close
1.

図書

図書
Maxim Ryadnov
出版情報: Cambridge : RSC Publishing, c2009  ix, 238 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no.7
所蔵情報: loading…
目次情報: 続きを見る
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
Starting Lowest / 1.3:
Picturing Biological / 1.4:
References
Recycling Hereditary / Chapter 2:
Coding Dual / 2.1:
Deoxyribonucleic / 2.1.1:
Building up in Two / 2.1.1.1:
Keeping in Shape / 2.1.1.2:
Priming Topological / 2.1.2:
Resequencing Basic / 2.1.2.1:
Choosing the Fittest / 2.1.2.1.1:
Evolving Diverse / 2.1.2.1.2:
Primary Motifs / 2.1.2.2:
Gluing Universal / 2.1.2.2.1:
Alienating Axial / 2.1.2.2.2:
Fixing Spatial / 2.2:
Hinting Geometric: Secondary Motifs / 2.2.1:
Crossing Double / 2.2.1.1:
Reporting Visible / 2.2.1.1.1:
Translating Symmetrical / 2.2.1.1.2:
Extending Cohesive / 2.2.1.2:
Sharing Mutual / 2.2.1.2.1:
Multiplying Traversal / 2.2.1.2.2:
Tiling Square / 2.2.1.2.3:
Scaffolding Algorithmic / 2.3:
Pursuing Autonomous / 2.3.1:
Lengthening to Shorten / 2.3.1.1:
Gathering to Limit / 2.3.1.2:
Assigning Arbitrary / 2.3.2:
Synchronising Local / 2.3.2.1:
Prescribing General / 2.3.2.2:
Adding up to Third / 2.3.3:
Wrapping to Shut / 2.3.3.1:
Framing to Classify / 2.3.3.2:
Outlook / 2.4:
Recaging Within / Chapter 3:
Enclosing to Deliver / 3.1:
Transporting Foreign / 3.1.1:
Fitting Flat and Straight / 3.1.1.1:
Spiralling Along / 3.1.1.2:
Packing Out and In / 3.1.2:
Spooling Around / 3.1.2.1:
Tunnelling Through
Escaping Walled / 3.1.3:
Capturing On and Off / 3.1.3.1:
Storing Exchangeable / 3.1.3.2:
Reacting Nano / 3.2:
Clustering Spherical / 3.2.1:
Contriving Consistent / 3.2.1.1:
Scaling Hosting / 3.2.1.2:
Following Linear / 3.2.2:
Channelling Inner
Converting Outer
Repairing from Inside / 3.3:
Uninviting Levy / 3.3.1:
Necessitating Exterior / 3.3.2:
Antagonising Dressing / 3.3.2.1:
Renting Occasional / 3.3.2.1.2:
Phasing West / 3.3.2.2:
Facing Concentric / 3.3.2.2.1:
Encircling Between / 3.3.2.2.2:
Singling Out Unique / 3.3.2.2.3:
Sharing the Balance / 3.3.3:
Driving Symmetrical / 3.3.3.1:
Sealing Annular / 3.3.3.2:
Reassembling Multiple / 3.4:
Keeping All in Touch / 4.1:
Unravelling the Essential / 4.1.1:
Winding Three in One / 4.1.1.1:
Aligning Stagger / 4.1.1.2:
Tapering Polar / 4.1.1.3:
Branching and Stretching / 4.1.1.4:
Replicating Apparent / 4.1.2:
Scraping Refusal / 4.1.2.1:
Tempting Compatible / 4.1.2.2:
Likening Synthetic / 4.1.2.3:
Recovering Intelligent / 4.1.2.4:
Restoring Available / 4.2:
Prompting Longitudinal / 4.2.1:
Invoking Granted / 4.2.1.1:
Reposing Modular / 4.3:
Displacing Coil / 4.3.1:
Settling Lateral / 4.3.2:
Bundling Exclusive / 4.3.2.1:
Permitting Distinctive / 4.3.2.2:
Inviting Captive / 4.3.2.3:
Clearing Limiting / 4.3.3:
Equilibrating Transitional / 4.3.3.1:
Extracting Minimal / 4.3.3.2:
Gambling Beyond / 4.4:
Guiding Proliferative / 4.4.1:
Feeding Proximate / 4.4.1.1:
Rooting Renewal / 4.4.1.2:
Accepting Inescapable / 4.4.2:
Patterning Positional / 4.4.2.1:
Relating Interfacial / 4.4.2.2:
Grafting Integral / 4.4.2.3:
Concluding Remarks / 4.5:
Learning Fluent / 5.1:
Parsing Semantic / 5.2:
Drawing Pragmatic / 5.3:
Revealing Contributory / Chapter 6:
Subject Index
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
2.

図書

図書
Hans Bisswanger
出版情報: Weinheim : WILEY-VCH, c2008  xviii, 301 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
Introduction and Definitions
References
Multiple Equilibria / 1:
Diffusion / 1.1:
Interaction between Macromolecules and Ligands / 1.2:
Binding Constants / 1.2.1:
Macromolecules with One Binding Site / 1.2.2:
Macromolecules with Identical Independent Binding Sites / 1.3:
General Binding Equation / 1.3.1:
Graphic Representations of the Binding Equation / 1.3.2:
Direct and Linear Diagrams / 1.3.2.1:
Analysis of Binding Data from Spectroscopic Titrations / 1.3.2.2:
Binding of Different Ligands, Competition / 1.3.3:
Non-competitive Binding / 1.3.4:
Macromolecules with Non-identical, Independent Binding Sites / 1.4:
Macromolecules with Identical, Interacting Binding Sites, Cooperativity / 1.5:
The Hill Equation / 1.5.1:
The Adair Equation / 1.5.2:
The Pauling Model / 1.5.3:
Allosteric Enzymes / 1.5.4:
The Symmetry or Concerted Model / 1.5.5:
The Sequential Model and Negative Cooperativity / 1.5.6:
Analysis of Cooperativity / 1.5.7:
Physiological Aspects of Cooperativity / 1.5.8:
Examples of Allosteric Enzymes / 1.5.9:
Hemoglobin / 1.5.9.1:
Aspartate Transcarbamoylase / 1.5.9.2:
Aspartokinase / 1.5.9.3:
Phosphofructokinase / 1.5.9.4:
Allosteric Regulation of the Glycogen Metabolism / 1.5.9.5:
Membrane Bound Enzymes and Receptors / 1.5.9.6:
Non-identical, Interacting Binding Sites / 1.6:
Enzyme Kinetics / 2:
Reaction Order / 2.1:
First Order Reactions / 2.1.1:
Second Order Reactions / 2.1.2:
Zero Order Reactions / 2.1.3:
Steady-State Kinetics and the Michaelis-Menten Equation / 2.2:
Derivation of the Michaelis-Menten Equation / 2.2.1:
Analysis of Enzyme Kinetic Data / 2.3:
Graphical Representations of the Michaelis-Menten Equation / 2.3.1:
Direct and Semi-logarithmic Representations / 2.3.1.1:
Direct Linear Plots / 2.3.1.2:
Linearization Methods / 2.3.1.3:
Analysis of Progress Curves / 2.3.2:
Integrated Michaelis-Menten Equation / 2.3.2.1:
Determination of Reaction Rates / 2.3.2.2:
Graphic Methods for Rate Determination / 2.3.2.3:
Graphic Determination of True Initial Rates / 2.3.2.4:
Reversible Enzyme Reactions / 2.4:
Rate Equation for Reversible Enzyme Reactions / 2.4.1:
The Haldane Relationship / 2.4.2:
Product Inhibition / 2.4.3:
Enzyme Inhibition / 2.5:
Unspecific Enzyme Inhibition / 2.5.1:
Irreversible Enzyme Inhibition / 2.5.2:
General Features of Irreversible Enzyme Inhibition / 2.5.2.1:
Suicide Substrates / 2.5.2.2:
Transition State Analogs / 2.5.2.3:
Analysis of Irreversible Inhibitions / 2.5.2.4:
Reversible Enzyme Inhibition / 2.5.3:
General Rate Equation / 2.5.3.1:
Non-Competitive Inhibition and Graphic Representation of Inhibition Data / 2.5.3.2:
Competitive Inhibition / 2.5.3.3:
Uncompetitive Inhibition / 2.5.3.4:
Partially Non-competitive Inhibition / 2.5.3.5:
Partially Uncompetitive Inhibition / 2.5.3.6:
Partially Competitive Inhibition / 2.5.3.7:
Noncompetitive and Uncompetitive Product Inhibition / 2.5.3.8:
Substrate Inhibition / 2.5.3.9:
Enzyme Reactions with Two Competing Substrates / 2.5.4:
Different Enzymes Catalyzing the Same Reaction / 2.5.5:
Multi-substrate Reactions / 2.6:
Nomenclature / 2.6.1:
Random Mechanism / 2.6.2:
Ordered Mechanism / 2.6.3:
Ping-pong Mechanism / 2.6.4:
Product Inhibition in Multi-substrate Reactions / 2.6.5:
Haldane Relationships in Multi-substrate Reactions / 2.6.6:
Mechanisms with more than Two Substrates / 2.6.7:
Other Nomenclatures for Multi-substrate Reactions / 2.6.8:
Derivation of Rate Equations of Complex Enzyme Mechanisms / 2.7:
King-Altmann Method / 2.7.1:
Simplified Derivations Applying Graph Theory / 2.7.2:
Combination of Equilibrium and Steady State Approach / 2.7.3:
Kinetic Treatment of Allosteric Enzymes / 2.8:
Hysteretic Enzymes / 2.8.1:
Kinetic Cooperativity, the Slow Transition Model / 2.8.2:
pH and Temperature Dependence of Enzymes / 2.9:
pH Optimum and Determination of pK Values / 2.9.1:
pH Stability / 2.9.2:
Temperature Dependence / 2.9.3:
Isotope Exchange / 2.10:
Isotope Exchange Kinetics / 2.10.1:
Isotope Effects / 2.10.2:
Primary Kinetic Isotope Effect / 2.10.2.1:
Influence of the Kinetic Isotope Effect on V and Km / 2.10.2.2:
Other Isotope Effects / 2.10.2.3:
Special Enzyme Mechanisms / 2.11:
Ribozymes / 2.11.1:
Polymer Substrates / 2.11.2:
Kinetics of Immobilized Enzymes / 2.11.3:
External Diffusion Limitation / 2.11.3.1:
Internal Diffusion Limitation / 2.11.3.2:
Inhibition of Immobilized Enzymes / 2.11.3.3:
pH and Temperature Behavior of Immobilized Enzymes / 2.11.3.4:
Transport Processes / 2.11.4:
Enzyme Reactions at Membrane Interfaces / 2.11.5:
Application of Statistical Methods in Enzyme Kinetics / 2.12:
General Remarks / 2.12.1:
Statistical Terms Used in Enzyme Kinetics / 2.12.2:
Methods / 3:
Methods for Investigation of Multiple Equilibria / 3.1:
Equilibrium Dialysis and General Aspects of Binding Measurements / 3.1.1:
Equilibrium Dialysis / 3.1.1.1:
Control Experiments and Sources of Error / 3.1.1.2:
Continuous Equilibrium Dialysis / 3.1.1.3:
Ultrafiltration / 3.1.2:
Gel Filtration / 3.1.3:
Batch Method / 3.1.3.1:
The Method of Hummel and Dreyer / 3.1.3.2:
Other Gel Filtration Methods / 3.1.3.3:
Ultracentrifugation / 3.1.4:
Fixed Angle Ultracentrifugation Methods / 3.1.4.1:
Sucrose Gradient Centrifugation / 3.1.4.2:
Surface Plasmon Resonance / 3.1.5:
Electrochemical Methods / 3.2:
The Oxygen Electrode / 3.2.1:
The CO2 Electrode / 3.2.2:
Potentiometry, Redox Potentials / 3.2.3:
The pH-stat / 3.2.4:
Polarography / 3.2.5:
Calorimetry / 3.3:
Spectroscopic Methods / 3.4:
Absorption Spectroscopy / 3.4.1:
The Lambert-Beer Law / 3.4.1.1:
Spectral Properties of Enzymes and Ligands / 3.4.1.2:
Structure of Spectrophotometers / 3.4.1.3:
Double Beam Spectrophotometer / 3.4.1.4:
Difference Spectroscopy / 3.4.1.5:
The Dual Wavelength Spectrophotometer / 3.4.1.6:
Photochemical Action Spectra / 3.4.1.7:
Bioluminescence / 3.4.2:
Fluorescence / 3.4.3:
Quantum Yield / 3.4.3.1:
Structure of Spectrofluorimeters / 3.4.3.2:
Perturbations of Fluorescence Measurements / 3.4.3.3:
Fluorescent Compounds (Fluorophores) / 3.4.3.4:
Radiationless Energy Transfer / 3.4.3.5:
Fluorescence Polarization / 3.4.3.6:
Pulse Fluorimetry / 3.4.3.7:
Circular Dichroism and Optical Rotation Dispersion / 3.4.4:
Infrared and Raman Spectroscopy / 3.4.5:
IR Spectroscopy / 3.4.5.1:
Raman Spectroscopy / 3.4.5.2:
Applications / 3.4.5.3:
Electron Paramagnetic Resonance Spectroscopy / 3.4.6:
Measurement of Fast Reactions / 3.5:
Flow Methods / 3.5.1:
The Continuous Flow Method / 3.5.1.1:
The Stopped-flow Method / 3.5.1.2:
Measurement of Enzyme Reactions by Flow Methods / 3.5.1.3:
Determination of the Dead Time / 3.5.1.4:
Relaxation Methods / 3.5.2:
The Temperature Jump Method / 3.5.2.1:
The Pressure Jump Method / 3.5.2.2:
The Electric Field Method / 3.5.2.3:
Flash Photolysis, Pico- and Femto-second Spectroscopy / 3.5.3:
Evaluation of Rapid Kinetic Reactions (Transient Kinetics) / 3.5.4:
Subject Index
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
3.

図書

図書
F. Grossmann
出版情報: Berlin : Springer, c2008  xiii, 214 p. ; 24 cm
シリーズ名: Springer series on atomic, optical, and plasma physics ; 48
所蔵情報: loading…
目次情報: 続きを見る
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
Fundamentals of the Laser / 1.2:
Elementary Laser Theory / 1.2.1:
Realization of the Laser Principle / 1.2.2:
Pulsed Lasers / 1.3:
Frequency Comb / 1.3.1:
Carrier Envelope Phase / 1.3.2:
Husimi Representation of Laser Pulses / 1.3.3:
Some Gaussian Integrals / 1.A:
References
Time-Dependent Quantum Theory / 2:
The Time-Dependent Schrodinger Equation / 2.1:
Introduction / 2.1.1:
Time-Evolution Operator / 2.1.2:
Spectral Information / 2.1.3:
Analytical Solutions for Wavepackets / 2.1.4:
Analytical Approaches / 2.2:
Feynman's Path Integral / 2.2.1:
Semiclassical Approximation / 2.2.2:
Time-Dependent Perturbation Theory / 2.2.3:
Magnus Expansion / 2.2.4:
Time-Dependent Hartree Method / 2.2.5:
Quantum-Classical Methods / 2.2.6:
Floquet Theory / 2.2.7:
Numerical Methods / 2.3:
Orthogonal Basis Expansion / 2.3.1:
Split-Operator FFT Method / 2.3.2:
Alternative Methods of Time-Evolution / 2.3.3:
Semiclassical Initial Value Representations / 2.3.4:
The Royal Road to the Path Integral / 2.A:
Variational Calculus / 2.B:
Stability Matrix / 2.C:
From the HK- to the VVG-Propagator / 2.D:
Applications / Part II:
Field Matter Coupling and Two-Level Systems / 3:
Light Matter Interaction / 3.1:
Minimal Coupling / 3.1.1:
Length Gauge / 3.1.2:
Kramers-Henneberger Transformation / 3.1.3:
Volkov Wavepacket / 3.1.4:
Analytically Solvable Two-Level Problems / 3.2:
Dipole Matrix Element / 3.2.1:
Rabi Oscillations Induced by a Constant Perturbation / 3.2.2:
Time-Dependent Perturbations / 3.2.3:
Exactly Solvable Time-Dependent Cases / 3.2.4:
Generalized Parity Transformation / 3.A:
Two-Level System in an Incoherent Field / 3.B:
Single Electron Atoms in Strong Laser Fields / 4:
The Hydrogen Atom / 4.1:
Hydrogen in Three Dimensions / 4.1.1:
The One-Dimensional Coulomb Problem / 4.1.2:
Field Induced Ionization / 4.2:
Tunnel Ionization / 4.2.1:
Multiphoton Ionization / 4.2.2:
ATI in the Coulomb Potential / 4.2.3:
Stabilization in Very Strong Fields / 4.2.4:
Atoms Driven by HCP / 4.2.5:
High Harmonic Generation / 4.3:
Three-Step Model / 4.3.1:
Odd Harmonics Rule / 4.3.2:
Semiclassical Explanation of the Plateau / 4.3.3:
Cutoff and Odd Harmonics Revisited / 4.3.4:
More on Atomic Units / 4.A:
Molecules in Strong Laser Fields / 5:
The Molecular Ion H[superscript + subscript 2] / 5.1:
Electronic Potential Energy Surfaces / 5.1.1:
The Morse Potential / 5.1.2:
H[superscript + subscript 2] in a Laser Field / 5.2:
Frozen Nuclei / 5.2.1:
Nuclei in Motion / 5.2.2:
Adiabatic and Nonadiabatic Nuclear Dynamics / 5.3:
Born-Oppenheimer Approximation / 5.3.1:
Dissociation in a Morse Potential / 5.3.2:
Coupled Potential Surfaces / 5.3.3:
Femtosecond Spectroscopy / 5.3.4:
Control of Molecular Dynamics / 5.4:
Control of Tunneling / 5.4.1:
Control of Population Transfer / 5.4.2:
Optimal Control Theory / 5.4.3:
Genetic Algorithms / 5.4.4:
Toward Quantum Computing with Molecules / 5.4.5:
Relative and Center of Mass Coordinates for H[superscript + subscript 2] / 5.A:
Perturbation Theory for Two Coupled Surfaces / 5.B:
Reflection Principle of Photodissociation / 5.C:
The Undriven Double Well Problem / 5.D:
The Quantum Mechanical Adiabatic Theorem / 5.E:
Index
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
4.

図書

図書
Jean-Pierre Colinge, editor
出版情報: New York : Springer, c2008  xiii, 339 p. ; 24 cm
シリーズ名: Series on Integrated Circuits and Systems
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Content
Contributors
The SOI MOSFET: from Single Gate to Multigate / 1:
MOSFET scaling and Moore's law / 1.1:
Short-Channel Effects / 1.2:
Gate Geometry and Electrostatic Integrity / 1.3:
A Brief History of Multiple-Gate MOSFETs / 1.4:
Single-gate SOI MOSFETs / 1.4.1:
Double-gate SOI MOSFETs / 1.4.2:
Triple-gate SOI MOSFETs / 1.4.3:
Surrounding-gate (quadruple-gate) SOI MOSFETs / 1.4.4:
Other multigate MOSFET structures / 1.4.5:
Multigate MOSFET memory devices / 1.4.6:
Multigate MOSFET Physics / 1.5:
Classical physics / 1.5.1:
Natural length and short-channel effects / 1.5.1.1:
Current drive / 1.5.1.2:
Corner effect / 1.5.1.3:
Quantum effects / 1.5.2:
Volume inversion / 1.5.2.1:
Mobility effects / 1.5.2.2:
Threshold voltage / 1.5.2.3:
Inter-subband scattering / 1.5.2.4:
References
Multigate MOSFET Technology / 2:
Introduction / 2.1:
Active Area: Fins / 2.2:
Fin Width / 2.2.1:
Fin Height and Fin Pitch / 2.2.2:
Fin Surface Crystal Orientation / 2.2.3:
Fin Surface Preparation / 2.2.4:
Fins on Bulk Silicon / 2.2.5:
Nano-wires and Self-Assembled Wires / 2.2.6:
Gate Stack / 2.3:
Gate Patterning / 2.3.1:
Threshold Voltage and Gate Workfunction Requirements / 2.3.2:
Polysilicon Gate / 2.3.2.1:
Metal Gate / 2.3.2.2:
Tunable Workfunction Metal Gate / 2.3.2.3:
Gate EWF and Gate Induced Drain Leakage (GIDL) / 2.3.3:
Independently Controlled Gates / 2.3.4:
Source/Drain Resistance and Capacitance / 2.4:
Doping the Thin Fins / 2.4.1:
Junction Depth / 2.4.2:
Parasitic Resistance/Capacitance and Raised Source and Drain Structure / 2.4.3:
Mobility and Strain Engineering / 2.5:
Wafer Bending Experiment / 2.5.1:
Nitride Stress Liners / 2.5.3:
Embedded SiGe and SiC Source and Drain / 2.5.4:
Local Strain from Gate Electrode / 2.5.5:
Substrate Strain: Strained Silicon on Insulator / 2.5.6:
Contacts to the Fins / 2.6:
Dumbbell source and drain contact / 2.6.1:
Saddle contact / 2.6.2:
Contact to merged fins / 2.6.3:
Acknowledgments
BSIM-CMG: A Compact Model for Multi-Gate Transistors / 3:
Framework for Multigate FET Modeling / 3.1:
Multigate Models: BSIM-CMG and BSIM-IMG / 3.3:
The BSIM-CMG Model / 3.3.1:
The BSIM-IMG Model / 3.3.2:
BSIM-CMG / 3.4:
Core Model / 3.4.1:
Surface Potential Model / 3.4.1.1:
I-V Model / 3.4.1.2:
C-V Model / 3.4.1.3:
Modeling Physical Effects of Real Devices / 3.4.2:
Quantum Mechanical Effects (QME) / 3.4.2.1:
Short-channel Effects (SCE) / 3.4.2.2:
Experimental Verification / 3.4.3:
Surface Potential of independent DG-FET / 3.5:
BSIM-IMG features / 3.5.2:
Summary / 3.6:
Physics of the Multigate MOS System / 4:
Device electrostatics / 4.1:
Double gate MOS system / 4.2:
Modeling assumptions / 4.2.1:
Gate voltage effect / 4.2.2:
Semiconductor thickness effect / 4.2.3:
Asymmetry effects / 4.2.4:
Oxide thickness effect / 4.2.5:
Electron tunnel current / 4.2.6:
Two-dimensional confinement / 4.3:
Mobility in Multigate MOSFETs / 5:
Double-Gate MOSFETs and FinFETs / 5.1:
Phonon-limited mobility / 5.2.1:
Confinement of acoustic phonons / 5.2.2:
Interface roughness scattering / 5.2.3:
Coulomb scattering / 5.2.4:
Temperature Dependence of Mobility / 5.2.5:
Symmetrical and Asymmetrical Operation of DGSOI FETs / 5.2.6:
Crystallographic orientation / 5.2.7:
High-k dielectrics / 5.2.8:
Strained DGSOI devices / 5.2.9:
Silicon multiple-gate nanowires / 5.2.10:
Electrostatic description of Si nanowires / 5.3.1:
Electron transport in Si nanowires / 5.3.3:
Surface roughness / 5.3.4:
Experimental results and conclusions / 5.3.5:
Radiation Effects in Advanced Single- and Multi-Gate SOI MOSFETs / 6:
A brief history of radiation effects in SOI / 6.1:
Total Ionizing Dose Effects / 6.2:
A brief overview of Total Ionizing Dose effects / 6.2.1:
Advanced Single-Gate FDSOI devices / 6.2.2:
Description of Advanced FDSOI Devices / 6.2.2.1:
Front-gate threshold voltage shift / 6.2.2.2:
Single-transistor latch / 6.2.2.3:
Advanced Multi-Gate devices / 6.2.3:
Devices and process description / 6.2.3.1:
Single-Event Effects / 6.2.3.2:
Background / 6.3.1:
Effect of ion track diameter in nanoscale devices / 6.3.2:
Transient measurements on single-gate and FinFET SOI transistors / 6.3.3:
Scaling effects / 6.3.4:
Multi-Gate MOSFET Circuit Design / 7:
Digital Circuit Design / 7.1:
Impact of device performance on digital circuit design / 7.2.1:
Large-scale digital circuits / 7.2.2:
Leakage-performance trade off and energy dissipation / 7.2.3:
Multi-V[subscript T] devices and mixed-V[subscript T] circuits / 7.2.4:
High-temperature circuit operation / 7.2.5:
SRAM design / 7.2.6:
Analog Circuit Design / 7.3:
Device figures of merit and technology related design issues / 7.3.1:
Transconductance / 7.3.1.1:
Intrinsic transistor gain / 7.3.1.2:
Matching behavior / 7.3.1.3:
Flicker noise / 7.3.1.4:
Transit and maximum oscillation frequency / 7.3.1.5:
Self-heating / 7.3.1.6:
Charge trapping in high-k dielectrics / 7.3.1.7:
Design of analog building blocks / 7.3.2:
V-[subscript T]-based current reference circuit / 7.3.2.1:
Bandgap voltage reference / 7.3.2.2:
Operational amplifier / 7.3.2.3:
Comparator / 7.3.2.4:
Mixed-signal aspects / 7.3.3:
Current steering DAC / 7.3.3.1:
Successive approximation ADC / 7.3.3.2:
RF circuit design / 7.3.4:
SoC Design and Technology Aspects / 7.4:
Index
Preface
Table of Content
Contributors
5.

図書

図書
John F. Watts, John Wolstenholme
出版情報: Chichester : Wiley, c2003  x, 212 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
Electron Spectrometer Design
The Electron Spectrum: Qualitative and Quantitative Interpretation
Compositional Depth Profiling / 1.1:
Applications of Electron Spectroscopy in Materials Science
Analysis of Surfaces
Comparison of XPS and AES with Other Analytical Techniques
Glossary / 1.2:
Bibliography
Notation
Auger Electron Energies / Appendix 1:
Spectroscopists' notation / Appendix 2:
Table of Binding Energies Accessible with AIK& Radiation
Index / 1.2.2:
X-ray notation
X-ray Photoelectron Spectroscopy (XPS) / 1.3:
Auger Electron Spectroscopy (AES) / 1.4:
Scanning Auger Microscopy (SAM) / 1.5:
The Depth of Analysis in Electron Spectroscopy / 1.6:
Comparison of XPS and AES/SAM / 1.7:
The Availability of Surface Analytical Equipment / 1.8:
The Vacuum System / 2:
The Sample / 2.2:
X-ray Sources for XPS / 2.3:
The twin anode X-ray source / 2.3.1:
X-ray monochromators / 2.3.2:
Charge compensation / 2.3.3:
The Electron Gun for AES / 2.4:
Electron sources / 2.4.1:
Analysers for Electron Spectroscopy / 2.5:
The cylindrical mirror analyser / 2.5.1:
The hemispherical sector analyser / 2.5.2:
Detectors / 2.6:
Channel electron multipliers / 2.6.1:
Channel plates / 2.6.2:
Small Area XPS / 2.7:
Lens-defined small area XPS / 2.7.1:
Source-defined small area analysis / 2.7.2:
XPS Imaging and Mapping / 2.8:
Serial acquisition / 2.8.1:
Parallel acquisition / 2.8.2:
Lateral Resolution in Small Area XPS / 2.9:
Angle Resolved XPS / 2.10:
Qualitative Analysis / 3:
Unwanted features in electron spectra / 3.1.1:
Data acquisition / 3.1.2:
Chemical State Information / 3.2:
X-ray photoelectron spectroscopy / 3.2.1:
Electron induced Auger electron spectroscopy / 3.2.2:
The Auger parameter / 3.2.3:
Chemical state plots / 3.2.4:
Shake-up satellites / 3.2.5:
Multiplet splitting / 3.2.6:
Plasmons / 3.2.7:
Quantitative Analysis / 3.3:
Factors affecting the quantification of electron spectra / 3.3.1:
Quantification in XPS / 3.3.2:
Quantification in AES / 3.3.3:
Compositional Depth Profilin / 4:
Non-destructive Depth Profiling Methods / 4.1:
Angle resolved electron spectroscopy / 4.1.1:
Elastic scattering / 4.1.1.1:
Compositional depth profiles by ARXPS / 4.1.1.2:
Recent advances in ARXPS / 4.1.1.3:
Variation of analysis depth with electron kinetic energy / 4.1.2:
Depth Profiling by Erosion with Noble Gas Ions / 4.2:
The sputtering process / 4.2.1:
Experimental method / 4.2.2:
Sputter yield and etch rate / 4.2.3:
Factors affecting the etch rate / 4.2.4:
Factors affecting the depth resolution / 4.2.5:
Calibration / 4.2.6:
Ion gun design / 4.2.7:
Mechanical Sectioning / 4.3:
Angle lapping / 4.3.1:
Ball cratering / 4.3.2:
Conclusions / 4.4:
Introduction / 5:
Metallurgy / 5.2:
Grain-boundary segregation / 5.2.1:
Electronic structure of metallic alloys / 5.2.2:
Surface engineering / 5.2.3:
Corrosion Science / 5.3:
Ceramics and Catalysis / 5.4:
Microelectronics and Semiconductor Materials / 5.5:
Mapping semiconductor devices using AES / 5.5.1:
Depth profiling of semiconductor materials / 5.5.2:
Ultra-thin layers studied by ARXPS / 5.5.3:
Polymeric Materials / 5.6:
Adhesion Science / 5.7:
X-ray Analysis in the Electron Microscope / 6:
Electron Analysis in the Electron Microscope / 6.2:
Mass Spectrometry for Surface Analysis / 6.3:
Ion Scattering / 6.4:
Concluding Remarks / 6.5:
Appendices
Table of Binding Energies Accessible with AlKalpha Radiation
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
6.

図書

図書
Ivan Kozhevnikov
出版情報: Chichester : J. Wiley & Sons, c2002  xiv, 201 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 2
Introduction / 1:
Scope and definitions / 1.1:
Nomenclature / 1.2:
Historical background / 1.3:
Introduction to catalysis by polyoxometalates / 1.4:
References
Properties of Polyoxometalates / 2:
Structures of polyoxometalates / 2.1:
General principles / 2.1.1:
The Keggin structure / 2.1.2:
The Wells-Dawson structure / 2.1.3:
The Anderson-Evans structure / 2.1.4:
The Dexter-Silverton structure / 2.1.5:
Crystal structure of heteropoly compounds / 2.2:
Thermal stability / 2.3:
Solubility / 2.4:
Formation and state in solution / 2.5:
Stability of polyoxometalates in solution / 2.5.1:
Polyoxometalates as ligands / 2.5.2:
Isotope exchange / 2.5.3:
Kinetics and mechanism of substitution in polyoxmetalates / 2.5.4:
Acid properties / 2.6:
Proton structure / 2.6.1:
Heteropoly acids in solutions / 2.6.2:
Acidity of solid heteropoly acids / 2.6.3:
Redox properties / 2.7:
Synthesis of Polyoxometalates / 3:
General methods of synthesis / 3.1:
Keggin polyoxometalates / 3.2:
12-Molybdosilicic acid, [alpha]-H[subscript 4 SiMo[subscript 12]O[subscript 40] / 3.2.1:
12-Tungstosilicic acid, [alpha]-H[subscript 4 SiW[subscript 12]O[subscript 40] / 3.2.2:
12-Tungstophosphoric acid, [alpha]-H[subscript 3 PW[subscript 12]O[subscript 40] / 3.2.3:
12-Molybdophosphoric acid, [alpha]-H[subscript 3 PMo[subscript 12]O[subscript 40] / 3.2.4:
12-Tungstogermanic acid, [alpha]-[H[subscript 4 GeW[subscript 12]O[subscript 40] / 3.2.5:
11-Molybdo-1-vanadophosphoric acid, H[subscript 4 PMo[subscript 11] VO[subscript 40] / 3.2.6:
10-Molybdo-2-vanadophosphoric acid, H[subscript 5 PMo[subscript 10]V[subscript 2]O[subscript 40] / 3.2.7:
9-Molybdo-3-vanadophosphoric acid, H[subscript 6 PMo[subscript 9] V[subscript 3]O[subscript 40] / 3.2.8:
Transition-metal-substituted tungstophosphates, {PW[subscript 11]MO[subscript 39]} / 3.2.9:
Wells-Dawson polyoxometalates / 3.3:
18-Tungstodiphosphoric acid, H[subscript 6 P[subscript 2]W[subscript 18]O[subscript 62] / 3.3.1:
Sandwich-type polyoxometalates / 3.4:
Na[subscript 12 WZn[subscript 3](H[subscript 2]O)[subscript 2](ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.1:
Na[subscript 12 WCo[subscript 3 superscript II](H[subscript 2]O)[subscript 2] (Co[superscript II]W[subscript 9]O[subscript 34])[subscript 2] / 3.4.2:
K[subscript 11 WZnRu[subscript 2 superscript III](OH)(H[subscript 2]O) (ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.3:
K[subscript 10 WZnRh[superscript III subscript 2](H[subscript 2]O)(ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.4:
Peroxo polyoxometalates / 3.5:
Venturello complex, {PO[subscript 4 WO(O[subscript 2])[subscript 2 subscript 4]}[superscript 3-] / 3.5.1:
Polyoxometalate catalysts / 3.6:
Solid acid catalysts / 3.6.1:
Homogeneous catalysts / 3.6.2:
Acid Catalysis by Heteropoly Compounds / 4:
General overview / 4.1:
The scope of applications / 4.1.1:
Mechanistic principles / 4.1.2:
Homogeneous acid catalysis / 4.2:
Acid-catalysed reactions / 4.2.1:
Acid-catalysed reactions in biphasic liquid-liquid systems / 4.3:
Biphasic reactions / 4.3.1:
Heterogeneous acid catalysts / 4.4:
Heteropoly acid catalysts / 4.4.1:
Heterogeneous catalysis in liquid-solid systems / 4.4.2:
Heterogeneous catalysis in gas-solid systems / 4.4.3:
Deactivation and regeneration of solid heteropoly acid catalysts / 4.5:
Polyoxometalates as Catalysts for Selective Oxidation / 5:
Liquid-phase oxidation / 5.1:
Oxidation with dioxygen / 5.1.1:
Oxidation with hydrogen peroxide / 5.1.2:
Oxidation with organic peroxides / 5.1.3:
Miscellaneous oxidations / 5.1.4:
Gas-phase oxidation / 5.2:
Oxidation catalysts / 5.2.1:
Reactions / 5.2.3:
Miscellaneous Catalytic Applications of Polyoxometalates / 6:
Hydrogenation, carbonylation and related reactions / 6.1:
Polyanion-stabilised clusters / 6.2:
Polyoxometalates as catalyst precursors / 6.3:
Catalysis by Polyoxometalates in Industry / 7:
Acid catalysis / 7.1:
Hydration of olefins / 7.1.1:
Synthesis of ethyl acetate from ethylene and acetic acid / 7.1.2:
Selective oxidation / 7.2:
Oxidation of methacrolein in methacrylic acid / 7.2.1:
Oxidation of ethylene to acetic acid / 7.2.2:
Other Applications of Polyoxometalates / 8:
Analytical chemistry / 8.1:
Elemental analysis / 8.1.1:
Analysis of biomaterials / 8.1.2:
Separation / 8.2:
Processing of radioactive waste / 8.2.1:
Sorption of gases / 8.2.2:
Corrosion-resistant coatings / 8.3:
Polyoxometalates as additives to inorganic and organic matrices / 8.4:
Additives in sol-gel matrices / 8.4.1:
Additives in polymer matrices / 8.4.2:
Membranes / 8.5:
Fuel cells / 8.5.1:
Selective electrodes / 8.5.2:
Gas sensors / 8.5.3:
Polyoxometalates in medicine: antiviral and antitumoral activity / 8.6:
Index
Series Preface
Preface to Volume 2
Introduction / 1:
7.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2006  xviii, 395 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
Introduction and Outlook / 1.1:
A New Era in Cell Biology / 1.1.1:
Manotechnology and its Perspectives for Fluorescence Imaging in Cell Biology / 1.1.2:
Fundamentals of Fluorescence / 1.2:
Basic Principles / 1.2.1:
A Few Types of Fluorescent Probes / 1.2.2:
Small Luminescent Units and Autofluorescence of Living Organisms / 1.2.2.1:
A few Organic Dyes and their Limitation in Live Cell Labeling / 1.2.2.2:
Green Fluorescent Protein and its Cousin Mutants / 1.2.2.3:
Quantum Dots / 1.2.2.4:
Toxicity Issues of Nanomaterials / 1.2.2.5:
Sources and Detectors / 1.2.3:
Light Sources / 1.2.3.1:
Detectors / 1.2.3.2:
Microscope Configurations / 1.3:
Wide-field Methods: Epi-, and Total Internal Reflection (TIR) / 1.3.1:
Epifluorescence Illumination / 1.3.1.1:
Total Internal Reflection (TIR) Illumination / 1.3.1.2:
Scanning Methods for Microscopy / 1.3.2:
Laser-scanning or Stage-scanning Confocal Microscopy / 1.3.2.1:
Near-field Scanning Optical Microscopy (NSOM) / 1.3.2.2:
Strategies for Image Acquisition / 1.4:
Intensity Imaging / 1.4.1:
Spectral Imaging / 1.4.2:
Lifetime and Time-gated Imaging / 1.4.3:
Other Imaging Modalities: Polarization and FRET Imaging / 1.4.4:
Qdots in Biology: A Few Selected Examples / 1.5:
Ultra-high Colocalization of Qdots for Genetic Mapping / 1.5.1:
Dynamics of Biomolecules in a Cellular Environment / 1.5.2:
Trafficking of Glycine Receptors in Neural Membranes of Live Cells / 1.5.2.1:
Dynamics of Labeled Nuclear Localization Sequences Inside Living Cells / 1.5.2.2:
In Vivo and Non-invasive Detection Using Qdot Reporters / 1.5.3:
Outlook: Is there a Role for Nanoscience in Cellular Biology and in Medicine? / 1.6:
Acknowledgments
References
Characterization of Nanoscale Systems in Biology using Scanning Probe Microscopy Techniques / Anthony W. Coleman ; Adina N. Lazar ; Cecile F. Rousseau ; Sebastien Cecillon ; Patrick Shahgaldian2:
Introduction / 2.1:
The Scanning Probe Microscopy Experiment / 2.2:
Scanning Tunneling Microscopy Imaging / 2.3:
Atomic Force Microscopy / 2.4:
Generalities / 2.4.1:
Tips and Cantilevers / 2.4.2:
Contact Mode AFM / 2.4.3:
Dynamic Modes / 2.4.4:
Non-contact Mode / 2.4.4.1:
Intermittent Contact Mode / 2.4.4.3:
Force Modulation Mode / 2.4.4.4:
Friction Force Mode or Lateral Force Mode / 2.4.5:
Force-Distance Analysis / 2.4.6:
Chemical Force Imaging / 2.4.7:
Dip-pen Lithography / 2.4.8:
Cantilever Array Sensors / 2.4.9:
Near-field Scanning Optical Microscopy / 2.5:
Artifacts / 2.6:
Artifacts Related to Tip Size and Geometry / 2.6.1:
Artifacts from Damaged Tips / 2.6.2:
Artifacts from Tip-Sample Interactions / 2.6.3:
Sample Artifacts / 2.6.4:
Using the Tools / 2.7:
DNA / 2.7.1:
Topographic Imaging of DNA / 2.7.1.1:
Imaging DNA Translocation / 2.7.1.2:
DNA Interactions and Stretching / 2.7.1.3:
Proteins / 2.7.2:
Topographic Imaging of Proteins / 2.7.2.1:
Dip-pen Nanolithography Patterning of Proteins / 2.7.2.2:
Protein-Protein and Protein-Ligand Interactions / 2.7.2.3:
Polysaccharides / 2.7.3:
Proteoglycan Topographic Imaging / 2.7.3.1:
Lipid Systems / 2.7.4:
Liposomes / 2.7.4.1:
Solid Lipid Nanoparticles (SLNs) / 2.7.4.2:
Supported Lipid Bilayers and Monolayers / 2.7.4.3:
SNOM Imaging / 2.7.5:
Viruses / 2.7.6:
Cells / 2.7.7:
Topographic Imaging / 2.7.7.1:
Interactions and Mechanical Properties / 2.7.7.2:
NSOM Imaging / 2.7.7.3:
Cantilever Arrays as Biosensors / 2.7.8:
Conclusion / 2.8:
Books on Scanning Probe Microsopies Reviews on Scanning Probe Microsopies in Biology / Appendix 1:
Reviews on Scanning Probe Microsopies in Biology / Appendix 2:
Quartz Crystal Microbalance Characterization of Nanostructure Assemblies in Biosensing / Aren E. Gerdon ; David W. Wright ; David E. Cliffel3:
Principles of QCM / 3.1:
QCM Wave Penetration Depth / 3.1.2:
QCM Sensor Specificity / 3.1.3:
Calculation of Equilibrium and Kinetic Constants / 3.1.4:
QCM Application to Life Sciences / 3.1.5:
Interface Between Biology and Nanomaterials / 3.2:
Antibodies / 3.2.1:
Nanoparticles / 3.2.2:
QCM Nanoparticle-based Chemical Sensors / 3.3:
QCM Nanoparticle-based Biosensors / 3.4:
QCM Nanoparticle-based Immunosensors / 3.5:
Traditional Immunoassays / 3.5.1:
Immunoassays using Nanotechnology / 3.5.2:
Antigen Mimic Design / 3.5.3:
Glutathione-protected Nanocluster / 3.5.3.2:
Hemagglutanin Mimic Nanocluster / 3.5.3.3:
Protective Antigen of B. anthracis Mimic Nanocluster / 3.5.3.4:
Conclusions and Future Directions / 3.6:
Symbols
NMR Characterization Techniques - Application to Nanoscaled Pharmaceutical Carriers / Christian Mayer4:
Structural Analysis of Nanoparticles / 4.1:
Phase Transitions of the Particle Matrix / 4.3:
Adsorption to the Particle Surface / 4.4:
Molecular Exchange through Nanocapsule Membranes / 4.5:
Particle Degradation and Release / 4.6:
Summary and Outlook / 4.7:
Characterization of Nano Features in Biopolymers using Small-angle X-ray Scattering, Electron Microscopy and Modeling / Angelika Krebs ; Bettina Bottcher5:
Small-angle X-ray Scattering / 5.1:
Scattering Technique / 5.2.1:
Scattering Phenomenon / 5.2.1.1:
Scattering Curve and Pair Distance Distribution Function / 5.2.1.2:
Determination of Scattering Parameters / 5.2.1.3:
Experimental Setup / 5.2.1.4:
Interpretation of Data / 5.2.2:
Direct Methods / 5.2.2.1:
Indirect Methods / 5.2.2.2:
Electron Microscopy / 5.3:
Image Formation / 5.3.1:
Interference of Electrons with Matter / 5.3.1.1:
Contrast Transfer Function / 5.3.1.2:
Sample Preparation / 5.3.2:
Vitrification of Biological Specimens / 5.3.2.1:
Two-dimensional Merging of Electron Microscopic Data / 5.3.3:
Cross Correlation Function / 5.3.3.1:
Identification of the Different Views / 5.3.3.2:
Merging of EM-data in Three Dimensions / 5.3.4:
Sinogram Correlation / 5.3.4.1:
Reconstruction of the Three-dimensional Model / 5.3.4.2:
Merging of Methods / 5.4:
Comparison of EM and SAXS Data / 5.4.1:
SAXS Modeling Approaches using EM Information / 5.4.2:
In Situ Characterization of Drug Nanoparticles by FTIR Spectroscopy / Michael Turk ; Ruth Signorell6:
Particle Generation Methods / 6.1:
Rapid Expansion of Supercritical Solutions (RESS) / 6.2.1:
Electro-Spraying / 6.2.2:
Particle Characterization Methods / 6.3:
In Situ Characterization with FTIR Spectroscopy / 6.3.1:
Characterization of the RESS Process / 6.3.1.1:
In Situ Characterization with 3-WEM / 6.3.2:
Characterization with SMPS and SEM / 6.3.3:
Determination of Refractive Index Data in the Mid-infrared Region / 6.4:
Examples / 6.5:
Phenanthrene Particles: Size, Shape, Optical Data / 6.5.1:
Sugar Nanoparticles / 6.5.2:
Drug Nanoparticles / 6.5.3:
Summary and Conclusion / 6.6:
Acknowledgment
Characterization of Nanoscaled Drug Delivery Systems by Electron Spin Resonance (ESR) / Karsten Mader7:
ESR Basics and Requirements / 7.1:
Information from ESR Spectroscopy and Imaging / 7.3:
Nitroxide Concentration / 7.3.1:
Micropolarity and Microviscosity / 7.3.2:
Monitoring of Microacidity / 7.3.3:
ESR Imaging / 7.3.4:
In Vivo ESR / 7.4:
X-ray Absorption and Emission Spectroscopy in Nanoscience and Lifesciences / Jinghua Guo7.5:
Soft X-ray Spectroscopy / 8.1:
Soft X-ray Absorption Edges / 8.2.1:
Soft X-ray Emission Spectroscopy / 8.2.2:
Soft X-ray Absorption Spectroscopy / 8.2.3:
Resonant Soft X-ray Emission Spectroscopy / 8.2.4:
Experimental Details / 8.2.5:
Chemical Sensitivity of Soft X-ray Spectroscopy / 8.3:
Electronic Structure and Geometrical Structure / 8.3.1:
Hydrogen Bonding Effect / 8.3.2:
Charge and Spin States of Transition Metals / 8.3.3:
Electronic Structure and Nanostructure / 8.4:
Wide Bandgap Nanostructured Semiconductors / 8.4.1:
Cu Nanoclusters / 8.4.2:
ZnO Nanocrystals / 8.4.3:
Electronic Structure and Molecular Structure / 8.5:
Hydrogen Bonding in Liquid Water / 8.5.1:
Molecular Structure in Liquid Alcohol and Water Mixture / 8.5.2:
Electronic Structure and Ion Solvations / 8.5.3:
Drugs in Water Solution / 8.5.4:
Electronic Structure of Bases in DNA Duplexes / 8.5.5:
Some New Advances and Challenges in Biological and Biomedical Materials Characterization / Filip Braet ; Lilian Soon ; Thomas F. Kelly ; David J. Larson ; Simon P. Ringer9:
Modern Atom Probe Tomography: Principles, Applications in Biomaterials and Potential Applications for Biology / 9.1:
The Need for an Ideal Microscope / 9.2.1:
Field Ion Microscopy and the Modern Atom Probe Instrument / 9.2.1.1:
Applications in Biomaterials / 9.2.1.2:
Applications and Challenges for Biological Science / 9.2.1.3:
Instrumentation / 9.3:
Live Cell Imaging / 9.3.2.1:
Summary / 9.3.3:
Cryo-electron Microscopy / 9.4:
Cryo-electron Microscopy Imaging / 9.4.1:
Conclusions / 9.4.3:
Dynamic Light Scattering Microscopy / Rhonda Dzakpasu ; Daniel Axelrod10:
Theory / 10.1:
Single Scattering Center / 10.2.1:
Multiple Scattering Centers / 10.2.2:
Temporal Autocorrelation of Intensity / 10.2.3:
Phase Fluctuation Factors / 10.2.4:
Number Fluctuation Factors / 10.2.5:
Characteristic Times and Distances / 10.2.6:
Spatial Autocorrelation of Intensity / 10.2.7:
Variance of Intensity Fluctuations: Mobile Fraction / 10.2.8:
Experimental Design / 10.3:
Optical Setup / 10.3.1:
Data Acquisition / 10.3.2:
Sample Preparation: Polystyrene Beads / 10.3.3:
Sample Preparation: Living Macrophages / 10.3.4:
Buffer Changes during Data Acquisition / 10.3.5:
Data Analysis / 10.4:
Temporal Intensity Autocorrelation Function / 10.4.1:
Spatial Intensity Autocorrelation Function / 10.4.2:
Mobile Fraction / 10.4.3:
Experimental Results / 10.5:
Polystyrene Beads: Temporal Phase Autocorrelation / 10.5.1:
Variance of Intensity Fluctuations on Beads: Phase Fluctuations / 10.5.2:
Polystyrene Beads: Number Fluctuations / 10.5.3:
Polystyrene Beads: Spatial Autocorrelation / 10.5.4:
Polystyrene Beads: Mobile Fractions / 10.5.5:
Living Macrophage Cells: Temporal Autocorrelation / 10.5.6:
Living Macrophage Cells: Mobile Fraction / 10.5.7:
Discussion / 10.6:
Polystyrene Beads / 10.6.1:
Macrophages / 10.6.2:
Improvements for DLSM / 10.6.3:
X-ray Scattering Techniques for Characterization of Nanosystems in Lifesciences / Cheng K. Saw11:
Brief Historical Background and Unique Properties / 11.1:
Scattering of X-rays / 11.3:
Crystallography / 11.4:
Scattering from a Powder Sample / 11.5:
Scattering by Atomic Aggregates / 11.6:
Crystallite Size and Paracrystallinity / 11.7:
Production of X-rays / 11.8:
Absorption of X-rays / 11.9:
Instrumentation: WAXS / 11.10:
Small Angle X-ray Scattering / 11.11:
Dilute Systems / 11.11.1:
Highly Correlating Systems / 11.11.2:
SAXS Instrumentation / 11.12:
Synchrotron Radiation / 11.13:
Concluding Remarks / 11.14:
Index
Preface
List of Contributors
Fluorescence Imaging in Biology using Nanoprobes / Daniele Gerion1:
8.

