close
1.

図書

図書
Thomas Barkowsky
出版情報: Berlin ; Tokyo : Springer, c2002  x, 174 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2541 . Lecture notes in artificial intelligence
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
Mental Construction of Spatial Knowledge: An Example / 1.1.2:
Theses and Assumptions / 1.2:
Knowledge Construction and Human Memory / 1.2.1:
Characteristics of Geographic Knowledge / 1.2.2:
Spatial Knowledge Organization in Long-Term Memory / 1.2.3:
Visual Mental Images and Diagrammatic Reasoning / 1.2.4:
Research Questions and Goals / 1.3:
Research Questions / 1.3.1:
Goals / 1.3.2:
Approach: Experimental Computational Modeling / 1.4:
Computational Cognition / 1.4.1:
Building Computational Models / 1.4.2:
Modeling as Experimental Approach / 1.4.3:
Organization of this Thesis / 1.5:
State of the Art / 2:
Spatial Knowledge Conceptions: Cognitive Maps and Other Metaphors / 2.1:
Rubber Sheet Maps, Cognitive Atlases, Collages, and Geographic Information Systems / 2.1.1:
Spatial Mental Models / 2.1.3:
Other Conceptions / 2.1.4:
Human Memory / 2.2:
Working Memory / 2.2.1:
Long-Term Memory / 2.2.2:
Interacting Memory Systems in Mental Imagery / 2.2.3:
Mental Imagery / 2.3:
The Imagery Debate / 2.3.1:
Psychological and Neuroscientific Foundations / 2.3.2:
The Kosslyn Models / 2.3.3:
The 1980 Model / 2.3.3.1:
The 1994 Model / 2.3.3.2:
Spatial Reasoning / 2.4:
Topology / 2.4.1:
Orientation / 2.4.2:
Distance / 2.4.3:
Shape / 2.4.4:
Computational Geometry / 2.4.5:
Diagrammatic Reasoning / 2.5:
Propositional vs. Analogical Knowledge Representation / 2.5.1:
Types of Diagrammatic Reasoning Systems / 2.5.2:
Examples for Diagrammatic Reasoning Architectures / 2.5.3:
DEPIC-2D / 2.5.3.1:
WHISPER / 2.5.3.2:
Computational Imagery / 2.5.3.3:
Summary / 2.6:
MIRAGE - Developing the Model / 3:
Characteristics of the Model / 3.1:
Evaluating the Working Memory Representation / 3.1.1:
MIRAGE - Outline of the Model / 3.2:
Types of Entities and Spatial Relations in MIRAGE / 3.3:
Entities / 3.3.1:
Relations / 3.3.2:
Subsystems, Structures, and Processes / 3.4:
Long-Term Memory Activation / 3.4.1:
Spatial Knowledge Fragments / 3.4.1.1:
The Hierarchical Long-Term Memory Representation / 3.4.1.2:
The Access Process / 3.4.1.3:
The Activated Long-Term Memory Representation / 3.4.1.4:
The Construction Process / 3.4.1.5:
Visual Mental Image Construction / 3.4.2:
The Enriched Representation / 3.4.2.1:
The Conversion Process / 3.4.2.2:
The Visual Buffer / 3.4.2.3:
The Visualization Process / 3.4.2.4:
Image Inspection / 3.4.3:
The Inspection Result / 3.4.3.1:
The Inspection Process / 3.4.3.2:
Visual Mental Image Construction in Detail / 4:
A More Demanding Scenario / 4.1:
Diagrammatic Representations of Lean Knowledge / 4.2:
Consequences for Image Construction / 4.3:
Relaxation of Spatial Constraints / 4.3.1:
Completion of Qualitative Spatial Relations / 4.3.2:
Interpretation of Qualitative Spatial Relations / 4.3.3:
Image Revision Strategies in MIRAGE / 4.4:
Unstable Images / 4.4.1:
Omission of Facts / 4.4.2:
Revision of Relational Completion / 4.4.3:
Variation of Relational Completion / 4.4.3.1:
Relaxation of Relational Completion / 4.4.3.2:
Revision of Image Specification / 4.4.4:
Depicting Qualitative Spatial Relations / 4.4.4.1:
Depicting Unspecified Spatial Relations / 4.4.4.2:
MIRAGE Implementation / 4.5:
Computational Tools for Modeling: SIMSIS / 5.1:
The Idea of SIMSIS / 5.1.1:
The Aspect Map Model / 5.1.1.1:
Modeling Aspect Maps in SIMSIS / 5.1.1.2:
Depictions, Scenarios, and Interpretations / 5.1.2:
SIMSIS Pictures / 5.1.2.1:
SIMSIS Facts and Scenarios / 5.1.2.2:
SIMSIS Interpretations and Meaning Systems / 5.1.2.3:
Realization of the Model / 5.2:
MIRAGE Structures / 5.2.1:
Entities, Relations, and Spatial Knowledge Fragments / 5.2.1.1:
The Long-Term Memory Representations / 5.2.1.2:
MIRAGE Processes / 5.2.1.3:
The Long-Term Memory Activation Processes / 5.2.2.1:
The Image Construction Processes / 5.2.2.2:
Operation and Behavior of MIRAGE / 5.2.2.3:
Conclusion and Outlook / 6:
Results and Discussion / 6.1:
Reflecting the Theses / 6.2.1:
Spatial Knowledge Construction / 6.2.1.1:
Underdeterminacy in Long-Term Memory / 6.2.1.2:
Fragmentation and Hierarchical Organization / 6.2.1.3:
Visual Mental Imagery / 6.2.1.4:
The Parameters of the Model / 6.2.2:
Explicit Parameters / 6.2.2.1:
Implicit Parameters / 6.2.2.2:
Conclusions / 6.2.3:
Future Work / 6.3:
Extending MIRAGE / 6.3.1:
Geographic Entities and Spatial Relations / 6.3.1.1:
Partially Aggregated Knowledge Structures / 6.3.1.2:
Mental Imagery Functionality / 6.3.1.3:
Parameters of MIRAGE / 6.3.1.4:
Empirical Investigations / 6.3.2:
Use of Default Knowledge / 6.3.2.1:
Control of Image Construction / 6.3.2.2:
Processing Capacity for Mental Images / 6.3.2.3:
Use of Chunking Facilities / 6.3.2.4:
Combination of Propositional and Image-Based Reasoning / 6.3.2.5:
Application Perspectives / 6.3.3:
Adequate Presentation of Visual Information / 6.3.3.1:
External Support of Reasoning in Mental Images / 6.3.3.2:
Bibliography
Index
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
2.

電子ブック

EB
Thomas Barkowsky
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
Mental Construction of Spatial Knowledge: An Example / 1.1.2:
Theses and Assumptions / 1.2:
Knowledge Construction and Human Memory / 1.2.1:
Characteristics of Geographic Knowledge / 1.2.2:
Spatial Knowledge Organization in Long-Term Memory / 1.2.3:
Visual Mental Images and Diagrammatic Reasoning / 1.2.4:
Research Questions and Goals / 1.3:
Research Questions / 1.3.1:
Goals / 1.3.2:
Approach: Experimental Computational Modeling / 1.4:
Computational Cognition / 1.4.1:
Building Computational Models / 1.4.2:
Modeling as Experimental Approach / 1.4.3:
Organization of this Thesis / 1.5:
State of the Art / 2:
Spatial Knowledge Conceptions: Cognitive Maps and Other Metaphors / 2.1:
Rubber Sheet Maps, Cognitive Atlases, Collages, and Geographic Information Systems / 2.1.1:
Spatial Mental Models / 2.1.3:
Other Conceptions / 2.1.4:
Human Memory / 2.2:
Working Memory / 2.2.1:
Long-Term Memory / 2.2.2:
Interacting Memory Systems in Mental Imagery / 2.2.3:
Mental Imagery / 2.3:
The Imagery Debate / 2.3.1:
Psychological and Neuroscientific Foundations / 2.3.2:
The Kosslyn Models / 2.3.3:
The 1980 Model / 2.3.3.1:
The 1994 Model / 2.3.3.2:
Spatial Reasoning / 2.4:
Topology / 2.4.1:
Orientation / 2.4.2:
Distance / 2.4.3:
Shape / 2.4.4:
Computational Geometry / 2.4.5:
Diagrammatic Reasoning / 2.5:
Propositional vs. Analogical Knowledge Representation / 2.5.1:
Types of Diagrammatic Reasoning Systems / 2.5.2:
Examples for Diagrammatic Reasoning Architectures / 2.5.3:
DEPIC-2D / 2.5.3.1:
WHISPER / 2.5.3.2:
Computational Imagery / 2.5.3.3:
Summary / 2.6:
MIRAGE - Developing the Model / 3:
Characteristics of the Model / 3.1:
Evaluating the Working Memory Representation / 3.1.1:
MIRAGE - Outline of the Model / 3.2:
Types of Entities and Spatial Relations in MIRAGE / 3.3:
Entities / 3.3.1:
Relations / 3.3.2:
Subsystems, Structures, and Processes / 3.4:
Long-Term Memory Activation / 3.4.1:
Spatial Knowledge Fragments / 3.4.1.1:
The Hierarchical Long-Term Memory Representation / 3.4.1.2:
The Access Process / 3.4.1.3:
The Activated Long-Term Memory Representation / 3.4.1.4:
The Construction Process / 3.4.1.5:
Visual Mental Image Construction / 3.4.2:
The Enriched Representation / 3.4.2.1:
The Conversion Process / 3.4.2.2:
The Visual Buffer / 3.4.2.3:
The Visualization Process / 3.4.2.4:
Image Inspection / 3.4.3:
The Inspection Result / 3.4.3.1:
The Inspection Process / 3.4.3.2:
Visual Mental Image Construction in Detail / 4:
A More Demanding Scenario / 4.1:
Diagrammatic Representations of Lean Knowledge / 4.2:
Consequences for Image Construction / 4.3:
Relaxation of Spatial Constraints / 4.3.1:
Completion of Qualitative Spatial Relations / 4.3.2:
Interpretation of Qualitative Spatial Relations / 4.3.3:
Image Revision Strategies in MIRAGE / 4.4:
Unstable Images / 4.4.1:
Omission of Facts / 4.4.2:
Revision of Relational Completion / 4.4.3:
Variation of Relational Completion / 4.4.3.1:
Relaxation of Relational Completion / 4.4.3.2:
Revision of Image Specification / 4.4.4:
Depicting Qualitative Spatial Relations / 4.4.4.1:
Depicting Unspecified Spatial Relations / 4.4.4.2:
MIRAGE Implementation / 4.5:
Computational Tools for Modeling: SIMSIS / 5.1:
The Idea of SIMSIS / 5.1.1:
The Aspect Map Model / 5.1.1.1:
Modeling Aspect Maps in SIMSIS / 5.1.1.2:
Depictions, Scenarios, and Interpretations / 5.1.2:
SIMSIS Pictures / 5.1.2.1:
SIMSIS Facts and Scenarios / 5.1.2.2:
SIMSIS Interpretations and Meaning Systems / 5.1.2.3:
Realization of the Model / 5.2:
MIRAGE Structures / 5.2.1:
Entities, Relations, and Spatial Knowledge Fragments / 5.2.1.1:
The Long-Term Memory Representations / 5.2.1.2:
MIRAGE Processes / 5.2.1.3:
The Long-Term Memory Activation Processes / 5.2.2.1:
The Image Construction Processes / 5.2.2.2:
Operation and Behavior of MIRAGE / 5.2.2.3:
Conclusion and Outlook / 6:
Results and Discussion / 6.1:
Reflecting the Theses / 6.2.1:
Spatial Knowledge Construction / 6.2.1.1:
Underdeterminacy in Long-Term Memory / 6.2.1.2:
Fragmentation and Hierarchical Organization / 6.2.1.3:
Visual Mental Imagery / 6.2.1.4:
The Parameters of the Model / 6.2.2:
Explicit Parameters / 6.2.2.1:
Implicit Parameters / 6.2.2.2:
Conclusions / 6.2.3:
Future Work / 6.3:
Extending MIRAGE / 6.3.1:
Geographic Entities and Spatial Relations / 6.3.1.1:
Partially Aggregated Knowledge Structures / 6.3.1.2:
Mental Imagery Functionality / 6.3.1.3:
Parameters of MIRAGE / 6.3.1.4:
Empirical Investigations / 6.3.2:
Use of Default Knowledge / 6.3.2.1:
Control of Image Construction / 6.3.2.2:
Processing Capacity for Mental Images / 6.3.2.3:
Use of Chunking Facilities / 6.3.2.4:
Combination of Propositional and Image-Based Reasoning / 6.3.2.5:
Application Perspectives / 6.3.3:
Adequate Presentation of Visual Information / 6.3.3.1:
External Support of Reasoning in Mental Images / 6.3.3.2:
Bibliography
Index
Introduction / 1:
Mental Processing of Geographic Knowledge / 1.1:
Cognitive Maps / 1.1.1:
3.

