57
   4.3 Photoelectrochemistry at Atomically Well-defined Surfaces 59
   4.3.1 Atomically Flat H-terminated Si Surfaces 59
   4.3.2 Selective Exposition of (100) Face on n-TiO2 (Rutile) by Photoetching 62
   4.4 Photoelectrochemistry at Metal Dot-coated Semiconductors 64
   4.4.1 Ideal Semiconductor Electrodes 64
   4.4.2 Metal-loaded TiO2 Electrodes 66
   References 67
   5 Photoelectrochemical Reactions at Semiconductor Microparticle 69
   5.1 Introduction 69
   5.2 Energy Structure of Semiconductor Microparticle 69
   5.2.1 Depletion Layer 69
   5.2.2 Electric Heterogeneity of Surface 71
   5.2.3 Size Quantization Effect 72
   5.3 Kinetics at Semiconductor Microparticle 72
   5.3.1 Recombination Model 73
   5.3.2 2D Ladder Model 74
   5.3.3 Effect of Size 76
   5.4 Observation of Primary Reaction Intermediates 77
   5.4.1 ESR Analysis for Irradiated TiO2 Particles 78
   5.4.2 Direct Observation of Intermediate Radicals 81
   5.4.3 Chemiluminescent Probe for Active Oxygens 83
   References 85
   6 New Approaches in Solution-phase Processing of Semiconductor Thin Films 87
   6.1 Introduction 87
   6.2 Previous Methods for Solution-phase Deposition of Semiconductor Thin Films 89
   6.2.1 Chemical Bath Deposition of Metal Sulfide Thin Films 89
   6.2.2 Electrodeposition of Metal Sulfide Thin Films 90
   6.2.3 Chemical and Electrochemical Deposition of Metal Oxide Thin Films 92
   6.3 Electrochemically Induced Chemical Deposition (EICD) of Cds Thin Films 93
   6.3.1 Idea 93
   6.3.2 Morphological and Structural Analysis 94
   6.3.3 Growth Kinetics and Mechanism of EICD Process 95
   6.3.4 Modification of EICD Process 97
   6.4 True Electrodeposition of Metal Sulfide Thin Films by Reduction of Thiocyanato Complexes 97
   6.4.1 Idea 97
   6.4.2 Thermodynamic Consideration 98
   6.4.3 Electrochemical Layer-by-layer Growth of CdS Thin Films 98
   6.4.4 Electrodeposition of Other Metal Sulfides 100
   6.5 Electrochemical Self-assembly of ZnO/Dye Hybrid Thin Films 100
   6.5.1 Idea 100
   6.5.2 Electrochemical Self-assembly of ZnO/Dye Hybrid Structure 102
   6.5.3 Mechanism of Electrochemical Self-assembly 104
   6.6 Summary 104
   References 105
Ⅱ Application to Environmental Cleaning
   7 Self-cleaning Properties of TiO2-coated Substrates 109
   7.1 Introduction 109
   7.2 Photocatalytic Decomposition 110
   7.2.1 Air Purifying Effect 110
   7.2.2 Sterilization Effect 111
   7.2.3 Anti-fouling Effect 113
   7.2.4 Photo-induced High Amphiphilicity 114
   7.3 Conclusions 120
   References 121
   8 Cleaning Atmospheric Environment 123
   8.1 Introduction 123
   8.2 Photocatalytic Activities of TiO2 124
   8.2.1 Oxidation of Air Pollutants by Photogenerated Active Oxygen Species 124
   8.2.2 Photocatalytic Reactions of Volatile Hydrocarbons 125
   8.2.3 Photocatalytic Reactions of Halogenated Hydrocarbons 136
   8.2.4 Nitrogen Oxides (Nox) 143
   8.3 Development of Air Purifying Materials Based on Photocatalyst 147
   8.3.1 Immobilization of Powder Photocatalysts 147
   8.3.2 Preparation of Air-purifying Materials 148
   8.3.3 Performance Characteristics of Air-purifying Materials 149
   8.4 Application of Photocatalysis to Cleaning of Atmospheric Environment 151
   8.4.1 Passive Purification of Polluted Air 151
   8.4.2 Active Air Purification of Closed Space 153
   8.5 Summary 154
   References 155
   9 Water Purification - Degradation of Aqueous Pollutant and Application to Water Treatment 157
   9.1 Introduction 157
   9.2 Photocatalytic Characteristics of Titanium Dioxide 157
   9.3 Photocatalytic Degradation of Pollutant 160
   9.3.1 Volatile Organohalide Compound 160
   9.3.2 Pesticides 162
   9.3.3 Other Organic Compounds 164
   9.3.4 Environmental Hormones (Endocrine Disruptors) 165
   9.4 Enhancement of Degradation Rate 166
   9.4.1 Pt-loading 166
   9.4.2 Addition of H2O2 167
   9.4.3 Ozone 169
   9.4.4 Increase in Adsorption 169
   9.5 Solar System for Water Treatment 171
   9.6 Immobilization of TiO2 and Instrumentation 171
   9.7 Conclusion and Outlook 172
   References 172
   10 Second-generation TiO2 Photocatalysts Able to Initiate Reactions Under Visible Light Irradiation 175
   10.1 Introduction 175
   10.2 Experimental Section 175
   10.3 Results and Discussion 176
   10.4 Conclusion 182
   References 182
Ⅲ Application to Photoenergy Conversion
   11 Photocatalytic Organic Syntheses Using Semiconductor Particles 185
   11.1 Introduction 185
   11.2 Principle of Photocatalysis by Semiconductor Particles 186
   11.3 Photocatalytic Reactions by Semiconductor Suspension 187
   11.4 Redox Combined Photocatalytic Processes for Nitrogen-containing Substrates 189
   11.5 Further Development to Stereoselective Organic Synthesis of Nitrogen-containing Compounds 191
   11.6 Introduction of Oxygen Atoms into Organic Compounds 194
   11.6.1 Stereospecific Epoxidation of 2-hexene on Photoirradiated TiO2 Powders Using Molecular Oxygen as Oxidant 195
   11.6.2 Selective Oxidation of Naphthalene by Molecular Oxygen and Water Using TiO2 Photocatalysts 196
   11.6.3 Photocatalytic Oxygenation: Summary 198
   11.7 Concluding Remarks 199
   References 199
   12 Sonophotocatalysis - Joint System of Sonochemical and Photocatalytic Reactions 203
   12.1 Introduction - What is Sonophotocatalysis? 203
   12.2 Utilization of Sonophotocatalytic Reaction 204
   12.2.1 Sonophotocatalysis of Water 204
   12.2.2 Sonophotocatalysis of Artificial Seawater 216
   12.2.3 Sonophotocatalyses of Organic Compounds 219
   12.3 Conclusion and Future Scopes 220
   References 221
   13 Gas-phase Water Photolysis by NaOH-coated Photocatalysts 223
   13.1 Introduction 223
   13.2 Water Photolysis by Pt/TiO2 224
   13.3 Water Photolysis by Metallized Semiconductor Powders 226
   13.3.1 Gas-phase Water Photolysis by NaOH-coating 226
   13.3.2 Factors Influencing Yield of Water Photolysis 229
   13.4 Concluding Remarks 233
   References 234
   14 Water Photolysis by TiO2 Particles - Significant Effect of Na2CO3 Addition on Water Splitting 235
   14.1 Introduction 235
   14.2 Significant Effect of Carbonate Salt Addition on Water Splitting from Pt/TiO2 Water Suspension 236
   14.3 Role of Carbonate Salts on Water Splitting and Reaction Mechanism 240
   14.4 Effective Screening of Active Photocatalysts for Water Splitting Using Na2CO3 Addition Method 242
   14.5 Solar Hydrogen Production Using Na2CO3 Addition Method 246
   14.6 Conclusion 248
   References 248
   15 Water Photolysis by Titanates with Tunnel Structures 249
   15.1 Water Photolysis by RuO2/BaTi4O9 with Pentagonal Prism Tunnel Structure 250
   15.2 Water Photolysis by RuO2/N2Ti6O13 with Rectangular Tunnel Structure 257
   References 260
   16 Water Photolysis by Layered Compounds 261
   16.1 Introduction 261
   16.2 Layered Oxides of Transition Metals 261
   16.3 K4Nb6O17 263
   16.3.1 Structure and Physico-chemical Properties 263
   16.3.2 Photocatalytic Overall Water Splitting 265
   16.3.3 Structure of Ni-loaded K4Nb6O17 and Reaction Mechanism 267
   16.4 Perovskite-related Layered Oxides 268
   16.5 Summary 276
   References 276
   17 Splitting of Water by Combining Two Photocatalytic Reactions via Quinone Redox Couple Dissolved in Oil Phase: Artificial Photosynthesis 279
   17.1 Introduction 279
   17.2 Strategy for Water Splitting by Mimicking Photosynthesis 280
   17.3 Photocatalytic Hydrogen and Oxygen Evolution in Separate Systems 281
   17.3.1 Photooxidation of Water Using TiO2 Particles 282
   17.3.2 Photoreduction of Water Using Pt-loaded TiO2 Particles 285
   17.4 Approaches to Electrochemical and Chemical Combinations of Two Photocatalytic Reactions 286
   17.5 Splitting of Water by a Combination of Two Photocatalytic Reactions via DDQ/DDHQ 289
   17.6 Conclusions 291
   References 291
   18 Sensitization by Metal Complexes Towards Future Artificial Photosynthesis 293
   18.1 Introduction 293
   18.2 Photoinduced Hydrogen Evolution in Homogeneous Four-component Systems 294
   18.2.1 Photoinduced Hydrogen Evolution with Porphyrin Metal Complexes and Hydrogenase 294
   18.2.2 Photoinduced Hydrogen Evolution Using Cytochrome c3 as Electron Carrier 296
   18.2.3 Photoinduced Hydrogen Evolution Using Chemically-modified Chlorophyll 298
   18.3 Photoinduced Hydrogen Evolution with Viologen-linked orphyrin Metal Complexes 299
   18.3.1 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Cationic Porphyrin Metal Complexes and Hydrogenase 300
   18.3.2 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Anionic Porphyrin and Hydrogenase 302
   18.4 Other Systems for Hydrogen Evolution Using Natural Photosensitizers 303
   18.5 Conclusion 306
   References 306
   19 Catalyses and Sensitization for Water Reaction Towards Future Artificial Photosynthesis 309
   19.1 Introduction 309
   19.2 Design of Artificial Photosynthesis 309
   19.2.1 Photosynthesis and Energy Cycle on Earth 309
   19.2.2 Artificial Photosynthesis 311
   19.3 Molecular Catalysts for Water Reactions and CO2 Reduction 312
   19.3.1 Catalysis in Water Oxidation 312
   19.3.2 Catalysis in Proton Reduction 316
   19.3.3 Catalysis in Carbon Dioxide Reduction 316
   19.4 Photoexcited State Electron Transfer in Heterogeneous Phases 317
   19.5 Sensitization of TiO2 Powders and Films in Water 320
   19.6 Conclusion and Future Prospects 322
   References 323
   20 Photoelectric TiO2 Solar Cells 325
   20.1 Introduction 325
   20.2 Dye-sensitization of Semiconductors 325
   20.2.1 History 325
   20.2.2 Innovative Dye-sensitized Solar Cells 327
   20.2.3 Fabrication of Dye-sensitized TiO2 Solar Cells 328
   20.2.4 Characterization of Innovative Dye-sensitized TiO2 Solar Cells 329
   20.3 Electron-transfer Sensitization on TiO2 330
   20.3.1 Bonding Structure of Dye on TiO2 Influencing ηei 331
   20.3.2 Dynamics in Electron Transfer from Photoexcited Dye 2 to TiO2 331
   20.3.3 Electron Transfer Between Oxidized Dye 2 and I-/I3- Electrolyte 332
   20.4 Electron Transport in Porous TiO2 Electrodes 333
   20.4.1 Electron Transport Models for High ηet 334
   20.4.2 Time-course Analysis 335
   20.4.3 Frequency Analysis 335
   20.4.4 Effect of TiO2 Films on Performance of Dye-sensitized Solar Cells 337
   20.5 Sensitization Dyes 337
   20.5.1 Ruthenium Polypyridine Complexes 337
   20.5.2 Other Metal Complexes 339
   20.5.3 Organic Dyes 340
   20.5.4 Natural Dyes 342
   20.6 Recent Research Progress in Dye-sensitized Solar Cells 343
   20.7 Future Work on Dye-sensitized Solar Cells 344
   20.8 Concluding Remarks 345
   References 346
Index 349
List of Contributors
Preface
   1 Introduction 1
18.

図書

図書
edited by Saul Patai
出版情報: Chichester [Eng.] ; New York : J. Wiley, 1979-1992  4 v. ; 24 cm
シリーズ名: The Chemistry of functional groups ; supplement B
所蔵情報: loading…
19.

図書

図書
edited by Paul D. Boyer
出版情報: New York : Academic Press, 1976  xxv, 542 p. ; 24 cm
シリーズ名: The enzymes / edited by Paul D. Boyer, Edwin G. Krebs ; v. 13 . Oxidation-reduction ; pt. C
所蔵情報: loading…
20.

図書

東工大
目次DB

図書
東工大
目次DB
宗宮重行[ほか]編
出版情報: 東京 : 技報堂出版, 2002.8  xv, 384p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
共通基礎データ ⅷ
第Ⅰ編 環境・リサイクル分野
   第Ⅰ-1章 総 論 3
   1.1 はじめに 3
   1.2 環境問題 3
   1.3 材料技術の応用分野 4
   1.4 セラミックスの応用 5
   1.4.1 構造的なメリット 5
   1.4.2 機能的なメリット 6
   1.4.3 セラミックスのデメリット 6
   1.5 おわりに 7
   第Ⅰ-2章 各 論 9
   2.1 ろ過機能 9
   2.1.1 ディーゼルパティキュレートフィルター(DPF) 9
   2.1.2 高温集塵フィルター 12
   2.1.3 排水処理用セラミックス膜フィルター 19
   2.2 ケミカルセンター 22
   2.2.1 可燃性ガスセンサー 22
   2.2.2 有害ガスセンサー 26
   2.3 セラミックス担体 34
   2.3.1 セラミックスハニカム 34
   2.3.2 バイオリアクター 37
   2.4 表面機能性セラミックス 39
   2.4.1 抗菌部材 39
   2.4.2 親水性部材(半導体の光励起反応を利用した機能薄膜材料) 44
   2.4.3 ゼオライトとNOx分解触媒 54
   2.5 リサイクル関連技術 59
   2.5.1 リサイクルとは 59
   2.5.2 リサイクルの目的 59
   2.5.3 廃棄物総合対策の中でのリサイクルの位置付け 62
   2.5.4 セラミックス産業関連リサイクル 62
   2.6 そ の 他 64
   2.6.1 セラミックス吸音材 64
   2.6.2 セラミックス電波吸収体 69
   第Ⅰ-3章 基礎データ 73
第Ⅱ編 情報・通信分野
   第Ⅱ-1章 総 論 79
   1.1 エレクトロニクスの動向と機能性セラミックスの進歩 79
   1.1.1 エレクトロニクスの動向 79
   1.1.2 機能性セラミックスの進歩 80
   1.1.3 機能性セラミックスの分類と用途 82
   第Ⅱ-2章 各 論 85
   2.1 絶縁性セラミックス 85
   2.1.1 セラミックス多層配線基板 85
   2.1.2 IC基板について 90
   2.2 半導性セラミックス 94
   2.2.1 サーミスター(NTC,PTC) 94
   2.2.2 バリスタ 102
   2.2.3 各種センサー 106
   2.3 イオン導電性セラミックス 113
   2.3.1 リチウムイオン電池 113
   2.3.2 酸素センサー 117
   2.4 圧電性セラミックス 121
   2.4.1 セラミックスフィルター 121
   2.4.2 圧電振動ジャイロ 124
   2.4.3 圧電トランス 129
   2.4.4 薄膜デバイス 133
   2.5 誘電性セラミックス 139
   2.5.1 積層コンデンサー 139
   2.5.2 誘電体フィルター 143
   2.6 磁性セラミックス 147
   2.6.1 MR,GMRヘッド 147
   2.6.2 高周波電源用フェライト 152
   2.7 酸化物化学結晶 157
   2.7.1 固体レーザー 157
   第Ⅱ-3章 基礎データ 167
第Ⅲ編 エネルギー分野
   第Ⅲ-1章 総 論 173
   1.1 はじめに 173
   1.2 物理学の階層構造 173
   1.3 古典場における物理量の相関関係 175
   1.3.1 示強性物理量と示量性物理量 176
   1.3.2 物質定数の定義 176
   1.3.3 物質から材料へ 熱的・機械的機能に及ぼす諸因子 178
   1.4 おわりに 179
   第Ⅲ-2 各 論 181
   2.1 機械的機能 181
   2.1.1 高弾性エネルギー(ばね) 181
   2.1.2 高硬度(工具,コーティング) 185
   2.1.3 耐摩耗性(軸受,摺動部品) 189
   2.1.4 潤滑性(固体潤滑剤) 193
   2.1.5 複合材 198
   2.2 熱的機能 204
   2.2.1 高温強度(タービン用材料) 204
   2.2.2 耐熱性・耐熱衝撃性 207
   2.2.3 断熱性(断熱材) 212
   2.3 耐 食 性 217
   2.3.1 高温耐食性(炉材) 217
   2.3.2 耐薬品性(耐酸性ポンプ) 227
   2.4 エネルギー変換効率 232
   2.4.1 熱電変換 232
   2.4.2 燃料電池 239
   2.4.3 原 子 力 243
   2.5 加工・接合 247
   2.5.1 研削加工 247
   2.5.2 砥粒加工 251
   2.5.3 ビーム加工 254
   2.5.4 接合 259
   第Ⅲ-3章 基礎データ 279
第Ⅳ編 バイオ分野
   第Ⅳ-1章 総 論 287
   1.1 生体修復セラミックスの最新の動向 287
   1.1.1 はじめに 287
   1.1.2 高強度,高耐摩性セラミックス 287
   1.1.3 生体活性セラミックス 288
   1.1.4 吸収性セラミックス 289
   1.1.5 生体活性セメント 289
   1.1.6 生体活性セラミックス金属複合体 290
   1.1.7 生体活性セラミックス高分子複合体 291
   1.1.8 がん治療用セラミックス 291
   1.1.9 おわりに 292
   1.2 生体材料の臨床応用の基礎 293
   1.2.1 生体材料の使用目的 293
   1.2.2 期待する特性 294
   1.2.3 セラミックスと生体内環境 296
   第Ⅳ-2章 各 論 299
   2.1 バイオイナートセラミックス 299
   2.1.1 アルミナセラミックス 299
   2.1.2 ジルコニアセラミックス 306
   2.2 バイオアクティブセラミックス 310
   2.2.1 ハイドロキシアパタイト(HA) 310
   2.3 人口歯・人口歯根 314
   2.3.1 人口歯・人口歯根用セラミックス 314
   2.4 バイオセラミックスコーティング 320
   2.4.1 ハイドロキシアパタイト(HA)コーティング 320
   2.5 バイオアクティブセラミックスの臨床応用 342
   2.5.1 バイオアクティブ結晶化ガラス(A-W) 342
   2.5.2 ハイドロキシアパタイト(HA) 346
   2.5.3 バイオセラミックス複合体 350
   2.5.4 人口歯・人口歯根 354
   2.5.5 ガン治療用セラミックス 362
   第Ⅳ-3章 基礎データ 369
索 引 375
共通基礎データ ⅷ
第Ⅰ編 環境・リサイクル分野
   第Ⅰ-1章 総 論 3
21.