図書

図書
Clive D. Rodgers
出版情報: Singapore : World Scientific, 2008, c2000  xvi, 240 p. ; 26 cm
シリーズ名: Series on atmospheric, oceanic and planetary physics ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
The Beginnings / 1.1:
Atmospheric Remote Sounding Methods / 1.2:
Thermal emission nadir and limb sounders / 1.2.1:
Scattered solar radiation / 1.2.2:
Absorption of solar radiation / 1.2.3:
Active techniques / 1.2.4:
Simple Solutions to the Inverse Problem / 1.3:
Information Aspects / Chapter 2:
Formal Statement of the Problem / 2.1:
State and measurement vectors / 2.1.1:
The forward model / 2.1.2:
Weighting function matrix / 2.1.3:
Vector spaces / 2.1.4:
Linear Problems without Measurement Error / 2.2:
Subspaces of state space / 2.2.1:
Identifying the null space and the row space / 2.2.2:
Linear Problems with Measurement Error / 2.3:
Describing experimental error / 2.3.1:
The Bayesian approach to inverse problems / 2.3.2:
Bayes' theorem / 2.3.2.1:
Example: The Linear problem with Gaussian statistics / 2.3.2.2:
Degrees of Freedom / 2.4:
How many independent quantities can be measured? / 2.4.1:
Degrees of freedom for signal / 2.4.2:
Information Content of a Measurement / 2.5:
The Fisher information matrix / 2.5.1:
Shannon information content / 2.5.2:
Entropy of a probability density function / 2.5.2.1:
Entropy of a Gaussian distribution / 2.5.2.2:
Information content in the linear Gaussian case / 2.5.2.3:
The Standard Example: Information Content and Degrees of Freedom / 2.6:
Probability Density Functions and the Maximum Entropy Principle / 2.7:
Error Analysis and Characterisation / Chapter 3:
Characterisation / 3.1:
The retrieval method / 3.1.1:
The transfer function / 3.1.3:
Linearisation of the transfer function / 3.1.4:
Interpretation / 3.1.5:
Retrieval method parameters / 3.1.6:
Error Analysis / 3.2:
Smoothing error / 3.2.1:
Forward model parameter error / 3.2.2:
Forward model error / 3.2.3:
Retrieval noise / 3.2.4:
Random and systematic error / 3.2.5:
Representing covariances / 3.2.6:
Resolution / 3.3:
The Standard Example: Linear Gaussian Case / 3.4:
Averaging kernels / 3.4.1:
Error components / 3.4.2:
Modelling error / 3.4.3:
Optimal Linear Inverse Methods / 3.4.4:
The Maximum a Posteriori Solution / 4.1:
Several independent measurements / 4.1.1:
Independent components of the state vector / 4.1.2:
Minimum Variance Solutions / 4.2:
Best Estimate of a Function of the State Vector / 4.3:
Separately Minimising Error Components / 4.4:
Optimising Resolution / 4.5:
Optimal Methods for Non-linear Inverse Problems / Chapter 5:
Determination of the Degree of Nonlinearity / 5.1:
Formulation of the Inverse Problem / 5.2:
Newton and Gauss-Newton Methods / 5.3:
An Alternative Linearisation / 5.4:
Convergence / 5.5:
Expected convergence rate / 5.6.1:
A popular mistake / 5.6.2:
Testing for convergence / 5.6.3:
Testing for correct convergence / 5.6.4:
Recognising and dealing with slow convergence / 5.6.5:
Levenberg-Marquardt Method / 5.7:
Numerical Efficiency / 5.8:
Which formulation for the linear algebra? / 5.8.1:
The n-form / 5.8.1.1:
The m-form / 5.8.1.2:
Sequential updating / 5.8.1.3:
Computation of derivatives / 5.8.2:
Optimising representations / 5.8.3:
Approximations, Short Cuts and Ad-hoc Methods / Chapter 6:
The Constrained Exact Solution / 6.1:
Least Squares Solutions / 6.2:
The overconstrained case / 6.2.1:
The underconstrained case / 6.2.2:
Truncated Singular Vector Decomposition / 6.3:
Twomey-Tikhonov / 6.4:
Approximations for Optimal Methods / 6.5:
Approximate a priori and its covariance / 6.5.1:
Approximate measurement error covariance / 6.5.2:
Approximate weighting functions / 6.5.3:
Direct Multiple Regression / 6.6:
Linear Relaxation / 6.7:
Nonlinear Relaxation / 6.8:
Maximum Entropy / 6.9:
Onion Peeling / 6.10:
The Kalman Filter / Chapter 7:
The Basic Linear Filter / 7.1:
The Kalman Smoother / 7.2:
The Extended Filter / 7.3:
Characterisation and Error Analysis / 7.4:
Validation / 7.5:
Global Data Assimilation / Chapter 8:
Assimilation as a Inverse Problem / 8.1:
Methods for Data Assimilation / 8.2:
Successive correction methods / 8.2.1:
Optimal interpolation / 8.2.2:
Adjoint methods / 8.2.3:
Kalman filtering / 8.2.4:
Preparation of Indirect Measurements for Assimilation / 8.3:
Choice of profile representation / 8.3.1:
Linearised measurements / 8.3.2:
Systematic errors / 8.3.3:
Transformation of a characterised retrieval / 8.3.4:
Numerical Methods for Forward Models and Jacobians / Chapter 9:
The Equation of Radiative Transfer / 9.1:
The Radiative Transfer Integration / 9.2:
Derivatives of Forward Models: Analytic Jacobians / 9.3:
Ray Tracing / 9.4:
Choosing a coordinate system / 9.4.1:
Ray tracing in radial coordinates / 9.4.2:
Horizontally homogeneous case / 9.4.3:
The general case / 9.4.4:
Transmittance Modelling / 9.5:
Line-by-line modelling / 9.5.1:
Band transmittance / 9.5.2:
Inhomogeneous paths / 9.5.3:
Curtis--Godson approximation / 9.5.3.1:
Emissivity growth approximation / 9.5.3.2:
McMillin--Fleming method / 9.5.3.3:
Multiple absorbers / 9.5.3.4:
Construction and Use of Prior Constraints / Chapter 10:
Nature of a Priori / 10.1:
Effect of Prior Constraints on a Retrieval / 10.2:
Choice of Prior Constraints / 10.3:
Retrieval grid / 10.3.1:
Transformation between grids / 10.3.1.1:
Choice of grid for maximum likelihood retrieval / 10.3.1.2:
Choice of grid for maximum a priori retrieval / 10.3.1.3:
Ad hoc Soft constraints / 10.3.2:
Smoothness constraints / 10.3.2.1:
Markov process / 10.3.2.2:
Estimating a priori from real data / 10.3.3:
Estimating a priori from independent sources / 10.3.3.1:
Maximum entropy and the estimation of a priori / 10.3.3.2:
Validating and improving a priori with indirect measurements / 10.3.4:
The nearly linear case / 10.3.4.1:
The moderately non-linear case / 10.3.4.2:
Using Retrievals Which Contain a Priori / 10.4:
Taking averages of sets of retrievals / 10.4.1:
Removing a priori / 10.4.2:
Designing an Observing System / Chapter 11:
Design and Optimisation of Instruments / 11.1:
Forward model construction / 11.1.1:
Retrieval method and diagnostics / 11.1.2:
Optimisation / 11.1.3:
Specifying requirements for the accuracy of parameters / 11.1.4:
Operational Retrieval Design / 11.2:
State vector choice / 11.2.1:
Choice of vertical grid coordinate / 11.2.3:
Choice of parameters describing constitutents / 11.2.3.1:
A priori information / 11.2.4:
Retrieval method / 11.2.5:
Diagnostics / 11.2.6:
Testing and Validating an Observing System / Chapter 12:
The X[superscript 2] Test / 12.1:
Quantities to be Compared and Tested / 12.3:
Internal consistency / 12.3.1:
Does the retrieval agree with the measurement? / 12.3.2:
Consistency with the a priori / 12.3.3:
Measured signal and a priori / 12.3.3.1:
Retrieval and a priori / 12.3.3.2:
Comparison of the retrieved signal and the a priori / 12.3.3.3:
Intercomparison of Different Instruments / 12.4:
Basic requirements for intercomparison / 12.4.1:
Direct comparison of indirect measurements / 12.4.2:
Comparison of linear functions of measurements / 12.4.3:
Algebra of Matrices and Vectors / Appendix A:
Vector Spaces / A.1:
Eigenvectors and Eigenvalues / A.2:
Principal Axes of a Quadratic Form / A.3:
Singular Vector Decomposition / A.4:
Determinant and Trace / A.5:
Calculus with Matrices and Vectors / A.6:
Answers to Exercises / Appendix B:
Terminology and Notation / Appendix C:
Summary of Terminology / C.1:
List of Symbols Used / C.2:
Bibliography
Index
Preface
Introduction / Chapter 1:
The Beginnings / 1.1:
9.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
10.

図書

図書
Andrea S. Foulkes
出版情報: New York : Springer, c2009  xxiii, 252 p. ; 24 cm
シリーズ名: Use R! / series editors, Robert Gentleman, Kurt Hornik, Giovanni Parmigiani
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Tables
List of Figures
Acronyms
Genetic Association Studies / 1:
Overview of population-based investigations / 1.1:
Types of investigations / 1.1.1:
Genotype versus gene expression / 1.1.2:
Population-versus family-based investigations / 1.1.3:
Assocation versus population genetics / 1.1.4:
Data components and terminology / 1.2:
Genetic information / 1.2.1:
Traits / 1.2.2:
Covariates / 1.2.3:
Data examples / 1.3:
Complex disease association studies / 1.3.1:
HIV genotype association studies / 1.3.2:
Publicly available data used throughout the text / 1.3.3:
Problems
Elementary Statistical Principles / 2:
Background / 2.1:
Notation and basic probability concepts / 2.1.1:
Important epidemiological concepts / 2.1.2:
Measures and tests of association / 2.2:
Contingency table analysis for a binary trait / 2.2.1:
M-sample tests for a quantitative trait / 2.2.2:
Generalized linear model / 2.2.3:
Analytic challenges / 2.3:
Multiplicity and high dimensionality / 2.3.1:
Missing and unobservable data considerations / 2.3.2:
Race and ethnicity / 2.3.3:
Genetic models and models of association / 2.3.4:
Genetic Data Concepts and Tests / 3:
Linkage disequilibrium (LD) / 3.1:
Measures of LD: D' and r2 / 3.1.1:
LD blocks and SNP tagging / 3.1.2:
LD and population stratification / 3.1.3:
Hardy-Weinberg equilibrium (HWE) / 3.2:
Pearson's X2-test and Fisher's exact test / 3.2.1:
HWE and population substructure / 3.2.2:
Quality control and preprocessing / 3.3:
SNP chips / 3.3.1:
Genotyping errors / 3.3.2:
Identifying population substructure / 3.3.3:
Relatedness / 3.3.4:
Accounting for unobservable substructure / 3.3.5:
Multiple Comparison Procedures / 4:
Measures of error / 4.1:
Family-wise error rate / 4.1.1:
False discovery rate / 4.1.2:
Single-step and step-down adjustments / 4.2:
Bonferroni adjustment / 4.2.1:
Tukey and Scheffe tests / 4.2.2:
False discovery rate control / 4.2.3:
The q-value / 4.2.4:
Resampling-based methods / 4.3:
Free step-down resampling / 4.3.1:
Null unrestricted bootstrap / 4.3.2:
Alternative paradigms / 4.4:
Effective number of tests / 4.4.1:
Global tests / 4.4.2:
Methods for Unobservable Phase / 5:
Haplotype estimation / 5.1:
An expectation-maximization algorithm / 5.1.1:
Bayesian haplotype reconstruction / 5.1.2:
Estimating and testing for haplotype-trait association / 5.2:
Two-stage approaches / 5.2.1:
A fully likelihood-based approach / 5.2.2:
Supplemental notes
Supplemental R scripts
Classification and Regression Trees / 6:
Building a tree / 6.1:
Recursive partitioning / 6.1.1:
Splitting rules / 6.1.2:
Defining inputs / 6.1.3:
Optimal trees / 6.2:
Honest estimates / 6.2.1:
Cost-complexity pruning / 6.2.2:
Additional Topics in High-Dimensional Data Analysis / 7:
Random forests / 7.1:
Variable importance / 7.1.1:
Missing data methods / 7.1.2:
Logic regression / 7.1.3:
Multivariate adaptive regression splines / 7.3:
Bayesian variable selection / 7.4:
Further readings / 7.5:
Appendix R Basics
Getting started / A.1:
Types of data objects / A.2:
Importing data / A.3:
Managing data / A.4:
Installing packages / A.5:
Additional help / A.6:
References
Glossary of Terms
Glossary of Select R Packages
Subject Index
Index of R Functions and Packages
Preface
List of Tables
List of Figures
11.

図書

図書
Alfredo H-S. Ang, Wilson H. Tang
出版情報: New York : Wiley, c2007  xiii, 406 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Roles of Probability and Statistics in Engineering / Chapter 1:
Introduction / 1.1:
Uncertainty in Engineering / 1.2:
Uncertainty Associated with Randomness-The Aleatory Uncertainty / 1.2.1:
Uncertainty Associated with Imperfect Knowledge-The Epistemic Uncertainty / 1.2.2:
Design and Decision Making under Uncertainty / 1.3:
Planning and Design of Transportation Infrastructures / 1.3.1:
Design of Structures and Machines / 1.3.2:
Planning and Design of Hydrosystems / 1.3.3:
Design of Geotechnical Systems / 1.3.4:
Construction Planning and Management / 1.3.5:
Photogrammetric, Geodetic, and Surveying Measurements / 1.3.6:
Applications in Quality Control and Assurance / 1.3.7:
Concluding Summary / 1.4:
References
Fundamentals of Probability Models / Chapter 2:
Events and Probability / 2.1:
Characteristics of Problems Involving Probabilities / 2.1.1:
Estimating Probabilities / 2.1.2:
Elements of Set Theory-Tools for Defining Events / 2.2:
Important Definitions / 2.2.1:
Mathematical Operations of Sets / 2.2.2:
Mathematics of Probability / 2.3:
The Addition Rule / 2.3.1:
Conditional Probability / 2.3.2:
The Multiplication Rule / 2.3.3:
The Theorem of Total Probability / 2.3.4:
The Bayes' Theorem / 2.3.5:
Problems / 2.4:
Analytical Models of Random Phenomena / Chapter 3:
Random Variables and Probability Distribution / 3.1:
Random Events and Random Variables / 3.1.1:
Probability Distribution of a Random Variable / 3.1.2:
Main Descriptors of a Random Variable / 3.1.3:
Useful Probability Distributions / 3.2:
The Gaussian (or Normal) Distribution / 3.2.1:
The Lognormal Distribution / 3.2.2:
The Bernoulli Sequence and the Binomial Distribution / 3.2.3:
The Geometric Distribution / 3.2.4:
The Negative Binomial Distribution / 3.2.5:
The Poisson Process and the Poisson Distribution / 3.2.6:
The Exponential Distribution / 3.2.7:
The Gamma Distribution / 3.2.8:
The Hypergeometric Distribution / 3.2.9:
The Beta Distribution / 3.2.10:
Other Useful Distributions / 3.2.11:
Multiple Random Variables / 3.3:
Joint and Conditional Probability Distributions / 3.3.1:
Covariance and Correlation / 3.3.2:
Functions of Random Variables / 3.4:
Derived Probability Distributions / 4.1:
Function of a Single Random Variable / 4.2.1:
Function of Multiple Random Variables / 4.2.2:
Extreme Value Distributions / 4.2.3:
Moments of Functions of Random Variables / 4.3:
Mathematical Expectations of a Function / 4.3.1:
Mean and Variance of a General Function / 4.3.2:
Computer-Based Numerical and Simulation Methods in Probability / 4.4:
Numerical and Simulations Methods / 5.1:
Essentials of Monte Carlo Simulation / 5.2.1:
Numerical Examples / 5.2.2:
Problems Involving Aleatory and Epistemic Uncertainties / 5.2.3:
MCS Involving Correlated Random Variables / 5.2.4:
References and Softwares / 5.3:
Statistical Inferences from Observational Data / Chapter 6:
Role of Statistical Inference in Engineering / 6.1:
Statistical Estimation of Parameters / 6.2:
Random Sampling and Point Estimation / 6.2.1:
Sampling Distributions / 6.2.2:
Testing of Hypotheses / 6.3:
Hypothesis Test Procedure / 6.3.1:
Confidence Intervals / 6.4:
Confidence Interval of the Mean / 6.4.1:
Confidence Interval of the Proportion / 6.4.2:
Confidence Interval of the Variance / 6.4.3:
Measurement Theory / 6.5:
Determination of Probability Distribution Models / 6.6:
Probability Papers / 7.1:
Utility and Plotting Position / 7.2.1:
The Normal Probability Paper / 7.2.2:
The Lognormal Probability Paper / 7.2.3:
Construction of General Probability Papers / 7.2.4:
Testing Goodness-of-Fit of Distribution Models / 7.3:
The Chi-Square Test for Goodness-of-Fit / 7.3.1:
The Kolmogorov-Smirnov (K-S) Test for Goodness-of-Fit / 7.3.2:
The Anderson-Darling Test for Goodness-of-Fit / 7.3.3:
Invariance in the Asymptotic Forms of Extremal Distributions / 7.4:
Regression and Correlation Analyses / 7.5:
Fundamentals of Linear Regression Analysis / 8.1:
Regression with Constant Variance / 8.2.1:
Variance in Regression Analysis / 8.2.2:
Confidence Intervals in Regression / 8.2.3:
Correlation Analysis / 8.3:
Estimation of the Correlation Coefficient / 8.3.1:
Regression of Normal Variates / 8.3.2:
Linear Regression with Nonconstant Variance / 8.4:
Multiple Linear Regression / 8.5:
Nonlinear Regression / 8.6:
Applications of Regression Analysis in Engineering / 8.7:
The Bayesian Approach / 8.8:
Estimation of Parameters / 9.1:
Basic Concepts-The Discrete Case / 9.2:
The Continuous Case / 9.3:
General Formulation / 9.3.1:
A Special Application of the Bayesian Updating Process / 9.3.2:
Bayesian Concept in Sampling Theory / 9.4:
Sampling from Normal Populations / 9.4.1:
Error in Estimation / 9.4.3:
The Utility of Conjugate Distributions / 9.4.4:
Estimation of Two Parameters / 9.5:
Bayesian Regression and Correlation Analyses / 9.6:
Linear Regression / 9.6.1:
Updating the Regression Parameters / 9.6.2:
Elements of Quality Assurance and Acceptance Sampling / 9.6.3:
Appendices
Probability Tables / Appendix A:
Standard Normal Probabilities / Table A.1:
CDF of the Binomial Distribution / Table A.2:
Critical Values of t-Distribution at Confidence Level (1-[alpha]) = p / Table A.3:
Critical Values of the x[superscript 2] Distribution at probability Level [alpha] / Table A.4:
Critical Values of D[superscript alpha subscript n] at Significance Level [alpha] in the K-S Test / Table A.5:
Critical Values of the Anderson-Darling Goodness-of-Fit Test / Table A.6:
Combinatorial Formulas / Appendix B:
The Basic Relation / B.1:
The Binomial Coefficient / B.3:
The Multinomial Coefficient / B.4:
Stirling's Formula / B.5:
Derivation of the Poisson Distribution / Appendix C:
Index
Preface
Roles of Probability and Statistics in Engineering / Chapter 1:
Introduction / 1.1:
12.

図書

図書
Bernard Valeur
出版情報: Weinheim : Wiley-VCH, c2002  xiv, 387 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Today's Chemical Industry
Which Way is Up?
Prologue
Today's Challenge -Value Creation
Strategic Choices for the Chemical Industry in the New Millenium / 1:
Managing Commodity PortfoliosHow to Succeed in the Rapidly Maturing Specialty Chemicals Industry
Introduction
Chemical Companies and Biotechnology
The Impact of E-Commerce on the Chemical Industry / 1.1:
The Alchemy of Leveraged Buyouts
What is luminescence?
Revitalizing Innovation
Managing the Organizational Context / 1.2:
Creating an Entrepreneurial Procurement Organization
A brief history of fluorescence and phosphorescence
Achieving Excellence in Production
A Customer-centric Approach to Sales and Marketing / 1.3:
The Role of Mergers and Acquisitions
Fluorescence and other de-excitation processes of excited molecules
The Delicate Game of Post-merger Management
Cyclicality: Trying to Manage the Unmanageable / 1.4:
Index
Fluorescent probes
Molecular fluorescence as an analytical tool / 1.5:
Ultimate spatial and temporal resolution: femtoseconds, femtoliters, femtomoles and single-molecule detection / 1.6:
Bibliography / 1.7:
Absorption of UV-visible light / 2:
Types of electronic transitions in polyatomic molecules / 2.1:
Probability of transitions. The Beer-Lambert Law. Oscillator strength / 2.2:
Selection rules / 2.3:
The Franck-Condon principle / 2.4:
Characteristics of fluorescence emission / 2.5:
Radiative and non-radiative transitions between electronic states / 3.1:
Internal conversion / 3.1.1:
Fluorescence / 3.1.2:
Intersystem crossing and subsequent processes / 3.1.3:
Intersystem crossing / 3.1.3.1:
Phosphorescence versus non-radiative de-excitation / 3.1.3.2:
Delayed fluorescence / 3.1.3.3:
Triplet-triplet transitions / 3.1.3.4:
Lifetimes and quantum yields / 3.2:
Excited-state lifetimes / 3.2.1:
Quantum yields / 3.2.2:
Effect of temperature / 3.2.3:
Emission and excitation spectra / 3.3:
Steady-state fluorescence intensity / 3.3.1:
Emission spectra / 3.3.2:
Excitation spectra / 3.3.3:
Stokes shift / 3.3.4:
Effects of molecular structure on fluorescence / 3.4:
Extent of [pi]-electron system. Nature of the lowest-lying transition / 3.4.1:
Substituted aromatic hydrocarbons / 3.4.2:
Internal heavy atom effect / 3.4.2.1:
Electron-donating substituents: -OH, -OR, -NHR, -NH[subscript 2] / 3.4.2.2:
Electron-withdrawing substituents: carbonyl and nitro compounds / 3.4.2.3:
Sulfonates / 3.4.2.4:
Heterocyclic compounds / 3.4.3:
Compounds undergoing photoinduced intramolecular charge transfer (ICT) and internal rotation / 3.4.4:
Environmental factors affecting fluorescence / 3.5:
Homogeneous and inhomogeneous broadening. Red-edge effects / 3.5.1:
Solid matrices at low temperature / 3.5.2:
Fluorescence in supersonic jets / 3.5.3:
Effects of intermolecular photophysical processes on fluorescence emission / 3.6:
Overview of the intermolecular de-excitation processes of excited molecules leading to fluorescence quenching / 4.1:
Phenomenological approach / 4.2.1:
Dynamic quenching / 4.2.2:
Stern-Volmer kinetics / 4.2.2.1:
Transient effects / 4.2.2.2:
Static quenching / 4.2.3:
Sphere of effective quenching / 4.2.3.1:
Formation of a ground-state non-fluorescent complex / 4.2.3.2:
Simultaneous dynamic and static quenching / 4.2.4:
Quenching of heterogeneously emitting systems / 4.2.5:
Photoinduced electron transfer / 4.3:
Formation of excimers and exciplexes / 4.4:
Excimers / 4.4.1:
Exciplexes / 4.4.2:
Photoinduced proton transfer / 4.5:
General equations / 4.5.1:
Determination of the excited-state pK / 4.5.2:
Prediction by means of the Forster cycle / 4.5.2.1:
Steady-state measurements / 4.5.2.2:
Time-resolved experiments / 4.5.2.3:
pH dependence of absorption and emission spectra / 4.5.3:
Excitation energy transfer / 4.6:
Distinction between radiative and non-radiative transfer / 4.6.1:
Radiative energy transfer / 4.6.2:
Non-radiative energy transfer / 4.6.3:
Fluorescence polarization. Emission anisotropy / 4.7:
Characterization of the polarization state of fluorescence (polarization ratio, emission anisotropy) / 5.1:
Excitation by polarized light / 5.1.1:
Vertically polarized excitation / 5.1.1.1:
Horizontally polarized excitation / 5.1.1.2:
Excitation by natural light / 5.1.2:
Instantaneous and steady-state anisotropy / 5.2:
Instantaneous anisotropy / 5.2.1:
Steady-state anisotropy / 5.2.2:
Additivity law of anisotropy / 5.3:
Relation between emission anisotropy and angular distribution of the emission transition moments / 5.4:
Case of motionless molecules with random orientation / 5.5:
Parallel absorption and emission transition moments / 5.5.1:
Non-parallel absorption and emission transition moments / 5.5.2:
Effect of rotational Brownian motion / 5.6:
Free rotations / 5.6.1:
Hindered rotations / 5.6.2:
Applications / 5.7:
Principles of steady-state and time-resolved fluorometric techniques / 5.8:
Steady-state spectrofluorometry / 6.1:
Operating principles of a spectrofluorometer / 6.1.1:
Correction of excitation spectra / 6.1.2:
Correction of emission spectra / 6.1.3:
Measurement of fluorescence quantum yields / 6.1.4:
Problems in steady-state fluorescence measurements: inner filter effects and polarization effects / 6.1.5:
Measurement of steady-state emission anisotropy. Polarization spectra / 6.1.6:
Time-resolved fluorometry / 6.2:
General principles of pulse and phase-modulation fluorometries / 6.2.1:
Design of pulse fluorometers / 6.2.2:
Single-photon timing technique / 6.2.2.1:
Stroboscopic technique / 6.2.2.2:
Other techniques / 6.2.2.3:
Design of phase-modulation fluorometers / 6.2.3:
Phase fluorometers using a continuous light source and an electro-optic modulator / 6.2.3.1:
Phase fluorometers using the harmonic content of a pulsed laser / 6.2.3.2:
Problems with data collection by pulse and phase-modulation fluorometers / 6.2.4:
Dependence of the instrument response on wavelength. Color effect / 6.2.4.1:
Polarization effects / 6.2.4.2:
Effect of light scattering / 6.2.4.3:
Data analysis / 6.2.5:
Pulse fluorometry / 6.2.5.1:
Phase-modulation fluorometry / 6.2.5.2:
Judging the quality of the fit / 6.2.5.3:
Global analysis / 6.2.5.4:
Complex fluorescence decays. Lifetime distributions / 6.2.5.5:
Lifetime standards / 6.2.6:
Time-dependent anisotropy measurements / 6.2.7:
Time-resolved fluorescence spectra / 6.2.7.1:
Lifetime-based decomposition of spectra / 6.2.9:
Comparison between pulse and phase fluorometries / 6.2.10:
Appendix: Elimination of polarization effects in the measurement of fluorescence intensity and lifetime / 6.3:
Effect of polarity on fluorescence emission. Polarity probes / 6.4:
What is polarity? / 7.1:
Empirical scales of solvent polarity based on solvatochromic shifts / 7.2:
Single-parameter approach / 7.2.1:
Multi-parameter approach / 7.2.2:
Photoinduced charge transfer (PCT) and solvent relaxation / 7.3:
Theory of solvatochromic shifts / 7.4:
Examples of PCT fluorescent probes for polarity / 7.5:
Effects of specific interactions / 7.6:
Effects of hydrogen bonding on absorption and fluorescence spectra / 7.6.1:
Examples of the effects of specific interactions / 7.6.2:
Polarity-induced inversion of n-[pi] and [pi]-[pi] states / 7.6.3:
Polarity-induced changes in vibronic bands. The Py scale of polarity / 7.7:
Conclusion / 7.8:
Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes / 7.9:
What is viscosity? Significance at a microscopic level / 8.1:
Use of molecular rotors / 8.2:
Methods based on intermolecular quenching or intermolecular excimer formation / 8.3:
Methods based on intramolecular excimer formation / 8.4:
Fluorescence polarization method / 8.5:
Choice of probes / 8.5.1:
Homogeneous isotropic media / 8.5.2:
Ordered systems / 8.5.3:
Practical aspects / 8.5.4:
Concluding remarks / 8.6:
Resonance energy transfer and its applications / 8.7:
Determination of distances at a supramolecular level using RET / 9.1:
Single distance between donor and acceptor / 9.2.1:
Distributions of distances in donor-acceptor pairs / 9.2.2:
RET in ensembles of donors and acceptors / 9.3:
RET in three dimensions. Effect of viscosity / 9.3.1:
Effects of dimensionality on RET / 9.3.2:
Effects of restricted geometries on RET / 9.3.3:
RET between like molecules. Excitation energy migration in assemblies of chromophores / 9.4:
RET within a pair of like chromophores / 9.4.1:
RET in assemblies of like chromophores / 9.4.2:
Lack of energy transfer upon excitation at the red-edge of the absorption spectrum (Weber's red-edge effect) / 9.4.3:
Overview of qualitative and quantitative applications of RET / 9.5:
Fluorescent molecular sensors of ions and molecules / 9.6:
Fundamental aspects / 10.1:
pH sensing by means of fluorescent indicators / 10.2:
Principles / 10.2.1:
The main fluorescent pH indicators / 10.2.2:
Coumarins / 10.2.2.1:
Pyranine / 10.2.2.2:
Fluorescein and its derivatives / 10.2.2.3:
SNARF and SNAFL / 10.2.2.4:
PET (photoinduced electron transfer) pH indicators / 10.2.2.5:
Fluorescent molecular sensors of cations / 10.3:
General aspects / 10.3.1:
PET (photoinduced electron transfer) cation sensors / 10.3.2:
Crown-containing PET sensors / 10.3.2.1:
Cryptand-based PET sensors / 10.3.2.3:
Podand-based and chelating PET sensors / 10.3.2.4:
Calixarene-based PET sensors / 10.3.2.5:
PET sensors involving excimer formation / 10.3.2.6:
Examples of PET sensors involving energy transfer / 10.3.2.7:
Fluorescent PCT (photoinduced charge transfer) cation sensors / 10.3.3:
PCT sensors in which the bound cation interacts with an electron-donating group / 10.3.3.1:
PCT sensors in which the bound cation interacts with an electron-withdrawing group / 10.3.3.3:
Excimer-based cation sensors / 10.3.4:
Miscellaneous / 10.3.5:
Oxyquinoline-based cation sensors / 10.3.5.1:
Further calixarene-based fluorescent sensors / 10.3.5.2:
Fluorescent molecular sensors of anions / 10.3.6:
Anion sensors based on collisional quenching / 10.4.1:
Anion sensors containing an anion receptor / 10.4.2:
Fluorescent molecular sensors of neutral molecules and surfactants / 10.5:
Cyclodextrin-based fluorescent sensors / 10.5.1:
Boronic acid-based fluorescent sensors / 10.5.2:
Porphyrin-based fluorescent sensors / 10.5.3:
Towards fluorescence-based chemical sensing devices / 10.6:
Spectrophotometric and spectrofluorometric pH titrations / Appendix A.:
Determination of the stoichiometry and stability constant of metal complexes from spectrophotometric or spectrofluorometric titrations / Appendix B.:
Advanced techniques in fluorescence spectroscopy / 10.7:
Time-resolved fluorescence in the femtosecond time range: fluorescence up-conversion technique / 11.1:
Advanced fluorescence microscopy / 11.2:
Improvements in conventional fluorescence microscopy / 11.2.1:
Confocal fluorescence microscopy / 11.2.1.1:
Two-photon excitation fluorescence microscopy / 11.2.1.2:
Near-field scanning optical microscopy (NSOM) / 11.2.1.3:
Fluorescence lifetime imaging spectroscopy (FLIM) / 11.2.2:
Time-domain FLIM / 11.2.2.1:
Frequency-domain FLIM / 11.2.2.2:
Confocal FLIM (CFLIM) / 11.2.2.3:
Two-photon FLIM / 11.2.2.4:
Fluorescence correlation spectroscopy / 11.3:
Conceptual basis and instrumentation / 11.3.1:
Determination of translational diffusion coefficients / 11.3.2:
Chemical kinetic studies / 11.3.3:
Determination of rotational diffusion coefficients / 11.3.4:
Single-molecule fluorescence spectroscopy / 11.4:
General remarks / 11.4.1:
Single-molecule detection in flowing solutions / 11.4.2:
Single-molecule detection using advanced fluorescence microscopy techniques / 11.4.3:
Epilogue / 11.5:
Preface
Today's Chemical Industry
Which Way is Up?
13.

図書

図書
Aidong Zhang
出版情報: Hackensack, NJ : World Scientific, c2006  xv, 339 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
Applications of Microarray / 1.2:
Gene Expression Profiles in Different Tissues / 1.2.1:
Developmental Genetics / 1.2.2:
Gene Expression Patterns in Model Systems / 1.2.3:
Differential Gene Expression Patterns in Diseases / 1.2.4:
Gene Expression Patterns in Pathogens / 1.2.5:
Gene Expression in Response to Drug Treatments / 1.2.6:
Genotypic Analysis / 1.2.7:
Mutation Screening of Disease Genes / 1.2.8:
Framework of Microarray Data Analysis / 1.3:
Summary / 1.4:
Basic Concepts of Molecular Biology / 2:
Cells / 2.1:
Proteins / 2.3:
Nucleic Acids / 2.4:
DNA / 2.4.1:
RNA / 2.4.2:
Central Dogma of Molecular Biology / 2.5:
Genes and the Genetic Code / 2.5.1:
Transcription and Gene Expression / 2.5.2:
Translation and Protein Synthesis / 2.5.3:
Genotype and Phenotype / 2.6:
Overview of Microarray Experiments / 2.7:
Microarray Chip Manufacture / 3.1:
Deposition-Based Manufacture / 3.2.1:
In Situ Manufacture / 3.2.2:
The Affymetrix GeneChip / 3.2.2.1:
Steps of Microarray Experiments / 3.3:
Sample Preparation and Labeling / 3.3.1:
Hybridization / 3.3.2:
Image Scanning / 3.3.3:
Image Processing / 3.4:
Microarray Data Cleaning and Preprocessing / 3.5:
Data Transformation / 3.5.1:
Missing Value Estimation / 3.5.2:
Data Normalization / 3.6:
Global Normalization Approaches / 3.6.1:
Standardization / 3.6.1.1:
Iterative linear regression / 3.6.1.2:
Intensity-Dependent Normalization / 3.6.2:
LOWESS: Locally weighted linear regression / 3.6.2.1:
Distribution normalization / 3.6.2.2:
Analysis of Differentially-Expressed Genes / 3.7:
Basic Concepts in Statistics / 4.1:
Statistical Inference / 4.2.1:
Hypothesis Test / 4.2.2:
Fold Change Methods / 4.3:
k-fold Change / 4.3.1:
Unusual Ratios / 4.3.2:
Model-Based Methods / 4.3.3:
Parametric Tests / 4.4:
Paired t-Test / 4.4.1:
Unpaired t-Test / 4.4.2:
Variants of t-Test / 4.4.3:
Non-Parametric Tests / 4.5:
Classical Non-Parametric Statistics / 4.5.1:
Other Non-Parametric Statistics / 4.5.2:
Bootstrap Analysis / 4.5.3:
Multiple Testing / 4.6:
Family-Wise Error Rate / 4.6.1:
Sidak correction and Bonferroni correction / 4.6.1.1:
Holm's step-wise correction / 4.6.1.2:
False Discovery Rate / 4.6.2:
Permutation Correction / 4.6.3:
SAM: Significance Analysis of Microarrays / 4.6.4:
ANOVA: Analysis of Variance / 4.7:
One-Way ANOVA / 4.7.1:
Two-Way ANOVA / 4.7.2:
Gene-Based Analysis / 4.8:
Proximity Measurement for Gene Expression Data / 5.1:
Euclidean Distance / 5.2.1:
Correlation Coefficient / 5.2.2:
Pearson's correlation coefficient / 5.2.2.1:
Jackknife correlation / 5.2.2.2:
Spearman's rank-order correlation / 5.2.2.3:
Kullback-Leibler Divergence / 5.2.3:
Partition-Based Approaches / 5.3:
K-means and its Variations / 5.3.1:
SOM and its Extensions / 5.3.2:
Graph-Theoretical Approaches / 5.3.3:
HCS and CLICK / 5.3.3.1:
CAST: Cluster affinity search technique / 5.3.3.2:
Model-Based Clustering / 5.3.4:
Hierarchical Approaches / 5.4:
Agglomerative Algorithms / 5.4.1:
Divisive Algorithms / 5.4.2:
DAA: Deterministic annealing algorithm / 5.4.2.1:
SPC: Super-paramagnetic clustering / 5.4.2.2:
Density-Based Approaches / 5.5:
DBSCAN / 5.5.1:
OPTICS / 5.5.2:
DENCLUE / 5.5.3:
GPX: Gene Pattern eXplorer / 5.6:
The Attraction Tree / 5.6.1:
The distance measure / 5.6.1.1:
The density definition / 5.6.1.2:
The attraction tree / 5.6.1.3:
An example of attraction tree / 5.6.1.4:
Interactive Exploration of Coherent Patterns / 5.6.2:
Generating the index list / 5.6.2.1:
The coherent pattern index and its graph / 5.6.2.2:
Drilling down to subgroups / 5.6.2.3:
Experimental Results / 5.6.3:
Interactive exploration of Iyer's data and Spellman's data / 5.6.3.1:
Comparison with other algorithms / 5.6.3.2:
Efficiency and Scalability / 5.6.4:
Cluster Validation / 5.7:
Homogeneity and Separation / 5.7.1:
Agreement with Reference Partition / 5.7.2:
Reliability of Clusters / 5.7.3:
P-value of a cluster / 5.7.3.1:
Prediction strength / 5.7.3.2:
Sample-Based Analysis / 5.8:
Selection of Informative Genes / 6.1:
Supervised Approaches / 6.2.1:
Differentially expressed genes / 6.2.1.1:
Gene pairs / 6.2.1.2:
Virtual genes / 6.2.1.3:
Genetic algorithms / 6.2.1.4:
Unsupervised Approaches / 6.2.2:
PCA: Principal component analysis / 6.2.2.1:
Gene shaving / 6.2.2.2:
Class Prediction / 6.3:
Linear Discriminant Analysis / 6.3.1:
Instance-Based Classification / 6.3.2:
KNN: k-Nearest Neighbor / 6.3.2.1:
Weighted voting / 6.3.2.2:
Decision Trees / 6.3.3:
Support Vector Machines / 6.3.4:
Class Discovery / 6.4:
Problem statement / 6.4.1:
CLIFF: CLustering via Iterative Feature Filtering / 6.4.2:
The sample-partition process / 6.4.2.1:
The gene-filtering process / 6.4.2.2:
ESPD: Empirical Sample Pattern Detection / 6.4.3:
Measurements for phenotype structure detection / 6.4.3.1:
Algorithms / 6.4.3.2:
Experimental results / 6.4.3.3:
Classification Validation / 6.5:
Prediction Accuracy / 6.5.1:
Prediction Reliability / 6.5.2:
Pattern-Based Analysis / 6.6:
Mining Association Rules / 7.1:
Concepts of Association-Rule Mining / 7.2.1:
The Apriori Algorithm / 7.2.2:
The FP-Growth Algorithm / 7.2.3:
The CARPENTER Algorithm / 7.2.4:
Generating Association Rules in Microarray Data / 7.2.5:
Rule filtering / 7.2.5.1:
Rule grouping / 7.2.5.2:
Mining Pattern-Based Clusters in Microarray Data / 7.3:
Heuristic Approaches / 7.3.1:
Coupled two-way clustering (CTWC) / 7.3.1.1:
Plaid model / 7.3.1.2:
Biclustering and 5-Clusters / 7.3.1.3:
Deterministic Approaches / 7.3.2:
[delta]-pCluster / 7.3.2.1:
OP-Cluster / 7.3.2.2:
Mining Gene-Sample-Time Microarray Data / 7.4:
Three-dimensional Microarray Data / 7.4.1:
Coherent Gene Clusters / 7.4.2:
Problem description / 7.4.2.1:
Maximal coherent sample sets / 7.4.2.2:
The mining algorithms / 7.4.2.3:
Tri-Clusters / 7.4.2.4:
The tri-cluster model / 7.4.3.1:
Properties of tri-clusters / 7.4.3.2:
Mining tri-clusters / 7.4.3.3:
Visualization of Microarray Data / 7.5:
Single-Array Visualization / 8.1:
Box Plot / 8.2.1:
Histogram / 8.2.2:
Scatter Plot / 8.2.3:
Gene Pies / 8.2.4:
Multi-Array Visualization / 8.3:
Global Visualizations / 8.3.1:
Optimal Visualizations / 8.3.2:
Projection Visualization / 8.3.3:
VizStruct / 8.4:
Fourier Harmonic Projections / 8.4.1:
Discrete-time signal paradigm / 8.4.1.1:
The Fourier harmonic projection algorithm / 8.4.1.2:
Properties of FHPs / 8.4.2:
Basic properties / 8.4.2.1:
Advanced properties / 8.4.2.2:
Harmonic equivalency / 8.4.2.3:
Effects of harmonic twiddle power index / 8.4.2.4:
Enhancements of Fourier Harmonic Projections / 8.4.3:
Exploratory Visualization of Gene Profiling / 8.4.4:
Microarray data sets for visualization / 8.4.4.1:
Identification of informative genes / 8.4.4.2:
Classifier construction and evaluation / 8.4.4.3:
Dimension arrangement / 8.4.4.4:
Visualization of various data sets / 8.4.4.5:
Comparison of FFHP to Sammon's mapping / 8.4.4.6:
Confirmative Visualization of Gene Time-series / 8.4.5:
Data sets for visualization / 8.4.5.1:
The harmonic projection approach / 8.4.5.2:
Rat kidney data set / 8.4.5.3:
Yeast-A data set / 8.4.5.4:
Yeast-B data set / 8.4.5.5:
New Trends in Mining Gene Expression Microarray Data / 8.5:
Meta-Analysis of Microarray Data / 9.1:
Meta-Analysis of Differential Genes / 9.2.1:
Meta-Analysis of Co-Expressed Genes / 9.2.2:
Semi-Supervised Clustering / 9.3:
General Semi-Supervised Clustering Algorithms / 9.3.1:
A Seed-Generation Approach / 9.3.2:
Seed-generation methods / 9.3.2.1:
Pattern-selection rules / 9.3.2.2:
The framework for the seed-generation approach / 9.3.2.3:
Integration of Gene Expression Data with Other Data / 9.4:
A Probabilistic Model for Joint Mining / 9.4.1:
A Graph-Based Model for Joint Mining / 9.4.2:
Conclusion / 9.5:
Bibliography
Index
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
14.

図書

図書
Peter Bigler
出版情報: Weinheim : Wiley-VCH, c2000  xviii, 253 p. ; 25 cm.
シリーズ名: Spectroscopic techniques : an interactive course
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Scope and Audience / 1.1:
Organisation / 1.2:
Personal Qualifications / 1.3:
Content / 1.4:
Recommended Reading / 1.5:
Your Personal "PC-NMR Processing Station" / 2:
Technical Requirements / 2.1:
Software Tools / 2.3:
General / 2.3.1:
Installation of 1D WIN-NMR, 2D WIN-NMR and GETFILE / 2.3.2:
Starting GETFILE, 1D WIN-NMR and 2D WIN-NMR / 2.3.3:
Software- and Hardwareproblems / 2.4:
NMR Data / 2.5:
Samples / 2.5.1:
Experiments / 2.5.2:
Experimental Conditions / 2.5.3:
Directory Structure / 2.5.4:
Copying the NMR Data from the CD to your Hard Disk / 2.5.5:
Useful Options in the MS WINDOWS 95 Operating System / 2.5.6:
Data Formats / 2.6:
WINNMR Format / 2.6.1:
UXNMR/XWINNMR Format / 2.6.2:
DISNMR Format / 2.6.3:
NMR Data Formats of other Manufacturers: Varian, JEOL, GE / 2.6.4:
Other Formats: ASCII, JCAMP-DX / 2.6.5:
Data Import and Export / 2.7:
Network-Example / 2.7.1:
Transfer and Conversion of NMR Data stored on Remote Computers / 2.7.2:
UXNMR/XWINNMR-Format / 2.7.2.1:
DISNMR-Format / 2.7.2.2:
Decomposition of 2D Data Files / 2.7.3:
References / 2.8:
Modern Homo- and Heteronuclear 1D and 2D NMR Experiments: A Short Overview / 3:
The NMR Experiment / 3.1:
1D Experiments / 3.3:
[superscript 1]H Experiments / 3.3.1:
[superscript 1]H One Pulse Experiment / 3.3.1.1:
[superscript 1]H {[superscript 1]H} Selective Decoupling Experiment / 3.3.1.2:
[superscript 1]H {[superscript 1]H} Total Correlation Spectroscopy (TOCSY) Experiment / 3.3.1.3:
[superscript 1]H {[superscript 1]H} Nuclear Overhauser (NOE) Experiment / 3.3.1.4:
[superscript 1]H {[superscript 1]H} Nuclear Overhauser Experiment in the Rotating Frame (ROE) / 3.3.1.5:
[superscript 13]C Experiments / 3.3.2:
[superscript 13]C One-Pulse Experiment / 3.3.2.1:
[superscript 13]C DEPT Experiment / 3.3.2.2:
[superscript 13]C JMOD (APT) Experiment / 3.3.2.3:
[superscript 13]C T[subscript 1] Inversion-Recovery Experiment / 3.3.2.4:
2D Experiments / 3.4:
[superscript 1]H/[superscript 1]H Experiments / 3.4.1:
[superscript 1]H/[superscript 1]H COSY Experiment / 3.4.1.1:
[superscript 1]H/[superscript 1]H TOCSY Experiment / 3.4.1.2:
[superscript 1]H/[superscript 1]H NOESY and [superscript 1]H/[superscript 1]H ROESY Experiments / 3.4.1.3:
[superscript 1]H/[superscript 1]H J-Resolved Spectroscopy Experiment / 3.4.1.4:
[superscript 1]H/[superscript 13]C Experiments / 3.4.2:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript 1]J[subscript CH] / 3.4.2.1:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript n]J[subscript CH] / 3.4.2.2:
[superscript 1]H/[superscript 13]C Shift Correlation Spectroscopy via [superscript 1]J[subscript CH] and [superscript 1]H/[superscript 1]H TOCSY Transfer / 3.4.2.3:
How to Display and Plot 1D and 2D Spectra / 3.5:
Help Routines / 4.1:
Application Windows for 1D WIN-NMR and 2D WIN-NMR / 4.3:
File Handling / 4.4:
Display of 1D Spectra with 1D WIN-NMR / 4.5:
Buttons with 1D WIN-NMR [Spectrum] / 4.5.1:
Additional Display Options with 1D WIN-NMR / 4.5.2:
The Use of Scroll Bars, Keys and Function Keys with 1D WIN-NMR / 4.5.3:
Basic Processing Steps with 1D Spectra / 4.6:
Calibration / 4.6.1:
Peak Picking / 4.6.2:
Integration / 4.6.3:
Simple Spectral Analysis / 4.6.4:
Plotting 1D Spectra / 4.7:
Define Plot / 4.7.1:
Page Layout / 4.7.2:
Page Layout Dialog Box in Normal 1D Display Mode / 4.7.2.1:
Page Layout Dialog Box in the Dual and Multiple Display Mode / 4.7.2.2:
Preview / 4.7.3:
Printer Setup..., Print... / 4.7.4:
Copy / 4.7.5:
Metafile... / 4.7.6:
ACQ., PROC., PLOT and A3000-Parameters / 4.7.7:
Title... / 4.7.8:
Pulse Program..., AU Program... / 4.7.9:
History... / 4.7.10:
Data Base Parameters... / 4.7.11:
Display of 2D Spectra with 2D WIN-NMR / 4.8:
Buttons with 2D WIN-NMR / 4.8.1:
Setting Contour Levels / 4.8.2:
Additional Display Options with 2D WIN-NMR / 4.8.3:
Basic Processing Steps with 2D Spectra / 4.9:
Plotting 2D Spectra / 4.9.1:
Layout / 4.10.1:
Page Setup... / 4.10.2:
Print..., Print all, Printer Setup... / 4.10.3:
Copy, Copy all, Paste / 4.10.4:
2D Layout with 1D WIN-NMR / 4.10.5:
History / 4.10.6:
How to Process 1D and 2D NMR Data / 5:
Basic Processing / 5.1:
The Parameters TD and SI / 5.2.1:
Fourier Transformation of 1D Data / 5.2.2:
Phasing of 1D Spectra / 5.2.3:
Fourier Transformation of 2D Data / 5.2.4:
Phasing of 2D Spectra / 5.2.5:
Advanced Processing in the Time Domain / 5.3:
Multiplication with a Processing Function: s(t) . f(t) "Weighting", "Filtering", "Apodization" / 5.3.1:
Addition of a Processing Function: s(t) + f(t) / 5.3.3:
DC-Correction/Baseline-Correction / 5.3.3.1:
Zero Filling / 5.3.3.2:
Linear Prediction / 5.3.3.3:
FID Shift/Adjust Points/Zero Points / 5.3.4:
Adding two FIDs: s[subscript 1](t) + s[subscript 2](t) / 5.3.5:
Advanced Processing in the Frequency Domain / 5.4:
Baseline Correction / 5.4.1:
Additional 1D Specific Processing / 5.4.2:
Deconvolution / 5.4.2.1:
Smoothing / 5.4.2.2:
Derivative / 5.4.2.3:
Adjust Point / 5.4.2.4:
Inverse FT / 5.4.2.5:
Additional 2D Specific Processing / 5.4.3:
Symmetrization / 5.4.3.1:
Tilt / 5.4.3.2:
Remove Ridge / 5.4.3.3:
Remove Diagonal / 5.4.3.4:
Remove Peak / 5.4.3.5:
Shift/Wrap / 5.4.3.6:
Automatic Processing / 5.5:
Automatic Processing with Single Files / 5.5.1:
Automatic Processing with a Series of Files / 5.5.3:
Tables / 5.6:
Recommended 1D Processing Parameters / 5.6.1:
Recommended 2D Processing Parameters / 5.6.1.1:
[superscript 13]C/[superscript 1]H Experiments / 5.6.2.1:
NMR Data of an Unknown Oligosaccharide / 5.7:
Strategy to Solve Structural Problems / 6.1:
General Scheme for an NMR Analysis / 6.2.1:
Signal Assignments / 6.2.1.1:
NMR Parameter Evaluation / 6.2.1.2:
Processing the NMR Data of the Unknown Oligosaccharide / 6.3:
Reference Data / 6.3.1:
NMR Data Characteristic of Carbohydrates / 6.3.3:
Processing and Analysis of the NMR Data / 6.3.4:
The Structure of the Oligosaccharide / 6.4:
Glossary / 6.5:
Index
Introduction / 1:
Scope and Audience / 1.1:
Organisation / 1.2:
15.

図書

図書
[by] Tateo Yamanaka
出版情報: Tokyo : Springer, c2008  xii, 157 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
General Considerations / 1:
Chemoheterotrophic Bacteria / 1.1:
Chemolithoautotrophic Bacteria / 1.2:
Ammonia-Oxidizing Bacteria / 1.2.1:
Nitrite-Oxidizing Bacteria / 1.2.2:
Denitrifying Bacteria / 1.2.3:
Sulfate-Reducing Bacteria / 1.2.4:
Sulfur-Oxidizing Bacteria / 1.2.5:
Iron-Oxidizing and -Reducing Bacteria / 1.2.6:
Methanogens / 1.2.7:
Cytochromes / 2:
Hemes / 2.1:
Kinds of Cytochromes / 2.2:
Heme A-Containing Cytochromes / 2.2.1:
Heme B-Containing Cytochromes / 2.2.2:
Heme C-Containing Cytochromes / 2.2.3:
Heme D[subscript 1]-Containing Cytochromes / 2.2.4:
Heme O-Containing Cytochromes / 2.2.5:
Heme D-Containing Cytochromes / 2.2.6:
Nitrogen Circulation on Earth and Bacteria / 3:
Bacterial Nitrification / 3.1:
Oxidation of Ammonia / 3.1.1:
Oxidation of Hydroxylamine / 3.1.2:
Hydroxylamine Oxidoreductase / (a):
Cytochrome c-554 / (b):
Cytochrome c-552 / (c):
Cytochrome c Oxidase / (d):
Electron Transfer Pathway Coupled to the Oxidation of Ammonia / 3.1.3:
Dehalogenation of Chloroethylenes by Bacteria / 3.1.4:
Various Growth Features of Ammonia-Oxidizing Bacteria / 3.1.5:
Bacterial Oxidation of Nitrite / 3.1.6:
Nitrite Oxidoreductase
Cytochromes c-550(s) and c-550(m)
Reconstitution of Nitrite Oxidation System
Nitrification by Heterotrophic Bacteria / 3.1.7:
Applications of Nitrifying Bacteria / 3.2:
Bacterial Production of Gunpowder / 3.2.1:
Removal of Ammonia from Sewage / 3.2.2:
Interaction Between Ammonia-Oxidizing and Nitrite-Oxidizing Bacteria / 3.3:
Was Earth Previously Polluted by Nitrite? / 3.3.1:
An Agricultural Incident Caused by Incomplete Nitrification / 3.3.2:
Herbicides and Nitrification / 3.3.3:
Reduction of Nitrate and Nitrogen Gas / 3.4:
Bacteria That Reduce Nitrate to Nitrogen Gas / 3.4.1:
Nitric Oxide Is also Produced in Human Tissues / 3.4.2:
Bacteria Reducing Nitrogen Gas to Ammonia / 3.4.3:
Rhizobia
Azotobacter
Cyanobacteria
Sulfur Circulation on Earth and Bacteria / 4:
Bacteria Forming Hydrogen Sulfide / 4.1:
Bacterial Reduction Mechanisms of Sulfate / 4.1.1:
Components Participating in Bacterial Reduction of Sulfate / 4.1.2:
Hydrogenase
Adenylylsulfate Reductase
Sulfite Reductase
Siroheme / (e):
Sulfate-Reducing Bacteria and Molecular Oxygen / 4.1.3:
Sulfur Respiration / 4.1.4:
Autumnal Dying of Rice Plants / 4.1.5:
Checking How Old the Origin of Life Is / 4.1.6:
Bacterial Oxidation Mechanisms of Sulfur Compounds / 4.2:
Oxidation of Sulfide and Elemental Sulfur
Oxidation of Thiosulfate
Oxidation of Sulfite
Cytochrome c
Oxidation Systems of Sulfite and Thiosulfate / (f):
Sulfur-Oxidizing Bacteria Support Animals in the Dark on the Deep-Sea Bottom / 4.2.2:
Bacterial Corrosion of Concrete / 4.2.3:
Oxidation and Reduction of Iron by Bacteria / 5:
Bacteria That Oxidize or Reduce Iron / 5.1:
Mechanisms in Bacterial Oxidation of Iron / 5.1.1:
Fe(II)-Cytochrome c Oxidoreductase
Cytochromes c
Rusticyanin
Electron Transfer System Coupled to Oxidation of Ferrous Ion
Oxidation of Sulfur Compounds by Iron-Oxidizing Bacteria / 5.1.2:
Various Growth Aspects of Acidothiobacillus Ferrooxidans / 5.1.3:
Iron-Oxidizing Bacteria Requiring No Oxygen / 5.1.4:
Bacterial Reduction of Ferric Compounds / 5.1.5:
Bacteria Containing Magnetism / 5.1.6:
Applications of Iron-Oxidizing Bacteria / 5.2:
Bacterial Leaching / 5.2.1:
Etching of Copper Plate / 5.2.2:
Concentration of Gold from Pyrite Containing a Trace of Gold / 5.2.3:
Biohydrometallurgy / 5.2.4:
Cleaning of Mine Sewage / 5.2.5:
Upheaval of House Foundations: Damage Caused by Bacteria / 5.3:
Carbon Circulation on Earth and Microorganisms / 6:
Mechanisms of Formation of Organic Compounds from Carbon Dioxide / 6.1:
Calvin-Benson Cycle (Reductive Pentose Phosphate Cycle) / 6.1.1:
Hatch-Slack Pathway / 6.1.2:
Carbon Dioxide-Fixing Pathways Other than the Calvin-Benson Cycle in the Lithoautotrophs / 6.1.3:
Mechanism of Lithoautotrophic Methane Formation: Respiration but Not Fermentation / 6.2:
Formation of Methane from Acetate / 6.2.2:
Methanogens and Cytochromes / 6.2.3:
Methanogens and the Environment / 6.2.4:
Bacteria Utilizing Carbon Monoxide / 6.3:
Organisms Evolutionarily Closest to the Origin of Life / 7:
Archaea and Their Energy-Acquiring Reactions / 7.1:
Biological Evolution at Earlier Stages / 7.2:
References
Index
Preface
Abbreviations
General Considerations / 1:
16.