図書

図書
A.A. Martynyuk
出版情報: New York : Marcel Dekker, c2002  x, 301 p. ; 24 cm
シリーズ名: Monographs and textbooks in pure and applied mathematics ; 246
所蔵情報: loading…
目次情報: 続きを見る
Preface
Preliminaries / 1:
Introduction / 1.1:
Nonlinear Continuous Systems / 1.2:
General equations of nonlinear dynamics / 1.2.1:
Perturbed motion equations / 1.2.2:
Definitions of Stability / 1.3:
Scalar, Vector and Matrix-Valued Liapunov Functions / 1.4:
Auxiliary scalar functions / 1.4.1:
Comparison functions / 1.4.2:
Vector Liapunov functions / 1.4.3:
Matrix-valued metafunction / 1.4.4:
Comparison Principle / 1.5:
Liapunov-Like Theorems / 1.6:
Matrix-valued function and its properties / 1.6.1:
A version of the original theorems of Liapunov / 1.6.2:
Advantages of Cone-Valued Liapunov Functions / 1.7:
Stability with respect to two measures / 1.7.1:
Stability analysis of large scale systems / 1.7.2:
Liapunov's Theorems for Large Scale Systems in General / 1.8:
Why are matrix-valued Liapunov functions needed? / 1.8.1:
Stability and instability of large scale systems / 1.8.2:
Notes / 1.9:
Qualitative Analysis of Continuous Systems / 2:
Nonlinear Systems with Mixed Hierarchy of Subsystems / 2.1:
Mixed hierarchical structures / 2.2.1:
Hierarchical matrix function structure / 2.2.2:
Structure of hierarchical matrix function derivative / 2.2.3:
Stability and instability conditions / 2.2.4:
Linear autonomous system / 2.2.5:
Examples of third order systems / 2.2.6:
Dynamics of the Systems with Regular Hierarchy Subsystems / 2.3:
Ikeda-Siljak hierarchical decomposition / 2.3.1:
Hierarchical Liapunov's matrix-valued functions / 2.3.2:
Linear nonautonomous systems / 2.3.3:
Stability Analysis of Large Scale Systems / 2.4:
A class of large scale systems / 2.4.1:
Construction of nondiagonal elements of matrix-valued function / 2.4.2:
Test for stability analysis / 2.4.3:
Linear large scale system / 2.4.4:
Discussion and numerical example / 2.4.5:
Overlapping Decomposition and Matrix-Valued Function Construction / 2.5:
Dynamical system extension / 2.5.1:
Liapunov matrix-valued function construction / 2.5.2:
Test for stability of system (2.5.1) / 2.5.3:
Numerical example / 2.5.4:
Exponential Polystability Analysis of Separable Motions / 2.6:
Statement of the Problem / 2.6.1:
A method for the solution of the problem / 2.6.2:
Autonomous system / 2.6.3:
Polystability by the first order approximations / 2.6.4:
Integral and Lipschitz Stability / 2.7:
Definitions / 2.7.1:
Sufficient conditions for integral and asymptotic integral stability / 2.7.2:
Uniform Lipschitz stability / 2.7.3:
Qualitative Analysis of Discrete-Time Systems / 2.8:
Systems Described by Difference Equations / 3.1:
Matrix-Valued Liapunov Functions Method / 3.3:
Auxiliary results / 3.3.1:
Comparison principle application / 3.3.2:
General theorems on stability / 3.3.3:
Large Scale System Decomposition / 3.4:
Stability and Instability of Large Scale Systems / 3.5:
Auxiliary estimates / 3.5.1:
Autonomous Large Scale Systems / 3.5.2:
Hierarchical Analysis of Stability / 3.7:
Hierarchical decomposition and stability conditions / 3.7.1:
Novel tests for connective stability / 3.7.2:
Controlled Systems / 3.8:
Nonlinear Dynamics of Impulsive Systems / 3.9:
Large Scale Impulsive Systems in General / 4.1:
Notations and definitions / 4.2.1:
Sufficient stability conditions / 4.2.2:
Instability conditions / 4.2.4:
Hierarchical Impulsive Systems / 4.3:
Analytical Construction of Liapunov Function / 4.4:
Structure of hierarchical matrix-valued Liapunov function / 4.4.1:
Structure of the total derivative of hierarchical matrix-valued function / 4.4.2:
Uniqueness and Continuability of Solutions / 4.5:
On Boundedness of the Solutions / 4.6:
Novel Methodology for Stability / 4.7:
Stability conditions / 4.7.1:
Applications / 4.8:
Estimations of Asymptotic Stability Domains in General / 5.1:
A fundamental Zubov's result / 5.2.1:
Some estimates for quadratic matrix-valued functions / 5.2.2:
Algorithm of constructing a point network covering boundary of domain E / 5.2.3:
Numerical realization and discussion of the algorithm / 5.2.4:
Illustrative examples / 5.2.5:
Construction of Estimate for the Domain E of Power System / 5.3:
Oscillations and Stability of Some Mechanical Systems / 5.4:
Three-mass systems / 5.4.1:
Nonautonomous oscillator / 5.4.2:
Absolute Stability of Discrete Systems / 5.5:
References / 5.6:
Subject Index
Preface
Preliminaries / 1:
Introduction / 1.1:
4.

図書

図書
Nam-Trung Nguyen, Steven T. Wereley
出版情報: Boston : Artech House, c2002  xiii, 471 p. ; 24 cm
シリーズ名: MEMS--Microelectromechanical systems series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
Microfluidics--The Emerging Technology / 1.1:
What Is Microfluidics? / 1.1.1:
Commercial Aspects / 1.1.2:
Scientific Aspects / 1.1.3:
Milestones of Microfluidics / 1.2:
Device Development / 1.2.1:
Technology Development / 1.2.2:
Organization of the Book / 1.3:
References
Fluid Mechanics Theory / Chapter 2:
Intermolecular Forces / 2.1:
The Three States of Matter / 2.1.2:
Continuum Assumption / 2.1.3:
Continuum Fluid Mechanics at Small Scales / 2.2:
Gas Flows / 2.2.1:
Liquid Flows / 2.2.2:
Boundary Conditions / 2.2.3:
Parallel Flows / 2.2.4:
Low Reynolds Number Flows / 2.2.5:
Entrance Effects / 2.2.6:
Surface Tension / 2.2.7:
Molecular Approaches / 2.3:
MD / 2.3.1:
DSMC Technique / 2.3.2:
Electrokinetics / 2.4:
Electro-Osmosis / 2.4.1:
Electrophoresis / 2.4.2:
Dielectrophoresis / 2.4.3:
Conclusion / 2.5:
Problems
Fabrication Techniques for Microfluidics / Chapter 3:
Basic Microtechniques / 3.1:
Photolithography / 3.1.1:
Additive Techniques / 3.1.2:
Subtractive Techniques / 3.1.3:
Pattern Transfer Techniques / 3.1.4:
Silicon-Based Micromachining Techniques / 3.2:
Silicon Bulk Micromachining / 3.2.1:
Silicon Surface Micromachining / 3.2.2:
Polymer-Based Micromachining Techniques / 3.3:
Thick Resist Lithography / 3.3.1:
Polymeric Surface Micromachining / 3.3.2:
Soft Lithography / 3.3.3:
Microstereo Lithography / 3.3.4:
Micromolding / 3.3.5:
Other Micromachining Techniques / 3.4:
Assembly and Packaging of Microfluidic Devices / 3.4.1:
Wafer Level Assembly and Packaging / 3.5.1:
Device Level Packaging / 3.5.2:
Biocompatibility / 3.6:
Material Response / 3.6.1:
Tissue and Cellular Response / 3.6.2:
Biocompatibility Tests / 3.6.3:
Experimental Flow Characterization / Chapter 4:
Pointwise Methods / 4.1:
Full-Field Methods / 4.1.2:
Overview of Micro-PIV / 4.2:
Fundamental Physics Considerations of Micro-PIV / 4.2.1:
Special Processing Methods for Micro-PIV Recordings / 4.2.2:
Advanced Processing Methods Suitable for Both Micro/Macro-PIV Recordings / 4.2.3:
Micro-PIV Examples / 4.3:
Flow in a Microchannel / 4.3.1:
Flow in a Micronozzle / 4.3.2:
Flow Around a Blood Cell / 4.3.3:
Flow in Microfluidic Biochip / 4.3.4:
Conclusions / 4.3.5:
Extensions of the Micro-PIV technique / 4.4:
Microfluidic Nanoscope / 4.4.1:
Microparticle Image Thermometry / 4.4.2:
Infrared Micro-PIV / 4.4.3:
Particle Tracking Velocimetry / 4.4.4:
Microfluidics for External Flow Control / Chapter 5:
Velocity and Turbulence Measurement / 5.1:
Velocity Sensors / 5.1.1:
Shear Stress Sensors / 5.1.2:
Turbulence Control / 5.2:
Microflaps / 5.2.1:
Microballoon / 5.2.2:
Microsynthetic Jet / 5.2.3:
Microair Vehicles / 5.3:
Fixed-Wing MAV / 5.3.1:
Flapping-Wing MAV / 5.3.2:
Microrotorcraft / 5.3.3:
Microrockets / 5.3.4:
Microfluidics for Internal Flow Control: Microvalves / Chapter 6:
Design Considerations / 6.1:
Actuators / 6.1.1:
Valve Spring / 6.1.2:
Valve Seat / 6.1.3:
Pressure Compensation Design / 6.1.4:
Pneumatic Valves / 6.2:
Pneumatic Actuators / 6.2.1:
Design Examples / 6.2.2:
Thermopneumatic Valves / 6.3:
Thermopneumatic Actuators / 6.3.1:
Thermomechanical Valves / 6.3.2:
Solid-Expansion Valves / 6.4.1:
Bimetallic Valves / 6.4.2:
Shape-Memory Alloy Valves / 6.4.3:
Piezoelectric Valves / 6.5:
Piezoelectric Actuators / 6.5.1:
Electrostatic Valves / 6.5.2:
Electrostatic Actuators / 6.6.1:
Electromagnetic Valves / 6.6.2:
Electromagnetic Actuators / 6.7.1:
Electrochemical Valves / 6.7.2:
Capillary-Force Valves / 6.9:
Capillary-Force Actuators / 6.9.1:
Microfluidics for Internal Flow Control: Micropumps / 6.9.2:
Mechanical Pumps / 7.1:
Check-Valve Pumps / 7.1.1:
Peristaltic Pumps / 7.1.3:
Valveless Rectification Pumps / 7.1.4:
Rotary Pumps / 7.1.5:
Centrifugal Pumps / 7.1.6:
Ultrasonic Pumps / 7.1.7:
Nonmechanical Pumps / 7.2:
Electrical Pumps / 7.2.1:
Surface Tension Driven Pumps / 7.2.2:
Chemical Pumps / 7.2.3:
Magnetic Pumps / 7.2.4:
Scaling Law for Micropumps / 7.3:
Microfluidics for Internal Flow Control: Microflow Sensors / Chapter 8:
Nonthermal Flow Sensors / 8.1:
Differential Pressure Flow Sensors / 8.1.1:
Drag Force Flow Sensors / 8.1.2:
Lift Force Flow Sensors / 8.1.3:
Coriolis Flow Sensors / 8.1.4:
Electrohydrodynamic Flow Sensors / 8.1.5:
Thermal Flow Sensors / 8.2:
Thermoresistive Flow Sensors / 8.2.1:
Thermocapacitive Flow Sensors / 8.2.3:
Thermoelectric Flow Sensors / 8.2.4:
Thermoelectronic Flow Sensors / 8.2.5:
Pyroelectric Flow Sensors / 8.2.6:
Frequency Analog Sensors / 8.2.7:
Microfluidics for Life Sciences and Chemistry / Chapter 9:
Microfilters / 9.1:
Microneedles / 9.1.1:
Micromixers / 9.2.1:
Microreactors / 9.3.1:
Microdispensers / 9.4.1:
Microseparators / 9.5.1:
Gas Chromatography / 9.6.1:
Liquid Chromatography / 9.6.3:
List of Symbols / 9.6.4:
Resources for Microfluidics Research / Appendix B:
Abbreviations of Different Plastics / Appendix C:
Linear Elastic Deflection Models / Appendix D:
About the Authors
Index
Preface
Acknowledgments
Introduction / Chapter 1:
5.

図書

図書
Iwao Teraoka
出版情報: New York : Wiley, c2002  xv, 338 p ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
Chain Architecture / 1.1.1:
Models of a Linear Polymer Chain / 1.1.2:
Real Chains and Ideal Chains / 1.1.3:
Ideal Chains / 1.2:
Random Walk in One Dimension / 1.2.1:
Random Walks in Two and Three Dimensions / 1.2.2:
Dimensions of Random-Walk Chains / 1.2.3:
Problems / 1.2.4:
Gaussian Chain / 1.3:
What is a Gaussian Chain? / 1.3.1:
Dimension of a Gaussian Chain / 1.3.2:
Entropy Elasticity / 1.3.3:
Real Chains / 1.3.4:
Excluded Volume / 1.4.1:
Dimension of a Real Chain / 1.4.2:
Self-Avoiding Walk / 1.4.3:
Semirigid Chains / 1.4.4:
Examples of Semirigid Chains / 1.5.1:
Wormlike Chain / 1.5.2:
Branched Chains / 1.5.3:
Architecture of Branched Chains / 1.6.1:
Dimension of Branched Chains / 1.6.2:
Molecular Weight Distribution / 1.6.3:
Average Molecular Weights / 1.7.1:
Typical Distributions / 1.7.2:
Concentration Regimes / 1.7.3:
Concentration Regimes for Linear Flexible Polymers / 1.8.1:
Concentration Regimes for Rodlike Molecules / 1.8.2:
Thermodynamics of Dilute Polymer Solutions / 1.8.3:
Polymer Solutions and Thermodynamics / 2.1:
Flory-Huggins Mean-Field Theory / 2.2:
Model / 2.2.1:
Free Energy, Chemical Potentials, and Osmotic Pressure / 2.2.2:
Dilute Solutions / 2.2.3:
Coexistence Curve and Stability / 2.2.4:
Polydisperse Polymer / 2.2.5:
Phase Diagram and Theta Solutions / 2.2.6:
Phase Diagram / 2.3.1:
Theta Solutions / 2.3.2:
Coil-Globule Transition / 2.3.3:
Solubility Parameter / 2.3.4:
Static Light Scattering / 2.3.5:
Sample Geometry in Light-Scattering Measurements / 2.4.1:
Scattering by a Small Particle / 2.4.2:
Scattering by a Polymer Chain / 2.4.3:
Scattering by Many Polymer Chains / 2.4.4:
Correlation Function and Structure Factor / 2.4.5:
Structure Factor of a Polymer Chain / 2.4.6:
Light Scattering of a Polymer Solution / 2.4.7:
Other Scattering Techniques / 2.4.8:
Size Exclusion Chromatography and Confinement / 2.4.9:
Separation System / 2.5.1:
Plate Theory / 2.5.2:
Partitioning of Polymer with a Pore / 2.5.3:
Calibration of SEC / 2.5.4:
SEC With an On-Line Light-Scattering Detector / 2.5.5:
Appendixes / 2.5.6:
Review of Thermodynamics for Colligative Properties in Nonideal Solutions / 2.A:
Osmotic Pressure / 2.A.1:
Vapor Pressure Osmometry / 2.A.2:
Another Approach to Thermodynamics of Polymer Solutions / 2.B:
Correlation Function of a Gaussian Chain / 2.C:
Dynamics of Dilute Polymer Solutions / 3:
Dynamics of Polymer Solutions / 3.1:
Dynamic Light Scattering and Diffusion of Polymers / 3.2:
Measurement System and Autocorrelation Function / 3.2.1:
Autocorrelation Function / 3.2.2:
Dynamic Structure Factor of Suspended Particles / 3.2.3:
Diffusion of Particles / 3.2.4:
Diffusion and DLS / 3.2.5:
Dynamic Structure Factor of a Polymer Solution / 3.2.6:
Hydrodynamic Radius / 3.2.7:
Particle Sizing / 3.2.8:
Diffusion From Equation of Motion / 3.2.9:
Diffusion as Kinetics / 3.2.10:
Concentration Effect on Diffusion / 3.2.11:
Diffusion in a Nonuniform System / 3.2.12:
Viscosity / 3.2.13:
Viscosity of Solutions / 3.3.1:
Measurement of Viscosity / 3.3.2:
Intrinsic Viscosity / 3.3.3:
Flow Field / 3.3.4:
Normal Modes / 3.3.5:
Rouse Model / 3.4.1:
Normal Coordinates / 3.4.2:
Equation of Motion for the Normal Coordinates in the Rouse Model / 3.4.3:
Results of the Normal-Coordinates / 3.4.4:
Results for the Rouse Model / 3.4.5:
Zimm Model / 3.4.6:
Dynamic Structure Factor / 3.4.7:
Motion of Monomers / 3.4.9:
Dynamics of Rodlike Molecules / 3.4.10:
Diffusion Coefficients / 3.5.1:
Rotational Diffusion / 3.5.2:
Dynamics of Wormlike Chains / 3.5.3:
Appendices / 3.5.6:
Evaluation of [left angle bracket]q[subscript i superscript 2 right angle bracket subscript eq] / 3.A:
Evaluation of [left angle bracket]exp[ik [middle dot] (Aq - Bp) right angle bracket] / 3.B:
Initial Slope of S[subscript 1](k,t) / 3.C:
Thermodynamics and Dynamics of Semidilute Solutions / 4:
Semidilute Polymer Solutions / 4.1:
Thermodynamics of Semidilute Polymer Solutions / 4.2:
Blob Model / 4.2.1:
Scaling Theory and Semidilute Solutions / 4.2.2:
Partitioning with a Pore / 4.2.3:
Dynamics of Semidilute Solutions / 4.2.4:
Cooperative Diffusion / 4.3.1:
Tube Model and Reptation Theory / 4.3.2:
References / 4.3.3:
Further Readings
Delta Function / A1:
Fourier Transform / A2:
Integrals / A3:
Series / A4:
Index
Preface
Models of Polymer Chains / 1:
Introduction / 1.1:
6.