図書

図書
edited by J. Larson, C. Unger
出版情報: Amsterdam ; New York : North-Holland, 1992  xi, 423 p. ; 23 cm
シリーズ名: IFIP transactions ; A . Computer science and technology ; 18
所蔵情報: loading…
22.

図書

図書
edited by Saul Patai
出版情報: London ; New York : John Wiley & Sons, 1973  2 v. (xiii, 1215 p.) ; 24 cm
シリーズ名: The Chemistry of functional groups
所蔵情報: loading…
23.

図書

図書
Hilary Glasman-Deal
出版情報: London : Imperial College Press, c2010  xiii, 257 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
Grammar and Writing Skills / 1.2:
Tense pairs / 1.2.1:
Signalling language / 1.2.2:
Passive/Active / 1.2.3:
Writing Task: Build a Model / 1.3:
Building a model / 1.3.1:
Key / 1.3.2:
The model / 1.3.3:
Testing the Model / 1.3.4:
Vocabulary / 1.4:
Vocabulary for the Introduction / 1.4.1:
Writing an Introduction / 1.5:
Write an Introduction / 1.5.1:
Writing about Methodology / 1.5.2:
Passives and tense pairs / 2.1:
Use of 'a' and 'the' / 2.2.2:
Adverbs and adverb location / 2.2.3:
Testing the model / 2.3:
Vocabulary task / 2.4:
Vocabulary for the Methodology section / 2.4.2:
Writing a Methodology Section / 2.5:
Write a Methodology section / 2.5.1:
Writing about Results / 2.5.2:
Sequence / 3.1:
Frequency / 3.2.2:
Quantity / 3.2.3:
Causality / 3.2.4:
Vocabulary for the Results section / 3.3:
Writing a Results Section / 3.5:
Write a Results section / 3.5.1:
Writing the Discussion/Conclusion / 3.5.2:
Vocabulary for the Discussion/Conclusion / 4.1:
Writing a Discussion/Conclusion / 4.5:
Write a Discussion/Conclusion / 4.5.1:
Writing the Abstract / Unit 5:
Verb tense / 5.1:
Length / 5.2.2:
Language / 5.2.3:
The models / 5.3:
Testing the models / 5.3.4:
Vocabulary for the Abstract / 5.4:
Writing an Abstract / 5.5:
Write an Abstract / 5.5.1:
Creating a Tide / 5.5.2:
Sources and Credits
Useful Resources and Further Reading
Abbreviations Used in Science Writing / Appendix A:
Prefixes Used in Science Writing / Appendix B:
Latin and Greek Singular and Plural Forms / Appendix C:
Useful Verbs / Appendix D:
Index of Contents
Index of Vocabulary
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
24.

図書

東工大
目次DB

図書
東工大
目次DB
Y. Horie and A.B. Sawaoka
出版情報: Tokyo : KTK Scientific, c1993  x, 364 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
   1.2 Compaction of Powders and Shock Activation, 6
   1.3 First-Order Phase Transitions and Chemical Reactions, 10
   1.4 Time Scales and Interactions of Basic Mechanisms, 12
   1.4.1 Shock propagation in a particle assemblage, 12
   1.4.2 Energy localization, 12
   1.4.3 Thermal relaxation of hot spots, 14
   1.4.4 Mass diffusion in solids, 14
   1.4.5 Kinetic constants, 14
   1.5 Some Roles of Shock Compression Techniques in Material Sciences Study, 16
   1.5.1 Shock Compression Techniques as a tool of high pressure production, 16
   1.5.2 Appearance of diamond anvil-type high-pressure apparatus, 16
   1.5.3 New roles of Shock Compression Technology as a unique method of very high temperature production, 18
   1.5.4 Development of conventional hypervelocity impact techniques for precise measurement of materials under shock compression, 19
Chapter 2 FUNDAMENTALS OF SHOCK WAVE PROPAGATION
   2.1 Hydrodynamic Jump Conditions and the Hugoniot Curve, 23
   2.2 Shock Transition in Hydrodynamic Solids, 32
   2.3 Non-Hydrostatic Deformation of Solids, 42
   2.3.1 Elastic-ideally-plastic solids, 42
   2.3.2 Experimental observations of elastic-plastic behavior, 53
   2.4 Wave-body interactions, 56
   2.4.1 Preliminaries, 57
   2.4.2 Planar impact of similar and dissimilar bodies, 60
   2.4.3 Shock wave interaction with material boundaries, 61
   2.4.4 Wave-wave interactions, 65
   2.4.5 Detonation wave and interaction with a solid surface 66
Chapter 3 SHOCK COMPRESSION TECHNOLOGY
   3.1 Gun Techniques, 80
   3.1.1 Single stage gun, 80
   3.1.2 Conventional two stage light gas gun, 80
   3.1.3 Velocity measurement of projectile, 83
   3.1.4 Magnetoflyer method, 83
   3.1.5 CW x-ray velocity meter, 84
   3.1.6 Measurement of interior projectile motion, 86
   3.1.7 Recovery experiments, 87
   3.2 Explosive Techniques, 89
   3.2.1 Plane shock wave generation and recovery fixture、 89
   3.2.2 Numerical simulaation of shock compression in the recovery capsule, 91
   3.2.3 Cylindrical recovery fixture, 94
   3.3 In-situ Measurements, 95
   3.3.1 Manganin pressure gauge, 95
   3.3.2 Particle velocity gauge, 99
   3.3.3 Observations of multiple shock reverberations by using a manganin pressure gauge and particle velocity gauge, 100
   3.3.4 Shock temperature measurement, 106
   3.3.5 Copper-Constantan thermocouple as a temperature and pressure gauge, 111
Chapter 4 THERMOMECHANICS OF POWDER COMPACTION AND MASS MIXING
   4.1 A One Dimensional Particulate Model, 117
   4.2 Continuum Models, 123
   4.2.1 Hydrodynamic models, 124
   4.2.2 Continuum plasticity theory, 141
   4.2.3 Application, 148
   4.3 Particle Bonding and Heterogeneous Processes, 154
   4.4 Mass Mixing, 160
Chapter 5 THERMOCHEMISTRY OF HETEROGENEOUS MIXTURES
   5.1 Thermodynamic Functions of Heterogeneous Mixtures, 172
   5.2 Analytical Equations of State, 187
   5.3 Hugoniots of Inert Mixtures, 191
   5.3.1 Thermodynamically equilibrium models, 191
   5.3.2 Mechanical models, 197
   5.4 First-Order Phase Transitions, 199
   5.5 Chemical Equilibria, 206
   5.6 Reaction Kinetics, 212
   5.6.1 Rate equations, 212
   5.6.2 Nucleation, 214
   5.6.3 Growth, 216
   5.6.4 Pressure effects, 217
   5.7 Shock-Induced Reactions in Powder Mixtures, 218
Chapter 6 HYDRODYNAMICAL CALCULATIONS
   6.1 Conservation Equations of Continuum Flow, 227
   6.1.1 Mass conservation, 228
   6.1.2 Conservation of linear momentum, 230
   6.1.3 Enegy conservation, 231
   6.2 Constitutive Modeling of Inorganic Shock Chemistry, 234
   6.2.1 VIR model, 235
   6.2.2 Pore collapse, 239
   6.2.3 Chemical kinetics, 239
   6.2.4 Computational constitutive reactions, 240
   6.3 Applications of the VIR Model, 245
   6.3.1 Shock wave profiles in Ni/Al powder mixtures, 245
   6.3.2 Compaction of diamond with Si and graphite, 250
   6.4 Continuum Mixture Theory and the VIR Model, 257
   6.4.1 Continuum mixture theory, 257
   6.4.2 Derivation of the VIR model using the CMT, 263
   6.4.3 A model of heterogeneous flow, 269
Chapter 7 SHOCK CONDITIONING AND PROCESSING OF CERAMICS
   7.1 Shock Conditioning of Powder of Inorganic Materials, 277
   7.1.1 Brief review of shock conditioning studies, 277
   7.1.2 Aluminum oxide powder, 277
   7.2 Shock Synthesis of Inorganic Materials, 281
   7.2.1 Shock synthesis studies, 281
   7.2.2 High dense forms of carbon, 281
   7.2.3 High dense forms of boron nitride, 285
   7.2.4 Shock treatment of boron nitride powders, 287
   7.3 Shock Consolidation of Ceramic Powders, 301
   7.3.1 Why non-oxide ceramics?, 301
   7.3.2 Dynamic consolidation of SiC powders, 302
   7.3.3 Approach to the fabrication of crack free compacts, 304
   7.3.4 Shock consolidation of SiC powder utilizing post shock heating by exothermic reaction, 305
   7.4 Dynamic Compaction of Zinc Blende Type Boron Nitride and Diamond Powders, 310
   7.4.1 Back ground, 310
   7.4.2 Cubic boron nitride, 311
   7.4.3 Diamond, 318
   7.4.4 Diamond composites obtained by utilizzing exothermic chemical reaction, 326
   7.5 Very High Pressure Sintering of Shock Treated Powders, 332
   7.5.1 Silicon nitride, 334
   7.5.2 w-BN, 336
   7.6 Rapid Condensation of High Temperature Ultrasupersaturated Gas, 347
   7.6.1 Silicon nitride, 347
   7.6.2 Carbon, 352
Index, 361
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
25.

図書

図書
Stanley T. Rolfe, John M. Barsom
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1977  xiv, 562 p. ; 24 cm
シリーズ名: Prentice-Hall international series in civil engineering and engineering mechanics
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
Overview of the Problem of Fracture and Fatigue in Structures / Chapter 1:
Historical Background / 1.1:
Ductile vs. Brittle Behavior / 1.2:
Notch Toughness / 1.3:
Driving Force, K[subscript I] / 1.4:
Resistance Force, K[subscript c] / 1.4.2:
Fracture Mechanics Design / 1.5:
Fatigue and Stress-Corrosion Crack Growth / 1.6:
Fracture and Fatigue Control / 1.7:
Fracture Criteria / 1.8:
Fitness for Service / 1.9:
Case Studies / 1.10:
References / 1.11:
Stress Analysis for Members with Cracks--K[subscript I] / Chapter 2:
Introduction / 2.1:
Stress-Concentration Factor--k[subscript t] / 2.2:
Stress-Intensity Factor--K[subscript I] / 2.3:
Stress-Intensity-Factor Equations / 2.4:
Through-Thickness Crack / 2.4.1:
Single-Edge Notch / 2.4.2:
Embedded Elliptical or Circular Crack in Infinite Plate / 2.4.3:
Surface Crack / 2.4.4:
Cracks Growing from Round Holes / 2.4.5:
Single Crack in Beam in Bending / 2.4.6:
Holes or Cracks Subjected to Point or Pressure Loading / 2.4.7:
Estimation of Other K[subscript I] Factors / 2.4.8:
Superposition of Stress-Intensity Factors / 2.4.9:
Crack-Tip Deformation and Plastic Zone Size / 2.5:
Effective K[subscript I] Factor for Large Plastic Zone Size / 2.6:
J[subscript I] and [delta][subscript I] Driving Forces / 2.7:
J Integral / 2.7.1:
CTOD ([delta][subscript I]) / 2.7.2:
Summary / 2.8:
Appendix / 2.9:
Griffith, CTOD and J-Integral Theories / 2.10:
The Griffith Theory / 2.10.1:
Crack-Tip Opening Displacement (CTOD) and the Dugdale Model / 2.10.2:
J-Integral / 2.10.3:
Fracture Behavior / Part II:
Resistance Forces--K[subscript c]-J[subscript c]-[delta][subscript c] / Chapter 3:
General Overview / 3.1:
Service Conditions Affecting Fracture Toughness / 3.2:
Temperature / 3.2.1:
Loading Rate / 3.2.2:
Constraint / 3.2.3:
ASTM Standard Fracture Tests / 3.3:
Fracture Behavior Regions / 3.4:
General ASTM Fracture Test Methodology / 3.5:
Test Specimen Size / 3.5.1:
Test Specimen Notch / 3.5.2:
Test Fixtures and Instrumentation / 3.5.3:
Analysis of Results / 3.5.4:
Relations Between K-J-[delta] / 3.6:
Appendix A: K, J, CTOD ([delta]) Standard Test Method--E 1820 / 3.7:
Appendix B: Reference Temperature T[subscript o], to Establish a Master Curve Using K[subscript Jc] Values in Standard Test Method E 1921 / 3.9:
Effects of Temperature, Loading Rate, and Constraint / Chapter 4:
Effects of Temperature and Loading Rate on K[subscript Ic], K[subscript Ic](t), and K[subscript Id] / 4.1:
Effect of Loading Rate on Fracture Toughness / 4.3:
Effect of Constraint on Fracture Toughness / 4.4:
Loading-Rate Shift for Structural Steels / 4.5:
CVN Temperature Shift / 4.5.1:
K[subscript Ic]-K[subscript Id] Impact-Loading-Rate Shift / 4.5.2:
K[subscript Ic](t) Intermediate-Loading Rate Shift / 4.5.3:
Predictive Relationship for Temperature Shift / 4.5.4:
Significance of Temperature Shift / 4.5.5:
CVN-K[subscript Id]-K[subscript c] Correlations / 4.6:
General / 5.1:
Two-Stage CVN-K[subscript Id]-K[subscript c] Correlation / 5.2:
K[subscript Ic]-CVN Upper-Shelf Correlation / 5.3:
K[subscript Id] Value at NDT Temperature / 5.4:
Comparison of CVN-K[subscript Id]-K[subscript Ic]-J and [delta] Relations / 5.5:
Fracture-Mechanics Design / 5.6:
General Fracture-Mechanics Design Procedure for Terminal Failure / 6.1:
Design Selection of Materials / 6.3:
Design Analysis of Failure of a 260-In.-Diameter Motor Case / 6.4:
Design Example--Selection of a High-Strength Steel for a Pressure Vessel / 6.5:
Case I--Traditional Design Approach / 6.5.1:
Case II--Fracture-Mechanics Design / 6.5.2:
General Analysis of Cases I and II / 6.5.3:
Fatigue and Environmental Behavior / 6.6:
Introduction to Fatigue / Chapter 7:
Factors Affecting Fatigue Performance / 7.1:
Fatigue Loading / 7.3:
Constant-Amplitude Loading / 7.3.1:
Variable-Amplitude Loading / 7.3.2:
Fatigue Testing / 7.4:
Small Laboratory Tests / 7.4.1:
Fatigue-Crack-Initiation Tests / 7.4.1a:
Fatigue-Crack-Propagation Tests / 7.4.1b:
Tests of Actual or Simulated Structural Components / 7.4.2:
Some Characteristics of Fatigue Cracks / 7.5:
Fatigue-Crack Initiation / 7.6:
General Background / 8.1:
Effect of Stress Concentration on Fatigue-Crack Initiation / 8.2:
Generalized Equation for Predicting the Fatigue-Crack-Initiation Threshold for Steels / 8.3:
Methodology for Predicting Fatigue-Crack Initiation from Notches / 8.4:
Fatigue-Crack Propagation under Constant and Variable-Amplitude Load Fluctuation / 8.5:
Fatigue-Crack-Propagation Threshold / 9.1:
Constant Amplitude Load Fluctuation / 9.3:
Martensitic Steels / 9.3.1:
Ferrite-Pearlite Steels / 9.3.2:
Austenitic Stainless Steels / 9.3.3:
Aluminum and Titanium Alloys / 9.3.4:
Effect of Mean Stress on Fatigue-Crack Propagation Behavior / 9.4:
Effects on Cyclic Frequency and Waveform / 9.5:
Effects of Stress Concentration on Fatigue-Crack Growth / 9.6:
Fatigue-Crack Propagation in Steel Weldments / 9.7:
Design Example / 9.8:
Variable-Amplitude Load Fluctuation / 9.9:
Probability-Density Distribution / 9.9.1:
Fatigue-Crack Growth under Variable-Amplitude Loading / 9.9.2:
Single and Multiple High-Load Fluctuations / 9.9.3:
Variable-Amplitude Load Fluctuations / 9.9.4:
The Root-Mean-Square (RMS) Model / 9.9.4.1:
Fatigue-Crack Growth Under Variable-Amplitude Ordered-Sequence Cyclic Load / 9.9.4.2:
Fatigue-Crack Growth in Various Steels / 9.10:
Fatigue-Crack Growth Under Various Unimodal Distribution Curves / 9.11:
Fatigue and Fracture Behavior of Welded Components / 9.12:
Residual Stresses / 10.1:
Distortion / 10.3:
Stress Concentration / 10.4:
Weld Discontinuities and Their Effects / 10.5:
Fatigue Crack Initiation Sites / 10.5.1:
Fatigue Crack Behavior of Welded Components / 10.6:
Fatigue Behavior of Smooth Welded Components / 10.6.1:
Specimen Geometries and Test Methods / 10.6.1.1:
Effects of Surface Roughness / 10.6.1.2:
Fatigue Behavior of As-Welded Components / 10.6.2:
Effect of Geometry / 10.6.2.1:
Effect of Composition / 10.6.2.2:
Effect of Residual Stress / 10.6.2.3:
Effect of Postweld Heat Treatment / 10.6.2.4:
Methodologies of Various Codes and Standards / 10.7:
AASHTO Fatigue Design Curves for Welded Bridge Components / 10.7.1:
Variable Amplitude Cyclic Loads / 10.8:
Example Problem / 10.8.1:
Fracture-Toughness Behavior of Welded Components / 10.9:
General Discussion / 10.9.1:
Weldments / 10.9.2:
Fracture-Toughness Tests for Weldments / 10.9.3:
K[subscript Iscc] and Corrosion Fatigue Crack Initiation and Crack Propagation / 10.10:
Stress-Corrosion Cracking / 11.1:
Fracture-Mechanics Approach / 11.2.1:
Experimental Procedures / 11.2.2:
K[subscript Iscc]--A Material Property / 11.2.3:
Test Duration / 11.2.4:
K[subscript Iscc] Data for Some Material-Environment Systems / 11.2.5:
Crack-Growth-Rate Tests / 11.2.6:
Corrosion-Fatigue Crack Initiation / 11.3:
Test Specimens and Experimental Procedures / 11.3.1:
Corrosion-Fatigue-Crack-Initiation Behavior of Steels / 11.3.2:
Fatigue-Crack-Initiation Behavior / 11.3.2.1:
Corrosion Fatigue Crack-Initiation Behavior / 11.3.2.2:
Effect of Cyclic-Load Frequency / 11.3.2.3:
Effect of Stress Ratio / 11.3.2.4:
Long-Life Behavior / 11.3.2.5:
Generalized Equation for Predicting the Corrosion-Fatigue Crack-Initiation Behavior for Steels / 11.3.2.6:
Corrosion-Fatigue-Crack Propagation / 11.4:
Corrosion-Fatigue Crack-Propagation Threshold / 11.4.1:
Corrosion-Fatigue-Crack-Propagation Behavior Below K[subscript Iscc] / 11.4.2:
Effect of Cyclic-Stress Waveform / 11.4.3:
Environmental Effects During Transient Loading / 11.4.4:
Generalized Corrosion-Fatigue Behavior / 11.4.5:
Prevention of Corrosion-Fatigue Failures / 11.5:
Fracture and Fatigue Control Plan / 11.6:
Identification of the Factors / 12.3.1:
Establishment of the Relative Contribution / 12.3.2:
Determination of Relative Efficiency / 12.3.3:
Recommendation of Specific Design Considerations / 12.3.4:
Fracture Control Plan for Steel Bridges / 12.4:
Design / 12.4.1:
Fabrication / 12.4.3:
Material / 12.4.4:
AASHTO Charpy V-Notch Requirements / 12.4.5:
Verification of the AASHTO Fracture Toughness Requirement / 12.4.6:
High-Performance Steels / 12.4.7:
Comprehensive Fracture-Control Plans--George R. Irwin / 12.5:
General Levels of Performance / 12.6:
Consequences of Failure / 13.3:
Original 15-ft-lb CVN Impact Criterion for Ship Steels / 13.4:
Transition-Temperature Criterion / 13.5:
Through-Thickness Yielding Criterion / 13.6:
Leak-Before-Break Criterion / 13.7:
Fracture Criterion for Steel Bridges / 13.8:
Use of Fracture Mechanics in Fitness-for-Service Analysis / 13.9:
Effect of Loading Rate / 14.2.1:
Effect of Constraint / 14.2.3:
Effect of Many Factors / 14.2.4:
Existing Fitness-for-Service Procedures / 14.3:
PD 6493 / 14.3.1:
ASME Section XI / 14.3.3:
API 579 / 14.3.4:
Benefits of a Proof or Hydro-Test to Establish Fitness for Continued Service / 14.4:
Difference Between Initiation and Arrest (Propagation) Fracture Toughness Behavior / 14.5:
Applications of Fracture Mechanics--Case Studies / 14.6:
Importance of Fracture Toughness and Proper Fabrication Procedures--The Bryte Bend Bridge / Chapter 15:
AASHTO Fracture Control Plan for Steel Bridges / 15.1:
Bryte Bend Bridge Brittle Fracture / 15.3:
Design Aspects of the Bryte Bend Bridge as Related to the AASHTO Fracture Control Plan (FCP) / 15.4:
Adequacy of the Current AASHTO Fracture Control Plan / 15.5:
Implied vs. Guaranteed Notch Toughness / 15.5.1:
Effect of Details on Fatigue Life / 15.5.2:
Importance of Constraint and Loading--The Ingram Barge / 15.5.3:
Effect of Constraint on Structural Behavior / 16.1:
Constraint Experiences in the Ship Industry / 16.3:
Ingram Barge Failure / 16.4:
Importance of Loading and Inspection--Trans Alaska Pipeline Service Oil Tankers / 16.5:
Background / 17.1:
Fracture Mechanics Methodology / 17.3:
Application of Methodology to a Detail in an Oil Tanker / 17.4:
Identification of Critical Details / 17.4.1:
Fracture Toughness / 17.4.2:
Stress Intensity Factors and Critical Crack Size for Critical Details / 17.4.3:
Inspection Capability for Initial Crack Size, a[subscript o] / 17.4.4:
Determination of Histogram for Fatigue Loading / 17.4.5:
Fatigue Crack Propagation in Bottom Shell Plates / 17.4.6:
Effect of Reduced Fatigue Loading / 17.5:
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior--Failure Analysis of a Lock-and-Dam Sheet Piling / 17.6:
Description of the Failure / 18.1:
Steel Properties / 18.3:
Failure Analysis of Sheet 55 / 18.4:
Importance of Loading Rate on Structural Performance--Burst Tests of Steel Casings / 18.5:
Material and Experimental Procedures / 19.1:
Experimental Procedure / 19.3:
Failure Analysis / 19.4:
Metallographic Analysis / 19.5:
Examination of API Specifications for J-55 and K-55 Casing / 19.6:
Problems / 19.7:
Index
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
26.