図書

図書
K. C. Patil ... [et al.]
出版情報: New Jersey : World Scientific, c2008  xvi, 345 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
General / 1.1:
Preparative Methods / 1.2:
Scope of the Book / 1.3:
Combustible Solid Precursors to Nanocrystalline Oxide Materials / 2:
Combustible Metal Hydrazine and Metal Hydrazine Carboxylate Complexes / 2.1:
Metal Hydrazine Carboxylates: Precursors to Simple Metal Oxides / Part I:
Preparation of Metal Formate, Acetate, Oxalate, and Hydrazine Carboxylates / 2.3:
Thermal Analysis and Combustion of Metal Hydrazine Carboxylates / 2.3.1:
Single Source Precursors to Mixed Metal Oxides / Part II:
Mixed Metal Oxides / 2.4:
Mixed Metal Acetate and Oxalate Hydrazinates: Precursors to Cobaltites / 2.4.1:
Mixed Metal Oxalate Hydrazinates: Precursors to Spinel Ferrites / 2.4.2:
Mixed Metal Oxalate Hydrates: Precursors to Metal Titanates / 2.4.3:
Mixed Metal Hydrazinium Hydrazine Carboxylates / 2.5:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Nano-Cobaltites and Ferrites / 2.5.1:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Mixed Ferrites / 2.5.2:
Mixed Metal Hydrazinium Hydrazine Carboxylates: Precursors to Manganites / 2.5.3:
Concluding Remarks / 2.6:
Solution Combustion Synthesis of Oxide Materials / 3:
Solution Combustion Synthesis (SCS) / 3.1:
Synthesis of Alumina / 3.2.1:
Mechanism of Aluminum Nitrate-Urea Combustion Reaction / 3.2.2:
Thermodynamic Calculation / 3.2.3:
Role of Fuels / 3.3:
A Recipe for the Synthesis of Various Classes of Oxides / 3.4:
Recipe for Nanomaterials / 3.4.1:
Salient Features of Solution Combustion Method / 3.5:
Alumina and Related Oxide Materials / 4:
[alpha]-Alumina / 4.1:
Metal Aluminates (MAl[subscript 2]O[subscript 4]) / 4.4:
Rare Earth Orthoaluminates (LnAlO[subscript 3]) / 4.5:
Garnets / 4.6:
Aluminum Borate / 4.7:
Tialite ([beta]-Al[subscript 2]TiO[subscript 5]) / 4.8:
Aluminum Phosphate / 4.9:
Alumina Composites / 4.10:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Mullite / 4.10.1:
Al[subscript 2]O[subscript 3]-SiO[subscript 2] System: Cordierite / 4.10.2:
Al[subscript 2]O[subscript 3]-Si[subscript 3]N[subscript 4] System: SiAlON / 4.10.3:
Alumina Nanocomposites / 4.11:
Nanocatalysts, Dispersion of Nano-metals (Ag, Au, Pd, and Pt) in Al[subscript 2]O[subscript 3] / 4.11.1:
Nanopigments / 4.12:
Cobalt-Based Blue Alumina and Aluminates / 4.12.1:
Chromium-Doped Pink Alumina (Cr[superscript 3+]/Al[subscript 2]O[subscript 3]): Ruby / 4.12.2:
Chromium-Doped Aluminates and Orthoaluminates (Cr[superscript 3+]/MAl[subscript 2]O[subscript 4](M = Mg & Zn)) and LaAlO[subscript 3]) / 4.12.3:
Nanophosphors / 4.13:
Phosphor Materials (Luminescence in Aluminum Oxide Hosts) / 4.13.1:
Nano-Ceria and Metal-Ion-Substituted Ceria / 4.14:
Synthesis and Properties of Nano-Ceria / 5.1:
Synthesis of Metal-Ion-Substituted Ceria / 5.3:
Characterization of Metal-Ion-Substituted Ceria / 5.4:
Oxygen Storage Materials / 5.5:
Metal-Ion-Substituted Ceria as Nanocatalysts / 5.6:
Ce[subscript 1-x]Pd[subscript x]O[subscript 2-delta] as a Three-Way Catalyst / 5.6.1:
Ce[subscript 1-x]Pt[subscript x]O[subscript 2-delta] / 5.6.2:
Ce[subscript 1-x]Rh[subscript x]O[subscript 2-delta] / 5.6.3:
Bimetal Ionic Catalysts (Ce[subscript 1-x]Pt[subscript x/2]O[subscript 2-delta]) / 5.6.4:
Nanocrystalline Fe[subscript 2]O[subscript 3] and Ferrites / 5.7:
Magnetic Materials / 6.1:
[gamma]-Fe[subscript 2]O[subscript 3] / 6.2:
Spinel Ferrites (MFe[subscript 2]O[subscript 4]) / 6.3:
Mixed Metal Ferrites / 6.4:
Li-Zn Ferrites / 6.4.1:
Mg-Zn Ferrites / 6.4.2:
Ni-Zn Ferrites / 6.4.3:
Rare Earth Orthoferrites / 6.5:
Garnets (Ln[subscript 3]Fe[subscript 5]O[subscript 12]) / 6.6:
Barium and Strontium Hexaferrites / 6.7:
Nano-Titania and Titanates / 6.8:
Nano-TiO[subscript 2] (Anatase) / 7.1:
Synthesis and Properties of Nano-TiO[subscript 2] (Anatase) / 7.2.1:
Photocatalytic Properties of Nano-TiO[subscript 2] / 7.3:
Metal-Ion-Substituted TiO[subscript 2] / 7.4:
Synthesis and Photocatalytic Properties of Ti[subscript 1-x]M[subscript x]O[subscript 2-delta] (M = Ag, Ce, Cu, Fe, V, W, and Zr) / 7.4.1:
Synthesis and Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.2:
Catalytic Properties of Ti[subscript 1-x]Pd[subscript x]O[subscript 2-delta] / 7.4.3:
Titanates for Nuclear Waste Immobilization / 7.5:
Sintering and Microstructure Studies / 7.5.1:
Zirconia and Related Oxide Materials / 7.6:
Zirconia / 8.1:
Preparation and Properties of ZrO[subscript 2] / 8.2.1:
Stabilized Zirconia / 8.3:
Magnesia-Stabilized Zirconia / 8.3.1:
Calcia-Stabilized Zirconia / 8.3.2:
Yttria-Stabilized Zirconia (YSZ) / 8.3.3:
Nickel in Yttria-Stabilized Zirconia (Ni-YSZ) / 8.3.4:
Nano-Zirconia Pigments / 8.4:
ZrO[subscript 2]-Al[subscript 2]O[subscript 3] System: ZTA / 8.5:
ZrO[subscript 2]-CeO[subscript 2] System / 8.6:
ZrO[subscript 2]-TiO[subscript 2] System (ZrTiO[subscript 4] and Zr[subscript 5]Ti[subscript 7]O[subscript 24]) / 8.7:
ZrO[subscript 2]-Ln[subscript 2]O[subscript 3] System: Pyrochlores / 8.8:
NASICONs / 8.9:
MZr[subscript 2]P[subscript 3]O[subscript 12](M = Na, K, 1/2 Ca, and 1/4 Zr) and NbZrP[subscript 3]O[subscript 12] / 8.9.1:
NASICON (Na Superionic Conductor) Materials (Na[subscript 1+x]Zr[subscript 2]P[subscript 3-x]Si[subscript x]O[subscript 12]) / 8.9.2:
Perovskite Oxide Materials / 8.10:
Dielectric Materials / 9.1:
MTiO[subscript 3], MZrO[subscript 3] (M = Ca, Sr, and Ba) / 9.2.1:
Lead-Based Dielectric Materials (PbTiO[subscript 3], PbZrO[subscript 3], PZT, and PLZT) / 9.2.2:
Relaxor Materials (PFN, PMN, PNN, and PZN) / 9.3:
Microwave Resonator Materials / 9.4:
Preparation and Properties of LnMO[subscript 3] (M = Cr, Mn, Fe, Co, and Ni) / 9.5:
Preparation and Properties of La[subscript 1-x]Sr[subscript x]MO[subscript 3] (M = Mn and Fe) / 9.6:
Nanocrystalline Oxide Materials for Special Applications / 9.7:
Synthesis and Properties of Simple Oxides / 10.1:
Metal Silicates / 10.2:
Ceramic Pigments / 10.3:
Borate Pigments / 10.3.1:
Metal Chromite Pigments / 10.3.2:
Silicate Pigments / 10.3.3:
Ceria-Based Pigment-Ce[subscript 1-x]Pr[subscript x]O[subscript 2-delta] / 10.3.4:
Eu[superscript 3+]-Ion-Doped Red Phosphors / 10.4:
Metal Vanadates / 10.5:
Rare Earth Metal Oxides (La[subscript 2]MO[subscript 4]) / 10.6:
Appendix A / 10.7:
Oxidizers (Metal Nitrates) / A.1:
Preparation of Titanyl Nitrate (TiO(NO[subscript 3])[subscript 2]) / A.1.1:
Fuels / A.2:
Carbohydrazide (CH), CH[subscript 6]N[subscript 4]O / A.2.1:
Oxalyl Dihydrazide (ODH), C[subscript 2]H[subscript 6]N[subscript 4]O[subscript 2] / A.2.2:
Tetraformal Trisazine (TFTA), C[subscript 4]H[subscript 16]N[subscript 6]O[subscript 2] / A.2.3:
N, N'-Diformyl Hydrazine (DFH), C[subscript 2]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.4:
Maleic Hydrazide (MH), C[subscript 4]H[subscript 4]N[subscript 2]O[subscript 2] / A.2.5:
Malonic Acid Dihydrazide (MDH), C[subscript 3]H[subscript 8]N[subscript 4]O[subscript 2] / A.2.6:
3-Methyl Pyrazole 5-One (3MP5O), C[subscript 4]H[subscript 6]N[subscript 2]O / A.2.7:
Useful Suggestions / A.3:
Index
Foreword
Preface
Introduction / 1:
17.

図書

図書
edited by Bernd Plietker
出版情報: Weinheim : Wiley-VCH, c2008  xv, 279 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
Introduction / 1.1:
General Aspects of Iron Complex Chemistry / 1.2:
Electronic Configuration, Oxidation States, Structures / 1.2.1:
Fundamental Reactions / 1.2.2:
Organoiron Complexes and Their Applications / 1.3:
Binary Carbonyl-Iron Complexes / 1.3.1:
Alkene-Iron Complexes / 1.3.2:
Allyl- and Trimethylenemethane-Iron Complexes / 1.3.3:
Acyl- and Carbene-Iron Complexes / 1.3.4:
Diene-Iron Complexes / 1.3.5:
Ferrocenes / 1.3.6:
Arene-Iron Complexes / 1.3.7:
Catalysis Using Iron Complexes / 1.4:
Iron Complexes as Substrates and/or Products in Catalytic Reactions / 1.4.1:
Iron Complexes as Ligands for Other Transition Metal Catalysts / 1.4.2:
Iron Complexes as Catalytically Active Species / 1.4.3:
References
Iron Catalysis in Biological and Biomimetic Reactions / 2:
Non-heme Iron Catalysts in Biological and Biomimetic Transformations / Jens Muller2.1:
Introduction: Iron in Biological Processes / 2.1.1:
Non-heme Iron Proteins / 2.1.2:
Mononuclear Iron Sites / 2.1.2.1:
Dinuclear Iron Sites / 2.1.2.2:
Summary / 2.1.3:
Organic Reactions Catalyzed by Heme Proteins / Martin Broring2.2:
Classification and General Reactivity Schemes of Heme Proteins Used in Organic Synthesis / 2.2.1:
Organic Reactions Catalyzed by Cytochromes P450 / 2.2.2:
Organic Reactions Catalyzed by Heme Peroxidases / 2.2.3:
Dehydrogenations ("Peroxidase Reactivity") / 2.2.3.1:
Sulfoxidations ("Peroxygenase Reactivity") / 2.2.3.2:
Peroxide Disproportionation ("Catalase Reactivity") / 2.2.3.3:
Halogenation ("Haloperoxidase Reactivity") / 2.2.3.4:
Epoxidations ("Monoxygenase Activity") / 2.2.3.5:
Iron-catalyzed Oxidation Reactions / 3:
Oxidations of C-H and C=C Bonds / Agathe Christine Mayer ; Carsten Bolm3.1:
Gif Chemistry / 3.1.1:
Alkene Epoxidation / 3.1.2:
Alkene Dihydroxylation / 3.1.3:
The Kharasch Reaction and Related Reactions / 3.1.4:
Aziridination and Diamination / 3.1.5:
Oxidative Allylic Oxygenation and Amination / Sabine Laschat ; Volker Rabe ; Angelika Baro3.2:
Iron-catalyzed Allylic Oxidations / 3.2.1:
Simple Iron Salts / 3.2.2.1:
Fe(III) Complexes with Bidentate Ligands / 3.2.2.2:
Fe[superscript 3+]/Fe[superscript 2+] Porphyrin and Phthalocyanine Complexes / 3.2.2.3:
Iron(III) Salen Complexes / 3.2.2.4:
Non-heme Iron Complexes with Tetra- and Pentadentate Ligands / 3.2.2.5:
Oxidative Allylic Aminations / 3.2.3:
Conclusion / 3.2.4:
Oxidation of Heteroatoms (N and S) / Olga Garcia Mancheno3.3:
Oxidation of Nitrogen Compounds / 3.3.1:
Oxidation of Hydroxylamines to Nitroso Compounds / 3.3.1.1:
Oxidation of Arylamines / 3.3.1.2:
Other N-Oxidations / 3.3.1.3:
Oxidation of Sulfur Compounds / 3.3.2:
Oxidation of Thiols to Disulfides / 3.3.2.1:
Oxidation of Sulfides / 3.3.2.2:
Oxidative Imination of Sulfur Compounds / 3.3.2.3:
Reduction of Unsaturated Compounds with Homogeneous Iron Catalysts / Stephan Enthaler ; Kathrin Junge ; Matthias Beller4:
Hydrogenation of Carbonyl Compounds / 4.1:
Hydrogenation of Carbon-Carbon Double Bonds / 4.3:
Hydrogenation of Imines and Similar Compounds / 4.4:
Catalytic Hydrosilylations / 4.5:
Iron-catalyzed Cross-coupling Reactions / Andreas Leitner4.6:
Cross-coupling Reactions of Alkenyl Electrophiles / 5.1:
Cross-coupling Reactions of Aryl Electrophiles / 5.3:
Cross-coupling Reactions of Alkyl Electrophiles / 5.4:
Cross-coupling Reactions of Acyl Electrophiles / 5.5:
Iron-catalyzed Carbometallation Reactions / 5.6:
Iron-catalyzed Aromatic Substitutions / Jette Kischel ; Kristin Mertins ; Irina Jovel ; Alexander Zapf5.7:
General Aspects / 6.1:
Electrophilic Aromatic Substitutions / 6.2:
Halogenation Reactions / 6.2.1:
Nitration Reactions / 6.2.2:
Sulfonylation Reactions / 6.2.3:
Friedel-Crafts Acylations / 6.2.4:
Friedel-Crafts Alkylations / 6.2.5:
Alkylation with Alcohols, Ethers and Esters / 6.2.5.1:
Alkylation with Alkenes / 6.2.5.2:
Nucleophilic Aromatic Substitutions / 6.3:
Iron-catalyzed Substitution Reactions / Bernd Plietker7:
Iron-catalyzed Nucleophilic Substitutions / 7.1:
Nucleophilic Substitutions of Non-activated C-X Bonds / 7.2.1:
Nucleophilic Substitutions Using Lewis Acidic Fe Catalysts / 7.2.1.1:
Substitutions Catalyzed by Ferrate Complexes / 7.2.1.3:
Nucleophilic Substitution of Allylic and Propargylic C-X Bonds / 7.2.2:
Reactions Catalyzed by Lewis Acidic Fe Salts / 7.2.2.1:
Nucleophilic Substitutions Involving Ferrates / 7.2.2.2:
Addition and Conjugate Addition Reactions to Carbonyl Compounds / Jens Christoffers ; Herbert Frey ; Anna Rosiak7.3:
Additions to Aldehydes and Ketones / 8.1:
Oxygen Nucleophiles / 8.2.1:
Carbon Nucleophiles / 8.2.2:
Additions to Imines and Iminium Ions / 8.3:
Additions to Carboxylic Acids and Their Derivatives / 8.4:
Conjugate Addition to [alpha],[beta]-Unsaturated Carbonyl Compounds / 8.4.1:
Michael Reactions / 8.5.1:
Vinylogous Michael Reactions / 8.5.1.2:
Asymmetric Michael Reactions / 8.5.1.3:
Michael Reactions in Ionic Liquids and Heterogeneous Catalysis / 8.5.1.4:
Nitrogen Nucleophiles / 8.5.2:
Synthesis of Heterocycles / 8.6:
Pyridine and Quinoline Derivatives / 8.6.1:
Pyrimidine and Pyrazine Derivatives / 8.6.2:
Benzo- and Dibenzopyrans / 8.6.3:
Iron-catalyzed Cycloadditions and Ring Expansion Reactions / Gerhard Hilt ; Judith Janikowski9:
Cycloisomerization and Alder-Ene Reaction / 9.1:
[2+1]-Cycloadditions / 9.3:
Iron-catalyzed Aziridine Formation / 9.3.1:
Iron-catalyzed Epoxide Formation / 9.3.2:
Iron-catalyzed Cyclopropane Formation / 9.3.3:
[2+2]-Cycloaddition / 9.4:
[4+1]-Cycloadditions / 9.5:
[4+2]-Cycloadditions / 9.6:
Diels-Alder Reactions with Normal Electron Demand / 9.6.1:
Diels-Alder Reactions with Neutral Electron Demand / 9.6.2:
Diels-Alder Reactions with Inverse Electron Demand / 9.6.3:
Cyclotrimerization / 9.7:
[3+2]-Cycloadditions / 9.8:
[3+3]-Cycloadditions / 9.9:
Ring Expansion Reactions / 9.10:
Index / 9.11:
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
18.

図書

図書
edited by Stanley M. Roberts, John Whittall
出版情報: Chichester : J. Wiley & Sons, c2007  xxii, 312 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 5
Abbreviations
Industrial Catalysts for Regio- or Stereo-Selective Oxidations and Reductions A Review of Key Technologies and Targets / John Whittall1:
Introduction / 1.1:
Reduction of Carbon-Carbon Double Bonds / 1.2:
Privileged structures: [alpha]-amino acids and itaconic acids / 1.2.1:
[beta]-Amino acids / 1.2.2:
[alpha]-Alkyl substituted acids / 1.2.3:
[alpha]-Alkoxy substituted acids / 1.2.4:
Unsaturated nitriles / 1.2.5:
Alkenes and allyl alcohols / 1.2.6:
[alpha],[beta]-Unsaturated aldehyde reduction / 1.2.7:
Ketone and Imine Reduction / 1.3:
Catalytic hydrogenation of ketones and imines / 1.3.1:
Asymmetric transfer hydrogenation (ATH) catalysts / 1.3.2:
Modified borane reagents / 1.3.3:
Biocatalysts (alcohol dehydrogenases and ketoreductases) / 1.3.4:
Oxidation / 1.4:
Sharpless chiral epoxidation of allyl alcohols / 1.4.1:
Dioxirane catalyzed epoxidation / 1.4.2:
Amines and iminium salts / 1.4.3:
Phase transfer catalysts / 1.4.4:
The Julia-Colonna method (polyleucine oxidation) / 1.4.5:
Organocatalytic [alpha]-hydroxylation of ketones / 1.4.6:
Baeyer-Villiger oxidation / 1.4.7:
Chiral sulfoxides / 1.4.8:
References
Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids / 2:
(S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl as a ligand for rhodium-catalyzed asymmetric hydrogenation / Ildiko Gergely ; Csaba Hegedus ; Jozsef Bakos2.1:
Synthesis of (S)-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-Octahydro-1,1[prime]-bi-2-naphthol / 2.1.1:
Synthesis of (S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl / 2.1.2:
Asymmetric hydrogenation of Dimethyl itaconate / 2.1.3:
Conclusion
Synthesis and application of phosphinite oxazoline iridium complexes for the asymmetric hydrogenation of alkenes / Frederik Menges ; Andreas Pfaltz2.2:
Synthesis of (4S,5S)-2-(5-Methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-propan-2-ol / 2.2.1:
Synthesis of (4S,5S)-O-[1-Benzyl-1-(5-methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-2-phenyl-ethyl]-diphenylphosphinite / 2.2.2:
Synthesis of (4S,5S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{2-(2-phenyl-5-methyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-2-diphenylphosphinite-propane}iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate / 2.2.3:
Asymmetric hydrogenation of trans-[alpha]-Methylstilbene / 2.2.4:
Synthesis and application of heterocyclic phosphine oxazoline (HetPHOX) iridium complexes for the asymmetric hydrogenation of alkenes / Pier Giorgio Cozzi2.3:
Synthesis of (4S)-tert-Butyl-2-(thiophene-2-yl)-4,5-dihydrooxazole / 2.3.1:
Synthesis of (4S)-tert-Butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole / 2.3.2:
Synthesis of (4S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{4-tert-butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole}iridium(I)]-tetrakis [3,5-bis(trifluoromethyl)phenyl]borate / 2.3.3:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos] as a ligand for rhodium-catalyzed asymmetric hydrogenation of [alpha]-dehydroamino acids / Jing Wu ; Albert S.C. Chan2.3.4:
Synthesis of 3-Bromo-2,6-dimethoxypyridine / 2.4.1:
Synthesis of Bis(3,5-dimethylphenyl)phosphine chloride / 2.4.2:
Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridine / 2.4.3:
2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphinoyl]-3,3[prime]-bipyridine / 2.4.4:
Optical resolution of ([plus or minus])-6 with (-) or (+)-2,3-0,0[prime]-Dibenzoyltartaric acid monohydrate [(R)-6 or (S)-6)] / 2.4.6:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos, (R)-1] / 2.4.7:
Preparation of the stock solution of [Rh(R-Xyl-P-Phos)(COD)]BF[subscript 4] / 2.4.8:
A typical procedure for the asymmetric hydrogenation of methyl (Z)-2-Acetamidocinnamate / 2.4.9:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoXP) as a ligand for rhodium-catalyzed asymmetric hydrogenation of prochiral amino acid and amine derivatives / Tsuneo Imamoto ; Aya Koide2.5:
Synthesis of (R)-tert-Butyl(hydroxymethyl)methylphosphine-borane / 2.5.1:
Synthesis of (R)-Benzoyloxy(tert-butyl)methylphosphine-borane / 2.5.2:
Synthesis of (S)-tert-Butylmethylphosphine-borane / 2.5.3:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoxP) / 2.5.4:
Asymmetric hydrogenation of Methyl (E)-3-acetylamino-2-butenoate catalyzed by Rh(I)-(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline / 2.5.5:
Rhodium-catalyzed asymmetric hydrogenation of indoles / Ryoichi Kuwano ; Masaya Sawamura2.6:
Synthesis of (R)-2-[(S)-1-(Dimethylamino)ethyl]-1-iodoferrocene / 2.6.1:
Synthesis of (R)-2-[(S)-1-(Diphenylphosphinyl)ethyl]-1-iodoferrocene / 2.6.2:
Synthesis of (R,R)-2,2[prime]-Bis[(S)-1-(diphenylphosphinyl)ethyl]-1,1[Prime]-biferrocene / 2.6.3:
Synthesis of (R,R)-2,2[Prime]-Bis[(S)-1-(diphenylphosphino)ethyl]-1,1[Prime]-biferrocene [abbreviated to (S,S)-(R,R)-PhTRAP] / 2.6.4:
Catalytic asymmetric hydrogenation of N-Acetyl-2-butylindole / 2.6.5:
Catalytic asymmetric hydrogenation of 3-Methyl-N-(p-toluenesulfonyl)indole / 2.6.6:
Asymmetric Reduction of Ketones / 3:
(R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane as a versatile ligand for enantioselective hydrogenations / Natalia Dubrovina ; Armin Borner3.1:
Synthesis of (S,S)-1,3-Diphenylpropane-1,3-diol / 3.1.1:
Synthesis of (S,S)-Methanesulfonyloxy-1,3-diphenylpropane-1,3-diol / 3.1.2:
Synthesis of (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane / 3.1.3:
Synthesis of both enantiomers of 1-Phenylethanol by reduction of acetophenone with Geotrichum candidum IFO 5767 / Kaoru Nakamura ; Mikio Fujii ; Yoshiteru Ida3.2:
Cultivation of G. candidum IFO 5767 / 3.2.1:
Synthesis of (S)-1-Phenylethanol / 3.2.2:
Synthesis of (R)-1-Phenylethanol / 3.2.3:
Titanocene-catalyzed reduction of ketones in the presence of water. A convenient procedure for the synthesis of alcohols via free-radical chemistry / Antonio Rosales ; Juan M. Cuerva ; J. Enrique Oltra3.3:
Titanocene-catalyzed reduction of Acetophenone in the presence of water / 3.3.1:
Titanocene-catalyzed synthesis of Methyl 4-deuterio-4-phenyl-4-hydroxybutanoate / 3.3.2:
Xyl-tetraPHEMP: a highly efficient biaryl ligand in the [diphosphine RuCl[subscript 2] diamine]-catalyzed hydrogenation of simple aromatic ketones / Paul H. Moran ; Julian P. Henschke ; Antonio Zanotti-Gerosa ; Ian C. Lennon3.4:
Synthesis of Tri(3,5-dimethylphenyl)phosphine oxide / 3.4.1:
Synthesis of Bis(3,5-dimethylphenyl)-(2-iodo-3,5-dimethylphenyl)phosphine oxide / 3.4.2:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphinoyl]-biphenyl / 3.4.3:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (rac)-Xyl-tetraPHEMP] / 3.4.4:
Synthesis of [(R)-N,N-Dimethyl(1-methyl)benzylaminato-C[superscript 2],N]-{rac-4,4[prime],6,6[prime]-tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl}-palladium(II) tetrafluoroborate and separation of the diastereomers / 3.4.5:
Synthesis of (S)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl: [abbreviated to (S)-Xyl-tetraPHEMP) and (R)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (R)-Xyl-tetraPHEMP] / 3.4.6:
Synthesis of [(R)-Xyl-tetraPHEMP RuCl[subscript 2] (R,R)-DPEN] and [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] / 3.4.7:
Reduction of Acetophenone using [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] as a precatalyst / 3.4.8:
N-Arenesulfonyl- and N-Alkylsulfamoyl-1,2-diphenylethylenediamine ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of activated ketones / Michel (Massoud S.) Stephan ; Barbara Mohar3.5:
Synthesis of N-Arenesulfonyl-1,2-diphenylethylenediamines / 3.5.1:
Preparation of Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes / 3.5.2:
Asymmetric transfer hydrogenation of Ethyl benzoylacetate / 3.5.3:
The synthesis and application of BrXuPHOS: a novel monodentate phosphorus ligand for the asymmetric hydrogenation of ketones / Martin Wills ; Yingjian Xu ; Garden Docherty ; Gary Woodward3.6:
Synthesis of (S)-BrXuPHOS / 3.6.1:
Synthesis of (S,S,SS)-BrXuPHOS-Ru-DPEN / 3.6.2:
General procedure of asymmetric hydrogenation of acetophenone / 3.6.3:
Acknowledgement
In Situ formation of ligand and catalyst: application in ruthenium-catalyzed enantioselective reduction of ketones / Jenny Wettergren ; Hans Adolfsson3.7:
Synthesis of (S)-3-Fluoro-1-phenylethanol / 3.7.1:
Synphos and Difluorphos as ligands for ruthenium-catalyzed hydrogenation of alkenes and ketones / Severine Jeulin ; Virginie Ratovelomanana-Vidal ; Jean-Pierre Genet3.8:
Synthesis of [RuCl((S)-SYNPHOS)(p-cymene)]Cl / 3.8.1:
Synthesis of [RuCl((S)-DIFLUORPHOS)(p-cymene)]Cl / 3.8.2:
Synthesis of [RuI((S)-DIFLUORPHOS)(p-cymene)]I / 3.8.3:
Synthesis of [NH[subscript 2]R[subscript 2]] [(RuCl(PP))[subscript 2]([Mu]-Cl)[subscript 3]] PP = SYNPHOS or DIFLUORPHOS and R = Me or Et / 3.8.4:
Synthesis of [NH[subscript 2]Me[subscript 2]][RuCl-(S)-DIFLUORPHOS][subscript 2][[Mu]-Cl][subscript 3] / 3.8.5:
Synthesis of in situ generated [RuBr[subscript 2]((S)-SYNPHOS)] and [RuBr[subscript 2]((S)-DIFLUORPHOS)] / 3.8.6:
An arene ruthenium complex with polymerizable side chains for the synthesis of immobilized catalysts / Estelle Burri ; Silke B. Wendicke ; Kay Severin3.9:
Synthesis of 2-Methyl-cyclohexa-2,5-dienecarboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester / 3.9.1:
Synthesis of [[eta superscript 6]-(2-Methyl-benzoic acid 2-(2-methyl-acryloyloxy)-ethyl ester)RuCl[subscript 2]][subscript 2] / 3.9.2:
Selective reduction of carbonyl group in [beta], [gamma]-unsaturated [alpha]-alpha-ketoesters by transfer hydrogenation with Ru-(p-cymene) (TsDPEN) / Minjie Guo ; Dao Li ; Yanhui Sun ; Zhaoguo Zhang3.10:
Synthesis of Di-[Mu]-chloro-bis[chloro([eta superscript 6]-1-isopropyl-4-methyl-benzene)ruthenium(II) / 3.10.1:
Synthesis of ([plus or minus])-Monotosylate-1,2-diphenyl-1,2-ethylenediamine / 3.10.2:
Synthesis of Ru complex Ru(p-cymene)(TsDPEN) / 3.10.3:
Ru-TsDPEN catalyzed transfer hydrogenation reaction of [beta],[gamma]-unsaturated-[alpha]-ketoesters / 3.10.4:
Preparation of polymer-supported Ru-TsDPEN catalysts and their use for the enantioselective synthesis of (S)-fluoxetine / Liting Chai ; Yangzhou Li ; Quanrui Wang3.11:
Synthesis of the supported ligand 9 / 3.11.1:
Synthesis of ligand 17 / 3.11.2:
General procedure for asymmetric transfer hydrogenation / 3.11.3:
Preparation of (S)-Fluoxetine hydrochloride / 3.11.4:
Polymer-supported chiral sulfonamide-catalyzed reduction of [beta]-keto nitriles: a practical synthesis of (R)-Fluoxetine / Guang-yin Wang ; Gang Zhao3.12:
Synthesis of (R)-3-Amino-1-phenyl-propan-1-ol / 3.12.1:
Synthesis of (R)-ethyl 3-hydroxy-3-phenylpropylcarbamate / 3.12.2:
Synthesis of (R)-3-(Methylamino)-1-phenylpropan-1-ol / 3.12.3:
Synthesis of (R)-Fluoxetine / 3.12.4:
Imine Reduction and Reductive Amination / 4:
Metal-free reduction of imines: enantioselective Bronsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts / Magnus Rueping ; Erli Sugiono ; Cengiz Azap ; Thomas Theissmann4.1:
Synthesis of (R)-2,2[prime]-Bis-methoxymethoxy-[1,1[prime]] binaphthalene (MOM-BINOL) / 4.1.1:
Synthesis of (R)-3,3[prime]-Diiodo-2,2[prime]-bis(methoxymethoxy)-1,1[prime]-binaphthalene / 4.1.2:
Synthesis of 3,3[prime]-Bis-(3,5[prime]-bis-trifluoromethyl-phenyl)-2,2[prime]-bismethoxymethoxy [1,1[prime]-binaphthalene] / 4.1.3:
Synthesis of (R)-3,3[prime]-[3,5-Bis(trifluoromethyl)phenyl]-1,1[prime]-binaphthylphosphate / 4.1.4:
General procedure for the transfer hydrogenation of ketimines / 4.1.5:
Synthesis of [1-(2,4-Dimethyl-phenyl)-ethyl]-(4-methoxy-phenyl)-amine / 4.1.6:
Metal-free Bronsted acid-catalyzed transfer hydrogenation: enantioselective synthesis of tetrahydroquinolines / Andrey P. Antonchick4.2:
General procedure for the transfer hydrogenation of quinolines / 4.2.1:
Synthesis of 7-Chloro-4-phenyl-1,2,3,4-tetrahydroquinoline / 4.2.2:
Synthesis of (S)-2-Phenyl-1,2,3,4-tetrahydroquinoline / 4.2.3:
Synthesis of (R)-2-(2-(Benzo[1,3]dioxol-5-yl)ethyl)-1,2.3,4-tetrahydro-quinoline / 4.2.4:
A highly stereoselective synthesis of 3[alpha]-Amino-23,24-bisnor-5[alpha]-cholane via reductive amination / Sharaf Nawaz Khan ; Nam Ju Cho ; Hong-Seok Kim4.3:
Synthesis of Tris[(2-ethylhexanoyl)oxy]borohydride / 4.3.1:
Synthesis of 3[alpha]-Acetamino-23,24-bisnor-5[alpha]-cholane / 4.3.2:
Synthesis of 3[alpha]-N-1-[N(3-[4-Aminobutyl])-1,3-diaminopropane]-23,24-bisnor-5[alpha]-cholane / 4.3.3:
Acknowledgements
Oxidation of Primary and Secondary Alcohols / 5:
Copper(Il) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen / Suribabu Jammi ; Tharmalingan Punniyamurthy5.1:
Synthesis of copper(II) complex 1 / 5.1.1:
Typical procedure for the oxidation of primary alcohols to aldehydes / 5.1.2:
Solvent-free dehydrogenation of secondary alcohols in the absence of hydrogen abstractors using Robinson's catalyst / G.B.W.L Ligthart ; R.H. Meijer ; J. v. Buijtenen ; J. Meuldijk ; J.A.J.M. Vekemans ; L.A. Hulshof5.2:
Dehydrogenation of 2-Octanol using Ru(OCOCF[subscript 3])[subscript 2](CO)(PPh[subscript 3])[subscript 2] as a catalyst / 5.2.1:
2-Iodoxybenzoic acid (IBX)/n-Bu[subscript 4]NBr/CH[subscript 2]Cl[subscript 2]-H[subscript 2]O: a mild system for the selective oxidation of secondary alcohols / Krisada Kittigowittana ; Manat Pohmakotr ; Vichai Reutrakul ; Chutima Kuhakarn5.3:
Synthesis of 1-Hydroxy-5-decanone / 5.3.1:
Hydroxylation, Epoxidation and Related Reactions / 6:
Proline-catalyzed [alpha]-aminoxylation of aldehydes and ketones / Yujiro Hayashi ; Mitsuru Shoji6.1:
Synthesis of (R)-2-Anilinoxypropanol / 6.1.1:
Synthesis of (R)-7-Anilinoxy-1,4-dioxaspiro[4.5]decan-8-one / 6.1.2:
Ru/Silia Cat TEMPO-mediated oxidation of alkenes to [alpha]-hydroxyacids / Rosaria Ciriminna ; Mario Pagliaro6.2:
Synthesis of Silia Cat TEMPO / 6.2.1:
Synthesis of 2-(4-Chlorophenyl)-1,2-propanediol / 6.2.2:
Synthesis of 2-(4-Chlorophenyl)-1,2-hydroxypropanoic acid / 6.2.3:
Catalytic enantioselective epoxidation of trans-disubstituted and trisubstituted alkenes with arabinose-derived ulose / Tony K. M. Shing ; Gulice Y.C. Leung ; To Luk6.3:
Synthesis of 2[prime],3[prime]-Diisobutyl acetal / 6.3.1:
Synthesis of ulose / 6.3.2:
Asymmetric epoxidation of trans-[alpha]-Methylstilbene using ulose as catalyst at 0 [degree]C / 6.3.3:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(2-Alkenyl)phenols. highly regio- and diastereoselective oxidative cyclisation to 2,3-Dihydrobenzofuranols and 3-Chromanols / Alessandra Lattanzi ; Arrigo Scettri6.4:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.1:
VO(acac)[subscript 2]/TBHP/TFA catalyzed oxidative cyclization of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.2:
An Oxalolidinone ketone catalyst for the asymmetric epoxidation of cis-olefins / David Goeddel ; Yian Shi6.5:
Amadori rearrangement to give 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.1:
Acetal protection of 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.2:
Hydrogenation of the Dibenzylamine / 6.5.3:
Phosgene cyclization of aminoalcohol / 6.5.4:
Alcohol oxidation / 6.5.5:
Synthesis of ketone 2 / 6.5.6:
Asymmetric epoxidation of cis-[beta]-Methylstyrene / 6.5.7:
[alpha]-Fluorotropinone immobilised on silica: a new stereoselective heterogeneous catalyst for epoxidation of alkenes with oxone / Giovanni Sartori ; Alan Armstrong ; Raimondo Maggi ; Alessandro Mazzacani ; Raffaella Sartorio ; France Bigi ; Belen Dominguez-Fernandez6.6:
Synthesis of silica KG-60-supported enantiomerically enriched [alpha]-Fluorotropinone / 6.6.1:
Synthesis of enantiomerically enriched epoxides / 6.6.2:
Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions / Kazushige Hori ; Keita Tani ; Yasuo Tohda6.7:
Synthesis of precursor of the azacrown ether / 6.7.1:
Synthesis of the azacrown ether / 6.7.2:
Synthesis of the azacrown ether-type quaternary ammonium salt / 6.7.3:
Asymmetric epoxidation of (E)-Chalcone catalyzed by the azacrown ether-type quaternary ammonium salt as chiral PTC / 6.7.4:
Enantioselective epoxidation of olefins using phase transfer conditions and a chiral [azepinium][TRISPHAT] salt as catalyst / Jerome Vachon ; Celine Perollier ; Alexandre Martinez ; Jerome Lacour6.8:
Enantioselective epoxidation of 1-Phenyl-3,4-dihydronaphthalene / 6.8.1:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters promoted by a Yttrium-biphenyldiol complex / Masakatsu Shibasaki ; Hiroyuki Kakei ; Shigeki Matsunaga6.9:
Synthesis of (aS,R)-6,6[prime]-[(Propylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.1:
Synthesis of (aS,R)-2,2-[Oxybis(ethylene)dioxy]-6,6[prime]-[(propylene)dioxy]biphenyl / 6.9.2:
Synthesis of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.3:
Enantiomeric enrichment of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.4:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters / 6.9.5:
Catalytic enantioselective epoxidation of [alpha],[beta]-enones with a binol-zinc-complex / Ana Minatti ; Karl Heinz Dotz6.10:
Synthesis of (E)-(2S,3R)-Phenyl-(3-phenyloxiran-2-yl)methanone / 6.10.1:
Asymmetric epoxidation of Phenyl-2-(3[prime]-pyridylvinyl)sulfone using polyleucine hydrogen peroxide gel / Mike R. Pitts6.11:
Preparation of polyleucine-hydrogen peroxide gel / 6.11.1:
Synthesis of Phenyl-2-(3[prime]-pyridylvinyl) sulfone (2) / 6.11.2:
Oxidation of Ketones to Lactones or Enones / 7:
Synthesis of 2-(Phosphinophenyl)pyrindine ligand and its application to palladium-catalyzed asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanones / Katsuji Ito ; Tsutomu Katsuki7.1:
Synthesis of (7R)-2-(2-Hydroxyphenyl)-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.1:
2-[2-(Diphenylphosphinoyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.2:
2-[2-(Diphenylphosphanyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.3:
Asymmetric Baeyer-Villiger oxidation of 3-Phenylcyclobutanone / 7.1.4:
(D)-Codeinone from (D)-Dihydrocodeinone via the use of modified o-iodoxybenzoic acid (IBX). A convenient oxidation of ketones to enones / Paul Mather7.2:
Synthesis of IBX / 7.2.1:
Synthesis of codeinone / 7.2.2:
Oxidative C-C Coupling / 8:
Enantioselective oxidative coupling of 2-Naphthols catalyzed by a novel chiral vanadium complex / Nan-Sheng Xie ; Quan-Zhong Liu ; Zhi-Bin Luo ; Liu-Zhu Gong ; Ai-Qiao Mi ; Yao-Zhong Jiang8.1:
Synthesis of 3,3-Diformyl-2,2[prime]-biphenol / 8.1.1:
Synthesis of chiral vanadium complexes / 8.1.2:
Catalytic oxidative coupling of 7-Alkoxy-1-naphthols by chiral vanadium complexes / 8.1.3:
Reference
Catalytic oxidative cross-coupling reaction of 2-Naphthol derivatives / Shigeki Habaue ; Tomohisa Temma8.2:
Synthesis of Methyl 2,2[prime]-dihydroxy-1,1[prime]-binaphthalene-3-carboxylate / 8.2.1:
Oxidative coupling of benzenes with [alpha],[beta]-unsaturated aldehydes by Pd(OAc)[subscript 2]/ HPMoV/ O[subscript 2] system / Tomoyuki Yamada ; Satoshi Sakaguchi ; Yasutaka Ishii8.3:
Synthesis of Cinnamaldehyde / 8.3.1:
Oxidation of Sulfides and Sulfoxides / 9:
The first example of direct oxidation of sulfides to sulfones by an osmate-molecular oxygen system / Boyapati M. Choudary ; Chinta Reddy ; V. Reddy ; Billakanti V. Prakash ; Mannepalli L. Kantam ; B. Sreedhar9.1:
Synthesis of osmate exchanged Mg-Al layered double hydroxides (LDH-OsO[subscript 4]) / 9.1.1:
Synthesis of Methyl phenyl sulfone or Methylsulfonylbenzene / 9.1.2:
Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide in the presence of zirconium tetrachloride / Kiumar Bahrami9.2:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfoxide using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.1:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfone using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.2:
WO[subscript 3]-30 % H[subscript 2]O[subscript 2]-cinchona alkaloids: a new heterogeneous catalytic system for asymmetric oxidation and kinetic resolution of racemic sulfoxides / Vinay V. Thakur ; A. Sudalai9.3:
Synthesis of (R)-2-[[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimadazole {(R)-(+)-Lansoprazole} / 9.3.1:
Synthesis of (R)-(+)-Phenyl benzyl sulfoxide / 9.3.2:
Benzyl-4,6-O-isopropylidene-[alpha]-(D)-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]amino] as a ligand for vanadium-catalyzed asymmetric oxidation of sulfides / Raffaella Del Litto ; Guiseppina Roviello ; Francesco Ruffo9.4:
Synthesis of Benzyl-4,6-O-isopropylidene-[alpha]-D-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]imine] / 9.4.1:
Oxidation of Thioanisole / 9.4.2:
Asymmetric sulfoxidation of aryl methyl sulfides with hydrogen peroxide in water / Alessando Scarso ; Giorgio Strukul9.5:
Synthesis of complex (R)-BINAP)PtCl[subscript 2] / 9.5.1:
Synthesis of complex [((R)-BINAP)Pt((OH)][subscript 2](BF[subscript 4])[subscript 2] / 9.5.2:
Stereoselective catalytic oxidation of aryl methyl sulfides / 9.5.3:
Index
Series Preface
Preface to Volume 5
Abbreviations
19.

図書

図書
Brian R. Eggins
出版情報: Chichester, West Sussex : Wiley, c2002  xxi, 273 p. ; 23 cm
シリーズ名: Analytical Techniques in the Sciences(AnTS)
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface
Acronyms, Abbreviations and Symbols
About the Author
Introduction / 1:
Introduction to Sensors / 1.1:
What are Sensors? / 1.1.1:
The Nose as a Sensor / 1.1.2:
Sensors and Biosensors--Definitions / 1.2:
Aspects of Sensors / 1.3:
Recognition Elements / 1.3.1:
Transducers--the Detector Device / 1.3.2:
Methods of Immobilization / 1.3.3:
Performance Factors / 1.3.4:
Areas of Application / 1.3.5:
Transduction Elements / 2:
Electrochemical Transducers--Introduction / 2.1:
Potentiometry and Ion-Selective Electrodes: The Nernst Equation / 2.2:
Cells and Electrodes / 2.2.1:
Reference Electrodes / 2.2.2:
Quantitative Relationships: The Nernst Equation / 2.2.3:
Practical Aspects of Ion-Selective Electrodes / 2.2.4:
Measurement and Calibration / 2.2.5:
Voltammetry and Amperometry / 2.3:
Linear-Sweep Voltammetry / 2.3.1:
Cyclic Voltammetry / 2.3.2:
Chronoamperometry / 2.3.3:
Amperometry / 2.3.4:
Kinetic and Catalytic Effects / 2.3.5:
Conductivity / 2.4:
Field-Effect Transistors / 2.5:
Semiconductors--Introduction / 2.5.1:
Semiconductor--Solution Contact / 2.5.2:
Field-Effect Transistor / 2.5.3:
Modified Electrodes, Thin-Film Electrodes and Screen-Printed Electrodes / 2.6:
Thick-Film--Screen-Printed Electrodes / 2.6.1:
Microelectrodes / 2.6.2:
Thin-Film Electrodes / 2.6.3:
Photometric Sensors / 2.7:
Optical Techniques / 2.7.1:
Ultraviolet and Visible Absorption Spectroscopy / 2.7.3:
Fluorescence Spectroscopy / 2.7.4:
Luminescence / 2.7.5:
Optical Transducers / 2.7.6:
Device Construction / 2.7.7:
Solid-Phase Absorption Label Sensors / 2.7.8:
Applications / 2.7.9:
Further Reading
Sensing Elements / 3:
Ionic Recognition / 3.1:
Ion-Selective Electrodes--Introduction / 3.2.1:
Interferences / 3.2.2:
Conducting Devices / 3.2.3:
Modified Electrodes and Screen-Printed Electrodes / 3.2.4:
Molecular Recognition--Chemical Recognition Agents / 3.3:
Thermodynamic--Complex Formation / 3.3.1:
Kinetic--Catalytic Effects: Kinetic Selectivity / 3.3.2:
Molecular Size / 3.3.3:
Molecular Recognition--Spectroscopic Recognition / 3.4:
Infrared Spectroscopy--Molecular / 3.4.1:
Ultraviolet Spectroscopy--Less Selective / 3.4.3:
Nuclear Magnetic Resonance Spectroscopy--Needs Interpretation / 3.4.4:
Mass Spectrometry / 3.4.5:
Molecular Recognition--Biological Recognition Agents / 3.5:
Enzymes / 3.5.1:
Tissue Materials / 3.5.3:
Micro-Organisms / 3.5.4:
Mitochondria / 3.5.5:
Antibodies / 3.5.6:
Nucleic Acids / 3.5.7:
Receptors / 3.5.8:
Immobilization of Biological Components / 3.6:
Adsorption / 3.6.1:
Microencapsulation / 3.6.3:
Entrapment / 3.6.4:
Cross-Linking / 3.6.5:
Covalent Bonding / 3.6.6:
Selectivity / 4:
Ion-Selective Electrodes / 4.2.1:
Others / 4.2.2:
Sensitivity / 4.3:
Range, Linear Range and Detection Limits / 4.3.1:
Time Factors / 4.4:
Response Times / 4.4.1:
Recovery Times / 4.4.2:
Lifetimes / 4.4.3:
Precision, Accuracy and Repeatability / 4.5:
Different Biomaterials / 4.6:
Different Transducers / 4.7:
Urea Biosensors / 4.7.1:
Amino Acid Biosensors / 4.7.2:
Glucose Biosensors / 4.7.3:
Uric Acid / 4.7.4:
Some Factors Affecting the Performance of Sensors / 4.8:
Amount of Enzyme / 4.8.1:
Immobilization Method / 4.8.2:
pH of Buffer / 4.8.3:
Electrochemical Sensors and Biosensors / 5:
Potentiometric Sensors--Ion-Selective Electrodes / 5.1:
Concentrations and Activities / 5.1.1:
Calibration Graphs / 5.1.2:
Examples of Ion-Selective Electrodes / 5.1.3:
Gas Sensors--Gas-Sensing Electrodes / 5.1.4:
Potentiometric Biosensors / 5.2:
pH-Linked / 5.2.1:
Ammonia-Linked / 5.2.2:
Carbon Dioxide-Linked / 5.2.3:
Iodine-Selective / 5.2.4:
Silver Sulfide-Linked / 5.2.5:
Amperometric Sensors / 5.3:
Direct Electrolytic Methods / 5.3.1:
The Three Generations of Biosensors / 5.3.2:
First Generation--The Oxygen Electrode / 5.3.3:
Second Generation--Mediators / 5.3.4:
Third Generation--Directly Coupled Enzyme Electrodes / 5.3.5:
NADH/NAD[superscript +] / 5.3.6:
Examples of Amperometric Biosensors / 5.3.7:
Amperometric Gas Sensors / 5.3.8:
Conductometric Sensors and Biosensors / 5.4:
Chemiresistors / 5.4.1:
Biosensors Based on Chemiresistors / 5.4.2:
Semiconducting Oxide Sensors / 5.4.3:
Applications of Field-Effect Transistor Sensors / 5.5:
Chemically Sensitive Field-Effect Transistors (CHEMFETs) / 5.5.1:
Ion-Selective Field-Effect Transistors (ISFETs) / 5.5.2:
FET-Based Biosensors (ENFETs) / 5.5.3:
Photometric Applications / 6:
Techniques for Optical Sensors / 6.1:
Modes of Operation of Waveguides in Sensors / 6.1.1:
Immobilized Reagents / 6.1.2:
Visible Absorption Spectroscopy / 6.2:
Measurement of pH / 6.2.1:
Measurement of Carbon Dioxide / 6.2.2:
Measurement of Ammonia / 6.2.3:
Examples That Have Been Used in Biosensors / 6.2.4:
Fluorescent Reagents / 6.3:
Fluorescent Reagents for pH Measurements / 6.3.1:
Halides / 6.3.2:
Sodium / 6.3.3:
Potassium / 6.3.4:
Gas Sensors / 6.3.5:
Indirect Methods Using Competitive Binding / 6.4:
Reflectance Methods--Internal Reflectance Spectroscopy / 6.5:
Evanescent Waves / 6.5.1:
Reflectance Methods / 6.5.2:
Attenuated Total Reflectance / 6.5.3:
Total Internal Reflection Fluorescence / 6.5.4:
Surface Plasmon Resonance / 6.5.5:
Light Scattering Techniques / 6.6:
Types of Light Scattering / 6.6.1:
Quasi-Elastic Light Scattering Spectroscopy / 6.6.2:
Photon Correlation Spectroscopy / 6.6.3:
Laser Doppler Velocimetry / 6.6.4:
Mass-Sensitive and Thermal Sensors / 7:
The Piezo-Electric Effect / 7.1:
Principles / 7.1.1:
Gas Sensor Applications / 7.1.2:
Biosensor Applications / 7.1.3:
The Quartz Crystal Microbalance / 7.1.4:
Surface Acoustic Waves / 7.2:
Plate Wave Mode / 7.2.1:
Evanescent Wave Mode / 7.2.2:
Lamb Mode / 7.2.3:
Thickness Shear Mode / 7.2.4:
Thermal Sensors / 7.3:
Thermistors / 7.3.1:
Catalytic Gas Sensors / 7.3.2:
Thermal Conductivity Devices / 7.3.3:
Specific Applications / 8:
Determination of Glucose in Blood--Amperometric Biosensor / 8.1:
Survey of Biosensor Methods for the Determination of Glucose / 8.1.1:
Aim / 8.1.2:
Determination of Nanogram Levels of Copper(I) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent / 8.2:
Background to Stripping Voltammetry--Anodic and Cathodic / 8.2.1:
Determination of Several Ions Simultaneously--'The Laboratory on a Chip' / 8.2.2:
Sensor Arrays and 'Smart' Sensors / 8.3.1:
Background to Ion-Selective Field-Effect Transistors / 8.3.3:
Determination of Attomole Levels of a Trinitrotoluene--Antibody Complex with a Luminescent Transducer / 8.3.4:
Background to Immuno--Luminescent Assays / 8.4.1:
Determination of Flavanols in Beers / 8.4.2:
Background / 8.5.1:
Responses to Self-Assessment Questions / 8.5.2:
Bibliography
Glossary of Terms
SI Units and Physical Constants
Periodic Table
Index
Series Preface
Preface
Acronyms, Abbreviations and Symbols
20.