図書

図書
Ivan Kozhevnikov
出版情報: Chichester : J. Wiley & Sons, c2002  xiv, 201 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 2
Introduction / 1:
Scope and definitions / 1.1:
Nomenclature / 1.2:
Historical background / 1.3:
Introduction to catalysis by polyoxometalates / 1.4:
References
Properties of Polyoxometalates / 2:
Structures of polyoxometalates / 2.1:
General principles / 2.1.1:
The Keggin structure / 2.1.2:
The Wells-Dawson structure / 2.1.3:
The Anderson-Evans structure / 2.1.4:
The Dexter-Silverton structure / 2.1.5:
Crystal structure of heteropoly compounds / 2.2:
Thermal stability / 2.3:
Solubility / 2.4:
Formation and state in solution / 2.5:
Stability of polyoxometalates in solution / 2.5.1:
Polyoxometalates as ligands / 2.5.2:
Isotope exchange / 2.5.3:
Kinetics and mechanism of substitution in polyoxmetalates / 2.5.4:
Acid properties / 2.6:
Proton structure / 2.6.1:
Heteropoly acids in solutions / 2.6.2:
Acidity of solid heteropoly acids / 2.6.3:
Redox properties / 2.7:
Synthesis of Polyoxometalates / 3:
General methods of synthesis / 3.1:
Keggin polyoxometalates / 3.2:
12-Molybdosilicic acid, [alpha]-H[subscript 4 SiMo[subscript 12]O[subscript 40] / 3.2.1:
12-Tungstosilicic acid, [alpha]-H[subscript 4 SiW[subscript 12]O[subscript 40] / 3.2.2:
12-Tungstophosphoric acid, [alpha]-H[subscript 3 PW[subscript 12]O[subscript 40] / 3.2.3:
12-Molybdophosphoric acid, [alpha]-H[subscript 3 PMo[subscript 12]O[subscript 40] / 3.2.4:
12-Tungstogermanic acid, [alpha]-[H[subscript 4 GeW[subscript 12]O[subscript 40] / 3.2.5:
11-Molybdo-1-vanadophosphoric acid, H[subscript 4 PMo[subscript 11] VO[subscript 40] / 3.2.6:
10-Molybdo-2-vanadophosphoric acid, H[subscript 5 PMo[subscript 10]V[subscript 2]O[subscript 40] / 3.2.7:
9-Molybdo-3-vanadophosphoric acid, H[subscript 6 PMo[subscript 9] V[subscript 3]O[subscript 40] / 3.2.8:
Transition-metal-substituted tungstophosphates, {PW[subscript 11]MO[subscript 39]} / 3.2.9:
Wells-Dawson polyoxometalates / 3.3:
18-Tungstodiphosphoric acid, H[subscript 6 P[subscript 2]W[subscript 18]O[subscript 62] / 3.3.1:
Sandwich-type polyoxometalates / 3.4:
Na[subscript 12 WZn[subscript 3](H[subscript 2]O)[subscript 2](ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.1:
Na[subscript 12 WCo[subscript 3 superscript II](H[subscript 2]O)[subscript 2] (Co[superscript II]W[subscript 9]O[subscript 34])[subscript 2] / 3.4.2:
K[subscript 11 WZnRu[subscript 2 superscript III](OH)(H[subscript 2]O) (ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.3:
K[subscript 10 WZnRh[superscript III subscript 2](H[subscript 2]O)(ZnW[subscript 9]O[subscript 34])[subscript 2] / 3.4.4:
Peroxo polyoxometalates / 3.5:
Venturello complex, {PO[subscript 4 WO(O[subscript 2])[subscript 2 subscript 4]}[superscript 3-] / 3.5.1:
Polyoxometalate catalysts / 3.6:
Solid acid catalysts / 3.6.1:
Homogeneous catalysts / 3.6.2:
Acid Catalysis by Heteropoly Compounds / 4:
General overview / 4.1:
The scope of applications / 4.1.1:
Mechanistic principles / 4.1.2:
Homogeneous acid catalysis / 4.2:
Acid-catalysed reactions / 4.2.1:
Acid-catalysed reactions in biphasic liquid-liquid systems / 4.3:
Biphasic reactions / 4.3.1:
Heterogeneous acid catalysts / 4.4:
Heteropoly acid catalysts / 4.4.1:
Heterogeneous catalysis in liquid-solid systems / 4.4.2:
Heterogeneous catalysis in gas-solid systems / 4.4.3:
Deactivation and regeneration of solid heteropoly acid catalysts / 4.5:
Polyoxometalates as Catalysts for Selective Oxidation / 5:
Liquid-phase oxidation / 5.1:
Oxidation with dioxygen / 5.1.1:
Oxidation with hydrogen peroxide / 5.1.2:
Oxidation with organic peroxides / 5.1.3:
Miscellaneous oxidations / 5.1.4:
Gas-phase oxidation / 5.2:
Oxidation catalysts / 5.2.1:
Reactions / 5.2.3:
Miscellaneous Catalytic Applications of Polyoxometalates / 6:
Hydrogenation, carbonylation and related reactions / 6.1:
Polyanion-stabilised clusters / 6.2:
Polyoxometalates as catalyst precursors / 6.3:
Catalysis by Polyoxometalates in Industry / 7:
Acid catalysis / 7.1:
Hydration of olefins / 7.1.1:
Synthesis of ethyl acetate from ethylene and acetic acid / 7.1.2:
Selective oxidation / 7.2:
Oxidation of methacrolein in methacrylic acid / 7.2.1:
Oxidation of ethylene to acetic acid / 7.2.2:
Other Applications of Polyoxometalates / 8:
Analytical chemistry / 8.1:
Elemental analysis / 8.1.1:
Analysis of biomaterials / 8.1.2:
Separation / 8.2:
Processing of radioactive waste / 8.2.1:
Sorption of gases / 8.2.2:
Corrosion-resistant coatings / 8.3:
Polyoxometalates as additives to inorganic and organic matrices / 8.4:
Additives in sol-gel matrices / 8.4.1:
Additives in polymer matrices / 8.4.2:
Membranes / 8.5:
Fuel cells / 8.5.1:
Selective electrodes / 8.5.2:
Gas sensors / 8.5.3:
Polyoxometalates in medicine: antiviral and antitumoral activity / 8.6:
Index
Series Preface
Preface to Volume 2
Introduction / 1:
7.

図書

図書
Alexander Vasilʹev
出版情報: Berlin ; Tokyo : Springer-Verlag, c2002  ix, 211 p. ; 24 cm
シリーズ名: Lecture notes in mathematics ; 1788
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
Definition / 2.1.1:
Properties / 2.1.2:
Examples / 2.1.3:
Grötzsch lemmas / 2.1.4:
Exercises / 2.1.5:
Reduced moduli and capacity / 2.2:
Reduced modulus / 2.2.1:
Capacity and transfinite diameter / 2.2.2:
Digons, triangles and their reduced moduli / 2.2.3:
Elliptic functions and integrals / 2.3:
Elliptic functions / 2.3.1:
Elliptic integrals and JacobiÆs functions / 2.3.2:
Some frequently used moduli / 2.4:
Moduli of doubly connected domains / 2.4.1:
Moduli of quadrilaterals / 2.4.2:
Reduced moduli / 2.4.3:
Reduced moduli of digons / 2.4.4:
Symmetrization and polarization / 2.5:
Circular symmetrization / 2.5.1:
Polarization / 2.5.2:
Quadratic differentials on Riemann surfaces / 2.6:
Riemann surfaces / 2.6.1:
Quadratic differentials / 2.6.2:
Local trajectory structure / 2.6.3:
Trajectory structure in the large / 2.6.4:
Free families of homotopy classes of curves and extremal par- titions / 2.7:
The case of ring domains and quadrangles / 2.7.1:
The case of circular, strip domains, and triangles / 2.7.2:
Continuous and differentiable moduli / 2.7.3:
Moduli in Extremal Problems for Conformal Mapping / 3:
Classical extremal problems for univalent functions / 3.1:
Koebe set, growth, distortion / 3.1.1:
Lower boundary curve for the range of ( / 3.1.2:
Special moduli / 3.1.3:
Upper boundary curve for the range of ( / 3.1.4:
Two-point distortion for univalent functions / 3.2:
Bounded univalent functions / 3.2.1:
Elementary estimates / 3.3.1:
Boundary curve for the range of ( / 3.3.2:
Montel functions / 3.4:
Covering theorems / 3.4.1:
Distortion at the points of normalization / 3.4.2:
The range of ( / 3.4.3:
Univalent functions with the angular derivatives / 3.5:
Estimates of the angular derivatives / 3.5.1:
Moduli in Extremal Problems for Quasiconformal Mapping / 3.5.2:
General information and simple extremal problems / 4.1:
Quasiconformal mappings of Riemann surfaces / 4.1.1:
Growth and Hölder continuity / 4.1.2:
Quasiconformal motion of a quadruple of points / 4.1.3:
Two-point distortion for quasiconformal maps of the plane / 4.2:
Special differentials and extremal partitions / 4.2.1:
Quasisymmetric functions and the extremal maps / 4.2.2:
Boundary parameterization / 4.2.3:
The class QK. Estimations of functionals / 4.2.4:
Conclusions and unsolved problems / 4.2.5:
Two-point distortion for quasiconformal maps of the unit disk / 4.3:
Extremal problems / 4.3.1:
Moduli on Teichmüller Spaces / 5:
Some information on Teichmüller spaces / 5.1:
Moduli on Teichmüller spaces / 5.2:
Variational formulae / 5.2.1:
Three lemmas / 5.2.2:
Harmonic properties of the moduli / 5.3:
Descriptions of the Teichmüller metric / 5.4:
Invariant metrics / 5.5:
References
List of symbols
Index
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
8.

電子ブック

EB
Alexander VasilÊ〓ev
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin / Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
Definition / 2.1.1:
Properties / 2.1.2:
Examples / 2.1.3:
Grötzsch lemmas / 2.1.4:
Exercises / 2.1.5:
Reduced moduli and capacity / 2.2:
Reduced modulus / 2.2.1:
Capacity and transfinite diameter / 2.2.2:
Digons, triangles and their reduced moduli / 2.2.3:
Elliptic functions and integrals / 2.3:
Elliptic functions / 2.3.1:
Elliptic integrals and JacobiÆs functions / 2.3.2:
Some frequently used moduli / 2.4:
Moduli of doubly connected domains / 2.4.1:
Moduli of quadrilaterals / 2.4.2:
Reduced moduli / 2.4.3:
Reduced moduli of digons / 2.4.4:
Symmetrization and polarization / 2.5:
Circular symmetrization / 2.5.1:
Polarization / 2.5.2:
Quadratic differentials on Riemann surfaces / 2.6:
Riemann surfaces / 2.6.1:
Quadratic differentials / 2.6.2:
Local trajectory structure / 2.6.3:
Trajectory structure in the large / 2.6.4:
Free families of homotopy classes of curves and extremal par- titions / 2.7:
The case of ring domains and quadrangles / 2.7.1:
The case of circular, strip domains, and triangles / 2.7.2:
Continuous and differentiable moduli / 2.7.3:
Moduli in Extremal Problems for Conformal Mapping / 3:
Classical extremal problems for univalent functions / 3.1:
Koebe set, growth, distortion / 3.1.1:
Lower boundary curve for the range of ( / 3.1.2:
Special moduli / 3.1.3:
Upper boundary curve for the range of ( / 3.1.4:
Two-point distortion for univalent functions / 3.2:
Bounded univalent functions / 3.2.1:
Elementary estimates / 3.3.1:
Boundary curve for the range of ( / 3.3.2:
Montel functions / 3.4:
Covering theorems / 3.4.1:
Distortion at the points of normalization / 3.4.2:
The range of ( / 3.4.3:
Univalent functions with the angular derivatives / 3.5:
Estimates of the angular derivatives / 3.5.1:
Moduli in Extremal Problems for Quasiconformal Mapping / 3.5.2:
General information and simple extremal problems / 4.1:
Quasiconformal mappings of Riemann surfaces / 4.1.1:
Growth and Hölder continuity / 4.1.2:
Quasiconformal motion of a quadruple of points / 4.1.3:
Two-point distortion for quasiconformal maps of the plane / 4.2:
Special differentials and extremal partitions / 4.2.1:
Quasisymmetric functions and the extremal maps / 4.2.2:
Boundary parameterization / 4.2.3:
The class QK. Estimations of functionals / 4.2.4:
Conclusions and unsolved problems / 4.2.5:
Two-point distortion for quasiconformal maps of the unit disk / 4.3:
Extremal problems / 4.3.1:
Moduli on Teichmüller Spaces / 5:
Some information on Teichmüller spaces / 5.1:
Moduli on Teichmüller spaces / 5.2:
Variational formulae / 5.2.1:
Three lemmas / 5.2.2:
Harmonic properties of the moduli / 5.3:
Descriptions of the Teichmüller metric / 5.4:
Invariant metrics / 5.5:
References
List of symbols
Index
Introduction / 1:
Moduli of Families of Curves and Extremal Partitions / 2:
Simple definition and properties of the modulus / 2.1:
9.