図書

東工大
目次DB

図書
東工大
目次DB
相良紘著
出版情報: 東京 : 日刊工業新聞社, 2008.6  viii, 210p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
プロローグ 1
第1章 固体の混ざったものを分離する 5
   1.1 固体の混ざり方を眺める 5
   1.2 固体どうしの混ざったものを分離する 6
    1.2.1 分離法を概観する 6
    1.2.2 ふるい分け 7
    1.2.3 風力分級 9
    1.2.4 水力分級 11
    1.2.5 起泡分離 13
    1.2.6 磁気分離 15
    1.2.7 静電分離 16
   1.3 固体と液体の混ざったものを分離する 18
    1.3.1 分離法を概観する 18
    1.3.2 沈降分離 19
    1.3.3 ろ過 23
    1.3.4 精密ろ過 27
    1.3.5 限外ろ過 30
   1.4 固体と気体の混ざったものを分離する 35
    1.4.1 分離法を概観する 35
    1.4.2 エアフィルター 36
    1.4.3 バグフィルター 38
    1.4.4 サイクロン 39
    1.4.5 スクラバー 42
    1.4.6 電気集じん 44
第2章 液体に含まれる成分を分離する 47
   2.1 液体の混ざり方を眺める 47
   2.2 蒸留で分離する 48
    2.2.1 分子間力と沸点 48
    2.2.2 気液平衡と比揮発度 52
    2.2.3 異種分子間力と沸点変化 55
    2.2.4 単蒸留 56
    2.2.5 フラッシュ蒸留 58
    2.2.6 再蒸留とバッチ精留 60
    2.2.7 連続精留 61
    2.2.8 共沸蒸留 68
    2.2.9 抽出蒸留 70
    2.2.10 水蒸気蒸留 72
    2.2.11 反応蒸留 73
    2.2.12 その他(気体や固体の分離精製) 74
   2.3 晶析で分離する 75
    2.3.1 結合力と融点 76
    2.3.2 固体の溶解度 78
    2.3.3 液体の凝固点降下 79
    2.3.4 固液平衡 80
    2.3.5 共晶型混合物と固溶体型混合物 82
    2.3.6 再結晶法 84
    2.3.7 溶融結晶化法 85
    2.3.8 帯溶融法 86
    2.3.9 異性体の分離 87
    2.3.10 連続晶析と結晶精製 89
   2.4 液液抽出で分離する 93
    2.4.1 分子間力と溶解性 93
    2.4.2 溶解性とエントロピー 94
    2.4.3 溶媒和と配位結合 96
    2.4.4 液液平衡と分配係数 98
    2.4.5 単抽出 100
    2.4.6 連続多段抽出 103
    2.4.7 芳香族の抽出 106
    2.4.8 酢酸の分離 109
    2.4.9 ウランの濃縮 109
   2.5 膜で分離する 110
    2.5.1 分離法を概観する 110
    2.5.2 膜透過のメカニズム 111
    2.5.3 半透膜と浸透圧 113
    2.5.4 逆浸透と逆浸透膜 115
    2.5.5 浸透気化と浸透気化膜 117
    2.5.6 電解質水溶液とイオン交換体 119
    2.5.7 イオン交換膜とイオン交換透析 120
    2.5.8 液体膜とエマルションの安定化 123
    2.5.9 逆浸透膜による海水の淡水化 126
    2.5.10 浸透気化膜によるアルコールの脱水 127
    2.5.11 イオン交換膜による海水の濃縮 128
    2.5.12 液体膜による金属の回収 129
   2.6 液相吸着で分離する 130
    2.6.1 吸着相互作用 130
    2.6.2 化学吸着と物理吸着 132
    2.6.3 吸着剤の構造と吸着特性 133
    2.6.4 吸着平衡と吸着等温線 134
    2.6.5 固定層吸着と吸着速度 136
    2.6.6 吸着帯と破過曲線 137
    2.6.7 液体クロマトグラフィー 139
    2.6.8 移動層吸着 141
    2.6.9 擬似移動層吸着装置 142
    2.6.10 イオン交換樹脂による純水の製造 143
   2.7 包接化で分離する 145
    2.7.1 尿素の包接化合物 145
    2.7.2 直鎖状炭化水素の分離 146
    2.7.3 チオ尿素の包接化合物 147
    2.7.4 分枝状化合物の分離 147
    2.7.5 無機錯化合物による芳香族化合物の分離 149
第3章 気体に含まれる成分を分離する 151
   3.1 ガス吸収で分離する 151
    3.1.1 気体の溶解度 151
    3.1.2 物質移動と二重境膜モデル 153
    3.1.3 吸収操作と吸収装置 155
    3.1.4 吸収塔の必要高さ 158
    3.1.5 吸収プロセス 161
   3.2 膜(気体分離膜)で分離する 163
    3.2.1 気体透過のメカニズム 164
    3.2.2 2成分系混合気体の分離 165
    3.2.3 気体分子の径 167
    3.2.4 水素の分離 168
   3.3 気相吸着で分離する 169
    3.3.1 圧力スイング吸着 169
    3.3.2 窒素と酸素の吸着等温線 170
    3.3.3 窒素と酸素の吸着速度 171
    3.3.4 空気分離プロセス 172
    3.3.5 ガスクロマトグラフィー 173
   3.4 昇華(逆昇華)で分離する 174
    3.4.1 昇華現象と昇華圧 175
    3.4.2 昇華法の長所と短所 176
    3.4.3 無水フタル酸の製造 177
    3.4.4 テレフタル酸の製造 178
    3.4.5 高機能性膜の製造 178
第4章 固体に含まれる成分を分離する 181
   4.1 固液抽出で分離する 181
    4.1.1 固液抽出装置 181
    4.1.2 植物油脂の採油 184
    4.1.3 香料の抽出 185
   4.2 超臨界流体抽出で分離する 185
    4.2.1 臨界温度と臨界圧力 186
    4.2.2 超臨界流体 187
    4.2.3 超臨界流体抽出プロセス 188
第5章 ウランの同位体を分離する 191
   5.1 わずかな差を見分ける 191
   5.2 分離の原理と方法を概説する 193
    5.2.1 ガス拡散法 193
    5.2.2 熱拡散法 195
    5.2.3 遠心分離法 197
    5.2.4 ノズル分離法 198
    5.2.5 化学交換法 200
エピローグ 203
参考図書 205
索引 207
プロローグ 1
第1章 固体の混ざったものを分離する 5
   1.1 固体の混ざり方を眺める 5
27.

図書

図書
S. I. Rubinow
出版情報: New York : Wiley, [1975]  xiii, 386 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Cell Growth / Chapter 1:
Exponential Growth or Decay / 1.1:
Determination of Growth or Decay Rates / 1.2:
The Method of Least Squares / 1.3:
Nutrient Uptake by a Cell / 1.4:
Inhomogeneous Differential Equations / 1.5:
Growth of a Microbial Colony / 1.6:
Growth in a Chemostat / 1.7:
Interacting Populations: Predator-Prey System / 1.8:
Mutation and Reversion in Bacterial Growth / 1.9:
Problems
Enzyme Kinetics / Chapter 2:
The Michaelis-Menten Theory / 2.1:
Early Time Behavior of Enzymatic Reactions / 2.2:
Enzyme-Substrate-Inhibitor System / 2.3:
Cooperative Properties of Enzymes / 2.4:
The Cooperative Dimer / 2.5:
Allosteric Enzymes / 2.6:
Other Allosteric Theories / 2.7:
Hemoglobin / 2.8:
Graph Theory and Steady-State Enzyme Kinetics / 2.9:
Enzyme-Substrate-Modifier System / 2.10:
Enzyme-Substrate-Activator System / 2.11:
Aspartate Transcarbamylase / 2.12:
Tracers in Physiological Systems / Chapter 3:
Compartment Systems / 3.1:
The One-Compartment System / 3.2:
Indicator-Dilution Theory / 3.3:
Continuous Infusion / 3.4:
The Two-Compartment System / 3.5:
Leaky Compartments and Closed Systems / 3.6:
The Method of Exponential Peeling / 3.7:
Creatinine Clearance: A Two-Compartment System / 3.8:
The "Soaking Out" Experiment / 3.9:
The Three-Compartment Catenary System / 3.10:
The n-Compartment System / 3.11:
Biological Fluid Dynamics / Chapter 4:
The Equations of Motion of a Viscous Fluid / 4.1:
Poiseuille's Law / 4.2:
Properties of Blood / 4.3:
The Steady Flow of Blood Through a Vessel / 4.4:
The Pulse Wave / 4.5:
The Swimming of Microorganisms / 4.6:
Diffusion in Biology / Chapter 5:
Fick's Laws of Diffusion / 5.1:
The Fick Principle / 5.2:
The Unit One-Dimensional Source Solution / 5.3:
The Diffusion Constant / 5.4:
Olfactory Communication in Animals / 5.5:
Membrane Transport / 5.6:
Diffusion Through a Slab / 5.7:
Convective Transport: Ionic Flow in an Axon / 5.8:
The Gaussian Function / 5.9:
Ultracentrifugation / 5.10:
The Sedimentation Velocity Method / 5.11:
An Approximate Solution to the Lamm Equation / 5.12:
Sedimentation Equilibrium / 5.13:
Transcapillary Exchange / 5.14:
Cell Growth / Chapter 1:
Exponential Growth or Decay / 1.1:
Determination of Growth or Decay Rates / 1.2:
28.

