close
1.

図書

図書
Alexander Mamishev, Sean Williams
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xvii, 243 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
In this Chapter / 1.1:
Our Audience / 1.2:
A few horror stories / 1.2.1:
Some history / 1.2.2:
The Need For a Good "Writing System" / 1.3:
Introducing Stream Tools / 1.4:
What is STREAM Tools? / 1.4.1:
Why use STREAM Tools? / 1.4.2:
The software of STREAM Tools / 1.4.3:
Recommended packages / 1.4.3.1:
A brief comparison of Microsoft Word vs. LaTeX: history and myths / 1.4.3.2:
How to Use this Book / 1.5:
Exercises / 1.6:
Quick Start Guide For Stream Tools / Chapter 2:
A General Overview of the Writing Process / 2.1:
Introduction to Writing Quality Tools: The Stream Tools Editorial Mark-Up Table / 2.3:
Introduction to Document Design Tools / 2.4:
Important fundamental concepts / 2.4.1:
Step 1: Use template files to create your new manuscripts / 2.4.1.1:
Step 2: Copy existing elements and paste them into a new location / 2.4.1.2:
Step 3: Edit the element / 2.4.1.3:
Step 4: Cross-referencing elements / 2.4.1.4:
Creating Elements in a Document / 2.4.2:
Headings / 2.4.2.1:
Equations / 2.4.2.2:
Figures / 2.4.2.3:
Tables / 2.4.2.4:
References (literature citations) / 2.4.2.5:
Introduction to File Management: Optimizing Your Workflow / 2.5:
General principles / 2.5.1:
Using a wiki for file management / 2.5.2:
Version control / 2.5.3:
Conclusions / 2.6:
Document Design / 2.7:
Creating Templates / 3.1:
How to create and cross-reference a heading template / 3.2.1:
How to alter a heading template / 3.2.1.2:
Common formatting mistakes in headings / 3.2.1.3:
Common stylistic mistakes for headings / 3.2.1.4:
Tips and tricks / 3.2.1.5:
How to create and cross-reference an equation template / 3.2.2:
How to alter an equation template / 3.2.2.2:
Common formatting mistakes for equations / 3.2.2.3:
Common stylistic mistakes for equations / 3.2.2.4:
How to create and cross-reference a figure template / 3.2.2.5:
How to alter a figure template / 3.2.3.2:
Common formatting mistakes in figures / 3.2.3.3:
Common stylistic mistakes in figures / 3.2.3.4:
Tips and tricks for figures / 3.2.3.5:
How to create and cross-reference a table template / 3.2.4:
How to alter a table template / 3.2.4.2:
Common typesetting mistakes / 3.2.4.3:
Common stylistic mistakes in tables / 3.2.4.4:
Tips and tricks for tables / 3.2.4.5:
Front matter / 3.2.5:
Controlling page numbers / 3.2.5.1:
Table of contents / 3.2.5.2:
Back matter / 3.2.6:
Appendices / 3.2.6.1:
Indices / 3.2.6.2:
Using Multiple Templates / 3.3:
Controlling styles / 3.3.1:
Switching between single-column and double-column formats / 3.3.2:
Master documents / 3.3.3:
Practice Problems / 3.4:
Additional Resources / 3.4.1:
Using Bibliographic Databases / 3.6:
Why Use a Bibliographic Database? / 4.1:
Choice of Software / 4.3:
Using Endnote / 4.4:
Setting up the interface / 4.4.1:
Adding references / 4.4.2:
Citing references / 4.4.3:
Sharing a Database / 4.5:
Numbering the database entries / 4.5.1:
Compatibility with BiBTeX / 4.5.2:
Formatting References / 4.6:
Planning, Drafting, and Editing Documents / 4.7:
Definition Stage / 5.1:
Select your team members / 5.2.1:
Hold a kick-off meeting / 5.2.2:
Analyze the audience / 5.2.3:
Formulate the purpose / 5.2.4:
Persuasion / 5.2.4.1:
Exposition / 5.2.4.2:
Instruction / 5.2.4.3:
Select the optimum combination of STREAM Tools / 5.2.5:
Preparation Stage / 5.3:
Evaluate historical documents / 5.3.1:
Journal articles / 5.3.1.1:
Proceedings/papers / 5.3.1.2:
Theses and dissertations / 5.3.1.3:
Proposals / 5.3.1.4:
Reports / 5.3.1.5:
Populate the file repository / 5.3.2:
Create a comprehensive outline of the document / 5.3.3:
Using deductive structures / 5.3.3.1:
Using Microsoft Word's Outline feature / 5.3.3.2:
Populate all sections with "yellow text" / 5.3.4:
Distribute writing tasks among team members / 5.3.5:
Choose a drafting strategy / 5.3.5.1:
Synchronize writing styles / 5.3.5.2:
Writing Stage / 5.4:
Enter content / 5.4.1:
Legacy content / 5.4.1.1:
New content / 5.4.1.2:
Control versions of shared files / 5.4.1.3:
Request that team members submit their drafts / 5.4.2:
Verify that each section is headed in the right direction / 5.4.3:
Construct the whole document / 5.4.4:
Revise for content and distribute additional writing tasks / 5.4.5:
Comprehensive editing / 5.4.5.1:
STREAM Tools Editorial Mark-up table (STEM Table) / 5.4.5.2:
Strategies for editing electronic copy using Microsoft Word--an overview of Microsoft Word's commenting, reviewing, and proofing features / 5.4.5.3:
Distribute additional writing tasks / 5.4.6:
Completion Stage / 5.5:
Copy edit the document / 5.5.1:
Send out for a final review of content and clarity / 5.5.2:
Proofread the document / 5.5.3:
Submit the document / 5.5.4:
Conduct the final process-improvement review session / 5.5.5:
Building High Quality Writing Teams / 5.6:
Understanding the Benefits and Challenges of Teamwork / 6.1:
The payoff of teamwork / 6.2.1:
Some principle challenges of teamwork / 6.2.2:
Identifying Team Goals and Assigning Member Roles / 6.3:
Define roles and procedures clearly / 6.3.1:
Define team roles / 6.3.1.1:
Define team procedures / 6.3.1.2:
Managing Teamwork at a Distance / 6.4:
Building trust in virtual teams / 6.4.1:
Demonstrating sensitivity to cultural differences / 6.4.2:
Selecting Communication Tools To Support Teamwork / 6.5:
Wikis / 6.5.1:
Creating a wiki / 6.5.1.1:
Editing / 6.5.1.2:
Organizing / 6.5.1.3:
Monitoring edits / 6.5.1.4:
Other suggestions for wiki use / 6.5.1.5:
SharePoint / 6.5.2:
Lists / 6.5.2.1:
Web pages / 6.5.2.2:
Alerts and site management / 6.5.2.3:
Assuring Quality Writing / 6.6:
Choosing the Best Words 278 / 7.1:
Choose strong words / 7.2.1:
Use strong nouns and verbs / 7.2.1.1:
Choose words with the right level of formality / 7.2.1.2:
Avoid weak words / 7.2.2:
Check for confusing or frequently misused words / 7.2.2.1:
Avoid double negatives, and change negatives to affirmatives / 7.2.2.2:
Avoid changing verbs to nouns / 7.2.2.3:
Delete meaningless words and modifiers / 7.2.2.4:
Steer clear of jargon / 7.2.2.5:
Avoid sexist or discriminatory language / 7.2.2.6:
Writing Strong Sentences / 7.3:
Write economically / 7.3.1:
Include a variety of sentence types / 7.3.2:
Avoiding Weak Sentence Construction / 7.4:
Comma splices / 7.4.1.1:
Fragments / 7.4.1.2:
Fused or run-on sentences / 7.4.1.3:
Misplaced, dangling, or two-way modifiers / 7.4.1.4:
Faulty parallelism / 7.4.1.5:
Punctuating For Clarity / 7.5:
End punctuation / 7.5.1:
Periods / 7.5.1.1:
Question marks / 7.5.1.2:
Exclamation points / 7.5.1.3:
Commas / 7.5.2:
Semicolons / 7.5.3:
Colons / 7.5.4:
Apostrophes / 7.5.5:
Dashes and hyphens / 7.5.6:
Final Considerations / 7.6:
Abbreviations and acronyms / 7.6.1:
Capitalization / 7.6.2:
Numbers / 7.6.3:
Dates / 7.6.4:
Fractions and percentages / 7.6.5:
Units of measure / 7.6.6:
A Final Note on Grammar / 7.7:
Concluding Remarks / 7.8:
Business Case / 8.1:
Frequently Asked Questions / 8.3:
Success Stories / 8.4:
Additional Reading / 8.5:
Useful books and articles / 8.5.1:
Useful weblinks / 8.5.2:
EXERCISES / 8.6:
Preface
Acknowledgments
Introduction / Chapter 1:
2.

図書

図書
Edward Bellinger and David C. Sigee
出版情報: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley-Blackwell, 2010  viii, 271 p ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
Algae as primary producers / 1.1.2:
Freshwater environments / 1.1.3:
Planktonic and benthic algae / 1.1.4:
Size and shape / 1.1.5:
Taxonomic variation / 1.2:
Microscopical appearance / 1.2.1:
Biochemistry / 1.2.2:
Molecular characteristics and identification / 1.2.3:
Blue-green algae / 1.3:
Cytology / 1.3.1:
Morphological and taxonomic diversity / 1.3.2:
Ecology / 1.3.3:
Blue-green algae as bioindicators / 1.3.4:
Green algae / 1.4:
Morphological diversity / 1.4.1:
Green algae as bioindicators / 1.4.3:
Euglenoids / 1.5:
Euglenoids as bioindicators / 1.5.1:
Yellow-green algae / 1.6:
Yellow-green algae as bioindicators / 1.6.1:
Dinoflagellates / 1.7:
Cryptomonads / 1.7.1:
Comparison with euglenoid algae / 1.8.1:
Biodiversity / 1.8.3:
Cryptomonads as bioindicators / 1.8.4:
Chrysophytes / 1.9:
Chrysophytes as bioindicators / 1.9.1:
Diatoms / 1.10:
Diatoms as bioindicators / 1.10.1:
Red algae / 1.11:
Brown algae / 1.12:
Sampling, biomass estimation and counts of freshwater algae A Planktonic algae / 2:
Protocol for collection / 2.1:
Standing water phytoplankton / 2.1.1:
River phytoplankton
Mode of collection / 2.2:
Phytoplankton trawl net / 2.2.1:
Volume samplers / 2.2.2:
Integrated sampling / 2.2.3:
Sediment traps / 2.2.4:
Phytoplankton biomass / 2.3:
Turbidity / 2.3.1:
Dry weight and ash-free dry weight / 2.3.2:
Pigment concentrations / 2.3.3:
Flow cytometry / 2.4:
Microscope counts of species populations / 2.5:
Sample preservation and processing / 2.5.1:
Species counts / 2.5.2:
Conversion of species counts to biovolumes / 2.5.3:
Chemical cleaning of diatoms / 2.5.4:
Diversity within species populations / 2.6:
Molecular analysis / 2.6.1:
Analytical microscopical techniques B Non-planktonic algae / 2.6.2:
Deep water benthic algae / 2.7:
Benthic-pelagic coupling / 2.7.1:
Benthic algae and sediment stability / 2.7.2:
Invertebrate grazing of benthic algae / 2.7.3:
Shallow water communities / 2.8:
Substrate / 2.8.1:
Algal communities / 2.8.2:
Algal biofilms / 2.9:
Mucialginous biofilms / 2.9.1:
Biomass / 2.9.2:
Taxonomic composition / 2.9.3:
Matrix structure / 2.9.4:
Periphyton? algal mats / 2.10:
Inorganic substratum / 2.10.1:
Plant surfaces / 2.10.2:
Algae as bioindicators / 3:
Bioindicators and water quality / 3.1:
Biomarkers and bioindicators / 3.1.1:
Characteristics of bioindicators / 3.1.2:
Biological monitoring versus chemical measurements / 3.1.3:
Monitoring water quality: objectives / 3.1.4:
Lakes / 3.2:
Contemporary planktonic and attached algae as bioindicators / 3.2.1:
Fossil algae as bioindicators: lake sediment analysis / 3.2.2:
Water quality parameters / 3.2.3:
Wetlands / 3.3:
Rivers / 3.4:
The periphyton community / 3.4.1:
River diatoms / 3.4.2:
Evaluation of the diatom community / 3.4.3:
Human impacts and diatom indices / 3.4.4:
Calculation of diatom indices / 3.4.5:
Practical applications of diatom indices / 3.4.6:
Estuaries / 3.5:
Ecosystem complexity / 3.5.1:
Algae as estuarine bioindicators / 3.5.2:
A key to the more frequently occurring freshwater algae / 4:
Introduction to the key / 4.1:
Using the key / 4.1.1:
Morphological groupings / 4.1.2:
Key to the main genera and species / 4.2:
List of algae included and their occurrence in the key / 4.3:
Algal identification: bibliography / 4.4:
Glossary
References
Index
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
3.

図書

図書
edited by Tito Trindade, Ana L. Daniel da Silva
出版情報: Singapore : Pan Stanford Publishing, c2011  xxii, 289, 4 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
From Nanoparticles to Nanocomposites: A Brief Overview / 1:
Nanoscience and Nanotechnology: An introduction / 1.1:
Nanoparticles' Diversity / 1.2:
Quantum dots / 1.2.1:
Iron oxides / 1.2.2:
Metal nanoparticles / 1.2.3:
Surface Modification of Nanoparticles / 1.3:
Ligand exchange reactions / 1.3.1:
Inorganic nanocoating / 1.3.2:
Encapsulation in polymers / 1.3.3:
Designing Biointerfaces over Nanoparticles / 1.4:
Challenges for the Future... Nanosafety for Today / 1.5:
Polymers for Biomedical Applications: Chemical Modification and Biofunctionalization / 2:
Drug Delivery Systems / 2.1:
Hydrogels / 2.2:
Application of hydrogels / 2.2.1:
Types of hydrogels / 2.2.2:
Bioadhesives / 2.3:
Surface Modification / 2.4:
Surface modification by ultra-violet radiation / 2.4.1:
Plasma treatment / 2.4.2:
Plasma generation / 2.4.2.1:
Plasma polymerization and surface modification of polymers / 2.4.2.2:
Concluding Remarks / 2.5:
Nanocapsules as Carriers for the Transport and Targeted Delivery of Bioactive Molecules / 3:
Introduction / 3.1:
Polymeric Nanocapsules: Production and Characterization / 3.2:
Nanocapsules made of synthetic polymers / 3.2.1:
Polyacrylate nanocapsules / 3.2.1.1:
Polyester nanocapsules / 3.2.1.2:
Nanocapsules made of natural polymers / 3.2.2:
Lipid nanocapsules / 3.2.3:
Therapeutical Applications of Nanocapsules / 3.3:
Nanocapsules for oral drug delivery / 3.3.1:
Nanocapsules for oral peptide delivery / 3.3.1.1:
Nanocapsules for oral delivery of lipophilic low molecular weight drugs / 3.3.1.2:
Nanocapsules as nasal drug carriers / 3.3.2:
Nanocapsules as ocular drug carriers / 3.3.3:
Nanocapsules in cancer therapy / 3.3.4:
Nanocapsules as carriers for gene therapy / 3.3.5:
Conclusions / 3.4:
Inorganic Nanoparticles Biofunctionalization / 4:
Bioeonjugation of Nanoparticles / 4.1:
Nanoparticles and Their Surface Properties / 4.2:
Surface capping of nanoparticles / 4.2.1:
Semiconductor quantum dots and metallic nanoparticles / 4.2.2:
Silica nanoparticles and silica encapsulation / 4.2.3:
Attachment Schemes / 4.3:
Covalent attachment / 4.3.1:
Non-covalent attachment / 4.3.2:
Affinity binding / 4.3.3:
Specific Cases / 4.4:
Proteins / 4.4.1:
DNA / 4.4.2:
Avidin / 4.4.3:
Phospholipid encapsulation and functionalization / 4.4.4:
Applications / 4.5:
Cellular imaging / 4.5.1:
Drug delivery / 4.5.2:
Bioluminescence resonance energy transfer / 4.5.3:
Hyperthermia / 4.5.4:
Conclusion / 4.6:
Silica-Based Materials: Bioprocesses and Nanocomposites / 5:
Natural Silica Nanocomposites / 5.1:
Diatom biosilica / 5.1.1:
Sponge biosilica / 5.1.3:
(Bio)-technological applications of biosilica / 5.1.4:
Biomimetic Silica Nanocomposites / 5.2:
Silica nanocomposites based on natural templates / 5.2.1:
Silica nanocomposites based on model templates / 5.2.3:
Synthetic peptides / 5.2.3.1:
Synthetic polyamines / 5.2.3.2:
Biological templates / 5.2.3.3:
Biomimetism: How far can we go? / 5.2.4:
Bio-Inspired Silica Nanocomposites / 5.3:
Biotechnological and medical applications / 5.3.1:
Perspectives / 5.3.3:
Synthetic Strategies for Polymer-Based Nanocomposite Particles / 6:
Surfaces and Interfaces: Chemical Modification of Nanoparticles / 6.1:
In situ Synthetic Strategies for Polymer-Based Colloidal Nanocomposites / 6.3:
In situ preparation of the fillers / 6.3.1:
Sol-gel methods / 6.3.1.1:
In situ polymerization of the matrix / 6.3.2:
Organic solvent-based methods: Dispersion polymerization / 6.3.2.1:
Water-based methods: Emulsion and miniemulsion polymerization / 6.3.2.2:
Controlled polymerization: Surface initiated polymerization(SIP) / 6.3.3:
Atom Transfer Radical Polymerization Atrp / 6.3.3.1:
Reversible Addition Fragmentation chain transfer (Raft) polymerization / 6.3.3.2:
Combined controlled polymerization mechanisms / 6.3.3.3:
Functionalization of Polymer-Based Nanocomposites for Bio-Applications / 6.4:
Final Remarks / 6.5:
Synthesis of Nanocomposite Particles Using Supercritical Fluids: A Bridge with Bio-applications / 7:
Supercritical Fluids: Definition and Current use in, Bio-Applications / 7.1:
Definition / 7.2.1:
Scps in biomedical applications / 7.2.2:
Development of drug delivery systems / 7.2.2.1:
scC02 for purification and sterilization / 7.2.2.2:
Can Scfs be Used to Introduce Inorganic NPs into Polymers? / 7.3:
Formation of hybrid organic-inorganic NPs in Scps(route 1) / 7.3.1:
Encapsulation of inorganic NPs into a polymer shell (route 2) / 7.3.2:
Polymer swelling and in situ growth of inorganic NPs (route 3) / 7.3.3:
Polymer swelling by scC02 / 7.3.3.1:
Chemical transformation of impregnated metal precursor / 7.3.3.2:
Biocomposites Containing Magnetic Nanoparticles / 7.4:
Magnetic Properties / 8.1:
Magnetism at nanoscale level: Concepts and main phenomena / 8.2.1:
Basic concepts / 8.2.1.1:
Systems with interactions between magnetic centers / 8.2.1.2:
Superparamagnetism / 8.2.1.3:
Magnetism concepts subjacent to bio-applicatons / 8.2.2:
Magnetic separation and drug delivery / 8.2.2.1:
Magnetic resonance imaging (Mri) / 8.2.2.2:
Magnetic hyperthermia / 8.2.2.3:
Magnetic Nanoparticles for Bio-Applications / 8.3:
Iron oxide nanoparticles / 8.3.1:
Metallic nanoparticles / 8.3.2:
Metal alloy nanoparticles / 8.3.3:
Bimagnetic nanoparticles / 8.3.4:
Strategies of Synthesis of Magnetic Biocomposite Nanoparticles / 8.4:
In situ formation of magnetic nanoparticles / 8.4.1:
Other magnetic nanoparticles / 8.4.1.1:
Encapsulation of magnetic nanoparticles within biopolymers / 8.4.2:
Conclusions and Future Outlook / 8.5:
Multifunctional Nanoeomposite Particles for Biomedical Applications / 9:
Types of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.1:
Main Approaches to the Preparation of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.3:
Silica coated magnetic-fluorescent nanoparticles / 9.3.1:
Organic polymer coated magnetic cores treated with fluorescent entities / 9.3.2:
Ionic assemblies of magnetic cores and fluorescent entities / 9.3.3:
Fluoreseently-labeled lipid coated magnetic nanoparticles / 9.3.4:
Magnetic core directly linked to fluorescent entity via a molecular spacer / 9.3.5:
Magnetic cores coated by fluorescent semiconducting shells / 9.3.6:
Magnetically-doped Qds / 9.3.7:
Magnetic nanoparticles and Qds embedded within a polymer or silica matrix / 9.3.8:
Biomedical Applications / 9.4:
Bio-imaging probes / 9.4.1:
Cell tracking, sorting and bioseparation / 9.4.2:
Applications in nanomedicine / 9.4.3:
Bio-Applications of Functionalized Magnetic Nanoparticles and Their Nanocomposites / 9.5:
Fundaments of Nanomagnetism / 10.1:
Single-domain particles / 10.2.1:
Magnetic anisotropy energy / 10.2.2:
Fundaments of Colloidal Stability / 10.2.3:
Bio-Applications of Magnetic Nanoparticles / 10.4:
Magnetic separation / 10.4.1:
Nuclear magnetic resonance imaging (Mri) / 10.4.2:
Contrast agents based on superparamagnetic nanomagnets / 10.4.3.1:
Magnetobiosensors / 10.4.4:
Magnetobiosensors based on magnetorelaxometry / 10.4.4.1:
Magnetobiosensors based on magnetoresistance / 10.4.4.2:
Magnetosensors based on Hall effect / 10.4.4.3:
Magnetoplasmonics / 10.4.4.4:
Summary and Outlook / 10.4.5:
Anti-Microbial Polymer Nanocomposites / 11:
Packaging / 11.1:
Textiles / 11.1.2:
Coatings / 11.1.3:
Antimicrobial coatings / 11.1.3.1:
Medicine, pathology and surgical implants/ biomedical coatings / 11.1.3.2:
Anti-Microbial Polymer-Based Nanocomposites / 11.2:
Mechanisms of Antibacterial Action / 11.3:
Detection of microbes / 11.3.1:
Control of microbial growth / 11.3.2:
Environmental and Health Concerns / 11.4:
Biosensing Applications Using Nanoparticles / 12:
Biosensors: A Definition / 12.1:
Uses of Gold Nanoparticles / 12.2:
Tailoring biointerfaces over gold nanoparticles / 12.2.1:
Biosensing applications of gold nanoparticles / 12.2.2:
Crosslinking-based biosensing / 12.2.2.1:
Non-crosslmking-based biosensing / 12.2.2.2:
Semiconductor Quantum Dots / 12.3:
Properties of quantum dots / 12.3.1:
Biosensing with quantum dots / 12.3.2:
Immunosensing / 12.3.2.1:
Dna assays / 12.3.2.2:
Resonance energy transfer-based assays / 12.3.2.3:
Outlook Remarks / 12.4:
Index
List of Figures
List of Tables
Preface
4.

図書

図書
Detlev Möller
出版情報: Berlin : Walter de Gruyter, c2019  xxviii, 619 p. ; 25 cm
シリーズ名: Chemistry of the climate system ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
Prologue
List of principal symbols
Introduction / 1:
Chemistry and the climate system / 1.1:
Air and atmosphere: a multiphase and multicomponent system / 1.2:
Principles of chemistry in the climate system / 1.3:
Substances in climate system / 1.4:
Fundamentals of physics in the climate system / 2:
Meteorological basics / 2.1:
Scaling and structure of the atmosphere / 2.1.1:
Meteorological elements / 2.1.2:
Air pressure / 2.1.2.1:
Air temperature / 2.1.2.2:
Air humidity / 2.1.2.3:
Hydrometeors / 2.1.3:
Clouds / 2.1.3.1:
Fog, mist, and haze / 2.1.3.2:
Precipitation / 2.1.3.3:
Dew, frost, rime, and interception / 2.1.4:
Clirnatologtcai basics / 2.2:
Climate / 2.2.1:
Climate system / 2.2.2:
Chemical climate / 2.2.3:
Optics of the atmosphere: Radiation / 2.3:
Solar radiation / 2.3.1:
The Sun and its radiation output / 2.3.1.1:
Solar radiation transfer through the atmosphere / 2.3.1.2:
Absorption and emission of light / 2.3.2:
Absorption (Lambert-Beer law) / 2.3.2.1:
Emission (Planck's law and Stefan-Boltzmann law) / 2.3.2.2:
Terrestrial radiation and radiation budget / 2.3.3:
Atmospheric dynamics / 2.4:
Fluid characteristics / 2.4.1:
Effective atmospheric forces / 2.4.1.1:
Atmospheric flow: Laminar and turbulent / 2.4.1.2:
Fluid characteristics: Wind speed and direction / 2.4.1.3:
Properties of gases: The ideal gas / 2.5:
Gas laws / 2.5.1:
Mean free path and number of collisions between molecules / 2.5.2:
Viscosity / 2.5.3:
Diffusion / 2.5.4:
Atmospheric removal: Deposition processes / 2.6:
Dry deposition / 2.6.1:
Wet deposition / 2.6.2:
Characteristic times; Residence time, lifetime, and turnover time / 2.7:
Fundamentals of physicochemistry in the climate system / 3:
Chemical thermodynamics / 3.1:
First law of thermodynamics and its applications / 3.1.1:
Internal energy / 3.1.1.1:
Molar heat capacity / 3.1.1.2:
Thermochemistry: Heat of chemical reaction / 3.1.1.3:
Second law of thermodynamics and its applications / 3.1.2:
Entropy and reversibility / 3.1.2.1:
Thermodynamic potential: Gibbs-Helmholtz equation / 3.1.2.2:
Chemical potential / 3.1.2.3:
Chemical potential in real mixtures: Activity / 3.1.2.4:
Equilibrium / 3.2:
Chemical equilibrium: The mass action law / 3.2.1:
Phase equilibrium / 3.2.2:
Gas-liquid equilibrium: Evaporation and condensation / 3.2.2.1:
Gas-liquid equilibrium: Special case of droplets (Kelvin equation) / 3.2.2.2:
Absorption of gases in water: Henry's law / 3.2.2.3:
Solubility equilibrium: Solid-aqueous equilibrium / 3.2.2.4:
Adsorption and desorption / 3.2.2.5:
Steady state / 3.3:
Water: Physical and chemical properties / 3.4:
Water structure: Hydrogen bond / 3.4.1:
Water as solvent / 3.4.2:
Water vapor / 3.4.3:
Water properties in relation to the climate system / 3.4.4:
Properties of solutions and droplets / 3.5:
Surface tension and surface-active substances / 3.5.1:
Vapor pressure lowering: Raoult's law / 3.5.2:
Freezing point depression / 3.5.3:
Diffusion in solution / 3.5.4:
Heterogeneous processes: Multiphase chemistry in the climate system / 3.6:
Aerosols, clouds, and precipitation: The climate multiphase system / 3.6.1:
Gas-to-particle formation: Homogeneous formation of CCNs / 3.6.2:
Classical nucleation theory / 3.6.2.1:
Formation of secondary organic aerosols / 3.6.2.2:
Atmospheric aerosols and the properties of aerosol particles / 3.6.3:
Formation of cloud droplets: Heterogeneous nucleation / 3.6.4:
Scavenging: Acommodation, adsorption, and reaction (mass transfer) / 3.6.5:
Mass transfer: General remarks / 3.6.5.1:
Adsorption / 3.6.5.2:
Surface chemistry: Kinetics of heterogeneous chemical reactions / 3.6.5.3:
Mass transfer into droplets with chemical reaction / 3.6.5.4:
Fundamentals of chemistry in the climate system / 4:
State of matter / 4.1:
Atoms, elements, molecules, compounds, and substances / 4.1.1:
Pure substances and mixtures / 4.1.2:
Radicals, groups, and nomenclature / 4.1.3:
Units for chemical abundance: Concentrations and mixing ratios / 4.1.4:
Theory of chemical reactions / 4.2:
Chemical bonding / 4.2.1:
Types of chemical reactions / 4.2.2:
Chemical kinetics: Reaction rate constant / 4.2.3:
Catalysis / 4.3:
Electrochemistry / 4.4:
Electrolytic dissociation / 4.4.1:
Acids, bases, and the ionic product of water / 4.4.1.1:
pH value / 4.4.1.2:
Hydrolysis of salts and oxides / 4.4.1.3:
Buffer solutions / 4.4.1.4:
Complex ions / 4.4.1.5:
The CO2-carbonate system / 4.4.1.6:
Oxidation-reduction reaction (redox process) / 4.4.2:
Hydrated electron: A fundamental species / 4.4.3:
Photochemistry / 4.5:
Photoexcitation: Electronic states / 4.5.1:
Photodissociation: Photolysis rate coefficient / 4.5.2:
Photocatalysis: Photosensitization and autoxidation / 4.5.3:
Environmental relevance of acidity / 4.6:
Atmospheric acidity / 4.6.1:
pH averaging / 4.6.2:
Isotopes in atmospheric chemistry and geochemistry / 4.7:
Substaces and chemical reactions in the climate system / 5:
Hydrogen / 5.1:
Natural occurrence / 5.1.1:
Compounds of hydrogen / 5.1.2:
Chemistry / 5.1.3:
Oxygen / 5.2:
Oxygen, dioxygen, and ozone: O, O2, and O3 / 5.2.1:
Reactive oxygen species I: OH, HO2, and H2O2 (HxOy species) / 5.2.3:
Atmosphere, free of trace species / 5.2.3.1:
Atmosphere with trace species / 5.2.3.2:
Reactive oxygen species II: RO, RO2, and ROOH / 5.2.4:
Aqueous-phase oxygen chemistry / 5.2.5:
Water chemistry / 5.2.5.1:
Dioxygen and superoxide ion chemistry / 5.2.5.2:
Hydrogen peroxide chemistry / 5.2.5.3:
Ozone and hydroxyl radical chemistry / 5.2.5.4:
Hydrogen polyoxides / 5.2.5.5:
Multiphase oxygen chemistry / 5.2.6:
Hydrogen peroxide / 5.2.6.1:
Ozone / 5.2.6.2:
Stratospheric oxygen chemistry / 5.2.7:
Nitrogen / 5.3:
Natural occurrence and sources / 5.3.1:
Thermal dissociation of dinitrogen (N2) / 5.3.2:
Ammonia (NH3) / 5.3.3:
Dinitrogen oxide (N2O) / 5.3.4:
Inorganic nitrogen oxides and oxoacids (NOy) / 5.3.5:
Gas-phase chemistry / 5.3.3.1:
Aqueous and interfacial chemistry / 5.3.5.2:
Organic nitrogen compounds / 5.3.6:
Amines, amides, and nitriles / 5.3.6.1:
Organic NOx compounds / 5.3.6.2:
Sulfur / 5.4:
Reduced sulfur: H2S, COS, CS2, and DMS / 5.4.1:
Oxides and oxoacids: SO2, H2SO3, SO3, and H2SO4 / 5.4.3:
Gas-phase SO2 oxidation / 5.4.3.1:
Aqueous-phase sulfur chemistry / 5.4.3.2:
Multiphase sulfur chemistry / 5.4.4:
Phosphorus / 5.5:
Carbon / 5.6:
Organic carbon and chemistry / 5.6.1:
Elemental carbon and soot / 5.6.2:
Inorganic C1 chemistry: CO, CO2, and H2CO3 / 5.6.3:
Aqueous chemistry / 5.6.3.1:
Hydrocarbon oxidation and organic radicals / 5.6.4:
Organic C1 chemistry: CH4, CH3OH, HCHO, HCOOH / 5.6.5:
C2 chemistry: C2H6, CH3CHO, C2H5OH, CH3COOH, and (COOH)2
Alkenes, atkynes, and ketones / 5.6.6.1:
Aromatic compounds / 5.6.8:
Is the atmospheric fate of complex organic compounds predictable? / 5.6.9:
Halogens (Cl, Br, F, and I) / 5.7:
Chlorine in the environment / 5.7.1:
Formation of sea salt and chlorine degassing / 5.7.2:
Metals and metalloids / 5.7.3:
General remarks / 5.8.1:
Alkali and alkaline earth metals: Na, K, Mg, and Ca / 5.8.2:
Iron: Fe / 5.8.3:
Mercury: Hg / 5.8.4:
Cadmium: Cd / 5.8.5:
Lead: Pb / 5.8.6:
Arsenic: As / 5.8.7:
Silicon (Si) and aluminum (Al) / 5.8.8:
Biogeochemistry and global cycling / 6:
The hydrosphere and the global water cycle / 6.1:
The hydrological cycle and the climate system / 6.1.1:
Soil water and groundwater; Chemical weathering / 6.1.2:
Surface water: Rivers and lakes / 6.1.3:
The oceans / 6.1.4:
Atmospheric waters (hydrometeors): Chemical composition / 6.1.5:
Fog / 6.1.5.1:
Rain (precipitation) / 6.1.5.3:
Biogeochemical cycling / 6.2:
Photosynthesis: Nonequilibrium redox processes / 6.2.1:
Primary production of carbon / 6.2.2:
Nitrogen cycling / 6.2.3:
Sulfur cycling / 6.2.4:
Natural sources of atmospheric substances / 6.3:
Source characteristics / 6.3.1:
Biological processes / 6.3.2:
Continental / 6.3.2.1:
Oceanic / 6.3.2.2:
Geogenic processes / 6.3.3:
Soil dust / 6.3.3.1:
Sea salt / 6.3.3.2:
Volcanism / 6.3.3.3:
Chemical processes / 6.3.4:
Lightning / 6.3.4.1:
Secondary atmospheric processes / 6.3.4.2:
List of acronyms and abbreviations used in this volume / A:
Quantities, units, and some useful numerical values / B:
References
Name Index
Subject Index
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
5.

図書

図書
Jeremy W. Dale and Simon F. Park
出版情報: Chichester, West Sussex : Wiley-Blackwell, 2010  xii, 388 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
DNA / 1.1.1:
RNA / 1.1.2:
Hydrophobic interactions / 1.1.3:
Different forms of the double helix / 1.1.4:
Supercoiling / 1.1.5:
Denaturation and hybridization / 1.1.6:
Orientation of nucleic acid strands / 1.1.7:
Replication of DNA / 1.2:
Unwinding and rewinding / 1.2.1:
Fidelity of replication; proofreading / 1.2.2:
Chromosome replication and cell division / 1.3:
DNA repair / 1.4:
Mismatch repair / 1.4.1:
Excision repair / 1.4.2:
Recombination (post-replication) repair / 1.4.3:
SOS repair / 1.4.4:
Gene expression / 1.5:
Transcription / 1.5.1:
Translation / 1.5.2:
Post-translational events / 1.5.3:
Gene organization / 1.6:
Mutation and Variation / 2:
Variation and evolution / 2.1:
Fluctuation test / 2.1.1:
Replica plating / 2.1.2:
Directed mutation in bacteria? / 2.1.3:
Types of mutation / 2.2:
Point mutations / 2.2.1:
Conditional mutants / 2.2.2:
Variation due to larger-scale DNA alterations / 2.2.3:
Extrachromosomal agents and horizontal gene transfer / 2.2.4:
Recombination / 2.3:
A model of the general (homologous) recombination process / 2.3.1:
Enzymes involved in recombination / 2.3.2:
Phenotypes / 2.4:
Restoration of phenotype / 2.4.1:
Mechanisms of mutation / 2.5:
Spontaneous mutation / 2.5.1:
Chemical mutagens / 2.5.2:
Ultraviolet irradiation / 2.5.3:
Isolation and identification of mutants / 2.6:
Mutation and selection / 2.6.1:
Isolation of other mutants / 2.6.2:
Molecular methods / 2.6.4:
Regulation of Gene Expression / 3:
Gene copy number / 3.1:
Transcriptional control / 3.2:
Promoters / 3.2.1:
Terminators, attenuators and anti-terminators / 3.2.2:
Induction and repression: regulatory proteins / 3.2.3:
Two-component regulatory systems / 3.2.4:
Global regulatory systems / 3.2.5:
Quorum sensing / 3.2.6:
Translational control / 3.3:
Ribosome binding / 3.3.1:
Codon usage / 3.3.2:
Stringent response / 3.3.3:
Regulatory RNA / 3.3.4:
Phase variation / 3.4:
Genetics of Bacteriophages / 4:
Bacteriophage structure / 4.1:
Single-strand DNA bacteriophages / 4.2:
ΦX174 / 4.2.1:
M13 / 4.2.2:
RNA-containing phages: MS2 / 4.3:
Double-stranded DNA phages / 4.4:
Bacteriophage T4 / 4.4.1:
Bacteriophage λ / 4.4.2:
Lytic and lysogenic regulation of bacteriophage λ / 4.4.3:
Restriction and modification / 4.5:
Bacterial resistance to phage attack / 4.6:
Complementation and recombination / 4.7:
Why are bacteriophages important? / 4.8:
Phage typing / 4.8.1:
Phage therapy / 4.8.2:
Phage display / 4.8.3:
Phages in the natural environment / 4.8.4:
Bacterial virulence and phage conversion / 4.8.5:
Plasmids / 5:
Some bacterial characteristics are determined by plasmids / 5.1:
Antibiotic resistance / 5.1.1:
Colicins and bacteriocins / 5.1.2:
Virulence determinants / 5.1.3:
Plasmids in plant-associated bacteria / 5.1.4:
Metabolic activities / 5.1.5:
Molecular properties of plasmids / 5.2:
Plasmid replication and control / 5.2.1:
Partitioning / 5.2.2:
Host range / 5.2.3:
Plasmid incompatibility / 5.2.4:
Plasmid stability / 5.3:
Plasmid integrity / 5.3.1:
Differential growth rate / 5.3.2:
Associating a plasmid with a phenotype / 5.4:
Gene Transfer / 6:
Transformation / 6.1:
Conjugation / 6.2:
Mechanism of conjugation / 6.2.1:
The F plasmid / 6.2.2:
Conjugation in other bacteria / 6.2.3:
Transduction / 6.3:
Specialized transduction / 6.3.1:
Consequences of recombination / 6.4:
Site-specific and non-homologous (illegitimate) recombination / 6.4.2:
Mosaic genes and chromosome plasticity / 6.5:
Genomic Plasticity: Movable Genes and Phase Variation / 7:
Insertion sequences / 7.1:
Structure of insertion sequences / 7.1.1:
Occurrence of insertion sequences / 7.1.2:
Transposons / 7.2:
Structure of transposons / 7.2.1:
Integrons / 7.2.2:
ISCR elements / 7.2.3:
Mechanisms of transposition / 7.3:
Replicative transposition / 7.3.1:
Non-replicative (conservative) transposition / 7.3.2:
Regulation of transposition / 7.3.3:
Activation of genes by transposable elements / 7.3.4:
Mu: A transposable bacteriophage / 7.3.5:
Conjugative transposons / 7.3.6:
Variation mediated by simple DNA inversion / 7.4:
Variation mediated by nested DNA inversion / 7.4.2:
Antigenic variation in the gonococcus / 7.4.3:
Phase variation by slipped-strand mispairing / 7.4.4:
Phase variation mediated by differential DNA methylation / 7.4.5:
Clustered regularly interspersed short palindromic repeats / 7.5:
Genetic Modification: Exploiting the Potential of Bacteria / 8:
Strain development / 8.1:
Generation of variation / 8.1.1:
Selection of desired variants / 8.1.2:
Overproduction of primary metabolites / 8.2:
Simple pathways / 8.2.1:
Branched pathways / 8.2.2:
Overproduction of secondary metabolites / 8.3:
Gene cloning / 8.4:
Cutting and joining DNA / 8.4.1:
Plasmid vectors / 8.4.2:
Bacteriophage λ vectors / 8.4.3:
Cloning larger fragments / 8.4.4:
Bacteriophage M13 vectors / 8.4.5:
Gene libraries / 8.5:
Construction of genomic libraries / 8.5.1:
Screening a gene library / 8.5.2:
Cloning PCR products / 8.5.3:
Construction of a cDNA library / 8.5.4:
Products from cloned genes / 8.6:
Expression vectors / 8.6.1:
Making new genes / 8.6.2:
Other bacterial hosts / 8.6.3:
Novel vaccines / 8.6.4:
Other uses of gene technology / 8.7:
Genetic Methods for Investigating Bacteria / 9:
Metabolic pathways / 9.1:
Complementation / 9.1.1:
Cross-feeding / 9.1.2:
Microbial physiology / 9.2:
Reporter genes / 9.2.1:
Chromatin immunoprecipitation / 9.2.2:
Cell division / 9.2.3:
Motility and chemotaxis / 9.2.4:
Cell differentiation / 9.2.5:
Bacterial virulence / 9.3:
Wide-range mechanisms of bacterial pathogenesis / 9.3.1:
Detection of virulence genes / 9.3.2:
Specific mutagenesis / 9.4:
Gene replacement / 9.4.1:
Antisense RNA / 9.4.2:
Taxonomy, evolution and epidemiology / 9.5:
Molecular taxonomy / 9.5.1:
GC content / 9.5.2:
16 S rRNA / 9.5.3:
Denaturing-gradient gel electrophoresis and temperature-gradient gel electrophoresis / 9.5.4:
Diagnostic use of PCR / 9.5.5:
Molecular epidemiology / 9.5.6:
Gene Mapping to Genomics and Beyond / 10:
Gene mapping / 10.1:
Conjugational analysis / 10.1.1:
Restriction mapping and pulsed-field gel electrophoresis / 10.1.2:
DNA sequence determination / 10.2:
Sanger sequencing / 10.2.1:
Dye terminator sequencing / 10.2.2:
Pyrosequencing / 10.2.3:
Massively parallel sequencing / 10.2.4:
Genome sequencing / 10.3:
Genome-sequencing strategies / 10.3.1:
Relating sequence to function / 10.3.2:
Metagenomics / 10.3.3:
Comparative genomics / 10.4:
Microarrays / 10.4.1:
Analysis of gene expression / 10.5:
Transcriptional analysis / 10.5.1:
Translational analysis / 10.5.2:
Metabolomics / 10.6:
Systems biology and synthetic genomics / 10.7:
Systems biology / 10.7.1:
Synthetic genomics / 10.7.2:
Conclusion / 10.8:
Further Reading / Appendix A:
Abbreviations Used / Appendix B:
Glossary / Appendix C:
Enzymes and other Proteins / Appendix D:
Genes / Appendix E:
Standard Genetic Code / Appendix F:
Bacterial Species / Appendix G:
Index
?X174
Bacteriophage ?
Lytic and lysogenic regulation of bacteriophage ?
Bacteriophage ? vectors
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
6.