図書

図書
Tod A. Laursen
出版情報: Berlin ; Tokyo : Springer, c2002  xv, 454 p. ; 24 cm
シリーズ名: Engineering online library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
Useful Background for this Presentation / 1.2:
Overview / 1.3:
Finite Element Formulations in Nonlinear Solid Mechanics / 2:
Initial/Boundary Value Problems in the Kinematically Lin-ear Regime / 2.1:
Strong Form of the EBVP / 2.1.1:
Weak Form of the IBVP / 2.1.2:
The IBVP in the Finite Strain Case / 2.2:
Notation and Problem Formulation / 2.2.1:
Finite Strain Kinematics / 2.2.2:
Stress Definitions Appropriate for Large Deformations / 2.2.3:
Frame Indifference / 2.2.4:
The Strong Form in Finite Strains / 2.2.5:
The Weak Form in Finite Strains / 2.2.6:
Finite Element Discretization / 2.3:
Discretized Weak Form; Generation of Discrete Non-linear Equations / 2.3.1:
Discrete Nonlinear Equations for the Kinematically Linear Case / 2.3.2:
Solution Strategies for Spatially Discrete Systems / 2.4:
Quasistatics and Incremental Load Methods / 2.4.1:
Dynamics and Global Time Stepping Procedures / 2.4.2:
Local (Constitutive) Time Stepping Procedures / 2.4.3:
Nonlinear Equation Solving / 2.4.4:
Consistent Algorithmic Linearization of Material Re-sponse / 2.4.5:
The Kinematically Linear Contact Problem / 3:
Strong Forms in Linearized Frictionless Contact / 3.1:
The Signorini Problem: Contact with a Rigid Obstacle / 3.1.1:
The Two Body Contact Problem / 3.1.2:
Weak Statements of the Contact Problem / 3.2:
Variational Inequalities / 3.2.1:
The Quasistatic Elastic Case: Contact as a Problem of Constrained Optimization / 3.2.2:
Methods of Constraint Enforcement / 3.3:
Classical Lagrange Multiplier Methods / 3.3.1:
Penalty Methods / 3.3.2:
Augmented Lagrangian Methods / 3.3.3:
Inclusion of Friction into the Problem Description / 3.4:
Friction Kinematics and Traction Measures / 3.4.1:
Unregularized Coulomb Friction Laws / 3.4.2:
Regularization of Friction / 3.4.3:
Variational Statements Including Friction / 3.4.4:
Nonlocal Frictional Descriptions / 3.4.5:
Continuum Mechanics of Large Deformation Contact / 4:
Two Body Contact Problem Definition / 4.1:
Local Momentum Balances / 4.1.1:
Initial and Boundary Conditions / 4.1.2:
Contact Constraints in Large Deformations / 4.2:
The Gap Function as Defined by Closest Point Projection / 4.2.1:
Frictional Kinematics on Interfaces / 4.2.2:
Frame Indifference of Contact Rate Variables / 4.2.3:
Coulomb Friction in Large Sliding / 4.2.4:
Summary: Strong Form of the Large Deformation Contact Problem / 4.3:
Virtual Work Expressions Incorporating Contact / 4.4:
Contact Virtual Work: The Contact Integral / 4.4.1:
Linearization of Contact Virtual Work / 4.4.2:
Summary: Weak Form of the Large Deformation Con-tact Problem / 4.4.3:
Finite Element Implementation of Contact Interaction / 5:
Finite Dimensional Representation of Contact Interaction / 5.1:
Contact Surface Discretization / 5.1.1:
Numerical Integration of the Contact Integral / 5.1.2:
Contact Detection (Searching) / 5.1.3:
Time Discretization / 5.2:
Global time integration schemes / 5.2.1:
Temporally Discrete Frictional Laws for the Penalty Regularized Case / 5.2.2:
Contact Stiffness and Residual: Penalty Regularized Case / 5.3:
Three dimensional matrix expressions / 5.3.1:
Two dimensional matrix expressions / 5.3.2:
Augmented Lagrangian Constraint Enforcement Algorithms / 5.4:
Uzawa's Method (Method of Multipliers) / 5.4.1:
Algorithmic Symmetrization Using Augmented La-grangians / 5.4.2:
Augmented Lagrangian Discrete Force and Stiffness Expressions / 5.4.3:
Numerical Examples / 5.5:
General Demonstrations of the Computational Frame-work / 5.5.1:
Demonstrations of Augmented Lagrangian Algorith-mic Performance / 5.5.2:
Tribological Complexity in Interface Constitutive Models / 6:
Rate and State Dependent Friction / 6.1:
Motivation / 6.1.1:
One Dimensional Model Development / 6.1.2:
Model Incorporation into Convective Slip Advected Frame / 6.1.3:
Local Time Stepping Algorithm / 6.1.4:
Contact Force Vector and Stiffness Matrix / 6.1.5:
Thermomechanically Coupled Friction on Interfaces / 6.1.6:
Thermally Coupled Problem Definition / 6.2.1:
A Thermodynamically Consistent Friction Model / 6.2.3:
Variational Principle and Finite Element Implemen-tation / 6.2.4:
Thermodynamical Algorithmic Consistency / 6.2.5:
Constitutive Framework for Bulk Continua / 6.3.1:
Thermomechanical Interface Model Framework / 6.3.2:
A Priori Stability Estimates for Dynamic Frictional Contact / 6.3.3:
A New Partitioned Scheme for Thermomechanical Contact / 6.3.4:
Algorithmic Treatment of Contact Conditions According to the Adiabatic Split / 6.3.5:
Energy-Momentum Approaches to Impact Mechanics / 7:
Energy Stability of Traditional Schemes / 7.1:
A Model System / 7.1.1:
The Concept of Energy Stability / 7.1.2:
Influence of Contact Constraints on System Energy / 7.1.3:
Energy-Momentum Methods for Elastodynamics / 7.2:
Conservation Laws / 7.2.1:
Conservative Discretization Schemes / 7.2.2:
Energy-Momentum Algorithmic Treatment of Prictionless Impact / 7.3:
Discrete Contact Constraints / 7.3.1:
Spatial Discretization and Implementation / 7.3.2:
Introduction of Frictional and Bulk Dissipation: Energy Con-sistency / 7.3.3:
Coulomb Friction Model Formulation / 7.4.1:
Local Split of the Coulomb Model / 7.4.2:
Algorithmic Formulation / 7.4.3:
Energy Consistent Treatment of Bulk Inelasticity / 7.4.4:
Numerical Examples With Friction and Inelasticity / 7.4.5:
EM Algorithms Involving a Discontinuous Velocity Update / 7.5:
Temporally Discontinuous Velocity Update / 7.5.1:
Reexamination of Conservation Conditions / 7.5.2:
Contact Constraints / 7.5.3:
Summary of the Algorithm / 7.5.4:
Emerging Paradigms for Contact Surface Discretization / 7.5.5:
Contact Smoothing / 8.1:
An Alternative Variational Framework / 8.1.1:
Smoothing Strategies in Two Dimensions / 8.1.2:
Smoothing Strategies in Three Dimensions / 8.1.3:
Mortar-Finite Element Methods for Contact Description / 8.1.4:
Tied Contact and the Role of Mortar Formulations in Convergence / 8.2.1:
A Mortar-Finite Element Formulation of Frictional Contact / 8.2.2:
Numerical Examples of Mortar Treatment of Frictional Contact / 8.2.3:
References
Index
Preface
Introduction / 1:
Scope of this Monograph / 1.1:
10.

図書

図書
Peter Müller
出版情報: Berlin : Springer, c2002  xiv, 292 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2262
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
The Problem / 1.3:
Modular Correctness / 1.3.1:
The Frame Problem / 1.3.2:
Modular Verification of Type Invariants / 1.3.3:
The Extended State Problem / 1.3.4:
Alias Control / 1.3.5:
Modularity Aspects of Programs, Specifications, and Proofs / 1.4:
Modularity of Programs / 1.4.1:
Modularity of Universal Specifications / 1.4.2:
Modularity of Interface Specifications / 1.4.3:
Modularity of Correctness Proofs / 1.4.4:
Approach, Outline, and Contributions / 1.5:
Approach / 1.5.1:
Outline / 1.5.2:
Contributions / 1.5.3:
Related Work / 1.6:
Specification Techniques / 1.6.1:
Verification and Analysis Techniques / 1.6.2:
Mojave and the Universe Type System / 2:
Mojave: The Language / 2.1:
The Language Core / 2.1.1:
Modularity / 2.1.2:
Universes: A Type System for Flexible Alias Control / 2.2:
The Ownership Model / 2.2.1:
The Universe Programming Model / 2.2.2:
Programming with Universes / 2.2.3:
Examples / 2.2.4:
Formalization of the Universe Type System / 2.2.5:
Discussion / 2.2.6:
The Semantics of Mojave / 2.3:
Programming Logic / 3.1:
Formal Data and State Model / 3.1.1:
Axiomatic Semantics / 3.1.2:
Language Properties / 3.1.3:
Type Safety / 3.2.1:
Liveness Properties / 3.2.2:
Properties of Readonly Methods / 3.2.3:
Correctness / 3.3:
Correctness of Closed Programs / 3.3.1:
Correctness of Open Programs: Modular Correctness / 3.3.2:
Modular Soundness / 3.3.3:
Composition of Modular Correct Open Programs / 3.3.4:
Modular Specification and Verification of Functional Behavior / 3.4:
Foundations of Interface Specifications / 4.1:
Specification of Functional Behavior / 4.2:
Abstract Fields / 4.2.1:
Pre-post-specifications / 4.2.2:
Verification of Functional Behavior / 4.3:
Verification of Method Bodies / 4.3.1:
Proofs for Virtual Methods / 4.3.2:
Example / 4.3.3:
Modular Specification and Verification of Frame Properties / 4.4:
Meaning of Modifies-Clauses / 5.1:
Explicit Dependencies / 5.1.2:
Modularity Rules / 5.1.3:
Formalization of Explicit Dependencies / 5.2:
Declaration of Dependencies / 5.2.1:
Axiomatization of the Depends-Relation / 5.2.2:
Consistency with Representation / 5.2.3:
Formalization of the Modularity Rules / 5.2.4:
Axiomatization of the Notdepends-Relation / 5.2.5:
Formalization of Modifies-Clauses / 5.2.6:
Verification of Frame Properties / 5.4:
Local Update Property / 5.4.1:
Accessibility Properties / 5.4.3:
Modularity Theorem for Frame Properties / 5.4.4:
Leino's and Nelson's Work on Dependencies / 5.4.5:
Other Work on the Frame Problem / 5.5.2:
Modular Specification and Verification of Type Invariants / 6:
Motivation and Approach / 6.1:
Invariant Semantics for Nonmodular Programs / 6.1.1:
Problems for Modular Verification of Invariants / 6.1.2:
Specification of Type Invariants / 6.1.3:
Declaration of Type Invariants / 6.2.1:
Formal Meaning of Invariants / 6.2.2:
Verification of Type Invariants / 6.3:
Verification Methodology / 6.3.1:
Module Invariants / 6.3.2:
History Constraints / 6.4.2:
Conclusion / 6.5:
Summary and Contributions / 7.1:
The Lopex Project / 7.2:
Tool Support / 7.3:
Directions for Future Work / 7.4:
Formal Background and Notations / A:
Formal Background / A.1:
Notations / A.2:
Predefined Type Declarations / B:
Doubly Linked List / C:
Property Editor / C.2:
Auxiliary Lemmas, Proofs, and Models / D:
Auxiliary Lemmas and Proofs from Chapter 3 / D.1:
Auxiliary Lemmas and Proofs from Chapter 5 / D.2:
Auxiliary Lemmas and Proofs from Chapter 6 / D.3:
A Model for the Axiomatization of the Depends-Relation / D.4:
Bibliography
List of Figures
Index
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
11.

電子ブック

EB
Peter Müller
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
The Problem / 1.3:
Modular Correctness / 1.3.1:
The Frame Problem / 1.3.2:
Modular Verification of Type Invariants / 1.3.3:
The Extended State Problem / 1.3.4:
Alias Control / 1.3.5:
Modularity Aspects of Programs, Specifications, and Proofs / 1.4:
Modularity of Programs / 1.4.1:
Modularity of Universal Specifications / 1.4.2:
Modularity of Interface Specifications / 1.4.3:
Modularity of Correctness Proofs / 1.4.4:
Approach, Outline, and Contributions / 1.5:
Approach / 1.5.1:
Outline / 1.5.2:
Contributions / 1.5.3:
Related Work / 1.6:
Specification Techniques / 1.6.1:
Verification and Analysis Techniques / 1.6.2:
Mojave and the Universe Type System / 2:
Mojave: The Language / 2.1:
The Language Core / 2.1.1:
Modularity / 2.1.2:
Universes: A Type System for Flexible Alias Control / 2.2:
The Ownership Model / 2.2.1:
The Universe Programming Model / 2.2.2:
Programming with Universes / 2.2.3:
Examples / 2.2.4:
Formalization of the Universe Type System / 2.2.5:
Discussion / 2.2.6:
The Semantics of Mojave / 2.3:
Programming Logic / 3.1:
Formal Data and State Model / 3.1.1:
Axiomatic Semantics / 3.1.2:
Language Properties / 3.1.3:
Type Safety / 3.2.1:
Liveness Properties / 3.2.2:
Properties of Readonly Methods / 3.2.3:
Correctness / 3.3:
Correctness of Closed Programs / 3.3.1:
Correctness of Open Programs: Modular Correctness / 3.3.2:
Modular Soundness / 3.3.3:
Composition of Modular Correct Open Programs / 3.3.4:
Modular Specification and Verification of Functional Behavior / 3.4:
Foundations of Interface Specifications / 4.1:
Specification of Functional Behavior / 4.2:
Abstract Fields / 4.2.1:
Pre-post-specifications / 4.2.2:
Verification of Functional Behavior / 4.3:
Verification of Method Bodies / 4.3.1:
Proofs for Virtual Methods / 4.3.2:
Example / 4.3.3:
Modular Specification and Verification of Frame Properties / 4.4:
Meaning of Modifies-Clauses / 5.1:
Explicit Dependencies / 5.1.2:
Modularity Rules / 5.1.3:
Formalization of Explicit Dependencies / 5.2:
Declaration of Dependencies / 5.2.1:
Axiomatization of the Depends-Relation / 5.2.2:
Consistency with Representation / 5.2.3:
Formalization of the Modularity Rules / 5.2.4:
Axiomatization of the Notdepends-Relation / 5.2.5:
Formalization of Modifies-Clauses / 5.2.6:
Verification of Frame Properties / 5.4:
Local Update Property / 5.4.1:
Accessibility Properties / 5.4.3:
Modularity Theorem for Frame Properties / 5.4.4:
Leino's and Nelson's Work on Dependencies / 5.4.5:
Other Work on the Frame Problem / 5.5.2:
Modular Specification and Verification of Type Invariants / 6:
Motivation and Approach / 6.1:
Invariant Semantics for Nonmodular Programs / 6.1.1:
Problems for Modular Verification of Invariants / 6.1.2:
Specification of Type Invariants / 6.1.3:
Declaration of Type Invariants / 6.2.1:
Formal Meaning of Invariants / 6.2.2:
Verification of Type Invariants / 6.3:
Verification Methodology / 6.3.1:
Module Invariants / 6.3.2:
History Constraints / 6.4.2:
Conclusion / 6.5:
Summary and Contributions / 7.1:
The Lopex Project / 7.2:
Tool Support / 7.3:
Directions for Future Work / 7.4:
Formal Background and Notations / A:
Formal Background / A.1:
Notations / A.2:
Predefined Type Declarations / B:
Doubly Linked List / C:
Property Editor / C.2:
Auxiliary Lemmas, Proofs, and Models / D:
Auxiliary Lemmas and Proofs from Chapter 3 / D.1:
Auxiliary Lemmas and Proofs from Chapter 5 / D.2:
Auxiliary Lemmas and Proofs from Chapter 6 / D.3:
A Model for the Axiomatization of the Depends-Relation / D.4:
Bibliography
List of Figures
Index
Introduction / 1:
Motivation / 1.1:
Specification and Verification Technique / 1.2:
12.