図書

図書
edited by Noritaka Mizuno
出版情報: Weinheim : Wiley-VCH, c2009  xv, 341 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Concepts in Selective Oxidation of Small Alkane Molecules / Robert Schlogl1:
Introduction / 1.1:
The Research Field / 1.2:
Substrate Activation / 1.3:
Active Oxygen Species / 1.4:
Catalyst Material Science / 1.5:
Conclusion / 1.6:
References
Active Ensemble Structures for Selective Oxidation Catalyses at Surfaces / Mizuki Tada ; Yasuhiro Iwasawa2:
Asymmetric Heterogeneous Catalysis Using Supported Metal Complexes / 2.1:
Asymmetric Catalysis for Oxidative Coupling of 2-Naphthol to BINOL / 2.2.2:
Active Re Clusters Entrapped in ZSM-5 Pores / 2.3:
Unique Catalytic Performance of Supported Gold Nanoparticles in Oxidation / Yunbo Yu ; Jiahui Huang ; Tamao Ishida ; Masatake Haruta2.4.4:
Low-Temperature CO Oxidation / 3.1:
Low-Temperature CO Oxidation in Air / 3.2.1:
Junction Perimeter Between Au Particles and the Support / 3.2.1.1:
Selection of Suitable Supports / 3.2.1.2:
Sensitivity to the Size of the Gold Particles / 3.2.1.3:
Mechanism for CO Oxidation Over Supported Gold Nanoparticles / 3.2.2:
Mechanisms Involving Junction Perimeter Between Gold and the Metal-Oxide Supports / 3.2.3.1:
Mechanisms Involving Specific Size or Thickness of Gold Clusters or Thin Layers / 3.2.3.2:
Mechanisms Involving Cationic Gold / 3.2.3.3:
Complete Oxidation of Volatile Organic Compounds / 3.3:
Gas-Phase Selective Oxidation of Organic Compounds / 3.4:
Gas-Phase Selective Oxidation of Aliphatic Alkanes / 3.4.1:
Gas-Phase Selective Oxidation of Alcohols / 3.4.2:
Gas-Phase Propylene Epoxidation / 3.4.3:
Liquid-Phase Selective Oxidation of Organic Compounds / 3.4.3.1:
Oxidation of Mono-Alcohols / 3.5.1:
Oxidation of Diols / 3.5.2:
Oxidation of Glycerol / 3.5.3:
Aerobic Oxidation of Glucose / 3.5.4:
Oxidation of Alkanes and Alkenes / 3.5.5:
Conclusions / 3.6:
Metal-Substituted Zeolites as Heterogeneous Oxidation Catalysts / Takashi Tatsumi4:
Introduction - Two Ways to Introduce Hetero-Metals into Zeolites / 4.1:
Titanium-Containing Zeolites / 4.2:
TS-1 / 4.2.1:
Ti-Beta / 4.2.2:
Ti-MWW / 4.2.3:
Other Titanium-Containing Zeolites / 4.2.4:
Solvent Effects and Reaction Intermediate / 4.2.5:
Other Metal-Containing Zeolites / 4.3:
Design of Well-Defined Active Sites on Crystalline Materials for Liquid-Phase Oxidations / Kiyotomi Kaneda ; Takato Mitsudome4.4:
Oxidation of Alcohols / 5.1:
Ru Catalyst / 5.2.1:
Pd Catalyst / 5.2.2:
Au Catalyst / 5.2.3:
Au-Pd Catalyst / 5.2.4:
Epoxidation of Olefins / 5.3:
Epoxidation with Hydrogen Peroxide / 5.3.1:
Titanium-Based Catalysts / 5.3.1.1:
Tungsten-Based Catalysts / 5.3.1.2:
Base Catalyst / 5.3.1.3:
Epoxidation with Molecular Oxygen / 5.3.2:
Cis-Dihydroxylation / 5.4:
Baeyer-Villiger Oxidation / 5.5:
C-H Activation Using Molecular Oxygen / 5.6:
Liquid-Phase Oxidations with Hydrogen Peroxide and Molecular Oxygen Catalyzed by Polyoxometalate-Based Compounds / Noritaka Mizuno ; Keigo Kamata ; Sayaka Uchida ; Kazuya Yamaguchi5.7:
Isopoly- and Heteropolyoxometalates / 6.1:
Peroxometalates / 6.2.2:
Lacunary Polyoxometalates / 6.2.3:
Transition-Metal-Substituted Polyoxometalates / 6.2.4:
Heterogenization of Polyoxometalates / 6.3:
Solidification of Polyoxometalates with Appropriate Cations / 6.3.1:
Metal and Alkylammonium Cations / 6.3.1.1:
Polycations / 6.3.1.2:
Cationic Organometallic Complexes / 6.3.1.3:
Immobilization of Polyoxometalate-Based Compounds / 6.3.2:
Wet Impregnation / 6.3.2.1:
Solvent-Anchoring and Covalent Linkage / 6.3.2.2:
Anion Exchange / 6.3.2.3:
Nitrous Oxide as an Oxygen Donor in Oxidation Chemistry and Catalysis / Gennady I. Panov ; Konstantin A. Dubkov ; Alexander S. Kharitonov6.4:
Molecular Structure and Physical Properties of Nitrous Oxide / 7.1:
Catalytic Oxidation by Nitrous Oxide in the Gas Phase / 7.3:
Oxidation of Lower Alkanes Over Oxide Catalysts / 7.3.1:
Oxidation Over Zeolites / 7.3.2:
Oxidation by Dioxygen / 7.3.2.1:
Nature of Zeolite Activity, a-Sites / 7.3.2.2:
Hydroxylation of Alkanes and Benzene Derivatives / 7.3.2.4:
Other Types of Oxidation Reactions / 7.3.2.6:
Liquid-Phase Oxidation of Alkenes / 7.4:
Linear Alkenes / 7.5.1.1:
Cyclic Alkenes / 7.5.1.2:
Cyclodienes / 7.5.1.3:
Bicyclic Alkenes / 7.5.1.4:
Heterocyclic Alkenes / 7.5.1.5:
Carboxidation of Polymers / 7.5.2:
Carboxidation of Polyethylene / 7.5.2.1:
Carboxidation of Polybutadiene Rubber / 7.5.2.2:
Direct Synthesis of Hydrogen Peroxide: Recent Advances / Gabriele Centi ; Siglinda Perathoner ; Salvatore Abate7.6:
Industrial Production / 8.1:
Uses of Hydrogen Peroxide / 8.1.2:
Status of Development and Perspectives of Industrial Production / 8.2:
Fundamental Studies / 8.2.2:
Intrinsically Safe Operations and Microreactors / 8.3.1:
Nature of the Catalyst and Reaction Network / 8.3.2:
Role of the Solvent and of Promoters / 8.3.3:
Recent Achievements and Challenges for a Greener Chemical Industry / Fabrizio Cavani ; Nicola Ballarini8.4:
Introduction: Old and New Challenges for Oxidation Catalysis in Industry / 9.1:
Recent Successful Examples of Alkanes Oxidation / 9.2:
Oxidation of Ethane to Acetic Acid / 9.2.1:
Ammoxidation of Propane to Acrylonitrile / 9.2.2:
New Oxidation Technologies: Oxidative Desulfurization (ODS) of Gas Oil / 9.3:
Process Intensification in Catalytic Oxidation / 9.4:
An Alternative Approach: Anaerobic Oxidation with Metal Oxides in a Cycle Process (from an Oxidation Catalyst to a Reusable Stoichiometric Oxidant) / 9.5:
Anaerobic Oxidation of Propene to Acrolein in a CFBR Reactor / 9.5.1:
Anaerobic Synthesis of 2-Methyl-1,4-Naphthoquinone (Menadione) / 9.5.2:
Anaerobic Oxidative Dehydrogenation of Propane to Propene / 9.5.3:
Production of Hydrogen from Methane with Oxide Materials and Inherent Segregation of Carbon Dioxide / 9.5.4:
Current and Developing Processes for the Transformation of Bioplatform Molecules into Chemicals by Catalytic Oxidation / 9.6:
Glycerol: A Versatile Building Block / 9.6.1:
Index / 9.7:
Preface
List of Contributors
Concepts in Selective Oxidation of Small Alkane Molecules / Robert Schlogl1:
21.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
22.

図書

図書
edited by Patrick J. Hussey
出版情報: Oxford, UK : Blackwell , Boca Raton, FL : CRC Press, 2004  xiii, 325 p. ; 25 cm
シリーズ名: Annual plant reviews ; v. 10
所蔵情報: loading…
目次情報: 続きを見る
List of contributors
Preface
The cytoskeleton: the machinery and key molecules / Part 1:
Microtubules and microtubule-associated proteins / Clive Lloyd ; Jordi Chan ; Patrick J. Hussey1:
Introduction / 1.1:
Plant tubulin / 1.2:
Microtubule-associated proteins / 1.3:
Cross-bridging MAPs / 1.3.1:
Proteins that link microtubules to the plasma membrane / 1.3.2:
Microtubule motor proteins / 1.3.3:
Kinesin-related proteins in cytokinesis / 1.3.3.1:
Kinesin-related proteins in mitosis / 1.3.3.2:
Kinesin-related proteins in interphase / 1.3.3.3:
Dynein / 1.3.3.4:
Proteins involved in microtubule nucleation and release: the formation of the cortical array / 1.3.4:
Microtubule-interacting proteins / 1.3.5:
Concluding remarks / 1.4:
References
Actin and actin-modulating proteins / Christopher J. Staiger2:
Actin / 2.1:
Myosin / 2.3:
Actin-binding proteins: overview / 2.4:
Monomer-binding proteins / 2.5:
ADF/cofilin / 2.5.1:
Profilin / 2.5.2:
Adenylyl cyclase-associated protein / 2.5.3:
Cross-linking and bundling factors / 2.6:
Fimbrin / 2.6.1:
Villin and gelsolin-related proteins / 2.6.2:
115-ABP / 2.6.3:
eEF-1[alpha] / 2.6.4:
Spectrin / 2.6.5:
Capping factors / 2.7:
Capping protein (CP) / 2.7.1:
CapG / 2.7.2:
Others / 2.7.3:
Nucleation complexes / 2.8:
Arp2/3 / 2.8.1:
Other F-actin binding proteins / 2.9:
SuSy / 2.9.1:
ABP/MAP190 / 2.9.2:
AIP1 / 2.9.3:
Annexin / 2.9.4:
Gephyrin/AtCNX1 / 2.9.5:
AtSH3P / 2.9.6:
Caldesmon / 2.9.7:
Tropomyosin / 2.9.8:
Vinculin / 2.9.9:
LIM proteins / 2.9.10:
Acknowledgements / 2.10:
Fundamental cytoskeletal activities / Part 2:
Expanding beyond the great divide: the cytoskeleton and axial growth / Geoffrey O. Wasteneys ; David A. Collings3:
Division planes and the establishment of axiality / 3.1:
Cell plate formation and expansion / 3.2.1:
Phragmoplast microtubule and microfilament organization / 3.2.2:
Motor proteins during phragmoplast formation and expansion / 3.2.3:
Vesicle transport in the phragmoplast could be kinesin-based / 3.2.3.1:
Structural MAPs and kinesins function in phragmoplast formation and expansion / 3.2.3.2:
Expansion of the phragmoplast and cell plate requires both kinesins and myosins / 3.2.3.3:
Cytoskeletal mutants defective in cytokinesis / 3.2.4:
Setting up for axial growth: distinguishing lateral and end walls / 3.3:
The cytoskeleton at end walls of elongating cells / 3.3.1:
Establishing axial growth / 3.4:
A transverse cortical microtubule array is essential for axial growth / 3.4.1:
Microtubules and their relationship with cellulose microfibrils and xyloglucans / 3.4.2:
Does the cytoskeleton regulate wall polysaccharide and protein composition? / 3.4.3:
Hormones, cytoskeleton and wall extensibility / 3.4.4:
How does the actin cytoskeleton contribute to cell elongation? / 3.4.5:
Polar auxin transport and its regulation by the actin cytoskeleton / 3.5:
Auxin transport and the chemiosmotic theory / 3.5.1:
Important questions concerning auxin transport and the actin cytoskeleton / 3.5.2:
Small GTPases may be a key to the shuttling of auxin efflux carriers / 3.5.3:
Auxin and gene expression / 3.5.4:
Bending and twisting--the consequences of differential growth / 3.6:
Tropic bending responses / 3.6.1:
Twisting / 3.6.2:
Conclusions and future perspectives / 3.7:
Re-staging plant mitosis / Magdalena Weingarner ; Laszlo Bogre ; John H. Doonan4:
The cyclin dependent protein kinases / 4.1:
Cdk structure and diversity / 4.2.1:
Regulation of Cdk activity / 4.2.2:
Sequence of events during mitosis / 4.3:
Stage 1: preparation for mitosis / 4.3.1:
Stage 2: commitment to mitosis / 4.3.2:
Stage 3: preventing premature genome separation / 4.3.3:
Stage 4: separating the genome / 4.3.4:
Stage 5: exit from mitosis / 4.3.5:
Preparing for mitosis / 4.4:
Animal A-type cyclins / 4.4.1:
Plant A-type cyclins / 4.4.2:
The DNA damage checkpoint / 4.4.3:
Commitment to mitosis / 4.5:
Commitment to mitosis in animal cells / 4.5.1:
Commitment to mitosis in plant cells / 4.5.2:
The role of animal B-type cyclins / 4.5.3:
The role of plant B-type cyclins / 4.5.4:
Condensation of chromatin / 4.6:
Condensation of chromatin in animal cells / 4.6.1:
Condensation of chromatin in plant cells / 4.6.2:
Spindle formation / 4.7:
Spindle formation in animal cells / 4.7.1:
Spindle formation in plant cells / 4.7.2:
The spindle assembly checkpoint pathway / 4.8:
Regulation of APC / 4.8.1:
Separating the genome / 4.9:
Onset of APC-mediated proteolysis in animal cells / 4.9.1:
Onset of APC-mediated proteolysis in plant cells / 4.9.2:
Exit from mitosis and cytokinesis / 4.10:
Regulators of late mitotic events in animal cells / 4.10.1:
Late mitotic events in plant cells / 4.10.2:
Concluding remarks and perspectives / 4.11:
Organelle movements: transport and positioning / Franz Grolig5:
Transport and positioning of particular organelles / 5.1:
Peroxisome / 5.2.1:
Endoplasmic reticulum / 5.2.2:
Golgi / 5.2.3:
Vacuoles / 5.2.4:
Mitochondria / 5.2.5:
Chloroplasts / 5.2.6:
Algae / 5.2.6.1:
Mosses / 5.2.6.2:
Ferns / 5.2.6.3:
Seed plants / 5.2.6.4:
Nucleus / 5.2.7:
Premitotic nuclear positioning / 5.2.7.1:
Nuclear migrations elicited by external stimuli / 5.2.7.2:
Light-governed nuclear migration / 5.2.7.3:
Phragmoplast/cytokinesis / 5.2.8:
The cell wall: a sensory panel for signal transduction / Keiko Sugimoto-Shirasu ; Nicholas C. Carpita ; Maureen C. McCann5.3:
Plant cell wall composition and architecture / 6.1:
Cellulose / 6.2.1:
Cross-linking glycans / 6.2.2:
Pectins / 6.2.3:
Structural proteins / 6.2.4:
Aromatic substances / 6.2.5:
Cell growth and wall extensibility / 6.3:
The biophysics of growth underpins cell wall dynamics / 6.3.1:
The biochemical determinants of yield threshold and extensibility / 6.3.2:
Functional architecture revealed by mutation and transgenic approaches / 6.4:
The cellulose--cross-linking glycan network / 6.4.1:
The role of the cytoskeleton / 6.4.3:
Targeting of cell wall components / 6.5.1:
Mechanical connections / 6.5.2:
Sensing through the plasma membrane / 6.5.3:
The cytoskeleton and plant cell morphogenesis / 6.6:
Development of root hairs / Claire Grierson ; Tijs Ketelaar7:
Roles of the cytoskeleton in root hair morphogenesis / 7.1:
Microtubules / 7.2.1:
Microtubules affect root hair cell fate / 7.2.1.1:
Microtubules and root hair initiation / 7.2.1.2:
Microtubules control direction of root hair tip growth and prevent hairs from branching / 7.2.1.3:
Microtubules help to move the nucleus during tip growth in some species, but not in others / 7.2.1.4:
Actin filaments / 7.2.2:
Actin limits the size of the initiation site / 7.2.2.1:
Actin mediates tip growth by targeting vesicle delivery / 7.2.2.2:
F-actin is essential for the Arabidopsis nucleus to move during and after tip growth / 7.2.2.3:
Actin mediates cytoplasmic streaming in roots hairs / 7.2.2.4:
Actin at the end of tip growth / 7.2.2.5:
Mechanisms that regulate the cytoskeleton during root hair development / 7.3:
Mechanisms regulating root hair patterning / 7.3.1:
Mechanisms that regulate initiation / 7.3.2:
Mechanisms regulating tip growth / 7.3.3:
Mechanisms acting at the end of tip growth / 7.3.4:
The genetic network controlling root hair morphogenesis in Arabidopsis / 7.4:
Genes involved in root hair patterning / 7.4.1:
Genes affecting initiation / 7.4.2:
Genes required for tip growth to be established / 7.4.3:
Genes required to sustain and direct tip growth / 7.4.4:
Genes involved in nuclear movement / 7.4.5:
Genes with roles at the end of tip growth / 7.4.6:
Signaling the cytoskeleton in pollen tube germination and growth / Rui Malho ; Luisa Camacho7.5:
Different signaling pathways converge in the cytoskeleton / 8.1:
The actin cytoskeleton is the major motor driving force in pollen tube growth / 8.3:
Microtubules and microtubule-associated proteins in pollen tube growth / 8.4:
Ca[superscript 2+], modulator of the cytoskeleton / 8.5:
Signaling the cytoskeleton through phosphoinositides / 8.6:
Calmodulin, a primary Ca[superscript 2+] sensor / 8.7:
Protein kinases and phosphatases / 8.8:
14-3-3 proteins / 8.9:
The role of cyclic nucleotides / 8.10:
GTPases, the signaling switches / 8.11:
Transducons - the unity for signaling / 8.12:
Cytoskeletal requirements during Arabidopsis trichome development / Mark Beilstein ; Dan Szymanski8.13:
Trichome morphogenesis / 9.1:
Arabidopsis / 9.2.1:
Members of the Brassicaceae / 9.2.2:
Arabidopsis trichome development / 9.3:
Initiation and leaf development / 9.3.1:
Genetics of initiation / 9.3.2:
Arabidopsis trichome morphogenesis / 9.4:
Cytoskeletal inhibitors / 9.4.1:
Cytoskeletal organization in developing trichomes / 9.4.2:
Genetics of trichome morphogenesis / 9.4.2.1:
Reduced branching mutants: microtubule-based functions / 9.5.1:
ZWICHEL (ZWI) / 9.5.1.1:
Tubulin folding cofactors (TFCs) / 9.5.1.2:
Arabidopsis katanin small subunit (AtKSS) / 9.5.1.3:
ANGUSTIFOLIA (AN) / 9.5.1.4:
SPIKE1 (SPK1) / 9.5.1.5:
The distorted trichome shape mutants: actin-based functions / 9.5.2:
Signaling and the cytoskeleton in guard cells / Paula Duque ; Juan-Pablo Sanchez ; Nam-Hai Chua9.6:
Guard cell signaling / 10.1:
Cytosolic calcium / 10.2.1:
Cytosolic pH / 10.2.2:
Cyclic ADP-ribose / 10.2.3:
Inositol 1,4,5-trisphosphate and other lipid-derived second messengers / 10.2.4:
Membrane trafficking / 10.2.5:
New key intermediates / 10.2.7:
The cytoskeleton in guard cell function / 10.3:
(Re)organization of actin filaments / 10.3.1:
Rho GTPases / 10.3.1.1:
Cell volume regulation / 10.3.1.4:
Other hints of signaling to the guard cell actin cytoskeleton / 10.3.1.5:
Involvement of microtubules / 10.3.2:
Conclusions and perspectives / 10.4:
Acknowledgments
Index
The cytoskeleton: the machinery and key moleculesMicrotubules and microtubule-associated proteins / Jordi Chan, John Innes Centre, Norwich, UK ; Patrick J. Hussey, Department of Biological Sciences, University of Durham, UK
Actin and actinmodulating proteins / Chris J. Staiger, Department of Biological Sciences, Purdue University, Indiana, USA
Fundamental cytoskeleton activities
The cytoskeleton and plant cell morphogenesisDevelopment of root hairs / David A. Collings, Research School of Biological Sciences, The Australian National University, Canberra, Australia ; Magdalena Weingarner, Max-Planck-Institute of Molecular Plant Physiology, Golm, Germany ; Laszlo Bgre, School of Biological Sciences, University of London, Surrey, UK ; John Doonan, John Innes Centre, Norwich, UK ; Franz Grolig, Fachbereich Biologie / Botanik, Philipps-Universitt, Marburg, Germany ; Nicholas C. Carpita, Department of Botany and Plant Pathology, Purdue University, Indiana, USA ; Maureen McCann, John Innes Centre, Norwich, UK ; Tijs Ketelaar, School of Biological Sciences, University of Bristol, UK
List of contributors
Preface
The cytoskeleton: the machinery and key molecules / Part 1:
23.

図書

図書
Ewen Smith, Geoffrey Dent
出版情報: Chichester : J. Wiley & Sons, c2005  x, 210 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction, Basic Theory, and Principles / Chapter 1:
Introduction / 1:
History / 1.1:
Basic Theory / 1.2:
Molecular Vibrations / 1.3:
Group Vibrations / 1.4:
An Approach to Interpretation / 1.5:
Summary / 1.6:
Bibliography and Refs / 1.7:
The Raman Experiment - Raman Instrumentation, Data Handling and Practical Aspects of Interpretation / Chapter 2:
Choice of Instruments / 2.1:
Visible Excitation / 2.3:
Raman Microscopes / 2.3.1:
Fibre Optic Couplings and Wave Guides / 2.3.2:
Near Infrared Excitation / 2.4:
Raman Sample Preparation and Handling / 2.5:
Raman Sample Handling / 2.5.1:
Sample Mounting - Optical Considerations / 2.5.2:
Sample Mounting Accessories / 2.6:
Small fibres, films, liquids and powders / 2.6.1:
Variable Temperature and Pressure Cells / 2.6.2:
Special Applications - Thin films, catalysts / 2.6.3:
Flow through/reaction cells, sample changers/automated mounts / 2.6.4:
Fibre Optic and Guided Wave Sensing / 2.6.5:
Microscopy and Imaging / 2.7:
Depth Profiling / 2.7.1:
Imaging and Mapping / 2.7.2:
Calibration / 2.8:
Data Handling, Manipulation and Quantitation / 2.9:
Production of Spectra / 2.9.1:
Display of Spectra / 2.9.2:
Spectrum Scales / 2.9.2.1:
Spectral Enhancement/Loss of Data / 2.9.2.2:
Quantitation / 2.9.3:
Quantitation - Hardware and Sampling Features / 2.9.3.1:
Quantitation - Data Handling Considerations / 2.9.3.2:
Practical Aspects of Qualitative Interpretation / 2.10:
Approach to Interpretation of a Raman Spectrum of an Unknown Sample / 2.10.1:
Knowledge of the Sample / 2.10.1.1:
Sample Preparation Effects / 2.10.1.2:
Instrument/Software Effects / 2.10.1.3:
The Spectrum / 2.10.1.4:
Computer Aided Spectrum Interpretation / 2.10.2:
Library Search Systems / 2.10.2.1:
Structural Determination Aids / 2.10.2.2:
Spectra Formats for Transfer and Exchange of Data / 6.4.1.1:
The Internet / 2.10.2.4:
Bibliography / 2.11:
Hard Copy Spectra Collections
Software Interpretation Tools, Databases, and Internet Sites
Refs
Theory of Raman Spectroscopy / Chapter 3:
Absorption and Scattering / 3.1:
States of a system and Hookes Law / 3.3:
The nature of polarisability and the measurement of polarisation / 3.4:
The basic selection rule / 3.5:
Number and symmetry of vibrations / 3.6:
Symmetry elements and point groups / 3.7:
The mutual exclusion rule / 3.8:
The Kramer Heisenberg Dirac Expression / 3.9:
Conclusions to be drawn from theory / 3.10:
Resonance Raman Scattering / Chapter 4:
Theorectical Aspects / 4.1:
The Basic Process / 4.2.1:
Electronic information / 4.2.2:
Resonance Excitation Profile / 4.2.3:
Practical Aspects / 4.2.4:
Examples Of The Use Of Resonance Raman Scattering / 4.4:
Small Molecules / 4.4.1:
Larger Molecules / 4.4.2:
Conclusions / 4.5:
Surface Enhanced Raman Scattering / Chapter 5:
Theory / 5.1:
Electromagnetic and charge transfer enhancement / 5.3:
Electromagnetic Excitation / 5.4:
Charge Transfer / 5.5:
Selection Rules / 5.6:
Applications of SERS / 5.7:
Applications of SERRS / 5.8:
The Basic Method / 5.9:
Applications / Chapter 6:
Inorganics / 6.1:
Art and Archaeology / 6.3:
Polymers / 6.4:
Overview / 6.4.1:
Simple Qualitative polymer Studies / 6.4.2:
Quantitative Polymer Studies / 6.4.3:
Colour / 6.5:
Raman Colour Probes / 6.5.1:
Insitu Analysis / 6.5.2:
Raman studies of Tautomerism in azo dyes / 6.5.3:
Polymorphism in Dyes / 6.5.4:
Electronics / 6.6:
Biological and Pharmaceuticals / 6.7:
Biological / 6.7.1:
Solid Phase Organic Chemistry / 6.7.3:
Pharmaceuticals / 6.7.4:
Non Contact Insitu Measurements / 6.7.4.1:
Molecular Specificity / 6.7.4.2:
Polymorphism / 6.7.4.3:
Forensics / 6.8:
Process Analysis and Catalysts / 6.9:
Electronics and Semiconductors / 6.9.1:
PCl3 Production Monitoring / 6.9.3:
Anatase and Rutile forms of Titanium Dioxide / 6.9.4:
Polymers and Emulsions / 6.9.5:
Pharmaceutical Industry / 6.9.6:
Fermentations / 6.9.7:
Gases / 6.9.8:
Catalysts / 6.9.9:
More Advanced Techniques / 6.10:
Flexible Optics / 7.1:
Tuneable Lasers, Frequency Doubling and Pulsed Lasers / 7.2:
Spatially resolved systems / 7.3:
Non linear Raman spectroscopy / 7.4:
Time Resolved Scattering / 7.8:
Raman optical activity / 7.9:
Ultraviolet spectroscopy / 7.10:
Acknowledgements
Introduction, Basic Theory, and Principles / Chapter 1:
Introduction / 1:
24.

図書

図書
Edmond de Hoffmann, Vincent Stroobant
出版情報: Chichester, U.K. : J. Wiley, c2007  xii, 489 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Principles
Diagram of a Mass Spectrometer
History
Ion Free Path
Ion Sources / 1:
Electron Ionization / 1.1:
Chemical Ionization / 1.2:
Proton transfer / 1.2.1:
Adduct formation / 1.2.2:
Charge-transfer chemical ionization / 1.2.3:
Reagent gas / 1.2.4:
Negative ion formation / 1.2.5:
Desorption chemical ionization / 1.2.6:
Field Ionization / 1.3:
Fast Atom Bombardment and Liquid Secondary Ion Mass Spectrometry / 1.4:
Field Desorption / 1.5:
Plasma Desorption / 1.6:
Laser Desorption / 1.7:
Matrix-Assisted Laser Desorption Ionization / 1.8:
Principle of MALDI / 1.8.1:
Practical considerations / 1.8.2:
Fragmentations / 1.8.3:
Atmospheric pressure matrix-assisted laser desorption ionization / 1.8.4:
Thermospray / 1.9:
Atmospheric Pressure Ionization / 1.10:
Electrospray / 1.11:
Multiply charged ions / 1.11.1:
Electrochemistry and electric field as origins of multiply charged ions / 1.11.2:
Sensitivity to concentration / 1.11.3:
Limitation of ion current from the source by the electrochemical process / 1.11.4:
Atmospheric Pressure Chemical Ionization / 1.11.5:
Atmospheric Pressure Photoionization / 1.13:
Atmospheric Pressure Secondary Ion Mass Spectrometry / 1.14:
Desorption electrospray ionization / 1.14.1:
Direct analysis in real time / 1.14.2:
Inorganic Ionization Sources / 1.15:
Thermal ionization source / 1.15.1:
Spark source / 1.15.2:
Glow discharge source / 1.15.3:
Inductively coupled plasma source / 1.15.4:
Gas-Phase Ion-Molecule Reactions / 1.15.5:
Formation and Fragmentation of Ions: Basic Rules / 1.17:
Electron ionization and photoionization under vacuum / 1.17.1:
Ionization at low pressure or at atmospheric pressure / 1.17.2:
Formation of aggregates or clusters / 1.17.3:
Reactions at the interface between source and analyser / 1.17.6:
Mass Analysers / 2:
Quadrupole Analysers / 2.1:
Description / 2.1.1:
Equations of motion / 2.1.2:
Ion guide and collision cell / 2.1.3:
Spectrometers with several quadrupoles in tandem / 2.1.4:
Ion Trap Analysers / 2.2:
The 3D ion trap / 2.2.1:
The 2D ion trap / 2.2.2:
The Electrostatic Trap or 'Orbitrap' / 2.3:
Time-of-Flight Analysers / 2.4:
Linear time-of-flight mass spectrometer / 2.4.1:
Delayed pulsed extraction / 2.4.2:
Reflectrons / 2.4.3:
Tandem mass spectrometry with time-of-flight analyser / 2.4.4:
Orthogonal acceleration time-of-flight instruments / 2.4.5:
Magnetic and Electromagnetic Analysers / 2.5:
Action of the magnetic field / 2.5.1:
Electrostatic field / 2.5.2:
Dispersion and resolution / 2.5.3:
Tandem mass spectrometry in electromagnetic analysers / 2.5.4:
Ion Cyclotron Resonance and Fourier Transform Mass Spectrometry / 2.6:
General principle / 2.6.1:
Ion cyclotron resonance / 2.6.2:
Fourier transform mass spectrometry / 2.6.3:
MS[superscript n] in ICR/FTMS instruments / 2.6.4:
Hybrid Instruments / 2.7:
Electromagnetic analysers coupled to quadrupoles or ion trap / 2.7.1:
Ion trap analyser combined with time-of-flight or ion cyclotron resonance / 2.7.2:
Hybrids including time-of-flight with orthogonal acceleration / 2.7.3:
Detectors and Computers / 3:
Detectors / 3.1:
Photographic plate / 3.1.1:
Faraday cup / 3.1.2:
Electron multipliers / 3.1.3:
Electro-optical ion detectors / 3.1.4:
Computers / 3.2:
Functions / 3.2.1:
Instrumentation / 3.2.2:
Data acquisition / 3.2.3:
Data conversion / 3.2.4:
Data reduction / 3.2.5:
Library search / 3.2.6:
Tandem Mass Spectrometry / 4:
Tandem Mass Spectrometry in Space or in Time / 4.1:
Tandem Mass Spectrometry Scan Modes / 4.2:
Collision-Activated Decomposition or Collision-Induced Dissociation / 4.3:
Collision energy conversion to internal energy / 4.3.1:
High-energy collision (keV) / 4.3.2:
Low-energy collision (between 1 and 100 eV) / 4.3.3:
Other Methods of Ion Activation / 4.4:
Reactions Studied in MS/MS / 4.5:
Tandem Mass Spectrometry Applications / 4.6:
Structure elucidation / 4.6.1:
Selective detection of target compound class / 4.6.2:
Ion-molecule reaction / 4.6.3:
The kinetic method / 4.6.4:
Mass Spectrometry/Chromatography Coupling / 5:
Elution Chromatography Coupling Techniques / 5.1:
Gas chromatography/mass spectrometry / 5.1.1:
Liquid chromatography/mass spectrometry / 5.1.2:
Capillary electrophoresis/mass spectrometry / 5.1.3:
Chromatography Data Acquisition Modes / 5.2:
Data Recording and Treatment / 5.3:
Data recording / 5.3.1:
Instrument control and treatment of results / 5.3.2:
Analytical Information / 6:
Mass Spectrometry Spectral Collections / 6.1:
High Resolution / 6.2:
Information at different resolving powers / 6.2.1:
Determination of the elemental composition / 6.2.2:
Isotopic Abundances / 6.3:
Low-mass Fragments and Lost Neutrals / 6.4:
Number of Rings or Unsaturations / 6.5:
Mass and Electron Parities, Closed-shell Ions and Open-shell Ions / 6.6:
Electron parity / 6.6.1:
Mass parity / 6.6.2:
Relationship between mass and electron parity / 6.6.3:
Quantitative Data / 6.7:
Specificity / 6.7.1:
Sensitivity and detection limit / 6.7.2:
External standard method / 6.7.3:
Sources of error / 6.7.4:
Internal standard method / 6.7.5:
Isotopic dilution method / 6.7.6:
Fragmentation Reactions / 7:
Electron Ionization and Fragmentation Rates / 7.1:
Quasi-Equilibrium and RRKM Theory / 7.2:
Ionization and Appearance Energies / 7.3:
Fragmentation Reactions of Positive Ions / 7.4:
Fragmentation of odd-electron cations or radical cations (OE[superscript [middle dot]+]) / 7.4.1:
Fragmentation of cations with an even number of electrons (EE[superscript +]) / 7.4.2:
Fragmentations obeying the parity rule / 7.4.3:
Fragmentations not obeying the parity rule / 7.4.4:
Fragmentation Reactions of Negative Ions / 7.5:
Fragmentation mechanisms of even electron anions (EE[superscript -]) / 7.5.1:
Fragmentation mechanisms of radical anions (OE[superscript [middle dot]-]) / 7.5.2:
Charge Remote Fragmentation / 7.6:
Spectrum Interpretation / 7.7:
Typical ions / 7.7.1:
Presence of the molecular ion / 7.7.2:
Typical neutrals / 7.7.3:
A few examples of the interpretation of mass spectra / 7.7.4:
Analysis of Biomolecules / 8:
Biomolecules and Mass Spectrometry / 8.1:
Proteins and Peptides / 8.2:
ESI and MALDI / 8.2.1:
Structure and sequence determination using fragmentation / 8.2.2:
Applications / 8.2.3:
Oligonucleotides / 8.3:
Mass spectra of oligonucleotides / 8.3.1:
Applications of mass spectrometry to oligonucleotides / 8.3.2:
Fragmentation of oligonucleotides / 8.3.3:
Characterization of modified oligonucleotides / 8.3.4:
Oligosaccharides / 8.4:
Mass spectra of oligosaccharides / 8.4.1:
Fragmentation of oligosaccharides / 8.4.2:
Degradation of oligosaccharides coupled with mass spectrometry / 8.4.3:
Lipids / 8.5:
Fatty acids / 8.5.1:
Acylglycerols / 8.5.2:
Bile acids / 8.5.3:
Metabolomics / 8.6:
Mass spectrometry in metabolomics / 8.6.1:
Exercises / 8.6.2:
Questions
Answers
Appendices
Nomenclature
Units
Definitions
Analysers
Detection
Ionization
Ion types
Fragmentation
Acronyms and abbreviations
Fundamental Physical Constants
Table of Isotopes in Ascending Mass Order / 4A:
Table of Isotopes in Alphabetical Order / 4B:
Isotopic Abundances (in %) for Various Elemental Compositions CHON
Gas-Phase Ion Thermochemical Data of Molecules
Gas-Phase Ion Thermochemical Data of Radicals
Literature on Mass Spectrometry
Mass Spectrometry on Internet
Index
Preface
Introduction
Principles
25.

図書

図書
A. De Stefanis and A.A.G. Tomlinson
出版情報: Uetikon-Zuerich, Switzerland : Trans Tech Publications, c2001  94, iv p. ; 25 cm
シリーズ名: Materials science foundations ; 14
所蔵情報: loading…
目次情報: 続きを見る
Scanning Tunnelling Microscopy / 1:
Introduction and history / 1.1:
The physical basis of STM / 1.2:
Instrumentation, past and present / 1.3:
STM Image interpretation / 1.4:
STM spectroscopy / 1.5:
Atomic Force and Related Force Microscopies / 2:
History / 2.1:
Principles / 2.2:
Instrumentation and an AFM Sitting / 2.3:
Other Microscopy Techniques Comparison / 2.4:
Applications of SPM / 2.5:
Scientific / 2.5.1:
Solid state structure / 2.5.1.1:
Films, layers coatings / 2.5.1.2:
Tribology / 2.5.1.3:
Interatomic Forces / 2.5.2:
Technological / 2.5.3:
Micro and nanoelectronic / 2.5.3.1:
Magnetic Force Microscopy (MFM) / 2.5.3.2:
Plastics and Polymers / 2.5.3.3:
Industrial coatings / 2.5.3.4:
Nanofabrication / 2.5.3.5:
New techniques and the future / 2.5.3.6:
References / 3:
1 SCANNING TUNNELLING MICROSCOPY 1.1 Introduction and History / A. De Stefanis; A.A.G. Tomlinson
1.2 The Physical Basis of STM
1.3 Instrumentation, Past and Present
1.4 STM Image Interpretation
1.5 STM Spectroscopy
2 ATOMIC FORCE AND RELATED FORCE MICROSCOPIES. 2.1 History
2.2 Principles
2.3 Instrumentation and an AFM Sitting
2.4 Other Microscopy Techniques Comparison
2.5 Applications of SPM
Scanning Tunnelling Microscopy / 1:
Introduction and history / 1.1:
The physical basis of STM / 1.2:
26.

図書

図書
Rolf Eligehausen, Rainer Mallée, John F. Silva
出版情報: Berlin : Ernst & Sohn, c2006  xiii, 378 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
A historical review / 1.1:
Requirements for fastenings / 1.2:
Nature and direction of actions / 1.3:
Fastening systems / 2:
General / 2.1:
Cast-in-place systems / 2.2:
Lifting inserts / 2.2.1:
Anchor channels / 2.2.2:
Headed studs / 2.2.3:
Threaded sleeves / 2.2.4:
Drilled-in systems / 2.3:
Drilling techniques / 2.3.1:
Installation configurations / 2.3.2:
Drilled-in anchor types / 2.3.3:
Mechanical expansion anchors / 2.3.3.1:
Undercut anchors / 2.3.3.2:
Bonded anchors / 2.3.3.3:
Screw anchors / 2.3.3.4:
Ceiling hangers / 2.3.3.5:
Plastic anchors / 2.3.3.6:
Direct installation / 2.4:
Principles / 3:
Behaviour of concrete in tension / 3.1:
Failure mechanisms of fastenings / 3.3:
Theoretical studies / 3.3.1:
Experimental studies / 3.3.2:
Conclusions drawn from theoretical and experimental studies / 3.3.3:
Cracked concrete / 3.4:
Why anchors may use the tensile strength of concrete / 3.5:
Prestressing of anchors / 3.6:
Loads on anchors / 3.7:
Calculation according to elastic theory / 3.7.1:
Tension load / 3.7.1.1:
Shear loads / 3.7.1.2:
Calculation according to non-linear methods / 3.7.2:
Calculation of loads on anchors of anchor channels / 3.7.3:
Tension loads / 3.7.3.1:
Behaviour of headed studs, undercut anchors and metal expansion anchors in non-cracked and cracked concrete / 3.7.3.2:
Non-cracked concrete / 4.1:
Load-displacement behaviour and modes of failure / 4.1.1:
Failure load associated with steel rupture / 4.1.1.2:
Failure load associated with concrete cone breakout / 4.1.1.3:
Failure load for local concrete side blow-out failure / 4.1.1.4:
Failure loads associated with pull-out and pull-through failures / 4.1.1.5:
Failure load associated with splitting of the concrete / 4.1.1.6:
Shear / 4.1.2:
Failure load associated with pry-out / 4.1.2.1:
Concrete edge failure for a shear load perpendicular to the edge / 4.1.2.4:
Concrete edge breakout load associated with shear loads oriented at an angle [alpha] < 90[degree] to the edge / 4.1.2.5:
Combined tension and shear (oblique loading) / 4.1.3:
Failure load / 4.1.3.1:
Bending of the baseplate / 4.1.4:
Sustained loads / 4.1.5:
Fatigue loading / 4.1.6:
Tension / 4.2:
Failure load corresponding to steel failure / 4.2.1.1:
Failure load associated with local blow-out failure / 4.2.1.3:
Failure load associated with pull-out/pull-through failure / 4.2.1.5:
Failure load associated with steel failure / 4.2.1.6:
Failure load associated with pry-out failure / 4.2.2.3:
Failure load associated with concrete edge breakout / 4.2.2.4:
Combined tension and shear / 4.2.3:
Behaviour of cast-in anchor channels in non-cracked and cracked concrete / 4.2.3.1:
Failure load associated with local concrete side blow-out failure / 5.1:
Failure load associated with pull-out failure / 5.1.1.5:
Failure load associated with concrete edge failure / 5.1.1.6:
Sustained and fatigue loading / 5.1.3:
Behaviour of bonded anchors in non-cracked and cracked concrete / 5.2:
Failure load associated with concrete breakout/pull-out failure / 6.1:
Failure load associated with splitting / 6.1.1.4:
Shear load / 6.1.2:
Combined tension and shear load / 6.1.2.1:
Environmental factors / 6.1.4:
Failure load corresonding to steel failure / 6.2:
Failure load corresponding to pull-out failure / 6.2.1.3:
Failure loads corresponding to concrete cone failure and splitting of the concrete / 6.2.1.4:
Sustained and fatigue loads / 6.2.2:
Bonded undercut anchors and bonded expansion anchors / 6.2.5:
Shear and combined tension and shear load / 6.3.1:
Behaviour of plastic anchors in non-cracked and cracked concrete / 7:
Long-term behaviour / 7.1:
Behaviour of power actuated fasteners in non-cracked and cracked concrete / 7.2:
Sustained and repetitive loading / 8.1:
Behaviour of screw anchors in non-cracked and cracked concrete / 8.2:
Installation / 9.1:
Load-displacement behaviour and failure modes / 9.2:
Failure loads associated with steel failure / 9.2.1.2:
Failure loads associated with pull-out failure / 9.2.1.3:
Failure loads associated with concrete cone failure / 9.2.1.4:
Shear load and combined tension and shear load / 9.2.2:
Behaviour of anchors under seismic loading / 9.3.3:
Anchor applications / 10.1:
Seismic actions / 10.2:
Assumptions regarding the condition of the concrete / 10.3:
Behaviour of anchors under seismic conditions / 10.4:
Tension cycling / 10.4.1:
Shear cycling / 10.4.2:
Combined tension and shear cycling / 10.4.3:
Loading rate / 10.4.4:
Load cycle sequence / 10.4.5:
Crack cycling / 10.4.6:
Behaviour of anchors in fire / 11:
Corrosion of anchors / 12:
Influence of fastenings on the capacity of components in which they are installed / 13:
Design of fastenings / 14:
Verifying the suitability of an anchor system / 14.1:
Design of fastenings with post-installed metal expansion, undercut and bonded expansion anchors according to the EOTA Guideline / 14.3:
Scope / 14.3.1:
Design concept / 14.3.3:
Analysis for the ultimate limit state / 14.3.3.1:
Analysis for the serviceability limit state / 14.3.3.2:
Forces on anchors / 14.3.4:
Characteristic resistances / 14.3.5:
Tension resistances / 14.3.5.1:
Shear resistances / 14.3.5.2:
Serviceability limit state / 14.3.5.3:
Anchor displacements / 14.3.6.1:
Shear load with changing sign / 14.3.6.2:
Additional analyses for ensuring the characteristic resistance of concrete member / 14.3.7:
Shear resistance of the concrete member / 14.3.7.1:
Resistance to splitting forces / 14.3.7.3:
Design of fastenings according to the CEN Technical Specification / 14.4:
Basis of design / 14.4.1:
Partial safety factors / 14.4.4:
Static actions, indirect actions and fatigue actions / 14.4.4.1:
Resistances / 14.4.4.2:
Ultimate limit state (static loading) and seismic loading / 14.4.4.2.1:
Limit state of fatigue / 14.4.4.2.2:
Forces acting on fasteners / 14.4.4.2.3:
Distribution of loads / 14.4.5.1:
Shear loads without lever arm / 14.4.5.2.2:
Shear loads with lever arm / 14.4.5.2.3:
Design of headed fasteners / 14.4.6:
Determination of action effects / 14.4.6.1:
Verification of ultimate limit state by elastic analysis / 14.4.6.2:
Combined tension and shear loads / 14.4.6.2.1:
Design of anchor channels / 14.4.7:
Derivation of forces acting on the anchors of the anchor channel / 14.4.7.1:
Tension forces in the supplementary reinforcement / 14.4.7.1.1:
Anchor channels without supplementary reinforcement / 14.4.7.2.1:
Anchor channels with supplementary reinforcement / 14.4.7.3.3.2:
Design of post-installed fasteners - mechanical systems / 14.4.8:
Design of post-installed fasteners - chemical systems / 14.4.8.1:
Fatigue loads / 14.4.9.1:
Seismic loads / 14.4.11:
Actions / 14.4.11.1:
Verification of serviceability limit state / 14.4.11.3:
Fire / 14.4.13:
Resistance / 14.4.13.1:
Tension loading / 14.4.13.3.1:
Shear loading / 14.4.13.3.2:
Combined tension and shear loading / 14.4.13.3.3:
Plastic design of fastenings with headed fasteners and post-installed fasteners / 14.4.14:
Field of application / 14.4.14.1:
Loads on fastenings / 14.4.14.2:
Resistance to tension load / 14.4.14.3:
Resistance to shear load / 14.4.14.3.3:
Resistance to combined tension and shear load / 14.4.14.3.4:
Design of fastenings with cast-in and post-installed metal anchors according to ACI 318-05 Appendix D / 14.5:
Tension resistance / 14.5.1:
Shear resistance / 14.5.5.3:
Required edge distances, spacings and member thicknesses to preclude splitting failure / 14.5.5.4:
Resistance where load cases include seismic forces / 14.5.7:
Provisions of ACI 349-01 Appendix B / 14.5.8:
Ductile design requirements / 14.5.8.1:
Baseplate design / 14.5.8.3:
References
Subject Index
Introduction / 1:
A historical review / 1.1:
Requirements for fastenings / 1.2:
27.