図書

図書
Ilkka Havukkala
出版情報: Singapore : World Scientific, c2010  xv, 307 p. ; 24 cm
シリーズ名: Science, engineering, and biology informatics ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgement
About the Author
Introduction to Modern Molecular Biology / 1:
Cells store large amounts of information in DNA / 1.1:
Cells process complex information / 1.2:
Cellular life is chemically complex and somewhat stochastic / 1.3:
Challenges in analyzing complex biodata / 1.4:
References
Biodata Explosion / 2:
Primary sequence and structure data / 2.1:
DNA sequence databases / 2.1.1:
Protein sequence databases / 2.1.2:
Molecular structure databases / 2.1.3:
Secondary annotation data / 2.2:
Motif annotations / 2.2.1:
Gene function annotations / 2.2.2:
Genomic annotations / 2.2.3:
Inter-species phylogeny and gene family annotations / 2.2.4:
Experimental and personalized data / 2.3:
DNA expression profiles / 2.3.1:
Proteomics data and degradomics / 2.3.2:
Protein expression profiles, 2D gel and protein interaction data / 2.3.3:
Metabolomics and metabolic pathway databases / 2.3.4:
Personalized data / 2.3.5:
Semantic and processed text data / 2.4:
Ontologies / 2.4.1:
Text-mined annotation data / 2.4.2:
Integrated and federated databases / 2.5:
Local Pattern Discovery and Comparing Genes and Proteins / 3:
DNA/RNA motif discovery / 3.1:
Single motif models: MEME, AlignAce etc. / 3.1.1:
Multiple motif models: LOGOS and MotifRegressor / 3.1.2:
Informative k-mers approach / 3.1.3:
Protein motif discovery / 3.2:
InterProScan and other traditional methods / 3.2.1:
Protein k-mer and other string based methods / 3.2.2:
Genetic algorithms, particle swarms and ant colonies / 3.3:
Genetic algorithms / 3.3.1:
Particle swarm optimization / 3.3.2:
Ant colony optimization / 3.3.3:
Sequence visualization / 3.4:
Global Pattern Discovery and Comparing Genomes / 4:
Alignment-based methods / 4.1:
Pairwise genome-wide search algorithms: LAGAN, AVID etc. / 4.1.1:
Multiple alignment methods: MLAGAN, MAVID, MULTIZ etc. / 4.1.2:
Dotplots / 4.1.3:
Visualization of genome comparisons / 4.1.4:
Global motif maps / 4.1.5:
Alignmentless methods / 4.2:
K-mer based methods / 4.2.1:
Average common substring and compressibility based methods / 4.2.2:
2D portraits of genomes / 4.2.3:
Genome scale non-sequence data analysis / 4.3:
DNA physical structure based methods / 4.3.1:
Secondary structure based comparisons / 4.3.2:
Molecule Structure Based Searching and Comparison / 5:
Molecule structures as graphs or strings / 5.1:
3D to 1D transformations / 5.1.1:
Graph matching methods / 5.1.2:
Graph visualization / 5.1.3:
Graph grammars / 5.1.4:
RNA structure comparison and prediction / 5.2:
Image comparison based methods / 5.3:
Gabor filter based methods / 5.3.1:
Image symmetry set based methods / 5.3.2:
Other graph topology based methods / 5.3.3:
Function Annotation and Ontology Based Searching and Classification / 6:
Annotation ontologies / 6.1:
Gene Ontology based mining / 6.2:
Sequence similarity based function prediction / 6.3:
Cellular location prediction / 6.4:
New integrative methods: Utilizing networks / 6.5:
Text mining bioliterature for automated annotation / 6.6:
Natural language processing (NLP) / 6.6.1:
Semantic profiling / 6.6.2:
Matrix factorization methods / 6.6.3:
New Methods for Genomics Data: SVM and Others / 7:
SVM kernels / 7.1:
SVM trees / 7.2:
Methods for microarray data / 7.3:
Gene selection algorithms / 7.3.1:
Gene selection by consistency methods / 7.3.2:
Genome as a time series and discrete wavelet transform / 7.4:
Parameterless clustering for gene expression / 7.5:
Transductive confidence machines, conformal predictors and ROC isometrics / 7.6:
Text compression methods for biodata analysis / 7.7:
Integration of Multimodal Data: Toward Systems Biology / 8:
Comparative genome annotation systems / 8.1:
Phylogenetics methods / 8.2:
Network inference from interaction and coexpression data / 8.3:
Bayesian inference, association rule mining and Petri nets / 8.4:
Future Challenges / 9:
Network analysis methods / 9.1:
Unsupervised and supervised clustering / 9.2:
Neural networks and evolutionary methods / 9.3:
Semantic web and ontologization of biology / 9.4:
Biological data fusion / 9.5:
Rise of the GPU machines / 9.6:
Index
Preface
Acknowledgement
About the Author
7.

図書

図書
Guozhong Cao, Ying Wang
出版情報: Singapore : World Scientific, c2011  xiii, 581 p. ; 23 cm
シリーズ名: World scientific series in nanoscience and nanotechnology ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
Bottom-Up and Top-Down Approaches / 1.3:
Challenges in Nanotechnology / 1.4:
Scope of the Book / 1.5:
References
Physical Chemistry of Solid Surfaces / Chapter 2:
Surface Energy / 2.1:
Chemical Potential as a Function of Surface Curvature / 2.3:
Electrostatic Stabilization / 2.4:
Surface charge density / 2.4.1:
Electric potential at the proximity of solid surface / 2.4.2:
Van der Waals attraction potential / 2.4.3:
Interactions between two particles: DLVO theory / 2.4.4:
Steric Stabilization / 2.5:
Solvent and polymer / 2.5.1:
Interactions between polymer layers / 2.5.2:
Mixed steric and electric interactions / 2.5.3:
Summary / 2.6:
Zero-Dimensional Nanostructures: Nanoparticles / Chapter 3:
Nanoparticles Through Homogeneous Nucleation / 3.1:
Fundamentals of homogeneous nucleation / 3.2.1:
Subsequent growth of nuclei / 3.2.2:
Growth controlled by diffusion / 3.2.2.1:
Growth controlled by surface process / 3.2.2.2:
Synthesis of metallic nanoparticles / 3.2.3:
Influences of reduction reagents / 3.2.3.1:
Influences by other factors / 3.2.3.2:
Influences of polymer stabilizer / 3.2.3.3:
Synthesis of semiconductor nanoparticles / 3.2.4:
Synthesis of oxide nanoparticles / 3.2.5:
Introduction to sol-gel processing / 3.2.5.1:
Forced hydrolysis / 3.2.5.2:
Controlled release of ions / 3.2.5.3:
Vapor phase reactions / 3.2.6:
Solid-state phase segregation / 3.2.7:
Nanoparticles Through Heterogeneous Nucleation / 3.3:
Fundamentals of heterogeneous nucleation / 3.3.1:
Synthesis of nanoparticles / 3.3.2:
Kinetically Confined Synthesis of Nanoparticles / 3.4:
Synthesis inside micelles or using microemulsions / 3.4.1:
Aerosol synthesis / 3.4.2:
Growth termination / 3.4.3:
Spray pyrolysis / 3.4.4:
Template-based synthesis / 3.4.5:
Epitaxial Core-Shell Nanoparticles / 3.5:
One-Dimensional Nanostructures: Nanowires and Nanorods / 3.6:
Spontaneous Growth / 4.1:
Evaporation (dissolution)-condensation growth / 4.2.1:
Fundamentals of evaporation (dissolution)-condensation growth / 4.2.1.1:
Evaporation-condensation growth / 4.2.1.2:
Dissolution-condensation growth / 4.2.1.3:
Vapor (or solution)-liquid-solid (VLS or SLS) growth / 4.2.2:
Fundamental aspects of VLS and SLS growth / 4.2.2.1:
VLS growth of various nanowires / 4.2.2.2:
Control of the size of nanowires / 4.2.2.3:
Precursors and catalysts / 4.2.2.4:
Solution-liquid-solid growth / 4.2.2.5:
Stress-induced recrystallization / 4.2.3:
Template-Based Synthesis / 4.3:
Electrochemical deposition / 4.3.1:
Electrophoretic deposition / 4.3.2:
Template filling / 4.3.3:
Colloidal dispersion filling / 4.3.3.1:
Melt and solution filling / 4.3.3.2:
Chemical vapor deposition / 4.3.3.3:
Deposition by centrifugation / 4.3.3.4:
Converting through chemical reactions / 4.3.4:
Electrospinning / 4.4:
Lithography / 4.5:
Two-Dimensional Nanostructures: Thin Films / 4.6:
Fundamentals of Film Growth / 5.1:
Vacuum Science / 5.3:
Physical Vapor Deposition (PVD) / 5.4:
Evaporation / 5.4.1:
Molecular beam epitaxy (MBE) / 5.4.2:
Sputtering / 5.4.3:
Comparison of evaporation and sputtering / 5.4.4:
Chemical Vapor Deposition (CVD) / 5.5:
Typical chemical reactions / 5.5.1:
Reaction kinetics / 5.5.2:
Transport phenomena / 5.5.3:
CVD methods / 5.5.4:
Diamond films by CVD / 5.5.5:
Atomic Layer Deposition / 5.6:
Superlattices / 5.7:
Self-Assembly / 5.8:
Monolayers of organosilicon or alkylsilane derivatives / 5.8.1:
Monolayers of alkanethiols and sulfides / 5.8.2:
Monolayers of carboxylic acids, amines, and alcohols / 5.8.3:
Langmuir-Blodgett Films / 5.9:
Electrochemical Deposition / 5.10:
Sol-Gel Films / 5.11:
Special Nanomaterials / 5.12:
Carbon Fullerenes and Nanotubes / 6.1:
Carbon fullerenes / 6.2.1:
Fullerene-derived crystals / 6.2.2:
Carbon nanotubes / 6.2.3:
Micro and Mesoporous Materials / 6.3:
Ordered mesoporous structures / 6.3.1:
Random mesoporous structures / 6.3.2:
Crystalline microporous materials: Zeolites / 6.3.3:
Core-Shell Structures / 6.4:
Metal-oxide structures / 6.4.1:
Metal-polymer structures / 6.4.2:
Oxide-polymer nanostructures / 6.4.3:
Organic-Inorganic Hybrids / 6.5:
Class 1 hybrids / 6.5.1:
Class 2 hybrids / 6.5.2:
Intercalation Compounds / 6.6:
Nanocomposites and Nanograined Materials / 6.7:
Inverse Opals / 6.8:
Bio-Induced Nanomaterials / 6.9:
Nanostructures Fabricated by Physical Techniques / 6.10:
Photolithography / 7.1:
Phase-shifting photolithography / 7.2.2:
Electron beam lithography / 7.2.3:
X-ray lithography / 7.2.4:
Focused ion beam (FIB) lithography / 7.2.5:
Neutral atomic beam lithography / 7.2.6:
Nanomanipulation and Nanolithography / 7.3:
Scanning tunneling microscopy (STM) / 7.3.1:
Atomic force microscopy (AFM) / 7.3.2:
Near-field scanning optical microscopy (NSOM) / 7.3.3:
Nanomanipulation / 7.3.4:
Nanolithography / 7.3.5:
Soft Lithography / 7.4:
Microcontact printing / 7.4.1:
Molding / 7.4.2:
Nanoimprint / 7.4.3:
Dip-pen nanolithography / 7.4.4:
Assembly of Nanoparticles and Nanowires / 7.5:
Capillary forces / 7.5.1:
Dispersion interactions / 7.5.2:
Shear-force-assisted assembly / 7.5.3:
Electric-field-assisted assembly / 7.5.4:
Covalently linked assembly / 7.5.5:
Gravitational-field-assisted assembly / 7.5.6:
Template-assisted assembly / 7.5.7:
Other Methods for Microfabrication / 7.6:
Characterization and Properties of Nanomaterials / 7.7:
Structural Characterization / 8.1:
X-ray diffraction (XRD) / 8.2.1:
Small angle X-ray scattering (SAXS) / 8.2.2:
Scanning electron microscopy (SEM) / 8.2.3:
Transmission electron microscopy (TEM) / 8.2.4:
Scanning probe microscopy (SPM) / 8.2.5:
Gas adsorption / 8.2.6:
Chemical Characterization / 8.3:
Optical spectroscopy / 8.3.1:
Electron spectroscopy / 8.3.2:
Ion spectrometry / 8.3.3:
Physical Properties of Nanomaterials / 8.4:
Melting points and lattice constants / 8.4.1:
Mechanical properties / 8.4.2:
Optical properties / 8.4.3:
Surface plasmon resonance / 8.4.3.1:
Quantum size effects / 8.4.3.2:
Electrical conductivity / 8.4.4:
Surface scattering / 8.4.4.1:
Change of electronic structure / 8.4.4.2:
Quantum transport / 8.4.4.3:
Effect of microstructure / 8.4.4.4:
Ferroelectrics and dielectrics / 8.4.5:
Superparamagnetism / 8.4.6:
Applications of Nanomaterials / 8.5:
Molecular Electronics and Nanoelectronics / 9.1:
Nanobots / 9.3:
Biological Applications of Nanoparticles / 9.4:
Catalysis by Gold Nanoparticles / 9.5:
Bandgap Engineered Quantum Devices / 9.6:
Quantum well devices / 9.6.1:
Quantum dot devices / 9.6.2:
Nanomechanics / 9.7:
Carbon Nanotube Emitters / 9.8:
Energy Applications of Nanomaterials / 9.9:
Photoelectrochemical cells / 9.9.1:
Lithium-ion rechargeable batteries / 9.9.2:
Hydrogen storage / 9.9.3:
Thermoelectrics / 9.9.4:
Environmental Applications of Nanomaterials / 9.10:
Photonic Crystals and Plasmon Waveguides / 9.11:
Photonic crystals / 9.11.1:
Plasmon waveguides / 9.11.2:
Appendices / 9.12:
Index
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
8.

図書

図書
Kiyoko F. Aoki-Kinoshita
出版情報: Boca Raton : CRC Press, c2010  xvii, 244 p. ; 25 cm
シリーズ名: Chapman and Hall/CRC mathematical & computational biology series / series editors Alison M. Etheridge ... [et al.] ; 28
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
About the Author
Introduction to Glycobiology / 1:
Roles of carbohydrates / 1.1:
Glycan structures / 1.2:
Glycan classes / 1.3:
Glycan biosynthesis / 1.4:
N-linked glycans / 1.4.1:
O-linked glycans / 1.4.2:
Glycosaminoglycans (GAGs) / 1.4.3:
Glycosphingolipids (GSLs) / 1.4.4:
GPI anchors / 1.4.5:
LPS / 1.4.6:
Glycan motifs / 1.5:
Potential for drug discovery / 1.6:
Background / 2:
Glycan nomenclature / 2.1:
InChIÖ / 2.1.1:
(Extended) IUPAC format / 2.1.2:
CarbBank format / 2.1.3:
KCF format / 2.1.4:
LINUCS format / 2.1.5:
BCSDB format / 2.1.6:
Linear Code" / 2.1.7:
GlycoCT format / 2.1.8:
XML representations / 2.1.9:
Lectin-glycan interactions / 2.2:
Families and types of lectins / 2.2.1:
Carbohydrate-binding mechanism of lectins / 2.2.2:
Carbohydrate-carbohydrate interactions / 2.3:
Databases / 3:
Glycan structure databases / 3.1:
KEGG GLYCAN / 3.1.1:
GLYCOSCIENCES.de / 3.1.2:
CFG / 3.1.3:
BCSDB / 3.1.4:
GLYCO3D / 3.1.5:
MonoSaccharideDB / 3.1.6:
GlycomeDB / 3.1.7:
Glyco-gene databases / 3.2:
KEGG BRITE / 3.2.1:
GGDB / 3.2.2:
CAZy / 3.2.4:
Lipid databases / 3.3:
SphingoMAP© / 3.3.1:
LipidBank / 3.3.2:
LMSD / 3.3.3:
Lectin databases / 3.4:
Lectines / 3.4.1:
Animal Lectin DB / 3.4.2:
Others / 3.5:
GlycoEpitopeDB / 3.5.1:
ECODAB / 3.5.2:
SugarBindDB / 3.5.3:
Glycome Informatics / 4:
Terminology and notations / 4.1:
Algorithmic techniques / 4.2:
Tree structure alignment / 4.2.1:
Linkage analysis using score matrices / 4.2.2:
Glycan variation map / 4.2.3:
Bioinformatic methods / 4.3:
Glycan structure prediction from glycogene microarrays / 4.3.1:
Glyco-gene sequence and structure analysis / 4.3.2:
Glyco-related pathway analysis / 4.3.3:
Mass spectral data annotation / 4.3.4:
Data mining techniques / 4.4:
Kernel methods / 4.4.1:
Frequent subtree mining / 4.4.2:
Probabilistic models / 4.4.3:
Glycomics tools / 4.5:
Visualization tools / 4.5.1:
Pathway analysis tools / 4.5.2:
PDB data analysis / 4.5.3:
3D analysis tools / 4.5.4:
Molecular dynamics / 4.5.5:
Spectroscopic tools / 4.5.6:
NMR tools / 4.5.7:
Potential Research Projects / 5:
Sequence and structural analyses / 5.1:
Glycan score matrix / 5.1.1:
Visualization / 5.1.2:
Databases and techniques to integrate heterogeneous data sets / 5.2:
Automated characterization of glycans from MS data / 5.3:
Prediction of glycans from data other than MS / 5.4:
Biomarker prediction / 5.5:
Systems analyses / 5.6:
Drug discovery / 5.7:
Sequence Analysis Methods / A:
Pairwise sequence alignment (dynamic programming) / A.1:
Dynamic programming / A.1.1:
Sequence alignment / A.1.2:
BLOSUM (BLOcks Substitution Matrix) / A.2:
Machine Learning Methods / B:
Kernel methods and SVMs / B.1:
Hidden Markov models / B.2:
The three problems of interest for HMMs / B.2.1:
Expectation-Maximization (EM) algorithm / B.2.2:
Hidden tree Markov models / B.2.3:
Profile Hidden Markov models (profile HMMs) / B.2.4:
Glycomics Technologies / C:
Mass spectrometry (MS) / C.1:
MALDI-MS / C.1.l:
FT-ICR / C.1.2:
LC-MS (HPLC) / C.1.3:
Tandem MS / C.1.4:
Nuclear magnetic resonance (NMR) / C.2:
References
Index
List of Tables
List of Figures
About the Author
9.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xix, 431 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
Introduction / 1.1:
Biocompatible Coatings / 1.2:
Protein-Repellant Coatings / 1.2.1:
Pegylated Thin Films / 1.2.1.1:
Non-Pegylated Hydrophilic Thin Films / 1.2.1.2:
Thin Films of Hyperbranched Polymers / 1.2.1.3:
Multilayer Thin Films / 1.2.1.4:
Antithrombogenic Coatings / 1.2.2:
Surface Chemistry and Blood Compatibility / 1.2.2.1:
Membrane-Mimetic Thin Films / 1.2.2.2:
Heparin-Mimetic Thin Films / 1.2.2.3:
Clot-Lyzing Thin Films / 1.2.2.4:
Polyelectrolyte Multilayer Thin Films / 1.2.2.5:
Polyurethane Coatings / 1.2.2.6:
Vapor-Deposited Thin Films / 1.2.2.7:
Antimicrobial Coatings / 1.2.3:
Cationic Polymers / 1.2.3.1:
Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides / 1.2.3.2:
Antibiotic-Conjugated Polymer Thin Films / 1.2.3.3:
Biomimetic Antibacterial Coatings / 1.2.3.4:
Thin Films Resistant to the Adhesion of Viable Bacteria" / 1.2.3.5:
Coatings for Tissue Engineering Substrates / 1.3:
Zwitterionic Thin Films / 1.3.1:
Polysaccharide-Based Thin Films / 1.3.3:
Temperature-Responsive Polymer Coatings / 1.3.6:
Electroactive Thin Films / 1.3.8:
Other Functional Polymer Coatings / 1.3.9:
Multilayer Thin Films for Cell Encapsulation / 1.3.10:
Patterned Thin Films / 1.3.11:
Polymer Thin Films for Drug Delivery / 1.4:
Polymer Thin Films for Gene Delivery / 1.5:
Conclusions / 1.6:
References
Biofunctionalization of Polymeric Thin Films and Surfaces / Holger Schönherr2:
Introduction: The Case of Biofunctionalized Surfaces and Interfaces / 2.1:
Polymer-Based Biointerfaces / 2.2:
Requirements for Biofunctionalized Polymer Surfaces / 2.2.1:
Surface Modification Using Functional Polymers and Polymer-Based Approaches / 2.2.2:
Grafting of Polymers to Surfaces / 2.2.2.1:
Polymer Brushes by Surface-Initiated Polymerization / 2.2.2.2:
Physisorbed Multifunctional Polymers / 2.2.2.3:
Multipotent Covalent Coatings / 2.2.2.4:
Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches / 2.2.2.5:
Surface Modification of Polymer Surfaces, and Selected Examples / 2.2.3:
Coupling and Bioconjugation Strategies / 2.2.3.1:
Interaction with Cells / 2.2.3.2:
Patterned Polymeric Thin Films in Biosensor Applications / 2.2.3.3:
Summary and Future Perspectives / 2.3:
Stimuli-Responsive Polymer Nanocoatings / Ana L. Cordeiro3:
Stimuli-Responsive Polymers / 3.1:
Polymers Responsive to Temperature / 3.2.1:
Polymers Responsive to pH / 3.2.2:
Dual Responsive/Multiresponsive Polymers / 3.2.3:
Intelligent Bioconjugates / 3.2.4:
Responsive Biopolymers / 3.2.5:
Polymer Films and Interfacial Analysis / 3.3:
Applications / 3.4:
Release Matrices / 3.4.1:
Cell Sheet Engineering / 3.4.2:
Biofilm Control / 3.4.3:
Cell Sorting / 3.4.4:
Stimuli-Modulated Membranes / 3.4.5:
Chromatography / 3.4.6:
Microfluidics and Laboratory-on-a-Chip / 3.4.7:
Acknowledgments / 3.5:
Ceramic Nanocoatings and Their Applications in the Life Sciences / Eng San Thian4:
Magnetron Sputtering / 4.1:
Physical and Chemical Properties of SiHA Coatings / 4.3:
Biological Properties of SiHA Coatings / 4.4:
In Vitro Acellular Testing / 4.4.1:
In Vitro Cellular Testing / 4.4.2:
Future Perspectives / 4.5:
Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications / Shiho Tokonami ; Hiroshi Shiigi ; Tsutomu Nagaoka4.6:
Preparation of Various AuNPs / 5.1:
Functionalization of AuNPs and their Applications through Aggregation / 5.3:
AuNP Assemblies and Arrays / 5.4:
AuNP Assemblies Structured on Substrates / 5.4.1:
AuNP Assembly on Biotemplates / 5.4.2:
AuNP Arrays for Gas Sensing / 5.4.3:
AuNP Arrays for Biosensing / 5.4.4:
Thin Films on Titania, and Their Applications in the Life Sciences / Izabella Brand ; Martina Nullmeier5.5:
Titanium in Contact with a Biomaterial / 6.1:
Lipid Bilayers at the Titania Surface / 6.3:
Formation of Lipid Bilayers on the Titania Surface / 6.3.1:
Spreading of Vesicles on a TiO2 Surface: Comparison to a SiO2 Surface / 6.3.1.1:
Interactions: lipid Molecule-Titania Surface / 6.3.2:
Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface / 6.3.3:
Structure of Phosphatidylcholine on the Titania Surface / 6.3.3.1:
Characteristics of Extracellular Matrix Proteins on the Titania Surface / 6.4:
Collagen Adsorption on Titania Surfaces / 6.4.1:
Morphology of Collagen Adsorbed on an Oxidized Titanium Surface / 6.4.1.1:
Adsorption of Collagen on a Hydroxylated Titania Surface / 6.4.1.2:
Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface / 6.4.1.3:
Structure of Collagen on the Titania Surface: Theoretical Predictions / 6.4.1.4:
Fibronectin Adsorption on the Titania Surface / 6.4.2:
Morphology of Fibronectin Adsorbed on the Titania Surface / 6.4.2.1:
Fibronectin-Titania Interactions / 6.4.2.2:
Structure of Fibronectin Adsorbed onto the Titania Surface / 6.4.2.3:
Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions / 6.4.2.4:
Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films / Xuanyong Liu ; Ying Xu ; Paul K. Chu6.4.2.5:
Preparation and Characterization of Nano-ZrO2 Films / 7.1:
Cathodic Arc Plasma Deposition / 7.2.1:
Plasma Spraying / 7.2.2:
Sol-Gel Methods / 7.2.3:
Electrochemical Deposition / 7.2.4:
Anodic Oxidation and Micro-Arc Oxidation / 7.2.5:
Bioactivity of Nano-ZrO2 Coatings and Films / 7.2.6:
Cell Behavior on Nano-ZrO2 Coatings and Films / 7.4:
Applications of Nano-ZrO2 Films to Biosensors / 7.5:
Free-Standing Nanostructured Thin Films / Izumi Ichinose8:
The Roles of Free-Standing Thin Films / 8.1:
Films as Partitions / 8.2.1:
Nanoseparation Membranes / 8.2.2:
Biomembranes / 8.2.3:
Free-Standing Thin Films with Bilayer Structures / 8.3:
Supported Lipid Bilayers and "Black Lipid Membranes" / 8.3.1:
Foam Films and Newton Black Films / 8.3.2:
Dried Foam Film / 8.3.3:
Foam Films of Ionic Liquids / 8-3.4:
Free-Standing Thin Films Prepared with Solid Surfaces / 8.4:
Free-Standing Thin Films of Nanoparticles / 8.5:
Nanofibrous Free-Standing Thin Films / 8.6:
Electrospinning and Filtration Methods / 8.6.1:
Metal Hydroxide Nanostrands / 8.6.2:
Nanofibrous Composite Films / 8:6.3:
Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences / Euiseok Kim ; Yuan-Shin Lee ; Ravi Aggarwal ; Roger J. Narayan8.6.4:
Dip-Pen Nanolithography / 9.1:
Important Parameters / 9.2.1:
Applications of DPN / 9.2.2:
Direct and Indirect Patterning of Biomaterials Using DPN / 9.3:
Background / 9.3.1:
Direct Patterning / 9.3.2:
Indirect Patterning / 9.3.3:
Applications of DPN for Medical Diagnostics and Drug Development / 9.4:
General Methods of Nano/Micro Bioarray Patterning / 9.4.1:
Virus Array Generation and Detection Tests / 9.4.2:
Diagnosis of Allergic Disease / 9.4.3:
Cancer Detection Using Nano/Micro Protein Arrays / 9.4.4:
Drug Development / 9.4.5:
Lab-on-a-Chip Using Microarrays / 9.4.6:
Summary and Future Directions / 9.5:
Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales / Zuankai Wang ; Nikhil Koratkar10:
Wetting and Contact Angle / 10.1:
Design and Creation of Superhydrophobic Surfaces / 10.3:
Design Parameters for a Robust Composite Interface / 10.3.1:
Creation of Superhydrophobic Surfaces / 10.3.2:
Superhydrophobic Surfaces with Unitary Roughness / 10.3.3:
Superhydrophobic Surfaces with Two-Scale Roughness / 10.3.4:
Superhydrophobic Surfaces with Reentrant Structure / 10.3.5:
Impact Dynamics of Water on Superhydrophobic Surfaces / 10.4:
Impact Dynamics on Nanostructured MWNT Surfaces / 10.4.1:
Impact Dynamics on Micropattemed Surfaces / 10.4.2:
Electrically Controlled Wettability Switching on Superhydrophobic Surfaces / 10.5:
Reversible Control of Wettability Using Electrostatic Methods / 10.5.1:
Electrowetting on Superhydrophobic Surfaces / 10.5.2:
Novel Strategies for Reversible Electrowetting on Rough Surfaces / 10.5.3:
Electrochemically Controlled Wetting of Superhydrophobic Surfaces / 10.6:
Polarity-Dependent Wetting of Nanotube Membranes / 10.6.1:
Mechanism of Polarity-Dependent Wetting and Transport / 10.6.2:
Potential Applications of Electrochemically Controlled Wetting and Transport / 10.6.3:
Imaging of Thin Films, and Its Application in the Life Sciences / Silvia Mittler10.7:
Thin Film Preparation Methods / 11.1:
Dip-Coating / 11.2.1:
Spin-Coating / 11.2.2:
Langmuir-Blodgett (LB) Films
Self-Assembled Monolayers / 11.2.4:
Layer-by-Layer Assembly / 11.2.5:
Polymer Brushes: The "Grafting-From" Approach / 11.2.6:
Structuring: The Micro- and Nanostructuring of Thin Films / 11.3:
Photolithography / 11.3.1:
Ion Lithography and FIB Lithography / 11.3.2:
Electron lithography / 11.3.3:
Micro-Contact Printing and Nanoimprinting (NIL) / 11.3.4:
Near-Field Scanning Methods / 11.3.5:
Other Methods / 11.3.6:
Imaging Technologies / 11.4:
The Concept of Total Internal Reflection / 11.4.1:
The Concept of Waveguiding / 11.4.2:
Brewster Angle Microscopy (BAM) / 11.4.3:
Resonant Evanescent Methods / 11.4.4:
Surface Plasmon Resonance Microscopy / 11.4.4.1:
Waveguide Resonance Microscopy / 11.4.4.2:
Surface Plasmon Enhanced Fluorescence Microscopy / 11.4.4.3:
Waveguide Resonance Microscopy with Electro-Optical Response / 11.4.4.4:
Nonresonant Evanescent Methods / 11.4.5:
Total Internal Reflection Fluorescence (TIRF) Microscopy / 11.4.5.1:
Waveguide Scattering Microscopy / 11.4.5.2:
Waveguide Evanescent Field Fluorescence Microscopy (WEFFM) / 11.4.5.3:
Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy / 11.4.5.4:
Application of Thin Films in the Life Sciences / 11.5:
Sensors / 11.5.1:
Surface Functionalization for Biocompatibility / 11.5.2:
Drug Delivery / 11.5.3:
Bioreactors / 11.5.4:
Cell-Surface Mimicking / 11.5.5:
Summary / 11.6:
Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films / Takeshi Hasegawa12:
Characterization of Ultrathin Films of Soft Materials / 12.1:
X-Ray Diffraction Analysis / 12.2.1:
Infrared Transmission and Reflection Spectroscopy / 12.2.2:
Multiple-Angle Incidence Resolution Spectrometry (MAIRS) / 12.2.3:
Theoretical Background of MAIRS / 12.2.3.1:
Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS / 12.2.3.2:
Analysis of Metal Thin Films / 12.2.3.3:
Index
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
10.