図書

図書
Song Y. Yan ; foreword by Martin E. Hellman
出版情報: Berlin : Springer-Verlag, c2002  xxii, 435 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
Algebraic Preliminaries / 1.1.2:
Theory of Divisibility / 1.2:
Basic Properties of Divisibility / 1.2.1:
Fundamental Theorem of Arithmetic / 1.2.2:
Mersenne Primes and Fermat Numbers / 1.2.3:
Euclid's Algorithm / 1.2.4:
Continued Fractions / 1.2.5:
Diophantine Equations / 1.3:
Basic Concepts of Diophantine Equations / 1.3.1:
Linear Diophantine Equations / 1.3.2:
Pell's Equations / 1.3.3:
Arithmetic Functions / 1.4:
Multiplicative Functions / 1.4.1:
Functions ?(n), ?(n) and s(n) / 1.4.2:
Perfect, Amicable and Sociable Numbers / 1.4.3:
Functions ?(n), ?(n) and ?(n) / 1.4.4:
Distribution of Prime Numbers / 1.5:
Prime Distribution Function ?(x) / 1.5.1:
Approximations of ?(x) by x/ ln x / 1.5.2:
Approximations of ?(x) by Li(x) / 1.5.3:
The Riemann ?-Function ?(s) / 1.5.4:
The nth Prime / 1.5.5:
Distribution of Twin Primes / 1.5.6:
The Arithmetic Progression of Primes / 1.5.7:
Theory of Congruences / 1.6:
Basic Properties of Congruences / 1.6.1:
Modular Arithmetic / 1.6.2:
Linear Congruences / 1.6.3:
The Chinese Remainder Theorem / 1.6.4:
High-Order Congruences / 1.6.5:
Legendre and Jacobi Symbols / 1.6.6:
Orders and Primitive Roots / 1.6.7:
Indices and kth Power Residues / 1.6.8:
Arithmetic of Elliptic Curves / 1.7:
Basic Concepts of Elliptic Curves / 1.7.1:
Geometric Composition Laws of Elliptic Curves / 1.7.2:
Algebraic Computation Laws for Elliptic Curves / 1.7.3:
Group Laws on Elliptic Curves / 1.7.4:
Number of Points on Elliptic Curves / 1.7.5:
Bibliographic Notes and Further Reading / 1.8:
Algorithmic Number Theory / 2:
What is Algorithmic Number Theory? / 2.1:
E ective Computability / 2.1.2:
Computational Complexity / 2.1.3:
Complexity of Number-Theoretic Algorithms / 2.1.4:
Fast Modular Exponentiations / 2.1.5:
Fast Group Operations on Elliptic Curves / 2.1.6:
Algorithms for Primality Testing / 2.2:
Deterministic and Rigorous Primality Tests / 2.2.1:
Fermat's Pseudoprimality Test / 2.2.2:
Strong Pseudoprimality Test / 2.2.3:
Lucas Pseudoprimality Test / 2.2.4:
Elliptic Curve Test / 2.2.5:
Historical Notes on Primality Testing / 2.2.6:
Algorithms for Integer Factorization / 2.3:
Complexity of Integer Factorization / 2.3.1:
Trial Division and Fermat Method / 2.3.2:
Legendre's Congruence / 2.3.3:
Continued FRACtion Method (CFRAC) / 2.3.4:
Quadratic and Number Field Sieves (QS/NFS) / 2.3.5:
Polland's "rho" and "p - 1" Methods / 2.3.6:
Lenstra's Elliptic Curve Method (ECM) / 2.3.7:
Algorithms for Discrete Logarithms / 2.4:
Shanks' Baby-Step Giant-Step Algorithm / 2.4.1:
Silver{Pohlig{Hellman Algorithm / 2.4.2:
Subexponential Algorithms / 2.4.3:
Algorithm for the Root Finding Problem / 2.4.4:
Quantum Number-Theoretic Algorithms / 2.5:
Quantum Information and Computation / 2.5.1:
Quantum Computability and Complexity / 2.5.2:
Quantum Algorithm for Integer Factorization / 2.5.3:
Quantum Algorithms for Discrete Logarithms / 2.5.4:
Miscellaneous Algorithms in Number Theory / 2.6:
Algorithms for Computing ?(x) / 2.6.1:
Algorithms for Generating Amicable Pairs / 2.6.2:
Algorithms for Verifying Goldbach's Conjecture / 2.6.3:
Algorithm for Finding Odd Perfect Numbers / 2.6.4:
Applied Number Theory / 2.7:
Why Applied Number Theory? / 3.1:
Computer Systems Design / 3.2:
Representing Numbers in Residue Number Systems / 3.2.1:
Fast Computations in Residue Number Systems / 3.2.2:
Residue Computers / 3.2.3:
Complementary Arithmetic / 3.2.4:
Hashing Functions / 3.2.5:
Error Detection and Correction Methods / 3.2.6:
Random Number Generation / 3.2.7:
Cryptography and Information Security / 3.3:
Secret-Key Cryptography / 3.3.1:
Data/Advanced Encryption Standard (DES/AES) / 3.3.3:
Public-Key Cryptography / 3.3.4:
Discrete Logarithm Based Cryptosystems / 3.3.5:
RSA Public-Key Cryptosystem / 3.3.6:
Quadratic Residuosity Cryptosystems / 3.3.7:
Elliptic Curve Public-Key Cryptosystems / 3.3.8:
Digital Signatures / 3.3.9:
Digital Signature Algorithm/Standard (DSA/DSS) / 3.3.10:
Database Security / 3.3.11:
Secret Sharing / 3.3.12:
Internet/Web Security and Electronic Commerce / 3.3.13:
Steganography / 3.3.14:
Quantum Cryptography / 3.3.15:
Bibliography / 3.4:
Index
Elementary Number Theory / 1:
Introduction / 1.1:
What is Number Theory? / 1.1.1:
13.

図書

図書
Mark A. Pinsky
出版情報: Australia : Brooks/Cole, c2002  xviii, 376 p. ; 25 cm
シリーズ名: Brooks/Cole series in advanced mathematics
所蔵情報: loading…
目次情報: 続きを見る
Fourier Series on the Circle / 1:
Motivation and Heuristics / 1.1:
Motivation from Physics / 1.1.1:
The Vibrating String / 1.1.1.1:
Heat Flow in Solids / 1.1.1.2:
Absolutely Convergent Trigonometric Series / 1.1.2:
Examples of Factorial and Bessel Functions / 1.1.3:
Poisson Kernel Example / 1.1.4:
Proof of Laplace's Method / 1.1.5:
Nonabsolutely Convergent Trigonometric Series / 1.1.6:
Formulation of Fourier Series / 1.2:
Fourier Coefficients and Their Basic Properties / 1.2.1:
Fourier Series of Finite Measures / 1.2.2:
Rates of Decay of Fourier Coefficients / 1.2.3:
Piecewise Smooth Functions / 1.2.3.1:
Fourier Characterization of Analytic Functions / 1.2.3.2:
Sine Integral / 1.2.4:
Other Proofs That Si([infinity]) = 1 / 1.2.4.1:
Pointwise Convergence Criteria / 1.2.5:
Integration of Fourier Series / 1.2.6:
Convergence of Fourier Series of Measures / 1.2.6.1:
Riemann Localization Principle / 1.2.7:
Gibbs-Wilbraham Phenomenon / 1.2.8:
The General Case / 1.2.8.1:
Fourier Series in L[superscript 2] / 1.3:
Mean Square Approximation--Parseval's Theorem / 1.3.1:
Application to the Isoperimetric Inequality / 1.3.2:
Rates of Convergence in L[superscript 2] / 1.3.3:
Application to Absolutely-Convergent Fourier Series / 1.3.3.1:
Norm Convergence and Summability / 1.4:
Approximate Identities / 1.4.1:
Almost-Everywhere Convergence of the Abel Means / 1.4.1.1:
Summability Matrices / 1.4.2:
Fejer Means of a Fourier Series / 1.4.3:
Wiener's Closure Theorem on the Circle / 1.4.3.1:
Equidistribution Modulo One / 1.4.4:
Hardy's Tauberian Theorem / 1.4.5:
Improved Trigonometric Approximation / 1.5:
Rates of Convergence in C (T) / 1.5.1:
Approximation with Fejer Means / 1.5.2:
Jackson's Theorem / 1.5.3:
Higher-Order Approximation / 1.5.4:
Converse Theorems of Bernstein / 1.5.5:
Divergence of Fourier Series / 1.6:
The Example of du Bois-Reymond / 1.6.1:
Analysis via Lebesgue Constants / 1.6.2:
Divergence in the Space L[superscript 1] / 1.6.3:
Appendix: Complements on Laplace's Method / 1.7:
First Variation on the Theme-Gaussian Approximation / 1.7.0.1:
Second Variation on the Theme-Improved Error Estimate / 1.7.0.2:
Application to Bessel Functions / 1.7.1:
The Local Limit Theorem of DeMoivre-Laplace / 1.7.2:
Appendix: Proof of the Uniform Boundedness Theorem / 1.8:
Appendix: Higher-Order Bessel functions / 1.9:
Appendix: Cantor's Uniqueness Theorem / 1.10:
Fourier Transforms on the Line And Space / 2:
Basic Properties of the Fourier Transform / 2.1:
Riemann-Lebesgue Lemma / 2.2.1:
Approximate Identities and Gaussian Summability / 2.2.2:
Improved Approximate Identities for Pointwise Convergence / 2.2.2.1:
Application to the Fourier Transform / 2.2.2.2:
The n-Dimensional Poisson Kernel / 2.2.2.3:
Fourier Transforms of Tempered Distributions / 2.2.3:
Characterization of the Gaussian Density / 2.2.4:
Wiener's Density Theorem / 2.2.5:
Fourier Inversion in One Dimension / 2.3:
Dirichlet Kernel and Symmetric Partial Sums / 2.3.1:
Example of the Indicator Function / 2.3.2:
Dini Convergence Theorem / 2.3.3:
Extension to Fourier's Single Integral / 2.3.4.1:
Smoothing Operations in R[superscript 1]-Averaging and Summability / 2.3.5:
Averaging and Weak Convergence / 2.3.6:
Cesaro Summability / 2.3.7:
Approximation Properties of the Fejer Kernel / 2.3.7.1:
Bernstein's Inequality / 2.3.8:
One-Sided Fourier Integral Representation / 2.3.9:
Fourier Cosine Transform / 2.3.9.1:
Fourier Sine Transform / 2.3.9.2:
Generalized h-Transform / 2.3.9.3:
L[superscript 2] Theory in R[superscript n] / 2.4:
Plancherel's Theorem / 2.4.1:
Bernstein's Theorem for Fourier Transforms / 2.4.2:
The Uncertainty Principle / 2.4.3:
Uncertainty Principle on the Circle / 2.4.3.1:
Spectral Analysis of the Fourier Transform / 2.4.4:
Hermite Polynomials / 2.4.4.1:
Eigenfunction of the Fourier Transform / 2.4.4.2:
Orthogonality Properties / 2.4.4.3:
Completeness / 2.4.4.4:
Spherical Fourier Inversion in R[superscript n] / 2.5:
Bochner's Approach / 2.5.1:
Piecewise Smooth Viewpoint / 2.5.2:
Relations with the Wave Equation / 2.5.3:
The Method of Brandolini and Colzani / 2.5.3.1:
Bochner-Riesz Summability / 2.5.4:
A General Theorem on Almost-Everywhere Summability / 2.5.4.1:
Bessel Functions / 2.6:
Fourier Transforms of Radial Functions / 2.6.1:
L[superscript 2]-Restriction Theorems for the Fourier Transform / 2.6.2:
An Improved Result / 2.6.2.1:
Limitations on the Range of p / 2.6.2.2:
The Method of Stationary Phase / 2.7:
Statement of the Result / 2.7.1:
Proof of the Method of Stationary Phase / 2.7.2:
Abel's Lemma / 2.7.4:
Fourier Analysis in L[superscript p] Spaces / 3:
The M. Riesz-Thorin Interpolation Theorem / 3.1:
Generalized Young's Inequality / 3.2.0.1:
The Hausdorff-Young Inequality / 3.2.0.2:
Stein's Complex Interpolation Theorem / 3.2.1:
The Conjugate Function or Discrete Hilbert Transform / 3.3:
L[superscript p] Theory of the Conjugate Function / 3.3.1:
L[superscript 1] Theory of the Conjugate Function / 3.3.2:
Identification as a Singular Integral / 3.3.2.1:
The Hilbert Transform on R / 3.4:
L[superscript 2] Theory of the Hilbert Transform / 3.4.1:
L[superscript p] Theory of the Hilbert Transform, 1 [ p [ [infinity] / 3.4.2:
Applications to Convergence of Fourier Integrals / 3.4.2.1:
L[superscript 1] Theory of the Hilbert Transform and Extensions / 3.4.3:
Kolmogorov's Inequality for the Hilbert Transform / 3.4.3.1:
Application to Singular Integrals with Odd Kernels / 3.4.4:
Hardy-Littlewood Maximal Function / 3.5:
Application to the Lebesgue Differentiation Theorem / 3.5.1:
Application to Radial Convolution Operators / 3.5.2:
Maximal Inequalities for Spherical Averages / 3.5.3:
The Marcinkiewicz Interpolation Theorem / 3.6:
Calderon-Zygmund Decomposition / 3.7:
A Class of Singular Integrals / 3.8:
Properties of Harmonic Functions / 3.9:
General Properties / 3.9.1:
Representation Theorems in the Disk / 3.9.2:
Representation Theorems in the Upper Half-Plane / 3.9.3:
Herglotz/Bochner Theorems and Positive Definite Functions / 3.9.4:
Poisson Summation Formula And Multiple Fourier Series / 4:
The Poisson Summation Formula in R[superscript 1] / 4.1:
Periodization of a Function / 4.2.1:
Statement and Proof / 4.2.2:
Shannon Sampling / 4.2.3:
Multiple Fourier Series / 4.3:
Basic L[superscript 1] Theory / 4.3.1:
Pointwise Convergence for Smooth Functions / 4.3.1.1:
Representation of Spherical Partial Sums / 4.3.1.2:
Basic L[superscript 2] Theory / 4.3.2:
Restriction Theorems for Fourier Coefficients / 4.3.3:
Poisson Summation Formula in R[superscript d] / 4.4:
Simultaneous Nonlocalization / 4.4.1:
Application to Lattice Points / 4.5:
Kendall's Mean Square Error / 4.5.1:
Landau's Asymptotic Formula / 4.5.2:
Application to Multiple Fourier Series / 4.5.3:
Three-Dimensional Case / 4.5.3.1:
Higher-Dimensional Case / 4.5.3.2:
Schrodinger Equation and Gauss Sums / 4.6:
Distributions on the Circle / 4.6.1:
The Schrodinger Equation on the Circle / 4.6.2:
Recurrence of Random Walk / 4.7:
Applications to Probability Theory / 5:
Basic Definitions / 5.1:
The Central Limit Theorem / 5.2.1:
Restatement in Terms of Independent Random Variables / 5.2.1.1:
Extension to Gap Series / 5.3:
Extension to Abel Sums / 5.3.1:
Weak Convergence of Measures / 5.4:
An Improved Continuity Theorem / 5.4.1:
Another Proof of Bochner's Theorem / 5.4.1.1:
Convolution Semigroups / 5.5:
The Berry-Esseen Theorem / 5.6:
Extension to Different Distributions / 5.6.1:
The Law of the Iterated Logarithm / 5.7:
Introduction to Wavelets / 6:
Heuristic Treatment of the Wavelet Transform / 6.1:
Wavelet Transform / 6.2:
Wavelet Characterization of Smoothness / 6.2.0.1:
Haar Wavelet Expansion / 6.3:
Haar Functions and Haar Series / 6.3.1:
Haar Sums and Dyadic Projections / 6.3.2:
Completeness of the Haar Functions / 6.3.3:
Haar Series in C[subscript 0] and L[subscript p] Spaces / 6.3.3.1:
Pointwise Convergence of Haar Series / 6.3.3.2:
Construction of Standard Brownian Motion / 6.3.4:
Haar Function Representation of Brownian Motion / 6.3.5:
Proof of Continuity / 6.3.6:
Levy's Modulus of Continuity / 6.3.7:
Multiresolution Analysis / 6.4:
Orthonormal Systems and Riesz Systems / 6.4.1:
Scaling Equations and Structure Constants / 6.4.2:
From Scaling Function to MRA / 6.4.3:
Additional Remarks / 6.4.3.1:
Meyer Wavelets / 6.4.4:
From Scaling Function to Orthonormal Wavelet / 6.4.5:
Direct Proof that V[subscript 1] [minus sign in circle] V[subscript 0] Is Spanned by {[Psi](t - k)}[subscript k[set membership]Z] / 6.4.5.1:
Null Integrability of Wavelets Without Scaling Functions / 6.4.5.2:
Wavelets with Compact Support / 6.5:
From Scaling Filter to Scaling Function / 6.5.1:
Explicit Construction of Compact Wavelets / 6.5.2:
Daubechies Recipe / 6.5.2.1:
Hernandez-Weiss Recipe / 6.5.2.2:
Smoothness of Wavelets / 6.5.3:
A Negative Result / 6.5.3.1:
Cohen's Extension of Theorem 6.5.1 / 6.5.4:
Convergence Properties of Wavelet Expansions / 6.6:
Wavelet Series in L[superscript p] Spaces / 6.6.1:
Large Scale Analysis / 6.6.1.1:
Almost-Everywhere Convergence / 6.6.1.2:
Convergence at a Preassigned Point / 6.6.1.3:
Jackson and Bernstein Approximation Theorems / 6.6.2:
Wavelets in Several Variables / 6.7:
Two Important Examples / 6.7.1:
Tensor Product of Wavelets / 6.7.1.1:
General Formulation of MRA and Wavelets in R[superscript d] / 6.7.2:
Notations for Subgroups and Cosets / 6.7.2.1:
Riesz Systems and Orthonormal Systems in R[superscript d] / 6.7.2.2:
Scaling Equation and Structure Constants / 6.7.2.3:
Existence of the Wavelet Set / 6.7.2.4:
Proof That the Wavelet Set Spans V[subscript 1] [minus sign in circle] V[subscript 0] / 6.7.2.5:
Cohen's Theorem in R[superscript d] / 6.7.2.6:
Examples of Wavelets in R[superscript d] / 6.7.3:
References
Notations
Index
Fourier Series on the Circle / 1:
Motivation and Heuristics / 1.1:
Motivation from Physics / 1.1.1:
14.