図書

図書
Richard O. Duda, Peter E. Hart, David G. Stork
出版情報: New York ; Chichester : Wiley, c2001  xx, 654 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Machine Perception / 1.1:
An Example / 1.2:
Related Fields / 1.2.1:
Pattern Recognition Systems / 1.3:
Sensing / 1.3.1:
Segmentation and Grouping / 1.3.2:
Feature Extraction / 1.3.3:
Classification / 1.3.4:
Post Processing / 1.3.5:
The Design Cycle / 1.4:
Data Collection / 1.4.1:
Feature Choice / 1.4.2:
Model Choice / 1.4.3:
Training / 1.4.4:
Evaluation / 1.4.5:
Computational Complexity / 1.4.6:
Learning and Adaptation / 1.5:
Supervised Learning / 1.5.1:
Unsupervised Learning / 1.5.2:
Reinforcement Learning / 1.5.3:
Conclusion / 1.6:
Summary by Chapters
Bibliographical and Historical Remarks
Bibliography
Bayesian Decision Theory / 2:
Bayesian Decision Theory--Continuous Features / 2.1:
Two-Category Classification / 2.2.1:
Minimum-Error-Rate Classification / 2.3:
Minimax Criterion / 2.3.1:
Neyman-Pearson Criterion / 2.3.2:
Classifiers, Discriminant Functions, and Decision Surfaces / 2.4:
The Multicategory Case / 2.4.1:
The Two-Category Case / 2.4.2:
The Normal Density / 2.5:
Univariate Density / 2.5.1:
Multivariate Density / 2.5.2:
Discriminant Functions for the Normal Density / 2.6:
Case 1: [Sigma subscript i] = [sigma superscript 2]I / 2.6.1:
Case 2: [Sigma ubscript i] = [Sigma] / 2.6.2:
Case 3: [Sigma subscript i] = arbitrary / 2.6.3:
Decision Regions for Two-Dimensional Gaussian Data / Example 1:
Error Probabilities and Integrals / 2.7:
Error Bounds for Normal Densities / 2.8:
Chernoff Bound / 2.8.1:
Bhattacharyya Bound / 2.8.2:
Error Bounds for Gaussian Distributions / Example 2:
Signal Detection Theory and Operating Characteristics / 2.8.3:
Bayes Decision Theory--Discrete Features / 2.9:
Independent Binary Features / 2.9.1:
Bayesian Decisions for Three-Dimensional Binary Data / Example 3:
Missing and Noisy Features / 2.10:
Missing Features / 2.10.1:
Noisy Features / 2.10.2:
Bayesian Belief Networks / 2.11:
Belief Network for Fish / Example 4:
Compound Bayesian Decision Theory and Context / 2.12:
Summary
Problems
Computer exercises
Maximum-Likelihood and Bayesian Parameter Estimation / 3:
Maximum-Likelihood Estimation / 3.1:
The General Principle / 3.2.1:
The Gaussian Case: Unknown [mu] / 3.2.2:
The Gaussian Case: Unknown [mu] and [Sigma] / 3.2.3:
Bias / 3.2.4:
Bayesian Estimation / 3.3:
The Class-Conditional Densities / 3.3.1:
The Parameter Distribution / 3.3.2:
Bayesian Parameter Estimation: Gaussian Case / 3.4:
The Univariate Case: p([mu]|D) / 3.4.1:
The Univariate Case: p(x|D) / 3.4.2:
The Multivariate Case / 3.4.3:
Bayesian Parameter Estimation: General Theory / 3.5:
Recursive Bayes Learning
When Do Maximum-Likelihood and Bayes Methods Differ? / 3.5.1:
Noninformative Priors and Invariance / 3.5.2:
Gibbs Algorithm / 3.5.3:
Sufficient Statistics / 3.6:
Sufficient Statistics and the Exponential Family / 3.6.1:
Problems of Dimensionality / 3.7:
Accuracy, Dimension, and Training Sample Size / 3.7.1:
Overfitting / 3.7.2:
Component Analysis and Discriminants / 3.8:
Principal Component Analysis (PCA) / 3.8.1:
Fisher Linear Discriminant / 3.8.2:
Multiple Discriminant Analysis / 3.8.3:
Expectation-Maximization (EM) / 3.9:
Expectation-Maximization for a 2D Normal Model
Hidden Markov Models / 3.10:
First-Order Markov Models / 3.10.1:
First-Order Hidden Markov Models / 3.10.2:
Hidden Markov Model Computation / 3.10.3:
Hidden Markov Model / 3.10.4:
Decoding / 3.10.5:
HMM Decoding
Learning / 3.10.6:
Nonparametric Techniques / 4:
Density Estimation / 4.1:
Parzen Windows / 4.3:
Convergence of the Mean / 4.3.1:
Convergence of the Variance / 4.3.2:
Illustrations / 4.3.3:
Classification Example / 4.3.4:
Probabilistic Neural Networks (PNNs) / 4.3.5:
Choosing the Window Function / 4.3.6:
k[subscript n]-Nearest-Neighbor Estimation / 4.4:
k[subscript n]-Nearest-Neighbor and Parzen-Window Estimation / 4.4.1:
Estimation of A Posteriori Probabilities / 4.4.2:
The Nearest-Neighbor Rule / 4.5:
Convergence of the Nearest Neighbor / 4.5.1:
Error Rate for the Nearest-Neighbor Rule / 4.5.2:
Error Bounds / 4.5.3:
The k-Nearest-Neighbor Rule / 4.5.4:
Computational Complexity of the k-Nearest-Neighbor Rule / 4.5.5:
Metrics and Nearest-Neighbor Classification / 4.6:
Properties of Metrics / 4.6.1:
Tangent Distance / 4.6.2:
Fuzzy Classification / 4.7:
Reduced Coulomb Energy Networks / 4.8:
Approximations by Series Expansions / 4.9:
Linear Discriminant Functions / 5:
Linear Discriminant Functions and Decision Surfaces / 5.1:
Generalized Linear Discriminant Functions / 5.2.1:
The Two-Category Linearly Separable Case / 5.4:
Geometry and Terminology / 5.4.1:
Gradient Descent Procedures / 5.4.2:
Minimizing the Perceptron Criterion Function / 5.5:
The Perceptron Criterion Function / 5.5.1:
Convergence Proof for Single-Sample Correction / 5.5.2:
Some Direct Generalizations / 5.5.3:
Relaxation Procedures / 5.6:
The Descent Algorithm / 5.6.1:
Convergence Proof / 5.6.2:
Nonseparable Behavior / 5.7:
Minimum Squared-Error Procedures / 5.8:
Minimum Squared-Error and the Pseudoinverse / 5.8.1:
Constructing a Linear Classifier by Matrix Pseudoinverse
Relation to Fisher's Linear Discriminant / 5.8.2:
Asymptotic Approximation to an Optimal Discriminant / 5.8.3:
The Widrow-Hoff or LMS Procedure / 5.8.4:
Stochastic Approximation Methods / 5.8.5:
The Ho-Kashyap Procedures / 5.9:
The Descent Procedure / 5.9.1:
Some Related Procedures / 5.9.2:
Linear Programming Algorithms / 5.10:
Linear Programming / 5.10.1:
The Linearly Separable Case / 5.10.2:
Support Vector Machines / 5.10.3:
SVM Training / 5.11.1:
SVM for the XOR Problem
Multicategory Generalizations / 5.12:
Kesler's Construction / 5.12.1:
Convergence of the Fixed-Increment Rule / 5.12.2:
Generalizations for MSE Procedures / 5.12.3:
Multilayer Neural Networks / 6:
Feedforward Operation and Classification / 6.1:
General Feedforward Operation / 6.2.1:
Expressive Power of Multilayer Networks / 6.2.2:
Backpropagation Algorithm / 6.3:
Network Learning / 6.3.1:
Training Protocols / 6.3.2:
Learning Curves / 6.3.3:
Error Surfaces / 6.4:
Some Small Networks / 6.4.1:
The Exclusive-OR (XOR) / 6.4.2:
Larger Networks / 6.4.3:
How Important Are Multiple Minima? / 6.4.4:
Backpropagation as Feature Mapping / 6.5:
Representations at the Hidden Layer--Weights / 6.5.1:
Backpropagation, Bayes Theory and Probability / 6.6:
Bayes Discriminants and Neural Networks / 6.6.1:
Outputs as Probabilities / 6.6.2:
Related Statistical Techniques / 6.7:
Practical Techniques for Improving Backpropagation / 6.8:
Activation Function / 6.8.1:
Parameters for the Sigmoid / 6.8.2:
Scaling Input / 6.8.3:
Target Values / 6.8.4:
Training with Noise / 6.8.5:
Manufacturing Data / 6.8.6:
Number of Hidden Units / 6.8.7:
Initializing Weights / 6.8.8:
Learning Rates / 6.8.9:
Momentum / 6.8.10:
Weight Decay / 6.8.11:
Hints / 6.8.12:
On-Line, Stochastic or Batch Training? / 6.8.13:
Stopped Training / 6.8.14:
Number of Hidden Layers / 6.8.15:
Criterion Function / 6.8.16:
Second-Order Methods / 6.9:
Hessian Matrix / 6.9.1:
Newton's Method / 6.9.2:
Quickprop / 6.9.3:
Conjugate Gradient Descent / 6.9.4:
Additional Networks and Training Methods / 6.10:
Radial Basis Function Networks (RBFs) / 6.10.1:
Special Bases / 6.10.2:
Matched Filters / 6.10.3:
Convolutional Networks / 6.10.4:
Recurrent Networks / 6.10.5:
Cascade-Correlation / 6.10.6:
Regularization, Complexity Adjustment and Pruning / 6.11:
Stochastic Methods / 7:
Stochastic Search / 7.1:
Simulated Annealing / 7.2.1:
The Boltzmann Factor / 7.2.2:
Deterministic Simulated Annealing / 7.2.3:
Boltzmann Learning / 7.3:
Stochastic Boltzmann Learning of Visible States / 7.3.1:
Missing Features and Category Constraints / 7.3.2:
Deterministic Boltzmann Learning / 7.3.3:
Initialization and Setting Parameters / 7.3.4:
Boltzmann Networks and Graphical Models / 7.4:
Other Graphical Models / 7.4.1:
Evolutionary Methods / 7.5:
Genetic Algorithms / 7.5.1:
Further Heuristics / 7.5.2:
Why Do They Work? / 7.5.3:
Genetic Programming / 7.6:
Nonmetric Methods / 8:
Decision Trees / 8.1:
Cart / 8.3:
Number of Splits / 8.3.1:
Query Selection and Node Impurity / 8.3.2:
When to Stop Splitting / 8.3.3:
Pruning / 8.3.4:
Assignment of Leaf Node Labels / 8.3.5:
A Simple Tree
Multivariate Decision Trees / 8.3.6:
Priors and Costs / 8.3.9:
Missing Attributes / 8.3.10:
Surrogate Splits and Missing Attributes
Other Tree Methods / 8.4:
ID3 / 8.4.1:
C4.5 / 8.4.2:
Which Tree Classifier Is Best? / 8.4.3:
Recognition with Strings / 8.5:
String Matching / 8.5.1:
Edit Distance / 8.5.2:
String Matching with Errors / 8.5.3:
String Matching with the "Don't-Care" Symbol / 8.5.5:
Grammatical Methods / 8.6:
Grammars / 8.6.1:
Types of String Grammars / 8.6.2:
A Grammar for Pronouncing Numbers
Recognition Using Grammars / 8.6.3:
Grammatical Inference / 8.7:
Rule-Based Methods / 8.8:
Learning Rules / 8.8.1:
Algorithm-Independent Machine Learning / 9:
Lack of Inherent Superiority of Any Classifier / 9.1:
No Free Lunch Theorem / 9.2.1:
No Free Lunch for Binary Data
Ugly Duckling Theorem / 9.2.2:
Minimum Description Length (MDL) / 9.2.3:
Minimum Description Length Principle / 9.2.4:
Overfitting Avoidance and Occam's Razor / 9.2.5:
Bias and Variance / 9.3:
Bias and Variance for Regression / 9.3.1:
Bias and Variance for Classification / 9.3.2:
Resampling for Estimating Statistics / 9.4:
Jackknife / 9.4.1:
Jackknife Estimate of Bias and Variance of the Mode
Bootstrap / 9.4.2:
Resampling for Classifier Design / 9.5:
Bagging / 9.5.1:
Boosting / 9.5.2:
Learning with Queries / 9.5.3:
Arcing, Learning with Queries, Bias and Variance / 9.5.4:
Estimating and Comparing Classifiers / 9.6:
Parametric Models / 9.6.1:
Cross-Validation / 9.6.2:
Jackknife and Bootstrap Estimation of Classification Accuracy / 9.6.3:
Maximum-Likelihood Model Comparison / 9.6.4:
Bayesian Model Comparison / 9.6.5:
The Problem-Average Error Rate / 9.6.6:
Predicting Final Performance from Learning Curves / 9.6.7:
The Capacity of a Separating Plane / 9.6.8:
Combining Classifiers / 9.7:
Component Classifiers with Discriminant Functions / 9.7.1:
Component Classifiers without Discriminant Functions / 9.7.2:
Unsupervised Learning and Clustering / 10:
Mixture Densities and Identifiability / 10.1:
Maximum-Likelihood Estimates / 10.3:
Application to Normal Mixtures / 10.4:
Case 1: Unknown Mean Vectors / 10.4.1:
Case 2: All Parameters Unknown / 10.4.2:
k-Means Clustering / 10.4.3:
Fuzzy k-Means Clustering / 10.4.4:
Unsupervised Bayesian Learning / 10.5:
The Bayes Classifier / 10.5.1:
Learning the Parameter Vector / 10.5.2:
Unsupervised Learning of Gaussian Data
Decision-Directed Approximation / 10.5.3:
Data Description and Clustering / 10.6:
Similarity Measures / 10.6.1:
Criterion Functions for Clustering / 10.7:
The Sum-of-Squared-Error Criterion / 10.7.1:
Related Minimum Variance Criteria / 10.7.2:
Scatter Criteria / 10.7.3:
Clustering Criteria
Iterative Optimization / 10.8:
Hierarchical Clustering / 10.9:
Definitions / 10.9.1:
Agglomerative Hierarchical Clustering / 10.9.2:
Stepwise-Optimal Hierarchical Clustering / 10.9.3:
Hierarchical Clustering and Induced Metrics / 10.9.4:
The Problem of Validity / 10.10:
On-line clustering / 10.11:
Unknown Number of Clusters / 10.11.1:
Adaptive Resonance / 10.11.2:
Learning with a Critic / 10.11.3:
Graph-Theoretic Methods / 10.12:
Component Analysis / 10.13:
Nonlinear Component Analysis (NLCA) / 10.13.1:
Independent Component Analysis (ICA) / 10.13.3:
Low-Dimensional Representations and Multidimensional Scaling (MDS) / 10.14:
Self-Organizing Feature Maps / 10.14.1:
Clustering and Dimensionality Reduction / 10.14.2:
Mathematical Foundations / A:
Notation / A.1:
Linear Algebra / A.2:
Notation and Preliminaries / A.2.1:
Inner Product / A.2.2:
Outer Product / A.2.3:
Derivatives of Matrices / A.2.4:
Determinant and Trace / A.2.5:
Matrix Inversion / A.2.6:
Eigenvectors and Eigenvalues / A.2.7:
Lagrange Optimization / A.3:
Probability Theory / A.4:
Discrete Random Variables / A.4.1:
Expected Values / A.4.2:
Pairs of Discrete Random Variables / A.4.3:
Statistical Independence / A.4.4:
Expected Values of Functions of Two Variables / A.4.5:
Conditional Probability / A.4.6:
The Law of Total Probability and Bayes' Rule / A.4.7:
Vector Random Variables / A.4.8:
Expectations, Mean Vectors and Covariance Matrices / A.4.9:
Continuous Random Variables / A.4.10:
Distributions of Sums of Independent Random Variables / A.4.11:
Normal Distributions / A.4.12:
Gaussian Derivatives and Integrals / A.5:
Multivariate Normal Densities / A.5.1:
Bivariate Normal Densities / A.5.2:
Hypothesis Testing / A.6:
Chi-Squared Test / A.6.1:
Information Theory / A.7:
Entropy and Information / A.7.1:
Relative Entropy / A.7.2:
Mutual Information / A.7.3:
Index / A.8:
Preface
Introduction / 1:
Machine Perception / 1.1:
29.

図書

東工大
目次DB

図書
東工大
目次DB
Motoichi Ohtsu and Hirokazu Hori
出版情報: New York : Kluwer Academic/Plenum Pub., c1999  xii, 386 p. ; 24 cm
シリーズ名: Lasers, photonics, and electro-optics
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
   1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM) 4
   1.2.1. From Interference-to Interaction-Type Optical Microscopy 4
   1.2.2. Development of Near-Field Optical Microscopy and Related Techniques 6
   1.3. General Features of Optical Near-Field Problems 10
   1.3.1. Optical Processes and the Scale of Interest 10
   1.3.2. Effective Fields and Interacting Subsystems 12
   1.3.3. Electromagnetic Interaction in a Dielectric System 15
   1.3.4. Optical Near-Field Measurements 20
   1.4. Theoretical Treatment of Optical Near-Field Problems 25
   1.4.1. Near-Field Optics and Inhomogeneous Waves 25
   1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems 28
   1.4.3. Explicit Treatment of Field-Matter Interaction 32
   1.5. Remarks on Near-Field Optics and Outline of This Book 33
   1.5.1. Near-Field Optics and Related Problems 33
   1.5.2. Outline of This Book 34
   1.6. References 35
Chapter 2. Principles of Near-Field Optical Microscopy
   2.1. An Example of Near-Field Optical Microscopy 43
   2.2. Construction of the NOM System 45
   2.2.1. Building Blocks of the NOM System 45
   2.2.2. Environmental Conditions 47
   2.2.3. Functions of the Building Blocks 48
   2.3. Theoretical Description of Near-Field Optical Microscopy 50
   2.3.1. Basic Character of the NOM Process 50
   2.3.3. Demonstration of Localization in the Near-Field Interaction 53
   2.3.4. Representation of the Spatial Localization of an Electromagnetic Event 55
   2.3.5. Model Description of a Local Electromagnetic Interaction 55
   2.4. Near-Field Problems and the Tunneling Process 56
   2.4.1. Bardeen's Description of Tunneling Current in STM 57
   2.4.2. Comparison of the Theoretical Aspects of NOM and STM 58
   2.5. References 61
Chapter 3. Instrumentation
   3.1. Basic Systems of a Near-Field Optical Microscope 63
   3.1.1. Modes of Operation 66
   3.1.2. Position Control of the Probe 69
   3.1.3. Mechanical Components 74
   3.1.4. Noise Sources Internal to the NOM 75
   3.1.5. Operation under Special Circumstances 78
   3.2. Light Sources 82
   3.2.1. Basic Properties of Lasers 82
   3.2.2. Characteristics of CW Lasers 84
   3.2.3. Additional Noise Properties of CW Lasers 88
   3.2.4. Short-Pulse Generation 94
   3.2.5. Nonlinear Optical Wavelength Conversion 97
   3.3. Light Detection and Signal Amplification 98
   3.3.1. Detector 98
   3.3.2. Signal Detection and Amplification 103
   3.4. References 111
Chapter 4. Fabrication of Probes
   4.1. Sharpening of Fibers by Chemical Etching 113
   4.1.1. A Basic Sharpened Fiber 114
   4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding 118
   4.1.3. A Pencil-Shaped Fiber 119
   4.1.4. A Flattened-Top Fiber 122
   4.1.5. A Double-Tapered Fiber 127
   4.2. Metal Coating and Fabrication of a Protruded Probe 130
   4.2.1. Removal of Metallic Film by Selective Resin Coating 132
   4.2.2. Removal of Metallic Film by Nanometric Photolithography 135
   4.3. Other Noverl Probes 139
   4.3.1. Functional Probes 139
   4.3.2. Optically Trapped Probes 141
   4.4. References 141
Chapter 5. Imaging Experiments
   5.1. Basic Features of the Localized Evanescent Field 143
   5.1.1. Size-Dependent Decay Length of the Field Intensity 143
   5.1.2. Manifestation of the Short-Range Electromagnetic Interaction 146
   5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface 149
   5.2. Imaging Biological Samples 152
   5.2.1. Imaging by the C-Mode 152
   5.2.2. Imaging by the I-Mode 161
   5.3. Spatial Power Spectral Analysis of the NOM Image 170
   5.4. References 177
Chapter 6. Diagnostics and Spectroscopy of Photonic Devices and Materials
   6.1. Diagnosing a Dielectric Optical Waveguide 179
   6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide 184
   6.2.1. Photoluminescence and Electroluminescence Spectroscopy 185
   6.2.2. Photocurrent Measurement by Multiwavelength NOM 191
   6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot 196
   6.4. Imaging of Other Materials 201
   6.4.1. Fluorescence Detection from Dye Molecules 201
   6.4.2. Spectroscopy of Solid-State Materials 205
   6.5. References 207
Chapter 7. Fabrication and Manipulation
   7.1. Fabrication of Photonic Devices 209
   7.1.1. Development of a High-Efficiency Probe 212
   7.1.2. Development of a Highly Sensitive Storage Medium 212
   7.1.3. Fast Scanning of the Probe 213
   7.2. Manipulating Atoms 213
   7.2.1. Zero-Dimensional Manipulation 214
   7.2.2. One-Dimensional Manipulation 216
   7.3. References 231
Chapter 8. Optical Near-Field Theory
   8.1. Introduction 235
   8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems 237
   8.2.1. Microscopic Electromagnetic Interaction and Averaged Field 237
   8.2.2. Optical Response of Macroscopic Matter 241
   8.2.3. Optical Response of Small Objects and the Idea of System Susceptibility 244
   8.2.4. Electromagnetic Boundary Value Problem 245
   8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem 255
   8.3.1. Self-Consistent Approach for Multiple Scattering Problems 255
   8.3.2. Scattering Theory in the Near-Field Regime Based on Polarization Potential and Magnetic Current 260
   8.4. Diffraction Theory in Near-Field Optics 275
   8.4.1. Diffraction of Light from Subwavelength Aperture 275
   8.4.2. Kirchhoff's Diffraction Integral and Far-Field Theory 276
   8.4.3. Small-Aperture Diffraction and Equivalent Problem 277
   8.4.4. Magnetic Current Distribution and Self-Consistency 278
   8.4.5. Leviatan's "Exact" Solutions for the Aperture Problem 280
   8.5. Institutive Model of Optical Near-Field Processes 281
   8.5.1. Short-Range Quasistatic Nature of Optical Near-Field Processes 281
   8.5.2. Intuitive Model Based on Yukawa-Type Screened Potential 282
   8.5.3. Application of Virtual Photon Model for Diffraction from a Small Aperture 285
   8.5.4. Virtual Photon Model of NOM 288
   8.5.5. Meaning of the Screened Potential Model and Physical Meaning of the Virtual Photon 292
   8.6. References 297
Chapter 9. Theoretical Description of Near-Field Optical Microscope
   9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope 300
   9.2. Representation of the Electromagnetic Field and the Interaction Propagator 302
   9.2.1. Spherical Representation of Scalar Waves 302
   9.2.2. Vector Nature of the Electromagnetic Field 307
   9.3. States of Vector Fields and Their Representations 316
   9.3.1. State of Vector Plane Waves 316
   9.3.2. State of Vector Spherical Waves 318
   9.3.3. State of Vector Cylindrical Waves 319
   9.3.4. Spatial Fourier Representation of Electromagnetic Fields 319
   9.3.5. Multipole Expansion of Vector Plane Waves 321
   9.4. Angular Spectrum Representation of Electromagnetic Interactions 324
   9.4.1. Angular Spectrum Representation of Scattering Problems 325
   9.4.2. Meaning of the Angular Spectrum Representation 327
   9.4.3. Angular Spectrum Representation of Scalar Multipole Field and Propagator 329
   9.4.4. Angular Spectrum Representation of Vector Multipole Field and Propagator 332
   9.4.5. Angular Spectrum Representation of Cylindrical Field and Propagator 340
   9.4.6. Transformation between Spherical and Cylindrical Representations 341
   9.4.7. Summary: Representations of the Electromagnetic Fields Transformations between Mode Functions 343
   9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface 347
   9.5.1. Sample-Probe Interaction at a Dielectric Surface 348
   9.5.2. Mode Description of Evanescent Waves of Fresnel 351
   9.5.3. Multipolar Representation of Evanescent Modes 352
   9.5.4. Near-Field Interaction of Dielectric Spheres at a Planar Dielectric Surface 359
   9.6. References 379
Index 381
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
30.