図書

図書
edited by Thomas Wirth
出版情報: Weinheim : Wiley-VCH, c2012  xiv, 448 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
General Introduction / 1.1:
Synthesis of Electrophilic Selenium Reagents / 1.1.1:
Reactivity and Properties / 1.1.2:
Addition Reactions to Double Bonds / 1.2:
Addition Reaction Involving Oxygen Centered Nucleophiles / 1.2.1:
Addition Reaction Involving Nitrogen Centered Nucleophiles / 1.2.2:
Addition Reactions Involving Carbon Centered Nucleophiles / 1.2.3:
Addition Reaction Involving Chiral Nucleophiles or Chiral Substrates / 1.2.4:
Selenocyclizations / 1.3:
Oxygen Nucleophiles / 1.3.1:
Nitrogen Nucleophiles / 1.3.2:
Competition between Oxygen and Nitrogen Nucleophiles / 1.3.3:
Carbon Nucleophiles / 1.3.4:
Double Cyclization Reactions / 1.3.5:
References
Nucleophilic Selenium / Michio Iwaoka2:
Introduction / 2.1:
Development of Nucleophilic Selenium Reagents / 2.1.1:
Examples of Recent Applications / 2.1.2:
Properties of Selenols and Selenolates / 2.2:
Electronegativity of Selenium / 2.2.1:
Tautomerism of Selenols / 2.2.2:
Nudeophilicity of Selenolates / 2.2.3:
Inorganic Nucleophilic Selenium Reagents / 2.3:
Conventional Reagents / 2.3.1:
New Reagents / 2.3.2:
Organic Nucleophilic Selenium Reagents / 2.4:
Preparation / 2.4.1:
Structure / 2.4.2:
Ammonium Selenolates (NH4+) / 2.4.3:
Selenolates of Group 1 Elements (Li, Na, K, and Cs) / 2.4.4:
Selenolates of Group 2 Elements (Mg, Ca, and Ba) / 2.4.5:
Selenolates of Group 3 Elements (Sm, Ce, Pr, Nb, and U) / 2.4.6:
Selenolates of Group 4 Elements (Ti, Zr, and Hf) / 2.4.7:
Selenolates of Group 5 Elements (V, Nb, and Ta) / 2.4.8:
Selenolates of Group 6 Elements (Mo and W) / 2.4.9:
Selenolates of Group 7 Elements (Mn and Re) / 2.4.10:
Selenolates of Group 8 Elements (Fe,Ru, and Os) / 2.4.11:
Selenolates of Group 9 Elements (Co, Rh, and Ir) / 2.4.12:
Selenolates of Group 10 Elements (Ni,Pd, and Pt) / 2.4.13:
Selenolates of Group 11 Elements (Cu, Ag, and Au) / 2.4.14:
Selenolates of Group 12 Elements (Zn, Cd, and Hg) / 2.4.15:
Selenolates of Group 13 Elements (B, Al, Ga, and In) / 2.4.16:
Selenolates of Group 14 Elements (Si, Ge, Sn, and Pb) / 2.4.17:
Selenolates of Group 15 Elements (P, As, Sb, and Bi) / 2.4.18:
Selenium Compounds in Radical Reactions / W. Russell Bowman3:
Homolytic Substitution at Selenium to Generate Radical Precursors / 3.1:
Bimolecular SH2 Reactions: Synthetic Considerations / 3.1.1:
Radical Reagents / 3.1.1.1:
Alkyl Radicals from Selenide Precursors / 3.1.2:
Acyl Radicals from Acyl Selenide Precursors / 3.1.3:
Imidoyl Radicals from Imidoyl Selenides / 3.1.4:
Other Radicals from Selenide Precursors / 3.1.5:
Selenide Building Blocks / 3.2:
Solid Phase Synthesis / 3.3:
Selenide Precursors in Radical Domino Reactions / 3.4:
Homolytic Substitution at Selenium for the Synthesis of Se Containing Products / 3.5:
Intermolecular SH2 onto Se / 3.5.1:
Intramolecular SH2: Cyclization onto Se / 3.5.2:
Seleno Group Transfer onto Alkenes and Alkynes / 3.6:
Seleno Selenation / 3.6.1:
Seleno Sulfonation / 3.6.2:
Seleno Alkylation / 3.6.3:
PhSeH in Radical Reactions / 3.7:
Radical Clock Reactions / 3.7.1:
Problem of Unwanted Trapping of Intermediate Radicals / 3.7.2:
Catalysis of Starrnane-Mediated Reactions / 3.7.3:
Selenium Radical Anions, SRN1 Substitutions / 3.8:
Selenium Stabilized Carbanions / Joao V. Comasseto ; Alcindo A. Dos Santos ; Edison P. Wendler4:
Preparation of Selenium-Stabilized Carbanions / 4.1:
Deprotonation of Selenides / 4.2.1:
Element Lithium Exchange / 4.2.2:
Conjugate Addition of Organometallics to Vinyl and Alkynylselenides / 4.2.3:
Reactivity of the Selenium-Stabilized Carbanions with Electrophiles and Synthetic Transformations of the Products / 4.3:
Reaction of Selernum Stabilized Carbanions with Electrophiles / 4.3.1:
Selenium Based Transformations on the Reaction Products of Selenium Stabilized Carbanions with Electrophiles / 4.3.2:
Stereochemical Aspects / 4.4:
Cyclic Selenium Stabilized Carbanions / 4.4.1:
Acyclic Selenium Stabilized Carbanions / 4.4.2:
Application of Selenium Stabilized Carbanions in Total Synthesis / 4.5:
Examples Using Alkylation Reactions of Selenium Stabilized Carbanions / 4.5.1:
Examples Using the Addition of Selenium-Stabilized Carbanions to Carbonyl Compounds / 4.5.2:
Examples Using 1,4 Addition of Selenium-Stabihzed Carbanions to a,p-Unsaturated Carbonyl Compounds / 4.5.3:
Conclusion / 4.6:
Selenium Compounds with Valency Higher than Two / Jozef Drabowicz ; Jarosiaw Lewkowski ; Jacek Scianowski5:
Trivalent, Dicoordinated Selenonium Salts / 5.1:
Trivalent, Tricoordinated Derivatives / 5.3:
Tetravalent, Dicoordinated Derivatives / 5.4:
Tetravalent, Tricoordinated Derivatives / 5.5:
Pentavalent Derivatives / 5.6:
Hexavalent, Tetracoordinated Derivatives / 5.7:
Hypervalent Derivatives / 5.8:
Selenuranes / 5.8.1:
Selenurane Oxides / 5.8.2:
Perselenuranes / 5.8.3:
Acknowledgment
Selenocarbonyls / Toshiaki Murai6:
Overview / 6.1:
Theoretical Aspects of Selenocarbonyls / 6.2:
Molecular Structure of Selenocarbonyls / 6.3:
Synthetic Procedures of Selenocarbonyls / 6.4:
Manipulation of Selenocarbonyls / 6.5:
Metal Complexes of Selenocarbonyls / 6.6:
Future Aspects / 6.7:
Selenoxide Elimination and [2,3]-Sigmatropic Rearrangement / Yoshiaki Nishibayashi ; Sakae Uemura7:
Preparation and Properties of Chiral Selenoxides / 7.1:
Selenoxide Elimination / 7.3:
Enantioselective Selenoxide Elimination Producing Chiral Allenes and Unsaturated Ketones / 7.3.1:
Diastereoselective Selenoxide Elimination Producing Chiral Allenecarboxylic Esters / 7.3.2:
2,3-Sigmatropic Rearrangement via Allylic Selenoxides / 7.4:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.1:
Diastereoselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.2:
2,3-Sigmatropic Rearrangement via Allylic Selenimides / 7.5:
Preparation and Properties of Chiral Selenimides / 7.5.1:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Amines / 7.5.2:
Diastereoselective [2,3]-Sigmatropic Rearrangements Producing Chiral Allylic Amines / 7.5.3:
2,3-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6:
Preparation and Properties of Optically Active Selenium Ylides / 7.6.1:
Enantioselective [2,3]-Sigmatropic Rearrangements via Allylic Selenium Ylides / 7.6.2:
Diastereoselective [2,3]-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6.3:
Summary / 7.7:
Selenium Compounds as Ligands and Catalysts / Fateh V. Singh ; Thomas Wirth8:
Selenium-Catalyzed Reactions / 8.1:
Stereoselective Addition of Diorganozinc Reagents to Aldehydes / 8.2.1:
Diethylzinc Addition / 8.2.1.1:
Diphenylzinc Addition / 8.2.1.2:
Selenium-Ligated Transition Metal-Catalyzed Reactions / 8.2.2:
Selenium-Ligated Stereoselective Hydrosilylation of Ketones / 8.2.2.1:
Selenium-Ligated Copper-Catalyzed Addition of Organometallic Reagents to Enones / 8.2.2.2:
Selenium-Ligated Palladium-Catalyzed Asymmetric Allylic Alkylation / 8.2.2.3:
Selenium-Ligands in Palladium-Catalyzed Mizoroki-Heck Reactions / 8.2.2.4:
Selenium-Ligands in Palladium-Catalyzed Phenylselenenylation of Organohalides / 8.2.2.5:
Selenium-Ligands in Palladium-Catalyzed Substitution Reactions / 8.2.2.6:
Selenium-Ligands in the Palladium-Catalyzed Allylation of Aldehydes / 8.2.2.7:
Selenium-Ligands in Palladium-Catalyzed Condensation Reactions / 8.2.2.8:
Ruthenium-Catalyzed Substitution Reactions / 8.2.2.9:
Selenium-Ligands in Zinc-Catalyzed Intramolecular Hydroaminations / 8.2.2.10:
Selenium-Ligands in Organocatalytic Asymmetric Aldol Reactions / 8.2.3:
Selenium-Ligands in Stereoselective Darzens Reactions / 8.2.4:
Selenium-Catalyzed Carbonylation Reactions / 8.2.5:
Selective Reduction of a,p-Unsaturated Carbonyl Compounds / 8.2.6:
Selenium-Catalyzed Halogenations and Halocyclizations / 8.2.7:
Selenium-Catalyzed Staudinger-Vilarrasa Reaction / 8.2.8:
Selenium-Catalyzed Elimination Reactions of Diols / 8.2.9:
Selenium-Catalyzed Hydrostannylation of Alkenes / 8.2.10:
Selenium-Catalyzed Radical Chain Reactions / 8.2.11:
Selenium-Catalyzed Oxidation Reactions / 8.2.12:
Selenium-Catalyzed Epoxidation of Alkenes / 8.2.12.1:
Selenium-Catalyzed Dihydroxylation of Alkenes / 8.2.12.2:
Selenium-Catalyzed Oxidation of Alcohols / 8.2.12.3:
Baeyer-Villiger Oxidation / 8.2.12.4:
Selenium-Catalyzed Allylic Oxidation of Alkenes / 8.2.12.5:
Selenium-Catalyzed Oxidation of ArylAlkyl Ketones / 8.2.12.6:
Selenium-Catalyzed Oxidation of Primary Aromatic Amines / 8.2.12.7:
Selenium-Catalyzed Oxidation of Alkynes / 8.2.12.8:
Selenium-Catalyzed Oxidation of Halide Anions / 8.2.12.9:
Stereoselective Catalytic Selenenylation-Elimination Reactions / 8.2.13:
Selenium-Catalyzed Diels-Alder Reactions / 8.2.14:
Selenium-Catalyzed Synthesis of Thioacetals / 8.2.15:
Selenium-Catalyzed Baylis-Hillman Reaction / 8.2.16:
Biological and Biochemical Aspects of Selenium Compounds / Bhaskar J. Bhuyan ; Govindasamy Mugesh9:
Biological Importance of Selenium / 9.1:
Selenocysteine: The 21st Amino Acid / 9.3:
Biosynthesis of Selenocysteine / 9.4:
Chemical Synthesis of Selenocysteine / 9.5:
Chemical Synthesis of Sec-Containing Proteins and Peptides / 9.6:
Selenoenzymes / 9.7:
Glutathione Peroxidases / 9.7.1:
Iodothyronine Deiodinase / 9.7.2:
Synthetic Mimics of IDs / 9.7.3:
Thioredoxirn Reductase / 9.7.4:
öSe NMR Values / 9.8:
Index
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
11.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
12.

図書

図書
Georg Hager and Gerhard Wellein
出版情報: Boca Raton, Fla. : CRC Press, c2011  xxv, 330 p., [4] p. of plates ; 24 cm
シリーズ名: Chapman & Hall/CRC computational science series / series editer, Horst Simon
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
About the authors
List of acronyms and abbreviations
Modern processors / 1:
Stored-program computer architecture / 1.1:
General-purpose cache-based microprocessor architecture / 1.2:
Performance metrics and benchmarks / 1.2.1:
Transistors galore: Moore's Law / 1.2.2:
Pipelining / 1.2.3:
Superscalarity / 1.2.4:
SIMD / 1.2.5:
Memory hierarchies / 1.3:
Cache / 1.3.1:
Cache mapping / 1.3.2:
Prefetch / 1.3.3:
Multicore processors / 1.4:
Multithreaded processors / 1.5:
Vector processors / 1.6:
Design principles / 1.6.1:
Maximum performance estimates / 1.6.2:
Programming for vector architectures / 1.6.3:
Basic optimization techniques for serial code / 2:
Scalar profiling / 2.1:
Function- and line-based runtime profiling / 2.1.1:
Hardware performance counters / 2.1.2:
Manual instrumentation / 2.1.3:
Common sense optimizations / 2.2:
Do less work! / 2.2.1:
Avoid expensive operations! / 2.2.2:
Shrink the working set! / 2.2.3:
Simple measures, large impact / 2.3:
Elimination of common subexpressions / 2.3.1:
Avoiding branches / 2.3.2:
Using SIMD instruction sets / 2.3.3:
The role of compilers / 2.4:
General optimization options / 2.4.1:
Inlining / 2.4.2:
Aliasing / 2.4.3:
Computational accuracy / 2.4.4:
Register optimizations / 2.4.5:
Using compiler logs / 2.4.6:
C++ optimizations / 2.5:
Temporaries / 2.5.1:
Dynamic memory management / 2.5.2:
Loop kernels and iterators / 2.5.3:
Data access optimization / 3:
Balance analysis and lightspeed estimates / 3.1:
Bandwidth-based performance modeling / 3.1.1:
The STREAM benchmarks / 3.1.2:
Storage order / 3.2:
Case study: The Jacobi algorithm / 3.3:
Case study: Dense matrix transpose / 3.4:
Algorithm classification and access optimizations / 3.5:
O(N)/O(N) / 3.5.1:
Case study: Sparse matrix-vector multiply / 3.5.2:
Sparse matrix storage schemes / 3.6.1:
Optimizing JDS sparse MVM / 3.6.2:
Parallel computers / 4:
Taxonomy of parallel computing paradigms / 4.1:
Shared-memory computers / 4.2:
Cache coherence / 4.2.1:
UMA / 4.2.2:
ccNUMA / 4.2.3:
Distributed-memory computers / 4.3:
Hierarchical (hybrid) systems / 4.4:
Networks / 4.5:
Basic performance characteristics of networks / 4.5.1:
Buses / 4.5.2:
Switched and fat-tree networks / 4.5.3:
Mesh networks / 4.5.4:
Hybrids / 4.5.5:
Basics of parallelization / 5:
Why parallelize? / 5.1:
Parallelism / 5.2:
Data parallelism / 5.2.1:
Functional parallelism / 5.2.2:
Parallel scalability / 5.3:
Factors that limit parallel execution / 5.3.1:
Scalability metrics / 5.3.2:
Simple scalability laws / 5.3.3:
Parallel efficiency / 5.3.4:
Serial performance versus strong scalability / 5.3.5:
Refined performance models / 5.3.6:
Choosing the right scaling baseline / 5.3.7:
Case study: Can slower processors compute faster? / 5.3.8:
Load imbalance / 5.3.9:
Shared-memory parallel programming with OpenMP / 6:
Short introduction to OpenMP / 6.1:
Parallel execution / 6.1.1:
Data scoping / 6.1.2:
OpenMP worksharing for loops / 6.1.3:
Synchronization / 6.1.4:
Reductions / 6.1.5:
Loop scheduling / 6.1.6:
Tasking / 6.1.7:
Miscellaneous / 6.1.8:
Case study: OpenMP-parallel Jacobi algorithm / 6.2:
Advanced OpenMP: Wavefront parallelization / 6.3:
Efficient OpenMP programming / 7:
Profiling OpenMP programs / 7.1:
Performance pitfalls / 7.2:
Ameliorating the impact of OpenMP worksharing constructs / 7.2.1:
Determining OpenMP overhead for short loops / 7.2.2:
Serialization / 7.2.3:
False sharing / 7.2.4:
Case study: Parallel sparse matrix-vector multiply / 7.3:
Locality optimizations on ccNUMA architectures / 8:
Locality of access on ccNUMA / 8.1:
Page placement by first touch / 8.1.1:
Access locality by other means / 8.1.2:
Case study: ccNUMA optimization of sparse MVM / 8.2:
Placement pitfalls / 8.3:
NUMA-unfriendly OpenMP scheduling / 8.3.1:
File system cache / 8.3.2:
ccNUMA issues with C++ / 8.4:
Arrays of objects / 8.4.1:
Standard Template Library / 8.4.2:
Distributed-memory parallel programming with MPI / 9:
Message passing / 9.1:
A short introduction to MPI / 9.2:
A simple example / 9.2.1:
Messages and point-to-point communication / 9.2.2:
Collective communication / 9.2.3:
Nonblocking point-to-point communication / 9.2.4:
Virtual topologies / 9.2.5:
Example: MPI parallelization of a Jacobi solver / 9.3:
MPI implementation / 9.3.1:
Performance properties / 9.3.2:
Efficient MPI programming / 10:
MPI performance tools / 10.1:
Communication parameters / 10.2:
Synchronization, serialization, contention / 10.3:
Implicit serialization and synchronization / 10.3.1:
Contention / 10.3.2:
Reducing communication overhead / 10.4:
Optimal domain decomposition / 10.4.1:
Aggregating messages / 10.4.2:
Nonblocking vs. asynchronous communication / 10.4.3:
Understanding intranode point-to-point communication / 10.4.4:
Hybrid parallelization with MPI and OpenMP / 11:
Basic MPI/OpenMP programming models / 11.1:
Vector mode implementation / 11.1.1:
Task mode implementation / 11.1.2:
Case study: Hybrid Jacobi solver / 11.1.3:
MPI taxonomy of thread interoperability / 11.2:
Hybrid decomposition and mapping / 11.3:
Potential benefits and drawbacks of hybrid programming / 11.4:
Topology and affinity in multicore environments / A:
Topology / A.l:
Thread and process placement / A.2:
External affinity control / A.2.1:
Affinity under program control / A.2.2:
Page placement beyond first touch / A.3:
Solutions to the problems / B:
Bibliography
Index
Foreword
Preface
About the authors
13.

図書

図書
edited by R. Morris Bullock
出版情報: Weinheim : Wiley-VCH, c2010  xviii, 290 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
H* Transfer Between M-H Bonds and Organic Radicals / 1.1:
H* Transfer Between Ligands and Organic Radicals / 1.2:
H* Transfer Between M-H and C-C Bonds / 1.3:
Chain Transfer Catalysis / 1.4:
Catalysis of Radical Cydizations / 1.5:
Competing Methods for the Cyclization of Dienes / 1.6:
Summary and Conclusions / 1.7:
References
Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum / Richard R. Schrock2:
Some Characteristics of Triamidoamine Complexes / 2.1Introduction:
Possible [HIPTN3N]Mo Intermediates in a Catalytic Reduction of Molecular Nitrogen / 2.3:
MoN2 and MoN2- / 2.3.1:
Mo-N=NH / 2.3.2:
Conversion of Mo(N2) into Mo-N=NH / 2.3.3:
[Mo=N-NH2]+ / 2.3.4:
Mo=N and [Mo=NH]+ / 2.3.5:
Mo(NH3) and [Mo(NH3)+ / 2.3.6:
Interconversion of Mo(NH3) and Mo(N2) / 2.4:
Catalytic Reduction of Dinitrogen / 2.5:
MoH and Mo(H2) / 2.6:
Ligand and Metal Variations / 2.7:
Comments / 2.8:
Acknowledgements
Molybdenum and Tungsten Catalysts for Hydrogenation, Hydrosilylation and Hydrolysis / R. Morris Bullock3:
Introduction / 3.1:
Proton Transfer Reactions of Metal Hydrides / 3.2:
Hydride Transfer Reactions of Metal Hydrides / 3.3:
Stoichiometric Hydride Transfer Reactivity of Anionic Metal Hydride Complexes / 3.4:
Catalytic Hydrogenation of Ketones with Anionic Metal Hydrides / 3.5:
Ionic Hydrogenation of Ketones Using Metal Hydrides and Added Acid / 3.6:
Ionic Hydrogenations from Dihydrides: Delivery of the Proton and Hydride from One Metal / 3.7:
Catalytic Ionic Hydrogenations With Mo and W Catalysts / 3.8:
Mo Phosphine Catalysts With Improved lifetimes / 3.9:
Tungsten Hydrogenation Catalysts with N-Heterocyclic Carbene Ligands / 3.10:
Catalysts for Hydrosilylation of Ketones / 3.11:
Cp2Mo Catalysts for Hydrolysis, Hydrogenations and Hydrations / 3.12:
Conclusion / 3.13:
Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions / Paul J. Chink4:
Alkene Hydrogenation / 4.1:
Iron Carbonyl Complexes / 4.2.1:
Iron Phosphine Compounds / 4.2.2:
Bis(imino)pyridine Iron Complexes / 4.2.3:
α-Diimine Iron Complexes / 4.2.4:
Carbonyl Hydrogenation / 4.3:
Hydrosilylation / 4.3.1:
Bifunctional Complexes / 4.3.2:
Outlook / 4.4:
Olefin Oligomerizations and Polymerizations Catalyzed by Iron and Cobalt Complexes Bearing Bis(imino)pyridine Ligands / Vernon C. Gibson ; Gregory A. Solan5:
Precatalyst Synthesis / 5.1:
Ligand Preparation / 5.2.1:
Complexation with MX2 (M = Fe, Co) / 5.2.2:
Precatalyst Activation and Catalysis / 5.3:
Olefin Polymerization / 5.3.1:
Catalytic Evaluation / 5.3.1.1:
Steric Versus Electronic Effects / 5.3.1.2:
Effect of MAO Concentration / 5.3.1.3:
Effects of Pressure and Temperature / 5.3.1.4:
α-Olefin Monomers / 5.3.1.5:
Olefin Oligomerization / 5.3.2:
Substituent Effects / 5.3.2.1:
Schulz-Flory Distributions / 5.3.2.3:
Poisson Distributions / 5.3.2.4:
The Active Catalyst and Mechanism / 5.3.2.5:
Active Species / 5.4.:
Iron Catalyst / 5.4.1.1:
Cobalt Catalyst / 5.4.1.2:
Propagation and Chain Transfer Pathways/Theoretical Studies / 5.4.2:
Well-Defined Iron and Cobalt Alkyls / 5.4.3:
Other Applications / 5.5:
Immobilization / 5.5.1:
Reactor Blending and Tandem Catalysis / 5.5.2:
Conclusions and Outlook / 5.6:
Cobalt and Nickel Catalyzed Reactions Involving C-H and C-N Activation Reactions / Renee Becker ; William D. Jones6:
Catalysis with Cobal / 6.1:
Catalysis with Nickel / 6.3:
A Modular Approach to the Development of Molecular Electrocatalysts for H2 Oxidation and Production Based on Inexpensive Metals / M. Rakowski DuBois ; Daniel L. DuBois7:
Concepts in Catalyst Design Based on Structural Studies of Hydrogenase Enzymes / 7.1:
A Layered or Modular Approach to Catalyst Design / 7.3:
Using the First Coordination Sphere to Control the Energies of Catalytic Intermediates / 7.4:
Using the Second Coordination Sphere to Control the Movement of Protons between the Metal and the Exterior of the Molecular Catalyst / 7.5:
Integration of the First and Second Coordination Spheres / 7.6:
Summary / 7.7:
Nickel-Catalyzed Reductive Couplings and Cyclizations / Hasnain A. Malik ; Ryan D. Baxter ; John Montgomery8:
Couplings of Alkynes with α,β-Unsaturated Carbonyls / 8.1:
Three-Component Couplings via Alkyl Group Transfer-Methods Development / 8.2.1:
Reductive Couplings via Hydrogen Atom Transfer-Methods Development / 8.2.2:
Mechanistic Insights / 8.2.3:
Metallacycle-Based Mechanistic Pathway / 8.2.3.1:
Use in Natural Product Synthesis / 8.2.4:
Couplings of Alkynes with Aldehydes / 8.3:
Three-Component Couplings via Alkyl Group Transfer-Method Development / 8.3.1:
Reductive Couplings via Hydrogen Atom Transfer-Method Development / 8.3.2:
Simple Aldehyde and Alkyne Reductive Couplings / 8.3.2.1:
Directed Processes / 8.3.2.2:
Diastereoselective Variants: Transfer of Chirality / 8.3.2.3:
Asymmetric Variants / 8.3.2.4:
Cydocondensations via Hydrogen Gas Extrusion / 8.3.3:
Copper-Catalyzed Ligand Promoted Ullmann-type Coupling Reactions / Yongwen Jiang ; Dawei Ma8.3.5:
C-N Bond Formation / 9.1:
Arylation of Amines / 9.2.1:
Arylation of Aliphatic Primary and Secondary Amines / 9.2.1.1:
Arylation of Aryl Amines / 9.2.1.2:
Arylation of Ammonia / 9.2.1.3:
Arylation and Vinylation of N-Heterocycles / 9.2.2:
Coupling of Aryl Halides and N-Heterocycles / 9.2.2.1:
Coupling of Vinyl Bromides and N-Heterocycles / 9.2.2.2:
Aromatic Amidation / 9.2.3:
Cross-Coupling of aryl Halides with Amides and Carbamates / 9.2.3.1:
Cross-Coupling of Vinyl Halides with Amides or Carbamates / 9.2.3.2:
Cross-Coupling of Alkynl Halides with Amides or Carbamates / 9.2.3.3:
Azidation / 9.2.4:
C-0 Bond Formation / 19.3:
Synthesis of Diaryl Ethers / 9.3.1:
Aryloxylation of Vinyl Halides / 9.3.2:
Cross-Coupling of Aryl Halides with Aliphatic Alcohols / 9.3.3:
C-C Bond Formation / 9.4:
Cross-Coupling with Terminal Acetylene / 9.4.1:
The Arylation of Activated Methylene Compounds / 9.4.2:
Cyanation / 9.4.3:
C-S Bond Formation / 9.5:
The Formation of Bisaryl- and Arylalkyl-Thioethers / 9.5.1:
The Synthesis of Alkenylsulfides / 9.5.2:
Assembly of aryl Sulfones / 9.5.3:
C-P Bond Formation / 9.6:
Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) / M.G. Finn ; Valery V. Fokin9.7:
Azide-Alkyne Cycloaddition: Basics / 10.1:
Copper-Catalyzed Cycloadditions / 10.3:
Catalysts and Ligands / 10.3.1:
CuAAC with In Situ Generated Azides / 10.3.2:
Mechanistic Aspects of the CuAAC / 10.3.3:
Reactions of Sulfonyl Azides / 10.3.4:
Copper-Catalyzed Reactions with Other Dipolar Species / 10.3.5:
Examples of Application of the CuAAC Reaction / 10.3.6:
Synthesis of Compound libraries for Biological Screening / 10.3.6.1:
Copper-Binding Adhesives / 10.3.6.2:
Representative Experimental Procedures / 10.3.7:
"Frustrated Lewis Pairs": A Metal-Free Strategy for Hydrogenation Catalysis / Douglas W. Stephan11:
Phosphine-Borane Activation of H2 / 11.1:
"Frustrated Lewis Pairs" / 11.2:
Metal-Free Catalytic Hydxogenation / 11.3:
Future Considerations / 11.4:
Index
Preface
List of Contributors
Catalysis Involving the H* Transfer Reactions of First-Row Transition Metals / John Hartung ; Jack R. Norton1:
14.

図書

図書
Frank Schwierz, Hei Wong, Juin J. Liou
出版情報: Singapore : Pan Stanford Publishing, 2010  ix, 340 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Evolution of Silicon Electronics / 1:
Introduction / 1.1:
The Early Days of Semiconductor Electronics / 1.2:
Moore's Law / 1.3:
Further trends and the ITRS / 1.4:
Improved MOSFET Designs / 1.5:
MOSFETs for High-Frequency Operation? / 1.6:
MOSFET Theory / 2:
Different MOSFET Versions / 2.1:
Definitions of Threshold Voltage / 2.1.2:
MOS Fundamentals / 2.2:
Conventional Two-Terminal MOS Structure / 2.2.1:
Single-Gate and Double-Gate SOI MOS Structures / 2.2.2:
An Approximated Sheet Concentration Versus Gate Voltage Relationship / 2.2.3:
MOSFET Current -- Voltage Characteristics / 2.3:
Classical MOSFET Model / 2.3.1:
Two-Region MOSFET Model / 2.3.3:
Modified Two-Region Model / 2.3.4:
Effective Mobility / 2.3.5:
Scattering Model / 2.3.6:
Comparison and Assessment of the Four Transistor Models / 2.3.7:
Subthreshold Current / 2.3.8:
Series Resistances / 2.3.9:
Short-Channel Effects / 2.3.10:
The Concept of Scale Lengths / 2.3.12:
Nanoscale MOSFETs / 3:
MOSFET Scaling Theory / 3.1:
Constant-Field and Constant-Voltage Scaling / 3.1.1:
Generalized Scaling Approaches / 3.1.2:
Good Technology Rules / 3.1.3:
Nanoscale MOSFET Concepts -- An Overview / 3.2:
Nanoscale Bulk MOSFETs / 3.3:
Basic Structure / 3.3.1:
Doping Profiles / 3.3.2:
Mobility Enhancement Techniques / 3.4:
Strained Silicon / 3.4.1:
Hybrid-Orientation Technology / 3.4.2:
High-k Dielectrics and Metal Gates / 3.5:
Nanoscale Single-Gate SOI MOSFETs / 3.6:
Nanoscale Multiple-Gate MOSFETs / 3.7:
Double-Gate MOSFETs / 3.7.1:
Tri-Gate MOSFETs and Gate-All-Around MOSFETs / 3.7.2:
Nanowire MOSFETs / 3.7.3:
MOSFETs with Alternative Channel Materials / 3.8:
The Effect of Multiple Technology Boosters / 3.9:
MOSFETs for RF Applications / 4:
RF Transistor Figures of Merit / 4.1:
Gains / 4.2.1:
Minimum Noise Figure and Associated Gain / 4.2.2:
Output Power and Power-Added Efficiency / 4.2.4:
Small-Signal Equivalent Circuits / 4.3:
RF MOSFET Design and Performance / 4.4:
RF Small-Signal MOSFETs / 4.4.1:
RF Power MOSFETs / 4.4.2:
Comparison of RF CMOS and Competing RF Transistor Technologies / 4.4.3:
Why are Si MOSFETs so Fast? / 4.4.4:
Overview of Nanometer CMOS Technology / 5:
Lithography / 5.1:
Optical Lithography / 5.2.1:
Extremely Ultraviolet Lithography (EUV) / 5.2.3:
Electron Beam Lithography (E-Beam) / 5.2.4:
Imprint Lithography / 5.2.5:
Plasma Etching / 5.3:
Thin Film Formation Techniques / 5.4:
Overview / 5.4.1:
Chemical Vapor Deposition (CVD) / 5.4.2:
Metal-Organic Chemical Vapor Deposition (MOCVD) / 5.4.3:
Molecular Beam Epitaxy (MBE) / 5.4.4:
Atomic Layer Deposition (ALD) / 5.4.5:
Metal Film Deposition / 5.4.6:
Junction Formation / 5.5:
Ion Implantation / 5.5.1:
Plasma Doping / 5.5.2:
Interconnects / 5.6:
Summary / 5.7:
Outlook / 6:
Critical Scaling Issues / 6.1:
Issues Related to Device Physics / 6.2.1:
Power Consumption and Self-Heating / 6.2.2:
Interconnect Delays / 6.2.3:
Will There be a Mainstream Beyond-Scaling, Post-CMOS Technology? / 6.3:
Frequently Used Symbols / Appendix A:
Physical Constants and Unit Conversions / Appendix B:
Carrier Concentrations, Energy, and Potential / Appendix C:
Frequently Used Abbreviations / Appendix E:
Index
Preface
The Evolution of Silicon Electronics / 1:
Introduction / 1.1:
15.

図書

図書
Ricardo García
出版情報: Weinheim : Wiley-VCH-Verl, c2010  xiv, 179 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Annotation List
Introduction / 1:
Historical Perspective / 1.1:
Evolution Periods and Milestones / 1.2:
Early Times 1987-1992 / 1.2.1:
Exploration and Expansion 1993-1999 / 1.2.2:
Cantilever Tip Dynamics 2000-2006 / 1.2.3:
Multifrequency AFM 2007 to Present / 1.2.4:
Tapping Mode or Amplitude Modulation Force Microscopy? / 1.3:
Other Dynamic APM Methods / 1.4:
Frequency Modulation AFM / 1.4.1:
Amplitude Modulation versus Frequency Modulation AFM / 1.4.2:
Instrumental and Conceptual Aspects / 2:
Amplitude Modulation AFM / 2.1:
Elements of an Amplitude Modulation AFM / 2.3:
Feedback Controller / 2.3.1:
Optical Beam Deflection / 2.3.2:
Other Detection Methods / 2.3.3:
Tip Sample Motion System / 2.3.4:
Imaging Acquisition and Display / 2.3.5:
Cantilever-Tip System / 2.4:
Cantilevers / 2.4.1:
Tips / 2.4.2:
Excitation of Cantilever-Tip Oscillations / 2.4.3:
Calibration Protocols / 2.5:
Optical Sensitivity / 2.5.1:
Calibration of the Cantilever Force Constant / 2.5.2:
Thermal Noise Method / 2.5.2.1:
Sader Method / 2.5.2.2:
Common Experimental Curves / 2.6:
Resonance Curves in Air and liquids / 2.6.1:
Amplitude and Phase Shift Distance Curves / 2.6.2:
Displacements and Distances / 2.7:
Tip-Surface Interaction Forces / 3:
Van der Waals Forces / 3.1:
Contact Mechanics Forces / 3.3:
Derjaguin-Muller-Toporov Model / 3.3.1:
Johnson-Kendall-Roberts Model / 3.3.2:
Capillary Force / 3.4:
Forces in Liquid / 3.5:
Electrostatic Double-Layer Force / 3.5.1:
Derjaguin-Landau-Verwey-Overbeek Forces / 3.5.2:
Solvation Forces / 3.5.3:
Other Forces in Aqueous Solutions / 3.5.4:
Electrostatic Forces / 3.6:
Nonconservative Forces / 3.7:
Net Tip-Surface Force / 3.8:
Tip-Surface Force for a Stiff Material with Surface Adhesion Hysteresis / 3.8.1:
Tip-Surface Force for a Viscoelastic Material / 3.8.2:
Theory of Amplitude Modulation AFM / 4:
Equation of Motion / 4.1:
The Point-Mass Model: Elemental Aspects / 4.3:
The Harmonic Oscillator / 4.3.1:
Dynamics of a Weakly Perturbed Harmonic Oscillator / 4.3.2:
The Point-Mass Model: Analytical Approximations / 4.4:
Perturbed Harmonic Oscillator / 4.4.1:
Wang Model / 4.4.2:
Virial Dissipation Method / 4.4.3:
Peak and Average Forces / 4.5:
Peak Forces / 4.5.1:
Average Forces / 4.5.2:
The Point-Mass Model: Numerical Solutions / 4.6:
Attractive and Repulsive Interaction Regimes / 4.6.1:
Driving the Cantilever Below Resonance / 4.6.2:
The Effective Model / 4.7:
Appendix: The Runge-Kutta Algorithm
Advanced Theory of Amplitude Modulation AFM / 5:
Q-Control / 5.1:
Nonlinear Dynamics / 5.3:
Continuous Cantilever Beam Model / 5.4:
One-Dimensional Model / 5.4.1:
Equivalence between Point-Mass and Continuous Models / 5.5:
Systems Theory Description / 5.6:
Force Reconstruction Methods: Force versus Distance / 5.7:
Lee-Jhe Method / 5.7.1:
Hölscher Method / 5.7.2:
Time-Resolved Force / 5.8:
Acceleration / 5.8.1:
Higher Harmonics Method / 5.8.2:
Direct Time-Resolved Force Measurements / 5.8.3:
Amplitude Modulation AFM in Liquid / 6:
Qualitative Aspects of the Cantilever Dynamics in Liquid / 6.1:
Dynamics Far from the Surface / 6.2.1:
Dynamics Close to the Surface / 6.2.2:
Interaction Forces in Liquid / 6.3:
Some Experimental and Conceptual Considerations / 6.4:
Theoretical Descriptions of Dynamic AFM in Liquid / 6.5:
Analytical Descriptions: Far from the Surface / 6.5.1:
Analytical and Numerical Descriptions in the Presence of Tip-Surface Forces / 6.5.2:
Semianalytical Models / 6.5.3:
Finite Element Simulations / 6.5.4:
Phase Imaging Atomic Force Microscopy / 7:
Theory of Phase Imaging AFM / 7.1:
Phase Imaging Atomic AFM: High Q / 7.3.1:
Phase Imaging AFM: Low Q / 7.3.2:
Energy Dissipation Measurements at the Nanoscale / 7.4:
Energy Dissipation and Observables / 7.4.1:
Identification of Energy Dissipation Processes / 7.4.2:
Atomic and Nanoscale Dissipation Processes / 7.4.3:
Resolution, Noise, and Sensitivity / 8:
Spatial Resolution / 8.1:
Vertical Resolution and Noise / 8.2.1:
Lateral Resolution / 8.2.2:
Image Distortion and Surface Reconstruction / 8.3:
Force-Induced Surface Deformations / 8.4:
Atomic, Molecular, and Subnanometer Lateral Resolution / 8.5:
True Resolution / 8.5.1:
High-Resolution Imaging of Isolated Molecules / 8.6:
Conditions for High-Resolution Imaging / 8.7:
Image Artifacts / 8.8:
Multifrequency Atomic Force Microscopy / 9:
Normal Modes and Harmonics / 9.1:
Generation of Higher Harmonics / 9.2.1:
Coupling Eigenmodes and Harmonics / 9.2.2:
Imaging Beyond the Fundamental Mode / 9.2.3:
Bimodal AFM / 9.3:
Intermodulation Frequencies / 9.3.1:
Mode-Synthesizing Atomic Force Microscopy / 9.4:
Torsional Harmonic AFM / 9.5:
Band Excitation / 9.6:
Beyond Topographic Imaging / 10:
Scattering Near Field Optical Microscopy / 10.1:
Topography and Recognition Imaging / 10.3:
Tip Functionalization / 10.3.1:
Nanofabrication by AFM / 10.4:
AFM Oxidation Nanolithography / 10.4.1:
Patterning and Devices / 10.4.2:
References
Index
Preface
Annotation List
Introduction / 1:
16.