図書

図書
Bernard Valeur
出版情報: Weinheim : Wiley-VCH, c2002  xiv, 387 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Today's Chemical Industry
Which Way is Up?
Prologue
Today's Challenge -Value Creation
Strategic Choices for the Chemical Industry in the New Millenium / 1:
Managing Commodity PortfoliosHow to Succeed in the Rapidly Maturing Specialty Chemicals Industry
Introduction
Chemical Companies and Biotechnology
The Impact of E-Commerce on the Chemical Industry / 1.1:
The Alchemy of Leveraged Buyouts
What is luminescence?
Revitalizing Innovation
Managing the Organizational Context / 1.2:
Creating an Entrepreneurial Procurement Organization
A brief history of fluorescence and phosphorescence
Achieving Excellence in Production
A Customer-centric Approach to Sales and Marketing / 1.3:
The Role of Mergers and Acquisitions
Fluorescence and other de-excitation processes of excited molecules
The Delicate Game of Post-merger Management
Cyclicality: Trying to Manage the Unmanageable / 1.4:
Index
Fluorescent probes
Molecular fluorescence as an analytical tool / 1.5:
Ultimate spatial and temporal resolution: femtoseconds, femtoliters, femtomoles and single-molecule detection / 1.6:
Bibliography / 1.7:
Absorption of UV-visible light / 2:
Types of electronic transitions in polyatomic molecules / 2.1:
Probability of transitions. The Beer-Lambert Law. Oscillator strength / 2.2:
Selection rules / 2.3:
The Franck-Condon principle / 2.4:
Characteristics of fluorescence emission / 2.5:
Radiative and non-radiative transitions between electronic states / 3.1:
Internal conversion / 3.1.1:
Fluorescence / 3.1.2:
Intersystem crossing and subsequent processes / 3.1.3:
Intersystem crossing / 3.1.3.1:
Phosphorescence versus non-radiative de-excitation / 3.1.3.2:
Delayed fluorescence / 3.1.3.3:
Triplet-triplet transitions / 3.1.3.4:
Lifetimes and quantum yields / 3.2:
Excited-state lifetimes / 3.2.1:
Quantum yields / 3.2.2:
Effect of temperature / 3.2.3:
Emission and excitation spectra / 3.3:
Steady-state fluorescence intensity / 3.3.1:
Emission spectra / 3.3.2:
Excitation spectra / 3.3.3:
Stokes shift / 3.3.4:
Effects of molecular structure on fluorescence / 3.4:
Extent of [pi]-electron system. Nature of the lowest-lying transition / 3.4.1:
Substituted aromatic hydrocarbons / 3.4.2:
Internal heavy atom effect / 3.4.2.1:
Electron-donating substituents: -OH, -OR, -NHR, -NH[subscript 2] / 3.4.2.2:
Electron-withdrawing substituents: carbonyl and nitro compounds / 3.4.2.3:
Sulfonates / 3.4.2.4:
Heterocyclic compounds / 3.4.3:
Compounds undergoing photoinduced intramolecular charge transfer (ICT) and internal rotation / 3.4.4:
Environmental factors affecting fluorescence / 3.5:
Homogeneous and inhomogeneous broadening. Red-edge effects / 3.5.1:
Solid matrices at low temperature / 3.5.2:
Fluorescence in supersonic jets / 3.5.3:
Effects of intermolecular photophysical processes on fluorescence emission / 3.6:
Overview of the intermolecular de-excitation processes of excited molecules leading to fluorescence quenching / 4.1:
Phenomenological approach / 4.2.1:
Dynamic quenching / 4.2.2:
Stern-Volmer kinetics / 4.2.2.1:
Transient effects / 4.2.2.2:
Static quenching / 4.2.3:
Sphere of effective quenching / 4.2.3.1:
Formation of a ground-state non-fluorescent complex / 4.2.3.2:
Simultaneous dynamic and static quenching / 4.2.4:
Quenching of heterogeneously emitting systems / 4.2.5:
Photoinduced electron transfer / 4.3:
Formation of excimers and exciplexes / 4.4:
Excimers / 4.4.1:
Exciplexes / 4.4.2:
Photoinduced proton transfer / 4.5:
General equations / 4.5.1:
Determination of the excited-state pK / 4.5.2:
Prediction by means of the Forster cycle / 4.5.2.1:
Steady-state measurements / 4.5.2.2:
Time-resolved experiments / 4.5.2.3:
pH dependence of absorption and emission spectra / 4.5.3:
Excitation energy transfer / 4.6:
Distinction between radiative and non-radiative transfer / 4.6.1:
Radiative energy transfer / 4.6.2:
Non-radiative energy transfer / 4.6.3:
Fluorescence polarization. Emission anisotropy / 4.7:
Characterization of the polarization state of fluorescence (polarization ratio, emission anisotropy) / 5.1:
Excitation by polarized light / 5.1.1:
Vertically polarized excitation / 5.1.1.1:
Horizontally polarized excitation / 5.1.1.2:
Excitation by natural light / 5.1.2:
Instantaneous and steady-state anisotropy / 5.2:
Instantaneous anisotropy / 5.2.1:
Steady-state anisotropy / 5.2.2:
Additivity law of anisotropy / 5.3:
Relation between emission anisotropy and angular distribution of the emission transition moments / 5.4:
Case of motionless molecules with random orientation / 5.5:
Parallel absorption and emission transition moments / 5.5.1:
Non-parallel absorption and emission transition moments / 5.5.2:
Effect of rotational Brownian motion / 5.6:
Free rotations / 5.6.1:
Hindered rotations / 5.6.2:
Applications / 5.7:
Principles of steady-state and time-resolved fluorometric techniques / 5.8:
Steady-state spectrofluorometry / 6.1:
Operating principles of a spectrofluorometer / 6.1.1:
Correction of excitation spectra / 6.1.2:
Correction of emission spectra / 6.1.3:
Measurement of fluorescence quantum yields / 6.1.4:
Problems in steady-state fluorescence measurements: inner filter effects and polarization effects / 6.1.5:
Measurement of steady-state emission anisotropy. Polarization spectra / 6.1.6:
Time-resolved fluorometry / 6.2:
General principles of pulse and phase-modulation fluorometries / 6.2.1:
Design of pulse fluorometers / 6.2.2:
Single-photon timing technique / 6.2.2.1:
Stroboscopic technique / 6.2.2.2:
Other techniques / 6.2.2.3:
Design of phase-modulation fluorometers / 6.2.3:
Phase fluorometers using a continuous light source and an electro-optic modulator / 6.2.3.1:
Phase fluorometers using the harmonic content of a pulsed laser / 6.2.3.2:
Problems with data collection by pulse and phase-modulation fluorometers / 6.2.4:
Dependence of the instrument response on wavelength. Color effect / 6.2.4.1:
Polarization effects / 6.2.4.2:
Effect of light scattering / 6.2.4.3:
Data analysis / 6.2.5:
Pulse fluorometry / 6.2.5.1:
Phase-modulation fluorometry / 6.2.5.2:
Judging the quality of the fit / 6.2.5.3:
Global analysis / 6.2.5.4:
Complex fluorescence decays. Lifetime distributions / 6.2.5.5:
Lifetime standards / 6.2.6:
Time-dependent anisotropy measurements / 6.2.7:
Time-resolved fluorescence spectra / 6.2.7.1:
Lifetime-based decomposition of spectra / 6.2.9:
Comparison between pulse and phase fluorometries / 6.2.10:
Appendix: Elimination of polarization effects in the measurement of fluorescence intensity and lifetime / 6.3:
Effect of polarity on fluorescence emission. Polarity probes / 6.4:
What is polarity? / 7.1:
Empirical scales of solvent polarity based on solvatochromic shifts / 7.2:
Single-parameter approach / 7.2.1:
Multi-parameter approach / 7.2.2:
Photoinduced charge transfer (PCT) and solvent relaxation / 7.3:
Theory of solvatochromic shifts / 7.4:
Examples of PCT fluorescent probes for polarity / 7.5:
Effects of specific interactions / 7.6:
Effects of hydrogen bonding on absorption and fluorescence spectra / 7.6.1:
Examples of the effects of specific interactions / 7.6.2:
Polarity-induced inversion of n-[pi] and [pi]-[pi] states / 7.6.3:
Polarity-induced changes in vibronic bands. The Py scale of polarity / 7.7:
Conclusion / 7.8:
Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes / 7.9:
What is viscosity? Significance at a microscopic level / 8.1:
Use of molecular rotors / 8.2:
Methods based on intermolecular quenching or intermolecular excimer formation / 8.3:
Methods based on intramolecular excimer formation / 8.4:
Fluorescence polarization method / 8.5:
Choice of probes / 8.5.1:
Homogeneous isotropic media / 8.5.2:
Ordered systems / 8.5.3:
Practical aspects / 8.5.4:
Concluding remarks / 8.6:
Resonance energy transfer and its applications / 8.7:
Determination of distances at a supramolecular level using RET / 9.1:
Single distance between donor and acceptor / 9.2.1:
Distributions of distances in donor-acceptor pairs / 9.2.2:
RET in ensembles of donors and acceptors / 9.3:
RET in three dimensions. Effect of viscosity / 9.3.1:
Effects of dimensionality on RET / 9.3.2:
Effects of restricted geometries on RET / 9.3.3:
RET between like molecules. Excitation energy migration in assemblies of chromophores / 9.4:
RET within a pair of like chromophores / 9.4.1:
RET in assemblies of like chromophores / 9.4.2:
Lack of energy transfer upon excitation at the red-edge of the absorption spectrum (Weber's red-edge effect) / 9.4.3:
Overview of qualitative and quantitative applications of RET / 9.5:
Fluorescent molecular sensors of ions and molecules / 9.6:
Fundamental aspects / 10.1:
pH sensing by means of fluorescent indicators / 10.2:
Principles / 10.2.1:
The main fluorescent pH indicators / 10.2.2:
Coumarins / 10.2.2.1:
Pyranine / 10.2.2.2:
Fluorescein and its derivatives / 10.2.2.3:
SNARF and SNAFL / 10.2.2.4:
PET (photoinduced electron transfer) pH indicators / 10.2.2.5:
Fluorescent molecular sensors of cations / 10.3:
General aspects / 10.3.1:
PET (photoinduced electron transfer) cation sensors / 10.3.2:
Crown-containing PET sensors / 10.3.2.1:
Cryptand-based PET sensors / 10.3.2.3:
Podand-based and chelating PET sensors / 10.3.2.4:
Calixarene-based PET sensors / 10.3.2.5:
PET sensors involving excimer formation / 10.3.2.6:
Examples of PET sensors involving energy transfer / 10.3.2.7:
Fluorescent PCT (photoinduced charge transfer) cation sensors / 10.3.3:
PCT sensors in which the bound cation interacts with an electron-donating group / 10.3.3.1:
PCT sensors in which the bound cation interacts with an electron-withdrawing group / 10.3.3.3:
Excimer-based cation sensors / 10.3.4:
Miscellaneous / 10.3.5:
Oxyquinoline-based cation sensors / 10.3.5.1:
Further calixarene-based fluorescent sensors / 10.3.5.2:
Fluorescent molecular sensors of anions / 10.3.6:
Anion sensors based on collisional quenching / 10.4.1:
Anion sensors containing an anion receptor / 10.4.2:
Fluorescent molecular sensors of neutral molecules and surfactants / 10.5:
Cyclodextrin-based fluorescent sensors / 10.5.1:
Boronic acid-based fluorescent sensors / 10.5.2:
Porphyrin-based fluorescent sensors / 10.5.3:
Towards fluorescence-based chemical sensing devices / 10.6:
Spectrophotometric and spectrofluorometric pH titrations / Appendix A.:
Determination of the stoichiometry and stability constant of metal complexes from spectrophotometric or spectrofluorometric titrations / Appendix B.:
Advanced techniques in fluorescence spectroscopy / 10.7:
Time-resolved fluorescence in the femtosecond time range: fluorescence up-conversion technique / 11.1:
Advanced fluorescence microscopy / 11.2:
Improvements in conventional fluorescence microscopy / 11.2.1:
Confocal fluorescence microscopy / 11.2.1.1:
Two-photon excitation fluorescence microscopy / 11.2.1.2:
Near-field scanning optical microscopy (NSOM) / 11.2.1.3:
Fluorescence lifetime imaging spectroscopy (FLIM) / 11.2.2:
Time-domain FLIM / 11.2.2.1:
Frequency-domain FLIM / 11.2.2.2:
Confocal FLIM (CFLIM) / 11.2.2.3:
Two-photon FLIM / 11.2.2.4:
Fluorescence correlation spectroscopy / 11.3:
Conceptual basis and instrumentation / 11.3.1:
Determination of translational diffusion coefficients / 11.3.2:
Chemical kinetic studies / 11.3.3:
Determination of rotational diffusion coefficients / 11.3.4:
Single-molecule fluorescence spectroscopy / 11.4:
General remarks / 11.4.1:
Single-molecule detection in flowing solutions / 11.4.2:
Single-molecule detection using advanced fluorescence microscopy techniques / 11.4.3:
Epilogue / 11.5:
Preface
Today's Chemical Industry
Which Way is Up?
15.