図書

図書
R. Paul Drake
出版情報: Berlin : Springer, c2006  xv, 534 p. ; 25 cm
シリーズ名: Shock wave and high pressure phenomena
所蔵情報: loading…
目次情報: 続きを見る
Introduction to High-Energy-Density Physics / 1:
Some Historical Remarks / 1.1:
Regimes of High-Energy-Density Physics / 1.2:
An Introduction to Inertial Confinement Fusion / 1.3:
An Introduction to Experimental Astrophysics / 1.4:
Some Connections to Prior Work / 1.5:
Variables and Notation / 1.6:
Descriptions of Fluids and Plasmas / 2:
The Euler Equations for a Polytropic Gas / 2.1:
The Maxwell Equations / 2.2:
More General and Complete Single-Fluid Equations / 2.3:
General Single-Fluid Equations / 2.3.1:
Magnetohydrodynamics / 2.3.2:
Single Fluid, Three Temperature / 2.3.3:
Approaches to Computer Simulation / 2.3.4:
Plasma Theories / 2.4:
Regimes of Validity of Traditional Plasma Theory / 2.4.1:
The Two-Fluid Equations / 2.4.2:
The Kinetic Description / 2.4.3:
Single-Particle Motions / 2.5:
Properties of High-Energy-Density Plasmas / 3:
Simple Equations of State / 3.1:
Polytropic Gases / 3.1.1:
Radiation-Dominated Plasma / 3.1.2:
Fermi-Degenerate EOS / 3.1.3:
Ionizing Plasmas / 3.2:
Ionization Balance from the Saha Equation / 3.2.1:
Continuum Lowering and the Ion Sphere Model / 3.2.2:
Coulomb Interactions / 3.2.3:
Thermodynamics of Ionizing Plasmas / 3.3:
Generalized Polytropic Indices / 3.3.1:
Pressure, Energy, and Their Consequences / 3.3.2:
The EOS Landscape / 3.3.3:
Equations of State for Computations / 3.4:
The Thomas-Fermi Model and QEOS / 3.4.1:
Tabular Equations of State / 3.4.2:
Equations of State in the Laboratory and in Astrophysics / 3.5:
The Astrophysical Context for EOS / 3.5.1:
Connecting EOS from the Laboratory to Astrophysics / 3.5.2:
Experiments to Measure Equations of State / 3.6:
Direct Flyer-Plate Measurements / 3.6.1:
Impedance Matching / 3.6.2:
Other Techniques / 3.6.3:
Shocks and Rarefactions / 4:
Shock Waves / 4.1:
Jump Conditions / 4.1.1:
The Shock Hugoniot and Equations of State / 4.1.2:
Useful Shock Relations / 4.1.3:
Entropy Changes Across Shocks / 4.1.4:
Oblique Shocks / 4.1.5:
Shocks and Interfaces, Flyer Plates / 4.1.6:
Rarefaction Waves / 4.2:
The Planar Isothermal Rarefaction and Self-Similar Analysis / 4.2.1:
Riemann Invariants / 4.2.2:
Planar Adiabatic Rarefactions / 4.2.3:
Blast Waves / 4.3:
Energy Conservation in Blast Waves / 4.3.1:
A General Discussion of Self-Similar Motions / 4.3.2:
The Sedov-Taylor Spherical Blast Wave / 4.3.3:
Phenomena at Interfaces / 4.4:
Shocks at Interfaces and Their Consequences / 4.4.1:
Overtaking Shocks / 4.4.2:
Reshocks in Rarefactions / 4.4.3:
Blast Waves at Interfaces / 4.4.4:
Rarefactions at Interfaces / 4.4.5:
Oblique Shocks at Interfaces / 4.4.6:
Hydrodynamic Instabilities / 5:
Introduction to the Rayleigh-Taylor Instability / 5.1:
Buoyancy as a Driving Force / 5.1.1:
Fundamentals of the Fluid-Dynamics Description / 5.1.2:
Applications of the Linear Theory of the Rayleigh-Taylor Instability / 5.2:
Rayleigh-Taylor Instability with Two Uniform Fluids / 5.2.1:
Effects of Viscosity on the Rayleigh-Taylor Instability / 5.2.2:
Rayleigh-Taylor with Density Gradients and the Global Mode / 5.2.3:
The Convective Instability or the Entropy Mode / 5.3:
Buoyancy-Drag Models of the Nonlinear Rayleigh-Taylor State / 5.4:
Mode Coupling / 5.5:
The Kelvin-Helmholtz Instability / 5.6:
Fundamental Equations for Kelvin-Helmholtz Instabilities / 5.6.1:
Uniform Fluids with a Sharp Boundary / 5.6.2:
Otherwise Uniform Fluids with a Distributed Shear Layer / 5.6.3:
Uniform Fluids with a Transition Region / 5.6.4:
Shock Stability and Richtmyer-Meskov Instability / 5.7:
Shock Stability / 5.7.1:
Interaction of Shocks with Rippled Interfaces / 5.7.2:
Postshock Evolution of the Interface; Richtmyer Meshkov Instability / 5.7.3:
Hydrodynamic Turbulence / 5.8:
Radiative Transfer / 6:
Basic Concepts / 6.1:
Properties and Description of Radiation / 6.1.1:
Thermal Radiation / 6.1.2:
Types of Interaction Between Radiation and Matter / 6.1.3:
Description of the Net Interaction of Radiation and Matter / 6.1.4:
Radiation Transfer / 6.2:
The Radiation Transfer Equation / 6.2.1:
Radiative Transfer Calculations / 6.2.2:
Opacities in Astrophysics and the Laboratory / 6.2.3:
Radiation Transfer in the Equilibrium Diffusion Limit / 6.2.4:
Nonequilibrium Diffusion and Two-Temperature Models / 6.2.5:
Relativistic Considerations for Radiative Transfer / 6.3:
Radiation Hydrodynamics / 7:
Radiation Hydrodynamic Equations / 7.1:
Fundamental Equations / 7.1.1:
Thermodynamic Relations / 7.1.2:
Radiation and Fluctuations / 7.2:
Radiative Acoustic Waves; Optically Thick Case / 7.2.1:
Cooling When Transport Matters / 7.2.2:
Optically Thin Acoustic Waves / 7.2.3:
Radiative Thermal Instability / 7.2.4:
Radiation Diffusion and Marshak Waves / 7.3:
Marshak Waves / 7.3.1:
Ionizing Radiation Wave / 7.3.2:
Constant-Energy Radiation Diffusion Wave / 7.3.3:
Radiative Shocks / 7.4:
Regimes of Radiative Shocks / 7.4.1:
Fluid Dynamics of Radiative Shocks / 7.4.2:
Models of Radiative Precursors / 7.4.3:
Optically Thin Radiative Shocks / 7.4.4:
Radiative Shocks that are Thick Downstream and Thin Upstream / 7.4.5:
Fluid Dynamics of Optically Thick Radiative Shocks / 7.4.6:
Optically Thick Shocks-Radiative-Flux Regime / 7.4.7:
Radiation-Dominated Optically Thick Shocks / 7.4.8:
Electron-Ion Coupling in Shocks / 7.4.9:
Ionization Fronts / 7.5:
Creating High-Energy-Density Conditions / 8:
Direct Laser Irradiation / 8.1:
Laser Technology / 8.1.1:
Laser Focusing / 8.1.2:
Propagation and Absorption of Electromagnetic Waves / 8.1.3:
Laser Scattering and Laser-Plasma Instabilities / 8.1.4:
Electron Heat Transport / 8.1.5:
Ablation Pressure / 8.1.6:
Hohlraums / 8.2:
X-Ray Conversion of Laser Light / 8.2.1:
X-Ray Production by Ion Beams / 8.2.2:
X-Ray Ablation / 8.2.3:
Problems with Hohlraums / 8.2.4:
Z-Pinches and Related Methods / 8.3:
Z-Pinches for High-Energy-Density Physics / 8.3.1:
Dynamic Hohlraums / 8.3.2:
Magnetically Driven Flyer Plates / 8.3.3:
Inertial Confinement Fusion / 9:
The Final State / 9.1:
What Fuel, Under What Conditions? / 9.1.1:
Energy Gain: Is This Worth Doing? / 9.1.2:
Properties of Compressed DT Fuel / 9.1.3:
Creating and Igniting the Final State / 9.2:
Achieving a Highly Compressed State / 9.2.1:
Igniting the Fuel / 9.2.2:
Igniting from a Central Hot Spot / 9.2.3:
Fast Ignition / 9.2.4:
Pitfalls and Problems / 9.3:
Rayleigh Taylor / 9.3.1:
Symmetry / 9.3.2:
Laser-Plasma Instabilities / 9.3.3:
Experimental Astrophysics / 10:
Scaling in Hydrodynamic Systems / 10.1:
A Thorough Example: Interface Instabilities in Type II Supernovae / 10.2:
The Astrophysical Context for Type II Supernovae / 10.2.1:
The Scaling Problem for Interface Instabilities in Supernovae / 10.2.2:
Experiments on Interface Instabilities in Type II Supernovae / 10.2.3:
A Second Example: Cloud-Crushing Interactions / 10.3:
Scaling in Radiation Hydrodynamic Systems / 10.4:
Radiative Astrophysical Jets: Context and Scaling / 10.5:
The Context for Jets in Astrophysics / 10.5.1:
Scaling from Radiative Astrophysical Jets to the Laboratory / 10.5.2:
Radiative Jet Experiments / 10.5.3:
Relativistic High-Energy-Density Systems / 11:
Development of Ultrafast Lasers / 11.1:
Single-Electron Motion in Intense Electromagnetic Fields / 11.2:
Initiating Relativistic Laser-Plasma Interactions / 11.3:
Absorption Mechanisms / 11.4:
Harmonic Generation / 11.5:
Relativistic Self-Focusing and Induced Transparency / 11.6:
Particle Acceleration / 11.7:
Acceleration Within Plasmas / 11.7.1:
Acceleration by Surface Potentials on Solid Targets / 11.7.2:
Acceleration by Coulomb Explosions / 11.7.3:
Hole Drilling and Collisionless Shocks / 11.8:
Other Phenomena / 11.9:
Appendix A: Constants, Acronyms, and Standard Variables / 12:
Appendix B: Sample Mathematica Code / 13:
Appendix C: A List of the Homework Problems / 14:
Index
Introduction to High-Energy-Density Physics / 1:
Some Historical Remarks / 1.1:
Regimes of High-Energy-Density Physics / 1.2:
28.

図書

図書
Fred V. Brock, Scott J. Richardson and Oklahoma Climatological Survey
出版情報: Oxford : Tokyo : Oxford University Press, 2001  xi, 290 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Overview / 1:
Instrument Design and Selection / 1.1:
Performance Characteristics / 1.1.1:
Functional Model / 1.1.2:
Sources of Error / 1.1.3:
Standards / 1.2:
Calibration / 1.2.1:
Performance / 1.2.2:
Exposure / 1.2.3:
Procedural / 1.2.4:
System Integration / 1.3:
Instrument Platforms / 1.3.1:
Communication Systems / 1.3.2:
Power Source / 1.3.3:
Human Aspects of Measurement / 1.4:
Human Perception versus Sensor Measurements / 1.4.1:
Reasons for Automation / 1.4.2:
Design, Implementation, and Maintenance of Measurement Systems / 1.4.3:
Interpretation of Sensor Specifications / 1.4.4:
Interpretation of Results / 1.4.5:
Human Judgment / 1.4.6:
Quality Assurance / 1.5:
Laboratory Calibrations / 1.5.1:
Field Intercomparisons / 1.5.2:
Data Monitoring / 1.5.3:
Documentation / 1.5.4:
Independent Review / 1.5.5:
Publication of Data Quality Assessment / 1.5.6:
Scope of this Text / 1.6:
Questions
Bibliography
General Instrumentation References
Barometry / 2:
Atmospheric Pressure / 2.1:
Direct Measurement of Pressure / 2.2:
Mercury Barometers / 2.2.1:
Aneroid Barometers / 2.2.2:
Indirect Measurement of Pressure / 2.3:
Boiling Point of a Liquid / 2.3.1:
Comparison of Barometer Types / 2.4:
Hypsometer / 2.4.1:
Exposure Error / 2.5:
Laboratory Experiment / 2.6:
Calibration of Barometers / 2.7:
Static Performance Characteristics / 3:
Some Definitions / 3.1:
Static Calibration / 3.2:
Definition of Terms Related to the Transfer Plot / 3.2.1:
Calibration Procedure / 3.2.2:
Example of a Static Calibration / 3.3:
Multiple Sources of Error / 3.4:
Significant Figures / 3.5:
Questions and Problems
Thermometry / 4:
Thermal Expansion / 4.1:
Bimetallic Strip / 4.1.1:
Liquid-in-Glass Thermometer / 4.1.2:
Thermoelectric Sensors / 4.2:
Electrical Resistance Sensors / 4.3:
Resistance Temperature Detectors / 4.3.1:
Thermistors / 4.3.2:
Comparison of Temperature Sensors / 4.4:
Exposure of Temperature Sensors / 4.5:
Notes
Hygrometry / 5:
Water Vapor Pressure / 5.1:
Definitions / 5.2:
Methods for Measuring Humidity / 5.3:
Removal of Water Vapor from Moist Air / 5.3.1:
Addition of Water Vapor to Air / 5.3.2:
Equilibrium Sorption of Water Vapor / 5.3.3:
Measurement of Physical Properties of Moist Air / 5.3.4:
Attainment of Vapor-Liquid or Vapor-Solid Equilibrium / 5.3.5:
Chemical Reactions / 5.3.6:
Choice of Humidity Sensor / 5.4:
Calibration of Humidity Sensors / 5.5:
Exposure of Humidity Sensors / 5.6:
Laboratory Exercises
Dynamic Performance Characteristics, Part 1 / 6:
First-Order Systems / 6.1:
Step-Function Input / 6.1.1:
Ramp Input / 6.1.2:
Sinusoidal Input / 6.1.3:
Experimental Determination of Dynamic Performance Parameters / 6.2:
Application to Temperature Sensors / 6.3:
Anemometry / 7:
Methods of Measurement / 7.1:
Wind Force / 7.1.1:
Heat Dissipation / 7.1.2:
Speed of Sound / 7.1.3:
Wind Data Processing / 7.2:
Dynamic Performance Characteristics, Part 2 / 8:
Generalized Dynamic Performance Models / 8.1:
Energy Storage Reservoirs / 8.2:
Second-Order Systems / 8.3:
Step Function Input / 8.3.1:
Application to Sensors / 8.3.2:
Precipitation Rate / 8.5:
Point Precipitation Measurement / 9.1:
Radar Rain Measurement / 9.2.2:
Solar and Earth Radiation / 10:
Pyrheliometers / 10.1:
Pyranometers / 10.2.2:
Pyrgeometers / 10.2.3:
Pyrradiometers / 10.2.4:
Measurement Errors / 10.3:
Visibility and Cloud Height / 10.4:
Measurement of Visibility / 11.1:
Transmissometer / 11.2.1:
Forward Scatter Meters / 11.2.2:
Measurement of Cloud Height / 11.3:
Rotating Beam Ceilometer / 11.3.1:
Laser Ceilometer / 11.3.2:
Upper Air Measurements / 12:
Methods for Making Upper Air Measurements / 12.1:
Remote Sensing / 12.1.1:
In-Situ Platforms / 12.1.2:
Balloons / 12.2:
Wind Measurement / 12.3:
Theodolites / 12.3.1:
Radar / 12.3.2:
Navigation Aids / 12.3.3:
Radiosondes / 12.4:
Sampling and Analog-to-Digital Conversion / 12.5:
Signal Path / 13.1:
Drift / 13.2:
Sampling / 13.3:
Analog-to-Digital Conversion / 13.4:
Information Content of a Signal / 13.5:
Units and Constants / A:
International System of Units (SI)
Numerical Values
Thermistor Circuit Analysis / B:
A Thermistor / B.1:
A Circuit / B.2:
An Alternative Calibration Equation / B.3:
A Data Logger / C:
The Data Logger / C.1:
Application in a Measurement System / C.2:
Circuits / D:
Fundamentals / D.1:
Simple Circuits / D.2:
Geophysical Coordinate System / E:
Geophysical versus Mathematical Coordinate System / E.1:
Mathematical Coordinates / E.2:
Geophysical Coordinates / E.3:
Instrumentation Glossary / F:
Index
Overview / 1:
Instrument Design and Selection / 1.1:
Performance Characteristics / 1.1.1:
29.

図書

図書
Jan Flusser, Tomás Suk, Barbara Zitov
出版情報: Chichester : John Wiley & Sons, 2009  xiv, 296 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Authors' biographies
Preface
Acknowledgments
Introduction to moments / 1:
Motivation / 1.1:
What are invariants? / 1.2:
Categories of invariant / 1.2.1:
What are moments? / 1.3:
Geometric and complex moments / 1.3.1:
Orthogonal moments / 1.3.2:
Outline of the book / 1.4:
References
Moment invariants to translation, rotation and scaling / 2:
Introduction / 2.1:
Invariants to translation / 2.1.1:
Invariants to uniform scaling / 2.1.2:
Traditional invariants to rotation / 2.1.3:
Rotation invariants from complex moments / 2.2:
Construction of rotation invariants / 2.2.1:
Construction of the basis / 2.2.2:
Basis of invariants of the second and third orders / 2.2.3:
Relationship to the Hu invariants / 2.2.4:
Pseudoinvariants / 2.3:
Combined invariants to TRS and contrast changes / 2.4:
Rotation invariants for recognition of symmetric objects / 2.5:
Logo recognition / 2.5.1:
Recognition of simple shapes / 2.5.2:
Experiment with a baby toy / 2.5.3:
Rotation invariants via image normalization / 2.6:
Invariants to nonuniform scaling / 2.7:
TRS invariants in 3D / 2.8:
Conclusion / 2.9:
Affine moment invariants / 3:
Projective imaging of a 3D world / 3.1:
Projective moment invariants / 3.1.2:
Affine transformation / 3.1.3:
AMJs / 3.1.4:
AMIs derived from the Fundamental theorem / 3.2:
AMIs generated by graphs / 3.3:
The basic concept / 3.3.1:
Representing the invariants by graphs / 3.3.2:
Independence of the AMIs / 3.3.3:
The AMIs and tensors / 3.3.4:
Robustness of the AMIs / 3.3.5:
AMIs via image normalization / 3.4:
Decomposition of the affine transform / 3.4.1:
Violation of stability / 3.4.2:
Relation between the normalized moments and the AMIs / 3.4.3:
Affine invariants via half normalization / 3.4.4:
Affine invariants from complex moments / 3.4.5:
Derivation of the AMIs from the Cayley-Aronhold equation / 3.5:
Manual solution / 3.5.1:
Automatic solution / 3.5.2:
Numerical experiments / 3.6:
Digit recognition / 3.6.1:
Recognition of symmetric patterns / 3.6.2:
The children's mosaic / 3.6.3:
Affine invariants of color images / 3.7:
Generalization to three dimensions / 3.8:
Method of geometric primitives / 3.8.1:
Normalized moments in 3D / 3.8.2:
Half normalization in 3D / 3.8.3:
Direct solution of the Cayley-Aronhold equation / 3.8.4:
Appendix / 3.9:
Implicit invariants to elastic transformations / 4:
General moments under a polynomial transform / 4.1:
Explicit and implicit invariants / 4.3:
Implicit invariants as a minimization task / 4.4:
Invariance and robustness test / 4.5:
ALOI classification experiment / 4.5.2:
Character recognition on a bottle / 4.5.3:
Invariants to convolution / 4.6:
Blur invariants for centrosymmetric PSFs / 5.1:
Template matching experiment / 5.2.1:
Invariants to linear motion blur / 5.2.2:
Extension to n dimensions / 5.2.3:
Possible applications and limitations / 5.2.4:
Blur invariants for W-fold symmetric PSFs / 5.3:
Blur invariants for circularly symmetric PSFs / 5.3.1:
Blur invariants for Gaussian PSFs / 5.3.2:
Combined invariants / 5.4:
Combined invariants to convolution and rotation / 5.4.1:
Combined invariants to convolution and affine transform / 5.4.2:
Moments orthogonal on a rectangle / 5.5:
Hypergeometric functions / 6.2.1:
Legendre moments / 6.2.2:
Chebyshev moments / 6.2.3:
Other moments orthogonal on a rectangle / 6.2.4:
OG moments of a discrete variable / 6.2.5:
Moments orthogonal on a disk / 6.3:
Zernike and Pseudo-Zernike moments / 6.3.1:
Orthogonal Fourier-Mellin moments / 6.3.2:
Other moments orthogonal on a disk / 6.3.3:
Object recognition by ZMs / 6.4:
Image reconstruction from moments / 6.5:
Reconstruction by the direct calculation / 6.5.1:
Reconstruction in the Fourier domain / 6.5.2:
Reconstruction from OG moments / 6.5.3:
Reconstruction from noisy data / 6.5.4:
Numerical experiments with image reconstruction from OG moments / 6.5.5:
Three-dimensional OG moments / 6.6:
Algorithms for moment computation / 6.7:
Moments in a discrete domain / 7.1:
Geometric moments of binary images / 7.3:
Decomposition methods for binary images / 7.3.1:
Boundary-based methods for binary images / 7.3.2:
Other methods for binary images / 7.3.3:
Geometric moments of graylevel images / 7.4:
Intensity slicing / 7.4.1:
Approximation methods / 7.4.2:
Efficient methods for calculating OG moments / 7.5:
Methods using recurrent relations / 7.5.1:
Decomposition methods / 7.5.2:
Boundary-based methods / 7.5.3:
Generalization to n dimensions / 7.6:
Applications / 7.7:
Object representation and recognition / 8.1:
Image registration / 8.3:
Registration of satellite images / 8.3.1:
Image registration for image fusion / 8.3.2:
Robot navigation / 8.4:
Indoor robot navigation based on circular landmarks / 8.4.1:
Recognition of landmarks using fish-eye lens camera / 8.4.2:
Image retrieval / 8.5:
Watermarking / 8.6:
Watermarking based on the geometric moments / 8.6.1:
Medical imaging / 8.7:
Landmark recognition in the scoliosis study / 8.7.1:
Forensic applications / 8.8:
Detection of near-duplicated image regions / 8.8.1:
Miscellaneous applications / 8.9:
Noise-resistant optical flow estimation / 8.9.1:
Focus measure / 8.9.2:
Edge detection / 8.9.3:
Gas-liquid flow categorization / 8.9.4:
3D objects visualization / 8.9.5:
Index / 8.10:
Authors' biographies
Preface
Acknowledgments
30.

図書

図書
Vitalij K. Pecharsky, Peter Y. Zavalij
出版情報: New York : Springer, c2009  xxiii, 741 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Fundamentals of Crystalline State and Crystal Lattice / 1:
Crystalline State / 1.1:
Crystal Lattice and Unit Cell / 1.2:
Shape of the Unit Cell / 1.3:
Crystallographic Planes, Directions, and Indices / 1.4:
Crystallographic Planes / 1.4.1:
Crystallographic Directions / 1.4.2:
Reciprocal Lattice / 1.5:
Additional Reading / 1.6:
Problems / 1.7:
Finite Symmetry Elements and Crystallographic Point Groups / 2:
Content of the Unit Cell / 2.1:
Asymmetric Part of the Unit Cell / 2.2:
Symmetry Operations and Symmetry Elements / 2.3:
Finite Symmetry Elements / 2.4:
Onefold Rotation Axis and Center of Inversion / 2.4.1:
Twofold Rotation Axis and Mirror Plane / 2.4.2:
Threefold Rotation Axis and Threefold Inversion Axis / 2.4.3:
Fourfold Rotation Axis and Fourfold Inversion Axis / 2.4.4:
Sixfold Rotation Axis and Sixfold Inversion Axis / 2.4.5:
Interaction of Symmetry Elements / 2.5:
Generalization of Interactions Between Finite Symmetry Elements / 2.5.1:
Symmetry Groups / 2.5.2:
Fundamentals of Group Theory / 2.6:
Crystal Systems / 2.7:
Stereographic Projection / 2.8:
Crystallographic Point Groups / 2.9:
Laue Classes / 2.10:
Selection of a Unit Cell and Bravais Lattices / 2.11:
Infinite Symmetry Elements and Crystallographic Space Groups / 2.12:
Glide Planes / 3.1:
Screw Axes / 3.2:
Interaction of Infinite Symmetry Elements / 3.3:
Crystallographic Space Groups / 3.4:
Relationships Between Point Groups and Space Groups / 3.4.1:
Full International Symbols of Crystallographic Space Groups / 3.4.2:
Visualization of Space-Group Symmetry in Three Dimensions / 3.4.3:
Space Groups in Nature / 3.4.4:
International Tables for Crystallography / 3.5:
Equivalent Positions (Sites) / 3.6:
General and Special Equivalent Positions / 3.6.1:
Special Sites with Points Located on Mirror Planes / 3.6.2:
Special Sites with Points Located on Rotation and Inversions Axes / 3.6.3:
Special Sites with Points Located on Centers of Inversion / 3.6.4:
Formalization of Symmetry / 3.7:
Symbolic Representation of Symmetry / 4.1:
Finite Symmetry Operations / 4.1.1:
Infinite Symmetry Operations / 4.1.2:
Algebraic Treatment of Symmetry Operations / 4.2:
Transformation of Coordinates of a Point / 4.2.1:
Rotational Transformations of Vectors / 4.2.2:
Translational Transformations of Vectors / 4.2.3:
Combined Symmetrical Transformations of Vectors / 4.2.4:
Augmentation of Matrices / 4.2.5:
Algebraic Representation of Crystallographic Symmetry / 4.2.6:
Interaction of Symmetry Operations / 4.2.7:
Nonconventional Symmetry / 4.3:
Commensurate Modulation / 5.1:
Incommensurate Modulation / 5.2:
Composite Crystals / 5.3:
Symmetry of Modulated Structures / 5.4:
Quasicrystals / 5.5:
Properties, Sources, and Detection of Radiation / 5.6:
Nature of X-Rays / 6.1:
Production of X-Rays / 6.2:
Conventional Sealed X-Ray Sources / 6.2.1:
Continuous and Characteristic X-Ray Spectra / 6.2.2:
Rotating Anode X-Ray Sources / 6.2.3:
Synchrotron Radiation Sources / 6.2.4:
Other Types of Radiation / 6.3:
Detection of X-Rays / 6.4:
Detector Efficiency, Linearity, Proportionality and Resolution / 6.4.1:
Classification of Detectors / 6.4.2:
Point Detectors / 6.4.3:
Line and Area Detectors / 6.4.4:
Fundamentals of Diffraction / 6.5:
Scattering by Electrons, Atoms and Lattices / 7.1:
Scattering by Electrons / 7.1.1:
Scattering by Atoms and Atomic Scattering Factor / 7.1.2:
Scattering by Lattices / 7.1.3:
Geometry of Diffraction by Lattices / 7.2:
Laue Equations / 7.2.1:
Braggs' Law / 7.2.2:
Reciprocal Lattice and Ewald's Sphere / 7.2.3:
The Powder Diffraction Pattern / 7.3:
Origin of the Powder Diffraction Pattern / 8.1:
Representation of Powder Diffraction Patterns / 8.2:
Understanding of Powder Diffraction Patterns / 8.3:
Positions of Powder Diffraction Peaks / 8.4:
Peak Positions as a Function of Unit Cell Dimensions / 8.4.1:
Other Factors Affecting Peak Positions / 8.4.2:
Shapes of Powder Diffraction Peaks / 8.5:
Peak-Shape Functions / 8.5.1:
Peak Asymmetry / 8.5.2:
Intensity of Powder Diffraction Peaks / 8.6:
Integrated Intensity / 8.6.1:
Scale Factor / 8.6.2:
Multiplicity Factor / 8.6.3:
Lorentz-Polarization Factor / 8.6.4:
Absorption Factor / 8.6.5:
Preferred Orientation / 8.6.6:
Extinction Factor / 8.6.7:
Structure Factor / 8.7:
Structure Amplitude / 9.1:
Population Factor / 9.1.1:
Temperature Factor (Atomic Displacement Factor) / 9.1.2:
Atomic Scattering Factor / 9.1.3:
Phase Angle / 9.1.4:
Effects of Symmetry on the Structure Amplitude / 9.2:
Friedel Pairs and Friedel's Law / 9.2.1:
Friedel's Law and Multiplicity Factor / 9.2.2:
Systematic Absences / 9.3:
Lattice Centering / 9.3.1:
Space Groups and Systematic Absences / 9.3.2:
Solving the Crystal Structure / 9.5:
Fourier Transformation / 10.1:
Phase Problem / 10.2:
Patterson Technique / 10.2.1:
Direct Methods / 10.2.2:
Structure Solution from Powder Diffraction Data / 10.2.3:
Total Scattering Analysis Using Pair Distribution Function / 10.3:
Powder Diffractometry / 10.4:
Brief History of the Powder Diffraction Method / 11.1:
Beam Conditioning in Powder Diffractometry / 11.2:
Collimation / 11.2.1:
Monochromatization / 11.2.2:
Principles of Goniometer Design in Powder Diffractometry / 11.3:
Goniostats with Strip and Point Detectors / 11.3.1:
Goniostats with Area Detectors / 11.3.2:
Nonambient Powder Diffractometry / 11.4:
Variable Temperature Powder Diffractometry / 11.4.1:
Principles of Variable Pressure Powder Diffractometry / 11.4.2:
Powder Diffractometry in High Magnetic Fields / 11.4.3:
Collecting Quality Powder Diffraction Data / 11.5:
Sample Preparation / 12.1:
Powder Requirements and Powder Preparation / 12.1.1:
Powder Mounting / 12.1.2:
Sample Size / 12.1.3:
Sample Thickness and Uniformity / 12.1.4:
Sample Positioning / 12.1.5:
Effects of Sample Preparation on Powder Diffraction Data / 12.1.6:
Data Acquisition / 12.2:
Wavelength / 12.2.1:
Incident Beam Aperture / 12.2.2:
Diffracted Beam Aperture / 12.2.4:
Variable Aperture / 12.2.5:
Power Settings / 12.2.6:
Classification of Powder Diffraction Experiments / 12.2.7:
Step Scan / 12.2.8:
Continuous Scan / 12.2.9:
Scan Range / 12.2.10:
Quality of Experimental Data / 12.3:
Quality of Intensity Measurements / 12.3.1:
Factors Affecting Resolution / 12.3.2:
Preliminary Data Processing and Phase Analysis / 12.4:
Interpretation of Powder Diffraction Data / 13.1:
Preliminary Data Processing / 13.2:
Background / 13.2.1:
Smoothing / 13.2.2:
Peak Search / 13.2.3:
Profile Fitting / 13.2.5:
Phase Identification and Quantitative Analysis / 13.3:
Crystallographic Databases / 13.3.1:
Phase Identification / 13.3.2:
Quantitative Analysis / 13.3.3:
Phase Contents from Rietveld Refinement / 13.3.4:
Determination of Amorphous Content or Degree of Crystallinity / 13.3.5:
Determination and Refinement of the Unit Cell / 13.4:
The Indexing Problem / 14.1:
Known Versus Unknown Unit Cell Dimensions / 14.2:
Indexing: Known Unit Cell / 14.3:
High Symmetry Indexing Example / 14.3.1:
Other Crystal Systems / 14.3.2:
Reliability of Indexing / 14.4:
Introduction to Ab Initio Indexing / 14.4.1:
Cubic Crystal System / 14.6:
Tetragonal and Hexagonal Crystal Systems / 14.6.1:
Automatic Ab Initio Indexing Algorithms / 14.7.1:
Indexing in Direct Space / 14.8.1:
Indexing in Reciprocal Space / 14.8.2:
Unit Cell Reduction Algorithms / 14.9:
Delaunay-Ito Transformation / 14.9.1:
Niggli Reduction / 14.9.2:
Automatic Ab Initio Indexing: Computer Codes / 14.10:
TREOR / 14.10.1:
DICVOL / 14.10.2:
ITO / 14.10.3:
Selecting a Solution / 14.10.4:
Ab Initio Indexing Examples / 14.11:
Precise Lattice Parameters and Linear Least Squares / 14.11.1:
Linear Least Squares / 14.12.1:
Precise Lattice Parameters from Linear Least Squares / 14.12.2:
Concluding Remarks / 14.13:
Solving Crystal Structure from Powder Diffraction Data / 14.14:
Ab Initio Methods of Structure Solution / 15.1:
Conventional Reciprocal Space Methods / 15.1.1:
Conventional Direct Space Modeling / 15.1.2:
Unconventional Direct, Reciprocal, and Dual Space Methods / 15.1.3:
Validation and Completion of the Model / 15.1.4:
The Content of the Unit Cell / 15.2:
Pearson's Classification / 15.3:
Finding Structure Factors from Powder Diffraction Data / 15.4:
Nonlinear Least Squares / 15.5:
Quality of Profile Fitting / 15.6:
Visual Assessment of the Quality of Profile Fitting / 15.6.1:
Figures of Merit / 15.6.2:
The Rietveld Method / 15.7:
Fundamentals of the Rietveld Method / 15.7.1:
Classes of Rietveld Refinement Parameters / 15.7.2:
Restraints, Constraints, and Rigid-Bodies / 15.7.3:
Figures of Merit and Quality of Rietveld Refinement / 15.7.4:
Common Problems and How to Deal with Them / 15.7.5:
Termination of Rietveld Refinement / 15.7.6:
Full Pattern Decomposition / 15.8:
Scale Factor and Profile Parameters / 16.2:
Overall Atomic Displacement Parameter / 16.3.2:
Individual Parameters, Free and Constrained Variables / 16.3.3:
Anisotropic Atomic Displacement Parameters / 16.3.4:
Multiple Phase Refinement / 16.3.5:
Refinement Results / 16.3.6:
Combined Refinement Using Different Sets of Diffraction Data / 16.4:
Solving the Crystal Structure from X-Ray Data / 17:
Highest Symmetry Attempt / 17.2.1:
Low-Symmetry Model / 17.2.2:
Solving the Crystal Structure from Neutron Data / 17.3:
Rietveld Refinement / 17.4:
X-Ray Data, Correct Low Symmetry Model / 17.4.1:
X-Ray Data, Wrong High-Symmetry Model / 17.4.2:
Neutron Data / 17.4.3:
Empirical Methods of Solving Crystal Structures / 18:
Structure-Property Relationships / 19.1:
Observed Structure Factors from Experimental Data / 20:
A Few Notes About Using GSAS / 20.2:
Completion of the Model and Rietveld Refinement / 20.4:
Initial Refinement Steps / 20.4.1:
Where Is Mn and Where Is Ni? / 20.4.2:
Finalizing the Refinement of the Model Without Hydrogen / 20.4.3:
Locating Hydrogen / 20.4.4:
Combined Rietveld Refinement / 20.4.5:
Observed Structure Factors / 21:
Unrestrained Rietveld Refinement / 21.2:
Rietveld Refinement with Restraints / 21.3.2:
Possible Model of the Crystal Structure / 22:
Rietveld Refinement and Completion of the Model / 22.2:
Determining Chemical Composition / 23:
Building and Optimizing the Model of the Crystal Structure / 24:
Ab Initio Indexing and Le Bail Fitting / 24.2:
Creating a Model / 25.2:
Optimizing the Model (Solving the Structure) / 25.2.2:
Restrained Rietveld Refinement / 25.3:
Chapters 15-25: Additional Reading / 25.4:
Chapters 15-25: Problems / 25.5:
Index
Fundamentals of Crystalline State and Crystal Lattice / 1:
Crystalline State / 1.1:
Crystal Lattice and Unit Cell / 1.2:
31.

図書

図書
Michael Lappert ... [et al.]
出版情報: Chichester : Wiley, c2009  xii, 355 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Biographies
Preface
Introduction / 1:
Scope and Organisation of Subject Matter / 1.1:
Developments and Perspectives / 1.2:
Alkali Metal Amides / 2:
Lithium Amides / 2.1:
Monomeric Lithium Amides / 2.2.1:
Dimeric Lithium Amides / 2.2.3:
Trimeric Lithium Amides / 2.2.4:
Tetrameric Lithium Amides / 2.2.5:
Higher Aggregate Lithium Amides / 2.2.6:
Laddering / 2.2.7:
Heterometallic Derivatives / 2.2.8:
Sodium Amides / 2.3:
Monomeric and Dimeric Sodium Amides / 2.3.1:
Higher Aggregate Sodium Amides / 2.3.3:
Heterometallic Sodium Amides / 2.3.4:
Potassium Amides / 2.4:
Potassium Parent Amides (-NH2 as Ligand) / 2.4.1:
Potassium Primary and Secondary Amides / 2.4.3:
Heterometallic Potassium Amides / 2.4.4:
Rubidium Amides / 2.5:
Caesium Amides / 2.6:
References
Beryllium and the Alkaline Earth Metal Amides / 3:
Beryllium Amides / 3.1:
Magnesium Amides / 3.3:
Monomeric Magnesium Amides / 3.3.1:
Dimeric Magnesium Amides / 3.3.3:
Higher Aggregates and Related Magnesium Amides / 3.3.4:
Heterometallic Magnesium Amides / 3.3.5:
Magnesium Inverse Crown Complexes / 3.3.6:
Magnesium Imides / 3.3.7:
Calcium Amides / 3.4:
Monomeric Calcium Amides / 3.4.1:
Dimeric Calcium Amides and Higher Aggregates / 3.4.3:
Heterometallic Calcium Amide Derivatives / 3.4.4:
Strontium Amides / 3.5:
Monomeric Strontium Amides / 3.5.1:
Higher Aggregate Strontium Amides / 3.5.3:
Barium Amides / 3.6:
Monomeric Barium Amides / 3.6.1:
Dimeric Barium Amides / 3.6.3:
Heterometallic Barium Amides / 3.6.4:
Amides of the Group 3 and Lanthanide Metals / 4:
The Pre-1996 Literature: Anwander's Review / 4.1:
Ln2+III Complexes with N-Hydrocarbyl-Amido Ligands / 4.2.1:
Ln2+III Complexes having Silylamido Ligands / 4.2.3:
Bis(Trimethylsilyl) Amido-Ln2+II Complexes and a Ce2+IV Analogue / 4.2.4:
Ln2+III Complexes having Donor-Functionalised Amido Ligands / 4.2.5:
Ln Amides as Precursors for Ln Coordination or Organometallic Compounds / 4.2.6:
Applications as Materials or Catalysts / 4.2.7:
The Recent (Post-1995) Literature / 4.3:
Ln2+III Complexes with N-Hydrocarbyl Substituted Ligands / 4.3.1:
Ln2+II and Ce2+IV Amides / 4.3.3:
Ln Complexes having Donor-Functionalised Amido Ligands / 4.3.5:
Ln Complexes having 1,4-Disubstituted-1,4-Diazabutadiene Ligands, R2-DAD / 4.3.6:
Amides of the Actinide Metals / 5:
Neutral Amidouranium(IV) and Thorium(IV) Complexes / 5.1:
Hydrocarbylamido-An2+IV Compounds Free of π-Centred Ligands / 5.2.1:
Silylamido-An2+IV Compounds Free of π-Centred Co-ligands / 5.2.3:
An2+IV Amides Containing π-Centred Co-ligands / 5.2.4:
Neutral U2+III Amides / 5.3:
Neutral Mixed Valence (U2+III/U2+IV), U2+II, U2+V and U2+VI Amides / 5.4:
Amidouranates / 5.5:
Amidouranium Tetraphenylborates / 5.6:
Amides of the Transition Metals / 6:
Transition Metal Derivatives of Monodentate Amides / 6.1:
Overview / 6.2.1:
Synthesis / 6.2.2:
Structure and Bonding / 6.2.3:
Parent Amido (-NH2) Derivatives / 6.2.4:
Low-coordinate Transition Metal Amides / 6.2.5:
'Two-sided' Amido Ligands / 6.2.6:
Transition Metal Complexes of Polydentate Amido Ligands / 6.3:
Amido Phosphine Ligands / 6.3.1:
Multidentate Podand Ligands / 6.3.3:
Other Chelating Amido Ligands / 6.4:
Amides of Zinc, Cadmium and Mercury / 7:
Neutral Homoleptic Zinc, Cadmium and Mercury Amides / 7.1:
Ionic Metal Amides / 7.3:
Amidometallates / 7.3.1:
Zincation Mediated by Amidozinc Complexes / 7.3.2:
Other Ionic Group 12 Metal Amido Salts / 7.3.3:
Lewis Base Complexes, Chelated Metal Amides and Heteroleptic Amido Complexes / 7.4:
Amides of the Group 13 Metals / 8:
M-N Bonding (M = Al, Ga, In or Tl) / 8.1:
Multiple Character in M-N (M = Al - Tl) Bonds / 8.1.3:
Aluminium Amides / 8.2:
Aluminium Parent Amides (-NH2 as Ligand) / 8.2.1:
Monomeric Aluminium Amides / 8.2.2:
Dimeric Aluminium Amides / 8.2.3:
Higher Aggregate Aluminium Amides / 8.2.4:
Heterometallic Aluminium Amides / 8.2.5:
Aluminium Imides (Iminoalanes) / 8.2.6:
Aluminium(I) Amides / 8.2.7:
Gallium Amides / 8.3:
Monomeric Gallium Amides / 8.3.1:
Associated Gallium Amides / 8.3.3:
Heterometallic Gallium Amides / 8.3.4:
Iminogallanes (Gallium Imides) / 8.3.5:
Gallium Amides in Low (<+3) Oxidation States / 8.3.6:
Indium Amides / 8.4:
Monomeric Indium(III) Amides / 8.4.1:
Associated Indium Amides / 8.4.3:
Heterometallic Indium Amides / 8.4.4:
Iminoindanes (Indium Imides) / 8.4.5:
Indium Amides in Oxidation States <+3 / 8.4.6:
Thallium Amides / 8.5:
Thallium(I) Amides / 8.5.1:
Thallium(III) Derivatives / 8.5.3:
Thallium Amides in Mixed Oxidation States / 8.5.4:
Subvalent Amides of Silicon and the Group 14 Metals / 8.5.5:
Subvalent Amidosilicon Compounds / 9.1:
Bis(amino)silylenes: Pre-2001 / 9.2.1:
Bis(amino)silylenes: 2001-2004 / 9.2.3:
Bis(amino)silylenes: Post-2004 / 9.2.4:
Amidometal(II) Chemistry [Ge(II), Sn(II), Pb(II)] / 9.3:
Homoleptic Metal(II) Amides: Synthesis, Structures and Physical Properties / 9.3.1:
Protonolyses of Homoleptic Metal(II) Amides / 9.3.3:
Heteroleptic Metal(II) Amides / 9.3.4:
Metathetical Exchange Reactions / 9.3.5:
Reactions with Heterocumulenes / 9.3.6:
Oligomeric Metal(II) Imides / 9.3.7:
Metal(II) Amides based on 1,4-Diazabutadienes or a Related Compound / 9.3.8:
Oxidative Addition and Redox Reactions / 9.3.9:
Reactions with Transition Metal Complexes / 9.3.10:
Dimeric Metal(III) Imides: Biradicaloid Compounds / 9.4:
Higher-Nuclearity Group 14 Metalloid Clusters having Amido Ligands / 9.5:
Amides of the Group 15 Metals (As, Sb, Bi) / 10:
Mononuclear Group 15 Metal(III) Amides / 10.1:
Synthesis, Structures and Protolyses of Metal(III) Amides / 10.2.1:
Synthesis, Structures and Reactions of Heteroleptic Mononuclear Bis(amido) Metal(III) Compounds / 10.2.3:
Synthesis, Structures and Reactions of Heteroleptic Mononuclear Amidometal(III) Compounds / 10.2.4:
Bis(amido)Metal(III) Salts / 10.2.5:
Oligomeric Group 15 Metal Imides / 10.3:
Binuclear and Oligomeric Group 15 Metal(III) Imides / 10.3.1:
Binuclear Group 15 Metal(V) Imides / 10.3.2:
Mononuclear Group 15 Metal(V) Amides / 10.4:
Group 15 Metal(III) Macrocyclic Imides / 10.5:
Miscellaneous Group 15 Metal-Nitrogen Compounds / 10.6:
Index
Biographies
Preface
Introduction / 1:
32.

図書

図書
U. Heiz, U. Landman (eds.)
出版情報: Berlin : Springer, c2007  xvi, 503 p. ; 24 cm
シリーズ名: Nanoscience and technology
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters / T.M. Bernhardt ; U. Heiz ; U. Landman1:
Introduction / 1.1:
Experimental Techniques / 1.2:
Cluster Sources / 1.2.1:
Mass-Selection and Soft-Landing / 1.2.2:
Gas-Phase Analysis Techniques / 1.2.3:
Surface Analysis Techniques / 1.2.4:
Computational Techniques / 1.3:
Electronic Structure Calculations Via Density Functional Theory / 1.3.1:
Computational Methods and Techniques / 1.3.2:
Concepts for Understanding Chemical Reactions and Catalytic Properties of Finite Systems / 1.4:
Basic Mechanisms of Catalytic Reactions / 1.4.1:
Cluster-Specific Mechanisms / 1.4.2:
Specific Examples / 1.5:
Chemical Reactions on Point Defects of Oxide Surfaces / 1.5.1:
The Oxidation of CO on Small Gold Clusters / 1.5.2:
The Oxidation of CO on Small Platinum and Palladium Clusters / 1.5.3:
The Reduction of NO by CO on Pd Clusters: Cooler Cluster Catalysis / 1.5.4:
The Polymerization of Acetylene on Pd Clusters / 1.5.5:
References
Theory of Metal Clusters on the MgO Surface: The Role of Point Defects / G. Pacchioni2:
Oxide Surfaces: Single Crystals, Powders, Thin Films / 2.1:
Metal Particles on Oxides / 2.1.2:
The Role of Defects in Nucleation and Growth / 2.1.3:
Theoretical Models / 2.2:
Periodic Models / 2.2.1:
Local Cluster Models / 2.2.2:
Embedding Schemes / 2.2.3:
Electronic Structure Methods / 2.2.4:
Density Functional Theory Versus Wave Function Methods: Cu on MgO / 2.2.5:
Defects on MgO / 2.3:
Low-Coordinated Cations / 2.3.1:
Low-Coordinated Anions / 2.3.2:
Hydroxyl Groups / 2.3.3:
Anion Vacancies / 2.3.4:
Cation Vacancies / 2.3.5:
Divacancies / 2.3.6:
Impurity Atoms / 2.3.7:
O[superscript minus] Radical Anions / 2.3.8:
M Centers (Anion Vacancy Aggregates) / 2.3.9:
Shallow Electron Traps / 2.3.10:
(M[superscript plus])(e[superscript minus]) Centers / 2.3.11:
(111) Microfacets / 2.3.12:
Metal Deposition on MgO / 2.4:
Transition Metal Atoms on MgO(001) / 2.4.1:
Small Metal Clusters on MgO(001) / 2.4.2:
Metal Atoms on MgO: Where Are They? / 2.4.3:
Reactivity of Supported Metal Atoms: The Role of Defects / 2.5:
Summary / 2.6:
Catalysis by Nanoparticles / C.R. Henry3:
Specific Physical Properties of Free and Supported Nanoparticles / 3.1:
Surface Energy and Surface Stress / 3.2.1:
Lattice Parameter / 3.2.2:
Equilibrium Shape / 3.2.3:
Melting Temperature / 3.2.4:
Electronic Band Structure / 3.2.5:
Reactivity of Supported Metal Nanoparticles / 3.3:
Support Effect: Reverse-sillover / 3.3.1:
Morphology Effect / 3.3.2:
Effect of the Edges / 3.3.3:
The Peculiar Case of Gold Nanoparticles / 3.3.4:
Conclusions and Future Prospects / 3.4:
Lithographic Techniques in Nanocatalys / L. Osterlund ; A.W. Grant ; B. Kasemo4:
Methods to Make Model Nanocatalysts: A Brief Overview / 4.1:
Lithographic Techniques: An Introduction / 4.2.1:
The Surface Science Approach: In Situ Vapor Deposition Methods / 4.2.2:
Spin Coating / 4.2.3:
Self-Assembly / 4.2.4:
Fabrication of Supported Model Catalysts by Lithography / 4.3:
Electron-Beam Lithography / 4.3.1:
Colloidal Lithography / 4.3.2:
Microfabrication of TEM Membrane Windows / 4.4:
Preparation Procedures / 4.4.1:
Chemical and Structural Characterization of TEM Windows / 4.4.2:
Nanofabrication of Model Catalysts on TEM Windows / 4.4.3:
Experimental Case Studies with Nanofabricated Model Catalysts: Catalytic Reactions and Reaction-Induced Restructuring / 4.5:
Model Catalysts Fabricated by Electron-Beam Lithography / 4.5.1:
Catalytic Reaction Studies with Model Catalysts Made by Colloidal Lithography / 4.5.2:
Summary and Future Directions / 4.6:
Nanometer and Subnanometer Thin Oxide Films at Surfaces of Late Transition Metals / K. Reuter5:
Initial Oxidation of Transition-Metal Surfaces / 5.1:
Formation of Adlayers / 5.2.1:
Oxygen Accommodation Below the Top Metal Layer / 5.2.2:
Oxygen Accumulation in the Surface Region and Surface Oxide Formation / 5.2.3:
Formation of the Bulk Oxide / 5.2.4:
Implications for Oxidation Catalysis / 5.3:
The Role of the Gas Phase / 5.3.1:
Stability of Surface Oxides in an Oxygen Environment / 5.3.2:
Constrained Equilibrium / 5.3.3:
Kinetically Limited Film Thickness / 5.3.4:
Surface Oxidation and Sabatier Principle / 5.3.5:
Conclusions / 5.4:
Catalytic Applications for Gold Nanotechnology / Sonia A.C. Carabineiro ; David T. Thompson6:
Preparative Methods / 6.1:
Naked Gold, Including Gold Single Crystals and Colloidal Gold / 6.2.1:
Co-Precipitation / 6.2.2:
Deposition Precipitation / 6.2.3:
Impregnation / 6.2.4:
Vapour-Phase Methods and Grafting / 6.2.5:
Ion-Exchange / 6.2.6:
Sol-Gel Method / 6.2.7:
Gold Alloy Catalysts / 6.2.8:
Properties of Nanoparticulate Gold Catalysts / 6.3:
Activity / 6.3.1:
Selectivity / 6.3.2:
Durability / 6.3.3:
Poison Resistance / 6.3.4:
Reactions Catalysed by Nanocatalytic Gold and Gold Alloys / 6.4:
Water-Gas Shift / 6.4.1:
Vinyl Acetate Synthesis / 6.4.2:
Hydrochlorination of Ethyne / 6.4.3:
Carbon Monoxide Oxidation / 6.4.4:
Selective Oxidation / 6.4.5:
Selective Hydrogenation / 6.4.6:
Hydrogen Peroxide Formation / 6.4.7:
Reduction of NO[subscript x] with Propene, Carbon Monoxide or Hydrogen / 6.4.8:
Oxidative Decomposition of Dioxins and VOCs / 6.4.9:
Catalytic Combustion of Hydrocarbons / 6.4.10:
Ozone Decomposition / 6.4.11:
SO[subscript 2] Removal / 6.4.12:
Heck Reaction / 6.4.13:
CO[subscript 2] Activation / 6.4.14:
Other Reactions / 6.4.15:
Potential Commercial Applications for Gold Nanocatalysts / 6.5:
Methyl Glycolate Synthesis / 6.5.1:
Vinyl Chloride Synthesis / 6.5.3:
Gluconic Acid / 6.5.4:
Hydrogen Peroxide Production / 6.5.5:
Air Cleaning / 6.5.6:
Autocatalysts / 6.5.7:
Fuel Cell Technology / 6.5.8:
Sensors / 6.5.9:
Future Prospects / 6.6:
Index
List of Contributors
Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters / T.M. Bernhardt ; U. Heiz ; U. Landman1:
Introduction / 1.1:
33.