図書

図書
edited by John M. Chalmers, Howell G.M. Edwards, Michael D. Hargreaves
出版情報: Chichester : Wiley, 2012  xxviii, 618 p., [32] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
About the Editors
List of Contributors
Preface
Introduction / Section I:
Introduction and Scope / John M. Chalmers ; Howell G.M. Edwards ; Michael D. Hargreaves1:
Historical Prologue / 1.1:
The Application of Infrared Spectroscopy and Raman Spectroscopy in Forensic Science / 1.2:
References
Vibrational Spectroscopy Techniques: Basics and Instrumentation / 2:
Vibrational Spectroscopy Techniques / 2.1:
The basics and some comparisons / 2.2.1:
Wavelength/Wavenumber Ranges and Selection Rules / 2.2.1.1:
Sampling Considerations / 2.2.1.2:
Sensitivity, Surfaces and Signal Enhancement Techniques / 2.2.1.3:
IR and Raman Bands / 2.2.1.4:
Quantitative and classification analyses / 2.2.2:
Multivariate Data Analyses / 2.2.2.1:
Data Pre-Processing / 2.2.2.2:
Reference databases and search libraries/algorithms / 2.2.3:
Vibrational Spectroscopy: Instrumentation / 2.3:
Spectrometers / 2.3.1:
Sources / 2.3.1.1:
Detectors / 2.3.1.2:
Spectrometers and Interferometers / 2.3.1.3:
Vibrational spectroscopy-microscopy systems / 2.3.2:
Mapping and Imaging / 2.3.2.1:
Fibre optics and fibre-optic probes / 2.3.3:
Remote, portable, handheld, field-use, and stand-off vibrational spectroscopy instrumentation / 2.3.4:
Closing Remarks / 2.4:
Vibrational Spectroscopy Sampling Techniques / 3:
Vibrational Spectroscopy: Sampling Techniques / 3.1:
Raman spectroscopy / 3.2.1:
Raman Spectroscopy: Sampling Techniques and Considerations / 3.2.1.1:
Resonance Raman Spectroscopy / 3.2.1.2:
Surface Enhanced Raman Spectroscopy and Surface Enhanced Resonance Raman Spectroscopy / 3.2.1.3:
Spatially Offset Raman Spectroscopy / 3.2.1.4:
Transmission Raman Spectroscopy / 3.2.1.5:
Raman Microscopy/Microspectroscopy and Imaging / 3.2.1.6:
Remote and Fibre-Optic Probe Raman Spectroscopy / 3.2.1.7:
Mid-infrared spectroscopy / 3.2.2:
Mid-Infrared Transmission Spectroscopy: Sampling Techniques / 3.2.2.1:
Mid-Infrared Reflection Spectroscopy Sampling Techniques / 3.2.2.2:
Mid-Infrared Photoacoustic Spectroscopy / 3.2.2.3:
Mid-Infrared Microscopy/Microspectroscopy and Imaging / 3.2.2.4:
Near-infrared spectroscopy: sampling techniques / 3.2.3:
Near-Infrared Transmission Spectroscopy / 3.2.3.1:
Near-Infrared Diffuse Reflection Spectroscopy / 3.2.3.2:
Near-Infrared Transflection Spectroscopy / 3.2.3.3:
Near-Infrared Spectroscopy: Interactance and Fibre-Optic Probe Measurements / 3.2.3.4:
Near-Infrared Microscopy and Imaging / 3.2.3.5:
Terahertz/far-infrared spectroscopy: sampling techniques / 3.2.4:
Acknowledgements / 3.3:
Criminal Scene / Section II:
Criminal Forensic Analysis / Edward G. Bartick4:
Forensic Analysis / 4.1:
General Use of IR and Raman Spectroscopy in Forensic Analysis / 4.3:
Progression of infrared spectroscopy development in forensic analysis / 4.3.1:
Progression of Raman spectroscopy development in forensic analysis / 4.3.2:
Sampling methods / 4.3.3:
Microscopes / 4.3.3.1:
Reflection Methods / 4.3.3.2:
Gas Chromatography/IR / 4.3.3.3:
Spectral Imaging / 4.3.3.4:
Applications of Evidential Material Analysis / 4.4:
Polymers / 4.4.1:
General / 4.4.1.1:
Copy Toners / 4.4.1.2:
Fibres / 4.4.1.3:
Paints / 4.4.1.4:
Tapes / 4.4.1.5:
Drugs / 4.4.2:
Explosives / 4.4.3:
Fingerprint analysis / 4.4.4:
Summary and Future Direction / 4.5:
Forensic Analysis of Hair by Infrared Spectroscopy / Kathryn S. Kalasinsky
Basic Forensic Hair Analysis / 4.1.1:
Uniqueness of Hair to Chemical Analysis / 4.1.3:
Mechanism for Chemical Substance Incorporation into Hair / 4.1.4:
Applications / 4.1.5:
Disease Diagnosis / 4.1.6:
Summary / 4.1.7:
Raman Spectroscopy for Forensic Analysis of Household and Automotive Paints / Steven E.J. Bell ; Samantha P. Stewart ; W.J. Armstrong
Paint Composition / 4.2.1:
Analysis of Resin Bases / 4.2.3:
White Paint / 4.2.4:
Coloured Household Paints / 4.2.5:
Multi-Layer Paints / 4.2.6:
Automotive Paint / 4.2.7:
Conclusions / 4.2.8:
Raman Spectroscopy for the Characterisation of Inks on Written Documents / A. Guedes ; A.C. Prieto
Experimental
Chemical Differences in the Composition of Writing Inks through Time, and Modern Inks: Major Groups
Ink Discrimination / 4.3.4:
Forensic Test / 4.3.5:
Forensic Analysis of Fibres by Vibrational Spectroscopy / Peter M. Fredericks4.3.6:
Forensic importance of fibres
Types of fibres
Dyes
Why use vibrational spectroscopy?
Infrared Spectroscopy
Instrumentation and sample preparation / 4.4.2.1:
Transmission mid-IR microspectroscopy / 4.4.2.2:
ATR IR microspectroscopy / 4.4.2.3:
IR synchrotron radiation / 4.4.2.4:
Mid-IR imaging / 4.4.2.5:
Raman Spectroscopy
Application to fibres / 4.4.3.1:
Surface-enhanced Raman scattering / 4.4.3.2:
Raman spectroscopy of titania filler / 4.4.3.3:
Data Analysis
Acknowledgement / 4.4.5:
In Situ Crime Scene Analysis
Instrumentation / 4.5.1:
Raman spectrometers / 4.5.2.1:
Infrared spectrometers / 4.5.2.2:
Conditions of analysis / 4.5.3:
General chemical analysis / 4.5.3.2:
Conclusion / 4.5.3.3:
Raman spectroscopy gains currency / R. Withnall ; A. Reip ; J. Silver4.6:
Banknotes / 4.6.1:
Postage Stamps / 4.6.3:
Potential Forensic Applications / 4.6.4:
Counter Terrorism And Homeland Security / 4.6.5:
Counter Terrorism and Homeland Security / Vincent Otieno-Alego ; Naomi Speers5:
Infrared and Raman Spectroscopy for Explosives Identification / 5.1:
Level of chemical identification / 5.2.1:
Capability to analyse a large range of explosives and related chemicals / 5.2.2:
Other positive features of IR and Raman spectroscopy in explosive analysis / 5.2.3:
Case Studies - Example 1 / 5.2.4:
Portable IR and Raman Instruments / 5.3:
Case Studies - Example 2 / 5.3.1:
Post-Blast Examinations / 5.4:
Detection of Explosives in Fingerprints / 5.5:
Applications of SORS in explosive analysis / 5.6:
Terahertz Spectroscopy of Explosives / 5.7:
Sampling modes and sample preparation / 5.7.1:
THz spectroscopy of explosives and explosive related materials / 5.7.2:
Glossary / 5.8:
Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and Reliable Identification of Bioagents / P. R€osch ; U. M€unchberg ; S. St€ockel ; J. Popp
Toxins / 5.1.1:
Viruses / 5.1.3:
Bacteria / 5.1.4:
Bulk samples / 5.1.4.1:
Single bacterium identification / 5.1.4.2:
Raman Spectroscopic Studies of Explosives and Precursors: Applications and Instrumentation / Mary L. Lewis ; Ian R. Lewis ; Peter R. Griffiths5.1.5:
Background
UV Excited Raman Studies of Explosives
FT-Raman Studies of Explosives
Neither FT-Raman nor Traditional Dispersive Raman / 5.2.5:
Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies of Explosives / 5.2.6:
Dispersive Raman Studies of Explosives / 5.2.7:
Compact Dispersive Raman Spectrometers for the Study of Explosives / 5.2.8:
Stand-Off Raman of Explosives / 5.2.9:
Raman Microscopy and Imaging / 5.2.11:
Vehicle-Mounted Raman Analysers / 5.2.12:
Classification Schema for Explosives / 5.2.13:
Handheld Raman and FT-IR Spectrometers / Robert L. Green ; Wayne Jalenak ; Christopher D. Brown ; Craig Gardner5.2.14:
Handheld/Portable Raman and FT-IR Devices / 5.3.2:
Tactical Considerations / 5.3.3:
Sample Considerations / 5.3.5:
Raman and FT-IR Spectroscopy Explosive Identification Capabilities / 5.3.6:
Performance Characterisation / 5.3.7:
Disclaimer / 5.3.8:
Non-Invasive Detection of Concealed Liquid and Powder Explosives using Spatially Offset Raman spectroscopy / Kevin Buckley ; Pavel Matousek
Discussion and Examples / 5.4.1:
Terahertz Frequency Spectroscopy and its Potential for Security Applications / A.D. Burnett ; A.G. Davies ; P. Dean ; J.E. Cunningham ; E.H. Linfield5.4.3:
Terahertz Frequency Radiation / 5.5.1:
Terahertz Time-Domain Spectroscopy / 5.5.3:
Examples of the Use of THz Spectroscopy to Detect Materials of Security Interest / 5.5.4:
Drugs of abuse / 5.5.4.1:
Terahertz frequency imaging / 5.5.4.3:
Spectroscopy and imaging of concealed materials / 5.5.4.4:
Conclusions and Future Outlook / 5.5.5:
Drugs And Drugs Of Abuse / Section IV:
Raman Spectroscopy of Drugs of Abuse / S.J. Speers6:
Bulk Drugs / 6.1:
General Introduction / 6.2.1:
Experimental considerations / 6.2.2:
Laboratory-based methods / 6.2.3:
Screening and Identification / 6.2.3.1:
Quantitative Analysis / 6.2.3.2:
Composition Profiling / 6.2.3.3:
Raman outside the laboratory / 6.2.4:
Trace Detection / 6.3:
Drug microparticles / 6.3.1:
Surface-enhanced Raman spectroscopy / 6.3.2:
Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers / 6.4:
Advantages of Vibrational Spectroscopy / 6.1.1:
General Drugs of Abuse - Introduction / 6.1.3:
Vibrational Spectroscopy / 6.1.4:
Analysis of Street Samples / 6.1.5:
Considerations when analysing in situ / 6.1.5.1:
Considerations when analysing in the laboratory / 6.1.5.2:
New Narcotic Threats / 6.1.6:
Identification of Drug Precursors / 6.1.7:
Case Studies / 6.1.8:
Case study I / 6.1.8.1:
Case study II / 6.1.8.2:
Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman Spectroscopy / 6.1.9:
Application Examples
Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering / Karen Faulds ; W. Ewen Smith
Substrates
Direct Detection / 6.3.3:
Indirect Detection / 6.3.4:
Art / 6.3.5:
Vibrational Spectroscopy as a Tool for Tracing Art Forgeries / A. Deneckere ; P. Vandenabeele ; L. Moens7:
How to Trace Art Forgeries with Vibrational Spectroscopy? / 7.1:
Detection of anachronisms / 7.2.1:
Examples / 7.2.1.1:
Differentiation Between the Natural or Synthetic Form of a Pigment / 7.2.1.2:
Comparing with the artist's palette / 7.2.2:
Impurities / 7.2.3:
The Mercatellis Manuscripts / 7.2.3.1:
Spectroscopic Pigment Investigation of the Mayer van den Bergh Breviary / 7.2.3.2:
Identification of Dyes and Pigments by Vibrational Spectroscopy / Juan Manuel Madariaga7.3:
Review of the Scientific Literature / 7.1.1:
Databases of Reference Materials / 7.1.3:
Chemometric analysis of the spectral information / 7.1.3.1:
FT-IR and Raman Spectroscopy Applications / 7.1.4:
Identification of dyes, pigments and bulk materials / 7.1.4.1:
Attribution, authentication and counterfeit detection / 7.1.4.2:
Identification of degradation products and degradation mechanisms / 7.1.4.3:
The Vinland Map: An Authentic Relic of Early Exploration or a Modern Forgery - Raman Spectroscopy in a Pivotal Role?
The Scientific Analysis of the Vinland Map and Tartar Relation
Raman Microspectroscopic Study
Study of Manuscripts by Vibrational Spectroscopy / Lucia Burgio
Why Raman Microscopy? / 7.3.1:
Dating and Authentication / 7.3.3:
Provenance and Trade Routes / 7.3.4:
Archaeology And Mineralogy / 7.3.5:
Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy / J. Jehlicka8:
Applications of Raman Spectroscopy for Provenancing / 8.1:
Raman Spectroscopy of Minerals / 8.3:
Class 1: Elements / 8.3.1:
Carbon / 8.3.1.1:
Carbon and Graphitisation / 8.3.1.2:
Minerals from other groups of the mineralogical classification system / 8.3.2:
Class 2: Sulfides / 8.3.2.1:
Class 3: Halogenides / 8.3.2.2:
Class 4: Oxides and Hydroxides / 8.3.2.3:
Class 5: Carbonates and Nitrates / 8.3.2.4:
Class 6: Borates / 8.3.2.5:
Class 7: Sulfates / 8.3.2.6:
Class 8: Phosphates / 8.3.2.7:
Class 9: Silicates / 8.3.2.8:
Class 10: Organic Compounds / 8.3.2.9:
Opals / 8.4:
Natural Glass / 8.5:
Meteorites / 8.6:
Identification and Provenancing of Gemstones / 8.7:
Synthetic gemstones / 8.7.1:
Semi-precious minerals / 8.7.2:
Garnets / 8.7.3:
Common Minerals / 8.8:
Clays / 8.8.1:
Databases / 8.9:
Identification of Inclusions in Minerals / 8.10:
Raman Mapping Techniques / 8.11:
Analyses Outdoors and On Site / 8.12:
Applications of Raman Spectroscopy to the Provenancing of Rocks / 8.13:
Identification of Ivory by Conventional Backscatter Raman and SORS / 8.14:
Application of Raman Spectroscopy / 8.1.1:
Preliminary screening method / 8.1.2.1:
Fake sample analysis / 8.1.2.2:
Concealed materials screening / 8.1.2.3:
Applications to the Study of Gems and Jewellery / Lore Kiefert ; Marina Epelboym ; Hpone-Phyo Kan-Nyunt ; Susan Paralusz8.1.3:
Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds / 8.2.1:
Infrared spectroscopy of diamonds / 8.2.2.1:
Photoluminescence spectroscopy / 8.2.2.4:
Case Study Example II: Detection of Fissure Fillings in Emeralds / 8.2.2.5:
Detection of emerald fissure fillings using FT-IR spectroscopy / 8.2.3.1:
Detection of emerald fissure fillings using Raman spectroscopy / 8.2.3.3:
Case Study Example III: The Raman Identification of Turquoise / 8.2.3.4:
Advanced analysis of turquoise / 8.2.4.1:
Raman Spectroscopy of Ceramics and Glasses / Paola Ricciardi ; Philippe Colomban8.2.5:
The Raman spectroscopic signature of ceramics, glasses and enamels
How to Discriminate Between Genuine Artifacts and Copies and Fakes
On-Site Measurements and Procedures / 8.3.3:
Tools for the identification of crystalline and amorphous phases in ceramics and glasses / 8.3.3.1:
Alhambra vases (Granada, Spain, fourteenth century) / 8.3.4:
Iznik fritware (Ottoman empire, fifteenth-seventeenth century) / 8.3.4.2:
Celadons (Vi^et Nam, thirteenth-fifteenth century) / 8.3.4.3:
Medici porcelain (Florence, sixteenth century) / 8.3.4.4:
Glass cup with handles (Low Countries, sixteenth-seventeenth century) / 8.3.4.5:
Meissen porcelains (Saxony, eighteenth century) / 8.3.4.6:
Enamels on metal: Chinese cloisonnes and Limoges painted enamels (fifteenth-nineteenth century) / 8.3.4.7:
Raman Spectroscopy at Longer Excitation Wavelengths Applied to the Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic Geoscience / 8.3.5:
Results and Discussion / 8.4.1:
Resins / 8.4.3.1:
Ivories / 8.4.3.2:
Buried skeletal remains / 8.4.3.3:
Human Tissues and Skeletal Remains / 8.4.4:
Nail / 8.4.4.1:
Skin / 8.4.4.2:
Calcified tissues / 8.4.4.3:
Teeth / 8.4.4.4:
Bone / 8.4.4.5:
Counterfeit Consumer Products / 8.4.5:
Anti-Counterfeiting Organisations / Andrew J. O'Neil9:
Definition of a Counterfeit Product / 9.3:
Counterfeit Product Spectroscopic Analysis / 9.4:
Counterfeit alcoholic beverages and whisky / 9.4.1:
Counterfeit stamps / 9.4.2:
Counterfeit currency / 9.4.3:
Counterfeit medicines / 9.4.4:
Near-Infrared Spectroscopy and Imaging Microscopy / 9.4.4.1:
Attenuated Total Reflection Mid-Infrared Spectroscopy and Imaging Microscopy / 9.4.4.2:
Raman Spectroscopy, Spatially Offset Raman Spectroscopy and Mapping Microscopy / 9.4.4.3:
Use of Portable Spectrometers for Medicines Authentication / 9.4.4.4:
Combined Uses of Molecular Spectroscopic Techniques for Medicines Authentication / 9.4.4.5:
Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies and NIR Multispectral Imaging / 9.5:
Case Study I: Counterfeit Clothing / 9.6:
Case study Ia: counterfeit Burberry Classic Check Scarf / 9.6.1:
Near-Infrared Spectroscopic Analysis / 9.6.1.1:
ATR/FT-IR Analysis / 9.6.1.2:
Case study Ib: counterfeit New Era 59fifty baseball caps / 9.6.2:
Case Study II: Counterfeit Aftershave / 9.6.2.1:
Case Study III: Counterfeit Medicines / 9.8:
Near-infrared spectrometry / 9.8.1:
Raman spectrometry / 9.8.2:
NIR Multispectral Imaging / 9.8.3:
Case Study IV: Counterfeit Product Packaging / 9.9:
ATR/FT-IR Spectroscopy / 9.9.1:
Tablet Blister-Strip Polymer / 9.9.1.1:
Tablet Carton / 9.9.1.2:
Case Study V: Counterfeit Royal Mail First Class Stamps / 9.10:
Near-infrared spectroscopic analysis / 9.10.1:
Near-infrared multispectral imaging / 9.10.2:
Case Study VI: Counterfeit Bank of England Banknotes / 9.11:
ATR/FT-IR Spectroscopic Analysis / 9.11.1:
Raman Spectroscopy for the Analysis of Counterfeit Tablets / Kaho Kwok ; Lynne S. Taylor9.11.2:
The Pharmaceutical Counterfeiting Problem / 9.1.1:
Analytical Techniques to Detect Counterfeit Products / 9.1.2:
Using Raman Spectroscopy to Characterise Genuine and Counterfeit Tablets-A Case Study / 9.1.3:
Examination of Counterfeit Pharmaceutical Labels / Mark R. Witkowski ; Mary W. Carrabba9.1.4:
Counterfeit Packaging Analysis / 9.2.1:
Case Study I: Counterfeit LipitorLabels / 9.2.3:
Case Study II: Counterfeit ZyprexaLabels / 9.2.4:
Vibrational Spectroscopy for "Food Forensics" / Victoria L. Brewster ; Royston Goodacre9.2.5:
Adulteration / 9.3.1:
Provenance / 9.3.3:
Food Spoilage / 9.3.4:
Micro-Organism Identification / 9.3.5:
Infrared Spectroscopy for the Detection of Adulteration in Foods / Banu Özen ; Figen Tokatli9.3.6:
Adulteration of Food Products and Application of IR Spectroscopy in the Detection of Adulteration
Case Study: Adulteration of Extra Virgin Olive Oils with Refined Hazelnut Oil
Index
About the Editors
List of Contributors
Preface
17.

図書

図書
Michael R. Chernick, Robert A. LaBudde
出版情報: Hoboken, N.J. : Wiley, c2011  xvii, 216 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
List of Tables
Introduction / 1:
Historical Background / 1.1:
Definition and Relationship to the Delta Method and Other Resampling Methods / 1.2:
Jackknife / 1.2.1:
Delta Method / 1.2.2:
Cross-Validation / 1.2.3:
Subsampling / 1.2.4:
Wide Range of Applications / 1.3:
The Bootstrap and the R Language System / 1.4:
Historical Notes / 1.5:
Exercises / 1.6:
References
Estimation / 2:
Estimating Bias / 2.1:
Bootstrap Adjustment / 2.1.1:
Error Rate Estimation in Discriminant Analysis / 2.1.2:
Simple Example of Linear Discrimination and Bootstrap Error Rate Estimation / 2.1.3:
Patch Data Example / 2.1.4:
Estimating Location / 2.2:
Estimating a Mean / 2.2.1:
Estimating a Median / 2.2.2:
Estimating Dispersion / 2.3:
Estimating an Estimate's Standard Error / 2.3.1:
Estimating Interquartile Range / 2.3.2:
Linear Regression / 2.4:
Overview / 2.4.1:
Bootstrapping Residuals / 2.4.2:
Bootstrapping Pairs (Response and Predictor Vector) / 2.4.3:
Heteroscedasticity of Variance: The Wild Bootstrap / 2.4.4:
A Special Class of Linear Regression Models: Multivariable Fractional Polynomials / 2.4.5:
Nonlinear Regression / 2.5:
Examples of Nonlinear Models / 2.5.1:
A Quasi-Optical Experiment / 2.5.2:
Nonparametric Regression / 2.6:
Examples of Nonparametric Regression Models / 2.6.1:
Bootstrap Bagging / 2.6.2:
Confidence Intervals / 2.7:
Subsampling, Typical Value Theorem, and Efron's Percentile Method / 3.1:
Bootstrap-t / 3.2:
Iterated Bootstrap / 3.3:
Bias-Corrected (BC) Bootstrap / 3.4:
BCa and ABC / 3.5:
Tilted Bootstrap / 3.6:
Variance Estimation with Small Sample Sizes / 3.7:
Hypothesis Testing / 3.8:
Relationship to Confidence Intervals / 4.1:
Why Test Hypotheses Differently? / 4.2:
Tendril DX Example / 4.3:
Klingenberg Example: Binary Dose-Response / 4.4:
Time Series / 4.5:
Forecasting Methods / 5.1:
Time Domain Models / 5.2:
Can Bootstrapping Improve Prediction Intervals? / 5.3:
Model-Based Methods / 5.4:
Bootstrapping Stationary Autoregressive Processes / 5.4.1:
Bootstrapping Explosive Autoregressive Processes / 5.4.2:
Bootstrapping Unstable Autoregressive Processes / 5.4.3:
Bootstrapping Stationary ARMA Processes / 5.4.4:
Block Bootstrapping for Stationary Time Series / 5.5:
Dependent Wild Bootstrap (DWB) / 5.6:
Frequency-Based Approaches for Stationary Time Series / 5.7:
Sieve Bootstrap / 5.8:
Bootstrap Variants / 5.9:
Bayesian Bootstrap / 6.1:
Smoothed Bootstrap / 6.2:
Parametric Bootstrap / 6.3:
Double Bootstrap / 6.4:
The m-Out-of-n Bootstrap / 6.5:
The Wild Bootstrap / 6.6:
Chapter Special Topics / 6.7:
Spatial Data / 7.1:
Kriging / 7.1.1:
Asymptotics for Spatial Data / 7.1.2:
Block Bootstrap on Regular Grids / 7.1.3:
Block Bootstrap on Irregular Grids / 7.1.4:
Subset Selection in Regression / 7.2:
Gong's Logistic Regression Example / 7.2.1:
Gunter's Qualitative Interaction Example / 7.2.2:
Determining the Number of Distributions in a Mixture / 7.3:
Censored Data / 7.4:
P-Value Adjustment / 7.5:
The Westfall-Young Approach / 7.5.1:
Passive Plus Example / 7.5.2:
Consulting Example / 7.5.3:
Bioequivalence / 7.6:
Individual Bioequivalence / 7.6.1:
Population Bioequivalence / 7.6.2:
Process Capability Indices / 7.7:
Missing Data / 7.8:
Point Processes / 7.9:
Bootstrap to Detect Outliers / 7.10:
Lattice Variables / 7.11:
Covariate Adjustment of Area Under the Curve Estimates for Receiver Operating Characteristic (ROC) Curves / 7.12:
Bootstrapping in SAS / 7.13:
When the Bootstrap is Inconsistent and How to Remedy It / 7.14:
Too Small of a Sample Size / 8.1:
Distributions with Infinite Second Moments / 8.2:
Example of Inconsistency / 8.2.1:
Remedies / 8.2.3:
Estimating Extreme Values / 8.3:
Survey Sampling / 8.3.1:
m-Dependent Sequences / 8.4.1:
Example of Inconsistency When Independence Is Assumed / 8.5.1:
Remedy / 8.5.3:
Unstable Autoregressive Processes / 8.6:
Long-Range Dependence / 8.6.1:
A Remedy / 8.7.1:
Bootstrap Diagnostics / 8.8:
Author Index / 8.9:
Subject Index
Preface
Acknowledgments
List of Tables
18.

図書

図書
Pavel Hobza, Klaus Müller-Dethlefs
出版情報: Cambridge : Royal Society of Chemistry, c2010  xii, 225 p. ; 24 cm
シリーズ名: RSC theoretical and computational chemistry series
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
An Historical Remark / 1.1:
A Remark on Nomenclature of Molecular Complexes / 1.2:
Purpose and Scope: Theory and Experiment / 1.3:
Covalent Versus Non-covalent Bonds / 1.4:
Experimental Observables / 1.5:
Covalent and Non-covalent Interactions in Nature / 1.6:
Quantum-Chemical Methods for Non-covalent Complexes / 1.6.1:
Aims of this Book / 1.7:
References
Characteristics of Non-covalent Complexes and Their Determination by Experimental and Theoretical Techniques / Chapter 2:
Structure and Geometry / 2.1:
Microwave and Terahertz Spectroscopy / 2.2:
Ultrasoft Potentials: The Riddle of the Ammonia Dimer / 2.2.1:
From Water Clusters to a Potential for Liquid Water / 2.2.2:
Rotational Coherence Spectroscopy / 2.2.3:
Quantum-Chemical ab initio Methods / 2.2.4:
Gradient Optimisation and Basis Set Superposition Error / 2.2.5:
Stabilisation Energy / 2.3:
Experimental Methods for the Determination of the Binding Enthalpy / 2.3.1:
Computation of Stabilisation Energy / 2.3.2:
Is Density-Functional Theory Capable of Describing Non-covalent Interactions? / 2.4:
Quantum Monte Carlo / 2.5:
Vibrational Frequencies / 2.6:
Potential-Energy and Free-Energy Surfaces / Chapter 3:
Benzene Dimer / 3.1:
Benzene-Containing Complexes / 3.1.1:
Nucleic Acid-Base Pairs / 3.2:
Accurate Stabilisation Energies of H-Bonded and Stacked Nucleic Acid-Base Pairs / 3.2.1:
Verification of Accurate Stabilisation Energies / 3.2.2:
Decomposition of Stabilisation Energy Using the Perturbation Calculation / 3.2.3:
Microhydrated and Microsolvated Nucleic Acid Bases and Base Pairs / 3.2.4:
On the Role of Dispersion Energy on Stabilisation of DNA Double Helix / 3.2.5:
Amino Acid Pairs / 3.3:
On the Role of Dispersion and Electrostatic Energy on Stabilisation and Folding of Proteins / 3.3.1:
Carboxylic Acid Dimers / 3.4:
Peptides / 3.5:
JSCH-2005 and S22 Database Sets / 3.6:
Experimental Methods for Exploring Stationary Points on the PES: Stimulated-Emission Pumping / 3.7:
Classification of Non-covalent Complexes / Chapter 4:
Hydrogen Bonding and Improper Hydrogen Bonding / 4.1:
Dihydrogen Bonding / 4.2:
Halogen Bonding / 4.3:
Interpretation of Experimental Results and Types of Molecular Clusters / Chapter 5:
Molecule...Rare-Gas Atom Clusters / 5.1:
NO...Ar / 5.1.1:
Benzene...Ar / 5.1.2:
N-Butylbenzene...Ar (BB...Ar) / 5.1.3:
Fluorobenzene...Ar: Simulation of Rotational ZEKE/MATI Spectra / 5.1.6:
Aniline...Ar and Phenol...Ar / 5.3:
Trimer Clusters with Hydrogen and ?-Bonding / 5.3.2:
Phenol...Water...Ar / 5.4.1:
Benzene...Water...Ar / 5.4.2:
Benzene...Indole Complex / 5.5:
Nucleic Acid-Base Pairs in Vacuo / 5.7:
Ultrafast Hydrogen-Atom Transfer in Clusters of Aromatic Molecules Including Base Pairs / 5.8:
Photochemical Selectivity in Nucleic Acid Bases / 5.9:
Proton/Hydrogen Transfer and Hydrogen-Bonded Water Wires / 5.10:
Experimental and Theoretical Study of the Activity of Proton/Hydrogen Transfer in the 7-Azaindole...Ammonia Clusters / 5.10.1:
Helium Nanodroplets: Formic Acid Dimer and Glycine Dimer / 5.11:
Vibrational Energy Transfer and Predissociation / 5.11.1:
Aniline...Ar / 5.12.1:
Fluorobenzene...Ar / 5.12.2:
Extended Molecular Clusters in Chemistry, the Atmosphere and Stereospecific Molecular Recognition / 5.12.3:
Magic Numbers / 6.1:
Formation of Nanoscale Cages / 6.1.2:
Aerosols / 6.2:
Spontaneous Raman Scattering / 6.2.1:
Stimulated Raman Scattering / 6.2.3:
Chirality and Molecular Complexes / 6.3:
Theoretical Approaches to Chiral Recognition / 6.3.1:
Experiments in the Gas Phase and Supersonic Jets / 6.3.2:
Neurotransmitters: (1S, 2S)-N Methylpseudoephedrine / 6.3.3:
Subject Index
Introduction / Chapter 1:
An Historical Remark / 1.1:
A Remark on Nomenclature of Molecular Complexes / 1.2:
19.

図書

図書
edited by Sabine Szunerits, Rabah Boukherroub
出版情報: Singapore : Pan Stanford Publishing, c2015  xix, 358 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Propagating Surface Plasmon Polaritons / Atef Shalabney1:
Introduction / 1.1:
Surface Plasmons on Smooth Surfaces / 1.2:
Surface Plasmon at Single Interface / 1.2.1:
Surface Plasmon in Multilayer Systems / 1.2.2:
Electromagnetic Energy Confinement and Field Enhancement / 1.2.3:
Excitation of Surface Plasmon Polaritons / 1.2.4:
Applications / 1.3:
Surface Plasmon Resonance-Based Sensors / 1.3.1:
Enhanced Spectroscopy and Emissive Processes / 1.3.2:
Concluding Remarks / 1.4:
Different Strategies for Glycan Immobilization onto Plasmonic Interfaces / Sabine Szunerits ; Rabah Boukherroub2:
Carboxymethylated Dextran Layers: The BiAcore Chip / 2.1:
Self-Assembled Monolayers Based on Thiolated Functional Groups / 2.3:
Polymer Films / 2.4:
Lamellar SPR Structures / 2.5:
Conclusion
Biophysics of DNA: DNA Melting Curve Analysis with Surface Plasmon Resonance Imaging / Arnaud Buhot ; Julia Pingel ; Jean-Bernard Fiche ; Roberto Calemczuk ; Thierry Livache3:
Temperature Regulation of SPRi for DNA Melting Curves Analysis / 3.1:
SPRi Apparatus with Temperature Regulation / 3.2.1:
Equilibrium versus Out-of-Equilibrium Melting Curves / 3.2.2:
Stability of Grafting Chemistries at High Temperatures / 3.2.3:
Electro-copolymerization of poly-pyrrole / 3.2.3.1:
Thiol self-assembling monolayer / 3.2.3.2:
Physico-Chemistry of DNA Melting at a Surface / 3.3:
Effects of Denaturant Molecules / 3.3.1:
Effects of Salt Concentration / 3.3.2:
Detection of Single Point Mutation from Melting Curve Analysis / 3.4:
Detection with Oligonucleotides Targets / 3.4.1:
Detection Limit of Somatic Mutations / 3.4.2:
Homozygous and Heterozygous Detection of PCR Products / 3.4.3:
Plasmon Waveguide Resonance Spectroscopy: Principles and Applications in Studies of Molecular Interactions within Membranes / Isabel D. Alves3.5:
Plasmon Spectroscopy / 4.1:
Description of Surface Plasmons / 4.2.1:
Types of Surface Plasmon Resonances / 4.2.2:
Conventional surface plasmon resonance / 4.2.2.1:
Plasmon-waveguide resonance / 4.2.2.2:
PWR Spectral Analysis / 4.2.3:
PWR Applications / 4.3:
Lipid Bilayers / 4.3.1:
Solid-supported lipid bilayers / 4.3.1.1:
Membranes composed of cellular membrane fragments / 4.3.1.2:
GPCR Insertion into Membranes, Activation and Signaling / 4.3.2:
Role of Lipids in GPCR Activation, Signaling, and Partition into Membrane Microdomains / 4.3.3:
Interaction of Membrane Active Peptides with Lipid Membranes / 4.3.4:
PWR Ongoing Developments / 4.4:
Surface-Wave Enhanced Biosensing / Wolfgang Knoll ; Amal Kasry ; Chun-Jen Huang ; Yi Wang ; Jakub Dostalek5:
Surface Plasmon Field-Enhanced Fluorescence Detection / 5.1:
Long-Range Surface Plasmon Fluorescence Spectroscopy / 5.3:
Optical Waveguide Fluorescence Spectroscopy / 5.4:
Conclusions / 5.5:
Infrared Surface Plasmon Resonance / Stefan Franzen ; Mark Losego ; Misun Kang ; Edward Sachet ; Jon-Paul Maria6:
The Hypothesis That Surface Plasmon Resonance Will Be Observed in Free Electron Conductors / 6.1:
Confirmation of the Hypothesis That Conducting Metal Oxides Can Support Surface Plasmon Resonance / 6.3:
The Effect of Carrier Concentration / 6.4:
The Effect of Mobility / 6.5:
Hybrid Plasmons: Understanding the Relationship between Localized LSPR and SPR / 6.6:
The Effect of Materials Properties on the Observed Surface Plasmon Polaritons / 6.7:
Detection of Mid-Infrared Surface Plasmon Polaritons / 6.8:
The Search for High Mobility Conducting Metal Oxides / 6.9:
The Unique Characteristics of Localized Surface Plasmon Resonance / Gaetan Leveque ; Abdellatif Akjouj6.10:
Localized Surface Plasmon Resonance of a Single Particle / 7.1:
Single Particle in the Quasi-Static Approximation / 7.1.1:
Case of the spherical particle / 7.1.1.1:
Case of the spheroidal particle / 7.1.1.2:
Beyond the Quasi-Static Approximation / 7.1.2:
Examples of Coupled Plasmonic Systems / 7.2:
Chain of Identical Particles / 7.2.1:
Chain of Different Particles / 7.2.2:
Localized Surface Plasmon for a Periodic Nano structure / 7.3:
Model and Simulation Method / 7.3.1:
Absorption Spectra for Au Nano structures Array / 7.3.2:
Influence of the Thickness of a Diamond Dielectric Overlayer on the LSPR / 7.3.3:
Advances in the Fabrication of Plasmonic Nanostructures: Plasmonics Going Down to the IManoscale / Thomas Maurer7.3.4:
Top-Down Techniques: A Mask-Based Process / 8.1:
Conventional Lithography Techniques: Photolithography and Particle Beam Lithography / 8.2.1:
Photolithography / 8.2.1.1:
Particle beam lithography / 8.2.1.2:
Advanced Lithography Techniques: Masks Coming from Researcher Imagination / 8.2.2:
Multilevel laser interference lithography / 8.2.2.1:
Nanostencil lithography / 8.2.2.2:
Self-assembly techniques for mask fabrication: nanosphere lithorgaphy and block copolymer lithography / 8.2.2.3:
Direct Writing / 8.2.3:
Particle beam-induced etching and particle beam-induced deposition / 8.2.3.1:
Laser ablation / 8.2.3.2:
3D laser lithography / 8.2.3.3:
Printing, Replica Molding and Embossing / 8.2.4:
Printing / 8.2.4.1:
Replica molding / 8.2.4.2:
Embossing / 8.2.4.3:
Conclusion about the Top-Down Strategy / 8.2.5:
Bottom-Up Techniques: Atom by Atom Building / 8.3:
The Bottom-Up Strategy / 8.3.1:
Physical route / 8.3.1.1:
Electrochemical route / 8.3.1.2:
Chemical route / 8.3.1.3:
Self-Organization, the Next Challenge of Plasmonics / 8.3.2:
Laboratory self-assembly techniques / 8.3.2.1:
Mass Production Using Wet Coating Processes / 8.3.3:
Mixing Top-Down and Bottom-Up Routes / 8.4:
Porous Membranes for Ordered Nanowires Growth / 8.4.1:
Copolymer Template Control of Plasmonic Nanoparticle Synthesis via Thermal Annealing / 8.4.2:
Let's Play Your Imagination / 8.4.3:
Conclusion: First, Choose Materials / 8.5:
Colorimetric Sensing Based on Metallic Nanostructures / Daniel Aili ; Borja Sepulveda9:
Introduction and Historical Perspective / 9.1:
Synthesis of Gold Nanoparticles / 9.2:
Optical Properties of Gold Nanoparticles / 9.3:
Colloidal Stability and Surface Chemistry of Gold Nanoparticles / 9.4:
Surface Functionalization / 9.4.1:
Molecular Recognition for Modulation of Nanoparticle Stability / 9.5:
Cross-Linking Assays / 9.5.1:
Redispersion Assays / 9.5.2:
Non-Cross-Linking Assays / 9.5.3:
Outlook and Challenges / 9.6:
Assays with Reversed Sensitivity and Plasmonic ELISA / 9.6.1:
Assays for the Future / 9.6.2:
Surface-Enhanced Raman Scattering: Principles and Applications for Single-Molecule Detection / Diego P. dos Santos ; Marcia I. A. Temperini ; Alexandre G. Brolo10:
Raman Scattering / 10.1:
SERS / 10.3:
SERS Substrates / 10.4:
Single-Molecule SERS / 10.5:
Graphene-Based Plasmonics / Sinan Balci ; Emre Ozan Polat ; Coskun Kocabas10.6:
Introduction: Plasmons in Reduced Dimensions / 11.1:
Optical Properties of Graphene / 11.2:
Synthesis of Graphene / 11.3:
Plasma Oscillations on Graphene-Metal Surface / 11.4:
Graphene Functionalized SPR Sensors / 11.5:
Graphene Passivation for SPR Sensors / 11.6:
Biomolecular Detection Using Graphene Functionalized SPR Sensors / 11.7:
Graphene Oxide Functionalization / 11.8:
Gate-Tunable Graphene Plasmonics / 11.9:
SPR: An Industrial Point of View / Iban Larroulet11.10:
Companies / 12.1:
Future Trends / 12.3:
Index
Foreword
Preface
Propagating Surface Plasmon Polaritons / Atef Shalabney1:
20.