図書

図書
Josef Honerkamp
出版情報: Berlin : Springer, c2002  xiv, 515 p. ; 24 cm
シリーズ名: Advanced texts in physics
所蔵情報: loading…
目次情報: 続きを見る
Statistical Physics Is More than Statistical Mechanics / 1:
Modeling of Statistical Systems / Part I:
Random Variables: Fundamentals of Probability Theory and Statistics / 2:
Probability and Random Variables / 2.1:
The Space of Events / 2.1.1:
Introduction of Probability / 2.1.2:
Random Variables / 2.1.3:
Multivariate Random Variables and Conditional Probabilities / 2.2:
Multidimensional Random Variables / 2.2.1:
Marginal Densities / 2.2.2:
Conditional Probabilities and Bayes' Theorem / 2.2.3:
Moments and Quantiles / 2.3:
Moments / 2.3.1:
Quantiles / 2.3.2:
The Entropy / 2.4:
Entropy for a Discrete Set of Events / 2.4.1:
Entropy for a Continuous Space of Events / 2.4.2:
Relative Entropy / 2.4.3:
Remarks / 2.4.4:
Applications / 2.4.5:
Computations with Random Variables / 2.5:
Addition and Multiplication of Random Variables / 2.5.1:
Further Important Random Variables / 2.5.2:
Limit Theorems / 2.5.3:
Stable Random Variables and Renormalization Transformations / 2.6:
Stable Random Variables / 2.6.1:
The Renormalization Transformation / 2.6.2:
Stability Analysis / 2.6.3:
Scaling Behavior / 2.6.4:
The Large Deviation Property for Sums of Random Variables / 2.7:
Random Variables in State Space: Classical Statistical Mechanics of Fluids / 3:
The Microcanonical System / 3.1:
Systems in Contact / 3.2:
Thermal Contact / 3.2.1:
Systems with Exchange of Volume and Energy / 3.2.2:
Systems with Exchange of Particles and Energy / 3.2.3:
Thermodynamic Potentials / 3.3:
Susceptibilities / 3.4:
Heat Capacities / 3.4.1:
Isothermal Compressibility / 3.4.2:
Isobaric Expansivity / 3.4.3:
Isochoric Tension Coefficient and Adiabatic Compressibility / 3.4.4:
A General Relation Between Response Functions / 3.4.5:
The Equipartition Theorem / 3.5:
The Radial Distribution Function / 3.6:
Approximation Methods / 3.7:
The Virial Expansion / 3.7.1:
Integral Equations for the Radial Distribution Function / 3.7.2:
Perturbation Theory / 3.7.3:
The van der Waals Equation / 3.8:
The Isotherms / 3.8.1:
The Maxwell Construction / 3.8.2:
Corresponding States / 3.8.3:
Critical Exponents / 3.8.4:
Some General Remarks about Phase Transitions and Phase Diagrams / 3.9:
Random Fields: Textures and Classical Statistical Mechanics of Spin Systems / 4:
Discrete Stochastic Fields / 4.1:
Markov Fields / 4.1.1:
Gibbs Fields / 4.1.2:
Equivalence of Gibbs and Markov Fields / 4.1.3:
Examples of Markov Random Fields / 4.2:
Model with Independent Random Variables / 4.2.1:
Auto Model / 4.2.2:
Multilevel Logistic Model / 4.2.3:
Gauss Model / 4.2.4:
Characteristic Quantities of Densities for Random Fields / 4.3:
Simple Random Fields / 4.4:
The White Random Field or the Ideal Paramagnetic System / 4.4.1:
The One-Dimensional Ising Model / 4.4.2:
Random Fields with Phase Transitions / 4.5:
The Curie-Weiss Model / 4.5.1:
The Mean Field Approximation / 4.5.2:
The Two-Dimensional Ising Model / 4.5.3:
The Landau Free Energy / 4.6:
The Renormalization Group Method for Random Fields and Scaling Laws / 4.7:
Scaling Laws / 4.7.1:
Time-Dependent Random Variables: Classical Stochastic Processes / 5:
Markov Processes / 5.1:
The Master Equation / 5.2:
Examples of Master Equations / 5.3:
Analytic Solutions of Master Equations / 5.4:
Equations for the Moments / 5.4.1:
The Equation for the Characteristic Function / 5.4.2:
Examples / 5.4.3:
Simulation of Stochastic Processes and Fields / 5.5:
The Fokker-Planck Equation / 5.6:
Fokker-Planck Equation with Linear Drift Term and Additive Noise / 5.6.1:
The Linear Response Function and the Fluctuation-Dissipation Theorem / 5.7:
The [Omega] Expansion / 5.8:
The One-Particle Picture / 5.8.2:
More General Stochastic Processes / 5.9:
Self-Similar Processes / 5.9.1:
Fractal Brownian Motion / 5.9.2:
Stable Levy Processes / 5.9.3:
Autoregressive Processes / 5.9.4:
Quantum Random Systems / 6:
Quantum-Mechanical Description of Statistical Systems / 6.1:
Ideal Quantum Systems: General Considerations / 6.2:
Expansion in the Classical Regime / 6.2.1:
First Quantum-Mechanical Correction Term / 6.2.2:
Relations Between the Thermodynamic Potential and Other System Variables / 6.2.3:
The Ideal Fermi Gas / 6.3:
The Fermi-Dirac Distribution / 6.3.1:
Determination of the System Variables at Low Temperatures / 6.3.2:
Applications of the Fermi-Dirac Distribution / 6.3.3:
The Ideal Bose Gas / 6.4:
Particle Number and the Bose-Einstein Distribution / 6.4.1:
Bose-Einstein Condensation / 6.4.2:
Pressure / 6.4.3:
Energy and Specific Heat / 6.4.4:
Entropy / 6.4.5:
Applications of Bose Statistics / 6.4.6:
The Photon Gas and Black Body Radiation / 6.5:
The Kirchhoff Law / 6.5.1:
The Stefan-Boltzmann Law / 6.5.2:
The Pressure of Light / 6.5.3:
The Total Radiative Power of the Sun / 6.5.4:
The Cosmic Background Radiation / 6.5.5:
Lattice Vibrations in Solids: The Phonon Gas / 6.6:
Systems with Internal Degrees of Freedom: Ideal Gases of Molecules / 6.7:
Magnetic Properties of Fermi Systems / 6.8:
Diamagnetism / 6.8.1:
Paramagnetism / 6.8.2:
Quasi-particles / 6.9:
Models for the Magnetic Properties of Solids / 6.9.1:
Superfluidity / 6.9.2:
Changes of External Conditions / 7:
Reversible State Transformations, Heat, and Work / 7.1:
Cyclic Processes / 7.2:
Exergy and Relative Entropy / 7.3:
Time Dependence of Statistical Systems / 7.4:
Analysis of Statistical Systems / Part II:
Estimation of Parameters / 8:
Samples and Estimators / 8.1:
Confidence Intervals / 8.2:
Propagation of Errors / 8.3:
The Maximum Likelihood Estimator / 8.4:
The Least-Squares Estimator / 8.5:
Signal Analysis: Estimation of Spectra / 9:
The Discrete Fourier Transform and the Periodogram / 9.1:
Filters / 9.2:
Filters and Transfer Functions / 9.2.1:
Filter Design / 9.2.2:
Consistent Estimation of Spectra / 9.3:
Frequency Distributions for Nonstationary Time Series / 9.4:
Filter Banks and Discrete Wavelet Transformations / 9.5:
Wavelets / 9.6:
Wavelets as Base Functions in Function Spaces / 9.6.1:
Wavelets and Filter Banks / 9.6.2:
Solutions of the Dilation Equation / 9.6.3:
Estimators Based on a Probability Distribution for the Parameters / 10:
Bayesian Estimator and Maximum a Posteriori Estimator / 10.1:
Marginalization of Nuisance Parameters / 10.2:
Numerical Methods for Bayesian Estimators / 10.3:
Identification of Stochastic Models from Observations / 11:
Hidden Systems / 11.1:
The Maximum a Posteriori (MAP) Estimator for the Inverse Problem / 11.2:
The Least-Squares Estimator as a Special MAP Estimator / 11.2.1:
Strategies for Choosing the Regularization Parameter / 11.2.2:
The Regularization Method / 11.2.3:
Examples of Estimating a Distribution Function by a Regularization Method / 11.2.4:
Estimating the Realization of a Hidden Process / 11.3:
The Viterbi Algorithm / 11.3.1:
The Kalman Filter / 11.3.2:
Estimating the Parameters of a Hidden Stochastic Model / 12:
The Expectation Maximization Method (EM Method) / 12.1:
Use of the EM Method for Estimation of the Parameters in Hidden Systems / 12.2:
Estimating the Parameters of a Hidden Markov Model / 12.3:
The Forward Algorithm / 12.3.1:
The Backward Algorithm / 12.3.2:
The Estimation Formulas / 12.3.3:
Estimating the Parameters in a State Space Model / 12.4:
Statistical Tests and Classification Methods / 13:
General Comments Concerning Statistical Tests / 13.1:
Test Quantity and Significance Level / 13.1.1:
Empirical Moments for a Test Quantity: The Bootstrap Method / 13.1.2:
The Power of a Test / 13.1.3:
Some Useful Tests / 13.2:
The z- and the t-Test / 13.2.1:
Test for the Equality of the Variances of Two Sets of Measurements, the F-Test / 13.2.2:
The x[superscript 2]-Test / 13.2.3:
The Kolmogorov-Smirnov Test / 13.2.4:
The F-Test for Least-Squares Estimators / 13.2.5:
The Likelihood-Ratio Test / 13.2.6:
Classification Methods / 13.3:
Classifiers / 13.3.1:
Estimation of Parameters That Arise in Classifiers / 13.3.2:
Automatic Classification (Cluster Analysis) / 13.3.3:
Random Number Generation for Simulating Realizations of Random Variables / Appendix:
Problems
Hints and Solutions
References
Index
Statistical Physics Is More than Statistical Mechanics / 1:
Modeling of Statistical Systems / Part I:
Random Variables: Fundamentals of Probability Theory and Statistics / 2:
16.