図書

図書
Jerry Goodisman
出版情報: New York : Academic Press, 1973  2 v. ; 24 cm
シリーズ名: Physical chemistry : a series of monographs / edited by Eric Hutchinson ; v. 31-1,2
所蔵情報: loading…
31.

図書

図書
by Dieter O. Hummel ; in collaboration with Agnes Solti
出版情報: Munich : Hanser, c1988 , Weinheim : VCH Verlagsgesellschaft , New York : VCH Publishers  2 v. ; 31 cm
シリーズ名: Atlas of polymer and plastics analysis = Atlas der Polymer- und Kunststoffanalyse / Hummel, Scholl ; v. 2
所蔵情報: loading…
32.

図書

図書
edited by Saul Patai, Zvi Rappoport
出版情報: Chichester ; New York : Wiley, 1974-1988  4 v. ; 24 cm
シリーズ名: The Chemistry of functional groups
所蔵情報: loading…
33.

図書

図書
Edwin D. Becker
出版情報: San Diego : Academic Press, c2000  xvi, 424 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Third Edition
Introduction / 1:
Origins and Early History of NMR / 1.1:
High Resolution NMR: An Overview / 1.2:
Additional Reading and Resources / 1.3:
The Theory of NMR / 2:
Nuclear Spin and Magnetic Moment / 2.1:
Theoretical Descriptions of NMR / 2.2:
Steady-State Quantum Mechanical Description / 2.3:
Effect of the Boltzmann Distribution / 2.4:
Spin-Lattice Relaxation / 2.5:
Precession of Nuclear Magnetic Moments / 2.6:
Classical Mechanical Description of NMR / 2.7:
Magnetization in the Rotating Frame / 2.8:
Methods of Obtaining NMR Spectra / 2.9:
Dynamic Processes / 2.10:
Terminology, Symbols, Units, and Conventions / 2.11:
Problems / 2.12:
Instrumentation and Techniques / 3:
Advantages of Pulse Fourier Transform NMR / 3.1:
Basic NMR Apparatus / 3.2:
Requirements for High Resolution NMR / 3.3:
Detection of NMR Signals / 3.4:
Phase Cycling / 3.5:
Fourier Transformation of the FID / 3.6:
Data Acquisition / 3.7:
Data Processing / 3.8:
Digital Filtering / 3.9:
Alternatives to Fourier Transformation / 3.10:
Sensitivity and Size of Sample / 3.11:
Useful Solvents / 3.12:
Chemical Shifts / 3.13:
The Origin of Chemical Shifts / 4.1:
Theory of Chemical Shifts / 4.2:
Measurement of Chemical Shifts / 4.3:
Empirical Correlations of Chemical Shifts / 4.4:
Some Aspects of Proton Chemical Shifts / 4.5:
Nuclei Other Than Hydrogen / 4.6:
Compilations of Spectral Data and Empirical Estimates of Chemical Shifts / 4.7:
Isotope Effects / 4.8:
Effects of Molecular Asymmetry / 4.9:
Paramagnetic Species / 4.10:
Coupling between Pairs of Spins / 4.11:
Origin of Spin Coupling Interactions / 5.1:
General Aspects of Spin-Spin Coupling / 5.2:
Theory of Spin-Spin Coupling / 5.3:
Correlation of Coupling Constants with Other Physical Properties / 5.4:
Effect of Exchange / 5.5:
Spin Decoupling and Double Resonance / 5.6:
Structure and Analysis of Complex Spectra / 5.7:
Symmetry and Equivalence / 6.1:
Notation / 6.2:
Energy Levels and Transitions in an AX System / 6.3:
Quantum Mechanical Treatment / 6.4:
The Two-Spin System without Coupling / 6.5:
Factoring the Secular Equation / 6.6:
Two Coupled Spins / 6.7:
The AB Spectrum / 6.8:
AX, AB, and A[subscript 2] Spectra / 6.9:
"First-Order" Spectra / 6.10:
Symmetry of Spin Wave Functions / 6.11:
General Procedures for Simulating Spectra / 6.12:
Three-Spin Systems / 6.13:
Relative Signs of Coupling Constants / 6.14:
Some Consequences of Strong Coupling and Chemical Equivalence / 6.15:
"Satellites" from Carbon-13 and Other Nuclides / 6.16:
The AA'BB' and AA'XX' Systems / 6.17:
Spectra of Solids / 6.18:
Spin Interactions in Solids / 7.1:
Dipolar Interactions / 7.2:
"Scalar Coupling" / 7.3:
The Heteronuclear Two-Spin System / 7.4:
Dipolar Decoupling / 7.5:
Cross Polarization / 7.6:
The Homonuclear Two-Spin System / 7.7:
Line Narrowing by Multiple Pulse Methods / 7.8:
Anisotropy of the Chemical Shielding / 7.9:
Magic Angle Spinning / 7.10:
Quadrupole Interactions and Line-Narrowing Methods / 7.11:
Other Aspects of Line Shapes / 7.12:
Orientation Effects in Liquids: Liquid Crystals / 7.13:
Relaxation / 7.14:
Molecular Motions and Processes for Relaxation in Liquids / 8.1:
Nuclear Magnetic Dipole Interactions / 8.2:
Nuclear Overhauser Effect / 8.3:
Relaxation via Chemical Shielding Anisotropy / 8.4:
Electric Quadrupole Relaxation / 8.5:
Scalar Relaxation / 8.6:
Spin-Rotation Relaxation / 8.7:
Relaxation by Paramagnetic Substances / 8.8:
Other Factors Affecting Relaxation / 8.9:
Pulse Sequences / 8.10:
The Spin Echo / 9.1:
The Carr-Purcell Pulse Sequence / 9.2:
Correcting for Pulse Imperfections / 9.3:
Spin Locking / 9.4:
Selective Excitation / 9.5:
Decoupling / 9.6:
Polarization Transfer Methods / 9.7:
Two-Dimensional NMR / 9.8:
General Aspects of 2D Spectra / 10.1:
A Survey of Basic 2D Experiments / 10.2:
Data Acquisition and Processing / 10.3:
Sensitivity Considerations / 10.4:
Density Matrix and Product Operator Formalisms / 10.5:
The Density Matrix / 11.1:
Transformations of the Density Matrix / 11.2:
The One-Spin System / 11.3:
The Two-Spin System / 11.4:
INEPT and Related Pulse Sequences / 11.5:
Product Operators / 11.6:
Coherence Transfer Pathways / 11.7:
Selected 1D, 2D, and 3D Experiments: A Further Look / 11.8:
Spectral Editing / 12.1:
Double Quantum Filtering Experiments / 12.2:
COSY / 12.3:
Heteronuclear Correlation by Indirect Detection / 12.4:
Three- and Four-Dimensional NMR / 12.5:
Elucidation of Molecular Structure and Macromolecular Conformation / 12.6:
Organic Structure Elucidation / 13.1:
Application of Some Useful 2D Methods / 13.2:
Structure and Configuration of Polymers / 13.3:
Three-Dimensional Structure of Biopolymers / 13.4:
NMR Imaging and Spatially Localized Spectroscopy / 13.5:
Use of Magnetic Field Gradients to Produce Images / 14.1:
Use of 2D NMR Methods in Imaging / 14.2:
k Space; Echo Planar Imaging / 14.3:
Factors Affecting Image Contrast / 14.4:
Chemical Shift Imaging and in Vivo Spectroscopy / 14.5:
NMR Imaging in Solids / 14.6:
Properties of Common Nuclear Spins / 14.7:
ABX and AA'XX' Spectra / Appendix B:
The ABX System / B.1:
The AA'XX' System / B.2:
Review of Relevant Mathematics / Appendix C:
Complex Numbers / C.1:
Trigonometric Identities / C.2:
Vectors / C.3:
Matrices / C.4:
Spin Matrices / Appendix D:
One Spin / D.1:
Two-Spin System / D.2:
Selected Answers to Problems / Appendix E:
References
Index
Preface to the Third Edition
Introduction / 1:
Origins and Early History of NMR / 1.1:
34.

図書

図書
edtied by R.I. Jaffee and H.M. Burte
出版情報: New York : Plenum Press, 1973  4 v. (xxviii, 2739 p.) ; 25 cm
所蔵情報: loading…
35.

図書

東工大
目次DB

図書
東工大
目次DB
M. Ohtsu, ed
出版情報: Tokyo ; New York : Springer-Verlag, 1998  xiv, 302 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contents
List of Contributors
1. Introduction 1
   1.1 Near-Field Optics and Related Technologies 1
   1.2 History of Near-Field Optics and Related Technologies 2
   1.3 Basic Features of an Optical Near Field 3
   1.3.1 Optically “Near” System 3
   1.3.2 Effective Field and Evanescent Field 5
   1.3.3 Near-Field Detection of Effective Fields 6
   1.3.4 Role of a Probe Tip 8
   1.4 Building Blocks of Near-Field Optical Systems 9
   1.5 Comments on the Theory of Near-Field Optics 11
   1.6 Composition of This Book 13
   References 13
2. Principles of the Probe 15
   2.1 Basic Probe 15
   2.1.1 Optical Fiber Probe for the Near-Field Optical Microscope 15
   2.1.2 Principle of the Imaging Mechanism: Dipole-Dipole Interaction 16
   2.1.3 Resolution 17
   2.1.4 Contrast 19
   2.1.5 Sensitivity 24
   2.2 Functional Probe: New Contrast Mechanisms 25
   2.2.1 Signal Conversion by Functional Probes 25
   2.2.2 Absorption and Emission: Radiative and Nonradiative Energy Transfer 26
   2.2.3 Resonance, Nonlinearity, and Other Mechanisms 27
   References 29
3. Probe Fabrication 31
   3.1 Introduction 31
   3.2 Selective Etching of a Silica Fiber Composed of a Core and Cladding 34
   3.2.1 Geometrical Model of Selective Etching 34
   3.2.2 Pure Silica Fiber with a Fluorine Doped Cladding 35
   3.2.3 GeO2 Doped Fiber 36
   3.2.4 Tapered Fibers for Optical Transmission Systems 37
   3.3 Selective Etching of a Dispersion Compensating Fiber 38
   3.3.1 Shoulder-Shaped Probe 38
   3.3.1.1 Shoulder-Shaped Probe with a Controlled Cladding Diameter 38
   3.3.1.2 Shoulder-Shaped Probe with a Nanometric Flattened Apex 40
   3.3.1.3 Double-Tapered Probe 42
   3.3.2 Pencil-Shaped Probe 45
   3.3.2.1 Pencil-Shaped Probe with an Ultra-Small Cone Angle 45
   3.3.2.2 Pencil-Shaped Probe with a Nanometric Apex Diameter 47
   3.4 Protrusion-Type Probe 51
   3.4.1 Selective Resin Coating Method 52
   3.4.2 Chemical Polishing Method 54
   3.5 Hybrid Selective Etching of a Double-Cladding Fiber 56
   3.5.1 Triple-Tapered Probe 56
   3.5.2 Geometrical Model of Selective Etching of a Double-Cladding Fiber 57
   3.5.3 Application-Oriented Probes: Pencil-Shaped Probe and Triple-Tapered Probe 59
   3.6 Probe for Ultraviolet NOM Applications 62
   3.6.1 UV Single-Tapered Probe 62
   3.6.2 UV Triple-Tapered Probe 65
   3.6.2.1 Advanced Method Based on Hybrid Selective Etching of a Double Core Fiber 65
   3.6.2.2 Geometrical Model 67
   References 68
4. High-Throughput Probes 71
   4.1 Introduction 71
   4.2 Excitation of the HE-Plasmon Mode 73
   4.2.1 Mode Analysis 73
   4.2.2 Edged Probes for Exciting the HE-Plasmon Mode 74
   4.3 Multiple-Tapered Probes 77
   4.3.1 Double-Tapered Probe 77
   4.3.2 Triple-Tapered Probe 82
   References 87
5. Functional Probes 89
   5.1 Introduction 89
   5.2 Methods of Fixation 90
   5.3 Selecting a Functional Material 92
   5.4 Probe Characteristics and Applications 93
   5.4.1 Dye-Fixed Probes 93
   5.4.2 Chemical Sensing Probes 94
   5.5 Future Directions 98
   References 99
6. Instrumentation of Near-Field Optical Microscopy 101
   6.1 Operation Modes of NOM 101
   6.1.1 c-Mode NOM 102
   6.1.2 i-Mode NOM 104
   6.1.3 Comparative Features of Modes of NOM 105
   6.2 Scanning Control Modes 107
   6.2.1 Constant-height Mode 107
   6.2.2 Constant-Distance Mode 108
   6.2.2.1 Shear-force Feed Back 108
   6.2.2.2 Optical Near-Field Intensity Feedback 111
   References 114
7. Basic Features of Optical Near-Field and Imaging 117
   7.1 Resolution Characteristics 117
   7.1.1 Longitudinal Resolution 117
   7.1.2 Lateral Resolution 120
   7.2 Factors Influencing Resolution 123
   7.2.1 Influence of Probe Parameters 124
   7.2.2 Dependence on Sample-Probe Separation 124
   7.3 Polarization Dependence 125
   7.3.1 Influence of Polarization on the Images of an Ultrasmooth Sapphire Surface 126
   7.3.2 Influence of Polarization on the Images of LiNbO3 Nanocrystals 130
   References 130
8. Imaging Biological Specimens 133
   8.1 Introduction 133
   8.2 Observation of Flagellar Filaments by c-Mode NOM 133
   8.2.1 Imaging in Air 134
   8.2.2 Imaging in Water 136
   8.3 Observation of Subcellular Structures of Neurons by i-Mode NOM 136
   8.3.1 Imaging in Air Under Shear-Force Feedback 137
   8.3.1.1 Imaging of Neurons Without Dye Labeling 138
   8.3.1.2 Imaging of Neurons Labeled with Toluidine Blue 139
   8.3.2 Imaging in Water Under Optical Near-Field Intensity Feedback 140
   8.3.2.1 Imaging in Air 140
   8.3.2.2 Imaging in PBS 142
   8.4 Imaging of Microtubules by c-Mode NOM 144
   8.5 Imaging of Fluorescent-Labeled Biospecimens 145
   8.6 Imaging DNA Molecules by Optical Near-Field Intensity Feedback 148
   References 151
9. Diagnosing Semiconductor Nano-Materials and Devices 153
   9.1 Fundamental Aspects of Near-Field Study of Semiconductors 153
   9.1.1 Near-Field Spectroscopy of Semiconductors 153
   9.1.2 Optical Near Field Generated by a Small Aperture and Its Interaction with Semiconductors 154
   9.1.3 Operation in Illumination-Collection Hybrid Mode 156
   9.2 Multidiagnostics of Lateral p-n Junctions 158
   9.2.1 Sample and Experimental Set-up 158
   9.2.2 Spatially Resolved Photoluminescence Spectroscopy 159
   9.2.3 Two-Dimensional Mapping of Photoluminescence Intensity 163
   9.2.4 Collection-Mode Imaging of Electroluminescence 163
   9.2.5 Multiwavelength Photocurrent Spectroscopy 164
   9.3 Low-Temperature Single Quantum Dot Spectroscopy 169
   9.3.1 Near-Field single quantum dot spectroscopy 169
   9.3.2 Low-Temperature NOM 170
   9.3.3 Sample and Experimental Set-up 171
   9.3.4 Fundamental Performance of the System 172
   9.3.5 Physical Insight of Single Quantum Dot Photoluminescence 174
   9.3.6 Observation of Other Types of Quantum Dots 176
   9.4 Ultraviolet Spectroscopy of Polysilane Molecules 178
   9.4.1 Polysilanes 178
   9.4.2 Near-Field Ultraviolet Spectroscopy 180
   9.4.3 Imaging and Spectroscopy of Polysilane Aggregates 181
   9.5 Raman Spectroscopy of Semiconductors 183
   9.5.1 Near-Field Raman Spectroscopy 183
   9.5.2 Raman Imaging and Spectroscopy of Polydiacetylene and Si 184
   9.6 Diagnostics of A1 Stripes in an Integrated Circuit 186
   9.6.1 Principle of Detection 186
   9.6.2 Heating with a Metallized Probe 187
   9.6.3 Heating by an Apertured Probe 188
   References 189
10. Toward Nano-Photonic Devices 193
   10.1 Introduction 193
   10.2 Use of Surface Plasmons 193
   10.2.1 Principles of Surface Plasmons 193
   10.2.2 Observation of Surface Plasmons 195
   10.2.3 Toward Two-Dimensional Devices 197
   10.2.4 Toward Three-Dimensional Devices 200
   10.2.5 A Protruded Metallized Probe with an Aperture 204
   10.3 Application to High-Density Optical Memory 207
   10.3.1 Problems to Be Solved 207
   10.3.2 Approaches to Solving the Problems 208
   10.3.2.1 Structure of the Read-Out Head 208
   10.3.2.2 Storage Probe Array 210
   10.3.2.3 Track-less Read-out 210
   10.3.3 Fabrication of a Two-Dimensional Planar Probe Array 212
   References 214
11. Near-Field Optical Atom Manipulation: Toward Atom Photonics 217
   11.1 Introduction 217
   11.1.1 Control of Gaseous Atoms: From Far Field to Near Field 217
   11.1.2 Dipole Force 219
   11.1.3 Atomic Quantum Sheets: Atom Reflection Using a Planar Optical Near Field 220
   11.1.4 Atomic Quantum Wires: Atom Guidance Using a Cylindrical Optical Near Field 221
   11.1.5 Atomic Quantum Dots: Atom Manipulation Using a Localized Optical Near Field 222
   11.2 Cylindrical Optical Near Field for Atomic Quantum Wires 224
   11.2.1 Exact Light-Field Modes in Hollow Optical Fibers 224
   11.2.2 Approximate Light-Field Modes in Hollow Optical Fibers 227
   11.2.3 Field Intensity of the LP Modes 229
   11.3 Atomic Quantum Wires 230
   11.3.1 Near-Field Optical Potential 230
   11.3.2 Laser Spectroscopy of Guided Atoms with Two-Step Photoionization 231
   11.3.3 Observation of Cavity QED Effects in a Dielectric Cylinder 235
   11.3.4 Atomic Quantum Wires with a Light Coupled Sideways 239
   11.4 Optically Controlled Atomic Deposition 240
   11.4.1 Spatial Distribution of Guided Atoms 241
   11.4.2 Precise Control of Deposition Rate 243
   11.4.3 In-line Spatial Isotope Separation 244
   11.5 Near-Field Optical Atomic Funnels 246
   11.5.1 Atomic Funnel with Atomic Quantum Sheet 247
   11.5.2 Sisyphus Cooling Induced by Optical Near Field 248
   11.5.3 Monte Carlo Simulations 251
   11.6 Atomic Quantum Dots 254
   11.6.1 Phenomenological Approach to the Interaction Between Atoms and the Localized Optical Near Field 254
   11.6.2 Atom Deflection 256
   11.6.3 Atom Trap with a Sharpened Optical Fiber 258
   11.6.4 Three-Dimensional Atom Trap 259
   11.7 Future Outlook 261
   References 263
12. Related Theories 267
   12.1 Comparison of Theoretical Approaches 267
   12.2 Semi-microscopic and Microscopic Approaches 270
   12.2.1 Basic Equations 270
   12.2.2 Example of an Evanescent Field 272
   12.2.3 Direct and Indirect Field Propagators 273
   12.2.4 Electric Susceptibility of Matter 275
   12.3 Numerical Examples 277
   12.3.1 Weak vs. Strong Coupling 277
   12.3.2 Near-Field- and Far-Field-Propagating Signals 280
   12.3.3 Scanning Methods 282
   12.3.4 Possibility of Spin-Polarization Detection 284
   12.4 Effective Field and Massive Virtual Photon Model 288
   12.5 Future Direction 290
   References 290
Index 295
Preface
Contents
List of Contributors
36.