図書

図書
Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar
出版情報: Cambridge, MA : MIT Press, c2012  xii, 412 p. ; 24cm
シリーズ名: Adaptive computation and machine learning
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Applications and problems / 1.1:
Definitions and terminology / 1.2:
Cross-validation / 1.3:
Learning scenarios / 1.4:
Outline / 1.5:
The PAC Learning Framework / 2:
The PAC learning model / 2.1:
Guarantees for finite hypothesis sets - consistent case / 2.2:
Guarantees for finite hypothesis sets - inconsistent case / 2.3:
Generalities / 2.4:
Deterministic versus stochastic scenarios / 2.4.1:
Bayes error and noise / 2.4.2:
Estimation and approximation errors / 2.4.3:
Model selection / 2.4.4:
Chapter notes / 2.5:
Exercises / 2.6:
Rademacher Complexity and VC-Dimension / 3:
Rademacher complexity / 3.1:
Growth function / 3.2:
VC-dimension / 3.3:
Lower bounds / 3.4:
Support Vector Machines / 3.5:
Linear classification / 4.1:
SVMs - separable case / 4.2:
Primal optimization problem / 4.2.1:
Support vectors / 4.2.2:
Dual optimization problem / 4.2.3:
Leave-one-out analysis / 4.2.4:
SVMs - non-separable case / 4.3:
Margin theory / 4.3.1:
Kernel Methods / 4.5:
Positive definite symmetric kernels / 5.1:
Definitions / 5.2.1:
Reproducing kernel Hilbert space / 5.2.2:
Properties / 5.2.3:
Kernel-based algorithms / 5.3:
SVMs with PDS kernels / 5.3.1:
Representer theorem / 5.3.2:
Learning guarantees / 5.3.3:
Negative definite symmetric kernels / 5.4:
Sequence kernels / 5.5:
Weighted transducers / 5.5.1:
Rational kernels / 5.5.2:
Boosting / 5.6:
AdaBoost / 6.1:
Bound on the empirical error / 6.2.1:
Relationship with coordinate descent / 6.2.2:
Relationship with logistic regression / 6.2.3:
Standard use in practice / 6.2.4:
Theoretical results / 6.3:
VC-dimension-based analysis / 6.3.1:
Margin-based analysis / 6.3.2:
Margin maximization / 6.3.3:
Game-theoretic interpretation / 6.3.4:
Discussion / 6.4:
On-Line Learning / 6.5:
Prediction with expert advice / 7.1:
Mistake bounds and Halving algorithm / 7.2.1:
Weighted majority algorithm / 7.2.2:
Randomized weighted majority algorithm / 7.2.3:
Exponential weighted average algorithm / 7.2.4:
Perceptron algorithm / 7.3:
Winnow algorithm / 7.3.2:
On-line to batch conversion / 7.4:
Game-theoretic connection / 7.5:
Multi-Class Classification / 7.6:
Multi-class classification problem / 8.1:
Generalization bounds / 8.2:
Uncombined multi-class algorithms / 8.3:
Multi-class SVMs / 8.3.1:
Multi-class boosting algorithms / 8.3.2:
Decision trees / 8.3.3:
Aggregated multi-class algorithms / 8.4:
One-versus-all / 8.4.1:
One-versus-one / 8.4.2:
Error-correction codes / 8.4.3:
Structured prediction algorithms / 8.5:
Ranking / 8.6:
The problem of ranking / 9.1:
Generalization bound / 9.2:
Ranking with SVMs / 9.3:
RankBoost / 9.4:
Margin bound for ensemble methods in ranking / 9.4.1:
Bipartite ranking / 9.5:
Boosting in bipartite ranking / 9.5.1:
Area under the ROC curve / 9.5.2:
Preference-based setting / 9.6:
Second-stage ranking problem / 9.6.1:
Deterministic algorithm / 9.6.2:
Randomized algorithm / 9.6.3:
Extension to other loss functions / 9.6.4:
Regression / 9.7:
The problem of regression / 10.1:
Finite hypothesis sets / 10.2:
Rademacher complexity bounds / 10.2.2:
Pseudo-dimension bounds / 10.2.3:
Regression algorithms / 10.3:
Linear regression / 10.3.1:
Kernel ridge regression / 10.3.2:
Support vector regression / 10.3.3:
Lasso / 10.3.4:
Group norm regression algorithms / 10.3.5:
On-line regression algorithms / 10.3.6:
Algorithmic Stability / 10.4:
Stability-based generalization guarantee / 11.1:
Stability of kernel-based regularization algorithms / 11.3:
Application to regression algorithms: SVR and KRR / 11.3.1:
Application to classification algorithms: SVMs / 11.3.2:
Dimensionality Reduction / 11.3.3:
Principal Component Analysis / 12.1:
Kernel Principal Component Analysis (KPCA) / 12.2:
KPCA and manifold learning / 12.3:
Isomap / 12.3.1:
Laplacian eigenmaps / 12.3.2:
Locally linear embedding (LLE) / 12.3.3:
Johnson-Lindenstrauss lemma / 12.4:
Learning Automata and Languages / 12.5:
Finite automata / 13.1:
Efficient exact learning / 13.3:
Passive learning / 13.3.1:
Learning with queries / 13.3.2:
Learning automata with queries / 13.3.3:
Identification in the limit / 13.4:
Learning reversible automata / 13.4.1:
Reinforcement Learning / 13.5:
Learning scenario / 14.1:
Markov decision process model / 14.2:
Policy / 14.3:
Definition / 14.3.1:
Policy value / 14.3.2:
Policy evaluation / 14.3.3:
Optimal policy / 14.3.4:
Planning algorithms / 14.4:
Value iteration / 14.4.1:
Policy iteration / 14.4.2:
Linear programming / 14.4.3:
Learning algorithms / 14.5:
Stochastic approximation / 14.5.1:
TD(0) algorithm / 14.5.2:
Q-learning algorithm / 14.5.3:
SARSA / 14.5.4:
TD(λ) algorithm / 14.5.5:
Large state space / 14.5.6:
Conclusion / 14.6:
Linear Algebra Review / A:
Vectors and norms / A.1:
Norms / A.1.1:
Dual norms / A.1.2:
Matrices / A.2:
Matrix norms / A.2.1:
Singular value decomposition / A.2.2:
Symmetric positive semidefinite (SPSD) matrices / A.2.3:
Convex Optimization / B:
Differentiation and unconstrained optimization / B.1:
Convexity / B.2:
Constrained optimization / B.3:
Probability Review / B.4:
Probability / C.1:
Random variables / C.2:
Conditional probability and independence / C.3:
Expectation, Markov's inequality, and moment-generating function / C.4:
Variance and Chebyshev's inequality / C.5:
Concentration inequalities / D:
Hoeffding's inequality / D.1:
McDiarmid's inequality / D.2:
Other inequalities / D.3:
Binomial distribution: Slud's inequality / D.3.1:
Normal distribution: tail bound / D.3.2:
Khintchine-Kahane inequality / D.3.3:
Notation / D.4:
References
Index
Preface
Introduction / 1:
Applications and problems / 1.1:
21.

図書

図書
edited by Zhongwei Gu
出版情報: Weinheim : Wiley-VCH, c2015  xxi, 337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Preface
Backbone Degradable and Coiled-Coil Based Macromolecular Therapeutics / Jiyuan Yang ; Jindrich Kopecek1:
Introduction / 1.1:
Water-Soluble Polymers as Carriers of Anticancer Drugs / 1.2:
First Generation Conjugates - Design, Synthesis, and Activity / 1.2.1:
Analysis of Design Factors That Need Attention / 1.2.2:
Design of Conjugates for the Treatment of Noncancerous Diseases / 1.2.2.1:
Combination Therapy Using Polymer-Bound Therapeutics / 1.2.2.2:
New Targeting Strategies / 1.2.2.3:
Relationship Between Detailed Structure of the Conjugates and Their Properties / 1.2.2.4:
Impact of Binding a Drug to a Polymer on the Mechanism of Action / 1.2.2.5:
Mechanism of Internalization and Subcellular Trafficking / 1.2.2.6:
Relationship Between the Molecular Weight of the Carrier and the Efficacy of the Conjugate / 1.2.2.7:
Design of Second Generation Conjugates - Long-Circulating and Backbone Degradable / 1.2.3:
RAFT Copolymerization for the Synthesis of Conjugates / 1.2.3.1:
Click Reactions for Chain Extension into Multiblock Copolymers / 1.2.3.2:
Biological Properties of Long-Circulating Macromolecular Therapeutics / 1.2.3.3:
Summary of Part 2 and Future Prospects / 1.2.4:
Drug-Free Macromolecular Therapeutics - A New Paradigm in Drug Delivery / 1.3:
Biorecognition in Hybrid Polymer Systems / 1.3.1:
Coiled-Coils in Biomedical Systems / 1.3.2:
Coiled-Coil Based Drug-Free Macromolecular Therapeutics: Design, In Vitro, and In Vivo Activity / 1.3.3:
Potential, Limitations, and Future Prospect of Drug-Free Macromolecular Therapeutics / 1.3.4:
General Summary and Outlook / 1.4:
Acknowledgments
References
Dendritic Polymers as Targeting Nanoscale Drug Delivery Systems for Cancer Therapy / Kui Luo ; Zhongwei Gu2:
Functional Dendritic Polymers Based Drug Delivery Vehicles for Targeting Tumor Therapy via EPR Effect / 2.1:
Functional Dendritic Polymers for Encapsulation of Anticancer Drugs / 2.2.1:
Chemical Conjugation Functional Dendritic Polymers as Drug Delivery Systems / 2.2.2:
Tumor Targeting Moieties Functionalized Dendritic Drug Delivery Vehicles for Cancer Therapy / 2.3:
Conclusion / 2.4:
Composite Colloidal Nanosystems for Targeted Delivery and Sensing / Pilar Rivera Gil ; Moritz Nazarenus ; Wolfgang J. Parak3:
Working Toolkit / 3.1:
Engineering a Multifunctional Carrier / 3.1.2:
Objective / 3.2:
Cellular Behavior of the Carrier / 3.3:
Intracellular Fate / 3.3.1:
Biocompatibility / 3.3.2:
Applications / 3.4:
Delivery with Multifunctional PEM Capsules / 3.4.1:
Magnetic Targeting and Magnetofection / 3.4.1.1:
Strategies for Controlled Opening / 3.4.1.2:
Intracellular Ion Sensing / 3.4.2:
Conclusions / 3.5:
Abbreviations
Polymeric Micelles for Cancer-Targeted Drug Delivery / Huabing Chen ; Zhishen Ge ; Kazunori Kataoka4:
Micelle Formulations in Clinical Development / 4.1:
Particle Size of Micelles / 4.3:
Morphology of Micelles / 4.4:
Targeting Design of Micelles for Enhanced Accumulation and Cell Internalization / 4.5:
Functional Designs of Micelles / 4.6:
Design of Micelles for Gene Delivery / 4.7:
Challenge and Future Perspective 103 / 4.8:
Biomimetic Polymers for in Vivo Drug Delivery / Wenping Wang ; Kinam Park5:
Commonly Used Biomimetic Polymers and Their Applications in DDS / 5.1:
Polylactones and Their Modifications / 5.2.1:
Poly(lactic acid) (PLA) / 5.2.1.1:
Poly(lactic-co-glycolic acid) (PLGA) / 5.2.1.2:
Poly(ε-caprolactone) (PCL) / 5.2.1.3:
Dendrimer / 5.2.2:
Structure and Properties of Dendrimers / 5.2.2.1:
Types of Dendrimers / 5.2.2.2:
Applications of Dendrimers as Carriers in Drug Delivery Systems / 5.2.2.3:
Synthetic Polypeptides / 5.2.3:
Challenges and Perspectives / 5.3:
Drug Delivery from Protein-Based Nanoparticles / Dan Ding ; Xiqun Jiang6:
Preparation of Protein-Based Nanoparticles / 6.1:
Desolvation / 6.2.1:
Emulsification / 6.2.2:
Coacervation / 6.2.3:
Polymer-Monomer Pair Reaction System / 6.2.4:
Drug Delivery from Albumin-Based Nanoparticles / 6.3:
Albumin-Based Nanoparticles as Drug Carriers / 6.3.1:
Targeting Ligand-Functionalized Albumin-Based Nanoparticles / 6.3.2:
Nanoparticle Albumin-Bound (nab) Technology / 6.3.3:
Drug Delivery from Gelatin-Based Nanoparticles / 6.4:
Gelatin-Based Nanoparticles as Drug Carriers / 6.4.1:
Targeting Ligand-Functionalized Gelatin-Based Nanoparticles / 6.4.2:
Site-Specific Drug Delivery System / 6.4.3:
Drug Delivery from Other Protein-Based Nanoparticles / 6.5:
Polymeic Gene Carriers / Xuesi Chen ; Huayu Tian ; Xiuwen Guan7:
Gene Therapy and Gene Carriers / 7.1:
Gene Therapy / 7.1.1:
The Concept of Gene Therapy / 7.1.1.1:
Development and the Present Situation of Gene Therapy / 7.1.1.2:
Methods and Strategies of Gene Therapy / 7.1.1.3:
Research Contents and Challenges of Gene Therapy / 7.1.1.4:
Gene Carriers / 7.1.2:
The Concept of Gene Carrier / 7.1.2.1:
The Necessity of the Gene Carrier / 7.1.2.2:
Requirements of Gene Carrier / 7.1.2.3:
Classification of Gene Carrier / 7.1.2.4:
Polymeric Gene Carriers / 7.2:
Cationic Polymer Gene Carriers / 7.2.1:
Process of the Polycation Vector Mediated Gene Delivery / 7.2.1.1:
Categories and Research Situation of the Cationic Polymer Gene Vector / 7.2.1.2:
PEI Grafting Modification Polymeric Gene Carriers / 7.3:
Amino Acid Derivatives Modified Polymeric Gene Carriers / 7.3.1:
Poly(glutamic acid) Derivatives Modified PEI / 7.3.1.1:
Polyphenyialanine Derivatives Modified PEI / 7.3.1.2:
PEG Modified Hyperbranched PEI / 7.3.2:
Low Molecular Weight (LWM) PEI Base Polymeric Gene Carriers / 7.4:
Crosslinked Polycations / 7.4.1:
Crosslinlced Polycation OEI-CBA / 7.4.1.1:
Crosslinked Polycation OEI-PBLG-PEGDA / 7.4.1.2:
Hexachlorotriphosphazene Crosslinked Polycation / 7.4.1.3:
Grafted Polycations / 7.4.2:
Grafted Cationic Polymer MP-g-OEI / 7.4.2.1:
Graft Cationic Polymer N-PAE-g-OEI / 7.4.2.2:
Graft Cationic Polymer mPEGT-PMCC-g-OEI / 7.4.2.3:
Targeted Shielding System for Polymeric Gene Carriers / 7.5:
Static Shielding System / 7.5.1:
Poly(glutamine acid) Shielding System and PEGylations / 7.5.1.1:
Sulfonamides Related Shielding System / 7.5.1.2:
Other Design Strategies of Cationic Gene Carrier / 7.5.2:
pH-Sensitive Polymeric Nanoparticles as Carriers for Cancer Therapy and Imaging / Yi Li ; Guang Hui Gao ; Ick Chan Kwon ; Doo Sung Lee7.6:
pH-Sensitive Polymers / 8.1:
pH-Sensitive Anionic Polymers / 8.2.1:
pH-Sensitive Cationic Polymers / 8.2.2:
pH-Sensitive Neutral Polymers / 8.2.3:
pH-Sensitive Polymers as Drug Carriers / 8.3:
pH-Sensitive Polymer-Drug Conjugates / 8.3.1:
pH-Sensitive Polymeric Micelles / 8.3.2:
pH-Sensitive Polymersomes / 8.3.3:
pH-Sensitive Polymer-Inorganic Hybrid Nanoparticles / 8.3.4:
pH-Sensitive Dendrimers / 8.3.5:
pH-Sensitive Polymers for Bioimaging / 8.4:
Charge-Reversal Polymers for Biodelivery / Bo Zhan ; Kai Wang ; Jingxing Si ; Meihua Sui ; Youqing Shen8.5:
Applications of Cationic Polymers in Biodelivery / 9.1:
Barriers for Cationic Polymers in In vitro and In vivo Applications / 9.2:
Characteristic pH Gradients in Tumor Interstitium and Endo/Lyso somes / 9.3:
Chemistry of Charge-Reversal Polymers Based on Acid-Labile Amides / 9.4:
pHe-Triggered Charge-Reversal / 9.4.1:
pHL-Triggered Charge-Reversal / 9.4.2:
Applications of Charge-Reversal Polymers in Biodelivery Systems / 9.5:
Charge-Reversal in Cancer Drug Delivery / 9.5.1:
Charge-Reversal in Gene Delivery / 9.5.2:
Charge-Reversal in Protein Delivery / 9.5.3:
Charge-Reversal Incorporated with Inorganic Materials / 9.5.4:
Perspectives / 9.6:
Phenylbaronic Acid-Containing Glucose-Responsive Polymer Materials: Synthesis and Applications in Drug Delivery / Rujiang Ma ; Linqi Shi10:
PBA-Containing Polymers Operating Under Physiological Conditions / 10.1:
Chemically Crosslinked PBA-Based Gels / 10.3:
Self-Assembled PBA-Based Polymer Micelles / 10.4:
Self-Assembled PBA-Based Polymersomes / 10.5:
Extracellular pH-Activated Nanocarriers for Enhanced Drug Delivery to Tumors / You-Yong Yuan ; Cheng-Qiong Mao ; Jin-Zhi Du ; Xian-Zhu Yang ; Jun Wang10.6:
Passive and Active Tumor Targeting / 11.1:
Targeting the Extracellular pH (pHe) in Tumors / 11.3:
Extracellular pH-Induced Drug Delivery to Tumors / 11.4:
Ligand Exposure by a Shielding/Deshielding Method / 11.5:
Surface Charge Reversing Nanoparticles / 11.6:
Enhanced Cellular Uptake by Surface Charge Reversing Nanoparticles / 11.6.1:
Overcoming MDR by Surface Charge Reversing Nanoparticles / 11.6.2:
Enhanced Delivery of siRNA by Surface-Charge Reversing Nanoparticles / 11.6.3:
Stimulation-Sensitive Drug Delivery Systems / Xintao Shuai ; Du Cheng11.7:
pH-Sensitive Delivery Systems / 12.1:
pH-Sensitive Micellar Delivery Systems / 12.2.1:
pH-Sensitive Liposomes / 12.2.2:
Thermo-Sensitive Delivery Systems / 12.3:
Biomolecule-Sensitive Delivery Systems / 12.4:
Enzyme-Sensitive Nanocarriers / 12.4.1:
Reduction-Responsive Conjugates / 12.4.2:
Other Environmentally Sensitive Nanocarriers / 12.5:
Outlook / 12.6:
Index
List of Contributors
Preface
Backbone Degradable and Coiled-Coil Based Macromolecular Therapeutics / Jiyuan Yang ; Jindrich Kopecek1:
22.

図書

図書
Ahmed H. Zewail, John M. Thomas
出版情報: Hackensack, N.J. : Imperial College Press, c2010  xii, 341p. ; 25cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Preface
Historical Perspectives: From Camera Obscura to 4D Imaging / 1:
Concepts of Coherence: Optics, Diffraction, and Imaging / 2:
Coherence - A Simplified Prelude / 2.1:
Optical Coherence and Decoherence / 2.2:
Coherence in Diffraction / 2.3:
Rayleigh criterion and resolution / 2.3.1:
Diffraction from atoms and molecules / 2.3.2:
Coherence and Diffraction in Crystallography / 2.4:
Coherence in Imaging / 2.5:
Basic concepts / 2.5.1:
Coherence of the source, lateral and temporal / 2.5.2:
Imaging in electron microscopy / 2.5.3:
Instrumental Factors Limiting Coherence / 2.6:
From 2D to 3D Structural Imaging: Salient Concepts / 3:
2D and 3D Imaging / 3.1:
Electron Crystallography: Combining Diffraction and Imaging / 3.2:
High-Resolution Scanning Transmission Electron Microscopy / 3.3:
Use of STEM for electron tomography of inorganic materials / 3.3.1:
Biological and Other Organic Materials / 3.4:
Macromolecular architecture visualized by cryo-electron tomography / 3.4.1:
Electron-Energy-Loss Spectroscopy and Imaging by Energy-Filtered TEM / 3.5:
Combined EELS and ET in cellular biology / 3.5.1:
Electron Holography / 3.6:
Applications of 2D and 3D Imaging and Related Techniques / 4:
Introduction / 4.1:
Real-Space Crystallography via HRTEM and HRSTEM / 4.2:
Encapsulated nanocrystalline structures / 4.2.1:
Nanocrystalline catalyst particles of platinum / 4.2.2:
Microporous catalysts and molecular sieves / 4.2.3:
Other zeolite structures / 4.2.4:
Structures of complex catalytie oxides solved by HRSTEM / 4.2.5:
The value of electron diffraction in solving 3D structures / 4.2.6:
Electron Tomography / 4.3:
Electron Crystallography / 4.4:
Other complex inorganic structures / 4.5.1:
Complex biological structures / 4.5.2:
Electron-Energy-Loss Spectroscopy and Imagingl / 4.6:
Atomic Resolution in an Environmental TEM / 4.7:
Atomic-scale electron microscopy at ambient pressure by exploiting the technology of microelectromechanical systems / 4.7.1:
4D Electron Imaging in Space and Time: Principles / 5:
Atomic-Scale Resolution in Time / 5.1:
Matter particle-wave duality / 5.1.1:
Analogy with light / 5.1.2:
Classical atoms: Wave packets / 5.1.3:
Paradigm case study: Two atoms / 5.1.4:
From Stop-Motion Photography to Ultrafast Imaging / 5.2:
High-speed shutters / 5.2.1:
Stroboscopy / 5.2.2:
Ultrafast techniques / 5.2.3:
Ultrafast lasers / 5.2.4:
Single-Electron Imaging / 5.3:
Coherence of ultrafast packets / 5.3.1:
The double-slit experiment revisited / 5.3.2:
Ultrafast versus fast imaging / 5.3.3:
The velocity mismatch and attosecond regime / 5.3.4:
4D Microscopy: Brightness, Coherence and Degeneracy / 5.4:
Coherence volume and degeneracy / 5.4.1:
Brightness and degeneracy / 5.4.2:
Coherence and Contrast / 5.4.3:
Contrast, dose, and resolution / 5.4.4:
4D Ultrafast Electron Imaging: Developments and Applications / 6:
Developments at Caltech - A Brief History / 6.1:
Instruments and Techniques / 6.2:
Structure, Morphology, and Mechanics / 6.3:
Selected-area image (diffraction) dynamics / 6.3.1:
Dynamical morphology: Time-dependent warping / 6.3.2:
Proof of principle: Gold dynamics / 6.3.3:
Prototypical case: Graphite in 4D space / 6.3.4:
Atomic motions / 6.3.4.1:
Coherent resonances in diffraction: Longitudinal Young's modulus / 6.3.4.2:
Resonances in images: Longitudinal elasticity / 6.3.4.3:
Emergence of mechanical drumming; Transverse ellasticity / 6.3.4.4:
Moiré fringe dynamics / 6.3.4.5:
FEELS: Femtosecond EELS and chemical bonding / 6.3.4.6:
Selected Other Applications / 6.4:
Structural phase transitions / 6.4.1:
Metal-insulator transformation / 6.4.1.1:
Transient phases of superconducting cuprates / 6.4.1.2:
Nucleation and crystallization phenomena / 6.4.2:
Interfaces and biological assemblies / 6.4.3:
Water on hydrophobic and hydrophilic substrates / 6.4.3.1:
Bilayers, phospholipids, and cells / 6.4.3.2:
Nanomechanical and optoelectronic systems / 6.4.4:
Channel gating / 6.4.4.1:
Functional cantilevers / 6.4.4.2:
Optoelectronic nanorods / 6.4.4.3:
Diffraction and materials surface charging / 6.4.4.4:
4D Convergent Beam UEM: Nanodiffraction / 6.5:
4D Near-Field UEM: Nanostructures and Plasmonics / 6.6:
The Electron Microscope and the Synchrotron: A Comparison / 7:
Transmission X-ray Microscopy and X-ray Microscopic Tomography / 7.1:
X-ray tomography of biological cells / 7.2.1:
Coherent X-ray Diffraction Imaging / 7.3:
Extraction of Structures from Powdered Specimens / 7.4:
Extraction of structures from ultramicrocrystalline specimens / 7.4.1:
Energy-dispersive X-ray diffraction / 7.4.2:
X-ray-absorption-fine structure spectroscopy / 7.4.3:
Combined X-ray absorption and X-ray diffraction for in situ studies of powdered catalysts / 7.4.4:
Studies of Species in Solution / 7.5:
Laue Crystallography: Static and Dynamic / 7.6:
The Perennial Problem of Radiation Damage / 7.7:
Summarizing Assessment / 7.8:
4D Visualization: Past, Present, and Future / 8:
Visualization and Complexity / 8.1:
Complexity Paradox: Coherence and Creative Chaos / 8.2:
From 2(3)D to 4D Microscopy / 8.3:
Emerging Developments / 8.4:
Materials science / 8.4.1:
Biological UEM / 8.4.2:
Structural dynamics: Theory and experiment / 8.4.3:
Aligned- and single-molecule imaging / 8.4.4:
Imaging with attosecond electrons / 8.4.5:
Epilogue / 8.5:
Biographical Profiles
Acknowledgements
Preface
Historical Perspectives: From Camera Obscura to 4D Imaging / 1:
23.

図書

図書
Joseph H. Koo
出版情報: New York : McGraw-Hill, c2019  xvi, 523 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nanomaterials, Processing, and Characterization / Part 1:
Introduction to Nanotechnology / 1:
Definition of Nanotechnology / 1.1:
Brief History of Nanotechnology / 1.2:
What Is the Significance of Nanoscale Materials? / 1.3:
Why Is This Nanoscale So Special and Unique? / 1.4:
How Polymer Nanocomposites Work / 1.5:
Strengths and Weaknesses of Nanoparticles / 1.6:
Safety of Nanoparticles / 1.7:
Overview of the Book / 1.8:
Summary / 1.9:
Study Questions / 1.10:
References / 1.11:
Further Reading / 1.12:
An Overview of Nanomaterials / 2:
Introduction / 2.1:
Types of Nanomaterials / 2.2:
One Nanoscale Dimension in the Form of Lamellar / 2.2.1:
Two Nanoscale Dimensions in the Form of Fibers / 2.2.2:
Three Nanoscale Dimensions in the Form of Particulates / 2.2.3:
Selecting Resin Matrix and Nanomaterials for Applications / 2.3:
Characteristics of Polymer Nanocomposites / 3.1:
Different Types of Polymer Nanocomposites / 3.2:
Thermoplastic-Based Nanocomposites / 3.2.1:
Thermoset-Based Nanocomposites / 3.2.2:
Elastomer-Based Nanocomposites / 3.2.3:
Processing of Multifunctional Polymer Nanocomposites / 3.3:
Synthesis Methods / 4.1:
Solution Intercalation / 4.2:
Solution Intercalation from Polymers in Solution / 4.2.1:
Solution Intercalation from Prepolymers in Solution / 4.2.2:
Melt Intercalation / 4.3:
Thermoplastic Nanocomposites / 4.3.1:
Elastomer Nanocomposites / 4.3.2:
Three-Roll Milling / 4.4:
Centrifugal Processing / 4.5:
In Situ Polymerization / 4.6:
Thermoset Nanocomposites / 4.6.1:
Rubber-Modified Epoxy Nanocomposites / 4.6.3:
Emulsion Polymerization / 4.7:
High-Shear Mixing / 4.8:
Ultrasonic Mixing / 4.9:
Structure and Property Characterization / 4.10:
Global Characterization Methods / 5.1:
Optical Microscopy / 5.2:
X-Ray Diffraction / 5.3:
Electron Microscopy and Spectroscopy / 5.4:
Scanning Electron Microscopy (SEM) / 5.4.1:
Transmission Electron Microscopy (TEM) / 5.4.2:
Energy-Dispersive X-Ray Spectroscopy (EDS or EDX) / 5.4.3:
Small-Angle X-Ray Scattering (SAXS) / 5.5:
Scanning Probe Microscopy (SPM) / 5.6:
Scanning Tunneling Microscopy (STM) / 5.6.1:
Atomic Force Microscopy (AFM) / 5.6.2:
Raman Spectroscopy / 5.7:
X-Ray Photoelectron Spectroscopy (XPS) / 5.8:
Other Techniques / 5.9:
Mechanical Properties / 5.10:
Thermal Properties / 5.11:
Thermogravimetric Analysis (TGA) / 5.11.1:
Differential Scanning Calorimetry (DSC) / 5.11.2:
Dynamic Mechanical Thermal Analysis (DMTA) / 5.11.3:
Thermal Conductivity / 5.11.4:
Other Thermal Properties / 5.11.5:
Flammability Properties / 5.12:
Cone Calorimeter (CC) / 5.12.1:
Mass Loss Calorimetry (MLC) / 5.12.2:
Microscale Combustion Calorimetry (MCC) / 5.12.3:
Oxygen Index-Limiting Oxygen Index (LOI) / 5.12.4:
UL 94 / 5.12.5:
Steiner Tunnel Test (ASTM E 84) / 5.12.6:
Ablation Properties / 5.13:
Simulated Solid Rocket Motor (SSRM) / 5.13.1:
Subscale Solid Rocket Motor (Char Motor) / 5.13.2:
Oxyacetylene Test Bed (OTB) / 5.13.3:
Char Strength Sensor / 5.13.4:
In Situ Ablation Recession and Thermal Sensors / 5.13.5:
Electrical Properties / 5.14:
Other Properties / 5.15:
Summary, Future Needs, and Assessments / 5.16:
Multifunctional Properties of Polymer Nanocomposites / 5.17:
Mechanical Properties of Polymer Nanocomposites / 6:
Nanoclay-Based Thermoplastic Nanocomposites / 6.1:
Carbon-Based Thermoplastic Nanocomposites / 6.2.2:
Other Nanomaterial-Based Thermoplastic Nanocomposites / 6.2.3:
Summary of Thermoplastic-Based Nanocomposites / 6.2.4:
Thermoplastic Elastomer-Based Nanocomposites / 6.3:
Nanoclay-Based Thermoplastic Elastomer Nanocomposites / 6.3.1:
Carbon-Based Thermoplastic Elastomer Nanocomposites / 6.3.2:
Other Nanomaterial-Based Thermoplastic Elastomer Nanocomposites / 6.3.3:
Summary of Thermoplastic Elastomer-Based Nanocomposites / 6.3.4:
Epoxy Nanocomposites / 6.4:
Special Types of CNT-Based Thermoset-Based Nanocomposites / 6.4.2:
Summary of Thermoset-Based Nanocomposites / 6.4.3:
Overall Summary / 6.5:
Thermal Properties of Polymer Nanocomposites / 6.6:
Polypropylene-Clay Nanocomposites / 7.1:
PEEK-Carbon Nanofiber Nanocomposites / 7.2.2:
PVC-Layered Double-Hydroxide Nanocomposites / 7.2.3:
Hybrid Systems / 7.2.4:
Summary of Thermal Properties of Thermoplastic-Based Nanocomposites / 7.2.5:
Thermoplastic Polyurethane-Montmorillonite Clay / 7.3:
Thermoplastic Polyurethane-MWNT Nanocomposites / 7.3.2:
Thermoplastic Polyurethane Mixed with Laponite and Cloisite / 7.3.3:
Poly(dimethyl siloxane)/Boron Nitride / 7.3.4:
Polyethylene/Single-Walled Carbon Nanotubes / 7.3.5:
Ethylene Propylene Diene Monomer/ZnO / 7.3.6:
Summary of Thermal Properties of Thermoplastic Elastomer-Based Nanocomposites / 7.3.7:
Thermal Conductivity of Epoxy-Based Nanocomposites / 7.4:
Heterogeneously Structured Conductive Resin Matrix/Graphite Fiber Composite for High Thermal Conductive Structural Applications / 7.4.3:
Summary of Thermal Conductivity Properties of Thermoset-Based Nanocomposites / 7.5:
Phenylethynyl Polyimide-Graphene Oxide Nanocomposites / 7.6:
Summary of Thermal Properties of Thermoset-Based Nanocomposites / 7.7:
Flammability Properties of Polymer Nanocomposites / 7.8:
Thermal and Flame Retardancy Properties of Polymer Nanocomposites / 8.1:
One Nanoscale Dimension-Based Nanocomposites / 8.2.1:
Two Nanoscale Dimensions-Based Nanocomposites / 8.2.2:
Three Nanoscale Dimensions-Based Nanocomposites / 8.2.3:
Multicomponent FR Systems: Polymer Nanocomposites Combined with Additional Materials / 8.2.4:
Flame-Retard ant Mechanisms of Polymer Nanocomposites / 8.3:
Concluding Remarks and Trends of Polymer Nanocomposites / 8.4:
Ablation Properties of Polymer Nanocomposites / 8.5:
Behavior of Thermal Protection Materials / 9.1:
Polymer Nanocomposite Review / 9.3:
Thermoplastic Nanocomposite Studies / 9.3.1:
Polymer-Clay Nanocomposite Studies / 9.3.2:
EPDM Nanocomposite Studies / 9.3.3:
Natural Rubber (NR) and Hydrogenated Nitrite Butadiene Rubber (HNBR) Nanocomposite Studies / 9.3.4:
Thermoplastic Polyurethane Nanocomposite (TPUN) Studies / 9.3.5:
Phenolic Nanocomposite Studies / 9.3.6:
In Situ Ablation Sensing Technology / 9.4:
A Comparison Among the Temperature Profiles of High-, Mid-, and Low-Density Materials / 9.4.1:
Summary and Conclusions of Ablation Recession Rate of Different Types of Ablatives and Future Outlook / 9.4.2:
Overall Summary and Conclusions / 9.5:
Electrical Properties of Polymer Nanocomposites / 9.6:
Electrical Properties of Thermoplastic-Based Nanocomposites / 10.1:
Carbon Nanotube-Reinforced Thermoplastic-Based Nanocomposites / 10.2.1:
Carbon Nanofiber-Reinforced Thermoplastic-Based Nanocomposites / 10.2.2:
Graphite-Reinforced Thermoplastic-Based Nanocomposites / 10.2.3:
Electrical Properties of Thermoset-Based Nanocomposites / 10.3:
Carbon Nanotube-Reinforced Thermoset-Based Nanocomposites / 10.3.1:
Carbon Nanofiber-Reinforced Thermoset-Based Nanocomposites / 10.3.2:
Carbon Black-Reinforced Thermoset-Based Nanocomposites / 10.3.3:
Graphite-Reinforced Thermoset-Based Nanocomposites / 10.3.4:
Electrical Properties of Thermoplastic Elastomer-Based Nanocomposites / 10.4:
Inorganic Filler in Thermoplastic Elastomer-Based Nanocomposites / 10.4.1:
Organic Fillers in Thermoplastic Elastomer-Based Nanocomposites / 10.4.2:
Widespread Properties of Polymer Nanocomposites / 10.5:
Tribological Properties of Polymer Nanocomposites / 11.1:
Abrasion, Wear, and Scratch Resistance Characterization Techniques / 11.2.1:
Wear and Abrasion Resistance of Polymer-Clay Nanocomposites / 11.2.2:
Wear and Scratch Resistance of Polymer-Carbon Nanotube Nanocomposites / 11.2.3:
Wear Resistance of PTFE-Graphene Nanocomposites / 11.2.4:
Summary of Tribological Properties of Polymer Nanocomposites / 11.2.5:
Permeability Properties of Polymer Nanocomposites and Applications of Nanotechnology and Nanomaterials in the Oil Field / 11.3:
Opportunities and Trends for Polymer Nanocomposites / 11.4:
Opportunities, Trends, and Challenges for Nanomaterials and Polymer Nanocomposites / 12:
Government and Commercial Research Opportunities / 12.1:
U.S. Government Research Opportunities, Program Plans, and Progress / 12.2.1:
Commercial Market Opportunities / 12.2.2:
Cost and Property and Geographical Breakdown Analyses / 12.2.3:
Technical and Funding Developments / 12.2.4:
Nanotechnology Research Output / 12.3:
Trend and Forecast / 12.4:
Challenges / 12.5:
Manufacturability of Nanoparticles / 12.5.1:
Manufacturability of Polymer Nanocomposites / 12.5.2:
Concluding Remarks / 12.6:
Index / 12.7:
Preface
Nanomaterials, Processing, and Characterization / Part 1:
Introduction to Nanotechnology / 1:
24.