図書

図書
Rob Phillips
出版情報: Cambridge, UK ; New York : Cambridge University Press, 2001  xxvi, 780 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Notes on Units, Scales and Conventions
Thinking About the Material World / Part 1:
Idealizing Material Response / 1:
A Material World / 1.1:
Materials: A Databook Perspective / 1.1.1:
The Structure-Properties Paradigm / 1.1.2:
Controlling Structure: The World of Heat and Beat / 1.1.3:
Modeling of Materials / 1.2:
The Case for Modeling / 1.2.1:
Modeling Defined: Contrasting Perspectives / 1.2.2:
Case Studies in Modeling / 1.2.3:
Modeling and the Computer: Numerical Analysis vs Simulation / 1.2.4:
Further Reading / 1.3:
Continuum Mechanics Revisited / 2:
Continuum Mechanics as an Effective Theory / 2.1:
Kinematics: The Geometry of Deformation / 2.2:
Deformation Mappings and Strain / 2.2.1:
Geometry of Rigid Deformation / 2.2.2:
Geometry of Slip and Twinning / 2.2.3:
Geometry of Structural Transformations / 2.2.4:
Forces and Balance Laws / 2.3:
Forces Within Continua: Stress Tensors / 2.3.1:
Equations of Continuum Dynamics / 2.3.2:
Configurational Forces and the Dynamics of Defects / 2.3.3:
Continuum Descriptions of Deformation and Failure / 2.4:
Constitutive Modeling / 2.4.1:
Linear Elastic Response of Materials / 2.4.2:
Plastic Response of Crystals and Polycrystals / 2.4.3:
Continuum Picture of Fracture / 2.4.4:
Boundary Value Problems and Modeling / 2.5:
Principle of Minimum Potential Energy and Reciprocal Theorem / 2.5.1:
Elastic Green Function / 2.5.2:
Method of Eigenstrains / 2.5.3:
Numerical Solutions: Finite Element Method / 2.5.4:
Difficulties with the Continuum Approach / 2.6:
Problems / 2.7:
Quantum and Statistical Mechanics Revisited / 3:
Background / 3.1:
Quantum Mechanics / 3.2:
Background and Formalism / 3.2.1:
Catalog of Important Solutions / 3.2.2:
Finite Elements and Schrodinger / 3.2.3:
Quantum Corrals: A Finite Element Analysis / 3.2.4:
Metals and the Electron Gas / 3.2.5:
Quantum Mechanics of Bonding / 3.2.6:
Statistical Mechanics / 3.3:
Entropy of Mixing / 3.3.1:
The Canonical Distribution / 3.3.3:
Information Theoretic Approach to Statistical Mechanics / 3.3.4:
Statistical Mechanics Models for Materials / 3.3.5:
Bounds and Inequalities: The Bogoliubov Inequality / 3.3.6:
Correlation Functions: The Kinematics of Order / 3.3.7:
Computational Statistical Mechanics / 3.3.8:
Energetics of Crystalline Solids / 3.4:
Energetic Description of Cohesion in Solids / 4:
The Role of the Total Energy in Modeling Materials / 4.1:
Conceptual Backdrop for Characterizing the Total Energy / 4.2:
Atomistic and Continuum Descriptions Contrasted / 4.2.1:
The Many-Particle Hamiltonian and Degree of Freedom Reduction / 4.2.2:
Pair Potentials / 4.3:
Generic Pair Potentials / 4.3.1:
Free Electron Pair Potentials / 4.3.2:
Potentials with Environmental and Angular Dependence / 4.4:
Diagnostics for Evaluating Potentials / 4.4.1:
Pair Functionals / 4.4.2:
Angular Forces: A First Look / 4.4.3:
Tight-Binding Calculations of the Total Energy / 4.5:
The Tight-Binding Method / 4.5.1:
An Aside on Periodic Solids: k-space Methods / 4.5.2:
Real Space Tight-Binding Methods / 4.5.3:
First-Principles Calculations of the Total Energy / 4.6:
Managing the Many-Particle Hamiltonian / 4.6.1:
Total Energies in the Local Density Approximation / 4.6.2:
Choosing a Description of the Total Energy: Challenges and Conundrums / 4.7:
Thermal and Elastic Properties of Crystals / 4.8:
Thermal and Elastic Material Response / 5.1:
Mechanics of the Harmonic Solid / 5.2:
Total Energy of the Thermally Fluctuating Solid / 5.2.1:
Atomic Motion and Normal Modes / 5.2.2:
Phonons / 5.2.3:
Buckminsterfullerene and Nanotubes: A Case Study in Vibration / 5.2.4:
Thermodynamics of Solids / 5.3:
Harmonic Approximation / 5.3.1:
Beyond the Harmonic Approximation / 5.3.2:
Modeling the Elastic Properties of Materials / 5.4:
Linear Elastic Moduli / 5.4.1:
Nonlinear Elastic Material Response: Cauchy-Born Elasticity / 5.4.2:
Structural Energies and Phase Diagrams / 5.5:
Structures in Solids / 6.1:
Atomic-Level Geometry in Materials / 6.2:
Structural energies of solids / 6.3:
Pair Potentials and Structural Stability / 6.3.1:
Structural Stability in Transition Metals / 6.3.2:
Structural Stability Reconsidered: The Case of Elemental Si / 6.3.3:
Elemental Phase Diagrams / 6.4:
Free Energy of the Crystalline Solid / 6.4.1:
Free Energy of the Liquid / 6.4.2:
Putting It All Together / 6.4.3:
An Einstein Model for Structural Change / 6.4.4:
A Case Study in Elemental Mg / 6.4.5:
Alloy Phase Diagrams / 6.5:
Constructing the Effective Energy: Cluster Expansions / 6.5.1:
Statistical Mechanics for the Effective Hamiltonian / 6.5.2:
The Effective Hamiltonian Revisited: Relaxations and Vibrations / 6.5.3:
The Alloy Free Energy / 6.5.4:
Case Study: Oxygen Ordering in High T[subscript C] Superconductors / 6.5.5:
Summary / 6.6:
Geometric Structures in Solids: Defects and Microstructures / 6.7:
Point Defects in Solids / 7:
Point Defects and Material Response / 7.1:
Material Properties Related to Point Disorder / 7.1.1:
Diffusion / 7.2:
Effective Theories of Diffusion / 7.2.1:
Geometries and Energies of Point Defects / 7.3:
Crystallographic Preliminaries / 7.3.1:
A Continuum Perspective on Point Defects / 7.3.2:
Microscopic Theories of Point Defects / 7.3.3:
Point Defects in Si: A Case Study / 7.3.4:
Point Defect Motions / 7.4:
Material Parameters for Mass Transport / 7.4.1:
Diffusion via Transition State Theory / 7.4.2:
Diffusion via Molecular Dynamics / 7.4.3:
A Case Study in Diffusion: Interstitials in Si / 7.4.4:
Defect Clustering / 7.5:
Line Defects in Solids / 7.6:
Permanent Deformation of Materials / 8.1:
Yield and Hardening / 8.1.1:
Structural Consequences of Plastic Deformation / 8.1.2:
Single Crystal Slip and the Schmid Law / 8.1.3:
The Ideal Strength Concept and the Need for Dislocations / 8.2:
Geometry of Slip / 8.3:
Topological Signature of Dislocations / 8.3.1:
Crystallography of Slip / 8.3.2:
Elastic Models of Single Dislocations / 8.4:
The Screw Dislocation / 8.4.1:
The Volterra Formula / 8.4.2:
The Edge Dislocation / 8.4.3:
Mixed Dislocations / 8.4.4:
Interaction Energies and Forces / 8.5:
The Peach-Koehler Formula / 8.5.1:
Interactions and Images: Peach-Koehler Applied / 8.5.2:
The Line Tension Approximation / 8.5.3:
Modeling the Dislocation Core: Beyond Linearity / 8.6:
Dislocation Dissociation / 8.6.1:
The Peierls-Nabarro Model / 8.6.2:
Structural Details of the Dislocation Core / 8.6.3:
Three-Dimensional Dislocation Configurations / 8.7:
Dislocation Bow-Out / 8.7.1:
Kinks and Jogs / 8.7.2:
Cross Slip / 8.7.3:
Dislocation Sources / 8.7.4:
Dislocation Junctions / 8.7.5:
Wall Defects in Solids / 8.8:
Interfaces in Materials / 9.1:
Interfacial Confinement / 9.1.1:
Free Surfaces / 9.2:
Crystallography and Energetics of Ideal Surfaces / 9.2.1:
Reconstruction at Surfaces / 9.2.2:
Steps on Surfaces / 9.2.3:
Stacking Faults and Twins / 9.3:
Structure and Energetics of Stacking Faults / 9.3.1:
Planar Faults and Phase Diagrams / 9.3.2:
Grain Boundaries / 9.4:
Bicrystal Geometry / 9.4.1:
Grain Boundaries in Polycrystals / 9.4.2:
Energetic Description of Grain Boundaries / 9.4.3:
Triple Junctions of Grain Boundaries / 9.4.4:
Diffuse Interfaces / 9.5:
Modeling Interfaces: A Retrospective / 9.6:
Microstructure and its Evolution / 9.7:
Microstructures in Materials / 10.1:
Microstructural Taxonomy / 10.1.1:
Microstructural Change / 10.1.2:
Models of Microstructure and its Evolution / 10.1.3:
Inclusions as Microstructure / 10.2:
Eshelby and the Elastic Inclusion / 10.2.1:
The Question of Equilibrium Shapes / 10.2.2:
Precipitate Morphologies and Interfacial Energy / 10.2.3:
Equilibrium Shapes: Elastic and Interfacial Energy / 10.2.4:
A Case Study in Inclusions: Precipitate Nucleation / 10.2.5:
Temporal Evolution of Two-Phase Microstructures / 10.2.6:
Microstructure in Martensites / 10.3:
The Experimental Situation / 10.3.1:
Geometrical and Energetic Preliminaries / 10.3.2:
Twinning and Compatibility / 10.3.3:
Fine-Phase Microstructures and Attainment / 10.3.4:
The Austenite-Martensite Free Energy Reconsidered / 10.3.5:
Microstructural Evolution in Polycrystals / 10.4:
Phenomenology of Grain Growth / 10.4.1:
Modeling Grain Growth / 10.4.2:
Microstructure and Materials / 10.5:
Facing the Multiscale Challenge of Real Material Behavior / 10.6:
Points, Lines and Walls: Defect Interactions and Material Response / 11:
Defect Interactions and the Complexity of Real Material Behavior / 11.1:
Diffusion at Extended Defects / 11.2:
Background on Short-Circuit Diffusion / 11.2.1:
Diffusion at Surfaces / 11.2.2:
Mass Transport Assisted Deformation / 11.3:
Phenomenology of Creep / 11.3.1:
Nabarro-Herring and Coble Creep / 11.3.2:
Dislocations and Interfaces / 11.4:
Dislocation Models of Grain Boundaries / 11.4.1:
Dislocation Pile-Ups and Slip Transmission / 11.4.2:
Cracks and Dislocations / 11.5:
Variation on a Theme of Irwin / 11.5.1:
Dislocation Screening at a Crack Tip / 11.5.2:
Dislocation Nucleation at a Crack Tip / 11.5.3:
Dislocations and Obstacles: Strengthening / 11.6:
Conceptual Overview of the Motion of Dislocations Through a Field of Obstacles / 11.6.1:
The Force Between Dislocations and Glide Obstacles / 11.6.2:
The Question of Statistical Superposition / 11.6.3:
Solution Hardening / 11.6.4:
Precipitate Hardening / 11.6.5:
Dislocation-Dislocation Interactions and Work Hardening / 11.6.6:
Bridging Scales: Effective Theory Construction / 11.7:
Problems Involving Multiple Length and Time Scales / 12.1:
Problems with Multiple Temporal Scales: The Example of Diffusion / 12.1.1:
Problems with Multiple Spatial Scales: The Example of Plasticity / 12.1.2:
Generalities on Modeling Problems Involving Multiple Scales / 12.1.3:
Historic Examples of Multiscale Modeling / 12.2:
Effective Theory Construction / 12.3:
Degree of Freedom Selection: State Variables, Order Parameters and Configurational Coordinates / 12.3.1:
Dynamical Evolution of Relevant Variables: Gradient Flow Dynamics and Variational Principles / 12.3.2:
Inhomogeneous Systems and the Role of Locality / 12.3.3:
Models with Internal Structure / 12.3.4:
Effective Hamiltonians / 12.3.5:
Bridging Scales in Microstructural Evolution / 12.4:
Hierarchical Treatment of Diffusive Processes / 12.4.1:
From Surface Diffusion to Film Growth / 12.4.2:
Solidification Microstructures / 12.4.3:
Two-Phase Microstructures Revisited / 12.4.4:
A Retrospective on Modeling Microstructural Evolution / 12.4.5:
Bridging Scales in Plasticity / 12.5:
Mesoscopic Dislocation Dynamics / 12.5.1:
A Case Study in Dislocations and Plasticity: Nanoindentation / 12.5.2:
A Retrospective on Modeling Plasticity Using Dislocation Dynamics / 12.5.3:
Bridging Scales in Fracture / 12.6:
Atomic-Level Bond Breaking / 12.6.1:
Cohesive Surface Models / 12.6.2:
Cohesive Surface Description of Crack Tip Dislocation Nucleation / 12.6.3:
Universality and Specificity in Materials / 12.7:
Materials Observed / 13.1:
What is a Material: Another Look / 13.1.1:
Structural Observations / 13.1.2:
Concluding Observations on the Observations / 13.1.3:
How Far Have We Come? / 13.2:
Universality in Materials / 13.2.1:
Specificity in Materials / 13.2.2:
The Program Criticized / 13.2.3:
Intriguing Open Questions / 13.3:
In Which the Author Takes His Leave / 13.4:
References
Index
Preface
Acknowledgements
Notes on Units, Scales and Conventions
34.

図書

図書
S. Morita, R. Wiesendanger, E. Meyer (eds.)
出版情報: Berlin : Springer-Verlag, c2002-2015  2 v. ; 24 cm
シリーズ名: Nanoscience and technology
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
Future Prospects for NC-AFM / 1.3:
References
Principle of NC-AFM / Franz J. Giessibl2:
Basics / 2.1:
Relation to the Scanning Tunneling Microscope (STM) / 2.1.1:
Atomic Force Microscope (AFM) / 2.1.2:
Operating Modes of AFMs / 2.1.3:
Scanning Speed, Signal Bandwidth and Noise / 2.1.4:
The Four Additional Challenges Faced by AFM / 2.2:
Jump-to-Contact and Other Instabilities / 2.2.1:
Contribution of Long-Range Forces / 2.2.2:
Noisein theImagingSignal / 2.2.3:
Non-MonotonicImaging Signal / 2.2.4:
Frequency-Modulation AFM (FM-AFM) / 2.3:
Experimental Setup / 2.3.1:
Applications / 2.3.2:
Relation between Frequency Shift and Forces / 2.4:
Generic Calculation / 2.4.1:
Frequency Shift for a Typical Tip-Sample Force / 2.4.2:
Calculation of the Tunneling Current for Oscillating Tips / 2.4.3:
Noise in Frequency-Modulation AFM / 2.5:
Noisein theFrequencyMeasurement / 2.5.1:
Optimal Amplitude for Minimal Vertical Noise / 2.5.3:
A Novel Force Sensor Based on a Quartz Tuning Fork / 2.6:
Quartz Versus Silicon as a Cantilever Material / 2.6.1:
Benefits in Clamping One of the Beams (qPlus Configuration) / 2.6.2:
Conclusion and Outlook / 2.7:
Semiconductor Surfaces / Yasuhiro Sugawara3:
Instrumentation / 3.1:
Three-Dimensional Mapping of Atomic Force / 3.2:
Control ofAtomic Force / 3.3:
Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H / 3.4:
Surface Strain on an Atomic Scale / 3.5:
Low Temperature Image of Si(100) Clean Surface / 3.6:
Mechanical Control ofAtomPosition / 3.7:
Atom Identification Using Covalent Bonding Force / 3.8:
Charge Imaging with Atomic Resolution / 3.9:
Mechanical Atom Manipulation / 3.10:
Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces / Toyoko Arai ; Masahiko Tomitori4:
Experimental Conditions / 4.1:
Bias Dependence of NC-AFM Images for Si(111)7×7 / 4.2:
MechanismofInvertedAtomicCorrugation / 4.2.1:
NC-AFM Imaging and Tunneling Current / 4.2.2:
NC-AFM Images for Ge/Si(111) / 4.3:
Concluding Remarks / 4.4:
Alkali Halides / Roland Bennewitz ; Martin Bammerlin ; Ernst Meyer5:
Experimental Techniques / 5.1:
Relevant Forces / 5.1.2:
Imaging of Single Crystals / 5.2:
Sample Preparation / 5.2.1:
Atomic Corrugation / 5.2.2:
Imaging of Defects / 5.2.3:
Mixed Alkali Halide Crystals / 5.2.4:
Imaging of Thin Films / 5.3:
Preparation of Thin Films / 5.3.1:
Atomic Resolutionat Low-Coordinated Sites / 5.3.2:
Radiation Damage / 5.4:
Metallization and Bubble Formation in CaF2 / 5.4.1:
Monatomic Pits in KBr / 5.4.2:
Dissipation Measurements / 5.5:
Material and Site-Specific Contrast / 5.5.1:
Using Damping for Distance Control / 5.5.2:
Atomic Resolution Imaging on Fluorides / Michael Reichling ; Clemens Barth6:
Tip Instabilities / 6.1:
Flat Surfaces / 6.3:
Step Edges / 6.4:
Atomically Resolved Imaging of a NiO(001) Surface / Hirotaka Hosoi ; Kazuhisa Sueoka ; Kazunobu Hayakawa ; Koichi Mukasa7:
Antiferromagnetic Nickel Oxide / 7.1:
ExperimentalConsiderations / 7.2:
Morphology ofthe Cleaved Surface / 7.3:
Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips / 7.4:
Short-Range Magnetic Interaction / 7.5:
Analysis ofthe Cross-Section / 7.6:
Conclusion / 7.7:
Atomic Structure, Order and Disorder on High Temperature Reconstructed α-Al2O3(0001) / 8:
TheCleanSurface / 8.1:
Defect Formation upon Water Exposure / 8.2:
Self-Organized Formation of Nanoclusters / 8.3:
NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides / Chi Lun Pang ; Geoff Thornton9:
1×1 to 1×3 Phase Transition of TiO2(100) / 9.1:
Surface Reconstructions of TiO2(110) / 9.3:
The 1×2 Reconstruction of SnO2(110) / 9.4:
Imaging Thin Film Alumina: NiAl(110)-Al2O3 / 9.5:
Growth of Cu and Pd on α-Al2O3(0001)- <$$> / 9.6:
A Short-Range-Ordered Overlayer of K on TiO2(110) / 9.7:
Conclusions / 9.8:
Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces / Ken-ichi Fukui ; Yasuhiro Iwasawa10:
Background / 10.1:
Brief Description of Experiments / 10.2:
Surface Structures of TiO2(110) / 10.3:
Adsorbed Atoms and Molecules on TiO2(110) / 10.4:
Carboxylate Ions on TiO2(110) / 10.4.1:
Hydrogen Adatoms on TiO2(110) / 10.4.2:
Fluctuation ofAcetate Ions on TiO2(110) / 10.5:
Surface Structures of CeO2(111) / 10.6:
NC-AFM Imaging of Adsorbed Molecules / 10.7:
NucleicAcidBasesonaGraphiteSurface / 11.1:
Double-StrandedDNAonaMicaSurface / 11.2:
Alkanethiol on a Au(111) Surface / 11.3:
Organic Molecular Films / Hirofumi Yamada12:
AFM Imaging of Molecular Films / 12.1:
Fullerenes / 12.1.1:
AlkanethiolSAMs / 12.1.2:
Ferroelectric Molecular Films / 12.1.3:
Surface Potential Measurements / 12.2:
Technical Developments in NC-AFM Imaging ofMolecules / 12.3:
Single-Molecule Analysis / Akira Sasahara ; Hiroshi Onishi12.4:
Molecules and Surface / 13.1:
Experimental Methods / 13.3:
Alkyl-Substituted Carboxylates / 13.4:
Numerical Simulation ofPropiolate Topography / 13.5:
Sphere-Substrate Force / 13.5.1:
Sphere-Carboxylate Force / 13.5.2:
Cluster-Substrate Force / 13.5.3:
Cluster-Carboxylate Force / 13.5.4:
Simulated Topography / 13.5.5:
Fluorine-Substituted Acetates / 13.6:
Conclusions and Perspectives / 13.7:
Low-Temperature Measurements: Principles, Instrumentation, and Application / Wolf Allers ; Alexander Schwarz ; Udo D. Schwarz14:
Microscope Operation at Low Temperatures / 14.1:
Drift / 14.2.1:
Noise / 14.2.2:
Van der Waals Surfaces / 14.3:
HOPG(0001) / 14.4.1:
Xenon / 14.4.2:
Nickel Oxide / 14.5:
Semiconductors / 14.6:
Δf(z) Curves on Specific Atomic Sites / 14.6.1:
Tip-Dependent Atomic Scale Contrast / 14.6.2:
Tip-Induced Relaxation / 14.6.3:
Magnetic Force Microscopy at Low Temperatures / 14.7:
MFM Data Acquisition / 14.7.1:
Domain Structure of La0.7Ca0.3MnO3-δ / 14.7.2:
Vortices on YBa2Cu3O7-δ / 14.7.3:
Theory of Non-Contact Atomic Force Microscopy / Masaru Tsukada ; Naruo Sasaki ; Michel Gauthier ; Katsunori Tagami ; Satoshi Watanabe14.8:
Cantilever Dynamics / 15.1:
Theoretical Simulation of NC-AFM Images / 15.3:
Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces / 15.4:
Effect of Tip on Image for the Si(100)2×1: H Surface / 15.5:
Effect of Tip on Surface Structure Change and its Relation to Dissipation / 15.6:
Chemical Interaction in NC-AFM on Semiconductor Surfaces / San-Huang Ke ; Tsuyoshi Uda ; Kiyoyuki Terakura ; Ruben Pérez ; Ivan Štich15.7:
First-Principles Calculation of Tip-Surface Chemical Interaction / 16.1:
Simulation of NC-AFM Images / 16.3:
Simulations on Various Surfaces / 16.4:
Tip-Induced Surface Relaxation on the GaAs(110) Surface / 16.5:
Vertical Scan Over an As Atom / 16.5.1:
Vertical Scan Over a Ga Atom / 16.5.2:
RelevancetoNear-Contact STM Observations / 16.5.3:
Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM / 16.5.4:
Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence / 16.6:
Effect of Tip Morphology on NC-AFM Images / 16.7:
Image Contrast for the Ga/Si Tip / 16.7.1:
Image Contrast for the As/Si Tip / 16.7.2:
Contrast Mechanisms on InsulatingSurfaces / Adam Foster ; Alexander Shluger16.8:
Model ofAFM and Main Forces / 17.1:
Tip-Surface Setup / 17.2.1:
Forces / 17.2.2:
Simulating Scanning / 17.3:
TheSurface / 17.3.1:
TheTip / 17.3.2:
Tip-Surface Interaction / 17.3.3:
Modelling Oscillations / 17.3.4:
Generating a Theoretical Surface Image / 17.3.5:
The Calcium Fluoride (111) Surface / 17.4:
Calcite: Surface Deformations During Scanning / 17.4.2:
Studying Surface and Defect Properties / 17.5:
Analysis of Microscopy and Spectroscopy Experiments / Hendrik Hölscher17.6:
BasicPrinciples / 18.1:
Origin ofthe Frequency Shift / 18.2.1:
Calculation ofthe FrequencyShift / 18.2.3:
Frequency Shift for Conservative Tip-Sample Forces / 18.2.4:
Experimental NC-AFM Images of van der Waals Surfaces 355 / 18.3:
BasicPrinciplesoftheSimulationMethod / 18.3.2:
Applications ofthe Simulation Method / 18.3.3:
Dynamic Force Spectroscopy / 18.4:
Determining Forces fromFrequencies / 18.4.1:
Analysis ofTip-Sample Interaction Forces / 18.4.2:
Theory of Energy Dissipation into Surface Vibrations / Lev Kantorovich18.5:
Possible Dissipation Mechanisms / 19.1:
Adhesion Hysteresis / 19.2.1:
Stochastic Dissipation / 19.2.2:
Other Mechanisms / 19.2.3:
Brownian Particle MechanismofEnergy Dissipation / 19.3:
Brownian Particle / 19.3.1:
Fluctuation-Dissipation Theorem / 19.3.2:
Oscillating Tip as a Brownian Particle / 19.3.3:
Energy Dissipated Per Oscillation Cycle / 19.3.4:
Nonequilibrium Considerations for NC-AFM Systems / 19.4:
Preliminary Remarks / 19.4.1:
Mixed Quantum-Classical Representation / 19.4.2:
Equation ofMotion for the Tip / 19.4.3:
Estimation ofDissipation Energies in NC-AFM / 19.5:
Comparison with STM / 19.6:
Conclusions and Future Directions / 19.7:
Measurement of Dissipation Induced by Tip-Sample Interactions / H.J. Hug ; A. Baratoff20:
Experimental Aspects of Energy Dissipation / 20.1:
ExperimentalMethods / 20.3:
ApparentEnergyDissipation / 20.4:
Velocity-DependentDissipation / 20.5:
Electric-Field-MediatedJouleDissipation / 20.5.1:
Magnetic-Field-MediatedJouleDissipation / 20.5.2:
Magnetic-Field-MediatedDissipation / 20.5.3:
Brownian Dissipation / 20.5.4:
Hysteresis-Related Dissipation / 20.6:
Magnetic-Field-Induced Hysteresis / 20.6.1:
Hysteresis Due to Adhesion / 20.6.2:
Hysteresis Due to Atomic Instabilities / 20.6.3:
DissipationImagingwithAtomicResolution / 20.7:
DissipationSpectroscopy / 20.8:
Index / 20.9:
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
35.

図書

図書
Alexey Kavokin ... [et al.]
出版情報: Oxford ; New York : Oxford University Press, 2007  xvii, 430 p. ; 24 cm
シリーズ名: Series on semiconductor science and technology ; no. 16
所蔵情報: loading…
目次情報: 続きを見る
Overview of Microcavities / 1:
Properties of microcavities / 1.1:
Q-factor and finesse / 1.1.1:
Intracavity field enhancement and field distribution / 1.1.2:
Tuneability and mode separation / 1.1.3:
Angular mode pattern / 1.1.4:
Low-threshold lasing / 1.1.5:
Purcell factor and lifetimes / 1.1.6:
Strong vs. weak coupling / 1.1.7:
Microcavity realizations / 1.2:
Planar microcavities / 1.3:
Metal microcavities / 1.3.1:
Dielectric Bragg mirrors / 1.3.2:
Spherical mirror microcavities / 1.4:
Pillar microcavities / 1.5:
Whispering-gallery modes / 1.6:
Two-dimensional whispering galleries / 1.6.1:
Three-dimensional whispering-galleries / 1.6.2:
Photonic-crystal cavities / 1.7:
Random lasers / 1.7.1:
Plasmonic cavities / 1.8:
Microcavity lasers / 1.9:
Conclusion / 1.10:
Classical description of light / 2:
Free space / 2.1:
Light-field dynamics in free space / 2.1.1:
Propagation in crystals / 2.2:
Plane waves in bulk crystals / 2.2.1:
Absorption of light / 2.2.2:
Kramers-Kronig relations / 2.2.3:
Coherence / 2.3:
Statistical properties of light / 2.3.1:
Spatial and temporal coherence / 2.3.2:
Wiener-Khinchin theorem / 2.3.3:
Hanbury Brown-Twiss effect / 2.3.4:
Polarization-dependent optical effects / 2.4:
Birefringence / 2.4.1:
Magneto-optical effects / 2.4.2:
Propagation of light in multilayer planar structures / 2.5:
Photonic eigenmodes of planar systems / 2.6:
Photonic bands of 1D periodic structures / 2.6.1:
Stripes, pillars, and spheres: photonic wires and dots / 2.7:
Cylinders and pillar cavities / 2.8.1:
Spheres / 2.8.2:
Further reading / 2.9:
Quantum description of light / 3:
Pictures of quantum mechanics / 3.1:
Historical background / 3.1.1:
Schrodinger picture / 3.1.2:
Antisymmetry of the wavefunction / 3.1.3:
Symmetry of the wavefunction / 3.1.4:
Heisenberg picture / 3.1.5:
Dirac (interaction) picture / 3.1.6:
Other formulations / 3.2:
Density matrix / 3.2.1:
Second quantization / 3.2.2:
Quantization of the light field / 3.2.3:
Quantum states / 3.3:
Fock states / 3.3.1:
Coherent states / 3.3.2:
Glauber-Sudarshan representation / 3.3.3:
Thermal states / 3.3.4:
Mixture states / 3.3.5:
Quantum correlations of quantum fields / 3.3.6:
Statistics of the field / 3.3.7:
Polarization / 3.3.8:
Outlook on quantum mechanics for microcavities / 3.4:
Semiclassical description of light-matter coupling / 3.5:
Light-matter interaction / 4.1:
Classical limit / 4.1.1:
Einstein coefficients / 4.1.2:
Optical transitions in semiconductors / 4.2:
Excitons in semiconductors / 4.3:
Frenkel and Wannier-Mott excitons / 4.3.1:
Excitons in confined systems / 4.3.2:
Quantum wells / 4.3.3:
Quantum wires and dots / 4.3.4:
Exciton-photon coupling / 4.4:
Surface polaritons / 4.4.1:
Exciton-photon coupling in quantum wells / 4.4.2:
Exciton-photon coupling in quantum wires and dots / 4.4.3:
Dispersion of polaritons in planar microcavities / 4.4.4:
Motional narrowing of cavity polaritons / 4.4.5:
Microcavities with quantum wires or dots / 4.4.6:
Quantum description of light-matter coupling in semiconductors / 5:
Rabi dynamics / 5.1:
Bloch equations / 5.3:
Full quantum picture / 5.3.1:
Dressed bosons / 5.3.2:
Lindblad dissipation / 5.4:
Jaynes-Cummings model / 5.5:
Dicke model / 5.6:
Quantization of the exciton field / 5.7:
Excitons as bosons / 5.7.2:
Excitons in quantum dots / 5.7.3:
Dispersion of polaritons / 5.8:
The polariton Hamiltonian / 5.8.2:
Coupling in quantum dots / 5.8.3:
Weak-coupling microcavities / 6:
Purcell effect / 6.1:
The physics of weak coupling / 6.1.1:
Spontaneous emission / 6.1.2:
The case of QDs, 2D excitons and 2D electron-hole pairs / 6.1.3:
Fermi's golden rule / 6.1.4:
Dynamics of the Purcell effect / 6.1.5:
Case of QDs and QWs / 6.1.6:
Experimental realizations / 6.1.7:
Lasers / 6.2:
The physics of lasers / 6.2.1:
Semiconductors in laser physics / 6.2.2:
Vertical-cavity surface-emitting lasers / 6.2.3:
Resonant-cavity LEDs / 6.2.4:
Quantum theory of the laser / 6.2.5:
Nonlinear optical properties of weak-coupling microcavities / 6.3:
Bistability / 6.3.1:
Phase matching / 6.3.2:
Strong coupling: resonant effects / 6.4:
Optical properties background / 7.1:
Quantum well microcavities / 7.1.1:
Variations on a theme / 7.1.2:
Motional narrowing / 7.1.3:
Polariton emission / 7.1.4:
Near-resonant-pumped optical nonlinearities / 7.2:
Pulsed stimulated scattering / 7.2.1:
Quasimode theory of parametric amplification / 7.2.2:
Microcavity parametric oscillators / 7.2.3:
Resonant excitation case and parametric amplification / 7.3:
Semiclassical description / 7.3.1:
Stationary solution and threshold / 7.3.2:
Theoretical approach: quantum model / 7.3.3:
Three-level model / 7.3.4:
Threshold / 7.3.5:
Two-beam experiment / 7.4:
One-beam experiment and spontaneous symmetry breaking / 7.4.1:
Dressing of the dispersion induced by polariton condensates / 7.4.2:
Bistable behaviour / 7.4.3:
Strong coupling: polariton Bose condensation / 8:
Introduction / 8.1:
Basic ideas about Bose-Einstein condensation / 8.2:
Einstein proposal / 8.2.1:
Experimental realization / 8.2.2:
Modern definition of Bose-Einstein condensation / 8.2.3:
Specificities of excitons and polaritons / 8.3:
Thermodynamic properties of cavity polaritons / 8.3.1:
Interacting bosons and Bogoliubov model / 8.3.2:
Polariton superfluidity / 8.3.3:
Quasicondensation and local effects / 8.3.4:
High-power microcavity emission / 8.4:
Thresholdless polariton lasing / 8.5:
Kinetics of formation of polariton condensates: semiclassical picture / 8.6:
Qualitative features / 8.6.1:
The semiclassical Boltzmann equation / 8.6.2:
Numerical solution of Boltzmann equations, practical aspects / 8.6.3:
Effective scattering rates / 8.6.4:
Numerical simulations / 8.6.5:
Kinetics of formation of polariton condensates: quantum picture in the Born-Markov approximation / 8.7:
Density matrix dynamics of the ground-state / 8.7.1:
Discussion / 8.7.2:
Coherence dynamics / 8.7.3:
Kinetics of formation of polariton condensates: quantum picture beyond the Born-Markov approximation / 8.8:
Two-oscillator toy theory / 8.8.1:
Coherence of polariton-laser emission / 8.8.2:
Order parameter and phase diffusion coefficient / 8.8.3:
Semiconductor luminescence equations / 8.9:
Claims of exciton and polariton Bose-Einstein condensation / 8.10:
Spin and polarization / 8.11:
Spin relaxation of electrons, holes and excitons in semiconductors / 9.1:
Microcavities in the presence of a magnetic field / 9.2:
Resonant Faraday rotation / 9.3:
Spin relaxation of exciton-polaritons in microcavities: experiment / 9.4:
Spin relaxation of exciton-polaritons in microcavities: theory / 9.5:
Optical spin Hall effect / 9.6:
Optical induced Faraday rotation / 9.7:
Interplay between spin and energy relaxation of exciton-polaritons / 9.8:
Polarization of Bose condensates and polariton superfluidity / 9.9:
Magnetic-field effect and superfluidity / 9.10:
Finite-temperature case / 9.11:
Spin dynamics in parametric oscillators / 9.12:
Classical nonlinear optics consideration / 9.13:
Polarized OPO: quantum model / 9.14:
Conclusions / 9.15:
Glossary / 9.16:
Linear algebra / A:
Scattering rates of polariton relaxation / B:
Polariton-phonon interaction / B.1:
Interaction with longitudinal optical phonons / B.1.1:
Interaction with acoustic phonons / B.1.2:
Polariton-electron interaction / B.2:
Polariton-polariton interaction / B.3:
Polariton decay / B.3.1:
Polariton-structural-disorder interaction / B.4:
Derivation of the Landau criterion of superfluidity and Landau formula / C:
Landau quantization and renormalization of Rabi splitting / D:
References
Overview of Microcavities / 1:
Properties of microcavities / 1.1:
Q-factor and finesse / 1.1.1:
36.

図書

図書
M. Warner and E. M. Terentjev
出版情報: Oxford : Oxford University Press, c2003  xiv, 407 p. ; 24 cm
シリーズ名: The international series of monographs on physics ; 120
所蔵情報: loading…
目次情報: 続きを見る
A bird's eye view of liquid crystal elastomers / 1:
Liquid crystals / 2:
Ordering of rod and disc fluids / 2.1:
Nematic order / 2.2:
Free energy and phase transitions of nematics / 2.3:
Molecular theory of nematics / 2.4:
Distortions of nematic order / 2.5:
Transitions driven by external fields / 2.6:
Anisotropic viscosity and dissipation / 2.7:
Cholesteric liquid crystals / 2.8:
Smectic liquid crystals / 2.9:
Polymers, elastomers and rubber elasticity / 3:
Configurations of polymers / 3.1:
Liquid crystalline polymers / 3.2:
Shape of liquid crystalline polymers / 3.2.1:
Frank elasticity of nematic polymers / 3.2.2:
Classical rubber elasticity / 3.3:
Manipulating the elastic response of rubber / 3.4:
Finite extensibility and entanglements in elastomers / 3.5:
Classical elasticity / 4:
Deformation tensor and Cauchy-Green strain / 4.1:
Non-linear and linear elasticity / 4.2:
Geometry of deformations and rotations / 4.3:
Rotations / 4.3.1:
Shears and their decomposition / 4.3.2:
Square roots and polar decomposition of tensors / 4.3.3:
Compressibility of rubbery networks / 4.4:
Nematic elastomers / 5:
Structure and examples of nematic elastomers / 5.1:
Stress-optical coupling / 5.2:
Polydomain textures and alignment by stress / 5.3:
Monodomain 'single-crystal' nematic elastomers / 5.4:
Spontaneous shape changes / 5.4.1:
Nematic photoelastomers / 5.4.2:
Field-induced director rotation / 5.5:
Applications of liquid crystalline elastomers / 5.6:
Nematic rubber elasticity / 6:
Neo-classical theory / 6.1:
Spontaneous distortions / 6.2:
Equilibrium shape of nematic elastomers[Dagger] / 6.3:
Photo-mechanical effects / 6.4:
Thermal phase transitions / 6.5:
Effect of strain on nematic order / 6.6:
Mechanical and nematic instabilities / 6.7:
Mechanical Freedericks transition / 6.7.1:
The elastic low road / 6.7.2:
Finite extensibility and entanglements / 6.8:
Soft elasticity / 7:
Director anchoring to the bulk / 7.1:
Director rotation without strain / 7.1.1:
Coupling of rotations to pure shear / 7.1.2:
Soft modes of deformation / 7.2:
Principal symmetric strains and body rotations / 7.2.2:
Forms of the free energy allowing softness / 7.2.3:
Optimal deformations / 7.3:
A practical method of calculating deformations / 7.3.1:
Stretching perpendicular to the director / 7.3.2:
Semi-soft elasticity / 7.4:
Example: random copolymer networks / 7.4.1:
A practical geometry of semi-soft deformation / 7.4.2:
Experiments on long, semi-soft strips / 7.4.3:
Unconstrained elastomers in external fields / 7.4.4:
Semi-soft free energy and stress / 7.5:
Thermomechanical history and general semi-softness / 7.6:
Thermomechanical history dependence / 7.6.1:
Forms of the free energy violating softness / 7.6.2:
Distortions of nematic elastomers / 8:
Freedericks transitions in nematic elastomers / 8.1:
Strain-induced microstracture: stripe domains / 8.2:
General distortions of nematic elastomers / 8.3:
One-dimensional quasi-convexification / 8.3.1:
Full quasi-convexification / 8.3.2:
Numerical and experimental studies / 8.3.3:
Random disorder in nematic networks / 8.4:
Nematic ordering with quenched disorder / 8.4.1:
Characteristic domain size / 8.4.2:
Polydomain-monodomain transition / 8.4.3:
Cholesteric elastomers / 9:
Cholesteric networks / 9.1:
Intrinsically chiral networks / 9.1.1:
Chirally imprinted networks / 9.1.2:
Mechanical deformations / 9.2:
Uniaxial transverse elongation / 9.2.1:
Stretching along the pitch axis / 9.2.2:
Piezoelectricity of cholesteric elastomers / 9.3:
Imprinted cholesteric elastomers / 9.4:
Photonics of cholesteric elastomers / 9.5:
Photonics of liquid cholesterics / 9.5.1:
Photonics of elastomers / 9.5.2:
Experimental observations / 9.5.3:
Lasing in cholesterics / 9.5.4:
Continuum description of nematic elastomers / 10:
From molecular theory to continuum elasticity / 10.1:
Compressibility effects / 10.1.1:
The limit of linear elasticity / 10.1.2:
The role of nematic anisotropy / 10.1.3:
Phenomenological theory for small deformations / 10.2:
Strain-induced rotation / 10.3:
Symmetry arguments / 10.4:
The mechanism of soft deformation / 10.4.2:
Continuum representation of semi-softness / 10.5:
Unconstrained director fluctuations / 10.6:
Unconstrained phonons / 10.7:
Light scattering from director fluctuations / 10.8:
Dynamics of liquid crystal elastomers / 11:
Classical rubber dynamics / 11.1:
Rouse model and entanglements / 11.1.1:
Dynamical response of entangled networks / 11.1.2:
Long time stress relaxation / 11.1.3:
Nematohydrodynamics of elastic solids / 11.2:
Viscous coefficients and relaxation times / 11.2.1:
Balance of forces and torques / 11.2.2:
Symmetries and order parameter / 11.2.3:
Response to oscillating strains / 11.3:
Oscillating shear / 11.4:
Steady stress relaxation / 11.4.2:
Smectic elastomers / 12:
Materials and preparation / 12.1:
Smectic A elastomers / 12.1.1:
Smectic C and ferroelectric C elastomers / 12.1.2:
Physical properties of smectic elastomers / 12.2:
Smectic-A elastomers / 12.2.1:
Smectic-C elastomers / 12.2.2:
A molecular model of Smectic-A rubber elasticity / 12.3:
The geometry of affine layer deformations / 12.3.1:
Response to principal deformations / 12.3.2:
General deformations of a SmA elastomer / 12.3.3:
Instability and CMHH microstructure / 12.4:
Comparison with experiment / 12.5:
Smectic-C rubber elasticity / 12.6:
SmC soft deformations / 12.6.1:
SmC deformations with microstructure / 12.6.2:
Continuum description of smectic elastomers / 13:
Continuum description of smectic A elastomers / 13.1:
Relative translations in smectic networks revisited / 13.1.1:
Nematic -strain, -rotation and -smectic couplings / 13.1.2:
Effective smectic elasticity of elastomers / 13.2:
Effective rubber elasticity of smectic elastomers / 13.3:
Layer elasticity and fluctuations in smectic A elastomers / 13.4:
Layer buckling instabilities: the CMHH effect / 13.5:
Quenched layer disorder and the N-A phase transition / 13.6:
References / 13.7:
Index
Author Index
Online Appendices: (www.lcelastomer.org.uk)
Nematic order in elastomers under strain / A:
Biaxial soft elasticity / B:
Stripe microstructure / C:
Couple-stress and Cosserat elasticity / D:
Expansion at small deformations and rotations / E:
Smectic C soft elasticity / F:
A bird's eye view of liquid crystal elastomers / 1:
Liquid crystals / 2:
Ordering of rod and disc fluids / 2.1:
37.

図書

図書
Alireza Zolfaghari
出版情報: Boston : Kluwer Academic Publishers, c2003  xvi, 106 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1.:
Wireless Networks / 1.1:
GPS / 1.2:
Overview of Topics / 1.3:
Transceiver Architecture / 2.:
Receiver Architectures / 2.1:
Heterodyne Receivers / 2.2.1:
Homodyne Receivers / 2.2.2:
Image-Reject Receivers / 2.2.3:
Transmitter Architectures / 2.3:
Direct-Conversion Transmitters / 2.3.1:
Two-Step Transmitters / 2.3.2:
Proposed Transceiver Architecture / 2.4:
Compatibility with GPS / 2.5:
Stacked Inductors and Transformers / 3.:
Definitions of the Quality Factor / 3.1:
Large inductors with high self-resonance frequencies / 3.3:
Derivation of Self-Resonance Frequency / 3.4:
Modification of Stacked Inductors / 3.5:
Stacked Transformers / 3.6:
Experimental Results / 3.7:
Receiver Front End / 4.:
Low-Noise Amplifier / 4.1:
RF Mixers / 4.3:
First Downconversion / 4.4:
Second Downconversion / 4.5:
Divide-by-Two Circuit / 4.5.1:
Passive Mixers / 4.5.2:
Transmitter / 5.:
First Upconversion / 5.1:
Second Upconversion / 5.3:
Power Amplifier / 5.4:
Channel-Select Filter / 6.:
Noninvasive Filtering / 6.1:
General Idea / 6.2.1:
Noise Performance / 6.2.2:
Filter Tuning / 6.2.3:
Filter Design / 6.3:
Bluetooth Signal / 6.3.1:
Single-Tone Interferers / 6.3.2:
Intermodulation Specification / 6.3.3:
Order of Filter / 6.3.4:
Filter Realization / 6.4:
Transconductor Stage / 6.4.1:
Input Transconductor and Parallel Resistor / 6.4.2:
Capacitors / 6.4.3:
Test Setup / 6.4.4:
Equipment / 7.2.1:
Test Board / 7.2.2:
Noise Figure Measurements at Low Frequencies / 7.2.3:
First Prototype: RF Front-End Chip / 7.3:
Second Prototype: Transmitter/Receiver Chip / 7.4:
Conclusion / 8.:
References
Introduction / 1.:
Wireless Networks / 1.1:
GPS / 1.2:
38.

図書

図書
Didier Sornette
出版情報: Berlin : Springer, c2006  xxii, 528 p. ; 24 cm
シリーズ名: Springer series in synergetics
Springer complexity
所蔵情報: loading…
目次情報: 続きを見る
Useful Notions of Probability Theory / 1:
What Is Probability? / 1.1:
First Intuitive Notions / 1.1.1:
Objective Versus Subjective Probability / 1.1.2:
Bayesian View Point / 1.2:
Introduction / 1.2.1:
Bayes' Theorem / 1.2.2:
Bayesian Explanation for Change of Belief / 1.2.3:
Bayesian Probability and the Dutch Book / 1.2.4:
Probability Density Function / 1.3:
Measures of Central Tendency / 1.4:
Measure of Variations from Central Tendency / 1.5:
Moments and Characteristic Function / 1.6:
Cumulants / 1.7:
Maximum of Random Variables and Extreme Value Theory / 1.8:
Maximum Value Among N Random Variables / 1.8.1:
Stable Extreme Value Distributions / 1.8.2:
First Heuristic Derivation of the Stable Gumbel Distribution / 1.8.3:
Second Heuristic Derivation of the Stable Gumbel Distribution / 1.8.4:
Practical Use and Expression of the Coefficients of the Gumbel Distribution / 1.8.5:
The Gnedenko-Pickands-Balkema-de Haan Theorem and the pdfofPeaks-Over-Threshold / 1.8.6:
Sums of Random Variables, Random Walks and the Central Limit Theorem / 2:
TheRandomWalkProblem / 2.1:
AverageDrift / 2.1.1:
Diffusion Law / 2.1.2:
Brownian Motion as Solution of a Stochastic ODE / 2.1.3:
FractalStructure / 2.1.4:
Self-Affinity / 2.1.5:
Master and Diffusion (Fokker-Planck) Equations / 2.2:
Simple Formulation / 2.2.1:
GeneralFokker-PlanckEquation / 2.2.2:
ItoVersusStratonovich / 2.2.3:
Extracting Model Equations from Experimental Data / 2.2.4:
TheCentralLimit Theorem / 2.3:
Convolution / 2.3.1:
Statement / 2.3.2:
Conditions / 2.3.3:
CollectivePhenomenon / 2.3.4:
Renormalization Group Derivation / 2.3.5:
Recursion Relation and Perturbative Analysis / 2.3.6:
Large Deviations / 3:
CumulantExpansion / 3.1:
LargeDeviationTheorem / 3.2:
Quantification of the Deviation from the Central Limit Theorem / 3.2.1:
Heuristic Derivation of the Large Deviation Theorem(3.9) / 3.2.2:
Example: the Binomial Law / 3.2.3:
Non-identically Distributed Random Variables / 3.2.4:
Large Deviations with Constraints and the Boltzmann Formalism / 3.3:
Frequencies Conditioned byLargeDeviations / 3.3.1:
PartitionFunctionFormalism / 3.3.2:
LargeDeviationsintheDiceGame / 3.3.3:
Model Construction from Large Deviations / 3.3.4:
Large Deviations in the Gutenberg-Richter Law and the Gamma Law / 3.3.5:
Extreme Deviations / 3.4:
The "Democratic" Result / 3.4.1:
Application to the Multiplication of Random Variables: a Mechanism for Stretched Exponentials / 3.4.2:
Application to Turbulence and to Fragmentation / 3.4.3:
Large Deviations in the Sum of Variables with Power Law Distributions / 3.5:
General Case with Exponent ? > 2 / 3.5.1:
Borderline Case with Exponent ? = 2 / 3.5.2:
Power Law Distributions / 4:
Stable Laws: Gaussian and Lévy Laws / 4.1:
Definition / 4.1.1:
The Gaussian Probability Density Function / 4.1.2:
TheLog-NormalLaw / 4.1.3:
The Lévy Laws / 4.1.4:
Truncated Lévy Laws101 / 4.1.5:
PowerLaws / 4.2:
How Does One Tame "Wild" Distributions? / 4.2.1:
Multifractal Approach / 4.2.2:
Anomalous Diffusion of Contaminants in the Earth's Crust and the Atmosphere / 4.3:
General Intuitive Derivation / 4.3.1:
More Detailed Model of Tracer Diffusion in the Crust / 4.3.2:
Anomalous Diffusion in a Fluid / 4.3.3:
Intuitive Calculation Tools for Power Law Distributions / 4.4:
Fox Function, Mittag-Leffler Function and Lévy Distributions / 4.5:
Fractals and Multifractals / 5:
Fractals / 5.1:
A First Canonical Example: the Triadic Cantor Set / 5.1.1:
How Long Is the Coast of Britain? / 5.1.3:
The Hausdorff Dimension / 5.1.4:
ExamplesofNaturalFractals / 5.1.5:
Multifractals / 5.2:
Correction Method for Finite Size Effects and Irregular Geometries / 5.2.1:
Origin of Multifractality and Some Exact Results / 5.2.3:
Generalization of Multifractality: Infinitely Divisible Cascades / 5.2.4:
ScaleInvariance / 5.3:
Relation with Dimensional Analysis / 5.3.1:
TheMultifractalRandomWalk / 5.4:
A First Step: the Fractional Brownian Motion / 5.4.1:
Definition and Properties of the Multifractal Random Walk / 5.4.2:
Complex Fractal Dimensions and Discrete Scale Invariance / 5.5:
Definition of Discrete Scale Invariance / 5.5.1:
Log-Periodicity and Complex Exponents / 5.5.2:
Importance and Usefulness of Discrete Scale Invariance / 5.5.3:
Scenarii Leading to Discrete Scale Invariance / 5.5.4:
Rank-Ordering Statistics and Heavy Tails / 6:
Probability Distributions / 6.1:
Definition of Rank Ordering Statistics / 6.2:
NormalandLog-NormalDistributions / 6.3:
TheExponentialDistribution / 6.4:
PowerLawDistributions / 6.5:
MaximumLikelihoodEstimation / 6.5.1:
QuantilesofLargeEvents / 6.5.2:
Power Laws with a Global Constraint: "Fractal Plate Tectonics" / 6.5.3:
The Gamma Law / 6.6:
The Stretched Exponential Distribution / 6.7:
Maximum Likelihood and Other Estimators ofStretchedExponentialDistributions / 6.8:
Two-Parameter Stretched Exponential Distribution / 6.8.1:
Three-Parameter Weibull Distribution / 6.8.3:
GeneralizedWeibullDistributions / 6.8.4:
Statistical Mechanics: Probabilistic Point of View and the Concept of "Temperature" / 7:
Statistical Derivation of the Concept of Temperature / 7.1:
Statistical Thermodynamics / 7.2:
Statistical Mechanics as Probability Theory with Constraints / 7.3:
GeneralFormulation / 7.3.1:
First Law of Thermodynamics / 7.3.2:
ThermodynamicPotentials / 7.3.3:
Does the Concept of Temperature Apply to Non-thermal Systems? / 7.4:
Formulation of the Problem / 7.4.1:
AGeneralModelingStrategy / 7.4.2:
DiscriminatingTests / 7.4.3:
Stationary Distribution with External Noise / 7.4.4:
Effective Temperature Generated byChaoticDynamics / 7.4.5:
Principle of Least Action for Out-Of-Equilibrium Systems / 7.4.6:
Superstatistics / 7.4.7:
Long-Range Correlations / 8:
Criterion for the Relevance of Correlations / 8.1:
StatisticalInterpretation / 8.2:
An Application: Super-Diffusion in a Layered Fluid with Random Velocities / 8.3:
AdvancedResultsonCorrelations / 8.4:
CorrelationandDependence / 8.4.1:
Statistical Time Reversal Symmetry / 8.4.2:
Fractional Derivation and Long-Time Correlations / 8.4.3:
Phase Transitions: Critical Phenomena and First-Order Transitions / 9:
SpinModelsat TheirCriticalPoints / 9.1:
Definition of the Spin Model / 9.2.1:
CriticalBehavior / 9.2.2:
Long-Range Correlations of Spin Models at their Critical Points / 9.2.3:
First-OrderVersusCriticalTransitions / 9.3:
Definition and Basic Properties / 9.3.1:
Dynamical Landau-Ginzburg Formulation / 9.3.2:
The Scaling Hypothesis: Dynamical Length Scales for Ordering / 9.3.3:
Transitions, Bifurcations and Precursors / 10:
"Supercritical" Bifurcation / 10.1:
Critical PrecursoryFluctuations / 10.2:
"Subcritical" Bifurcation / 10.3:
Scaling and Precursors Near Spinodals / 10.4:
SelectionofanAttractorintheAbsence of a Potential / 10.5:
The Renormalization Group / 11:
General Framework / 11.1:
An Explicit Example: Spins on a Hierarchical Network / 11.2:
Renormalization Group Calculation / 11.2.1:
Fixed Points, Stable Phases and Critical Points / 11.2.2:
Singularities and Critical Exponents / 11.2.3:
Complex Exponents and Log-Periodic Correctionsto Scaling / 11.2.4:
"Weierstrass-Type Functions" from Discrete Renormalization Group Equations / 11.2.5:
Criticality and the Renormalization Group on Euclidean Systems / 11.3:
A Novel Application to the Construction of Functional Approximants / 11.4:
GeneralConcepts / 11.4.1:
Self-Similar Approximants / 11.4.2:
Towards a Hierarchical View of the World / 11.5:
The Percolation Model / 12:
Percolationas a Model ofCracking / 12.1:
Effective Medium Theory and Percolation / 12.2:
Renormalization Group Approach to Percolation and Generalizations / 12.3:
Cell-to-Site Transformation / 12.3.1:
A Word of Caution on Real Space Renormalization Group Techniques / 12.3.2:
The Percolation Model on the Hierarchical Diamond Lattice / 12.3.3:
Directed Percolation / 12.4:
Definitions / 12.4.1:
UniversalityClass / 12.4.2:
Field Theory: Stochastic Partial Differential Equation with Multiplicative Noise / 12.4.3:
Self-Organized Formulation of Directed Percolation and Scaling Laws / 12.4.4:
Rupture Models / 13:
TheBranchingModel / 13.1:
Mean Field Version or Branching on the Bethe Lattice / 13.1.1:
A Branching-Aggregation Model Automatically Functioning at Its Critical Point / 13.1.2:
Generalization of Critical Branching Models / 13.1.3:
Fiber Bundle Models and the Effects of Stress Redistribution / 13.2:
One-Dimensional System of Fibers Associated in Series / 13.2.1:
Democratic Fiber Bundle Model (Daniels, 1945) / 13.2.2:
Hierarchical Model / 13.3:
The Simplest Hierarchical Model of Rupture / 13.3.1:
Quasi-Static Hierarchical Fiber Rupture Model / 13.3.2:
Hierarchical Fiber Rupture Model with Time-Dependence / 13.3.3:
Quasi-Static Models in Euclidean Spaces / 13.4:
A Dynamical Model of Rupture Without Elasto-Dynamics: the "Thermal Fuse Model" / 13.5:
Time-to-Failure and Rupture Criticality / 13.6:
Critical Time-to-Failure Analysis / 13.6.1:
Time-to-Failure Behavior in the Dieterich Friction Law / 13.6.2:
Mechanisms for Power Laws / 14:
Temporal Copernican Principle and ? = 1 Universal Distribution of Residual Lifetimes / 14.1:
Change of Variable / 14.2:
Power Law Change of Variable Close to the Origin / 14.2.1:
CombinationofExponentials / 14.2.2:
Maximization of the Generalized Tsallis Entropy / 14.3:
Superposition of Distributions / 14.4:
Power Law Distribution ofWidths / 14.4.1:
Sum of Stretched Exponentials (Chap. 3) / 14.4.2:
Double Pareto Distribution by Superposition of Log-Normalpdf's / 14.4.3:
Random Walks: Distribution of Return Times to the Origin / 14.5:
Derivation / 14.5.1:
Applications / 14.5.2:
Sweeping of a Control Parameter Towards an Instability / 14.6:
Growth with Preferential Attachment / 14.7:
Multiplicative Noise with Constraints / 14.8:
Definition of the Process / 14.8.1:
The Kesten Multiplicative Stochastic Process / 14.8.2:
Random Walk Analogy / 14.8.3:
Exact Derivation, Generalization and Applications / 14.8.4:
The "Coherent-Noise" Mechanism / 14.9:
Avalanches in Hysteretic Loops and First-Order Transitions with Randomness / 14.10:
"Highly Optimized Tolerant" (HOT) Systems / 14.11:
Mechanism for the Power Law Distribution of Fire Sizes / 14.11.1:
"Constrained Optimization with Limited Deviations" (COLD) / 14.11.2:
HOT versus Percolation / 14.11.3:
Self-Organized Criticality / 15:
What Is Self-OrganizedCriticality? / 15.1:
SandpileModels / 15.1.1:
Generalities / 15.2.1:
TheAbelianSandpile / 15.2.2:
Threshold Dynamics / 15.3:
Generalization / 15.3.1:
Illustration of Self-Organized Criticality Within the Earth's Crust / 15.3.2:
Scenarios for Self-Organized Criticality / 15.4:
Nonlinear Feedback of the "Order Parameter" onto the "Control Parameter" / 15.4.1:
Generic Scale Invariance / 15.4.3:
Mapping onto a Critical Point / 15.4.4:
Mapping to Contact Processes / 15.4.5:
Critical Desynchronization / 15.4.6:
Extremal Dynamics / 15.4.7:
Dynamical System Theory of Self-Organized Criti-cality / 15.4.8:
Tests of Self-Organized Criticality in Complex Systems: the Example of the Earth'sCrust / 15.5:
Introduction to the Physics of Random Systems / 16:
The Random Energy Model / 16.1:
Non-Self-Averaging Properties / 16.3:
Fragmentation Models / 16.3.1:
Randomness and Long-Range Laplacian Interactions / 17:
Levy Distributions from Random Distributions of Sources with Long-Range Interactions / 17.1:
Holtsmark's Gravitational Force Distribution / 17.1.1:
Generalization to Other Fields (Electric, Elastic, Hydrodynamics) / 17.1.2:
Long-Range Field Fluctuations Due to Irregular Arrays of Sources at Boundaries / 17.2:
Problem and Main Results / 17.2.1:
Calculation Methods / 17.2.2:
References / 17.2.3:
Index
Useful Notions of Probability Theory / 1:
What Is Probability? / 1.1:
First Intuitive Notions / 1.1.1:
39.