図書

東工大
目次DB

図書
東工大
目次DB
R.M.シャファート著 ; 井上英一監訳
出版情報: 東京 : 共立出版, 1973  361p ; 22cm
所蔵情報: loading…
目次情報: 続きを見る
第I部 電子写真プロセスと技術
I 序論 3
   1.1 歴史的概観 4
   1.2 電子写真における潜像 7
   1.2.1 静電像(ゼログラフィー) 7
   1.2.2 持続性内部分極像(光エレクトレット) 8
   1.2.3 持続導電性像 8
   1.3 プロセスの用語 9
II ゼログラフィー 11
   2.1 ゼログラフィーの原理 11
   2.1.1 感光性表面 11
   2.1.2 潜像の形成 12
   2.1.3 潜像の現象 13
   2.1.4 像の転写と定着 13
   2.2 プロセスに関する技術 14
   2.3 帯電または感光化 14
   2.4 露光 15
   2.5 現像 16
   2.5.1 現像電極 16
   2.5.2 カスケード現像法 17
   2.5.3 ファーブラシ現像法 18
   2.5.4 磁気ブラシ現像法 19
   2.5.5 加圧現像法 19
   2.5.6 パウダークラウド現像法 20
   2.5.7 液体スプレー現像法 21
   2.5.8 液体現像法 21
   2.5.9 加熱現像法 22
   2.5.10 オイルフィルム現像法 24
   2.6 反転現像法 25
   2.6.1 線画像コピーの反転法 25
   2.6.2 現像電極を用いる反転法 25
   2.7 現像速度 26
   2.8 像転写 26
   2.9 プリントの定着 27
   2.10 感光板のクリーニング 28
   2.11 プリントの複製 29
   2.12 ゼログラフィー材料 29
   2.13 光導電層 30
   2.13.1 光感度 30
   2.13.2 スペクトル特性 32
   2.13.3 受容電位 32
   2.13.4 電荷保持性 33
   2.13.5 残留電位 33
   2.13.6 疲労 33
   2.14 ゼログラフフィーの現像剤 34
   2.15 ゼログラフィーのセンシトメトリー 36
   2.15.1 パウダークラウド現像法による階調の再現 36
   2.15.2 磁気ブラシ現像法による階調の再現 38
   2.15.3 ハーフトーンの再現 39
   2.15.4 線画像の再現性 42
   2.15.5 解像力 44
III 持続性内部分極 45
   3.1 持続性内部分極の説明 45
   3.2 内部分極による像形成 47
   3.3 持続性内部分極の材料 51
IV 持続導電性 55
   4.1 持続導電性の説明 55
   4.2 持続導電性による像形成 55
   4.3 持続導電性に用いられる材料 58
   4.4 永久導電性像 61
V その他の電子写真プロセス 62
   5.1 同時に露光と現像を行なうプロセス 62
   5.1.1 Berchtoldのプロセス 62
   5.1.2 Jacobs-Frerichsのプロセス 63
   5.1.3 エレクトロカタリティックフォトグラフィー 63
   5.1.4 スモークプリンター 64
   5.1.5 ゼネラルダイナミックスのプロセス 65
   5.2 光導電性粉末を利用したプロセス 66
   5.3 エレクトロサーモグラフィー 67
   5.4 光導電性サーモグラフィー 68
VI 特殊な問題 69
   6.1 ゼログラフィーにおける補助技術 69
   6.1.1 逆極性帯電 69
   6.1.2 補助照射 70
   6.2 ゼログラフィーの潜像転写(TESI法) 70
   6.3 あらかじめ形成された静電像を利用するTESI法 71
   6.3.1 TESI法No.1 71
   6.3.2 TESI法No.2 72
   6.3.3 TESI法No.3 73
   6.3.4 TESI法No.4 74
   6.4 像形成を含むTESI法 75
   6.4.1 TESI法No.5 76
   6.4.2 TESI法No.6 76
   6.4.3 TESI法No.7 77
   6.5 表面電荷像の直接転写 78
VII カラー電子写真プロセス 80
   7.1 画像転写を用いるカラープロセス 81
   7.2 電子写真紙を用いるカラープロセス 83
   7.3 カラー電子写真についての一般的注意 84
VIII エレクトロラジオグラフィープロセス 86
   8.1 ゼロラジオグラフィー 86
   8.1.1 ゼロラジオグラフィー用材料 86
   8.1.1.1 光導電板 86
   8.1.1.2 現像剤 88
   8.1.2 感光板の帯電 89
   8.1.3 X線曝射の方法 89
   8.1.4 X線像の現像 90
   8.1.5 ゼロラジオグラフィー用の光導電体塗布 91
   8.2 イオノグラフィー 92
IX 電子プリンティングプロセス 95
   9.1 静電エレクトログラフィー 95
   9.1.1 放電による静電記録 96
   9.1.2 電子ビームを用いた静電記録 97
   9.1.3 ゼロプリンティング 99
   9.1.4 静電気現象を用いたステンシル印刷 101
   9.2 電解エレクトログラフィー 102
   9.2.1 電解記録の化学 102
   9.2.2 電解記録の物理 104
   9.3 放電プリンティング 106
   9.4 磁気プリンティング 107
X 電子写真の応用 110
   10.1 アメリカにおける製品の開発 110
   10.2 等倍率事務用複写機 111
   10.2.1 ゼロックス914コピア 111
   10.2.2 ブルーニングコピートロン2000 114
   10.2.3 アペコエレクトロスタット 115
   10.2.4 SCMモデル33エレクトロスタティックコピア 115
   10.2.5 他の等倍率複写機 116
   10.3 マイクロフィルムのハードコピー化 116
   10.3.1 ゼロックスコピーフロー機 117
   10.3.2 ブルーニングコピートロン1000 120
   10.3.3 マイクロフィルムリーダープリンター 120
   10.3.4 その他の引伸しおよびプリント装置 121
   10.4 印刷およびデュプリケーティング 121
   10.4.1 コピーデュプリケーティング 121
   10.4.2 平版印刷用のオフセット版 123
   10.4.3 写真食刻 124
   10.4.4 直接的電子写真印刷 124
   10.5 ゼロラジオグラフィー装置の製品 125
   10.5.1 基本装置 125
   10.5.2 付属装置 126
   10.5.3 材料 128
   10.6 特殊な応用 128
   10.6.1 マイクロゼログラフィー 128
   10.6.2 ゼログラフィー写真焼付機 130
   10.6.3 計算機出力のプリント 131
   10.6.4 ゼログラフィーによるファクシミリ 133
   10.6.5 高速ディスプレー 134
   10.6.6 オッシログラフの記録 136
   10.6.7 他の応用 136
   10.7 他の国々における製品の開発 137
   10.7.1 日本 137
   10.7.2 ヨーロッパおよびイギリス 141
   10.7.3 オーストラリア 142
   10.7.4 ソビエト連邦 142
第I部 引用文献 145
第II部 電子写真プロセスの理論
I 光導電効果を用いる静電像の形成 153
   1.1 感光材料の基本的な特性 153
   1.1.1 実験方法 154
   1.1.1.1 表面電荷量とその減衰の測定 154
   1.1.1.2 比誘電率と膜厚の測定 157
   1.1.2 光導電性絶縁膜のコロナ帯電 159
   1.1.2.1 コロトロンによる帯電 162
   1.1.2.2 スコロトロンによる帯電 167
   1.1.3 光導電性絶縁膜による電荷の減衰 170
   1.1.3.1 電荷減衰データの解析 171
   1.1.4 光感度とその測定 173
   1.1.4.1 暗減衰に対する補正 177
   1.1.4.2 ゼログラフィーにおける相反則 178
   1.1.5 疲労とその測定 179
   1.2 光導電性絶縁材料 179
   1.2.1 無定形セレン 181
   1.2.1.1 構造 181
   1.2.1.2 電気的性質 182
   1.2.1.2.1 電気抵抗 182
   1.2.1.2.2 チャージキャリアの移動度 182
   1.2.1.2.3 比誘電率 183
   1.2.1.3 光学的性質 183
   1.2.1.3.1 吸収および反射 183
   1.2.1.3.2 屈折率 185
   1.2.1.3.3 活性化エネルギー 185
   1.2.1.4 化学的性質 185
   1.2.1.5 その他の性質 186
   1.2.1.6 光導電特性 186
   1.2.1.7 ゼログラフィー特性 188
   1.2.1.7.1 暗減衰特性 189
   1.2.1.7.2 光減衰特性 190
   1.2.1.7.3 分光感度 192
   1.2.1.7.4 相反則 195
   1.2.1.7.5 量子効率 196
   1.2.1.7.6 製造条件の影響 198
   1.2.1.7.7 支持板表面の影響 200
   1.2.1.7.8 不純物および添加物の影響 202
   1.2.1.7.9 多層セレン感光板 205
   1.2.1.8 ゼロラジオグラフィー特性 206
   1.2.2 顔料-樹脂系の光導電体 208
   1.2.2.1 顔料-樹脂系光導電体の作製 208
   1.2.2.2 顔料-樹脂系光導電体の特性 209
   1.2.2.3 ZnO-樹脂系フィルム 210
   1.2.2.3.1 ZnOの特性 210
   1.2.2.3.2 ZnO-樹脂系感光層の帯電 212
   1.2.2.3.3 帯電ZnO-樹脂系感光層の暗および光減衰特性 216
   1.2.2.3.4 分光感度 224
   1.2.2.3.5 相反則 228
   1.2.2.4 ZnO以外の顔料-樹脂系光導電性フィルム 228
   1.2.2.4.1 亜鉛-カドミウムの硫化物 228
   1.2.2.4.2 硫化第2水銀 230
   1.2.2.4.3 セレン顔料 231
   1.2.2.4.4 酸化チタン 231
   1.2.3 有機物光導電体 232
II 光導電性絶縁体の電荷輸送現象 235
   2.1 暗減衰と電荷受容性 235
   2.2 光導電性絶縁体における再結合,トラップ,および障壁の役割 238
   2.3 ゼログラフィーにおける光導電性放電 241
   2.4 光導電性放電理論 242
   2.4.1 無定形セレン層に対するモデル 245
   2.4.2 ZnO-樹脂系感光層に対するモデル 249
   2.4.3 有機物の光導電感光層 255
III 静電像の性質 256
   3.1 静電像に関する電場 257
   3.2 静電像の数学的取り扱い 258
   3.2.1 自由空間における像の電場構造 258
   3.2.2 現像電極を有するときの像の電場構造 261
   3.2.3 像面の上に誘電体層を有するときの静電像の電場構造 262
   3.2.4 例I,II,IIIの比較 262
   3.3 電場の解像性と静電像の振幅 266
   3.3.1 例Iに対する電場の解像性 267
   3.3.2 例IIに対する電場の解像性 269
   3.4 像電場に対する現像電極の効果 273
   3.5 静電像電場のまとめ 279
   3.6 付録A:誘電体表面上の正弦波的電荷分布に対する電場の式の導出 280
   3.7 付録B:電気力線を描くための式の導出 284
IV 静電潜像の誘電体表面への転写 286
   4.1 静電気的考察 286
   4.2 Paschen曲線と放電 288
   4.3 修正Paschen曲線 290
   4.4 広い空隙における放電 292
   4.5 転移電荷の計算 293
   4.5.1 一定の空隙における電荷転移 295
   4.5.2 誘電体面の剥離時の電荷転移 295
   4.5.2.1 剥離中におこる階段状転移 298
   4.5.2.2 フィルムの剥離の間に転移する電荷の観測 300
   4.5.3 電場放出領域における電荷転移 300
   4.5.3.1 電場放出による転移電荷の観測方法 301
   4.5.4 空隙がない場合の電荷転移 304
   4.6 実験方法 306
   4.6.1 装置 307
   4.6.2 実験結果 308
   4.6.2.1 剥離法の実験 310
   4.6.2.2 接触法の実験 314
   4.6.2.3 理論と実験についての一般的事項 316
   4.6.2.4 圧着転写法の実験 316
   4.6.2.4.1 電荷転移に対する圧力の効果 320
   4.6.3 マイラー中の内部分極 320
   4.7 実用上の考察 321
   4.8 放電による電荷転移の機構 323
   4.8.1 一定電場下での空隙幅による電流変化 324
   4.8.2 一定電圧下での空隙幅による電流変化 325
   4.8.3 静電像転写に要する電流の大きさ 327
   4.9 直接電荷転移の機構 328
V ゼログラフィー画像の現像理論 329
   5.1 小粒子の帯電 329
   5.1.1 乾式粉末現像の摩擦帯電現象 329
   5.1.2 液体現像剤の電気泳動特性 333
   5.1.2.1 懸濁液体中の粒子帯電の性質 334
   5.1.2.2 懸濁液の安定性 336
   5.1.2.3 誘電泳動による粒子移動 337
   5.2 現像における粒子付着の動力学 339
   5.2.1 液体現像法 339
   5.2.2 エアロゾル現像 344
   5.2.3 カスケードと磁気ブラシ現像 346
   5.2.4 センシトメトリーに関する考慮 347
第II部 引用文献 348
索引 355
第I部 電子写真プロセスと技術
I 序論 3
   1.1 歴史的概観 4
37.