図書

図書
Kurt Jax
出版情報: Cambridge ; Tokyo : Cambridge University Press, 2010  xiv, 272 p. ; 24 cm
シリーズ名: Ecology, biodiversity, and conservation / series editors, Michael Usher ... [et al.]
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
Setting the scene: the context of investigating ecosystem functioning / 2:
Case study: exotic species and ecosystem functioning on Navarino Island / 2.1:
The fields of application for 'ecosystem functioning' / 2.2:
Conclusions from this chapter / 2.3:
What do we need for a functioning ecosystem? The debate on biodiversity and ecosystem functioning / 3:
A brief look at the history of the biodiversity - ecosystem functioning debate / 3.1:
Two diversity debates in ecology / 3.1.1:
Biodiversity and ecosystem functioning research: some general trends / 3.1.2:
Biodiversity and ecosystem functioning: what do we measure? / 3.2:
Biodiversity and ecosystem processes / 3.2.1:
From ecosystem processes to overall ecosystem functioning / 3.2.2:
Excursus: ecosystem functioning, functional groups, and functional diversity / 3.2.3:
Biodiversity and ecosystem functioning: some consensus and many open questions / 3.2.4:
Becoming general: what is ecosystem functioning? / 3.3:
At the heart of the problem: the meanings of 'functioning' / 4.1:
From function to functioning / 4.1.1:
Excursus: ecosystem services / 4.1.2:
Function and functioning: teleology looming / 4.2:
Two different views on wholes and parts / 4.2.1:
Ecosystem functioning and teleology / 4.2.2:
Functions in organisms, societies, and ecosystems / 4.2.3:
The meanings of 'ecosystem' / 4.3:
Case study: destroying or maintaining a functioning ecosystem? Wildlife management in Yellowstone National Park / 4.3.1:
A tool for clarifying and visualising different ecosystem definitions: the SIC scheme / 4.3.2:
General conclusions / 4.4:
Ecosystem functioning as a conceptual cluster: related terms and concepts / 4.4.2:
Ecosystem functioning: science meets society / 5:
Between constructivism and scientific realism: determining the limits of ecosystem functioning / 5.1:
Are ecosystems mere constructs? / 5.1.1:
Implications for ecosystems and their functioning / 5.1.2:
Does the variety of ecosystem concepts promote environmental relativism? / 5.1.3:
Case study: alternative stable states as distinct modes of ecosystem functioning / 5.1.4:
Values, norms, and ecosystem functioning: a necessary and difficult unity / 5.2:
Case study: societal choices and ecosystem management: the Ecosystem Approach of the Convention on Biodiversity / 5.3:
The development of ecosystem management approaches / 5.3.1:
The Ecosystem Approach of the Convention on Biodiversity / 5.3.2:
'Ecosystem functioning' in the Convention on Biodiversity Ecosystem Approach / 5.3.3:
Conclusions: the roles of science and society in assessing ecosystem functioning / 5.4:
A network of hybrid concepts / 5.4.1:
Assessing ecosystem functioning: some existing approaches / 6:
Ecosystem functioning: the baseline / 6.1:
Existing approaches for assessing ecosystem functioning: ecosystem integrity, ecosystem health, ecosystem stability, and ecosystem resilience / 6.2:
Ecosystem integrity and health / 6.2.1:
Case study: assessing 'good ecological status' in the European Water Framework Directive / 6.2.2:
Ecosystem stability and resilience / 6.2.3:
Other approaches / 6.2.4:
Putting ecosystem functioning concepts into practice: a classification and some guidelines / 6.3:
Ecosystem functioning concepts in practice: a classification / 7.1:
Ecosystem functioning and the generic-type ecosystem / 7.1.1:
Ecosystem functioning and the process-focused-type ecosystem / 7.1.2:
Ecosystem functioning and the physiognomic-type ecosystem / 7.1.3:
Ecosystem functioning and the species-specific-type ecosystem / 7.1.4:
What is the use in describing different ecosystem functioning types? / 7.1.5:
Some guidelines for conceptualising and assessing ecosystem functioning / 7.2:
Choices / 7.2.1:
Procedures / 7.2.2:
Case study: ecological restoration and ecosystem functioning / 7.3:
Restoration of post-mining sites in Lower Lusatia / 7.3.1:
Beyond Lusatia: ecological restoration and ecosystem functioning / 7.3.2:
Conclusions and outlook / 7.4:
Ecosystem functioning as a research programme? / 7.4.1:
Is ecosystem functioning good? / 7.4.2:
The role(s) of scientists in ecosystem functioning research (and beyond) / 7.4.3:
How useful is the ecosystem functioning concept? / 7.4.4:
References
Index
A brief look at the history of the biodiversity-ecosystem functioning debate
Biodiversity and ecosystem, processes
Acknowledgements
Introduction / 1:
Setting the scene: the context of investigating ecosystem functioning / 2:
25.

図書

図書
Mahmood Aliofkhazraei, editor
出版情報: Cham : Springer, c2016  2 v. (1439 p.) ; 25 cm
シリーズ名: Springer reference
所蔵情報: loading…
26.

図書

図書
edited by Ben M. Dunn
出版情報: Hoboken, N.J. : Wiley, c2015  xvi, 318 p., [8] p. of colored plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Peptide Therapeutics / Nader Fotouhi1:
History of Peptides as Drugs / 1.1:
Factors Limiting the Use of Peptides in the Clinic / 1.2:
Advances that have Stimulated the Use of Peptides as Drugs / 1.3:
Development of Peptide Libraries / 1.4:
Modification of Peptides to Promote Stability and Cell Entry / 1.5:
Targeting Peptides to Specific Cells / 1.6:
Formulations to Improve Peoperties / 1.7:
References
Methods for the Peptide Synthesis and Analysis / Judit Tulla-Puche ; Ayman El-Faham ; Athanassios S. Galanis ; Eliandre de Oliveira ; Aikaterini A. Zompra ; Fernando Albericio2:
Introduction / 2.1:
Solid Supports / 2.2:
Linkers / 2.3:
Protecting Groups / 2.4:
The Special Case of Cysteine / 2.4.1:
Methods for Peptide Bond Formation / 2.5:
Peptide-Bond Formation from Carbodiimide-Mediated Reactions / 2.5.1:
Peptide-Bond Formation from Preformed Symmetric Anhydrides / 2.5.2:
Peptide-Bond Formation from Acid Halides / 2.5.3:
Peptide-Bond Formatiion from Phosphonium Salt-Mediated Reactions / 2.5.4:
Peptide-Bond Formation from Aminium/Uronium Salt-Mediated Reactions / 2.5.5:
Solid-Phase Stepwise Synthesis / 2.6:
Long Peptides / 2.6.1:
Synthesis in Solution / 2.7:
Nα Protection of the N-Terminal Amino Acid Derivative or Fragment / 2.7.1:
Carboxy-Group Protection of the C-terminal Amino-Acid Derivative or Fragment / 2.7.2:
Peptide Bond Formation / 2.7.3:
Hybrid Synthesis-Combination of Solid and Solution Synthesis / 2.8:
Classical Segment Condensation / 2.8.1:
Native Chemical Ligation / 2.8.2:
Cyclic Peptides / 2.9:
Depsipeptides / 2.10:
Separation and Purification of Peptides / 2.11:
Gel-Filtration Chromatography / 2.11.1:
Ion-Exchange Chromatography / 2.11.2:
Reverse-Phase High Performance Liquid Chromatography / 2.11.3:
Characterization of Peptides Through Mass Spectrometry / 2.12:
Ionization Source / 2.12.1:
Mass Analysers / 2.12.2:
Peptide Fragmentation / 2.12.3:
Quantification by MS / 2.12.4:
Conclusions / 2.13:
Acknowledgments
Abbreviations
Peptide Design Strategies for G-Protein Coupled Receptors (GPCRs) / Anamika Singh ; Carrie Haskell-Luevano3:
Classification of GPCRs / 3.1:
Catalog of Peptide-Activated G-Protein Coupled Receptors / 3.3:
Structure of GPCRs: Common Features / 3.4:
Crystal Structures / 3.4.1:
GPCR Activation / 3.5:
Ligand (Peptide) Binding and Receptor Activation / 3.5.1:
Common Structural Changes among GPCRs / 3.5.2:
G-Protein Coupled Intracellular Signaling Pathwayws / 3.5.3:
Structure and Function of Peptide Hormones / 3.6:
Design Approaches for GPCR Selective Peptide Ligands / 3.7:
Structure-Activity Relationship (SAR) Studies / 3.7.1:
Chimeric Peptide Analogs / 3.7.2:
Combinatorial Libraries / 3.7.3:
Three-Dimensional (3D) GPCR Homology Molecular Modeling / 3.7.4:
Peptide-Resed Inhibitors of Enzymes / Anna Knapinska ; Sabrina Amar ; Trista K. Robichaud ; Gregg B. Fields3.8:
Angiotensin-Converting Enzyme and Neprilysin/Neutral Endopeptidase / 4.1:
Peptide Inhibitors of the HIV-1 Viral Life Cycle / 4.3:
Matrix Metalloproteinases / 4.4:
Antrax Lethal Factor Inhibition by Defensins / 4.5:
Kinases / 4.6:
Glycosyltransferases (Oligosaccharyltransferases) / 4.7:
Telomerase Inhibitors / 4.8:
Tyrosinase / 4.9:
Peptidyl-Prolyl Isomerase / 4.10:
Histone Modifying Enzymes / 4.11:
Histone Deacetylase / 4.11.1:
Histone Methyl-Transferase / 4.11.2:
Putting it all Together: Peptide Inhibitor Applications in Skin Care / 4.12:
Strategies for the Discovery of Novel Peptide Inhibitors / 4.13:
Discovery of Peptide Drugs as Enzyme Inhibitors and Activators / Jeffrey-Tri Nguyen ; Yoshiaki Kiso5:
Peptide Residue Nomenclature / 5.1:
Common Methods of Drug Design / 5.1.2:
Phases of Drug Development / 5.1.3:
Enzyme Types That Process Peptides / 5.2:
Enzymes as Chemicals in Consumer and Medical Products / 5.2.1:
Nonspecific Enzyme Inhibitors / 5.2.2:
Amino Acid Drugs / 5.3:
Thyroid Hormones / 5.3.1:
An Ornithine Decarboxylase Inhibitor / 5.3.2:
Catecholamines / 5.3.3:
Serine Proteases and Blood Clotting / 5.4:
Blood Coagulating Agents / 5.4.1:
Enzymes as Blood Anticoagulants / 5.4.2:
Direct Thrombin Inhibitors as Blood Anticoagulants / 5.4.3:
Diabetes Mellitus / 5.5:
Peptide Hormones and Blood Glucose Regulation / 5.5.1:
Glucagon-Like Peptide-1 and Analogs / 5.5.2:
Dipeptidyl Peptidase-4 Inhibitors / 5.5.3:
Renin-Angiotensin-Aldosterone System / 5.6:
ACE Inhibitors / 5.6.1:
Renin Inhibitors / 5.6.2:
Penicillin and Cephalosporin Antibiotics / 5.7:
HIV Protease / 5.8:
HIV-Specific Protease Inhibitors / 5.8.1:
Peptide Drugs Under Development / 5.9:
Cathepsins / 5.9.1:
Cysterine Proteases / 5.9.2:
Secretases in Alzheimer's Disease / 5.9.3:
Trypsin-Like Serine Proteases / 5.9.4:
Zinc Metalloproteases / 5.9.5:
Non-Mammalian Proteases / 5.9.6:
Discussion / 5.10:
Discovery of Peptide Drugs from Natural Sources / Sónia T Henriques ; David J Craik6:
Peptides are Involved in the Host Defense Mechanism of Living Organisms / 6.1:
Cationic AMPs from Eukaryotes, Peptides that Target the Membrane / 6.2.1:
Peptides and the Host Defense in Bacteria-Bacteriocins / 6.2.2:
Cyclotides, Ultra-Stable Peptides that are Part of Plant Defense Mechanism / 6.2.3:
Animal Venoms, a Rich Source of Peptides with Therapeutic Potential / 6.3:
Conotoxins, a Naturally Occurring Combinatorial Peptide Library / 6.3.1:
Optimization of Peptides for Drug Development / 6.4:
Chemical Modifications to Improve Activity / 6.4.1:
Modification of Peptides of Limit Metabolism / Isuru R. kumarasinghe ; Victor J. Hruby6.5:
Introduction of Unnatural Amino Acids / 7.1:
Cyclization of Linear Peptides to Improve Stability Toward Blood and Brain Protease Degradation / 7.3:
Introduction of D-Amino Acids into Peptides Improves Stability Toward Blood and Brain Protease Degradation / 7.4:
Introduction of β-Amino Acids Increases the Stability Toward Blood and Brain Protease Degradation / 7.5:
INtroduction of Peptide Bond Isosteres / 7.6:
Introduction of a N-Methylation of the Amide Bond of Peptides can Improve the Stability Toward Blood and Brain Protease Degradation / 7.7:
Use of Unnatural Amino Acids-Use of Topographically Constrained Amino Acid / 7.8:
Using Glycosylated Amino Acids to Increase the Resistance of the Proteolytic Degradation / 7.9:
Creation of Peptides as Multiple Antigen Peptide (MAP) Dendrimeric Forms Increases the Stability Toward Blood and Brain Protease Degradation / 7.10:
Halogenations of Aromatic Residues in Peptides can Reduce the Enzymatic Recognition Required for Peptide Hydrolysis / 7.11:
Concluding Discussion / 7.12:
Delivery of Peptide Drugs / 8:
Lipinski's Rule of Five / 8.1:
Molecular Size / 8.2.1:
Lipophilicity / 8.2.2:
Chemical Stability / 8.2.3:
Routes of Administration / 8.2.4:
Approaches to Delivering Peptide Drugs / 8.3:
Enzyme Inhibitors / 8.3.1:
Permeation Enhancers / 8.3.2:
Delivery of Peptide Drugs across the Blood-Brain Barrier / 8.3.3:
Parenteral Peptide Drugs / 8.4:
Topical Peptide Drugs for Local Effects / 8.5:
Cosmeceutical Peptides / 8.5.1:
Intranasal Peptide Drug Delivery / 8.6:
Enteral Peptide Drugs / 8.7:
DIfferent Routes of Administration for Insulin / 8.8:
Index / 8.9:
Preface
List of Contributors
Peptide Therapeutics / Nader Fotouhi1:
27.

図書

図書
edited by Christopher S. Yoo
出版情報: Cheltenham ; Northampton, Mass. : Edward Elgar Pub., c2011  2 v. ; 26 cm
シリーズ名: Critical concepts in intellectual property law ; 4
An Elgar research collection
所蔵情報: loading…
28.

図書

図書
Victor V. Moshchalkov, Joachim Fritzsche
出版情報: Singapore : World Scientific, c2011  xix, 299 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
List of Figures
Introduction / 1:
Quantization and confinement in nano-materials / 1.1:
Nanostructuring / 1.2:
Confining the superconducting condensate / 1.3:
Nucleation of superconductivity in presence of spatially modulated magnetic fields / 1.4:
Vortex matter in superconductors / 1.5:
The structure of a single vortex / 1.5.1:
The vortex lattice - general considerations / 1.5.2:
Vortex lattices in thin films / 1.5.3:
Vortex lattices in type-1.5 superconductors / 1.5.4:
Flux pinning / 1.6:
Structural pinning / 1.6.1:
Magnetic pinning / 1.6.2:
Individual Nanostructures / 2:
Line / 2.1:
Loop / 2.2:
Disc / 2.3:
The cross-over from loop to dot / 2.4:
Symmetry-induced antivortices in mesoscopic superconductors / 2.5:
Square / 2.5.1:
Triangle / 2.5.2:
Rectangles / 2.5.3:
The magnetization of singly connected nanostructures / 2.6:
Dynamic effects in mesoscopic structures / 2.6.1:
Rectification effects in a triangle / 2.7.1:
Reversal of the diode effect / 2.7.2:
The diode effect in a disk / 2.7.3:
Comparison with a theoretical model / 2.7.4:
Hybrid individual cells / 2.8:
Square with magnetic dot / 2.8.1:
Phase shifter / 2.8.2:
Clusters of Nanocells / 3:
One-dimensional clusters of loops / 3.1:
Two-dimensional clusters of antidots / 3.2:
Magnetically coupled loops / 3.3:
Laterally Nanostructured Superconductors / 4:
Pinning in laterally nanostructured superconductors / 4.1:
Pinning by an antidot or a columnar defect / 4.2.1:
Regular pinning arrays / 4.2.2:
Composite antidot lattices / 4.2.3:
Ratchet effects in antidot lattices / 4.3:
Vortex rectification in films with asymmetric pinning / 4.3.1:
Controlled multiple reversals of a ratchet effect / 4.3.2:
The origin of reversed vortex ratchet motion / 4.3.3:
Superconductor-Ferromagnet Hybrid Systems / 5:
Field polarity dependent vortex pinning in laterally nano-structured S/F systems / 5.1:
Vortex pinning by magnetic dots / 5.1.1:
Commensurate vortex domain formation / 5.1.2:
Field induced superconductivity / 5.2:
Dipole-induced vortex ratchet effects / 5.3:
Generation of vortex-antivortex pairs / 5.3.1:
Switching rectification properties / 5.3.2:
Superconductivity in stray fields of magnetic domains / 5.4:
Domain superconductivity and domain-wall superconductivity / 5.4.1:
Direct visualization of reverse-domain superconductivity / 5.4.2:
Superconducting - normal-state junctions induced by stray magnetic fields / 5.4.3:
Concluding Remarks
Bibliography
Index
Preface
Acknowledgments
List of Figures
29.

図書

図書
Peter Biggins, John Hiltz, Anne Kusterbeck
出版情報: Cambridge, UK : Royal Society of Chemistry, c2011  xi, 151 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
A View on Bio-inspiration / Chapter 1:
Introduction / 1.1:
Context/Motivation / 1.2:
Rio-inspiration / 1.2.1:
Biotechnology vs. Bib-inspiration / 1.2.2:
Challenges for Science and Technology / 1.3:
The Need for a Framework / 1.4:
Biological Principles / 1.4.1:
Science and Technology to Mission Capability / 1.5:
Conclusion / 1.6:
References
Investment Approaches / Chapter 2:
Effect of Globalization on Investment / 2.1:
Overview of Investment by Key Countries / 2.3:
United States / 2.3.1:
United Kingdom / 2.3.2:
European Union / 2.3.3:
China / 2.3.4:
India / 2.3.5:
Japan / 2.3.6:
Russia / 2.3.7:
Future Trends / 2.4:
Conceptual Approach / 2.5:
Operational Requirements and Concepts of Operation / 3.1:
Conceptual Goal / 3.3:
Enabling Technologies / 3.4:
Collection and Sampling / 3.4.1:
Structures / 3.4.2:
Receptors and Surfaces / 3.4.3:
Sensing and Transduction / 3.4.4:
Processing and Communication / 3.4.5:
Power and Energy / 3.4.6:
A Larger Vision of the SASS Concept / 3.5:
Structure / 3.6:
Themes in Biological Systems / 4.1:
Hierarchical Structures / 4.2.1:
Bottom-up vs. Top-down Approach to Fabrication / 4.2.2:
Multifunctional Materials / 4.2.3:
Structural Parameters / 4.3:
Scale / 4.3.1:
Function / 4.3.2:
Biological Joining Technologies / 4.4:
Velcro / 4.4.1:
Toe Pad Adhesion / 4.4.2:
Self-healing Materials / 4.5:
Superhydrophobic Surfaces / 4.6:
Materials / 4.7:
Approaches to Collection and Sampling / 4.8:
Collection and Sampling Tools / 5.2.1:
Natural Sampling System û Olfaction / 5.3:
Bio-inspired Sampling System - Electronic Nose / 5.4:
Rio-inspired Materials for Collection and Sampling / 5.5:
Molecularly Imprinted Polymers / 5.5.1:
High Surface Area, Highly Porous Materials / 5.5.2:
Polysilsesquioxanes / 5.5.3:
Dendrimers / 5.5.4:
Polymer Nanofibres / 5.5.5:
Bio-inspired/Biomimetic Collection and Sampling Systems / 5.6:
Biomimetic Air Sampling / 5.6.1:
Water Collection and Transport (Thorny Devil) / 5.6.2:
Optimized/Controlled Fluid Flow / 5.6.3:
Natural Receptors / 5. 7:
Antibodies / 6.2.1:
Other Bio-derived Molecular Bioprobes / 6.2.2:
Synthetic Ligands / 6.2.3:
Functionalized Surfaces / 6.3:
Virus Particles as Scaffolds / 6.3.1:
Lipid Bilayers / 6.3.2:
Hydrogels / 6.3.3:
Nanoarrays with Bio-inspired Nanocorals / 6.3.4:
On the Horizon: Molecular Biomimetics / 6.4:
Transduction Defined / 6.5:
Select Examples of Sensing and Transduction Approaches / 7.3:
Optica / 7.3.1:
Mass-based and Spectroscopic Methods / 7.3.2:
Piezoelectric / 7.3.3:
Electrochemical / 7.3.4:
Micro-electromechanical Systems (MEMS) / 7.3.5:
Magnetic / 7.3.6:
Emerging Transduction Technologies / 7.3.7:
Microfabrication and Lab on a Chip Technologies / 7.3.8:
Biomimetic and Bio-inspired Sensing Technologies / 7.5:
Smart Materials in Sensing and Transduction / 7.5.1:
Sensing Technologies / 7.5.2:
Energy and Power / 7.6:
Energy Sources / 8.1:
Energy in a Natural System / 8.2.1:
Solar Energy / 8.2.2:
Photosynthesis / 8.2.3:
Artificial Photosynthesis / 8.2.4:
Fuel Cells / 8.2.5:
Towards Autonomy: Self-sustaining Systems / 8.3:
Space Exploration / 8.4:
Processing and Communications / 8.5:
Parallel Computing / 9.1:
Natural Computing / 9.2.2:
Molecular Computing / 9.3:
Cognition / 9.4:
Applications / 9.5:
Sensor Networks / 9.5.1:
Insect Sensory Systems / 9.6:
Collision Avoidance/Motion Detection Systems / 9.6.1:
Bio-inspired Networking / 9.7:
Bio-inspired Network Routing Protocols / 9.7.1:
Issues / 9.8:
The Sass Approach / 9.9:
Design and Manufacture / 10.1:
Bioengineering / 10.2.1:
Additive Manufacturing / 10.2.2:
Component Level / 10.3:
System Level / 10.3.2:
System of Systems Level / 10.3.3:
Range of Applications / 10.3.4:
Societal Implications / 10.4:
Concluding Remarks / 10.5:
Subject Index
A View on Bio-inspiration / Chapter 1:
Introduction / 1.1:
Context/Motivation / 1.2:
30.

図書

図書
edited by Fei Huang, Hin-Lap Yip, Yong Cao
出版情報: Cambridge : Royal Society of Chemistry, c2016  xv, 406 p. ; 24 cm
シリーズ名: RSC polymer chemistry series ; 17
所蔵情報: loading…
目次情報: 続きを見る
New Chemistry for Organic Photovoltaic Materials / Cuihong Li ; Zhishan BoChapter 1:
Introduction / 1.1:
Stille Polycondensation / 1.2:
History and Mechanism of the Stille Coupling Reaction / 1.2.1:
The Reaction Catalyst, Ligand and Solvent / 1.2.2:
Monomers / 1.2.3:
Advantages of the Stille Polycondensation / 1.2.4:
Disadvantages of the Stille Polycondensation / 1.2.5:
Examples of Synthesis of D-A Conjugated Polymers by Stille Coupling / 1.2.6:
Suzuki Polycondensation / 1.3:
History and Mechanism of the Suzuki Coupling Reaction / 1.3.1:
Mechanism of the Suzuki Coupling Reaction / 1.3.2:
Catalyst, Ligand and Solvents / 1.3.3:
Advantages of the Suzuki Coupling Reaction / 1.3.4:
Drawbacks of the Suzuki Coupling Reaction / 1.3.6:
Examples of the Suzuki Coupling Reaction / 1.3.7:
C-H Activation/Direct Arylation Polycondensation / 1.4:
History and Mechanism of the C-H Activation Polycondensation / 1.4.1:
Mechanistic Insight / 1.4.2:
Catalysts, Additive and Solvents / 1.4.3:
Advantages of the Direct Arylation Polycondensation / 1.4.4:
Drawbacks of the Direct Arylation Polycondensation / 1.4.6:
Examples of the Direct Arylation Polycondensation / 1.4.7:
References
New Polymer Donors for Polymer Solar Cells / Long Ye ; Sunsun Li ; Jianhui HouChapter 2:
Design Requirements and Strategies for Highly Efficient Polymer Donors / 2.1:
Design Requirements for Highly Efficient Polymer Donors / 2.2.1:
Design Strategies for Highly Efficient Polymer Donors / 2.2.2:
Novel D-A Copolymers for Polymer Solar Cells / 2.3:
Design Considerations for D-A Polymer Donors / 2.3.1:
D-A Copolymers Based on Thiophene Units / 2.3.2:
D-A Copolymers Based on Bridged Biphenyl Derivatives / 2.3.3:
D-A Copolymers Based on Bridged Bithiophene Derivatives / 2.3.4:
D-A Copolymers Based on Benzodithiophene Analogues / 2.3.5:
D-A Copolymers Based on Indacenodithiophene Analogues / 2.3.6:
Novel Terpolymer Donors for Polymer Solar Cells / 2.4:
Design Considerations for Terpolymer Donors / 2.4.1:
Novel Terpolymers Based on One Donor Unit / 2.4.2:
Novel Terpolymers Based on Two Donor Units / 2.4.3:
Summary and Outlook / 2.5:
Fullerene Derivatives as Electron Acceptors in Polymer Solar Cells / Yutaka MatsuoChapter 3:
Design Concepts of Fullerene Acceptors / 3.1:
PCBM / 3.2:
Synthesis of PCBM / 3.2.1:
Fundamental Properties of PCBMs / 3.2.2:
PCBM Derivatives in Photovoltaic Applications / 3.2.3:
[70]PCBM / 3.2.4:
Mix-PCBM / 3.2.5:
1,4-Di(organo)fullerene / 3.3:
Silylmethylfullerene (SIMEF) / 3.3.1:
1,4-Di(aryl)fullerene / 3.3.2:
Diphenylmethanofullerene (DPM) / 3.4:
Synthesis of Diphenylmethanofullerene / 3.4.1:
Photovoltaic Application / 3.4.2:
Fulleropyrrolidine / 3.5:
Synthesis of Fulleropyrrolidine / 3.5.1:
Photovoltaic Applications / 3.5.2:
56π-Electron Conjugated Fullerene Derivatives / 3.6:
Diels-Alder Reactions / 3.6.1:
Indene-C60 Bis-Adducts (ICBA) and Related Compounds / 3.6.2:
Dihydromethanofullerene / 3.7:
Synthesis of Dihydromethanofullerene / 3.7.1:
56π-Dihydromethanofullerene / 3.7.2:
Summary / 3.8:
Acknowledgements
Polymer Acceptors for All-Polymer Solar Cells / He Yan ; Christopher R. McNeill ; Cheng MuChapter 4:
Materials Aspects for All-Polymer Solar Cells / 4.1:
All-PSCs Based on Large Bandgap (2-2.5 eV) Donor Polymers / 4.2.1:
All-PSCs Based on Polythiophene Donor Polymers / 4.2.2:
All-PSCs Based on Medium or Low Bandgap Polymers / 4.2.3:
Morphology of Polymer: Polymer Blends / 4.3:
Solution Deposition / 4.3.1:
Molecular Weight / 4.3.2:
Crystallinity / 4.3.3:
Side Chains / 4.3.4:
Mini-Summary / 4.3.5:
Conclusions / 4.4:
Design and Synthesis of Small Molecule Donors for High Efficiency Solution Processed Organic Solar Cells / Seth McAfee ; Gregory C. Welch ; Corey V. HovenChapter 5:
Device Operation / 5.1:
Small Molecule Donor Design / 5.3:
Historical Perspective / 5.4:
Dye Based Molecules (BODIPY, Squaraine, and Merocyanine) / 5.5:
Dye Based Molecules - Diketopyrrolopyrrole / 5.6:
Dye Based Molecules - Isoindigo / 5.7:
Porphyrins / 5.8:
Oligothiophenes (Donor-Acceptor-Donor-Acceptor-Donor) / 5.9:
Oligothiophenes (Acceptor-Donor-Acceptor) / 5.10:
Comments on Device Optimization / 5.11:
Conclusions and Future Outlook / 5.12:
Interface Engineering of Polymer Solar Cells / Kai Zhang ; Chunhui Duan ; Fei Huang ; Yong CaoChapter 6:
Functions and Design Criteria of the Interfacial Layer / 6.1:
Functions of Interfacial Materials / 6.2.1:
Design Criteria for Interfacial Materials / 6.2.2:
Interfacial Materials for Conventional Polymer Solar Cells / 6.3:
Anode Contact / 6.3.1:
Cathode Contact / 6.3.2:
Interfacial Materials for Inverted Polymer Solar Cells / 6.4:
Solution Processed Metal Oxides and Hybrid Metal Oxides as Efficient Carrier Transport Layers of Organic Optoelectronic Devices / Wallace C. H. Choy6.4.1:
Solution-Processed Metal Oxides as Electron Transport Layer (ETL) / 7.1:
Zinc Oxide (ZnO) / 7.2.1:
Titanium Oxide (TiOx) / 7.2.2:
CS2CO3 / 7.2.3:
Other Metal Oxide Based ETLs / 7.2.4:
Doped and Hybrid Metal Oxides for Enhanced Electron Transport of ETL / 7.3:
Doped and Hybrid TiOx / 7.3.1:
Doped and Hybrid ZnO / 7.3.2:
Solution-Processed Metal Oxides Functioning as Hole Transport Layers (HTLs) / 7.4:
Solution-Processed Molybdenum Oxide (MoOx) as HTLs / 7.4.1:
Solution-Processed Vanadium Oxide (V2Ox)as HTL / 7.4.2:
Solution-Processed Tungsten Oxide (WOx) as HTL / 7.4.3:
Doped and Hybrid Metal Oxides as HTL / 7.4.4:
Acknowledgments / 7.5:
New Science and New Technology in Semiconducting Polymers / L. Kaake ; D. Moses ; C. Luo ; A. K. K. Kyaw ; L. A. Perez ; S. Patel ; M. Wang ; B. Grimm ; Y. Sun ; G. C. Bazan ; E.J. Kramer ; Alan J. HeegerChapter 8:
Coherence and Uncertainty in Nanostructured Organic Photovoltaic Materials / 8.1:
The Mechanism for Ultrafast Electron Transfer / 8.1.1:
Ultrafast Experimental Results / 8.1.2:
High Mobility Thin-Film Transistors (TFTs) Fabricated from Semiconducting Polymers / 8.2:
Conclusion / 8.3:
Morphology of Bulk Heterojunction Polymer Solar Cells / Feng Liu ; Yao Liu ; Thomas P. RussellChapter 9:
Characterization Methods / 9.1:
Lateral Morphology Characterizations / 9.2.1:
Vertical Morphology Characterizations / 9.2.2:
Surface Morphology Characterization / 9.2.3:
Crystalline Structure Characterization / 9.2.4:
Important Morphology Observations / 9.3:
PPV Polymers and Solvent Effect / 9.3.1:
P3HT and Thermal Annealing / 9.3.2:
PCPDTBT and Chemical Additives / 9.3.3:
PTB7 and Hierarchical Structure / 9.3.4:
Charge Generation, Recombination and Transport in Organic Solar Cells / Chengmei Zhong9.4:
The Charge Generation Process in Organic Solar Cells / 10.1:
The Exciton Theory of Charge Generation / 10.2.1:
The CT State, Charge Generation and Gemmate Recombination / 10.2.2:
The Ultrafast Charge Generation Theory / 10.2.3:
Charge Recombination in Organic Solar Cells / 10.3:
Charge Transport in Organic Solar Cells / 10.4:
Multi-junction Polymer Solar Cells / Alice Furlan ; Rene A. J. Janssen10.5:
Principles of Multi-Junction Polymer Solar Cells / 11.1:
Early Developments / 11.1.2:
Outline / 11.1.3:
Optimization and Characterization of Multi-Junction Polymer Solar Cells / 11.2:
Electrical and Optical Modeling / 11.2.1:
Characterization of Tandem Cells / 11.2.2:
Photoactive Layers / 11.3:
Fullerenes / 11.3.1:
Wide Bandgap Donors / 11.3.2:
Small Bandgap Donors / 11.3.3:
Recombination Layers / 11.4:
Regular Configuration / 11.4.1:
Inverted Configuration / 11.4.2:
Loss-Less Contacts / 11.4.3:
Advancing the Efficiency of Solution Processed Multi-Junction Cells / 11.5:
Polymer Tandem Cells / 11.5.1:
Small Molecule Tandem Cells / 11.5.2:
Polymer Multi-Junction Cells / 11.5.3:
Special Device Configurations / 11.6:
Processing Issues for Multi-Junction Polymer Solar Cells / 11.7:
Laboratory Scale Devices / 11.7.1:
Large Area and Printed Multi-Junction Cells / 11.7.2:
Semi-Transparent Polymer Solar Cells for Power Generating Window Applications / Hin-Lap Yip ; Alex K.-Y. Jen11.8:
Optical Assessment / 12.1:
Color Rendering Properties / 12.2.1:
Optical Simulations / 12.2.2:
Transparent Electrodes for ST-OPV / 12.3:
Transparent Conductive Oxides / 12.3.1:
Conducting Polymers / 12.3.2:
Ultrathin Metal Films / 12.3.3:
Metal Nanowires / 12.3.4:
Low Bandgap Polymers / 12.4:
Semitransparent Tandem Solar Cells / 12.5:
Photonic Crystal-Enhanced ST-OPV / 12.6:
Solution Processed Organic Photovoltaics (OPVs) / Hongseok Youn ; L. Jay Guo12.7:
Material Cost Issues in OPVs / 13.1:
Fabrication Technologies Toward Low-Cost and Scalable OPVs / 13.3:
Slot-Die Coating Process / 13.3.1:
Inkjet Printing Process / 13.3.2:
Traditional Roll-to-Roll Printing Process / 13.3.3:
Materials for Functional Layers / 13.4:
Flexible Substrates / 13.4.1:
Silver Back Electrode / 13.4.2:
Active Layer and Coating Issues / 13.4.3:
Interfacial Layer (PEO, PEIE) / 13.4.4:
Hole Transport Layer (HTL)/Electron Transport Layer (ETL) / 13.4.5:
Issues in Scalable OPVs / 13.5:
Effect of Device Size / 13.5.1:
Isolation of Defects / 13.5.2:
Subject Index / 13.6:
New Chemistry for Organic Photovoltaic Materials / Cuihong Li ; Zhishan BoChapter 1:
Introduction / 1.1:
Stille Polycondensation / 1.2:
31.

図書

図書
edited by Damien W. M. Arrigan
出版情報: Cambridge : Royal Society of Chemistry, c2016  xii, 400 p. ; 24 cm
シリーズ名: RSC detection science series ; no. 6
所蔵情報: loading…
目次情報: 続きを見る
Advances in Stripping Analysis of Metals / Anastasios Economou ; Christos KokkinosChapter 1:
Introduction / 1.1:
The Principle of Stripping Analysis / 1.2:
Advances in Electrodes, Sensors and Devices / 1.3:
Carbon Electrodes / 1.3.1:
Screen-Printed Electrodes / 1.3.2:
Solid Amalgam Electrodes / 1.3.3:
"Green" Metal and Metal-film Electrodes / 1.3.4:
Microelectrodes and Microelectrode Arrays / 1.3.5:
Microfabricated, Cell-on-a-chip, Paper-based and Wearable Devices / 1.3.6:
Flow Systems and Probes for Environmental and Personal Exposure Monitoring / 1.3.7:
Biosensing Based on SA of Metals / 1.3.8:
Conclusions / 1.4:
References
Development of Microelectrode-based Biosensors for Biomedical Analysis / Anton Guimerà ; Elisabet Prats-Alfonso ; Rosa Villa ; F. Javier del CampoChapter 2:
Introduction to Microelectrode Arrays / 2.1:
Why Microelectrodes? / 2.1.1:
Microfabrication Opens New Horizons / 2.1.2:
Biomedical Applications of Microelectrodes / 2.1.3:
Design of Microelectrode Array-based Systems / 2.2:
Analytes and Bioreceptors / 2.2.1:
Transducer Functionalization Strategies / 2.2.2:
Electrochemical Transduction / 2.2.3:
Overview of Microfabrication and Rapid Prototyping Techniques / 2.3:
Microfabrication Processes / 2.3.1:
Rapid Prototyping Techniques / 2.3.2:
Miniaturized Biomedical Diagnostic Devices / 2.4:
Development of Microfabricated Immunosensors for Label-free Detection / 2.4.1:
Microfabricated Devices for the Electrochemical Detection of Cardiovascular Disease Markers / 2.4.2:
Further Biomedical Applications of Miniaturized Electrochemical Devices / 2.4.3:
Concluding Remarks and Outlook / 2.5:
Principles and Strategies for Microchip Electrophoresis with Amperometric Detection / Dulan B. Gunasekara ; Manjula B. Wijesinghe ; Rachel A. Saylor ; Susan M. LunteChapter 3:
Principles of Microchip Electrophoresis Separations / 3.1:
Microchip Designs / 3.3:
Electrochemical Detection / 3.4:
Amperometry / 3.4.1:
Interaction of Separation Field with the Working Electrode / 3.5:
Electrode Configurations in Microchip Electrophoresis / 3.6:
End-channel Detection / 3.6.1:
Off-channel Detection / 3.6.2:
In-channel Detection / 3.6.3:
Instrumentation for Amperometric Detection in ME / 3.7:
Signal, Noise, and Limits of Detection for ME-EC / 3.8:
Signal / 3.8.1:
Noise / 3.8.2:
Signal-to-noise Ratio and LOD / 3.8.3:
Types of Electrodes / 3.9:
Microelectrodes / 3.9.1:
Multiple Electrodes / 3.9.2:
Electrode Materials / 3.9.3:
Applications / 3.10:
Biological Applications / 3.10.1:
Environmental Applications / 3.10.2:
Food Applications / 3.10.3:
Future Directions / 3.11:
Acknowledgements
Scanning Electrochemical Microscopy (SECM): Fundamentals and Applications in Life Sciences / Angelika Holzinger ; Charlotte Steinbach ; Christine KranzChapter 4:
Instrumentation / 4.1:
Positioning Modes in SECM / 4.2.1:
SECM Imaging Modes for Life Sciences / 4.3:
Generation-Collection Mode / 4.3.1:
Feedback Mode / 4.3.2:
Redox Competition Mode / 4.3.3:
Mapping Enzyme Activity / 4.4:
DNA Hybridization / 4.4.2:
SECM Investigations of Cells / 4.4.3:
Biofilms and Bacteria / 4.4.4:
Combined SECM Techniques for Life Sciences / 4.5:
Combined Scanning Ion Conductance-Scanning Electrochemical Microscopy (SICM-SECM) / 4.5.1:
Combined Atomic Force-Scanning Electrochemical Microscopy (AFM-SECM) / 4.5.2:
Additional Combined SECM Approaches / 4.5.3:
Outlook / 4.6:
Electrochemical Detection of Nanoparticles / Her Shuang Toh ; Richard G. ComptonChapter 5:
Nanoparticles and their Properties / 5.1:
Non-electrochemical Techniques for Nanoparticle Detection / 5.2:
Stripping Voltammetry for Nanoparticle Detection / 5.3:
Nanoparticle-Electrode Impacts for Single Nanoparticle Detection / 5.4:
Conclusion / 5.5:
Nanoelectrodes in Electrochemical Analysis / Amélie Wahl ; Alan O'RiordanChapter 6:
Benefits of Nanoelectrodes / 6.1:
Challenges / 6.1.2:
Nanoelectrodes Design, Fabrication and Characterisation / 6.2:
Nanoelectrode Design / 6.2.1:
Nanoelectrode Fabrication / 6.2.2:
Surface Area Characterisation / 6.2.3:
Electrochemical Analysis at the Nanoscale / 6.3:
Mass Transport to Nanoelectrodes / 6.3.1:
Electron Transfer Kinetics at Nanoelectrodes / 6.3.2:
Recent Advances and Future Development / 6.4:
Design for Application Approach for Nanoelectrode Arrays / 6.4.1:
Emerging and Future Applications / 6.4.2:
Conclusion and Outlook / 6.5:
Carbon Nanomaterials in Electrochemical Detection / Jonathan P. Metters ; Craig E. BanksChapter 7:
Carbon Nanotubes / 7.1:
Carbon Nanohorns / 7.2.1:
C60 / 7.3:
Carbon Onions / 7.3.1:
Nanocarbons / 7.3.2:
Graphene / 7.4:
Graphene Electroanalysis / 7.4.1:
Graphene Screen-printed Electrodes / 7.4.2:
3D Graphene Foam / 7.5:
Dispersible Electrodes: An Approach to Developing Sensing Devices that can Quickly Detect Ultralow Concentrations of Analyte / Saimon Moraes Silva ; J. Justin Gooding7.6:
The Use of Au@MNPs in Electrochemical Sensing / 8.1:
Synthetic Approach of Gold-shell-protected Magnetic Nanoparticles / 8.3:
Electrochemical Characterization of Au@MNPs / 8.4:
Functionalisation of Gold-coated Magnetic Nanoparticles for Electroanalytical Applications / 8.5:
Detection of Electroactive Species / 8.6:
Detection of Non-electroactive Species / 8.7:
The Biochemiresistor: An Ultrasensitive Biosensor for Small Organic Molecules / 8.7.1:
Amperometric Ion Sensing Approaches at Liquid/Liquid Interfaces for Inorganic, Organic and Biological Ions / Hye Jin Lee ; Damien W. M. Arrigan ; Md. Nurul Karim ; Hyerim Kim8.8:
Principles for Utilizing Ion Transfer Reactions across the ITIES for Sensing / 9.1:
Ion Transfer Reaction at the ITIES / 9.2.1:
Assisted Ion Transfer / 9.2.2:
Geometric Platforms for the ITIES / 9.2.3:
New Materials for ITIES-based Ion Sensing / 9.3:
Room Temperature Ionic Liquid as an Alternative Organic Phase / 9.3.1:
Functionalized ITIES / 9.3.2:
ITIES Sensing for Pioneering New Target Ions / 9.4:
Inorganic Ions / 9.4.1:
Small Organic Ions / 9.4.2:
Biomacromolecules / 9.4.3:
Summary and Outlook / 9.5:
Electrochemical Detection Using Ionic Liquids / Debbie S. Silvester ; Leigh AldousChapter 10:
What are Ionic Liquids? / 10.1:
Inherent Electrochemical Properties of Ionic Liquids / 10.1.2:
Task Specific Ionic Liquids / 10.1.3:
Gases / 10.2:
Explosives and Chemical Warfare Agents / 10.2.2:
Carbon-paste Electrodes and Ionic Liquids / 10.2.3:
Biosensors and Bioanalysis / 10.2.4:
Heavy Metals / 10.2.5:
Other Analytical Targets / 10.2.6:
Conclusions and Future Outlook / 10.3:
Subject Index
Advances in Stripping Analysis of Metals / Anastasios Economou ; Christos KokkinosChapter 1:
Introduction / 1.1:
The Principle of Stripping Analysis / 1.2:
32.