図書

図書
Michael Köhler, Wolfgang Fritzsche
出版情報: Weinheim : Wiley-VCH, c2004  ix, 272 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
Definition of Nanostructures / 1.1.2:
Insight into the Nanoworld / 1.1.3:
Intervention into the Nanoworld / 1.1.4:
Building Blocks of Nanotechnology / 1.2:
Interactions and Topology / 1.3:
The Microscopic Environment of the Nanoworld / 1.4:
Molecular Basics / 2:
Particles and Bonds / 2.1:
Chemical Bonds in Nanotechnology / 2.1.1:
Van der Waals Interactions / 2.1.2:
Dipole-Dipole Interactions / 2.1.3:
Ionic Interactions / 2.1.4:
Metal Bonds / 2.1.5:
Covalent Bonds / 2.1.6:
Coordinative Bonds / 2.1.7:
Hydrogen Bridge Bonds / 2.1.8:
Polyvalent Bonds / 2.1.9:
Chemical Structure / 2.2:
Binding Topologies / 2.2.1:
Building Blocks of Covalent Architecture / 2.2.2:
Units for a Coordinated Architecture / 2.2.3:
Building Blocks for Weakly Bound Aggregates / 2.2.4:
Assembly of Complex Structures through the Internal Hierarchy of Binding Strengths / 2.2.5:
Reaction Probability and Reaction Equilibrium / 2.2.6:
Microtechnological Foundations / 3:
Planar Technology / 3.1:
Preparation of Thin Layers / 3.2:
Condition and Preprocessing of the Substrate Surface / 3.2.1:
Layer Deposition from the Gas Phase / 3.2.2:
Evaporation / 3.2.3:
Sputtering / 3.2.4:
Chemical Vapor Deposition / 3.2.5:
Galvanic Deposition / 3.2.6:
Deposition by Spinning (Spin Coating) / 3.2.7:
Shadow-mask Deposition Techniques / 3.2.8:
Preparation of Ultrathin Inorganic Layers and Surface-bound Nanoparticles / 3.3:
Ultrathin Layers by Vacuum Deposition Processes / 3.3.1:
Deposition of Ultrathin Films from the Liquid Phase / 3.3.2:
In Situ Generation of Ultrathin Inorganic Films by Chemical Surface Modification / 3.3.3:
In Situ Formation of Ultrathin Inorganic Layers on Heteroorganic Materials / 3.3.4:
Immobilization of Nanoparticles / 3.3.5:
In Situ Formation of Inorganic Nanoparticles / 3.3.6:
Structure Generation and Fabrication of Lithographic Masks / 3.4:
Adhesive Mask Technique / 3.4.1:
Role of Resist in Photolithography / 3.4.2:
Serial Pattern Transfer / 3.4.3:
Group Transfer Processes / 3.4.4:
Maskless Structure Generation / 3.4.5:
Soft Lithography / 3.4.6:
Etching Processes / 3.5:
Etching Rate and Selectivity / 3.5.1:
Isotropic and Anisotropic Etching Processes / 3.5.2:
Lithographic Resolution in Etching Processes / 3.5.3:
Wet Etching Processes / 3.5.4:
Dry Etching Processes / 3.5.5:
High-resolution Dry Etching Techniques / 3.5.6:
Choice of Mask for Nanolithographic Etching Processes / 3.5.7:
Packaging / 3.6:
Biogenic and Bioanalogue Molecules in Technical Microstructures / 3.7:
Preparation of Nanostructures / 4:
Principles of Fabrication / 4.1:
Subtractive and Additive Creation of Nanostructures / 4.1.1:
Nanostructure Generation by Lift-off Processes / 4.1.2:
Principles of Nanotechnical Shape-definition and Construction / 4.1.3:
Nanomechanical Structure Generation / 4.2:
Scaling Down of Mechanical Processing Techniques / 4.2.1:
Local Mechanical Cutting Processes / 4.2.2:
Surface Transport Methods / 4.2.3:
Reshaping Processes / 4.2.4:
Printing Processes / 4.2.5:
Nanolithography / 4.3:
Structure Transfer by Electromagnetic Radiation / 4.3.1:
Nanolithographic Transfer of Groups of Elements by Optical Projection / 4.3.2:
EUV and X-ray Lithography / 4.3.3:
Multilayer Resists Techniques with Optical Pattern Transfer / 4.3.4:
Near-field Optical Structure Techniques with Contact Masks / 4.3.5:
Energetic Particles in Nanolithographic Structure Transfer / 4.3.6:
Electron Beam Lithography / 4.3.7:
Ion Beam Lithography / 4.3.8:
Atomic Beam Lithography / 4.3.9:
Molecular and Nanoparticle Beam Lithography / 4.3.10:
Direct Writing of Structures by a Particle Beam / 4.3.11:
Single-particle Beam Processes / 4.3.12:
Nanofabrication by Self-structuring Masks / 4.3.13:
Nanofabrication by Scanning Probe Techniques / 4.4:
Scanning Force Probes / 4.4.1:
Particle Manipulation With a Scanning Tunneling Microscope (STM) / 4.4.2:
Thermo-mechanical Writing of Nanostructures / 4.4.3:
Electrically Induced Structure Generation by Scanning Probe Techniques / 4.4.4:
Chemical Electrodeless Induced Scanning Probe Structure Generation / 4.4.5:
Nanostructure Generation by Optical Near-field Probes / 4.4.6:
Nanotechnical Structures / 5:
Inorganic Solids / 5.1:
Influence of Material Morphology on Nanoscale Pattern Processes / 5.1.1:
Inorganic Dielectrics / 5.1.2:
Metals / 5.1.3:
Semiconductors / 5.1.4:
Carbon / 5.1.5:
Organic Solids and Layer Structures / 5.2:
Solids Composed of Smaller Molecules / 5.2.1:
Organic Monolayer and Multilayer Stacks / 5.2.2:
Synthetic Organic Polymers / 5.2.3:
Biopolymers / 5.2.4:
Molecular Monolayer and Layer Architectures / 5.3:
Langmuir-Blodgett Films / 5.3.1:
Self-assembled Surface Films / 5.3.2:
Binding of Molecules on Solid Substrate Surfaces / 5.3.3:
Secondary Coupling of Molecular Monolayers / 5.3.4:
Categories of Molecular Layers / 5.3.5:
Molecular Coupling Components (Linkers) and Distance Components (Spacers) / 5.3.6:
Definition of Binding Spots on Solid Substrates / 5.3.7:
Architectures with Single Molecules / 5.4:
Single Molecules as Nanostructures / 5.4.1:
Strategies of Molecular Construction / 5.4.2:
Biogenic and Bioanalogous Nanoarchitectures / 5.4.3:
DNA Nanoarchitectures / 5.4.4:
Synthetic Supramolecules / 5.4.5:
Nanoparticles and Nanocompartments / 5.4.6:
Combination of Molecular Architectures and Nanoparticles with Planar Technical Structures / 5.5:
Characterization of Nanostructures / 6:
Geometrical Characterization / 6.1:
Layer Thickness and Vertical Structure Dimensions / 6.1.1:
Lateral Dimensions / 6.1.2:
Structures that Assist Measurement / 6.1.3:
Characterization of Composition of Layers and Surfaces / 6.2:
Atomic Composition / 6.2.1:
Characterization of the Chemical Surface / 6.2.2:
Functional Characterization of Nanostructures / 6.3:
Nanotransducers / 7:
Design of Nanotransducers / 7.1:
Nanomechanical Elements / 7.2:
Nanomechanical Sensors / 7.2.1:
Nanometer-precision Position Measurements with Conventional Techniques / 7.2.2:
Electrically Controlled Nanoactuators / 7.2.3:
Chemically Driven Nanoactuators / 7.2.4:
Rigidity of Nanoactuators / 7.2.5:
Nanoelectronic Devices / 7.3:
Electrical Contacts and Nanowires / 7.3.1:
Nanostructured Tunneling Barriers / 7.3.2:
Quantum Dots and Localization of Elementary Particles / 7.3.3:
Nanodiodes / 7.3.4:
Electron Islands and Nanotransistors / 7.3.5:
Nanoswitches, Molecular Switches and Logic Elements / 7.3.6:
Nanooptical Devices / 7.4:
Nanostructures as Optical Sensors / 7.4.1:
Nanostructured Optical Actuators / 7.4.2:
Nanooptical Switching and Conversion Elements / 7.4.3:
Magnetic Nanotransducers / 7.5:
Chemical Nanoscale Sensors and Actuators / 7.6:
Technical Nanosystems / 8:
What are Nanosystems? / 8.1:
Systems with Nanocomponents / 8.2:
Entire Systems with Nanometer Dimensions / 8.3:
Table of Examples
References
Index
Introduction / 1:
The Way into the Nanoworld / 1.1:
From Micro- to Nanotechniques / 1.1.1:
40.

図書

図書
authors, Fritz Vögtle, Gabriele Richardt, Nicole Werner ; translator, Anthony J. Rackstraw
出版情報: Weinheim : Wiley-VCH, c2009  xi, 342 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical - Cascade molecules and dendrimers / 1.1:
Dendritic architectures / 1.2:
Perfection, defects, dispersity / 1.3:
Definition and classification of dendritic molecules / 1.4:
Nomenclature of dendritic molecules / 1.5:
Newkome nomenclature / 1.5.1:
Cascadane nomenclature / 1.5.2:
Bibliography and Notes for Chapter 1 "Introduction"
Synthetic methods for dendritic molecules / 2:
Divergent synthesis / 2.1:
Convergent synthesis / 2.2:
Recent synthetic methods / 2.3:
Orthogonal synthesis / 2.3.1:
Double-stage convergent method / 2.3.2:
Double-exponential method / 2.3.3:
Hypermonomer method / 2.3.4:
Click chemistry / 2.3.5:
Solid phase synthesis / 2.4:
Coordination-chemical synthesis / 2.5:
Metal complex as core unit / 2.5.1:
Metal complex as branching unit / 2.5.2:
Supramolecular synthesis / 2.6:
Hyperbranched polymers / 2.7:
Dendronised linear polymers / 2.8:
Polymer-analogous method / 2.8.1:
Macromonomer method / 2.8.2:
Dendro-Isomers / 2.9:
Bibliography and Notes for Chapter 2 "Synthetic methods for dendritic molecules"
Functional dendrimers / 3:
Monofunctional dendrimers / 3.1:
Functional core / 3.1.1:
Functional periphery / 3.1.2:
Functionalisation of terminal groups / 3.1.2.1:
Introduction of peripheral groups prior to dendrimer growth / 3.1.2.2:
Functional units in the dendrimer scaffold / 3.1.3:
Modification prior to dendrimer growth / 3.1.3.1:
Internal modification on conclusion of dendrimer growth / 3.1.3.2:
Multifunctional dendrimers
Bifunctionalised molecular periphery / 3.2.1:
Two different functional units in different parts of the molecule / 3.2.2:
More than two different functional units / 3.2.3:
Overview of functional dendrimers and their synthesis / 3.2.4:
Bibliography and Notes for Chapter 3 "Functional dendrimers"
Types of dendrimers and their syntheses / 4:
Achiral dendrimers / 4.1:
POPAM / 4.1.1:
PAMAM / 4.1.2:
POMAM / 4.1.3:
Polylysine dendrimers / 4.1.4:
Dendritic hydrocarbons / 4.1.5:
Condensed arene components - Iptyceness / 4.1.5.1:
Dendrimers from arene and multiply bonded building blocks / 4.1.5.2:
Stilbenoid dendrimers / 4.1.5.3:
Hyperbranched polybenzenes / 4.1.5.4:
Carbon/oxygen-based (and Fréchet) dendrimers / 4.1.6:
Polyether dendrimers / 4.1.6.1:
Polyester dendrimers / 4.1.6.2:
Carbohydrate dendrimers (glycodendrimers) / 4.1.6.3:
Porphyrin-based dendrimers / 4.1.7:
Ionic dendrimers / 4.1.8:
Polyanionic dendrimers / 4.1.8.1:
Silicon-based dendrimers / 4.1.8.2:
Silane dendrimers / 4.1.9.1:
Carbosilane dendrimers / 4.1.9.2:
Carbosiloxane dendrimers / 4.1.9.3:
Siloxane dendrimers / 4.1.9.4:
Hyperbranched silicon-based polymers / 4.1.9.5:
Phosphorus-based dendrimers / 4.1.10:
Metallodendrimers (and Newkome dendrimers) / 4.1.11:
Bibliography and Notes for Section 4.1 "Achiral dendrimers"
Chiral dendrimers / 4.2:
Classification of chiral dendrimers / 4.2.1:
Studies on the chirality of dendritic molecules / 4.2.2:
Chiroptical studies / 4.2.2.1:
Possible applications of chiral dendrimers / 4.2.2.2:
Dendrimers with chiral core and achiral branching scaffold / 4.2.3:
Chiroptical studies on dendrimers with chiral cores / 4.2.3.1:
Possible applications of chiral-core dendrimers / 4.2.3.2:
Dendrimers with chiral building blocks as spacers or branching units / 4.2.4:
Chiroptical studies on dendrimers with chiral dendrimer scaffold / 4.2.4.1:
Possible applications of dendrimers with chiral branching scaffold / 4.2.4.2:
Chirality in the periphery / 4.2.5:
Chiroptical studies on dendrimers with peripheral chiral units / 4.2.5.1:
Possible applications of dendrimers with peripheral chiral units / 4.2.5.2:
Chiral dendrimers for asymmetric catalysis / 4.2.6:
Interpretation of the chirality of dendritic molecules / 4.2.7:
Bibliography and Notes for Section 4.2 "Chiral Dendrimers"
Photophysical properties of dendirtic molecules / 5:
Luminescence and energy transfer / 5.1:
Luminescence / 5.1.1:
Energy transfer / 5.1.2:
Dexter mechanism: Energy transfer by radiative emission / 5.1.2.1:
Förster mechanism: Energy transfer by dipole-dipole interactions / 5.1.2.2:
Examples from the field of dendritic molecules / 5.1.2.3:
Antenna effect and photoisomerisation of dendrimers / 5.2:
Antenna effect / 5.2.1:
Photoisomerisation / 5.2.2:
Bibliography and Notes for Chapter 5 "Photophysical properties of dendritic molecules"
(Special) chemical reactions of dendritic molecules / 6:
Covalent chemical reactions / 6.1:
Metathesis / 6.1.1:
Molecular imprinting / 6.1.2:
Covalent introduction of functionalities in the interior of dendritic molecules / 6.1.3:
Supramolecular (host/guest) interactions / 6.2:
Non-covalent modification of a dendrimer periphery / 6.2.1:
Self-assembly of dendrimers / 6.2.2:
Inclusion of guest species in dendritic host molecules / 6.2.3:
Dendrimers with multiple receptor units / 6.2.3.1:
Guest inclusion by steric compression / 6.2.3.2:
Guest inclusion by dynamic processes (diffusion) / 6.2.3.3:
Dendritic stopper groups (in rotaxanes) / 6.2.4:
Dendritic effects / 6.3:
Dendritic effects in inclusion of guests / 6.3.1:
Dendritic effects in catalysis / 6.3.2:
Metal-containing dendritic catalysts / 6.3.2.1:
Metal-free dendritic catalysts / 6.3.2.2:
Dendritic effects on electrochemical properties / 6.3.3:
Redox gradients / 6.3.3.1:
Redox sensors / 6.3.3.3:
Redox potential and redox transfer kinetics / 6.3.3.4:
Charge-separation processes / 6.3.3.5:
Summary of the dendritic effect / 6.3.4:
Bibliography and Notes for Chapter 6 "(Special) chemical reactions of dendritic molecules"
Characterisation and analysis / 7:
Chromatography / 7.1:
Liquid chromatography / 7.1.1:
Preparative liquid chromatography / 7.1.1.1:
High-performance liquid chromatography / 7.1.1.2:
Gel permeation chromatography / 7.1.2:
Gel electrophoresis / 7.2:
NMR spectroscopy / 7.3:
(1D)-NMR spectroscopic studies / 7.3.1:
Multidimensional NMR spectroscopy in dendrimer research / 7.3.2:
Diffusion NMR spectroscopy / 7.3.3:
Dynamic NMR spectroscopy / 7.3.4:
Mass spectrometry / 7.4:
Gentle ionisation methods: MALDI and ESI / 7.4.1:
Study of dendrimers by MALDI and ESI-MS / 7.4.1.1:
X-ray crystal structure analysis / 7.5:
Small-angle scattering / 7.6:
Principle of small-angle scattering / 7.6.1:
Capability of small-angle scattering / 7.6.2:
Structural analysis of dissolved dendrimers with SANS and SAXS / 7.6.3:
Radial segment density distribution of flexible dendrimers / 7.6.3.1:
Distribution of end groups / 7.6.3.2:
Intermolecular interactions of flexible dendrimers in solution / 7.6.3.3:
Scanning probe microscopy / 7.7:
STM and AFM / 7.7.1:
AFM images of dendrimers / 7.7.1.1:
STM images of dendrimers / 7.7.1.2:
Transmission electron microscopy / 7.8:
TEM / 7.8.1:
TEM images of dendrimers / 7.8.1.1:
Chiroptical methods / 7.9:
Optical rotatory dispersion and circular dichroism / 7.9.1:
Chiroptical studies on chiral dendritic structures / 7.9.2:
Summary / 7.10:
Bibliography and Notes for Chapter 7 "Characterization and analysis"
Special properties and potential applications / 8:
Catalysis, membrane technology / 8.1:
Dendrimers as catalyst supports / 8.2.1:
Catalytic dendrimers for membrane reactors / 8.2.2:
Dendrimers in enantioselective catalysis / 8.2.3:
Dendrimers as phase transfer catalysts / 8.2.4:
Pigments, adhesives, additives in chemical materials / 8.3:
Dendrimers as additives / 8.3.1:
Dendritic polymers for printing inks / 8.3.2:
Dendritic polymers for paints / 8.3.3:
Dendritic polymers as additives in foam formulation / 8.3.4:
Network precursors for plastics / 8.3.5:
Dendrimers as nanocapsules for dyes and for molecular imprinting / 8.3.6:
Dendrimers for displays and (opto)electronics / 8.4:
Liquid-crystalline dendrimers / 8.4.1:
Biomimetics, sensor technology, diagnostics (fluorescence) / 8.5:
Protein dendrimers / 8.5.1:
Glycomimetics / 8.5.2:
Dendrimers in sensor technology / 8.5.3:
Quartz micro balance with dendritic sensor layers / 8.5.3.1:
Luminescent dendrimers as sensor materials / 8.5.3.2:
Fluorescing PET sensors / 8.5.3.3:
Dendrimers in medical diagnostics / 8.6:
Magnetic resonance imaging (MRI) processes / 8.6.1:
DNA dendrimers as biosensors for DNA hybridisation / 8.6.2:
Medical applications / 8.7:
Dendrimers as carriers for cytostatic agents / 8.7.1:
Gene therapy / 8.7.2:
Photodynamic therapy / 8.7.3:
Dendrimers in prevention against HIV / 8.7.4:
Culture of organs and tissue / 8.7.5:
Wound healing / 8.7.5.1:
Boron neutron capture therapy / 8.7.6:
Dendrimers in nanotechnology / 8.8:
Photoswitchable dendrimers / 8.8.1:
Dendrimers as impellers / 8.8.2:
Dendrimers as nanotubes / 8.8.3:
Dendritic polymers as templates / 8.8.4:
Bibliography and Notes for Chapter 8 "Special properties and potential applications"
Outlook
Subject Index
Preface
Introduction / 1:
Historical - Cascade molecules and dendrimers / 1.1:
41.

図書

図書
D. Courjon
出版情報: London : Imperial College Press, c2003  xxi, 317 p ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
How to read this book
History of Near-field Optics / Chapter 1:
Notion of imaging system / 1.1:
Bases of imaging / 1.2:
Vision / 1.2.1:
Image / 1.2.2:
Far-field imaging systems / 1.2.3:
Notion of superresolution / 1.2.4:
Near-field imaging systems / 1.2.5:
History of near-field microscopy / 1.3:
Synge's speculation / 1.3.1:
J. O'Keefe's letter / 1.3.2:
E. Ash and G. Nicholls realization / 1.3.3:
Superresolution in imaging systems / 1.3.4:
Scanning tunnelling microscopy / 1.3.5:
Early optical near-field microscopes / 1.3.6:
Non-radiating Sources & Non-propagating Fields / Chapter 2:
Introduction / 2.1:
A few words of terminology / 2.1.1:
Various non-radiating sources / 2.2:
Non-radiating classical distributions / 2.3:
Non-radiating sources by destructive interference / 2.4:
Extension of the notion of non-radiating source / 2.5:
Evanescent fields / 2.5.1:
Evanescent field generated by total internal reflection / 2.5.2:
Destructive-interference device / 2.5.3:
Resonant evanescent fields / 2.5.4:
Resonant spherical devices / 2.5.5:
Evanescent Optics / Chapter 3:
Theory of Fresnel evanescent waves / 3.1:
Reflection and refraction laws / 3.1.1:
Total internal reflection / 3.1.2:
Energy flow and Poynting vector / 3.1.3:
Goos-Hanchen and transversal shifts / 3.1.4:
Evanescent fields generated by sub-wavelength diffraction / 3.2:
Light beam propagation / 3.3:
A particular case of evanescent waves: the plasmons / 3.4:
Definition of a plasmon / 3.4.1:
Theory / 3.4.2:
Scanning plasmon optical microscopy / 3.4.3:
Theories and Modellings / Chapter 4:
Early works / 4.1:
Recent works / 4.2:
Different ways of approaching the theory of near-field optics / 4.3:
Physical approach / 4.3.1:
Model space / 4.3.2:
Global or non-global approach / 4.3.3:
Tip description / 4.4:
Description in a non-global scheme / 4.4.1:
Description in a global scheme / 4.4.2:
Light-sample interaction / 4.5:
Rigorous grating theory / 4.5.1:
The reciprocal-space perturbative method (RSPM) / 4.5.2:
Direct-space-global approaches / 4.5.3:
Inverse Problem and Apparatus Function / Chapter 5:
Inverse problem solution in band-limited far-field imaging / 5.1:
Inverse propagator and reciprocity theorem / 5.3:
Reciprocity theorem / 5.3.1:
Inverse problem solution in near-field imaging / 5.4:
Apparatus functions / 5.5:
Impulse response / 5.5.1:
Transfer function / 5.5.2:
Criteria of Quality, Noise and Artifacts / Chapter 6:
Degrees of freedom of an optical system / 6.1:
Generalization of Lukosz's approach / 6.1.1:
Far-field case / 6.1.2:
Near-field case / 6.1.3:
Information capacity for noisy coherent signals / 6.1.4:
Noise in optical systems / 6.2:
Optical noises / 6.2.1:
External noises / 6.2.2:
Artifacts / 6.3:
Scanning modes in near-field microscopy / 6.3.1:
Notion of artifact / 6.3.2:
Comparison between the three scanning mode behaviours / 6.4:
Input parameters of the simulation / 6.4.1:
Constant distance mode / 6.4.2:
Constant height mode / 6.4.3:
Constant intensity mode / 6.4.4:
Notion of resolution / 6.5:
Detection / 6.5.1:
Localization / 6.5.2:
Resolution / 6.5.3:
The two-point criterion / 6.5.4:
Other estimates of resolution / 6.5.5:
Optical transfer function OTF / 6.5.6:
OTF in near-field optics / 6.5.7:
Experimental OTF in near-field optics / 6.5.8:
Contrast / 6.5.9:
New criteria of quality / 6.5.10:
Nano-collectors and Nano-emitters / Chapter 7:
Precursors / 7.1:
Near-field collection and emission / 7.2:
Principle / 7.2.1:
Distance of collection/emission / 7.2.2:
Shape of nano-collectors/emitters / 7.2.3:
Various technologies / 7.3:
Bare tapers / 7.4:
Shaping techniques / 7.4.1:
Etching techniques / 7.4.2:
Effect of parameters / 7.4.3:
More sophisticated procedures / 7.4.4:
High aperture angle conical tips / 7.4.5:
Hot stretching techniques / 7.4.6:
Advantages and drawbacks of the two techniques / 7.4.7:
Tapered metal wire and silicon AFM tips / 7.4.8:
Pyramidal tips / 7.4.9:
Coated materials / 7.5:
Flat nano-apertures / 7.5.1:
Tapered nano-apertures / 7.5.2:
Tapered/cleaved fibres / 7.5.3:
Efficiency of tapered metal coated fibres / 7.5.4:
Laser damages / 7.5.5:
Realization of the aperture by other techniques / 7.5.6:
Nano-antenna used as a near-field perturbing system / 7.6:
Variant of tapered fibres / 7.7:
Chemical sensors used as fluorescent tips / 7.8:
Instrumentation / Chapter 8:
Basic structure of near-field optical microscopes / 8.1:
Mechanical part / 8.2:
Translation stage / 8.2.1:
Practical case / 8.2.2:
Techniques for machining the piezo-electric tube / 8.2.3:
Compensation of the thermal drift / 8.2.4:
Connection of the wires on the electrodes / 8.2.5:
Holding of the nano-collector/emitter / 8.3:
Fibre as a nano-collector/emitter / 8.3.1:
Other collector/emitters / 8.3.2:
Anti-vibration devices / 8.4:
Distance control / 8.4.1:
Optical part / 8.5:
Source / 8.5.1:
Detector / 8.5.2:
Usual optical and opto-electronic components / 8.5.3:
Electronic stages / 8.6:
Synchronous detection / 8.6.1:
Distance control: the P.I.D. device / 8.6.2:
Main Near-field Microscope Configurations / Chapter 9:
Transmission microscopes / 9.1:
Reflection microscopy / 9.2:
Tunnelling microscopy / 9.3:
Optical tunnelling microscopy / 9.4:
Plasmon microscopy / 9.5:
Hybrid techniques / 9.6:
Near-field microscopy with shear-force control / 9.6.1:
Contact near-field optical microscopy / 9.6.2:
Near-field Image Processing / Chapter 10:
Generalities / 10.1:
Linear distortions / 10.1.1:
Non-linear distortions / 10.1.2:
Correction of distortions / 10.2:
Correction of linear distortions / 10.2.1:
Correction of non-linear distortions / 10.2.2:
Correction of tip-sample sticking / 10.2.3:
Filtering process / 10.3:
Direct or local filtering / 10.3.1:
Fourier or reciprocal filtering / 10.3.2:
Karhunen-Loeve transform and information extraction / 10.4:
Applications of Near-field Microscopy / Chapter 11:
First attempts: topography measurements / 11.1:
Local index variation measurement / 11.1.2:
Light trapping / 11.2:
Concept of nano-optics / 11.3:
A simple case: the frustrated reflection by a sphere or a tip / 11.4:
A second example: the resonant tunnelling effect / 11.5:
A more sophisticated example: a sub-wavelength periodic structure / 11.6:
Photonic transfer through segmented optical waveguides / 11.7:
Basis of Optics / Appendix A:
Unit Systems / A.0.1:
Basic functions and operators in optics / A.1:
Reminder on vectorial calculus / A.1.1:
Relations connecting gradient, divergence and rotational / A.1.2:
Dyadic analysis / A.1.3:
Maxwell's equations / A.2:
Material equations / A.2.1:
Maxwell's equation in the dyadic scheme / A.2.2:
Wave equation / A.3:
There is no charges or currents ([characters not reproducible] = 0 and j = 0) / A.3.1:
The medium is homogeneous, ([mu] and [epsilon] space-independent) / A.3.2:
The medium is homogeneous and there is no charges or currents / A.3.3:
Case of harmonic fields / A.3.4:
Scalar and vector potentials / A.4:
Static regimes / A.5:
Poisson's and Laplace's equations / A.5.1:
Field generated by a single charge / A.5.2:
Flux of an electric field through a surface element / A.5.3:
Gauss' theorem / A.5.4:
Green's functions and Green's theorem / A.6:
Green's functions in classical potential theory / A.6.1:
Time dependent fields: the Helmholtz equation / A.6.2:
Green's theorem / A.6.3:
Green's dyadic / A.6.4:
Expansion of a field in term of a set of plane waves / A.7:
Basis / A.7.1:
Angular spectrum expansion (A.S.E.) / A.7.2:
Propagation of light using A.S.E. / A.8:
Analysis of the results / A.9:
Nomenclature
List of Acronyms
Glossary
Index
Author Index
Bibliography
Preface
How to read this book
History of Near-field Optics / Chapter 1:
42.

図書

図書
I.P. Grant
出版情報: New York : Springer, c2007  xxiii, 797 p. ; 24 cm
シリーズ名: Springer series on atomic, optical, and plasma physics ; 40
所蔵情報: loading…
目次情報: 続きを見る
Relativity in atomic and molecular physics / Part I:
Elementary ideas / 1:
The one-electron atom / 1.2:
Classical Kepler orbits / 1.2.1:
The Bohr atom / 1.2.2:
X-ray spectra and Moseley's Law / 1.2.3:
Transition to quantum mechanics / 1.2.4:
Sommerfeld's relativistic orbits and Dirac's wave equation / 1.2.5:
Dirac and Schrodinger charge distributions / 1.2.6:
The Dirac hydrogenic spectrum at high Z / 1.2.7:
Many-electron atoms / 1.3:
Central field models of the atom / 1.3.1:
Closed and open shells / 1.3.2:
Mean field potentials / 1.3.3:
Comparison of Hartree-Fock and Dirac-Hartree-Fock models for ground states / 1.3.4:
The mechanism of shell filling / 1.3.5:
Other approaches / 1.3.6:
Applications to atomic physics / 1.4:
X-ray spectra / 1.4.1:
Applications to astrophysics and plasma physics / 1.4.2:
Modelling atomic processes in plasmas / 1.4.3:
Relativistic molecular structure / 1.5:
Relativistic interpretations of chemical anomalies / 1.5.1:
Relativistic effective core potentials and other approximations / 1.5.2:
Dirac four-component methods for molecules / 1.5.3:
Parity violation and hyperfine interactions / 1.5.4:
High-precision spectroscopy of small molecules containing light elements / 1.5.5:
References
Foundations / Part II:
Relativistic wave equations for free particles / 2:
The special theory of relativity / 2.1:
The Lorentz group / 2.2:
* Spinor representation of Lorentz transformations / 2.2.1:
* Infinitesimal Lorentz transformations and their generators / 2.2.2:
* Representations of the Lorentz group / 2.2.3:
The Poincare group / 2.3:
* Representations of the Poincare group / 2.3.1:
* Space and time reflections / 2.3.2:
The Klein-Gordon equation / 2.4:
The Dirac equation / 2.5:
[gamma]-Matrices and covariant form of Dirac's equation / 2.5.1:
* Lagrangian formulation of Dirac's equation / 2.5.2:
Foldy canonical form and the Foldy-Wouthuysen transformation / 2.5.3:
* Position operators in Dirac theory / 2.5.4:
Dirac particles in electromagnetic fields / 2.5.5:
* Negative energy states / 2.5.6:
Maxwell's equations / 2.6:
Covariant form of Maxwell's equations / 2.6.1:
* Lagrangian formulation / 2.6.2:
Gauge invariance / 2.6.3:
* Motion of a test charge / 2.6.4:
* Symmetries and local conservation laws / 2.7:
* Global conservation laws / 2.8:
* Green's functions / 2.9:
Nonrelativistic Green's functions / 2.9.1:
Klein-Gordon operator / 2.9.2:
Maxwell's equations: the zero-mass case / 2.9.3:
Free-particle Dirac equation / 2.9.4:
The Dirac Equation / 3:
Free particles / 3.1:
Properties of Dirac matrices / 3.1.1:
Covariance properties / 3.1.2:
Bilinear covariants / 3.1.3:
Plane wave solutions / 3.1.4:
Energy and spin projectors / 3.1.5:
Charge conjugation / 3.1.6:
Spherical symmetry / 3.2:
Angular structure / 3.2.1:
The operator [sigma subscript r] / 3.2.2:
The operator c[sigma] . p / 3.2.3:
Separation of radial and spin-angular parts / 3.2.4:
Angular density distributions / 3.2.5:
Radial solutions for the free particle / 3.2.6:
Partial wave normalization / 3.2.7:
Hydrogenic atoms / 3.3:
Solution of the radial equations / 3.3.1:
The bound state solutions / 3.3.2:
Charge distributions and energy levels in hydrogenic atoms / 3.3.3:
* The continuum solutions / 3.3.4:
Scattering by a centre of force / 3.4:
Nonrelativistic potential scattering / 3.4.1:
* Relativistic Coulomb scattering / 3.4.2:
* Polarization effects in Coulomb scattering / 3.4.3:
Historical note / 3.4.4:
* Relativistic quantum defect theory / 3.5:
Green's functions / 3.6:
* Partial wave Green's functions / 3.6.1:
The partial wave Green's function for the free Dirac particle / 3.6.2:
Summation over partial waves in the free electron case / 3.6.3:
* Green's function for hydrogenic ions / 3.6.4:
The nonrelativistic limit: the Pauli approximation / 3.7:
The Pauli approximation / 3.7.1:
The Foldy-Wouthuysen and related transformations / 3.7.2:
Other aspects of Dirac theory / 3.8:
Quantum electrodynamics / 4:
Second quantization / 4.1:
Quantization of the Schrodinger equation / 4.1.1:
Identical particles: the symmetric case / 4.1.2:
Identical particles: the antisymmetric case / 4.1.3:
Quantization of the electron-positron field / 4.2:
The Furry picture / 4.2.1:
The free electron case / 4.2.2:
Quantization of the Maxwell field / 4.3:
Interaction of photons and electrons / 4.4:
The equations of motion / 4.4.1:
The interaction picture / 4.4.2:
Wick's theorems / 4.5:
Propagators / 4.6:
Photon propagators / 4.6.1:
Electron-positron propagators / 4.6.2:
Feynman diagrams / 4.6.3:
Second order interaction: U[superscript (2)] (t, t[subscript 0]) / 4.6.4:
Feynman rules / 4.6.5:
The S-matrix / 4.7:
Bound states / 4.8:
A perturbation expansion / 4.8.1:
Gell-Mann, Low, Sucher energy shift / 4.8.2:
Effective interactions / 4.9:
One-photon exchange: Feynman gauge / 4.9.1:
One-photon exchange: Coulomb gauge / 4.9.2:
* Off-shell potentials: heuristic argument / 4.9.3:
One-photon exchange: the first order energy shift / 4.9.4:
* Off-shell potentials / 4.10:
Many-body perturbation theory / 4.11:
Nonrelativistic many-body theory / 4.11.1:
MBPT for atoms and molecules / 4.12:
Particle-hole formalism / 4.12.1:
Computational methods / 4.12.2:
Relativistic approaches to atomic and molecular structure / 4.13:
The no-virtual-pair approximation (NVPA) / 4.13.1:
The NVPA as an antidote to "continuum dissolution" / 4.13.2:
The NVPA and "variational collapse" / 4.13.3:
Semirelativistic approaches / 4.13.4:
A strategy for atomic and molecular calculations / 4.14:
Density functional theories / 4.15:
Basic ideas of RDFT / 4.15.1:
The relativistic Hohenberg-Kohn theorem / 4.15.2:
The relativistic Kohn-Sham equations / 4.15.3:
Exchange and correlation functionals / 4.15.4:
The optimized potential method / 4.15.5:
Computational atomic and molecular structure / Part III:
Analysis and approximation of Dirac Hamiltonians / 5:
Self-adjointness of free particle Hamiltonians / 5.1:
Free particles: the Schrodinger case / 5.1.1:
Free particles: the Dirac case / 5.1.2:
Self-adjointness of Hamiltonians with a local potential / 5.2:
The Schrodinger case / 5.2.1:
The Dirac case / 5.2.2:
The radial Dirac differential operator / 5.3:
The boundary condition at a singular endpoint / 5.3.1:
The Dirac radial operator with one singular endpoint / 5.3.2:
The radial Dirac equation for atoms / 5.4:
Power series solutions near r = 0 / 5.4.1:
Power series solutions in the nonrelativistic limit / 5.4.2:
The boundary condition at the origin / 5.4.3:
Variational methods in quantum mechanics / 5.5:
Min-max theorems and the Ritz method / 5.5.1:
Convergence of the Rayleigh-Ritz eigenvalues in nonrelativistic quantum mechanics / 5.5.2:
Convergence of the Rayleigh-Ritz method in nonrelativistic quantum mechanics / 5.5.3:
The Rayleigh-Ritz method in relativistic quantum mechanics / 5.6:
The finite matrix method for the Dirac equation / 5.6.1:
Convergence of Rayleigh-Ritz methods for Dirac Hamiltonians / 5.6.2:
Spinor basis sets / 5.7:
L-spinors / 5.8:
Kinetic matching and the nonrelativistic limit / 5.8.1:
Orthogonality properties / 5.8.2:
Linear independence of L-spinors / 5.8.3:
Completeness of L-spinors / 5.8.4:
Charge conjugation and L-spinors / 5.8.5:
Construction of [Pi superscript Beta Beta prime], S[superscript Beta Beta prime], and U[superscript Beta Beta prime] matrices for hydrogenic atoms / 5.8.6:
Numerical study of L-spinor performance in hydrogenic atoms / 5.8.7:
S-spinors / 5.9:
Construction of [Pi superscript Beta Beta prime], S[superscript Beta Beta prime], and U[superscript Beta Beta prime] for hydrogenic atoms / 5.9.1:
G-spinors / 5.10:
Finite difference methods / 5.11:
Methods of solution / 5.11.1:
Acceptable solutions / 5.11.2:
Finite element methods / 5.12:
B-splines / 5.12.1:
Variational formulation of finite element schemes / 5.12.2:
Schrodinger equations / 5.12.3:
Dirac equations / 5.12.4:
Complex atoms / 6:
Dirac-Hartree-Fock theory / 6.1:
One-electron matrix elements of tensor operators / 6.2:
2-spinor matrix elements of even operators / 6.2.1:
2-spinor matrix elements of odd operators / 6.2.2:
Angular reduction of the Dirac Hamiltonian for a central potential / 6.3:
Matrix elements of 2-body operators / 6.4:
The Coulomb interaction / 6.4.1:
Relativistic corrections to the Coulomb interaction / 6.4.2:
The Gaunt interaction / 6.4.3:
The Moller interaction / 6.4.4:
The transverse photon interaction in Coulomb gauge / 6.4.5:
The Breit interaction / 6.4.6:
Interaction strengths for the magnetic interactions / 6.5:
The transverse photon interaction / 6.5.1:
Closed shells and configuration averages / 6.5.2:
The Dirac-Hartree-Fock model / 6.6.1:
Inclusion of magnetic interactions / 6.6.2:
Average of configuration models / 6.6.3:
DHF integro-differential equations / 6.7:
Construction of electrostatic potentials / 6.7.1:
Construction of magnetic potentials / 6.7.2:
Algorithms for potentials and Slater integrals / 6.7.3:
Configurations with incomplete subshells / 6.8:
Atomic states with incomplete subshells / 6.8.1:
Partially filled subshells in jj-coupling / 6.8.2:
Creation and annihilation operators as irreducible tensor operators. Quasispin / 6.8.3:
Double tensor operators / 6.8.4:
Parentage / 6.8.5:
Coefficients of fractional parentage in the seniority scheme / 6.8.6:
Equivalent electrons in LS-coupling / 6.8.7:
Atoms with complex configurations / 6.9:
Recoupling coefficients / 6.9.1:
Matrix elements between open shell states / 6.9.2:
Matrix elements of two-electron operators of type G / 6.9.3:
CI and MCDHF problems with large CSF sets / 6.10:
Decoupling active electrons / 6.10.1:
One-electron matrix elements / 6.10.2:
Two-electron matrix elements / 6.10.3:
Computation of atomic structures / 7:
Atomic structure calculations with GRASP / 7.1:
GRASP modules / 7.2:
MCDHF integro-differential equations / 7.3:
Solving the integro-differential equations / 7.4:
Starting the calculation / 7.5:
The radial grid / 7.5.1:
The nuclear mass / 7.5.2:
The nuclear size / 7.5.3:
Initial estimates for radial wavefunctions / 7.5.4:
An EAL calculation / 7.6:
Diagonal and off-diagonal energy parameters / 7.7:
Koopmans' theorem and Brillouin's theorem / 7.8:
Froese Fischer's analysis / 7.8.1:
Control of MCSCF iterations / 7.9:
Corrections to the Coulomb interaction: Breit and other approximations / 7.10:
QED corrections / 7.11:
Towards higher quality atomic models / 7.12:
CSF sets for electron correlation: active space methods / 7.12.1:
Example: intercombination transitions in Be-like ions / 7.12.2:
X-ray transition energies / 7.13:
Computation of atomic properties / 8:
Relativistic radiative transition theory / 8.1:
Line transitions / 8.1.1:
Multipole expansion of the radiation field / 8.1.2:
Emission and absorption by one-electron atoms / 8.2:
Evaluation of one-electron transition amplitudes / 8.2.1:
The nonrelativistic limit: Pauli approximation / 8.2.2:
Radiative transitions in many-electron atoms / 8.3:
Transitions in highly ionized atoms: Fe XXIII / 8.3.1:
Orbital relaxation / 8.4:
Application to atomic transition calculations / 8.5:
Large-scale calculations of energies and transition rates / 8.5.1:
Relativistic atomic photo-ionization theory / 8.6:
The differential cross-section for photo-ionization / 8.6.1:
Low energies: the electric dipole case / 8.6.2:
Angular distributions and polarization parameters for a single channel / 8.6.3:
Other aspects of photo-ionization / 8.6.4:
Hyperfine interactions / 8.7:
Hyperfine interactions in the many-electron atom / 8.7.1:
Isotope shifts / 8.8:
Nuclear motion / 8.8.1:
Nuclear volume effect / 8.8.2:
Continuum processes in many-electron atoms / 9:
Relativistic elastic electron-atom scattering / 9.1:
Model potentials / 9.1.1:
Computational issues / 9.1.2:
Determination of phase-shifts / 9.1.3:
Summation of the partial wave expansion / 9.1.5:
Electron-atom scattering: the close-coupling method / 9.2:
Low-energy elastic and inelastic collisions / 9.2.1:
The distorted wave approximation / 9.2.2:
The relativistic R-matrix method / 9.3:
The radial Dirac equation on a finite interval / 9.3.1:
Bloch operators / 9.3.2:
The inner region, r [Less than Equal] a / 9.3.3:
The outer region, r [Greater than] a / 9.3.4:
Matching inner and outer solutions / 9.3.5:
The Buttle correction / 9.4:
R-matrix theory of photo-ionization / 9.5:
The DARC relativistic R-matrix package / 9.6:
Truncation of the close-coupling expansion. The nonrelativistic CCC method / 9.7:
The R-matrix method at intermediate energies / 9.8:
Electron scattering from heavy atoms and ions / 9.9:
Early work / 9.9.1:
Electron scattering from the mercury atom / 9.9.2:
Scattering of polarized electrons from polarized atoms / 9.9.3:
The relativistic random phase approximation / 9.10:
The RRPA equations / 9.10.1:
Radial equations / 9.10.2:
Multipole transition amplitudes / 9.10.3:
RRPA rates for photo-excitation and photo-ionization / 9.11:
Photo-excitation / 9.11.1:
Photo-ionization / 9.11.2:
Comparison with experiment / 9.12:
Photo-ionization of outer atomic subshells at high Z / 9.12.1:
Beyond RRPA / 9.12.2:
Molecular structure methods / 10:
Molecular and atomic structure methods / 10.1:
Dirac-Hartree-Fock-Breit equations for closed shell atoms / 10.2:
DHFB energy of a closed shell atom / 10.2.1:
Spinor basis function representation / 10.2.2:
Matrix of the radial Dirac operator / 10.2.3:
Coulomb Slater integrals / 10.2.4:
Breit integrals for closed shells / 10.2.5:
The DHFB Fock matrix / 10.2.6:
One-centre interaction integrals / 10.3:
Numerical examples / 10.4:
The DHFB method for closed shell molecules / 10.5:
G-spinor basis functions / 10.6:
The charge-current density / 10.7:
Two-centre overlaps / 10.8:
Relativistic expansion coefficients / 10.8.1:
Symmetry properties of E[subscript q] coefficients / 10.8.2:
Multi-centre interaction integrals / 10.9:
Auxiliary integrals involving HGTFs / 10.9.1:
Multi-centre one-electron integrals / 10.9.2:
Multi-centre two-electron integrals / 10.9.3:
Fock matrix in terms of G-spinors / 10.10:
The BERTHA integral package / 10.10.1:
Electromagnetic field energy / 10.11:
Interaction energy in terms of internal fields / 10.11.1:
The nonrelativistic Fock matrix / 10.11.2:
The relativistic Fock matrix / 10.11.3:
Implementation of the field formulation / 10.11.4:
Relativistic density functional calculations / 10.12:
Computational strategies / 10.13:
The Roothaan bound / 10.13.1:
Integral-direct Fock matrix evaluation / 10.13.2:
Symmetry properties of interaction matrix elements / 10.13.3:
Stepwise refinement / 10.13.4:
Level-shifting / 10.13.5:
Multiconfigurational Dirac-Hartree-Fock theory / 10.14:
Orbital optimization / 10.14.1:
Relativistic calculation of molecular properties / 11:
Molecular symmetry / 11.1:
Diatomic molecules / 11.1.1:
Polyatomic molecules / 11.1.2:
Relativistic effects in light molecules / 11.2:
Nonrelativistic Breit-Pauli model / 11.2.1:
DHF and DHFB calculations for water using BERTHA / 11.2.2:
Second-order many-body corrections / 11.2.3:
Relativistic study of the potential energy surface and vibration-rotation levels of water / 11.2.4:
Electromagnetic properties of atoms and molecules / 11.3:
Gauge transformations in electromagnetic processes / 11.3.1:
B-spinors / 11.3.2:
The Zeeman effect / 11.4:
NMR shielding in small molecules / 11.5:
NMR shielding constants for [superscript 17]O in water / 11.6.1:
NMR shielding constants for [superscript 15]N in ammonia / 11.6.2:
Molecules with high-Z constituents / 11.7:
Electronic structure of TlF / 11.7.1:
Electronic structure of YbF / 11.7.2:
DHF+CI study of uranium hexafluoride / 11.7.3:
Frequently used formulae and data / A:
Relativistic notation / A.1:
Dirac matrices / A.2:
Special functions / A.3:
Spherical Bessel functions / A.3.1:
Confluent hypergeometric functions / A.3.2:
Generalized Laguerre polynomials / A.3.3:
Hermite polynomials / A.3.4:
Incomplete gamma functions / A.3.5:
Incomplete Beta functions / A.3.6:
Continued fraction evaluation / A.3.7:
Central field Dirac spinors and their interactions / A.4:
Central field Dirac spinors / A.4.1:
Matrix elements of simple ITOs / A.4.2:
Magnetic interactions / A.4.3:
Effective interaction strengths for two-body operators / A.4.4:
Open shells in jj-coupling / A.5:
Exponents for atomic and molecular G-spinors / A.6:
Software for relativistic molecular calculations / A.7:
BERTHA / A.7.1:
DIRAC / A.7.2:
MOLFDIR / A.7.3:
Supplementary mathematics / B:
Linear operators on Hilbert space / B.1:
Hilbert spaces / B.1.1:
Linear operators / B.1.2:
Spectrum and resolvent of linear operators / B.1.3:
Self-adjoint operators / B.1.4:
Observables and self-adjoint operators / B.1.5:
Commuting operators / B.1.6:
Unitary and anti-unitary operators / B.1.7:
Lie groups and Lie algebras / B.2:
Lie groups / B.2.1:
Lie algebras / B.2.2:
Representations of Lie groups and Lie algebras / B.2.3:
The Cartan-Weyl classification / B.2.4:
Casimir operators / B.2.5:
Kronecker products of group representations / B.2.6:
Tensor operators and the Wigner-Eckart theorem / B.2.7:
Quantum mechanical angular momentum theory / B.3:
The rotation group / B.3.1:
Abstract angular momentum / B.3.2:
Orbital angular momentum / B.3.3:
Representation functions / B.3.4:
Kronecker products of irreducible representations / B.3.5:
Coupling of three or more angular momenta / B.3.6:
The 3j-symbol / B.3.7:
The 6j-symbol / B.3.8:
The 9j-symbols / B.3.9:
Graphical treatment of angular momentum algebra / B.3.10:
Diagrammatic treatment of Clebsch-Gordan coefficients / B.3.11:
Diagrammatic treatment of 3jm-symbols / B.3.12:
Generalized angular momentum couphng schemes / B.3.13:
GCG and njm coefficients / B.3.14:
Manipulating angular momentum diagrams / B.3.15:
Composite tensor operators / B.3.16:
Diagrammatic representation of tensor operators / B.3.18:
Relativistic symmetry orbitals for double point groups / B.4:
Construction of symmetry orbitals / B.4.1:
Linear independence of molecular symmetry orbitals / B.4.2:
Reduction of operator matrices / B.4.3:
Time reversal / B.4.4:
The TSYM software package / B.4.5:
Basis sets in atomic and molecular physics / B.5:
The Coulomb Sturmian functions / B.5.1:
Completeness and linear independence of Coulomb Sturmians / B.5.2:
Basis sets of exponential-type functions / B.5.3:
Finite difference methods for Dirac equations / B.6:
An existence theorem / B.6.1:
Initial value methods / B.6.2:
Linear multistep methods / B.6.3:
The nodal structure of Dirac radial wavefunctions / B.6.4:
Discretization of two-point boundary value problems / B.6.5:
Two-point boundary value problems: the deferred correction method / B.6.6:
Construction of difference corrections / B.6.7:
Single stepping algorithms / B.6.8:
Stepping outwards from the origin / B.6.9:
Algorithm for the outer region / B.6.10:
The boundary condition at T = t[subscript N] / B.6.11:
Improving a trial solution / B.6.12:
Eigenfunction expansions for the radially reduced Dirac equation / B.7:
The fundamental lemma / B.7.1:
Boundary conditions: the two-point boundary value problem / B.7.2:
Boundary conditions at the nucleus / B.7.3:
Pauli approximation at R[subscript 2] / B.7.4:
The MIT bag model at R[subscript 2] / B.7.5:
The eigenvalue spectrum / B.7.6:
The inhomogeneous boundary value problem / B.7.7:
Eigenfunction expansions / B.7.8:
Iterative processes in nonlinear systems of equations / B.8:
Lagrangian and Hamiltonian methods / B.9:
Lagrange's equations / B.9.1:
Hamilton's equations / B.9.2:
Symmetries and conservation laws / B.9.3:
Construction of E coefficients / B.10:
E-coefficients through Cartesian intermediates / B.10.1:
Recurrence relations for E-coefficients / B.10.2:
Implementation issues / B.10.3:
Index
Relativity in atomic and molecular physics / Part I:
Elementary ideas / 1:
The one-electron atom / 1.2:
43.