図書

図書
volume editor, J. Roovers ; with contributions by B. Charleux ... [et al.]
出版情報: Berlin : Springer-Verlag, c1999  2 v. ; 25 cm
シリーズ名: Advances in polymer science ; 142, 143
所蔵情報: loading…
38.

図書

図書
Arthur W. Adamson
出版情報: New York ; Amsterdam : W.A. Benjamin, 1964  2 v. in 1 ; 23 cm
所蔵情報: loading…
目次情報:
pt. 1. Properties of matter, thermodynamics, chemical equilibrium
pt. 2. Electrochemistry, kinetics, structure and bonding
pt. 1. Properties of matter, thermodynamics, chemical equilibrium
pt. 2. Electrochemistry, kinetics, structure and bonding
39.

図書

図書
editor, H. Dugas ; with contributions by S.A. Benner ... [et al.]
出版情報: Berlin ; Tokyo : Springer-Verlag, c1990-  v. ; 25 cm
所蔵情報: loading…
40.

図書

図書
[by] Calvin A. Buehler [and] Donald E. Pearson
出版情報: New York : Wiley-Interscience, c1970-c1977  2 v ; 24 cm
所蔵情報: loading…
41.

図書

図書
edited by R.C. Mackenzie
出版情報: London ; New York : Academic Press, 1970-1972  2 v. ; 24 cm
所蔵情報: loading…
42.

図書

図書
edited by H. F. W. Taylor
出版情報: London : Academic Press, 1964  2 v. ; 24 cm
所蔵情報: loading…
43.

図書

図書
by Walter E. Keller
出版情報: Stuttgart ; New York : Thieme, 1986-  v. ; 23 cm
所蔵情報: loading…
44.

図書

図書
by S. Timoshenko
出版情報: New jersey : D. Van Nostrand, c1955-  2 v. ; 24 cm
所蔵情報: loading…
45.

図書

図書
Howard F. Rase ; original ill. by James R. Holmes
出版情報: New York : Wiley, c1977  2 v. ; 24 cm
所蔵情報: loading…
目次情報:
v. 1. Principles and techniques
v. 2. Case studies and design data
v. 1. Principles and techniques
v. 2. Case studies and design data
46.

図書

東工大
目次DB

図書
東工大
目次DB
太田次郎著
出版情報: 東京 : 裳華房, 1996.10  xi, 240p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1 生命の単位
 1.1 生体を構成する物質 2
   1.1.1 生体を構成する元素 2
   1.1.2 生体の化学成分 3
 1.2 細胞の構造と機能 10
   1.2.1 細胞の形態 10
   1.2.2 細胞の内部構造 13
   1.2.3 細胞小器官の構造と機能 14
 1.3 細菌とウイルス 30
   1.3.1 細菌の構造 30
   1.3.2 ウイルス 31
2 物質代謝とエネルギー代謝
 2.1 生体反応の特性 39
   2.1.1 酵素とそのはたらき 39
   2.1.2 化学エネルギーとATP 41
 2.2 生体のエネルギー獲得 43
   2.2.1 光合成 43
   2.2.2 窒素同化 49
   2.2.3 発酵と解糖 51
   2.2.4 呼吸 54
 2.3 生体のエネルギー消費 57
   2.3.1 筋肉の収縮 57
   2.3.2 能動輸送 62
   2.3.3 生体物質の合成 64
3 生物の恒常性と調節
 3.1 神経による調節 66
   3.1.1 神経細胞と興奮の伝達 66
   3.1.2 ヒトの神経系 69
 3.2 ホルモンによる調節 77
   3.2.1 ヒトの内分泌器官とホルモン 77
   3.2.2 ホルモンの相互作用 80
   3.2.3 ホルモンの作用機構 82
 3.3 ホメオスタシス―恒常性の維持 84
   3.3.1 血糖量の維持 84
   3.3.2 体温の調節 86
   3.3.3 その他の恒常性と調節 87
   3.3.4 バイオリズムと体内時計 88
 3.4 免疫 89
   3.4.1 抗原と抗体 89
   3.4.2 抗体産生の機構 90
   3.4.3 細胞性免疫 91
 3.5 植物の調節 91
   3.5.1 植物の成長と調節 92
   3.5.2 光周性 97
4 生命の連続性-その(1)生殖と発生
 4.1 生殖 100
   4.1.1 無性生殖と有性生殖 100
   4.1.2 細胞分裂 102
   4.1.3 配偶子の形成 111
   4.1.4 受精 113
 4.2 発生 114
   4.2.1 動物の発生の経過 115
   4.2.2 動物の発生のしくみ 115
   4.2.3 ヒトの発生 120
   4.2.4 植物の発生 131
5 生命の連続性-その(2)遺伝と変異
 5.1 遺伝 133
   5.1.1 遺伝の法則 133
   5.1.2 遺伝子と染色体 136
   5.1.3 遺伝子の本体 141
   5.1.4 遺伝子の形質発現 114
   5.1.5 遺伝子工学とバイオテクノロジー 153
   5.1.6 細胞質と遺伝 156
   5.1.7 ヒトの遺伝 157
 5.2 変異 164
   5.2.1 環境変異 165
   5.2.2 突然変異 165
6 生物の集団
 6.1 個体群 169
   6.1.1 個体群の密度 169
   6.1.2 個体群の変動 171
   6.1.3 個体群の構造 173
   6.1.4 個体群の相互作用 175
 6.2 生物群集 177
   6.2.1 食物連鎖と食物網 178
   6.2.2 生態的地位 179
   6.2.3 生物群集の構造 180
   6.2.4 生物群集における物質経済 181
 6.3 生態系 183
   6.3.1 生態系の構造と種類 183
   6.3.2 生態系の遷移 190
   6.3.3 生態系におけるエネルギーの流れ 192
   6.3.4 生態系における物質の循環 194
 6.4 生物圏と人類 199
   6.4.1 生物圏 199
   6.4.2 物質循環におよぼす人類の影響 200
   6.4.3 自然保護 202
7 生命の変遷
 7.1 生命の起源 204
   7.1.1 自然発生説とその否定 204
   7.1.2 生命の出現 206
   7.1.3 物質代謝と細胞の進化 210
 7.2 生物の進化 214
   7.2.1 地質時代の生物の進化 214
   7.2.2 人類の起源と進化 220
 7.3 進化のしくみ 224
   7.3.1 進化論の確立 224
   7.3.2 現代の進化に関する研究 226
1 生命の単位
 1.1 生体を構成する物質 2
   1.1.1 生体を構成する元素 2
47.

図書

東工大
目次DB

図書
東工大
目次DB
小竹進著
出版情報: 東京 : 丸善, 2005.8  viii, 115p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1.美の始まり 1
   1.1美の歴史 2
   1.2美の解釈 3
   1.3美の展開 5
2.美と知覚 9
   2.1知覚の機構 10
   2.1.1記憶・知識との照合過程 11
   2.1.2属性の階層性とその認識過程 14
   2.2知覚のエネルギー 17
   2.2.1知覚・認識の生物学的機構 17
   2.2.2事象の知覚・認識過程とエネルギー 21
   2.3知覚のエントロピー 25
   2.3.1神経細胞の伝達パターンとエントロピー 25
   2.3.2属性の確定性とエントロピー 28
3.美とエントロピー 31
   3.1秩序と調和 32
   3.1.1美とエントロピー最小の条件 32
   3.1.2調和と共鳴 33
   3.1.3調和と秩序 34
   3.2階層調和のエントロピー 35
   3.2.1階層構造と調和 35
   3.2.2黄金比 36
   3.3集合調和のエントロピー 43
   3.3.1「感性」と「徳性」 43
   3.3.2生物の行動にみる集合調和のエントロピー 43
4.美の事象:エントロピーの対象 53
   4.1静的事象 54
   4.1.1詩歌 54
   4.1.2絵画 56
   4.1.3工芸 57
   4.1.4建物 62
   4.1.5庭園 79
   4.2動的事象 84
   4.2.1音楽 85
   4.2.2舞蹄 88
   4.2.3動物 90
   4.2.4鳥・魚 93
   4.2.5航空機 99
参考文献 109
1.美の始まり 1
   1.1美の歴史 2
   1.2美の解釈 3
48.

図書

東工大
目次DB

図書
東工大
目次DB
NTTコムウェア株式会社研究開発部著
出版情報: 東京 : 電気通信協会 , 東京 : オーム社 (発売), 2005.12  v, 130p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
   はじめに
第1章RFIDの現状 1
   1.1RFIDとは 2
   1.2RFIDタグの形状 4
   1.3RFIDタグの分類 5
   1.4パッシブタグの概要 6
   1.5アクティブタグの概要 7
   1.6RFIDタグのアンテナの種類とその特長 8
   1.7RFIDタグのアンテナの形状と材質 9
   1.8リーダ/ライタの種類 10
第2章RFIDの標準化動向 13
   2.1周波数の動向 14
   2.2UHF帯の周波数割当て状況 17
   2.3RFIDの主な標準化動向 18
   2.3.1EPCglobalの動向 18
   2.3.1.1EPCglobalの概要 18
   2.3.1.2EPCglobaの日本での活動20l
   2.3.1.3EPCglobal組織体制と標準化までの流れ 21
   2.3.1.4EPCglobalネットワークのアーキテクチャ概要 25
   2.3.1.4.1EPCの概要 28
   2.3.1.4.2EPCタグの概要 31
   2.3.1.4.3EPCミドルウェアの概要 32
   2.3.1.4.4EPCISの概要 32
   2.3.1.4.5NamingServicesの概要 34
   2.3.1.5EPCglobalネットワークシステムの導入メリットや適応分野 35
   2.3.2ユビキタスIDセンターの動向 36
   2.3.2.1ユビキタスIDセンターの概要 36
   2.3.2.2T-Engineフォーラム 37
   2.3.2.3ユビキタスIDの概要 38
   2.3.2.4ユビキタスIDアーキテクチャ概要 39
   2.3.2.4.1ucode概要 41
   2.3.2.4.2ucodeタグの体系 42
   2.3.2.4.3UC(UbiquitousCommunicator) 44
   2.3.2.4.4ucode解決サーバ 45
   2.3.2.4.5情報サービスサーバ 46
   2.3.2.4.6uTAD 47
   2.3.2.4.7eTRONCA 47
   2.3.2.4.8T-Engine 48
   2.3.2.4.9nT-Engine・pT-Engineを利用したセンサーネットワーク 51
   2.3.2.5アジアにおけるユビキタスIDセンター 52
   2.3.3EPCglobalとユビキタスIDセンターの比較 53
   2.4ISO/IECの動向 55
   2.5Gen2の動向 56
   2.6欧米のEPCGlobalNetworkの導入計画 58
   2.6.1Wal*Mart 58
   2.6.2Gillete 58
   2.6.3Michelin 59
   2.6.4米国国防総省(DoD : Department of Defense) 59
   2.6.5米国食品医薬品局(FDA : Food and Drug Administration) 61
   2.6.6Tesco(英) 62
   2.6.7Metro(独) 62
   2.6.8Carrefour(仏) 63
   2.6.9米国パスポートにおける取組み 63
   2.6.10航空業界での利用 63
   2.6.11SUNテストセンタ 64
   2.7アジアの事例 64
   2.8ユビキタスID : 国土交通省「自律移動支援プロジェクト」概要 65
   2.9RFIDタグの価格 66
   2.10響プロジェクトの概要 67
   2.11マーケット情報 68
第3章非接触ICカードの動向 71
   3.1非接触ICカードの概要と動向 72
   3.2FeliCaの概要と動向 75
   3.3FeliCaの特徴 76
   3.3.1マルチアプリケーションを実現 76
   3.3.2ファイルことに鍵やアクセル権が設定可能なファイルシステム 76
   3.3.3高い通信セキュリティを実現 77
   3.3.4業界最高速の処理スピードを実現 78
   3.4Suica(JR東日本) 78
   3.5Suicaの利用者数 79
   3.6おサイフケータイ(NTTドコモ) 80
   3.7おサイフケータイのアプリケーション 81
第4章システム構築時の留意点 83
   4.1RFIDの課題 84
   4.1.1プライバシ(経済産業省ガイドライン、EPCglobalガイドライン) 84
   4.1.2RFIDタグのコスト 85
   4.1.3周波数 85
   4.1.4タギング 85
   4.2システム導入における検討項目 86
   4.2.1RFIDタグの選定 86
   4.2.2リーダ/ライタの選定 86
   4.2.3RFIDタグの通信の検証 87
第5章国内の事例 89
   5.1国内での主な事例 90
   5.1.1総務省による実験 90
   5.1.2経済産業省平成16年度電子タグ実証実験事業 91
   5.1.3食品トレーサビリティ実証実験 92
   5.2NTTコムウェアの取組み 94
   5.2.1EPCglobalNetworkプラットフォームの開発 94
   5.2.2パレット循環モデル 98
   5.2.3店頭在庫モデル 99
   5.2.4資産管理モデル 99
   5.2.5ユビキタスIDを用いたIndoorPositioningシステム 102
   5.2.6アクティブタグを用いたプレゼンス管理モデル 104
   5.2.7InfoorNavigationモデル 105
   5.2.8無線LANによる位置情報サービス 107
   5.2.9パソコン所在管理 108
   5.2.10重要文書管理 109
   5.2.11入館者動線管理 110
   5.2.12工場備品管理 111
   5.2.13レンタル物品管理 112
   5.2.14日配食品の共同配送 113
   5.2.15物流品質管理 114
   5.2.16フューチャーストア 115
   5.2.17部品管理 116
第6章付録 119
   6.1国内のRFIDタグ導入・実験事例 120
   6.2電子タグに関するプライバシ保護ガイドライン 123
   6.3Guidelines on EPC for Consumer Productr 127
   参考文献 129
   あとがき
   はじめに
第1章RFIDの現状 1
   1.1RFIDとは 2
49.