図書

図書
ブライアン・コックス, ジェフ・フォーショー [著] ; 柴田裕之訳
出版情報: 東京 : 紀伊國屋書店, 2011.9  329p ; 20cm
所蔵情報: loading…
33.

図書

図書
edited by Michele Aresta
出版情報: Weinheim : Wiley-VCH, c2010  xix, 394 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Technological Uses of CO2
Pathways for CO2 Conversion in Nature
Carbon Dioxide Co-Ordination Chemistry and Reactivity of Co-Ordinated CO2
Main Group Elements- and Transition Metal-Promoted Carboxylation of Organic Substrates
Synthesis of N-CO2 Bonds
Synthesis of Molecular Carbonates
Polymers from Carbon Dioxide. Polycarbonates, Polythiocarbonates, and Polyurethanes
CO2 Reduction
Non-Thermal Plasma Approaches for CO2 Utilization
Photochemical, Electrochemical and Photoelectrochemical Reduction of CO2
Electrochemical Carboxylations Using CO2
Indirect Utilization of CO2
Fixation of CO2 into Inorganic Carbonates
Introduction
Technological Uses of CO2
Pathways for CO2 Conversion in Nature
34.

図書

図書
Volkhard Helms
出版情報: Weinheim : Wiley-VCH, c2019  xvii, 440 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface of the First Edition
Preface of the Second Edition
Networks in Biological Cells / 1:
Some Basics About Networks / 1.1:
Random Networks / 1.1.1:
Small-World Phenomenon / 1.1.2:
Scale-Free Networks / 1.1.3:
Biological Background / 1.2:
Transcriptional Regulation / 1.2.1:
Cellular Components / 1.2.2:
Spatial Organization of Eukaryotic Cells into Compartments / 1.2.3:
Considered Organisms / 1.2.4:
Cellular Pathways / 1.3:
Biochemical Pathways / 1.3.1:
Enzymatic Reactions / 1.3.2:
Signal Transduction / 1.3.3:
Cell Cycle / 1.3.4:
Ontologies and Databases / 1.4:
Ontologies / 1.4.1:
Gene Ontology / 1.4.2:
Kyoto Encyclopedia of Genes and Genomes / 1.4.3:
Reactome / 1.4.4:
Brenda / 1.4.5:
DAVID / 1.4.6:
Protein Data Bank / 1.4.7:
Systems Biology Markup Language / 1.4.8:
Methods for Cellular Modeling / 1.5:
Summary / 1.6:
Problems / 1.7:
Bibliography
Structures of Protein Complexes and Subcellular Structures / 2:
Examples of Protein Complexes / 2.1:
Principles of Protein-Protein Interactions / 2.1.1:
Categories of Protein Complexes / 2.1.2:
Complexome: The Ensemble of Protein Complexes / 2.2:
Complexome of Saccharomyces cerevisiae / 2.2.1:
Bacterial Protein Complexomes / 2.2.2:
Complexome of Human / 2.2.3:
Experimental Determination of Three-Dimensional Structures of Protein Complexes / 2.3:
X-ray Crystallography / 2.3.1:
NMR / 2.3.2:
Electron Crystallography/Electron Microscopy / 2.3.3:
Cryo-EM / 2.3.4:
Immunoelectron Microscopy / 2.3.5:
Fluorescence Resonance Energy Transfer / 2.3.6:
Mass Spectroscopy / 2.3.7:
Density Fitting / 2.4:
Correlation-Based Density Fitting / 2.4.1:
Fourier Transformation / 2.5:
Fourier Series / 2.5.1:
Continuous Fourier Transform / 2.5.2:
Discrete Fourier Transform / 2.5.3:
Convolution Theorem / 2.5.4:
Fast Fourier Transformation / 2.5.5:
Advanced Density Fitting / 2.6:
Laplacian Filter / 2.6.1:
FFT Protein-Protein Docking / 2.7:
Protein-Protein Docking Using Geometric Hashing / 2.8:
Prediction of Assemblies from Pairwise Docking / 2.9:
CombDock / 2.9.1:
Multi-LZerD / 2.9.2:
3D-MOSAIC / 2.9.3:
Electron Tomography / 2.10:
Reconstruction of Phantom Cell / 2.10.1:
Protein Complexes in Mycoplasma pneumonia / 2.10.2:
Mapping of Crystal Structures into EM Maps / 2.11:
Analysis of Protein-Protein Binding / 3:
Modeling by Homology / 3.1:
Properties of Protein-Protein Interfaces / 3.2:
Size and Shape / 3.2.1:
Composition of Binding Interfaces / 3.2.2:
Hot Spots / 3.2.3:
Physicochemical Properties of Protein Interfaces / 3.2.4:
Predicting Binding Affinities of Protein-Protein Complexes / 3.2.5:
Forces Important for Biomolecular Association / 3.2.6:
Predicting Protein-Protein Interactions / 3,3:
Pairing Propensities / 3.3.1:
Statistical Potentials for Amino Acid Pairs / 3.3.2:
Conservation at Protein Interfaces / 3.3.3:
Correlated Mutations at Protein Interfaces / 3.3.4:
Algorithms on Mathematical Graphs / 3.4:
Primer on Mathematical Graphs / 4.1:
A Few Words About Algorithms and Computer Programs / 4.2:
Implementation of Algorithms / 4.2.1:
Classes of Algorithms / 4.2.2:
Data Structures for Graphs / 4.3:
Dijkstra's Algorithm / 4.4:
Description of the Algorithm / 4.4.1:
Pseudocode / 4.4.2:
Running Time / 4.4.3:
Minimum Spanning Tree / 4.5:
Kruskal's Algorithm / 4.5.1:
Graph Drawing / 4.6:
Force Directed Layout of Graphs / 4.7:
Protein-Protein Interaction Networks - Pairwise Connectivity / 5:
Experimental High-Throughput Methods for Detecting Protein-Protein Interactions / 5.1:
Gel Electrophoresis / 5.1.1:
Two-Dimensional Gel Electrophoresis / 5.1.2:
Affinity Chromatography / 5.1.3:
Yeast Two-hybrid Screening / 5.1.4:
Synthetic Lethality / 5.1.5:
Gene Co expression / 5.1.6:
Databases for Interaction Networks / 5.1.7:
Overlap of Interactions / 5.1.8:
Criteria to Judge the Reliability of Interaction Data / 5.1.9:
Bioinformatic Prediction of Protein-Protein Interactions / 5.2:
Analysis of Gene Order / 5.2.1:
Phylogenetic Profiling/Coevolutionary Profiling / 5.2.2:
Coevolution / 5.2.2.1:
Bayesian Networks for Judging the Accuracy of Interactions / 5.3:
Bayes' Theorem / 5.3.1:
Bayesian Network / 5.3.2:
Application of Bayesian Networks to Protein-Protein Interaction Data / 5.3.3:
Measurement of Reliability "Likelihood Ratio" / 5.3.3.1:
Prior and Posterior Odds / 5.3.3.2:
A Worked Example: Parameters of the Naïve Bayesian Network for Essentiality / 5.3.3.3:
Fully Connected Experimental Network / 5.3.3.4:
Protein Interaction Networks / 5.4:
Protein Interaction Network of Saccharomyces cerevisiae / 5.4.1:
Protein Interaction Network of Escherichia coli / 5.4.2:
Protein Interaction Network of Human / 5.4.3:
Protein Domain Networks / 5.5:
Bayesian Analysis of (Fake) Protein Complexes / 5.6:
Protein-Protein Interaction Networks - Structural Hierarchies / 6:
Protein Interaction Graph Networks / 6.1:
Degree Distribution / 6.1.1:
Clustering Coefficient / 6.1.2:
Finding Cliques / 6.2:
Random Graphs / 6.3:
Scale-Free Graphs / 6.4:
Detecting Communities in Networks / 6.5:
Divisive Algorithms for Mapping onto Tree / 6.5.1:
Modular Decomposition / 6.6:
Modular Decomposition of Graphs / 6.6.1:
Identification of Protein Complexes / 6.7:
MCODE / 6.7.1:
ClusterONE / 6.7.2:
DACO / 6.7.3:
Analysis of Target Gene Coexpression / 6.7.4:
Network Growth Mechanisms / 6.8:
Protein-DNA Interactions / 6.9:
Transcription Factors / 7.1:
Transcription Factor-Binding Sites / 7.2:
Experimental Detection of TFBS / 7.3:
Electrophoretic Mobility Shift Assay / 7.3.1:
DNAse Footprinting / 7.3.2:
Protein-Binding Micro arrays / 7.3.3:
Chromatin Immunoprecipitation Assays / 7.3.4:
Position-Specific Scoring Matrices / 7.4:
Binding Free Energy Models / 7.5:
Cis-Regulatory Motifs / 7.6:
DACO Algorithm / 7.6.1:
Relating Gene Expression to Binding of Transcription Factors / 7.7:
Gene Expression and Protein Synthesis / 7.8:
Regulation of Gene Transcription at Promoters / 8.1:
Experimental Analysis of Gene Expression / 8.2:
Real-time Polymerase Chain Reaction / 8.2.1:
Microarray Analysis / 8.2.2:
RNA-seq / 8.2.3:
Statistics Primer / 8.3:
t-Test / 8.3.1:
z-Score / 8.3.2:
Fisher's Exact Test / 8.3.3:
Mann-Whitney-Wilcoxon Rank Sum Tests / 8.3.4:
Kolmogorov-Smirnov Test / 8.3.5:
Hypergeometric Test / 8.3.6:
Multiple Testing Correction / 8.3.7:
Preprocessing of Data / 8.4:
Removal of Outlier Genes / 8.4.1:
Quantile Normalization / 8.4.2:
Log Transformation / 8.4.3:
Differential Expression Analysis / 8.5:
Volcano Plot / 8.5.1:
SAM Analysis of Micro array Data / 8.5.2:
Differential Expression Analysis of RNA-seq Data / 8.5.3:
Negative Binomial Distribution / 8.5.3.1:
DESeq / 8.5.3.2:
Functional Enrichment / 8.6:
Similarity of GO Terms / 8.7:
Translation of Proteins / 8.8:
Transcription and Translation Dynamics / 8.8.1:
Gene Regulatory Networks / 8.9:
Gene Regulatory Networks (GRNs) / 9.1:
Gene Regulatory Network of E. coli / 9.1.1:
Gene Regulatory Network of S. cerevisiae / 9.1.2:
Graph Theoretical Models / 9.2:
Coexpression Networks / 9.2.1:
Bayesian Networks / 9.2.2:
Dynamic Models / 9.3:
Boolean Networks / 9.3.1:
Reverse Engineering Boolean Networks / 9.3.2:
Differential Equations Models / 9.3.3:
DREAM: Dialogue on Reverse Engineering Assessment and Methods / 9.4:
Input Function / 9.4.1:
YAYG Approach in DREAM3 Contest / 9.4.2:
Regulatory Motifs / 9.5:
Feed-forward Loop (FFL) / 9.5.1:
SIM / 9.5.2:
Densely Overlapping Region (DOR) / 9.5.3:
Algorithms on Gene Regulatory Networks / 9.6:
Key-pathway Miner Algorithm / 9.6.1:
Identifying Sets of Dominating Nodes / 9.6.2:
Minimum Dominating Set / 9.6.3:
Minimum Connected Dominating Set / 9.6.4:
Regulatory Noncoding RNA / 9.7:
Introduction to RNAs / 10.1:
Elements of RNA Interference: siRNAs and miRNAs / 10.2:
miRNA Targets / 10.3:
Predicting miRNA Targets / 10.4:
Role of TFs and miRNAs in Gene-Regulatory Networks / 10.5:
Constructing TF/miRNA Coregulatory Networks / 10.6:
TFmiR Web Service / 10.6.1:
Construction of Candidate TF-miRNA-Gene FFLs / 10.6.1.1:
Case Study / 10.6.1.2:
Computational Epigenetics / 10.7:
Epigenetic Modifications / 11.1:
DNA Methylation / 11.1.1:
CpG Islands / 11.1.1.1:
Histone Marks / 11.1.2:
Chromatin-Regulating Enzymes / 11.1.3:
Measuring DNA Methylation Levels and Histone Marks Experimentally / 11.1.4:
Working with Epigenetic Data / 11.2:
Processing of DNA Methylation Data / 11.2.1:
Imputation of Missing Values / 11.2.1.1:
Smoothing of DNA Methylation Data / 11.2.1.2:
Differential Methylation Analysis / 11.2.2:
Comethylation Analysis / 11.2.3:
Working with Data on Histone Marks / 11.2.4:
Chromatin States / 11.3:
Measuring Chromatin States / 11.3.1:
Connecting Epigenetic Marks and Gene Expression by Linear Models / 11.3.2:
Markov Models and Hidden Markov Models / 11.3.3:
Architecture of a Hidden Markov Model / 11.3.4:
Elements of an HMM / 11.3.5:
The Role of Epigenetics in Cellular Differentiation and Reprogramming / 11.4:
Short History of Stem Cell Research / 11.4.1:
Developmental Gene Regulatory Networks / 11.4.2:
The Role of Epigenetics in Cancer and Complex Diseases / 11.5:
Metabolic Networks / 11.6:
Introduction / 12.1:
Resources on Metabolic Network Representations / 12.2:
Stoichiometric Matrix / 12.3:
Linear Algebra Primer / 12.4:
Matrices: Definitions and Notations / 12.4.1:
Adding, Subtracting, and Multiplying Matrices / 12.4.2:
Linear Transformations, Ranks, and Transpose / 12.4.3:
Square Matrices and Matrix Inversion / 12.4.4:
Eigenvalues of Matrices / 12.4.5:
Systems of Linear Equations / 12.4.6:
Flux Balance Analysis / 12.5:
Gene Knockouts: MOMA Algorithm / 12.5.1:
OptKnock Algorithm / 12.5.2:
Double Description Method / 12.6:
Extreme Pathways and Elementary Modes / 12.7:
Steps of the Extreme Pathway Algorithm / 12.7.1:
Analysis of Extreme Pathways / 12.7.2:
Elementary Flux Modes / 12.7.3:
Pruning Metabolic Networks: NetworkReducer / 12.7.4:
Minimal Cut Sets / 12.8:
Applications of Minimal Cut Sets / 12.8.1:
High-Flux Backbone / 12.9:
Static Network Properties: Pathways / 12.10:
Kinetic Modeling of cellular processes / 13:
Biological Oscillators / 13.1:
Circadian Clocks / 13.2:
Role of Post-transcriptional Modifications / 13.2.1:
Ordinary Differential Equation Models / 13.3:
Examples for ODEs / 13.3.1:
Modeling Cellular Feedback Loops by ODEs / 13.4:
Protein Synthesis and Degradation: Linear Response / 13.4.1:
Phosphorylation/Dephosphorylation - Hyperbolic Response / 13.4.2:
Phosphorylation/Dephosphorylation - Buzzer / 13.4.3:
Perfect Adaptation - Sniffer / 13.4.4:
Positive Feedback - One-Way Switch / 13.4.5:
Mutual Inhibition - Toggle Switch / 13.4.6:
Negative Feedback - Homeostasis / 13.4.7:
Negative Feedback: Oscillatory Response / 13.4.8:
Cell Cycle Control System / 13.4.9:
Partial Differential Equations / 13.5:
Spatial Gradients of Signaling Activities / 13.5.1:
Reaction-Diffusion Systems / 13.5.2:
Dynamic Phosphorylation of Proteins / 13.6:
Stochastic Processes in Biological Cells / 13.7:
Stochastic Processes / 14.1:
Binomial Distribution / 14.1.1:
Poisson Process / 14.1.2:
Master Equation / 14.1.3:
Dynamic Monte Carlo (Gillespie Algorithm) / 14.2:
Basic Outline of the Gillespie Method / 14.2.1:
Stochastic Effects in Gene Transcription / 14.3:
Expression of a Single Gene / 14.3.1:
Toggle Switch / 14.3.2:
Stochastic Modeling of a Small Molecular Network / 14.4:
Model System: Bacterial Photosynthesis / 14.4.1:
Pools-and-Proteins Model / 14.4.2:
Evaluating the Binding and Unbinding Kinetics / 14.4.3:
Pools of the Chromatophore Vesicle / 14.4.4:
Steady-State Regimes of the Vesicle / 14.4.5:
Parameter Optimization with Genetic Algorithm / 14.5:
Protein-Protein Association / 14.6:
Brownian Dynamics Simulations / 14.7:
Dynamic Simulations of Networks / 14.8:
Integrated Cellular Networks / 15:
Response of Gene Regulatory Network to Outside Stimuli / 15.1:
Whole-Cell Model of Mycoplasma genitalium / 15.2:
Architecture of the Nuclear Pore Complex / 15.3:
Integrative Differential Gene Regulatory Network for Breast Cancer Identified Putative Cancer Driver Genes / 15.4:
Particle Simulations / 15.5:
Outlook / 15.6:
Index
Preface of the First Edition
Preface of the Second Edition
Networks in Biological Cells / 1:
35.

図書

図書
Gilbert Strang
出版情報: Wellesley, Mass. : Wellesley-Cambridge Press, c2016  x, 574 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to Vectors / 1:
Vectors and Linear Combinations / 1.1:
Lengths and Dot Products / 1.2:
Matrices / 1.3:
Solving Linear Equations / 2:
Vectors and Linear Equations / 2.1:
The Idea of Elimination / 2.2:
Elimination Using Matrices / 2.3:
Rules for Matrix Operations / 2.4:
Inverse Matrices / 2.5:
Elimination = Factorization: A = LU / 2.6:
Transposes and Permutations / 2.7:
Vector Spaces and Subspaces / 3:
Spaces of Vectors / 3.1:
The Nullspace of A: Solving Ax = 0 and Rx = 0 / 3.2:
The Complete Solution to Ax = b / 3.3:
Independence, Basis and Dimension / 3.4:
Dimensions of the Four Subspaces / 3.5:
Orthogonality / 4:
Orthogonality of the Four Subspaces / 4.1:
Projections / 4.2:
Least Squares Approximations / 4.3:
Orthonormal Bases and Gram-Schmidt / 4.4:
Determinants / 5:
The Properties of Determinants / 5.1:
Permutations and Cofactors / 5.2:
Cramer's Rule, Inverses, and Volumes / 5.3:
Eigenvalues and Eigenvectors / 6:
Introduction to Eigenvalues / 6.1:
Diagonalizing a Matrix / 6.2:
Systems of Differential Equations / 6.3:
Symmetric Matrices / 6.4:
Positive Definite Matrices / 6.5:
The Singular Value Decomposition (SVD) / 7:
Image Processing by Linear Algebra / 7.1:
Bases and Matrices in the SVD / 7.2:
Principal Component Analysis (PCA by the SVD) / 7.3:
The Geometry of the SVD / 7.4:
Linear Transformations / 8:
The Idea of a Linear Transformation / 8.1:
The Matrix of a Linear Transformation / 8.2:
The Search for a Good Basis / 8.3:
Complex Vectors and Matrices / 9:
Complex Numbers / 9.1:
Hermitian and Unitary Matrices / 9.2:
The Fast Fourier Transform / 9.3:
Applications / 10:
Graphs and Networks / 10.1:
Matrices in Engineering / 10.2:
Markov Matrices, Population, and Economics / 10.3:
Linear Programming / 10.4:
Fourier Series: Linear Algebra for Functions / 10.5:
Computer Graphics / 10.6:
Linear Algebra for Cryptography / 10.7:
Numerical Linear Algebra / 11:
Gaussian Elimination in Practice / 11.1:
Norms and Condition Numbers / 11.2:
Iterative Methods and Preconditioned / 11.3:
Linear Algebra in Probability & Statistics / 12:
Mean, Variance, and Probability / 12.1:
Covariance Matrices and Joint Probabilities / 12.2:
Multivariate Gaussian and Weighted Least Squares / 12.3:
Matrix Factorizations
Index
Sex Great Theorems/Linear Algebra in a Nutshell
Introduction to Vectors / 1:
Vectors and Linear Combinations / 1.1:
Lengths and Dot Products / 1.2:
36.

図書

図書
editors, K. Bradley Penuel, Matt Statler
出版情報: Los Angeles : SAGE, c2011  2 v. (xxxiv, 934 p.) ; 29 cm
所蔵情報: loading…
目次情報:
Children, In State Care / Rebecca Berne
Children, In State Care / Rebecca Berne
37.

図書

図書
John Domingue, Dieter Fensel, James A. Hendler (eds.)
出版情報: Berlin : Springer, c2011  2 v. ; 25 cm
シリーズ名: Springer reference
所蔵情報: loading…
目次情報:
2: Handbook of Semantic Web technologies : semantic web applications
2: Handbook of Semantic Web technologies : semantic web applications
38.

図書

図書
Koki Horikoshi (Ed.)
出版情報: Tokyo : Springer, c2011  2 v. ; 25 cm
シリーズ名: Springer reference
所蔵情報: loading…
39.

図書

図書
Roger Penrose
出版情報: Princeton : Princeton University Press, c2016  xvi, 501 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Preface
Are fashion, faith, or fantasy relevant to fundamental science?
Fashion / 1:
Mathematical elegance as a driving force / 1.1:
Some fashionable physics of the past / 1.2:
Particle-physics background to string theory / 1.3:
The superposition principle in QFT / 1.4:
The power of Feynman diagrams / 1.5:
The original key ideas of string theory / 1.6:
Time in Einstein's general relativity / 1.7:
Weyl's gauge theory of electromagnetism / 1.8:
Functional freedom in Kaluza-Klein and string models / 1.9:
Quantum obstructions to functional freedom? / 1.10:
Classical instability of higher-dimensional string theory / 1.11:
The fashionable status of string theory / 1.12:
M-theory / 1.13:
Supersymmetry / 1.14:
AdS/CFT / 1.15:
Brane-worlds and the landscape / 1.16:
Faith / 2:
The quantum revelation / 2.1:
Max Planck's E = hv / 2.2:
The wave-particle paradox / 2.3:
Quantum and classical levels: C, U, and R / 2.4:
Wave function of a point-like particle / 2.5:
Wave function of a photon / 2.6:
Quantum linearity / 2.7:
Quantum measurement / 2.8:
The geometry of quantum spin / 2.9:
Quantum entanglement and EPR effects / 2.10:
Quantum functional freedom / 2.11:
Quantum reality / 2.12:
Objective quantum state reduction: a limit to the quantum faith? / 2.13:
Fantasy / 3:
The Big Bang and FLRW cosmologies / 3.1:
Black holes and local irregularities / 3.2:
The second law of thermodynamics / 3.3:
The Big Bang paradox / 3.4:
Horizons, comoving volumes, and conformal diagrams / 3.5:
The phenomenal precision in the Big Bang / 3.6:
Cosmological entropy? / 3.7:
Vacuum energy / 3.8:
Inflationary cosmology / 3.9:
The anthropic principle / 3.10:
Some more fantastical cosmologies / 3.11:
A New Physics for the Universe? / 4:
Twistor theory: an alternative to strings? / 4.1:
Whither quantum foundations? / 4.2:
Conformal crazy cosmology? / 4.3:
A personal coda / 4.4:
Mathematical Appendix / Appendix A:
Iterated exponents / A.1:
Functional freedom of fields / A.2:
Vector spaces / A.3:
Vector bases, coordinates, and duals / A.4:
Mathematics of manifolds / A.5:
Manifolds in physics / A.6:
Bundles / A.7:
Functional freedom via bundles / A.8:
Complex numbers / A.9:
Complex geometry / A.10:
Harmonic analysis / A.11:
References
Index
Acknowledgements
Preface
Are fashion, faith, or fantasy relevant to fundamental science?
40.

図書

図書
Hilary Glasman-Deal
出版情報: London : Imperial College Press, c2010  xiii, 257 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
Grammar and Writing Skills / 1.2:
Tense pairs / 1.2.1:
Signalling language / 1.2.2:
Passive/Active / 1.2.3:
Writing Task: Build a Model / 1.3:
Building a model / 1.3.1:
Key / 1.3.2:
The model / 1.3.3:
Testing the Model / 1.3.4:
Vocabulary / 1.4:
Vocabulary for the Introduction / 1.4.1:
Writing an Introduction / 1.5:
Write an Introduction / 1.5.1:
Writing about Methodology / 1.5.2:
Passives and tense pairs / 2.1:
Use of 'a' and 'the' / 2.2.2:
Adverbs and adverb location / 2.2.3:
Testing the model / 2.3:
Vocabulary task / 2.4:
Vocabulary for the Methodology section / 2.4.2:
Writing a Methodology Section / 2.5:
Write a Methodology section / 2.5.1:
Writing about Results / 2.5.2:
Sequence / 3.1:
Frequency / 3.2.2:
Quantity / 3.2.3:
Causality / 3.2.4:
Vocabulary for the Results section / 3.3:
Writing a Results Section / 3.5:
Write a Results section / 3.5.1:
Writing the Discussion/Conclusion / 3.5.2:
Vocabulary for the Discussion/Conclusion / 4.1:
Writing a Discussion/Conclusion / 4.5:
Write a Discussion/Conclusion / 4.5.1:
Writing the Abstract / Unit 5:
Verb tense / 5.1:
Length / 5.2.2:
Language / 5.2.3:
The models / 5.3:
Testing the models / 5.3.4:
Vocabulary for the Abstract / 5.4:
Writing an Abstract / 5.5:
Write an Abstract / 5.5.1:
Creating a Tide / 5.5.2:
Sources and Credits
Useful Resources and Further Reading
Abbreviations Used in Science Writing / Appendix A:
Prefixes Used in Science Writing / Appendix B:
Latin and Greek Singular and Plural Forms / Appendix C:
Useful Verbs / Appendix D:
Index of Contents
Index of Vocabulary
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
41.

図書

図書
Eng-Chong Pua, Michael R. Davey, editors
出版情報: Berlin : Springer, c2010  2 v. ; 24 cm.
所蔵情報: loading…
42.

図書

図書
Antony Joseph
出版情報: Burlington, Mass. : Academic Press, 2011  xii, 436 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / 1:
Tsunami Generation and Historical Aspects / 2:
Tsunamis Generated by Seaquakes / 2.1:
Tsunamis Generated by Surface/Submarine Landslides and Rock Avalanches / 2.2:
Tsunamis Generated by Volcanic Eruptions / 2.3:
Tsunamis Generated by Meteorological Disturbances / 2.4:
Meteo-tsunami Warning / 2.4.1:
Tsunamis Generated by Underwater Gas Emission / 2.5:
Tsunamis Generated by Asteroid Impacts / 2.6:
Tsunami Databases / 3:
The United States Tsunami Database / 3.1:
The Russia Tsunami Databases / 3.2:
The UNESCO Tsunami Database / 3.3:
The Japan Tsunami Database / 3.4:
The Greece Tsunami Database / 3.5:
Geophysical Tsunami Hydrodynamics / 4:
Propagation / 4.1:
Features of Geophysical Tsunamis / 4.2:
Influence of Midocean Ridges, Straits, and Continental Shelves / 4.3:
Tsunamis on Islands / 4.4:
Tsunami-Induced Seiches in Harbors / 4.5:
Tsunamis in Inland Water Bodies / 4.6:
Impact of a Tsunami on Coastal and Island Habitats / 5:
The Protective Role of Coastal Ecosystms / 6:
Earthquake Detection and Monitoring for Early Warnings of Seismogenic Tsunamis / 7:
Earthquake Precursors / 7.1:
P-, S-, Love, and Raleigh Waves / 7.1.1:
Microelectric Discharges and Electromagnetic Emissions / 7.1.2:
Pressure Signals in the Troposphere / 7.1.3:
Rise in Surface Temperature Near the Earthquake Zone / 7.1.4:
Increases in Sea Surface Temperature Near the Epicenter / 7.1.5:
Earthquake Detection Through Monitoring the Behavior of Animals, Reptiles, and Birds / 7.2:
Numerical Models for Forecasting / 8:
The Role of IOC-UNESCO in Tsunami Early Warnings / 9:
Earthquake Monitoring for Early Tsunami Early Warnings / 10:
Seismic Network of the Pacific Tsunami Warning Center / 10.1:
Seismic Network in Japan / 10.1.1:
Open Ocean Tsunami Detection / 11:
Detection Using Seafloor Pressure Measurement / 11.1:
Detection Using Orbiting Satellite Altimeters / 11.2:
Detection Using Optical Devices in Satellites and Aircrafts / 11.3:
Detection Using Orbiting Microwave Radar and Radiometers / 11.4:
Land-Based Measurements of Inundation to Confirm Tsunamigenesis / 12:
The Technology of End-to-End Communication: Sending the Message / 13:
IOC-UNESCO Tsunami Early Warning Systems / 14:
The United States Tsunami Warning System / 14.1:
The Japan Tsunami Warning System / 14.2:
Historical Review of Japan's Tsunami Warning System / 14.2.1:
Japan Meteorological Agency Tsunami Monitoring / 14.2.2:
Merits and Drawbacks of Submarine Cable-Mounted Systems / 14.2.3:
The Russia Tsunami Warning Service / 14.3:
Historical Background / 14.3.1:
Service and Science Components of the Russian Tsunami Warning System / 14.3.2:
Tsunami Service Component / 14.3.3:
Tsunami Science Component / 14.3.4:
The Canada Tsunami Warning System / 14.4:
The Australia Tsunami Warning System / 14.5:
Sea-Level Network / 14.5.1:
The Tsunami Warning Scheme / 14.5.2:
Tsunami Risk Assessment Program / 14.5.3:
The Puerto Rico Tsunami Warning System / 14.6:
Tsunami Warnings / 14.6.1:
Tsunami Watches / 14.6.2:
Tsunami Advisories / 14.6.3:
Tsunami and Earthquake Information Statements / 14.6.4:
The Korea Tsunami Warning System / 14.7:
Seismic Networks / 14.7.1:
Sea-Level Networks / 14.7.2:
The Chile Tsunami Warning System / 14.8:
The New Zealand Tsunami Warning System / 14.9:
India's Early-Warning System for Tsunamis and Storm Surges / 14.9.1:
Sensor Networks / 14.10.1:
Tsunami Warning Centers / 14.10.2:
Standard Operating Procedures at Early Warning Centers / 14.10.3:
Vulnerability Maps / 14.10.4:
Performance of the System: Case Study of September 12, 2007 / 14.10.5:
Contributions to the Indian Ocean Region / 14.10.6:
National Institute of Oceanography Stations / 14.10.7:
Malaysia's Multihazard Early Warning System / 14.11:
Automatic Weather Station Networks / 14.11.1:
The Singapore Tsunami Warning System / 14.12:
European Union Initiative / 14.13:
Tsunami Warning Systems Around the African Continent / 14.14:
Technological Challenges In Detecting Tsunamis / 15:
Sea-Level Measurements From Coasts and Islands / 16:
Chart Datum / 16.1:
Float-Driven Gauges / 16.2:
Shaft Encoders and Microprocessor-Based Loggers / 16.2.1:
Calibrating Float-Driven Gauges / 16.2.2:
Drawbacks of Conventional Tide-Wells / 16.2.3:
Electric Step Gauges / 16.3:
Air-Acoustic Gauges / 16.4:
Unguided Air-Acoustic Gauges / 16.4.1:
Guided Air-Acoustic Gauges / 16.4.2:
Downward-Looking Aerial Microwave Radar Gauges / 16.5:
Subsurface Pressure Gauge Systems / 16.6:
Pressure Transducers / 16.6.1:
Commonly Used Pressure Transducers / 16.6.2:
Subsurface Pressure Transducer Installation Schemes / 16.6.3:
Gas-Puraged Bubbler Gauges / 16.6.4:
Radiowave Interferometry / 16.7:
Ground-Based Transmitter Systems / 16.7.1:
Satellite-Borne Transmitter Systems / 16.7.2:
Differential Global Positioning Systems on Floating Buoys / 16.8:
Applying a Tide Staff for Datum Control in Coastal Sea-Level Measurements / 16.9:
Sea Level Measurements From Deep-Sea Regions / 17:
Seafloor Pressure Sensor Capsules / 17.1:
Permanent Installation / 17.1.1:
Seafloor Pressure Measurement Techniques / 17.1.2:
Satellite Radar Altimetry / 17.2:
Telemetry of Sea-Level Data / 18:
Submarine Cable Communication / 18.1:
Acoustic Communication / 18.2:
VHF/UHF Transceivers and Wired Telephone Connections / 18.3:
Satellite Communication / 18.4:
Argos / 18.4.1:
Orbcomm / 18.4.2:
Iridium / 18.4.3:
Meteosat / 18.4.4:
Inmarsat / 18.4.5:
Cellular Modems / 18.5:
Telemetry From Polar Regions / 18.6:
Evaluating and Assessing Tsunamis Technologies for Specific Situations / 19:
Optimal Ocean-Bottom Pressure Recorders / 19.1:
Optimal Devices for Measuring Coastal Tsunamis / 19.2:
Summary / 19.3:
Extracting Tsunami Signals From Sea-Level Records / 20:
Conclusions / 21:
References
Bibliography
Index
Preface
Acknowledgments
Introduction / 1:
43.