図書

図書
A.M. Smith, J.A. Callow (eds.)
出版情報: Berlin ; New York : Springer, c2006  xvii, 284 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Development / Anthony P. Haag1:
Introduction / 1.1:
Adhesive Development / 1.2:
Mechanical Testing of Adhesive Bonds / 1.2.1:
Bacterial Exopolymer Adhesives / 1.2.2:
Related Polysaccharide-based Adhesives / 1.2.3:
Outlook / 1.3:
References
The Molecular Genetics of Bioadhesion and Biofilm Formation / Paolo Landini ; Gregory Jubelin ; Corinne Dorel-Flamant2:
Biofilm Formation and its Regulation / 2.1:
Environmental Factors Leading to Biofilm Formation / 2.1.1:
Quorum Sensing / 2.1.2:
Global Regulators / 2.1.3:
A Case of Complex Regulatory Control: The Curli Factors (Thin Aggregative Fimbriae) of Enterobacteria / 2.2:
Curli Fibers: A Major Determinant for Biofilm Formation in Enterobacteria / 2.2.1:
Conditions for the Expression of Curli / 2.2.2:
Regulation by Osmolarity / 2.2.3:
Regulation According to the Bacterial Growth Phase / 2.2.4:
Thermoregulation / 2.2.5:
Regulation as a Result of Oxygen Concentration / 2.2.6:
Other Regulatory Systems / 2.2.7:
GGDEF and EAL Regulatory Proteins: Regulation of Exopolysaccharide Biosynthesis at the Enzyme Level / 2.3:
The GGDEF-EAL Protein Family / 2.3.1:
Adhesion and Adhesives of Fungi and Oomycetes / Lynn Epstein ; Ralph L. Nicholson3:
Prevalence and Importance of Adhesion in Fungi and Oomycetes / 3.1:
Adhesion as Part of Many Stages of Morphogenesis in Many Fungi / 3.2.1:
Functions of Adhesion / 3.2.2:
Selected Examples / 3.2.3:
Challenges in Identifying Adhesives in Fungi / 3.3:
Genetic 'Knockout' and 'Knockin' Strategies / 3.3.1:
Biochemical Strategies / 3.3.2:
Fungal and Oomycete Glues / 3.4:
Features / 3.4.1:
Composition of Glues / 3.4.2:
Secretion and Crosslinking, with a Focus on Transglutaminase / 3.4.3:
Cell-surface Macromolecules with Apparent Adhesive Properties / 3.4.4:
Fungal Adhesins / 3.5:
Conclusions / 3.6:
The Ulva Spore Adhesive System / James A. Callow ; Maureen E. Callow4:
Cell Biological and Biochemical Aspects / 4.1:
The 'Adhesive Apparatus' / 4.2.1:
Use of Monoclonal Antibodies to Identify the Contents of Adhesive Vesicles / 4.2.2:
Biochemical Characteristics of the Adhesive Antigens / 4.2.3:
Experiments on Cross-linking / 4.2.4:
Molecular Aspects / 4.2.5:
Physical and Mechanical Properties of the Adhesive / 4.3:
Imaging the Adhesive by ESEM / 4.3.1:
The Influence of Surface Properties on Adhesion and Adhesive Spreading / 4.3.2:
Nanomechanical and Viscoelastic Properties of the Spore Adhesive / 4.3.3:
Adhesive Strength of the Whole Spore System / 4.3.4:
Conclusions and Further Perspectives / 4.4:
Diatom Adhesives: Molecular and Mechanical Properties / Anthony Chiovitti ; Tony M. Dugdale ; Richard Wetherbee5:
Diatoms and Adhesion / 5.1:
Diatom Morphology / 5.1.1:
Significance of Diatom Adhesion / 5.1.2:
Diatom Adhesion Strategies / 5.1.3:
General Composition of Diatom Mucilages / 5.1.4:
Adhesion and Gliding of Raphid Diatoms / 5.2:
Adhesion and Gliding Behaviour / 5.2.1:
Mechanism of Raphid Diatom Adhesion and Gliding / 5.2.2:
Fine Structure of Raphid Diatom Mucilages / 5.2.3:
Nanomechanical Properties Determined by AFM / 5.2.4:
Molecular Composition / 5.2.5:
Sessile Adhesion / 5.3:
Physical Properties of Adhesive Pads with AFM / 5.3.1:
Molecular Composition and Chemical Properties of Stalks: Achnanthes longipes / 5.3.2:
Concluding Remarks / 5.4:
Phenolic-based Adhesives of Marine Brown Algae / Philippe Potin ; Catherine Leblanc6:
Adhesion of Brown Algal Propagules / 6.1:
Settlement and Attachment of Brown Algal Spores / 6.2.1:
Adhesion of Fucoid Zygotes / 6.2.2:
Secretion of Brown Algal Phenolics and Adhesion / 6.3:
Curing Mechanisms Involving Brown Algal Vanadium Peroxidases / 6.4:
Brown Algal Vanadium-dependent Haloperoxidase / 6.4.1:
In vitro Investigations of Haloperoxidase-mediated Oxidative Cross-linking / 6.4.2:
Requirement for an Efficient Oxidation Mechanism In Situ / 6.4.3:
Industrial Potential of Brown Algal Adhesives / 6.5:
Conclusions and Future Prospects / 6.6:
Chemical Subtleties of Mussel and Polychaete Holdfasts / Jason Sagert ; Chengjun Sun ; J. Herbert Waite7:
Protein Deamidation / 7.1:
Protein Phosphorylation / 7.3:
Dopa Chemistry / 7.4:
Gradients / 7.4.1:
Metal Binding / 7.4.2:
Cross-linking / 7.4.3:
Michael Additions: Amines / 7.4.4:
Michael Thiol Additions / 7.4.5:
Conclusion / 7.5:
Barnacle Underwater Attachment / Kei Kamino8:
Barnacle Attachment / 8.1:
A Unique Sessile Crustacean / 8.2.1:
Attachment in the Life Cycle / 8.2.2:
Biosynthesis and Secretion of Underwater Cement / 8.2.3:
Barnacle Underwater Cement / 8.3:
Cement Layer / 8.3.1:
Cement Sample / 8.3.2:
Cement Nature / 8.3.3:
Multi-functionality in Underwater Attachment / 8.3.4:
Cement Proteins and Possible Functions / 8.3.5:
Possible Molecular Model for Barnacle Underwater Attachment / 8.3.6:
Comparison with Other Holdfast Proteins / 8.4:
Applications to Material Science / 8.5:
The Biochemistry and Mechanics of Gastropod Adhesive Gels / Andrew M. Smith8.6:
Background / 9.1:
Adhesive Gels Used by Different Animals / 9.3:
Principles of Gel Mechanics / 9.4:
Adhesive Gel Structure / 9.5:
The Role of Different Proteins in Adhesion / 9.6:
Mechanisms of Crosslinking / 9.7:
Comparison of Gel Structure Among Gastropods / 9.8:
Adhesive Secretions in Echinoderms: An Overview / Patrick Flammang9.9:
Tube Feet / 10.1:
Larval Adhesive Organs / 10.3:
Cuvierian Tubules / 10.4:
Comparisons of Echinoderm Adhesives with Other Marine Bioadhesives / 10.5:
An Adhesive Secreted by Australian Frogs of the Genus Notaden / Lloyd D. Graham ; Veronica Glattauer ; Yong Y. Peng ; Paul R. Vaughan ; Jerome A. Werkmeister ; Michael J. Tyler ; John A.M. Ramshaw10.6:
Preliminary Field and Laboratory Data / 11.1:
Adhesive Collection / 11.3:
Solubilisation and Solidification / 11.4:
Mechanical Properties / 11.5:
Biocompatibility / 11.6:
Biochemical Studies / 11.7:
Colour / 11.7.1:
CD Spectra / 11.7.2:
Amino Acid Analysis / 11.7.3:
Protein Fractionation / 11.7.4:
Applications / 11.8:
Properties, Principles, and Parameters of the Gecko Adhesive System / Kellar Autumn11.9:
Adhesive Properties of Gecko Setae / 12.1:
Properties (1) Anisotropic Attachment and (2) High Adhesion Coefficient [mu prime] / 12.2.1:
Property (3) Low Detachment Force / 12.2.2:
Integration of Body and Leg Dynamics with Setal Attachment and Detachment / 12.2.3:
Molecular Mechanism of Gecko Adhesion / 12.2.4:
Property (4) Material Independent Adhesion / 12.2.5:
Anti-adhesive Properties of Gecko Setae / 12.3:
Properties (5) Self-cleaning and (6) Anti-self-adhesion / 12.3.1:
Property (7) Nonsticky Default State / 12.3.2:
Modeling Adhesive Nanostructures / 12.4:
Effective Modulus of a Setal Array / 12.4.1:
Rough Surface and Antimatting Conditions / 12.4.2:
Scaling / 12.5:
Scaling of Pad Area and Spatular Size / 12.5.1:
Scaling of Stress / 12.5.2:
Comparison of Conventional and Gecko Adhesives / 12.6:
Gecko-inspired Synthetic Adhesive Nanostructures / 12.7:
Future Directions in the Study of the Gecko Adhesive System / 12.8:
Biomimetic Adhesive Polymers Based on Mussel Adhesive Proteins / Bruce P. Lee ; Jeffrey L. Dalsin ; Phillip B. Messersmith13:
Mussel Adhesive Proteins and DOPA / 13.1:
Medical Adhesives: Requirements and Existing Materials / 13.3:
MAP-Mimetic Adhesive Polymers / 13.4:
Extraction and Expression of MAPs / 13.4.1:
Chemical Synthesis of MAP Mimetic-Polymers / 13.4.2:
Antifouling MAP Mimetic Polymers / 13.5:
Subject Index / 13.6:
Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Development / Anthony P. Haag1:
Introduction / 1.1:
Adhesive Development / 1.2:
44.

図書

図書
Lionel Birglen, Thierry Laliberté, Clément Gosselin
出版情報: Berlin : Springer, c2008  xv, 241 p. ; 24 cm
シリーズ名: Springer tracts in advanced robotics ; v. 40
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Underactuation / 1.1:
Contributions of the Book / 1.2:
Overview of the Book / 1.3:
Grasping vs. Manipulating / 2:
Robotic Hands: Aims and Functions / 2.1:
Underactuation in Robotic Hands / 2.2:
Underactuation as a Solution to Grasping / 2.2.1:
Literature Review / 2.2.2:
Kinetostatic Analysis of Robotic Fingers / 3:
General Static Model / 3.1:
Computation of the Transmission Matrix / 3.3:
Expressions of the Contact Forces / 3.4:
Positive Definiteness of the Forces / 3.5:
Other Transmission Mechanisms / 3.6:
Double-Stage Mechanism / 3.6.1:
Tendon-Pulley Transmission / 3.6.2:
Gears / 3.6.3:
Da Vinci's Mechanism / 3.6.4:
Comparison / 3.6.5:
Less-than-n-phalanx Grasps / 3.7:
Conclusions / 3.8:
Grasp Stability of Underactuated Fingers / 4:
Grasp Stability of Two-Phalanx Underactuated Fingers / 4.1:
Grasp Stability for Single Point Contact / 4.2.1:
Contact Trajectories / 4.2.2:
Equation of the Equilibrium Point / 4.2.3:
Linear and Circular Contact / 4.2.4:
Application: Synthesis of an Optimally Unstable Finger / 4.2.5:
Application: Design Validation / 4.2.6:
On the Grasp-State Plane Necessity / 4.2.7:
Grasp Stability of Three-Phalanx Underactuated Fingers / 4.3:
Three-Phalanx Underactuated Fingers Ejection Theory / 4.3.1:
Loss of One Contact / 4.3.2:
Degeneracy Analysis / 4.3.3:
On the Validation Surfaces / 4.3.4:
Loss of Two Contacts / 4.3.5:
Optimal Design of Underactuated Fingers / 4.4:
Optimal Design of Two-Phalanx Underactuated Fingers / 5.1:
Force Properties and Ejection / 5.2.1:
Force Isotropic Design / 5.2.2:
Guidelines to Prevent Ejection / 5.2.3:
Optimal Design of Three-Phalanx Underactuated Fingers / 5.3:
Dimensional Analysis / 5.3.1:
Grasp-Stability Analysis / 5.3.3:
Underactuation between the Fingers / 5.4:
Design Solutions / 6.1:
Movable Pulley / 6.2.1:
Seesaw Mechanism / 6.2.2:
Fluidic T-Pipe / 6.2.3:
Planetary and Bevel Gear Differentials / 6.2.4:
Combining Multiple Stages / 6.3:
Transmission Tree Analysis / 6.3.1:
Performance Evaluation of the Transmission Tree / 6.3.2:
Exchanging Inputs and Outputs / 6.4:
Applications / 6.5:
Underactuated Gripper / 6.5.1:
Multiple Pulley Routing / 6.5.2:
Serial Routing / 6.5.3:
Symmetrical Routing / 6.5.4:
Other Transmission Solutions / 6.6:
The Floating Platform / 6.6.1:
The Spring-Loaded Slider / 6.6.2:
Design and Control of the Laval Underactuated Hands / 6.7:
Design of Laval Underactuated Hands / 7.1:
Location and Orientation of the Fingers / 7.2.1:
Pinch Grasp Mechanism / 7.2.2:
The MARS Hand / 7.2.3:
The SARAH Hands / 7.2.4:
Control and Experimentation of the Laval Underactuated Hands / 7.3:
Hybrid Control of the MARS Hand / 7.3.1:
Force Control of the MARS Hand / 7.3.2:
Control of the SARAH hands / 7.3.3:
Conclusion / 7.4:
Summary and Contributions of the Book / 8.1:
Perspectives / 8.2:
Mathematical Proofs / A:
Influence of the Base Joint Spring / A.1:
Influence of k[subscript 1] / A.2:
Relationship between Proximal and Intermediate Forces / A.3:
Transmission Tree Formulae / A.4:
Serial Transmission Tree / A.4.1:
Symmetrical Transmission Tree / A.4.2:
References
Index
Introduction / 1:
Underactuation / 1.1:
Contributions of the Book / 1.2:
45.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
46.

図書

図書
Michael Griebel, Stephan Knapek, Gerhard Zumbusch
出版情報: Berlin : Springer, c2007  xi, 470 p. ; 24 cm
シリーズ名: Texts in computational science and engineering ; 5
所蔵情報: loading…
目次情報: 続きを見る
Computer Simulation - a Key Technology / 1:
From the Schrodinger Equation to Molecular Dynamics / 2:
The Schrodinger Equation / 2.1:
A Derivation of Classical Molecular Dynamics / 2.2:
TDSCF Approach and Ehrenfest Molecular Dynamics / 2.2.1:
Expansion in the Adiabatic Basis / 2.2.2:
Restriction to the Ground State / 2.2.3:
Approximation of the Potential Energy Hypersurface / 2.2.4:
An Outlook on Methods of Ab Initio Molecular Dynamics / 2.3:
The Linked Cell Method for Short-Range Potentials / 3:
Time Discretization - the Stormer-Verlet Method / 3.1:
Implementation of the Basic Algorithm / 3.2:
The Cutoff Radius / 3.3:
The Linked Cell Method / 3.4:
Implementation of the Linked Cell Method / 3.5:
First Application Examples and Extensions / 3.6:
Collision of Two Bodies I / 3.6.1:
Collision of Two Bodies II / 3.6.2:
Density Gradient / 3.6.3:
Rayleigh-Taylor Instability / 3.6.4:
Rayleigh-Benard Convection / 3.6.5:
Surface Waves in Granular Materials / 3.6.6:
Thermostats, Ensembles, and Applications / 3.7:
Thermostats and Equilibration / 3.7.1:
Statistical Mechanics and Thermodynamic Quantities / 3.7.2:
Phase Transition of Argon in the NVT Ensemble / 3.7.3:
The Parrinello-Rahman Method / 3.7.4:
Phase Transition of Argon in the NPT Ensemble / 3.7.5:
Parallelization / 4:
Parallel Computers and Parallelization Strategies / 4.1:
Domain Decomposition for the Linked Cell Method / 4.2:
Implementation / 4.3:
Performance Measurements and Benchmarks / 4.4:
Application Examples / 4.5:
Collision of Two Bodies / 4.5.1:
Extensions to More Complex Potentials and Molecules / 4.5.2:
Many-Body Potentials / 5.1:
Cracks in Metals - Finnis-Sinclair Potential / 5.1.1:
Phase Transition in Metals - EAM Potential / 5.1.2:
Fullerenes and Nanotubes - Brenner Potential / 5.1.3:
Potentials with Fixed Bond Structures / 5.2:
Membranes and Minimal Surfaces / 5.2.1:
Systems of Linear Molecules / 5.2.2:
Outlook to More Complex Molecules / 5.2.3:
Time Integration Methods / 6:
Errors of the Time Integration / 6.1:
Symplectic Methods / 6.2:
Multiple Time Step Methods - the Impulse Method / 6.3:
Constraints - the RATTLE Algorithm / 6.4:
Mesh-Based Methods for Long-Range Potentials / 7:
Solution of the Potential Equation / 7.1:
Boundary Conditions / 7.1.1:
Potential Equation and Potential Decomposition / 7.1.2:
Decomposition of the Potential Energy and of the Forces / 7.1.3:
Short-Range and Long-Range Energy and Force Terms / 7.2:
Short-Range Terms - Linked Cell Method / 7.2.1:
Long-Range Terms - Fast Poisson Solvers / 7.2.2:
Some Variants / 7.2.3:
Smooth Particle-Mesh Ewald Method (SPME) / 7.3:
Short-Range Terms / 7.3.1:
Long-Range Terms / 7.3.2:
Implementation of the SPME method / 7.3.3:
Application Examples and Extensions / 7.4:
Rayleigh-Taylor Instability with Coulomb Potential / 7.4.1:
Phase Transition in Ionic Microcrystals / 7.4.2:
Water as a Molecular System / 7.4.3:
Parallelization of the SPME Method / 7.5:
Example Application: Structure of the Universe / 7.5.2:
Tree Algorithms for Long-Range Potentials / 8:
Series Expansion of the Potential / 8.1:
Tree Structures for the Decomposition of the Far Field / 8.2:
Particle-Cluster Interactions and the Barnes-Hut Method / 8.3:
Method / 8.3.1:
Applications from Astrophysics / 8.3.2:
Parallel Tree Methods / 8.4:
An Implementation with Keys / 8.4.1:
Dynamical Load Balancing / 8.4.2:
Data Distribution with Space-Filling Curves / 8.4.3:
Applications / 8.4.4:
Methods of Higher Order / 8.5:
Cluster-Cluster Interactions and the Fast Multipole Method / 8.5.1:
Error Estimate / 8.6.1:
Comparisons and Outlook / 8.6.4:
Applications from Biochemistry and Biophysics / 9:
Bovine Pancreatic Trypsin Inhibitor / 9.1:
Membranes / 9.2:
Peptides and Proteins / 9.3:
Protein-Ligand Complex and Bonding / 9.4:
Prospects / 10:
Appendix / A:
Newton's, Hamilton's, and Euler-Lagrange's Equations / A.1:
Suggestions for Coding and Visualization / A.2:
Parallelization by MPI / A.3:
Maxwell-Boltzmann Distribution / A.4:
Parameters / A.5:
References
Index
Computer Simulation - a Key Technology / 1:
From the Schrodinger Equation to Molecular Dynamics / 2:
The Schrodinger Equation / 2.1:
47.

図書

図書
Mario Pitteri, G. Zanzotto
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, c2002  385 p. ; 24 cm
シリーズ名: Applied mathematics / ed. R.J. Knops ; 19
所蔵情報: loading…
目次情報: 続きを見る
List of figures
List of tables
Foreword
Introduction / 1:
Outline of chapter contents / 1.1:
Some experimental observations / 1.2:
Preliminaries / 2:
Basic notation / 2.1:
Some notions of elementary group theory / 2.2:
Basic definitions / 2.2.1:
Conjugacy / 2.2.2:
Group actions and symmetry / 2.2.3:
Linear and orthogonal transformations / 2.3:
Tensors with period two / 2.3.1:
Simple shears / 2.3.2:
Finite groups of tensors or matrices / 2.3.3:
Affine transformations / 2.4:
Continuum mechanics / 2.5:
Deformation / 2.5.1:
Thermodynamic potentials and their invariance / 2.5.2:
Stability of equilibrium / 2.5.3:
Simple lattices / 3:
Definitions and global symmetry / 3.1:
Geometric symmetry and crystal systems / 3.2:
Crystallographic point groups and holohedries / 3.2.1:
Crystal classes and crystal systems / 3.2.2:
Laue groups / 3.2.3:
Arithmetic symmetry and Bravais lattice types / 3.3:
Lattice groups / 3.3.1:
Conjugacy in O (crystal systems) and in GL(3, Z) (Bravais lattice types) / 3.3.2:
Centerings / 3.3.3:
The fourteen Bravais lattices / 3.4:
Fixed sets of lattice groups / 3.5:
An example / 3.5.1:
Symmetry-preserving stretches for simple lattices / 3.6:
Commutation relations / 3.6.1:
Structure of the fixed sets / 3.6.2:
The Bain stretch in the centered cubic lattices / 3.6.3:
Lattice subspaces, packings and indices / 3.7:
Lattice rows and lattice planes / 3.7.1:
Close-packed structures / 3.7.2:
Miller indices and crystallographic equivalence / 3.7.3:
Miller-Bravais indices for hexagonal lattices / 3.7.4:
Lattice groups and fixed sets for planar lattices / 3.8:
Weak-transformation neighborhoods and variants / 4:
Reconciliatio of global and local symmetries / 4.1:
Symmetry-breaking stretches for simple lattices / 4.2:
Small deformations and weak phase transformations / 4.3:
Small symmetry-preserving stretches / 4.3.1:
Small symmetry-breaking stretches / 4.3.2:
Constructing the small symmetry-breaking stretches / 4.4:
Variant structures (local orbits) in the wt-nbhds / 4.5:
General definitions / 4.5.1:
Variants and cosets / 4.5.3:
Variant structures and conjugacy classes / 4.5.4:
Explicit variant structures / 5:
Variant structures in cubic wt-nbhds / 5.1:
Tetragonal conjugacy class and variant structure / 5.1.1:
Rhombohedral conjugacy class and variant structure / 5.1.2:
Orthorhombic conjugacy classes and variant structures / 5.1.3:
Orthorhombic 'cubic edges' variants / 5.1.3.1:
Orthorhombic 'mixed axes' variants / 5.1.3.2:
Monoclinic conjugacy classes / 5.1.4:
Monoclinic 'cubic edges' variants / 5.1.4.1:
Monoclinic 'face-diagonals' variants / 5.1.4.2:
Triclinic conjugacy class and variant structure / 5.1.5:
Variant structures in hexagonal wt-nbhds / 5.2:
Orthorhombic conjugacy class and variant structure / 5.2.1:
Monoclinic conjugacy classes and variant structures / 5.2.2:
Monoclinic 'basal diagonals' variants / 5.2.2.1:
Monoclinic 'basal side-axes' variants / 5.2.2.2:
Monoclinic 'optic axis' variants / 5.2.2.3:
Kinematics of weak phase transformations / 5.2.3:
Irreducible invariant subspaces for the holohedries / 5.4:
General properties / 5.4.1:
Reduced actions and reduced symmetry groups on the i.i. subspaces / 5.4.2:
Decompositions of Sym under the action of the holohedries / 5.4.3:
Triclinic decompositions / 5.4.3.1:
Monoclinic decompositions / 5.4.3.2:
Orthorhombic decompositions / 5.4.3.3:
Rhombohedral decompositions / 5.4.3.4:
Tetragonal decompositions / 5.4.3.5:
Hexagonal decompositions / 5.4.3.6:
Cubic decompositions / 5.4.3.7:
Energetics / 6:
Invariance of simple-lattice energies / 6.1:
The Cauchy-Born hypothesis / 6.2:
The Born rule / 6.2.1:
Failures of the Born rule / 6.2.2:
Thermoelastic constitutive equations for crystals / 6.3:
Invariance of the response functions of elastic crystals / 6.3.1:
Energy minimizers and their general properties / 6.4:
Multiplicity of the symmetry-related minimizers / 6.4.1:
Multiphase crystals: minimizers that are not symmetry-related / 6.4.2:
Lack of convexity and symmetry-induced instabilities / 6.4.3:
Constitutive functions for weak phase transitions / 6.5:
Weak and symmetry-breaking transformations / 6.5.1:
Domain restrictions for the constitutive functions / 6.5.2:
Energy wells in the wt-nbhds / 6.5.3:
In the vicinity of an energy well / 6.6:
Thermal expansion and compressibility of a crystal / 6.6.1:
The elasticity tensor / 6.6.2:
Temperature-dependence of the elastic moduli / 6.6.3:
Anisotropic elasticity / 6.7:
Bifurcation patterns / 7:
The Landau theory / 7.1:
Isolated critical points and bifurcation points / 7.2:
Neighborhoods of bifurcation points / 7.2.1:
Genericity / 7.2.2:
Reduced bifurcation problems; order parameters / 7.3:
Analysis of the reduced bifurcation problems / 7.4:
Reduced problem (1) / 7.4.1:
Reduced problem (2) / 7.4.2:
Reduced problem (3) / 7.4.3:
Reduced problem (4) / 7.4.4:
Reduced problem (5) / 7.4.5:
Reduced problem (6) / 7.4.6:
Comparison with the kinematic transitions of [section]5.3 / 7.4.7:
Behavior of the moduli along the transitions / 7.5:
Examples of energy functions for simple lattices / 7.6:
A schematic 1-dimensional example / 7.6.1:
Energies for cubic-to-tetragonal and for tetragonal-to-monoclinic transitions / 7.6.2:
Orientation relationships and lattice correspondence / 7.6.3:
Relation with the Landau theory / 7.7:
General references / 7.8:
Mechanical twinning / 8:
Coherence and rank-1 connections / 8.1:
The twinning equation / 8.2:
Solutions of the twinning equation / 8.3:
Different descriptions of the same twin and cosets / 8.3.1:
Crystallographically equivalent twins / 8.3.2:
Reciprocal twins / 8.3.3:
Generic twins / 8.3.4:
Type-1 and Type-2 (conventional) twins / 8.3.5:
Compound twins / 8.3.6:
Conventional twins and rationality conditions / 8.3.7:
Short remarks / 8.4:
Experimental data / 8.4.1:
Mechanical twinning and the Born rule / 8.4.2:
Growth twins / 8.4.3:
Transformation twins / 9:
Procedure to determine the transformation twins / 9.1:
Rk-1 connections in a cubic wt-nbhd / 9.2:
Tetragonal variant structure / 9.2.1:
Rhombohedral variant structure / 9.2.2:
Orthorhombic variant structures / 9.2.3:
Orthorhombic 'cubic edges' wells / 9.2.3.1:
Orthorhombic 'mixed axes' wells / 9.2.3.2:
Monoclinic variant structures / 9.2.4:
Monoclinic 'cubic edges' wells / 9.2.4.1:
Monoclinic 'face-diagonals' wells / 9.2.4.2:
Triclinic variant structure / 9.2.5:
Rk-1 connections in a hexagonal wt-nbhd / 9.3:
Orthorhombic variant structure / 9.3.1:
Monoclinic 'basal diagonals' wells / 9.3.2:
Monoclinic 'basal side-axes' wells / 9.3.2.2:
Monoclinic 'optic axis' wells / 9.3.2.3:
The Mallard law / 9.3.3:
Microstructures / 10:
Piecewise homogeneous equilibria / 10.1:
Generalized solutions / 10.2:
The minors relations / 10.2.1:
The N-well problem / 10.2.2:
Examples of microstructures that are not laminates / 10.3:
Habit planes in martensite / 10.4:
Geometrically nonlinear theory / 10.4.1:
Self-accommodation in shape memory alloys / 10.4.2:
Wedges and other microstructures / 10.4.3:
Kinematics of multilattices / 11:
Crystals as multilattices / 11.1:
Descriptors and configuration spaces for deformable multilattices / 11.1.1:
Essential descriptions of multilattices / 11.1.2:
The global symmetry of multilattices / 11.2:
Indeterminateness of the descriptors (P[subscript 0,...], P[subscript n-1], e[subscript a]) / 11.2.1:
Indeterminateness of the descriptors (P[subscript 0], [varepsilon subscript [sigma]) / 11.2.2:
Nonessential descriptors of multilattices / 11.2.3:
The affine symmetry of multilattices / 11.3:
Space groups; crystal class and crystal system of a multilattice / 11.3.1:
The arithmetic symmetry of multilattices / 11.4:
Lattice groups of multilattices / 11.4.1:
Relation between the arithmetic and the space-group symmetries / 11.4.2:
Examples / 11.5:
Three-dimensional 2-lattices and hexagonal close-packed structures / 11.5.1:
The structure of quartz as a 3-lattice / 11.5.2:
Weak-transformation neighborhoods / 11.6:
The energy of a multilattice and its invariance / 11.7:
Minimizing out the internal variables of complex crystals / 11.7.1:
Local invariance of multilattice energies; the example of quartz / 11.7.2:
Twinning in multilattices / 11.8:
A proposal for a class of twins / 11.8.1:
Two examples / 11.8.2:
A model for stress relaxation / 11.8.3:
References
Index
List of figures
List of tables
Foreword
48.

図書

図書
Werner Massa ; translated into English by Robert O. Gould
出版情報: New York : Springer, 2000  xi, 206 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
The Unit Cell / 2.1.1:
Atom Parameters / 2.1.2:
The Seven Crystal Systems / 2.1.3:
The Fourteen Bravais Lattices / 2.2:
The Hexagonal, Trigonal and Rhombohedral Systems / 2.2.1:
The Reduced Cell / 2.2.2:
The Geometry of X-Ray Diffraction / 3:
X-Rays / 3.1:
Interference by a One-Dimensional Lattice / 3.2:
The Laue Equations / 3.3:
Lattice Planes and hkl-Indices / 3.4:
The Bragg Equation / 3.5:
Higher Orders of Diffraction / 3.6:
The Quadratic Form of the Bragg Equation / 3.7:
The Reciprocal Lattice / 4:
From the Direct to the Reciprocal Lattice / 4.1:
The Ewald Construction / 4.2:
Structure Factors / 5:
Atom Formfactors / 5.1:
Atom Displacement Factors / 5.2:
Crystal Symmetry / 5.3:
Simple Symmetry Elements / 6.1:
Coupling of Symmetry Elements / 6.1.1:
Combination of Symmetry Elements / 6.1.2:
Symmetry Directions / 6.2:
Symmetry Elements Involving Translation / 6.3:
Combination of Translation with Other Symmetry Elements / 6.3.1:
Coupling of Translation with Other Symmetry Elements / 6.3.2:
The 230 Space Groups / 6.4:
Space-group Notation in International Tables for Crystallography / 6.4.1:
Centrosymmetric Crystal Structures / 6.4.2:
The Asymmetric Unit / 6.4.3:
Space Group Types / 6.4.4:
Group-Subgroup Relationships / 6.4.5:
Visible Effects of Symmetry / 6.5:
Microscopic Structure / 6.5.1:
Macroscopic Properties and Crystal Classes / 6.5.2:
Symmetry of the Lattice / 6.5.3:
Symmetry of the Diffraction Pattern--The Laue Groups / 6.5.4:
Determination of the Space Group / 6.6:
Determination of the Laue Group / 6.6.1:
Systematic Absences / 6.6.2:
Transformations / 6.7:
Experimental Methods / 7:
Growth, Choice and Mounting of a Single Crystal / 7.1:
Measuring the Diffraction Pattern of Single Crystals / 7.2:
Film Methods / 7.2.1:
The Four-circle (serial) Diffractometer / 7.2.2:
Reflection profile and scan type / 7.2.3:
Area Detector Systems / 7.3:
Data Reduction / 7.4:
Lp correction / 7.4.1:
Standard Uncertainty / 7.4.2:
Absorption Correction / 7.4.3:
Other Diffraction Methods / 7.5:
Neutron Scattering / 7.5.1:
Electron Scattering / 7.5.2:
Structure Solution / 8:
Fourier Transforms / 8.1:
Patterson Methods / 8.2:
Symmetry in Patterson Space / 8.2.1:
Structure Solution Using Harker Peaks / 8.2.2:
Patterson shift methods / 8.2.3:
Direct Methods / 8.3:
Harker-Kasper Inequalities / 8.3.1:
Normalized Structure Factors / 8.3.2:
The Sayre Equation / 8.3.3:
The Triplet Relationship / 8.3.4:
Origin Fixation / 8.3.5:
Strategies of Phase Determination / 8.3.6:
Structure Refinement / 9:
The Method of Least Squares / 9.1:
Refinement Based on F[subscript o] or F[superscript 2 subscript o] Data / 9.1.1:
Weights / 9.2:
Crystallographic R-Values / 9.3:
Refinement Techniques / 9.4:
Location and Treatment of Hydrogen Atoms / 9.4.1:
Restricted Refinement / 9.4.2:
Damping / 9.4.3:
Symmetry Restrictions / 9.4.4:
Residual Electron Density / 9.4.5:
Rietveld Refinement / 9.5:
Additional Topics / 10:
Disorder / 10.1:
Site Occupancy Disorder / 10.1.1:
Positional and Orientational Disorder / 10.1.2:
One- and Two-Dimensional Disorder / 10.1.3:
Modulated Structures / 10.1.4:
Quasicrystals / 10.1.5:
Anomalous Dispersion and "Absolute Structure" / 10.2:
Chiral and Polar Space Groups / 10.2.1:
Extinction / 10.3:
The Renninger Effect / 10.4:
The [lambda]/2-Effect / 10.5:
Thermal Diffuse Scattering (TDS) / 10.6:
Errors and Pitfalls / 11:
Wrong Atom-Types / 11.1:
Twinning / 11.2:
Classification by the Twin-Element / 11.2.1:
Classification According to Macroscopic Appearance / 11.2.2:
Classification According to Origin / 11.2.3:
Diffraction Patterns of Twinned Crystals and their Interpretation / 11.2.4:
Twinning or Disorder? / 11.2.5:
False Unit Cells / 11.3:
Space Group Errors / 11.4:
Misplaced Origins / 11.5:
Poor Atom Displacement Parameters / 11.6:
Interpretation and Presentation of Results / 12:
Bond Lengths and Bond Angles / 12.1:
Best Planes and Torsion Angles / 12.2:
Structural Geometry and Symmetry / 12.3:
Structural Diagrams / 12.4:
Electron Density / 12.5:
Crystallographic Databases / 13:
The Inorganic Crystal Structure Database (ICSD) / 13.1:
The Cambridge Structural Database (CSD) / 13.2:
The Metals Crystallographic Data File (CRYST-MET) / 13.3:
Other Collections of Crystal Structure Data / 13.4:
Deposition of Structural Data in Data Bases / 13.5:
Crystallography on the Internet / 13.6:
Outline of a Crystal Structure Determination / 14:
Worked Example of a Structure Determination / 15:
Bibliography
Index
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
49.

図書

図書
edited by Shuji Nakamura and Shigefusa F. Chichibu
出版情報: London : Taylor & Francis, 2000  372 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Basics Physics and Materials Technology of GaN LEDs and LDs / Steven P. DenBaars1.:
Introduction / 1.1:
Historical Evolution of LED Technology / 1.1.1:
Basic Physics of LEDs: Injection Luminescence / 1.2:
Direct and Indirect Band-Gap Material / 1.2.1:
Radiative Recombination / 1.2.2:
External Quantum Efficiency / 1.2.3:
Luminous Efficiency / 1.2.4:
Injection Efficiency / 1.2.5:
Heterojunction vs. Homojunction LED Materials / 1.2.6:
Quantum Well LEDs / 1.2.7:
LED Materials Selection / 1.3:
Energy Band Structure/Lattice Constants / 1.3.1:
GaN Physical Properties / 1.3.2:
GaN Based LED Structures / 1.3.3:
Crystal Growth / 1.4:
MOCVD Growth / 1.4.1:
MOCVD Systems for Production / 1.4.2:
Molecular Beam Epitaxy (MBE) / 1.4.3:
Chloride Vapor Phase Epitaxy / 1.4.4:
Group-III Nitride Materials Growth Issues / 1.5:
Substrates / 1.5.1:
Nucleation Layer Technology / 1.5.2:
Growth and Doping of GaN / 1.5.3:
Growth of AlGaN and AlGaN/GaN Heterostructures / 1.5.4:
Growth of InGaN and InGaN/GaN Heterostructures / 1.5.5:
Conclusions / 1.6:
References / 1.7:
Theoretical Analysis of Optical Gain Spectra / Takeshi Uenoyama ; Masakatsu Suzuki2.:
Optical Gains Spectra by Many-Body Approach / 2.1:
Linear Response Theory / 2.2.1:
Screening Effects / 2.2.2:
Self-Energies of Electron Gas / 2.2.3:
Coulomb Enhancement / 2.2.4:
Electronic Band Structures / 2.3:
Electronic Band Structures of Bulk GaN and AlN / 2.3.1:
Strain Effect on Electronic Band Structures / 2.3.2:
k.p Theory for Wurtzite / 2.3.3:
Physical Parameters / 2.3.4:
Subband Structures of GaN/AlGaN Quantum Wells / 2.3.5:
Subband in Wurtzite Quantum Wells / 2.3.6:
Optical Gain Spectra of III-V Nitrides LD Structures / 2.4:
Free Carrier Model / 2.4.1:
Coulomb Enhancement (Excitonic Effects) in the Optical Gain / 2.4.2:
Optical Gain with Localized States / 2.4.3:
Electrical Conductivity Control / Chris G. Van de Walle2.5:
Doping / 3.1:
Theory of Native Defects and Impurities / 3.1.1:
n-type Doping / 3.1.2:
p-type Doping / 3.1.3:
Band Offsets / 3.2:
Theory of Band Offsets at Nitride Interfaces / 3.2.1:
Experimental Results for Band Offsets / 3.2.2:
Discussion / 3.2.3:
Acknowledgments / 3.3:
Crystal Defects and Device Performance in LEDs and LDs / Fernando A. Ponce3.4:
CrystalGrowth and Microstructure / 4.1:
Lattice Structure of the Nitride Semiconductors / 4.1.1:
Thin Film Epitaxy and Substrates / 4.1.2:
Epitaxy on SiC Substrates / 4.2:
Epitaxy on Sapphire Substrates / 4.3:
AlN as a Buffer Layer / 4.3.1:
GaN as a Buffer Layer / 4.3.2:
Homoepitaxial Growth of GaN / 4.4:
Defect Microstructurein LEDs and LDs / 4.5:
Large Defect Densities in High Performance Materials / 4.5.1:
Columnar Structure of GaN on Sapphire / 4.5.2:
Tilt Boundaries / 4.5.3:
Twist Boundaries / 4.5.4:
Polarity and Electronic Properties / 4.6:
The Nature of the Dislocation / 4.7:
Determination of the Burgers Vector / 4.7.1:
Nanopipes and Inversion Domains / 4.7.2:
Spatial Variation of Luminescence / 4.8:
Undoped Material / 4.8.1:
Doped Materials / 4.8.2:
Microscopic Properties of In[subscript x]Ga[subscript 1-x]N Quantum Wells / 4.9:
The Nature of the InGaN/GaN Interface / 4.9.1:
Microstructure of Quantum Wells / 4.9.2:
Spatial Variation of the luminescence of In[subscript x]Ga[subscript 1-x]N Quantum Wells / 4.9.3:
Microstructure and Device Performance / 4.10:
Stress and Point Defect Structure / 4.10.1:
Minimization of Strain by Maximizing Film Smoothness / 4.10.2:
The Role of Dislocations in Strain Relaxation / 4.10.3:
The Role of Nanopipes and Extension to ELOG Structures / 4.10.4:
Emission Mechanisms and Excitons in GaN and InGaN Bulk and QWs / Shigefusa F. Chichibu ; Yoichi Kawakami ; Takayuki Sota4.11:
GaN Bulk Crystals / 5.1:
Free and Bound Excitons / 5.2.1:
Biexcitons in GaN / 5.2.2:
Strain Effects / 5.2.3:
Phonons in Nitrides / 5.2.4:
InGaN Bulk and QWs for Practical Devices / 5.3:
Quantized Energy Levels / 5.3.1:
Piezoelectric Field / 5.3.2:
Spontaneous Emission of Localized Excitons / 5.3.3:
Localized Exciton Dynamics / 5.3.4:
Optical Gain in Nitrides / 5.3.5:
Life Testing and Degradation Mechanisms in InGaN LEDs / Marek Osinski ; Daniel L. Barton5.4:
Life Testing of InGaN/AlGaN/GaN LEDs / 6.1:
Life Testing Primer / 6.2.1:
Potential Degradation Regions in LEDs / 6.2.2:
Life Test System Considerations / 6.2.3:
Results of Life Tests on Nichia Blue InGaN/AlGaN/GaN Double Heterostructure LEDs / 6.2.4:
Analysis of Early Test Failures / 6.3:
Analysis of LED #19 / 6.3.1:
Analysis of LEDs #16 and 17 / 6.3.2:
Effects of UV Emission on Plastic Transparency / 6.4:
Thermal Degradation of Plastic Package Transparency / 6.5:
Degradation of GaN-Based LEDs Under High Current Stress / 6.6:
Double Heterostructure Device Testing / 6.7:
EBIC Analysis / 6.8:
Pulsed Current Stress Experiments and Results on Quantum Well LEDs / 6.9:
Failure Analysis of Degraded Quantum Well LEDs / 6.10:
Summary / 6.11:
Development and Future Prospects of GaN-based LEDs and LD / Shuji Nakamura6.13:
Properties of InGaN-based LEDs / 7.1:
Amber LEDs / 7.1.1:
UV/Blue/Green LEDs / 7.1.3:
Roles of Dislocations in InGaN-Based LEDs / 7.1.4:
LDs Grown on Sapphire Substrate / 7.2:
LDs Grown on Sapphire Substrates / 7.2.1:
ELOG Substrate / 7.2.3:
InGaN-Based LDs Grown on ELOG Substrates / 7.2.4:
LDs Grown on GaN Substrate / 7.3:
Free-Standing GaN Substrates / 7.3.1:
Characteristics of LDs / 7.3.2:
Future Prospects of InGaN-based Emitting Devices / 7.4:
Appendix / 7.5:
Parameters Table
Subject Index
Basics Physics and Materials Technology of GaN LEDs and LDs / Steven P. DenBaars1.:
Introduction / 1.1:
Historical Evolution of LED Technology / 1.1.1:
50.

図書

東工大
目次DB

図書
東工大
目次DB
Tamejiro Hiyama ; with contributions by Tamejiro Hiyama, Kiyoshi Kanie ... [et al.]
出版情報: Berlin ; Tokyo : Springer, c2000  xii, 272 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1 General Introduction 1
   1.1 Nature of Organofluorine Compounds 1
   1.1.1 Brief History 1
   1.1.2 Properties of the Fluorine Atom 2
   1.1.3 Fluorine Effects in Organic Compounds 3
   1.1.4 Properties of Fluoroorganic Compounds 10
   1.1.5 Properties of Perfluoroorganic Compounds 13
   1.1.6 Spectroscopic Properties 14
   1.2 Source of Fluorine 18
   1.2.1 Hydrogen Fluoride 18
   1.2.2 Fluorine Gas 18
   1.3 Toxicity of Fluorinating Reagents 19
   1.3.1 Hydrogen Fluoride and Fluorine Gas 19
   1.3.2 First-Aid Treatment 20
   1.3.3 Fluoroacetic Acid 21
Chapter 2 Reagents for Fluorination 25
   2.1 Electrophilic Fluorinating Reagents 25
   2.1.1 Fluorine Gas 25
   2.1.2 Xenon Difluoride 28
   2.1.3 Electrophilic Reagents Containing an O-F Bond 29
   2.1.4 Electrophilic Reagents Containing an N-F Bond 34
   2.2 Nucelophilic Fluorinating Reagents 39
   2.2.1 Hydrogen Fluoride and Derivatives 39
   2.2.2 Functional Group Transformation 43
   2.2.3 Fluoride Reagents 48
   2.3 Combination of an Electrophile and a Fluoride Reagent 56
   2.3.1 Halofluorination of Olefins and Acetylenes 56
   2.3.2 Thiofluorination and Selenofluorination of Olefins 58
   2.3.3 Nitrofluorination 59
   2.3.4 Oxidative Fluorination 58
   2.3.5 Oxidative Desulfurization-Fluorination 61
   2.3.6 Oxidative Fluorination of Amines 65
   2.4 Electrochemical Fluorination 66
Chapter 3 Organofluorine Building Blocks 77
   3.1 Fluorine-Substituted Nucleophilic Reagents 77
   3.1.1 Alkylmetals 77
   3.1.2 Alkenylmetals 84
   3.1.3 Alkynylmetals 91
   3.1.4 Metal Enolates 93
   3.2 Fluorine-Substituted Electrophilic Reagents 99
   3.3 Fluorine-Substituted Radicals 103
   3.4 Fluorine-Substituted Carbenes 107
   3.5 Electrophilic Perfluoroalkylating Reagents 111
   3.5.1 (Perfluoroalkyl)aryliodonium Salts 111
   3.5.2 (Polyfluoroalkyl)aryliodonium Salts 112
   3.5.3 (Trifluoromethyl)chalcogenium Salts 113
Chapter 4 Reactions of C-F Bonds 119
   4.1 Fluorine Leaving Group 119
   4.1.1 1-Fluoro Sugars 119
   4.1.2 Aromatic Nucleophilic Substitution 121
   4.2 C-F Bond Activation by Metal Complexes 125
   4.2.1 Activation of an Aliphatic C-F Bond 125
   4.2.2 Activation of an Aromatic C-F Bond 126
   4.3 Interaction of Fluorine with a Proton or Metal 128
   4.3.1 Fluorine-Hydrogen Interaction 128
   4.3.2 Fluorine-Metal Interaction 129
Chapter 5 Biologically Active Organofluorine Compounds 137
   5.1 Fluorine Effect in Biological Activity 137
   5.2 Strategies for Design and Synthesis 141
   5.2.1 Structure-Activity Relationship 141
   5.2.2 Commercially Available Fluorinated Materials 143
   5.3 Fluorinated Amino Acids and Carbohydrates 144
   5.3.1 Amino Acids 144
   5.3.2 Protease Inhibitors 148
   5.3.3 Carbohydrates 150
   5.3.4 Nucleosides 151
   5.4 Fluorine-Containing Pharmaceuticals 154
   5.4.1 Prostanoids 154
   5.4.2 Vitamin D3 157
   5.4.3 Central Nervous System Agents 160
   5.4.4 Antibacterials and Antifungals 161
   5.4.5 βーLactam Antibiotics 164
   5.4.6 Anesthetics 164
   5.4.7 Artificial Blood Substitutes 165
   5.4.8 18F-Labeled Tracers for Positron Emission Tomography 166
   5.5 Fluorine-Containing Agrochemicals 166
   5.5.1 Insecticides 167
   5.5.2 Herbicides 173
   5.5.3 Fungicides 177
Chapter 6 Fluorine-Containing Materials 183
   6.1 Fluorine Effect in Materials 183
   6.1.1 Boiling Points and Melting Points 184
   6.1.2 Solubility 186
   6.1.3 Surface Tension 186
   6.1.4 Refractive Index 187
   6.1.5 Viscosity 187
   6.2 Chlorofluorocarbons, Hydrochlorofluorocarbons, Hydrofluorocarbons, and Alternatives 188
   6.2.1 Brief History 188
   6.2.2 Production of Chlorofluorocarbons and Hydrochlorofluorocarbons 191
   6.2.3 Syntheses of CFC Alternatives 192
   6.2.4 Evaluation of Safety and Environmental Effects 195
   6.2.5 Alternatives to the Third Generation 196
   6.3 Fluorine-Containing Liquid Crystals 196
   6.3.1 Nematic Liquid Crystals 197
   6.3.2 Ferroelectric Liquid Crystals 202
   6.3.3 Antiferroelectric Liquid Crystals 209
   6.4 Fluorine-Containing Polymers 212
   6.4.1 Brief History 212
   6.4.2 Monomer Synthesis 214
   6.4.3 Fluoroplastics 216
   6.4.4 Fluoroelastomers 220
   6.4.5 Fluoropolymer Coatings 224
   6.4.6 Fluorosurfactants 225
   6.4.7 Fluorinated Membranes 228
Chapter 7 Fluorous Media 235
   7.1 Organic Reactions in Perfluorocarbons 235
   7.2 Fluorous Biphase Reactions 237
   7.2.1 Hydroformylation 237
   7.2.2 Oxidation 239
   7.3 Purification and Isolation by Phase Separation 243
Chapter 8 Organic Reactions with Fluorinated Reagents 249
   8.1 Fluoride Ion in Organic Synthesis 249
   8.1.1 Fluoride Base 249
   8.1.2 Desilylative Elimination and Deprotection 250
   8.1.3 Naked Anions and Fluorosilicates 252
   8.2 Trifluoroacetic Acid and Trifluoroperacetic Acid 255
   8.2.1 Trifluoroacetic Acid 255
   8.2.2 Trifluoroperacetic Acid 256
   8.3 Trifluoromethanesulfonic Acid and Derivatives 257
   8.3.1 Trifluoromethanesulfonic Acid 257
   8.3.2 Trimethylsilyl Trifluoromethanesulfonate 258
   8.3.3 Metal Trifluoromethanesulfonates 259
Subject Index 265
Chapter 1 General Introduction 1
   1.1 Nature of Organofluorine Compounds 1
   1.1.1 Brief History 1
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