図書

図書
edited by Egon Matijević
出版情報: New York, N.Y. : Plenum Press, c1976-  v. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Physical Chemistry of Cetyl Alcohol: Occurrence and Function of Liquid Crystals in O/W Creams / Shoji Fukushima ; Michihiro Yamaguchi1.:
Introduction
Cetyl Alcohol
Description of Cetyl Alcohol / 1.1.:
Short History of Cetyl Alcohol / 1.2.:
Definitions in Official Books / 1.3.:
Physical Properties of Cetyl Alcohols / 2.:
Polymorphism of Higher Alcohols / 2.1.:
Crystal Structure of Higher Alcohols / 2.2.:
Melting Point and Transition Point of Higher Alcohols / 2.3.:
Transition Point and Infrared Absorption / 2.4.:
Specific Interaction between 1-Hexadecanol and 1-Octadecanol / 3.:
Composition of Commercially Available Cetyl Alcohol / 3.1.:
Transition Point of 1-Hexadecanol / 3.2.:
Interaction between Higher Alcohols and Water / 4.:
Experimental Facts / 4.1.:
Formation of Hemihydrate / 4.2.:
Structure of Hydrated Alcohols / 4.3.:
Phase Diagram of the 1-Hexadecanol/1-Octadecanol/Water Ternary System / 4.4.:
Studies on Higher Alcohol/Surfactant/Water Systems / 5.:
The 1-Decanol/Sodium Caprylate/Water System / 5.1.:
The 1-Hexadecanol/OTAC/Water System / 5.2.:
Rheology of Ternary Systems Containing 1-Hexadecanol or a Homologous Alcohol / 5.3.:
Influence of the Amount of 1-Hexadecanol / 5.3.1.:
Influence of the Nature of Surfactant and of Higher Alcohol / 5.3.2.:
Influence of Alkyl Chain Length of Surfactant / 5.3.3.:
Conclusion / 5.3.4.:
Nature of Ternary Systems Prepared with Hexaoctadecanols / 6.:
Stability and Rheological Properties of Ternary Systems as a Function of Temperature / 6.1.:
Variations in External Appearance / 6.1.1.:
Variations in Viscosity / 6.1.2.:
Microscopic Observation / 6.1.3.:
X-Ray Diffraction Analysis / 6.1.4.:
Low-Angle X-Ray Diffraction Analysis / 6.1.5.:
Thermal Property / 6.1.6.:
Polymorphism of Hexaoctadecanol (3:2) and Stability of a Ternary Cream / 6.2.:
Liquid Crystalline Phases in Hexaoctadecanol (3:2)/Surfactant/Water Ternary Systems / 7.:
Phase Diagram / 7.1.:
D[subscript 2] Region / 7.2.:
M Region / 7.3.:
The Location and State of the D[subscript 2] Phase and M Particles in a Ternary Cream / 7.4.:
Temperature and the Process Yielding the Liquid Crystalline Phase / 8.:
Temperature of the Formation of the Liquid Crystalline Phase / 8.1.:
Method of Phase Separation Experiments / 8.1.1.:
Results of the Phase Separation Experiment / 8.1.2.:
G Phase and S Phase / 8.2.:
X-Ray Diffraction / 8.2.1.:
Differential Scanning Calorimetry / 8.2.3.:
Temperature at which the LC Phase is Formed / 8.2.4.:
In situ Formation of G and M Phases / 8.3.:
The Function of Liquid Crystalline Phases in O/W Creams / 9.:
Studies on O/W Creams / 9.1.:
The Difference in the Viscosity-Increasing Effects due to the Nature of Higher Alcohols / 9.2.:
The Difference in the Viscosity-Increasing Effect due to the Nature of Surfactants / 9.3.:
The Viscosity Change due to the Ratio of Cetostearyl Alcohol to Surfactant / 9.4.:
The Effect of Mixing 1-Hexadecanol with 1-Octadecanol / 9.5.:
Crystallization of Cetyl Alcohol in Cosmetic Creams / 9.6.:
Internal Structure and Stability of O/W C Creams / 10.:
Internal Structure of O/W Creams / 10.1.:
A Novel Theory for the Stabilization of O/W Creams / 10.2.:
Additional References on Cetyl and Homologous Alcohols / Appendix 1:
Appendix 2
References
Ionization Processes and Proton Binding in Polyprotic Systems: Small Molecules, Proteins, Interfaces, and Polyelectrolytes / Michael Borkovec ; Bo Jonsson ; Ger J. M. Koper
Experimental Techniques
Macroscopic Techniques
Definition and Measurement of pH / 2.1.1.:
Potentiometric Titration Techniques / 2.1.2.:
Other Macroscopic Techniques / 2.1.3.:
Spectroscopic Methods
Nuclear Magnetic Resonance (NMR) Techniques / 2.2.1.:
Optical and Other Spectroscopic Methods / 2.2.2.:
Modeling of Ionizable Systems
General Considerations
Computer Simulation Techniques
Simple Electrolyte Solutions / 3.3.:
Poisson-Boltzmann (PB) and Debye-Huckel (DH) Approximations / 3.3.1.:
An Illustrative Example / 3.3.2.:
Beyond the Poisson-Boltzmann (PB) Approximation / 3.3.3.:
Charged Molecules and Macromolecules in Water / 3.4.:
Debye-Huckel (DH) and Poisson-Boltzmann (PB) Treatment / 3.4.1.:
High-Salt versus Low-Salt Regime / 3.4.2.:
Toward Detailed Molecular Models / 3.4.3.:
Treatment of Ionization Equilibria / 3.5.:
Single Ionizable Site / 3.5.1.:
Localized versus Delocalized Binding / 3.5.2.:
Macroscopic Description / 3.5.3.:
Microscopic Description / 3.5.4.:
Adding Internal Degrees of Freedom / 3.5.5.:
Small Molecules
Monoprotic Acids and Bases
Equilibrium Constants / 4.1.1.:
Titration Behavior / 4.1.2.:
Experimental Data / 4.1.3.:
Diprotic Acids and Bases
Conformational Degrees of Freedom / 4.2.1.:
Equivalent Sites / 4.2.4.:
Oligoprotic Acids and Bases
Microscopic Description for Triprotic Acids and Bases / 4.3.1.:
Linear Molecules / 4.3.3.:
Noninteracting Sites
Microscopic versus Macroscopic Picture / 4.4.1.:
Affinity Distributions / 4.4.2.:
Interpretation and Prediction of Ionization Constants / 4.5.:
Empirical Methods / 4.5.1.:
Methods Based on First Principles / 4.5.2.:
Proteins
The Null Model
The Smeared-Out Charge Model
The Tanford-Kirkwood Model
Solution Techniques of the Ionization Problem
Shifts in Ionization Constants
Recent Developments in Dielectric Continuum Models / 5.4.:
General Methodology / 5.4.1.:
Case Studies / 5.4.2.:
Side Chain Flexibility / 5.4.3.:
Beyond Dielectric Continuum Models / 5.5.:
Protein Folding / 5.6.:
Polyelectrolytes
Mean-Field Models
Nearest-Neighbor Chain Interaction Models
Discrete Charge Model / 6.3.:
Mean-Field and Smearing-Out Approximations / 6.3.1.:
Chain Flexibility / 6.3.2.:
Polyamines / 6.4.:
Linear Polyamines / 6.4.1.:
Branched Polyamines / 6.4.2.:
Polycarboxylates / 6.5.:
Weakly Charged Linear Polycarboxylates / 6.5.1.:
Highly Charged Linear Polycarboxylates / 6.5.2.:
Humic Acids / 6.6.:
Ionizable Interfaces
Diffuse Layer Model and Its Generalization
Nernstian Surface / 7.1.1.:
Basic Stern Model / 7.1.2.:
Specific Counterion Binding / 7.1.3.:
Smearing-Out Approximation / 7.2.1.:
1-pK versus 2-pK Models / 7.2.2.:
pK Shifts / 7.2.3.:
Latex Particles
Ionizable Monolayers
Metal Oxide and Metal Hydroxide Particles / 7.5.:
Experimental Aspects / 7.5.1.:
Data Interpretation / 7.5.2.:
Goethite / 7.5.3.:
Hematite / 7.5.4.:
Rutile and Anatase / 7.5.5.:
Gibbsite / 7.5.6.:
Silica / 7.5.7.:
Discussion
Electrostatics of Point Charges / Appendix A.:
Planar Interface / A.1.:
Sphere / A.2.:
Cylinder / A.3.:
Further Tools in the Ising Model Analysis / Appendix B.:
Cluster Expansion / B.1.:
Other Choices of State Variables / B.2.:
Mean-Field Cluster Expansions / B.3.:
Mean-Field Treatment of Nonequivalent Sites / B.4.:
Square Lattice with Nearest-Neighbor Interactions / B.5.:
Affinity Distribution Approach / Appendix C.:
Derivation from Simple Models / C.1.:
Experimental Data Inversion / C.2.:
Combined Application of Radiochemical and Electrochemical Methods for the Investigation of Solid/Liquid Interfaces / Kalman Varga ; Gabor Hirschberg ; Pal Baradlai ; Melinda Nagy
On the Significance of Radiotracer Methods in Sorption Studies
General Problems of Radioactive Contamination Studies
An Overview of Radiotracer Methods
Methods Used for the Investigation of Interfacial Phenomena
Experimental Techniques: A Historical Survey
Recent Progress
Methods Used for the Investigation of Radioactive Contamination-Decontamination of Constructional Materials
Selected Results
Adsorption of Anions and Cations on Polycrystalline Gold
Comparative Study of Specific Adsorption of Cl[superscript -], HSO[superscript - subscript 4]/SO[superscript 2- subscript 4] and HSO[superscript - subscript 3]/SO[superscript 2- subscript 3] Ions / 3.1.1.:
Electrosorption of Ag and Co Species / 3.1.2.:
Accumulation of [superscript 110m]Ag on an Austenitic Stainless Steel
Sorption Behavior of Duplex Stainless Steels in HCl and H[subscript 2]SO[subscript 4] Solutions
Time and Concentration Dependence of Cl[superscript -] and HSO[superscript - subscript 4]/SO[superscript 2- subscript 4] Accumulations
Potential Dependence of Cl[superscript -] and HSO[superscript - subscript 4]/SO[superscript 2- subscript 4] Accumulations
Conclusions
Author Index
Subject Index
Magnetic Particles: Preparation, Properties and Applications / M. Ozaki1:
Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material / C.J. Serna ; M.P. Morales2:
Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water / M.A. Blesa ; R.J. Candal ; S.A. Bilmes3:
Colloidal Aggregation in Two-Dimensions / A. Moncho-Jorda ; F. Martinez-L=pez ; M.A. Cabrerizo-V8lchez ; R. Hidalgo Alvarez ; M. Quesada-PMFrez4:
Kinetics of Particle and Protein Adsorption / Z. Adamczyk5:
Physical Chemistry of Cetyl Alcohol: Occurrence and Function of Liquid Crystals in O/W Creams / Shoji Fukushima ; Michihiro Yamaguchi1.:
Introduction
Cetyl Alcohol
50.

図書

図書
edited by Yue Zhao, Tomiki Ikeda
出版情報: Hoboken, N.J. : Wiley, c2009  xviii, 514 p. ; [8] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contributors
Azobenzene Polymers for Photonic Applications / Kevin G. Yager ; Christopher J. Barrett1:
Introduction to Azobenzene / 1.1:
Azobenzene Chromophores / 1.1.1:
Azobenzene Photochemistry / 1.1.2:
Classes of Azobenzene Systems / 1.1.3:
PhotoiDduced Motions and Modulations / 1.2:
Molecular Motion / 1.2.1:
Phot obi ological Experiments / 1.2.2:
Photoorientation / 1.2.3:
Domain Motion / 1.2.4:
Macroscopic Motion / 1.2.5:
Other Applications of Azobenzenes / 1.2.6:
Acknowledgment
References
Photo-Induced Phenomena In Supramolecular Azobenzene Materials / Joachim Stumpe ; Olga Kulikovska ; Leonid M. Goldenberg ; Yuriy Zakrevskyy2:
Introduction / 2.1:
Surface Relief Gratings / 2.2:
Conclusion and Outlook / 2.4:
Photodeformable Materials And Photomechanical Effects Based On Azobenzene-Containing Polymers and Liquid Crystals / Yanlei Yu ; Tomiki Ikeda3:
Photodeformable Materials Based on Azobenzene-Containing Polymer Gels / 3.1:
Photodeformable Materials Based on Azobenzene-Containing Solid Films / 3.3:
Photodeformable Materials Based on Azobenzene-Containing LCs / 3.4:
LCs and LCEs / 3.4.1:
General Methods of Preparation of LCEs / 3.4.2:
Temperature-/Electricity-/pH-Responsive LCEs / 3.4.3:
Photoresponsive Behavior of Chromophore-Containmg LCs / 3.4.4:
Light-Responsive LCEs / 3.4.5:
Summary and Outlook / 3.5:
Amorphous Azobenzene Polymers For Light-Induced Surface Patterning / 4:
Surface Mass Transport / 4.1:
Experimental Observations / 4.1.1:
Patterning / 4.1.2:
Dependence on Material Properties / 4.1.3:
Photosoftening / 4.1.4:
Photomechanical Effects / 4.1.5:
Measuring Gratings / 4.1.6:
Dynamics / 4.1.7:
Mechanism / 4.2:
Thermal Considerations / 4.2.1:
Asymmetric Diffusion / 4.2.2:
Mean-Field Theory / 4.2.3:
Permittivity Gradient Theory / 4.2.4:
Gradient Electric Force / 4.2.5:
Isomerization Pressure / 4.2.6:
Applications of Surface Mass Transport / 4.2.7:
Conclusions / 4.3:
Azo Polymer Colloidal Spheres: Formation, Two-Dimensional Array, and Photoresponsive Properties / Xiaogong Wang5:
Azo Polymer Synthesis / 5.1:
Self-Assembly of Polydispersed Amphiphilic Azo Polymers in Solutions / 5.3:
Characteristics of Polydispersed Azo Polymer Self-Assembly / 5.3.1:
Colloidal Sphere Formation and Characterization / 5.3.2:
Colloidal Sphere Formation Mechanism / 5.3.3:
Hybrid Colloids Composed of Two Types of Amphiphilic Azo Polymers / 5.3.4:
Photoresponsive Properties of Azo Polymer Colloidal Spheres / 5.4:
Photoresponsive Porperties of Hybrid Colloids / 5.4.1:
Photoresponsive 2-D Colloidal Array and Its in situ Structure Inversion / 5.5:
Colloidal Array and Photoinduced Dichroism / 5.5.1:
Porous Structure from in situ Colloidal Array Structure Inversion / 5.5.2:
Closing Remarks / 5.6:
Azobenzene-Containing Block Copolymer Micelles: Toward Light-Controllable Nanocarriers / Yue Zhao6:
What is the Use of Light-Controllable Polymer Micelles? / 6.1:
How to Design Azobenzene Block Copolymers for Light-Controllable Micelles? / 6.2:
Synthesis of Azobenzene-Containing Amphophilic Block Copolymers / 6.3:
Reversible Dissociation and Formation of Azobenzene Block Copolymer Micelles / 6.4:
Factors Influencing the Reversible Dissociation and Formation Processes / 6.5:
Effect of Solution Stirring / 6.5.1:
Effect of Irradiation Light Intensity / 6.5.2:
Effects of Solvent and Block Copolymer Composition / 6.5.3:
Other Light-Responsive Azobenzene-Based Polymer Micelles / 6.6:
Perspectives and Future Work / 6.7:
Acknowledgments
Association Between Azobenzene-Modified Polymers And Surfactants Or Nanoparticles To Amplify Macroscopic Phototransitions In Solution / Christophe Tribet7:
Light Responsiveness of Solution Properties: A Question of Amplification / 7.1:
From Cloud Point to Associative Phase Separation of Photopolymers / 7.2:
Polymers in Poor Solvents or at Low Critical Solubility Temperature / 7.2.1:
Complexation and Solubility of Chains / 7.2.2:
Associative Phase Separation / 7.2.3:
Intrachain Association with Colloid Particles: Photorecognition / 7.3:
Complexes with Protein and Micelles in the Dilute Regime / 7.3.1:
Sol-Gel Transition in Semidilute Conditions / 7.3.2:
Complexes on Disperse Interfaces: Photoreversible Emulsions / 7.4:
Conclusion / 7.5:
Light-Responsive / Takahiro Seki8:
Alignment of Functional Materials by Command Surface / 8.1:
Photoalignment of Polymer Main Chain of Polysilane / 8.2.1:
Surfactant-Silica Nanohybrids / 8.2.2:
Photoalignment of Chromonic LC-Silica Nanohybrid / 8.2.3:
Surface-Grafted Az-Containing LC Polymer / 8.3:
Photogenerated Mass Migrations / 8.4:
Conventional Type / 8.4.1:
Phase Transition Type / 8.4.2:
On the Migration Features of the PT Type / 8.4.3:
Extended Studies in the PT-Type Mass Migration / 8.4.4:
Photoresponsive LC Block Copolymer Systems / 8.5:
Monolayer Systems / 8.5.1:
Photocontrolled Macroscopic Alignment of MPS Structures / 8.5.2:
Micropatterning of MPS Structure in the Hierarchical Structure / 8.5.3:
Conclusion and Scope / 8.6:
Photoinduced Immobilization Of Molecules On The Surface Of Azobenzene Polymers: Principles and Application / Osamu Watanabe9:
Background Study: Nanofabrication / 9.1:
Principles of Photoinduced Immobilization / 9.3:
Application for Immunochips / 9.4:
Immobilization Depending on the Azobenzene Moiety / 9.5:
Two-Dimensional Arrangement and Area-Selective Immobilization of Microspheres / 9.6:
Summary / 9.7:
Phototuning Of Helical Structure Of Cholesteric Liquid Crystals / Seiji Kurihara10:
Properties and Design of Chiral Azobenzenes / 10.1:
Effect of Spacer Length / 10.2.1:
Effects of Molecular Shape / 10.2.2:
Effects of Chiral Groups on Photochemical Change in HTP / 10.2.3:
Applications / 10.3:
Photochemical Switching of Selective Reflection / 10.3.1:
Control of Transparency / 10.3.2:
Photochemical Inversion of Helix / 10.3.3:
Photochemical Control of Lasing / 10.3.4:
Tunable Diffraction Gratings Based On Azobenzene Polymers and Liquid Crystals / 10.4:
Diffraction Gratings Can Easily Be Recorded on Azobenzene-Containing Polymers and Liquid Crystals / 11.1:
What are Tunable Diffraction Gratings? / 11.2:
Mechanically Tunable Diffraction Gratings / 11.3:
Preparation of Azobenzene Thermoplastic Elastomers / 11.3.1:
Coupled Mechanical and Optical Effects / 11.3.2:
Elastic Diffraction Gratings Recorded Using a Photomask / 11.3.3:
Grating Formation Dynamics and Mechanisms / 11.3.4:
Electrically Tunable Diffraction Gratings / 11.4:
Use of Liquid Crystals / 11.4.1:
Grating Formation in Photosensitive Self-Assembled Liquid Crystal Gels / 11.4.2:
Electrical Switching / 11.4.3:
Optically Tunable Diffraction Gratings / 11.5:
Dynamic Holographic Gratings / 11.5.1:
Optically Tunable Diffraction Gratings in Polymer-Stabilized Liquid Crystals / 11.5.2:
Optically Switchable Reflection Gratings / 11.5.3:
Concluding Remarks and Perspectives / 11.6:
Azo Block Copolymers In The Solid State / Haifeng Yu12:
Preparation Method / 12.1:
Direct Polymerization of Azo Monomers / 12.2.1:
Polymer Analogue Reaction / 12.2.2:
Supramolecular Self-Assembly / 12.2.3:
Special Reactions / 12.2.4:
Properties / 12.3:
Basic Properties / 12.3.1:
Properties from Non-Azo Blocks / 12.3.2:
Properties Originating from Microphase Separation / 12.3.3:
Control of Microphase Separation / 12.4:
Thermal Annealing / 12.4.1:
Rubbing Method / 12.4.2:
Photoalignment / 12.4.3:
Electric Field / 12.4.4:
Magnetic Field / 12.4.5:
Shearing Flow and Other Methods / 12.4.6:
Enhancement of Surface Relief Gratings / 12.5:
Enhancement of Refractive Index Modulation / 12.5.2:
Nanotemplates / 12.5.3:
Volume Storage / 12.5.4:
Other Applications / 12.5.5:
Outlook / 12.6:
Photoresponsive Hybrid Silica Materials Containing Azobenzene Ligands / Nanguo Liu ; C. Jeffrey Brinker13:
Azobenzene-Containing Organosilanes / 13.1:
Synthesis and Photoisomerization of TSUA and BSUA / 13.2.1:
Crystallography of the TSUA Compound / 13.2.2:
Self-Directed Self-Assembly of the BSUA Compound / 13.2.3:
Photoresponsive Mesoporous Materials / 13.3:
Synthesis and Characterization of Photoresponsive Nanoporous Materials / 13.3.1:
Photoisomerization of Azobenzene Ligands in Mesoporous Materials / 13.3.2:
Photoswitched Azobenzene Nanovalves / 13.3.3:
Photocontrolled Release of Dye Molecules from Azobenzene-Modified Nanocomposite Particles / 13.3.4:
Reversible Photoswitching Li quid-Ad sorption of Azobenzene-Modified Mesoporous Silica Materials / 13.3.5:
Photoresponsive Polysilsesquioxane Gels / 13.4:
Azobenzene-Modified Polysilsesquioxanes for Photocontrol of Refractive Index / 13.4.1:
Azobenzene-Modified Polysilsesquioxane Gels for Optomechanical Devices / 13.4.2:
Future Work / 13.5:
Index
Preface
Contributors
Azobenzene Polymers for Photonic Applications / Kevin G. Yager ; Christopher J. Barrett1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