図書

図書
Richard Leach (Ed.)
出版情報: Berlin ; Heidelberg : Springer, c2011  xiii, 323p. ; 25cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to Surface Texture Measurement / Richard Leach1:
Surface Texture Measurement / 1.1:
Surface Profile and Areal Measurement / 1.2:
Areal Surface Texture Measurement / 1.3:
Surface Texture Standards and GPS / 1.4:
Profile Standards / 1.4.1:
Areal Specification Standards / 1.4.2:
Instrument Types in the ISO 25178 Series / 1.5:
The Stylus Instrument / 1.5.1:
Scanning Probe Microscopes / 1.5.2:
Scanning Electron Microscopes / 1.5.3:
Optical Instrument Types / 1.5.4:
Considerations When Choosing a Method / 1.6:
Acknowledgements
References
Some Common Terms and Definitions / 2:
Introduction / 2.1:
The Principal Aberrations / 2.2:
Objective Lenses / 2.3:
Magnification and Numerical Aperture / 2.4:
Spatial Resolution / 2.5:
Optical Spot Size / 2.6:
Field of View / 2.7:
Depth of Field and Depth of Focus / 2.8:
Interference Objectives / 2.9:
Limitations of Optical 3D Sensors / Gerd Häusler ; Svenja Ettl3:
Introduction: What Is This Chapter About? / 3.1:
The Canonical Sensor / 3.2:
Optically Rough and Smooth Surfaces / 3.3:
Type I Sensors: Triangulation / 3.4:
Type II and Type III Sensors: Interferometry / 3.5:
Type IV Sensors: Deflectometry / 3.6:
Only Four Sensor Principles? / 3.7:
Conclusion and Open Questions / 3.8:
Calibration of Optical Surface Topography Measuring Instruments / Claudiu Giusca4:
Introduction to Calibration and Traceability / 4.1:
Calibration of Surface Topography Measuring Instruments / 4.2:
Can an Optical Instrument Be Calibrated? / 4.3:
Types of Material Measure / 4.4:
Calibration of Instrument Scales / 4.5:
Noise / 4.5.1:
Residual Flatness / 4.5.2:
Amplification, Linearity and Squareness of the Scales / 4.5.3:
Resolution / 4.5.4:
Relationship between the Calibration, Adjustment and Measurement Uncertainty / 4.6:
Summary / 4.7:
Chromatic Confocal Microscopy / François Blateyron5:
Basic Theory / 5.1:
Confocal Setting / 5.1.1:
Axial Chromatic Dispersion / 5.1.2:
Spectral Decoding / 5.1.3:
Height Detection / 5.1.4:
Metrological Characteristics / 5.1.5:
Spot Size / 5.1.5.1:
Instrumentation / 5.2:
Lateral Scanning Configurations / 5.2.1:
Profile Measurement / 5.2.1.1:
Areal Measurement / 5.2.1.2:
Optoelectronic Controller / 5.2.2:
Optical Head / 5.2.3:
Light Source / 5.2.4:
Chromatic Objective / 5.2.5:
Spectrometer / 5.2.6:
Optical Fibre Cord / 5.2.7:
Instrument Use and Good Practice / 5.3:
Calibration / 5.3.1:
Calibration of Dark Level / 5.3.1.1:
Linearisation of the Response Curve / 5.3.1.2:
Calibration of the Height Amplification Coefficient / 5.3.1.3:
Calibration of the Lateral Amplification Coefficient / 5.3.1.4:
Calibration of the Hysteresis in Bi-directional Measurement / 5.3.1.5:
Preparation for Measurement / 5.3.2:
Pre-processing / 5.3.3:
Limitations of the Technique / 5.4:
Local Slopes / 5.4.1:
Scanning Speed / 5.4.2:
Light Intensity / 5.4.3:
Non-measured Points / 5.4.4:
Outliers / 5.4.5:
Interference / 5.4.6:
Ghost Foci / 5.4.7:
Extensions of the Basic Principles / 5.5:
Thickness Measurement / 5.5.1:
Line and Field Sensors / 5.5.2:
Absolute Reference / 5.5.3:
Case Studies / 5.6:
Point Autofocus Instruments / Katsuhiro Miura ; Atsuko Nose6:
Comparison with Roughness Material Measures / 6.1:
Three-Dimensional Measurement of Grinding Wheel Surface Topography / 6.3.2:
Limitations of PAI / 6.4:
Lateral Resolution / 6.4.1:
Vertical Resolution / 6.4.2:
The Maximum Acceptable Local Surface Slope / 6.4.3:
Conclusion / 6.5:
Focus Variation Instruments / Franz Helmli7:
How Does It Work? / 7.1:
Acquisition of Image Data / 7.2.2:
Measurement of 3D Information / 7.2.3:
Post-processing / 7.2.4:
Handling of Invalid Points / 7.2.5:
Difference to Other Techniques / 7.3:
Difference to Imaging Confocal Microscopy / 7.3.1:
Difference to Point Auto Focusing Techniques / 7.3.2:
Optical System / 7.4:
CCD Sensor / 7.4.2:
Microscope Objective / 7.4.3:
Driving Unit / 7.4.5:
Practical Instrument Realisation / 7.4.6:
Limitations of the Technology / 7.5:
Translucent Materials / 7.6.1:
Measurable Surfaces / 7.6.2:
Repeatability Information / 7.7:
High Radiometric Data Acquisition / 7.7.2:
2D Alignment / 7.7.3:
3D Alignment / 7.7.4:
Surface Texture Measurement of Worn Metal Parts / 7.8:
Form Measurement of Complex Tap Parameters / 7.8.2:
Phase Shifting Interferometry / Peter de Groot7.9:
Concept and Overview / 8.1:
Principles of Surface Measurement Interferometry / 8.2:
Phase Shifting Method / 8.3:
Phase Unwrapping / 8.4:
Phase Shifting Error Analysis / 8.5:
Interferometer Design / 8.6:
Focus / 8.7:
Light Sources / 8.9:
Examples of PSI Measurement / 8.10:
Coherence Scanning Interferometry / 9:
Terminology / 9.1:
Typical Configurations of CSI / 9.3:
Signal Formation / 9.4:
Signal Processing / 9.5:
Foundation Metrics and Height Calibration for CSI / 9.6:
Dissimilar Materials / 9.7:
Vibrational Sensitivity / 9.8:
Transparent Films / 9.9:
Examples / 9.10:
Digital Holographic Microscopy / Tristan Colomb ; Jonas Kühn9.11:
Acquisition / 10.1:
Reconstruction / 10.2.2:
Digital Camera / 10.3:
Optical Path Retarder / 10.3.3:
Digital Focusing / 10.4:
DHM Parameters / 10.4.2:
Automatic Working Distance in Reflection DHM / 10.4.3:
Sample Preparation and Immersion Liquids / 10.4.4:
Limitations of DHM / 10.5:
Parasitic Interferences and Statistical Noise / 10.5.1:
Height Measurement Range / 10.5.2:
Sample Limitation / 10.5.3:
Extensions of the Basic DHM Principles / 10.6:
Multi-wavelength DHM / 10.6.1:
Extended Measurement Range / 10.6.1.1:
Mapping / 10.6.1.2:
Stroboscopic Measurement / 10.6.2:
DHM Reflectometry / 10.6.3:
Infinite Focus / 10.6.4:
Applications of DHM / 10.6.5:
Topography and Defect Detection / 10.6.5.1:
Roughness / 10.6.5.2:
Micro-optics Characterization / 10.6.5.3:
MEMS and MOEMS / 10.6.5.4:
Semi-transparent Micro-structures / 10.6.5.5:
Conclusions / 10.7:
Imaging Confocal Microscopy / Roger Artigas11:
Introduction to Imaging Confocal Microscopes / 11.1:
Working Principle of an Imaging Confocal Microscope / 11.1.2:
Metrological Algorithm / 11.1.3:
Image Formation of a Confocal Microscope / 11.1.4:
General Description of a Scanning Microscope / 11.1.4.1:
Point Spread Function for the Limiting Case of an Infinitesimally Small Pinhole / 11.1.4.2:
Pinhole Size Effect / 11.1.4.3:
Types of Confocal Microscopes / 11.2:
Laser Scanning Confocal Microscope Configuration / 11.2.1.1:
Disc Scanning Confocal Microscope Configuration / 11.2.1.2:
Programmable Array Scanning Confocal Microscope Configuration / 11.2.1.3:
Objectives for Confocal Microscopy / 11.2.2:
Vertical Scanning / 11.2.3:
Motorised Stages with Optical Linear Encoders / 11.2.3.1:
Piezoelectric Stages / 11.2.3.2:
Comparison between Motorised and Piezoelectric Scanning Stages / 11.2.3.3:
Location of an Imaging Confocal Microscope / 11.3:
Setting Up the Sample / 11.3.2:
Setting the Right Scanning Parameters / 11.3.3:
Simultaneous Detection of Confocal and Bright Field Images / 11.3.4:
Sampling / 11.3.5:
Low Magnification against Stitching / 11.3.6:
Limitations of Imaging Confocal Microscopy / 11.4:
Maximum Detectable Slope on Smooth Surfaces / 11.4.1:
Noise and Resolution in Imaging Confocal Microscopes / 11.4.2:
Errors in Imaging Confocal Microscopes / 11.4.3:
Objective Flatness Error / 11.4.3.1:
Calibration of the Flatness Error / 11.4.3.2:
Measurements on Thin Transparent Materials / 11.4.3.3:
Measurement of Thin and Thick Film with Imaging Confocal Microscopy / 11.4.4:
Thick Films / 11.5.1:
Thin Films / 11.5.3:
Case Study: Roughness Prediction on Steel Plates / 11.6:
Light Scattering Methods / Theodore V. Vorburger ; Richard Silver ; Rainer Brodmann ; Boris Brodmann ; Jörg Seewig12:
Instrumentation and Case Studies / 12.1:
Early Developments / 12.3.1:
Recent Developments in Instrumentation for Mechanical Engineering Manufacture / 12.3.2:
Recent Developments in Instrumentation for Semiconductor Manufacture (Optical Critical Dimension) / 12.3.3:
SEMI MF 1048-1109 (2009) Test Method for Measuring the Effective Surface Roughness of Optical Components by Total Integrated Scattering / 12.4:
SEMI ME1392-1109 (2009) Guide for Angle-Resolved Optical Scatter Measurements on Specular or Diffuse Surfaces / 12.4.2:
ISO10110-8: 2010 Optics and Photonics - Preparation of Drawings for Optical Elements and Systems - Part 8: Surface Texture / 12.4.3:
Standards for Gloss Measurement / 12.4.4:
VDA Guideline 2009, Geometrische Produktspezifikation Oberflächenbeschaffenheit Winkelaufgelöste Streulichtmesstech-nik Definition, KenngröBen und Anwendung (Light Scattering Measurement Technique) / 12.4.5:
Index / 12.5:
Introduction to Surface Texture Measurement / Richard Leach1:
Surface Texture Measurement / 1.1:
Surface Profile and Areal Measurement / 1.2:
44.

図書

図書
Eelco J. Rohling
出版情報: New York, NY : Oxford University Press, c2019  viii, 162 p. ; 22 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgments
Introduction / 1:
Past Climates: How We Get Our Data / 2:
Data from Ice / 2.1:
Data from Land / 2.2:
Data from the Sea / 2.3:
Data about Sea-Level Changes / 2.4:
Recap and Outlook / 2.5:
Energy Balance of Climate / 3:
The Greenhouse Gases / 3.1:
A Perspective from Studies of Past Climates / 3.2:
Causes of Climate Change / 3.3:
Carbon-Cycle Changes / 4.1:
Astronomical Variability / 4.2:
Large (Super-)Volcanic Eruptions and Asteroid Impacts / 4.3:
Variability in the Intensity of Solar Radiation / 4.4:
Changes during the Industrial Age / 4.5:
Direct Effects / 5.1:
Global Responses and Climate Sensitivity / 5.2:
Sea-Level Change / 5.3:
Common Reactions to the Geological Perspective / 5.4:
Mother Nature to the Rescue? / 5.5:
Weathering, Reforestation, and Carbon Burial / 6.1:
Requirement for Human Intervention / 6.2:
Human Intervention in Carbon Removal / 6.3:
Summary / 7:
Epilogue / 8:
Notes
Glossary
Index
Acknowledgments
Introduction / 1:
Past Climates: How We Get Our Data / 2:
45.

図書

図書
edited by Sir John Gurdon
出版情報: Singapore : World Scientific, c2012  2 v. ; 27 cm
所蔵情報: loading…
46.

図書

図書
Alan Cooper
出版情報: Cambridge : Royal Society of Chemistry, c2011  ix, 233 p. ; 25 cm
シリーズ名: Tutorial chemistry texts ; 24
所蔵情報: loading…
目次情報: 続きを見る
Biological Molecules / 1:
Introduction / 1.1:
Proteins and Polypeptides / 1.2:
Polynucleotides / 1.3:
Polysaccharides / 1.4:
Fats, Lipids and Detergents / 1.5:
Water / 1.6:
Foams, Surfactants and Emulsions / 1.7:
Acids, Bases, Buffers and Polyelectrolytes / 1.8:
A Note about Units / 1.9:
Problems
References
Further Reading
Spectroscopy / 2:
Electromagnetic Waves and their Interactions / 2.1:
UV/Visible Spectroscopy / 2.2:
Circular Dichroism / 2.3:
Fluorescence / 2.4:
Vibrational Spectroscopy: IR and Raman / 2.5:
NMR (Brief Overview) / 2.6:
Mass Spectrometry / 3:
Ion Sources / 3.1:
Ionization Methods / 3.3:
Mass Analysers / 3.4:
Detection / 3.5:
Applications of MS / 3.6:
Hydrodynamics / 4:
Density and Molecular Volume / 4.1:
Analytical Ultracentrifugation / 4.2:
Sedimentation Equilibrium / 4.3:
Sedimentation Rate / 4.4:
Diffusion and Brownian Motion / 4.5:
Dynamic Light Scattering (DLS) / 4.6:
Viscosity / 4.7:
Thermodynamics and interactions / 5:
A Bluffer's Guide to Molecular Thermodynamics / 5.1:
Differential Scanning Calorimetry / 5.2:
Isothermal Titration Calorimetry / 5.3:
Binding Equilibrium / 5.4:
General Methods for Determining Thermodynamic Properties / 5.5:
Thermal Shift Assays / 5.6:
Equilibrium Dialysis / 5.7:
Protein Solubility and Crystallization / 5.8:
Kinetics / 6:
Basic Kinetics / 6.1:
Rapid Reaction Techniques / 6.2:
Relaxation Methods / 6.3:
Hydrogen Exchange / 6.4:
Surface Plasmon Resonance / 6.5:
Enzyme Kinetics / 6.6:
Chromatography and Electrophoresis / 7:
Chromatography / 7.1:
Electrophoresis / 7.2:
imaging / 8:
Waves and Particles / 8.1:
Lenses or No Lenses: Reconstructing the Image / 8.2:
X-ray Diffraction and Protein Crystallography / 8.3:
Fibre Diffraction and Small-angle Scattering / 8.4:
Neutron Diffraction and Scattering / 8.5:
Electron Microscopy / 8.6:
Single Molecules / 9:
How Many Molecules can Stand on the Head of a Pin? / 9.1:
Thermodynamic Fluctuations and the Ergodic Hypothesis / 9.2:
Atomic Force Microscopy / 9.3:
Optical Tweezers and Traps / 9.4:
Single Molecule Fluorescence / 9.5:
Answers to Problems
Subject Index
Biological Molecules / 1:
Introduction / 1.1:
Proteins and Polypeptides / 1.2:
47.

図書

東工大
目次DB

図書
東工大
目次DB
松井勇 [ほか] 著
出版情報: 東京 : 井上書院, 2010.4  271p ; 26cm
所蔵情報: loading…
目次情報: 続きを見る
Ⅰ編 構造材料 11
   序 12
 1 木質構造(材料)の特徴 14
   1-1 木質構造の特徴とディティール 14
    1-1-1 全般的な特徴 14
   1-2 構造・材料の長所・短所 18
    1-2-1 長所 18
    1-2-2 短所とその対策 18
   1-3 材料の種類および性質・選択 18
    1-3-1 樹種と用途 18
    1-3-2 木質材料の種類と特徴 20
 2 鉄骨構造(材料)の特徴 22
   2-1 鉄骨構造の特徴とディテール 22
    2-1-1 全般的な特徴 22
   2-2 構造・材料の長所・短所 23
    2-2-1 長所 23
    2-2-2 短所とその対策 23
   2-3 材料の種類および性質・選択 23
    2-3-1 鋼材の種類と表記 23
    2-3-2 鉄鋼製品 24
    2-3-3 鋼材の形状・寸法表示 24
    2-3-4 鋼材の接合 27
    2-3-5 架構 28
 3 鉄筋コンクリート構造(材料)の特徴 31
   3-1 鉄筋コンクリート構造の特徴とディテール 31
    3-1-1 全般的な特徴 31
   3-2 構造・材料の長所・短所 32
    3-2-1 長所 32
    3-2-2 短所とその対策 33
   3-3 材料の種類および性質・選択 34
    3-3-1 コンクリートと鉄筋 34
    3-3-2 コンクリートの設計基準強度およびそのワーカビリティー 34
    3-3-3 鉄筋の種類と接合 36
    3-3-4 構造体の総合的耐久性 37
 4 組積造(材料)の特徴 39
Ⅱ編 部位と材料 43
   序 44
 1 屋根 45
   1-1 要求条件 45
    1-1-1 屋根に要求される条件 45
    1-1-2 屋根材料に要求される性能 45
   1-2 勾配屋根 46
    1-2-1 勾配屋根の材料構成 47
    1-2-2 屋根葺き材料の種類および特徴 47
   1-3 陸屋根 48
    1-3-1 陸屋根の材料構成 48
    1-3-2 防水材の種類および特徴 49
 2 外壁 50
   2-1 要求条件 50
    2-1-1 外壁に要求される条件 50
    2-1-2 外壁仕上材料に要求される性能 50
   2-2 外壁の材料構成 51
   2-3 材料の種類および特徴 53
 3 内壁 55
   3-1 要求条件 55
    3-1-1 内壁に要求される条件 55
    3-1-2 内壁仕上材料に要求される性能 55
   3-2 内壁の材料構成 56
   3-3 材料の種類および特徴 57
 4 天井
   4-1 要求条件 59
    4-1-1 天井に要求される条件 59
    4-1-2 天井仕上材料に要求される性能 59
   4-2 天井の材料構成 60
   4-3 材料の種類および特徴 61
 5 床 62
   5-1 要求条件 62
    5-1-1 床に要求される条件 62
    5-1-2 床仕上材料に要求される性能 62
   5-2 床の材料構成 63
   5-3 材料の種類および特徴 64
 6 建具 66
   6-1 要求条件 66
    6-1-1 建具に要求される条件 66
    6-1-2 建具材料に要求される性能 67
   6-2 建具の材料構成 67
    6-2-1 建具の材料構成 67
    6-2-2 建具のおもな部材名称 68
    6-2-3 建具の種類 68
   6-3 材料の種類および特徴 69
    6-3-1 建具に用いられる材料分類 69
 7 衛生器具 70
   7-1 要求条件 70
    7-1-1 衛生器具に要求される条件 70
    7-1-2 材料に要求される性能 70
   7-2 衛生器具の種類 71
   7-3 材料の種類および特徴 71
Ⅲ編 材料の機能 73
   序 74
 1 防水性 76
   1-1 水分の挙動 76
   1-2 水分と材料の性質 77
   1-3 防水工法と材料 77
    1-3-1 隔壁(材料)表面を不透水性の材料で覆って水分を遮断する工法 77
    1-3-2 隔壁(材料)自体の吸水・吸湿性を低下させて,透水・透湿が生じにくい性質に変える工法 77
    1-3-3 材料や部材のすきまに不透水性の材料を詰める工法 78
 2 防火性 79
   2-1 構造,建築物および材料の分類 79
    2-1-1 構造の分類 79
    2-1-2 建築物の分類 81
    2-1-3 材料の分類 81
   2-2 材料の燃焼と種類 82
    2-2-1 材料の燃焼 82
    2-2-2 不燃・難燃材料の種類 82
 3 断熱・保温性 85
   3-1 機能と原理 85
    3-1-1 熱の移動と性質 85
    3-1-2 断熱材の性質 86
   3-2 断熱材の種類と断熱工法 88
    3-2-1 断熱材の種類 88
    3-2-2 断熱工法 89
4 音響特性 90
   4-1 機能と原理 90
   4-2 吸音方法と材料 90
    4-2-1 多孔質材料による方法 90
    4-2-2 板状材料の振動による方法 91
    4-2-3 膜状材料による方法 91
    4-2-4 あなあき板による方法 91
    4-2-5 成形吸音板による方法 91
   4-3 遮音方法と材料 92
5 接着性・接合性 93
   5-1 機能と性能 93
   5-2 物理化学的接合 93
    5-2-1 接着 93
    5-2-2 溶接 97
    5-2-3 自着 99
   5-3 機械的接合 101
    5-3-1 仕口・継手による接合 101
    5-3-2 接合金物による接合 101
    5-3-3 補強金物による接合 102
    5-3-4 ラスによる接合 103
 6 保護・仕上げ性 104
   6-1 機能と性能 104
   6-2 塗科 104
    6-2-1 概説 104
    6-2-2 種類 104
    6-2-3 塗料の機能と素地 107
    6-2-4 用途と製品 108
   6-3 建築用仕上塗材 110
    6-3-1 概説 110
    6-3-2 薄付け仕上塗材 111
    6-3-3 厚付け仕上塗材 111
    6-3-4 複層仕上塗材 111
    6-3-5 可とう形改修用仕上塗材 112
    6-3-6 軽量骨材仕上塗材 112
    6-3-7 建築用下地調整塗材 112
   6-4 表面含浸材 113
    6-4-1 概説 113
    6-4-2 シラン系表面含浸材 113
    6-4-3 ケイ酸塩系表面含浸材 114
   6-5 塗り床材 115
    6-5-1 概説 115
    6-5-2 塗布型塗り床材 115
    6-5-3 一体型塗り床材 116
 7 水密・気密性 118
   7-1 機能と原理 118
   7-2 シーリング材・コーキング材 118
    7-2-1 建築用シーリング材 118
    7-2-2 建築用油性コーキング材 120
    7-2-3 金属製建具用ガラスパテ 120
    7-2-4 補修用注入エポキシ樹脂 120
   7-3 ガスケット 121
    7-3-1 建築用発泡体ガスケット 121
    7-3-2 建築用ガスケット 121
 8 材料の感覚的性能 123
   8-1 概説 123
   8-2 温冷感触 123
   8-3 凹凸感触 124
   8-4 べたつき感触 125
   8-5 よごれの程度 126
   8-6 打音感触 126
 9 環境負荷と建築材料 128
   9-1 概説 128
   9-2 環境負荷低減のための建築材料のあり方 129
    9-2-1 環境基本法とその関係法令に示される建築材料 129
    9-2-2 長寿命と建築材料 130
    9-2-3 自然共生と建築材料 130
    9-2-4 省エネルギーと建築材料 130
    9-2-5 省資源・循環と建築材料 131
    9-2-6 室内空気汚染と建築材料 131
Ⅳ編 基本材料 133
   序 134
 1 金属材料 135
   1-1 鉄鋼 135
    1-1-1 製法 135
    1-1-2 炭素鋼 137
    1-1-3 特殊鋼 139
    1-1-4 鋳鋼 140
    1-1-5 用途と製品 140
   1-2 アルミニウムおよびその合金 141
    1-2-1 製法 141
    1-2-2 種類・特徴 142
    1-2-3 性質 142
    1-2-4 用途と製品 144
   1-3 銅およびその合金 145
    1-3-1 製法 145
    1-3-2 種類・特徴 145
    1-3-3 性質 146
    1-3-4 用途と製品 146
   1-4 チタンおよびその合金 146
    1-4-1 製法 146
    1-4-2 種類・特徴 147
    1-4-3 性質 147
    1-4-4 用途と製品 148
   1-5 亜鉛・スズ・鉛 148
    1-5-1 製法 148
    1-5-2 種類・特徴 149
    1-5-3 性質 149
    1-5-4 用途と製品 150
   1-6 銀・金・白金 151
    1-6-1 製法 151
    1-6-2 種類・特徴 151
    1-6-3 性質 152
    1-6-4 用途と製品 152
   1-7 耐久性 153
 2 無機材料 156
   2-1 石材 156
    2-1-1 概説 156
    2-1-2 種類および組成 156
    2-1-3 一般的性質 156
    2-1-4 製品 158
   2-2 セメント 161
    2-2-1 概説 161
    2-2-2 ポルトランドセメントの製造 161
    2-2-3 ポルトランドセメントの成分 161
    2-2-4 ポルトランドセメントの水和 164
    2-2-5 混和材 165
    2-2-6 性質 167
   2-3 コンクリート 170
    2-3-1 コンクリート用材料 170
    2-3-2 調合 181
    2-3-3 フレッシュコンクリートの性質 188
    2-3-4 初期性状 190
    2-3-5 硬化コンクリートの性質 193
    2-3-6 各種コンクリート 204
    2-3-7 コンクリート製品 205
    2-3-8 鉄筋コンクリート構造物の耐久性 208
   2-4 石灰,せっこう,プラスター 215
    2-4-1 概説 215
    2-4-2 種類および組織,基本的性質 215
    2-4-3 用途と製品 216
   2-5 陶磁器 218
    2-5-1 概説 218
    2-5-2 素地の種類と性質 218
    2-5-3 製品と用途 219
    2-5-4 陶磁器の耐久性 222
   2-6 ガラス 223
    2-6-1 概説 223
    2-6-2 種類・製法および加工法 223
    2-6-3 一般的性質 224
    2-6-4 製品と用途 225
 3 有機材料 227
   3-1 木材 227
    3-1-1 構造と組織・木理・欠点 228
    3-1-2 製材による種類 229
    3-1-3 水分 230
    3-1-4 一般的な性質 231
    3-1-5 木材の耐久性 235
    3-1-6 木質材料 238
   3-2 プラスチック・ゴム 243
    3-2-1 概要 243
    3-2-2 種類 243
    3-2-3 成形法・現場施工 244
    3-2-4 性質 245
    3-2-5 用途と製品 248
   3-3 アスファルト 254
    3-3-1 概説 254
    3-3-2 種類と性質・用途 254
Ⅴ編 材料の基本的物性と単位 257
   1 質量・重量・密度・比重 258
   2 強度・応力度・ひずみ度 258
   3 温度・熱に関する物性値と単位 260
   4 水に関する物性値と単位 261
   5 音に関する物性値と単位 262
   6 光・照明に関する物性値と単位 263
   7 表色・光沢 264
索引 267
Ⅰ編 構造材料 11
   序 12
 1 木質構造(材料)の特徴 14
48.

図書

図書
Richard G. Compton, Craig E. Banks
出版情報: London : Imperial College Press, c2011  xiii, 429 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Equilibrium Electrochemistry and the Nernst Equation / 1:
Chemical Equilibrium / 1.1:
Electrochemical Equilibrium: Introduction / 1.2:
Electrochemical Equilibrium: Electron Transfer at the Solution-Electrode Interface / 1.3:
Electrochemical Equilibrium: The Nernst Equation / 1.4:
Walther Hermann Nernst / 1.5:
Reference Electrodes and the Measurement of Electrode Potentials / 1.6:
The Hydrogen Electrode as a Reference Electrode / 1.7:
Standard Electrode Potentials and Formal Potentials / 1.8:
Formal Potentials and Experimental Voltammetry / 1.9:
Electrode Processes: Kinetics vs. Thermodynamics / 1.10:
Electrode Kinetics / 2:
Currents and Reaction Fluxes / 2.1:
Studying Electrode Kinetics Requires Three Electrodes / 2.2:
Butler-Volmer Kinetics / 2.3:
Standard Electrochemical Rate Constants and Formal Potentials / 2.4:
The Need for Supporting Electrolyte / 2.5:
The Tafel Law / 2.6:
Julius Tafel / 2.7:
Multistep Electron Transfer Processes / 2.8:
Tafel Analysis and the Hydrogen Evolution Reaction / 2.9:
B. Stanley Pons / 2.10:
Cold Fusion-The Musical! / 2.11:
Why Are Some Standard Electrochemical Rate Constants Large but Others Slow? The Marcus Theory of Electron Transfer: An Introduction / 2.12:
Marcus Theory: Taking it Further. Inner and Outer Sphere Electron Transfer / 2.13:
Marcus Theory: Taking it Further. Adiabatic and Non-Adiabatic Reactions / 2.14:
Marcus Theory: Taking it Further. Calculating the Gibbs Energy of Activation / 2.15:
Relationship between Marcus Theory and Butler-Volmer Kinetics / 2.16:
Marcus Theory and Experiment. Success! / 2.17:
Diffusion / 3:
Fick's 1st Law of Diffusion / 3.1:
Fick's 2nd Law of Diffusion / 3.2:
The Molecular Basis of Fick's Laws / 3.3:
How Did Fick Discover His Laws? / 3.4:
The Cottrell Equation: Solving Fick's 2nd Law / 3.5:
The Cottrell Problem: The Case of Unequal Diffusion Coefficients / 3.6:
The Nernst Diffusion Layer / 3.7:
Mass Transfer vs. Electrode Kinetics: Steady-State Current-Voltage Waveshapes / 3.8:
Mass Transport Corrected Tafel Relationships / 3.9:
Cyclic Voltammetry at Macroelectrodes / 4:
Cyclic Voltammetry: The Experiment / 4.1:
Cyclic Voltammetry: Solving the Transport Equations / 4.2:
Cyclic Voltammetry: Reversible and Irreversible Kinetics / 4.3:
What Dictates 'Reversible' and 'Irreversible' Behaviour? / 4.4:
Reversible and Irreversible Behaviour: The Effect of Voltage Scan Rate / 4.5:
Reversible versus Irreversible Voltammetry: A Summary / 4.6:
The Measurement of Cyclic Voltammograms: Three Practical Considerations / 4.7:
Multiple Electron Transfer: Reversible Electrode Kinetics / 4.8:
Multiple Electron Transfer: Irreversible Electrode Kinetics / 4.10:
The Influence of pH on Cyclic Voltammetry / 4.11:
The Scheme of Squares / 4.12:
Simultaneous Two-Electron Transfer in Electrode Kinetics? / 4.13:
Voltammetry at Microelectrodes / 5:
The Cottrell Equation for a Spherical or Hemispherical Electrode / 5.1:
Potential Step Transients at Microdisc Electrodes / 5.2:
Microelectrodes Have Large Current Densities and Fast Response Times / 5.3:
Applications of Potential Step Chronoamperometry Using Microdisc Electrodes / 5.4:
Double Potential Step Microdisc Chronoamperometry Exploring the Diffusion Coefficient of Electrogenerated Species / 5.5:
Cyclic and Linear Sweep Voltammetry Using Microdisc Electrodes / 5.6:
Steady-State Voltammetry at the Microdisc Electrode / 5.7:
Microelectrodes versus Macroelectrodes / 5.8:
Ultrafast Cyclic Voltammetry: Megavolts per Second Scan Rates / 5.9:
Ultrasmall Electrodes: Working at the Nanoscale / 5.10:
Voltammetry at Heterogeneous Surfaces / 6:
Partially Blocked Electrodes / 6.1:
Microelectrode Arrays / 6.2:
Voltammetry at Highly Ordered Pyrolytic Graphite Electrodes / 6.3:
Electrochemically Heterogeneous Electrodes / 6.4:
Electrodes Covered with Porous Films / 6.5:
Voltammetric Particle Sizing / 6.6:
Scanning Electrochemical Microscopy (SECM) / 6.7:
Cyclic Voltammetry: Coupled Homogeneous Kinetics and Adsorption / 7:
Homogeneous Coupled Reactions: Notation and Examples / 7.1:
Modifying Fick's Second Law to Allow for Chemical Reaction / 7.2:
Cyclic Voltammetry and the EC Reaction / 7.3:
ECE Processes / 7.4:
ECE versus DISP / 7.8:
The CE Mechanism / 7.9:
The EC'(Catalytic) Mechanism / 7.10:
Adsorption / 7.11:
Voltammetric Studies of Droplets and Solid Particles / 7.12:
Hydrodynamic Electrodes / 8:
Convection / 8.1:
Modifying Fick's Laws to Allow for Convection / 8.2:
The Rotating Disc Electrode: An Introduction / 8.3:
The Rotating Disc Electrode-Theory / 8.4:
Osborne Reynolds (1842-1912) / 8.5:
The Rotating Disc Electrode-Further Theory / 8.6:
Chronoamperometry at the Rotating Disc Electrode: An Illustration of the Value of Simulation / 8.7:
The Rotating Disc and Coupled Homogeneous Kinetics / 8.8:
The Channel Electrode: An Introduction / 8.9:
The Channel Electrode: The Levich Equation Derived / 8.10:
Channel Flow Cells and Coupled Homogeneous Kinetics / 8.11:
Chronoamperometry at the Channel Electrode / 8.12:
The Channel Electrode is not 'Uniformly Accessible' / 8.13:
Channel Microelectrodes / 8.14:
Channel Microband Electrode Arrays for Mechanistic Electrochemistry / 8.15:
The High Speed Channel Electrode / 8.16:
Hydrodynamic Electrodes Based on Impinging jets / 8.17:
Sonovoltammetry / 8.18:
Voltammetry for Electroanalysis / 9:
Potential Step Voltammetric Techniques / 9.1:
Differential Pulse Voltammetry / 9.2:
Square Wave Voltammetry / 9.3:
Stripping Voltammetry / 9.4:
Sono-electroanalysis / 9.5:
Voltammetry in Weakly Supported Media: Migration and Other Effects / 10:
Potentials and Fields in Fully Supported Voltammetry / 10.1:
The Distribution of Ions Around a Charged Electrode / 10.2:
The Electrode-Solution Interface: Beyond the Gouy-Chapman Theory / 10.3:
Double Layer Effect on Electrode Kinetics: Frumkin Effects / 10.4:
Transport by Diffusion and by Migration / A.N. Frumkin10.5:
Measurement of Ion Mobilities / 10.7:
Liquid Junction Potentials / 10.8:
Chronoamperometry and Cyclic Voltammetry in Weakly Supported Media / 10.9:
Voltammetry at the Nanoscale / 11:
Transport to Particles Supported on an Electrode / 11.1:
Nanoparticle Voltammetry: The Transport Changes as the Electrode Shrinks in Size / 11.2:
Altered Chemistry at the Nanoscale / 11.3:
Appendix: Simulation of Electrode Processes
Fick's First and Second Laws / A.1:
Boundary Conditions / A.2:
Finite Difference Equations / A.3:
Backward Implicit Method / A.4:
Conclusion / A.5:
Index
Cold Fusion - The Musical!
The EC' (Catalytic) Mechanism
The Rotating Disc Electrode - Theory
The Rotating Disc Electrode - Further Theory
A.N. Frumkin
Preface
Equilibrium Electrochemistry and the Nernst Equation / 1:
Chemical Equilibrium / 1.1:
49.

図書

図書
Parviz Moin
出版情報: Cambridge : Cambridge University Press, 2010  xiv, 241 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Interpolation / 1:
Lagrange Polynomial Interpolation / 1.1:
Cubic Spline Interpolation / 1.2:
Exercises
Further Reading
Numerical Differentiation - Finite Differences / 2:
Construction of Difference Formulas Using Taylor Series / 2.1:
A General Technique for Construction of Finite Difference Schemes / 2.2:
An Alternative Measure for the Accuracy of Finite Differences / 2.3:
Padé Approximations / 2.4:
Non-Uniform Grids / 2.5:
Numerical Integration / 3:
Trapezoidal and Simpson's Rules / 3.1:
Error Analysis / 3.2:
Trapezoidal Rule with End-Correction / 3.3:
Romberg Integration and Richardson Extrapolation / 3.4:
Adaptive Quadrature / 3.5:
Gauss Quadrature / 3.6:
Numerical Solution of Ordinary Differential Equations / 4:
Initial Value Problems / 4.1:
Numerical Stability / 4.2:
Stability Analysis for the Euler Method / 4.3:
Implicit or Backward Euler / 4.4:
Numerical Accuracy Revisited / 4.5:
Trapezoidal Method / 4.6:
Linearization for Implicit Methods / 4.7:
Runge-Kutta Methods / 4.8:
Multi-Step Methods / 4.9:
System of First-Order Ordinary Differential Equations / 4.10:
Boundary Value Problems / 4.11:
Shooting Method / 4.11.1:
Direct Methods / 4.11.2:
Numerical Solution of Partial Differential Equations / 5:
Semi-Discretization / 5.1:
von Neumann Stability Analysis / 5.2:
Modified Wavenumber Analysis / 5.3:
Implicit Time Advancement / 5.4:
Accuracy via Modified Equation / 5.5:
Du Fort-Frankel Method: An Inconsistent Scheme / 5.6:
Multi-Dimensions / 5.7:
Implicit Methods in Higher Dimensions / 5.8:
Approximate Factorization / 5.9:
Stability of the Factored Scheme / 5.9.1:
Alternating Direction Implicit Methods / 5.9.2:
Mixed and Fractional Step Methods / 5.9.3:
Elliptic Partial Differential Equations / 5.10:
Iterative Solution Methods / 5.10.1:
The Point Jacobi Method / 5.10.2:
Gauss-Seidel Method / 5.10.3:
Successive Over Relaxation Scheme / 5.10.4:
Multigrid Acceleration / 5.10.5:
Discrete Transform Methods / 6:
Fourier Series / 6.1:
Discrete Fourier Series / 6.1.1:
Fast Fourier Transform / 6.1.2:
Fourier Transform of a Real Function / 6.1.3:
Discrete Fourier Series in Higher Dimensions / 6.1.4:
Discrete Fourier Transform of a Product of Two Functions / 6.1.5:
Discrete Sine and Cosine Transforms / 6.1.6:
Applications of Discrete Fourier Series / 6.2:
Direct Solution of Finite Differenced Elliptic Equations / 6.2.1:
Differentiation of a Periodic Function Using Fourier Spectral Method / 6.2.2:
Numerical Solution of Linear, Constant Coefficient Differential Equations with Periodic Boundary Conditions / 6.2.3:
Matrix Operator for Fourier Spectral Numerical Differentiation / 6.3:
Discrete Chebyshev Transform and Applications / 6.4:
Numerical Differentiation Using Chebyshev Polynomials / 6.4.1:
Quadrature Using Chebyshev Polynomials / 6.4.2:
Matrix Form of Chebyshev Collocation Derivative / 6.4.3:
Method of Weighted Residuals / 6.5:
The Finite Element Method / 6.6:
Application of the Finite Element Method to a Boundary Value Problem / 6.6.1:
Comparison with Finite Difference Method / 6.6.2:
Comparison with a Padé Scheme / 6.6.3:
A Time-Dependent Problem / 6.6.4:
Application to Complex Domains / 6.7:
Constructing the Basis Functions / 6.7.1:
A Review of Linear Algebra / A:
Vectors, Matrices and Elementary Operations / A.1:
System of Linear Algebraic Equations / A.2:
Effects of Round-off Error / A.2.1:
Operations Counts / A.3:
Eigenvalues and Eigenvectors / A.4:
Index
Preface to the Second Edition
Preface to the First Edition
Interpolation / 1:
50.

図書

図書
電気学会第2次M2M技術調査専門委員会編
出版情報: 東京 : 森北出版, 2016.3  vi, 183p ; 22cm
所蔵情報: loading…
目次情報: 続きを見る
第1章 : M2Mシステムとは
第2章 : M2Mのアプリケーション事例
第3章 : M2Mシステム構築技術
第4章 : M2Mプラットフォーム
第5章 : M2Mネットワーク
第6章 : M2Mセキュリティ
第1章 : M2Mシステムとは
第2章 : M2Mのアプリケーション事例
第3章 : M2Mシステム構築技術
概要: M2M/IoTにかかわるハードウェア、ソフトウェア、通信の全体像を解説。これからシステム構築に取り組む技術者におすすめです。
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