図書

図書
Rüdiger Seydel
出版情報: Berlin : Tokyo : Springer, c2002  xiv, 224 p. ; 24 cm
シリーズ名: Universitext
所蔵情報: loading…
目次情報: 続きを見る
Prefaces
Contents
Notation
Modeling Tools for Financial Options / Chapter 1:
Options / 1.1:
Model of the Financial Market / 1.2:
Numerical Methods / 1.3:
The Binomial Method / 1.4:
Risk-Neutral Valuation / 1.5:
Stochastic Processes / 1.6:
Wiener Process / 1.6.1:
Stochastic Integral / 1.6.2:
Stochastic Differential Equations / 1.7:
Ito Process / 1.7.1:
Application to the Stock Market / 1.7.2:
Ito Lemma and Implications / 1.8:
Jump Processes / 1.9:
Notes and Comments
Exercises
Generating Random Numbers with Specified Distributions / Chapter 2:
Pseudo-Random Numbers / 2.1:
Linear Congruential Generators / 2.1.1:
Random Vectors / 2.1.2:
Fibonacci Generators / 2.1.3:
Transformed Random Variables / 2.2:
Inversion / 2.2.1:
Transformation in IR[superscript 1] / 2.2.2:
Transformation in IR[superscript n] / 2.2.3:
Normally Distributed Random Variables / 2.3:
Method of Box and Muller / 2.3.1:
Variant of Marsaglia / 2.3.2:
Correlated Random Variables / 2.3.3:
Sequences of Numbers with Low Discrepancy / 2.4:
Monte Carlo Integration / 2.4.1:
Discrepancy / 2.4.2:
Examples of Low-Discrepancy Sequences / 2.4.3:
Numerical Integration of Stochastic Differential Equations / Chapter 3:
Approximation Error / 3.1:
Stochastic Taylor Expansion / 3.2:
Examples of Numerical Methods / 3.3:
Intermediate Values / 3.4:
Monte Carlo Simulation / 3.5:
The Basic Version / 3.5.1:
Variance Reduction / 3.5.2:
Finite Differences and Standard Options / Chapter 4:
Preparations / 4.1:
Foundations of Finite-Difference Methods / 4.2:
Difference Approximation / 4.2.1:
The Grid / 4.2.2:
Explicit Method / 4.2.3:
Stability / 4.2.4:
Implicit Method / 4.2.5:
Crank-Nicolson Method / 4.3:
Boundary Conditions / 4.4:
American Options as Free Boundary-Value Problems / 4.5:
Free Boundary-Value Problems / 4.5.1:
Black-Scholes Inequality / 4.5.2:
Obstacle Problems / 4.5.3:
Linear Complementarity for American Put Options / 4.5.4:
Computation of American Options / 4.6:
Discretization with Finite Differences / 4.6.1:
Iterative Solution / 4.6.2:
Algorithm for Calculating American Options / 4.6.3:
On the Accuracy / 4.7:
Finite-Element Methods / Chapter 5:
Weighted Residuals / 5.1:
The Principle of Weighted Residuals / 5.1.1:
Examples of Weighting Functions / 5.1.2:
Examples of Basis Functions / 5.1.3:
Galerkin Approach with Hat Functions / 5.2:
Hat Functions / 5.2.1:
A Simple Application / 5.2.2:
Application to Standard Options / 5.3:
Error Estimates / 5.4:
Classical and Weak Solutions / 5.4.1:
Approximation on Finite-Dimensional Subspaces / 5.4.2:
Cea's Lemma / 5.4.3:
Pricing of Exotic Options / Chapter 6:
Exotic Options / 6.1:
Asian Options / 6.2:
The Payoff / 6.2.1:
Modeling in the Black-Scholes Framework / 6.2.2:
Reduction to a One-Dimensional Equation / 6.2.3:
Discrete Monitoring / 6.2.4:
Numerical Aspects / 6.3:
Convection-Diffusion Problems / 6.3.1:
Von Neumann Stability Analysis / 6.3.2:
Upwind Schemes and Other Methods / 6.4:
Upwind Scheme / 6.4.1:
Dispersion / 6.4.2:
High-Resolution Methods / 6.5:
The Lax-Wendroff Method / 6.5.1:
Total Variation Diminishing / 6.5.2:
Numerical Dissipation / 6.5.3:
Appendices
Financial Derivatives / A1:
Essentials of Stochastics / A2:
The Black-Scholes Equation / A3:
Iterative Methods for Ax = b / A4:
Function Spaces / A6:
Complementary Formula / A7:
References
Index
Prefaces
Contents
Notation
17.

図書

図書
Matthias Pflanz
出版情報: Berlin : Springer, c2002  xii, 126 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2270
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Background and Motivation / 1.1:
Terminology / 1.2:
Embedded Systems / 1.2.1:
Cores / 1.2.2:
System-on-Chip / 1.2.3:
Test and Check / 1.2.4:
Fault-Tolerance Objectives / 1.2.5:
Safety-Critical Embedded Systems / 1.2.6:
Publications / 1.3:
Fault Models and Fault-Behavior of Processor Structures / 2:
Fault Models / 2.1:
Permanent Faults / 2.1.1:
Transient Faults / 2.1.2:
Embedded Processor Architectures / 2.2:
Control and Data Path / 2.2.1:
Processor Types / 2.2.2:
Fault Effects in Processors / 2.2.3:
On-line Check Technology for Processor Components / 3:
State of the Art / 3.1:
Component On-line Check Using Extended Berger Code Prediction / 3.2:
BCP for Integer Data-Paths / 3.2.1:
BCP for Floating-Point Components / 3.2.2:
Results / 3.2.3:
Component On-line Check with Cross-Parity Check / 3.3:
Cross-Parity Observation / 3.3.1:
Cross-Parity Error Detection Capabilities and Limitations / 3.3.3:
On-line Check Technology for Processor Control Signals / 3.3.4:
Control-Signal On-line Check with Pseudo-TMR Controller / 4.1:
Control-Signal On-line Check with State Code Prediction / 4.3:
Straightforward Processor State Encoding and Observation / 4.3.1:
Partitioned State Encoding and Observation / 4.3.3:
Outlook Regarding to Controller On-line Check / 4.3.4:
Fast Processor Recover Techniques with Micro Rollback / 5:
Previous Techniques and State of the Art / 5.1:
Micro Rollback with a Master-Trailer-Structure / 5.2:
Micro Rollback Test Circuit / 5.2.1:
Micro Rollback Technique for Simple Microprocessors / 5.2.2:
Micro Rollback in Pipeline-Processors / 5.2.3:
Recover Techniques for a Pipeline Processor / 5.3.1:
Implementations and Results / 5.3.2:
Conclusion and Outlook / 6:
Appendix - Demonstration Processors
Microprocessor t4008 / A.1:
Microprocessors t5008/16/32x / A.2:
Digital Signal Processors uDSP32a/b / A.3:
Pipeline Processors DLX32/64fpu_p / A.4:
Abbreviations, Symbols and Identifiers
List of Figures
List of Tables
References
Introduction / 1:
Background and Motivation / 1.1:
Terminology / 1.2:
18.

電子ブック

EB
Matthias Pflanz
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Background and Motivation / 1.1:
Terminology / 1.2:
Embedded Systems / 1.2.1:
Cores / 1.2.2:
System-on-Chip / 1.2.3:
Test and Check / 1.2.4:
Fault-Tolerance Objectives / 1.2.5:
Safety-Critical Embedded Systems / 1.2.6:
Publications / 1.3:
Fault Models and Fault-Behavior of Processor Structures / 2:
Fault Models / 2.1:
Permanent Faults / 2.1.1:
Transient Faults / 2.1.2:
Embedded Processor Architectures / 2.2:
Control and Data Path / 2.2.1:
Processor Types / 2.2.2:
Fault Effects in Processors / 2.2.3:
On-line Check Technology for Processor Components / 3:
State of the Art / 3.1:
Component On-line Check Using Extended Berger Code Prediction / 3.2:
BCP for Integer Data-Paths / 3.2.1:
BCP for Floating-Point Components / 3.2.2:
Results / 3.2.3:
Component On-line Check with Cross-Parity Check / 3.3:
Cross-Parity Observation / 3.3.1:
Cross-Parity Error Detection Capabilities and Limitations / 3.3.3:
On-line Check Technology for Processor Control Signals / 3.3.4:
Control-Signal On-line Check with Pseudo-TMR Controller / 4.1:
Control-Signal On-line Check with State Code Prediction / 4.3:
Straightforward Processor State Encoding and Observation / 4.3.1:
Partitioned State Encoding and Observation / 4.3.3:
Outlook Regarding to Controller On-line Check / 4.3.4:
Fast Processor Recover Techniques with Micro Rollback / 5:
Previous Techniques and State of the Art / 5.1:
Micro Rollback with a Master-Trailer-Structure / 5.2:
Micro Rollback Test Circuit / 5.2.1:
Micro Rollback Technique for Simple Microprocessors / 5.2.2:
Micro Rollback in Pipeline-Processors / 5.2.3:
Recover Techniques for a Pipeline Processor / 5.3.1:
Implementations and Results / 5.3.2:
Conclusion and Outlook / 6:
Appendix - Demonstration Processors
Microprocessor t4008 / A.1:
Microprocessors t5008/16/32x / A.2:
Digital Signal Processors uDSP32a/b / A.3:
Pipeline Processors DLX32/64fpu_p / A.4:
Abbreviations, Symbols and Identifiers
List of Figures
List of Tables
References
Introduction / 1:
Background and Motivation / 1.1:
Terminology / 1.2:
19.

図書

図書
Brian R. Eggins
出版情報: Chichester, West Sussex : Wiley, c2002  xxi, 273 p. ; 23 cm
シリーズ名: Analytical Techniques in the Sciences(AnTS)
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface
Acronyms, Abbreviations and Symbols
About the Author
Introduction / 1:
Introduction to Sensors / 1.1:
What are Sensors? / 1.1.1:
The Nose as a Sensor / 1.1.2:
Sensors and Biosensors--Definitions / 1.2:
Aspects of Sensors / 1.3:
Recognition Elements / 1.3.1:
Transducers--the Detector Device / 1.3.2:
Methods of Immobilization / 1.3.3:
Performance Factors / 1.3.4:
Areas of Application / 1.3.5:
Transduction Elements / 2:
Electrochemical Transducers--Introduction / 2.1:
Potentiometry and Ion-Selective Electrodes: The Nernst Equation / 2.2:
Cells and Electrodes / 2.2.1:
Reference Electrodes / 2.2.2:
Quantitative Relationships: The Nernst Equation / 2.2.3:
Practical Aspects of Ion-Selective Electrodes / 2.2.4:
Measurement and Calibration / 2.2.5:
Voltammetry and Amperometry / 2.3:
Linear-Sweep Voltammetry / 2.3.1:
Cyclic Voltammetry / 2.3.2:
Chronoamperometry / 2.3.3:
Amperometry / 2.3.4:
Kinetic and Catalytic Effects / 2.3.5:
Conductivity / 2.4:
Field-Effect Transistors / 2.5:
Semiconductors--Introduction / 2.5.1:
Semiconductor--Solution Contact / 2.5.2:
Field-Effect Transistor / 2.5.3:
Modified Electrodes, Thin-Film Electrodes and Screen-Printed Electrodes / 2.6:
Thick-Film--Screen-Printed Electrodes / 2.6.1:
Microelectrodes / 2.6.2:
Thin-Film Electrodes / 2.6.3:
Photometric Sensors / 2.7:
Optical Techniques / 2.7.1:
Ultraviolet and Visible Absorption Spectroscopy / 2.7.3:
Fluorescence Spectroscopy / 2.7.4:
Luminescence / 2.7.5:
Optical Transducers / 2.7.6:
Device Construction / 2.7.7:
Solid-Phase Absorption Label Sensors / 2.7.8:
Applications / 2.7.9:
Further Reading
Sensing Elements / 3:
Ionic Recognition / 3.1:
Ion-Selective Electrodes--Introduction / 3.2.1:
Interferences / 3.2.2:
Conducting Devices / 3.2.3:
Modified Electrodes and Screen-Printed Electrodes / 3.2.4:
Molecular Recognition--Chemical Recognition Agents / 3.3:
Thermodynamic--Complex Formation / 3.3.1:
Kinetic--Catalytic Effects: Kinetic Selectivity / 3.3.2:
Molecular Size / 3.3.3:
Molecular Recognition--Spectroscopic Recognition / 3.4:
Infrared Spectroscopy--Molecular / 3.4.1:
Ultraviolet Spectroscopy--Less Selective / 3.4.3:
Nuclear Magnetic Resonance Spectroscopy--Needs Interpretation / 3.4.4:
Mass Spectrometry / 3.4.5:
Molecular Recognition--Biological Recognition Agents / 3.5:
Enzymes / 3.5.1:
Tissue Materials / 3.5.3:
Micro-Organisms / 3.5.4:
Mitochondria / 3.5.5:
Antibodies / 3.5.6:
Nucleic Acids / 3.5.7:
Receptors / 3.5.8:
Immobilization of Biological Components / 3.6:
Adsorption / 3.6.1:
Microencapsulation / 3.6.3:
Entrapment / 3.6.4:
Cross-Linking / 3.6.5:
Covalent Bonding / 3.6.6:
Selectivity / 4:
Ion-Selective Electrodes / 4.2.1:
Others / 4.2.2:
Sensitivity / 4.3:
Range, Linear Range and Detection Limits / 4.3.1:
Time Factors / 4.4:
Response Times / 4.4.1:
Recovery Times / 4.4.2:
Lifetimes / 4.4.3:
Precision, Accuracy and Repeatability / 4.5:
Different Biomaterials / 4.6:
Different Transducers / 4.7:
Urea Biosensors / 4.7.1:
Amino Acid Biosensors / 4.7.2:
Glucose Biosensors / 4.7.3:
Uric Acid / 4.7.4:
Some Factors Affecting the Performance of Sensors / 4.8:
Amount of Enzyme / 4.8.1:
Immobilization Method / 4.8.2:
pH of Buffer / 4.8.3:
Electrochemical Sensors and Biosensors / 5:
Potentiometric Sensors--Ion-Selective Electrodes / 5.1:
Concentrations and Activities / 5.1.1:
Calibration Graphs / 5.1.2:
Examples of Ion-Selective Electrodes / 5.1.3:
Gas Sensors--Gas-Sensing Electrodes / 5.1.4:
Potentiometric Biosensors / 5.2:
pH-Linked / 5.2.1:
Ammonia-Linked / 5.2.2:
Carbon Dioxide-Linked / 5.2.3:
Iodine-Selective / 5.2.4:
Silver Sulfide-Linked / 5.2.5:
Amperometric Sensors / 5.3:
Direct Electrolytic Methods / 5.3.1:
The Three Generations of Biosensors / 5.3.2:
First Generation--The Oxygen Electrode / 5.3.3:
Second Generation--Mediators / 5.3.4:
Third Generation--Directly Coupled Enzyme Electrodes / 5.3.5:
NADH/NAD[superscript +] / 5.3.6:
Examples of Amperometric Biosensors / 5.3.7:
Amperometric Gas Sensors / 5.3.8:
Conductometric Sensors and Biosensors / 5.4:
Chemiresistors / 5.4.1:
Biosensors Based on Chemiresistors / 5.4.2:
Semiconducting Oxide Sensors / 5.4.3:
Applications of Field-Effect Transistor Sensors / 5.5:
Chemically Sensitive Field-Effect Transistors (CHEMFETs) / 5.5.1:
Ion-Selective Field-Effect Transistors (ISFETs) / 5.5.2:
FET-Based Biosensors (ENFETs) / 5.5.3:
Photometric Applications / 6:
Techniques for Optical Sensors / 6.1:
Modes of Operation of Waveguides in Sensors / 6.1.1:
Immobilized Reagents / 6.1.2:
Visible Absorption Spectroscopy / 6.2:
Measurement of pH / 6.2.1:
Measurement of Carbon Dioxide / 6.2.2:
Measurement of Ammonia / 6.2.3:
Examples That Have Been Used in Biosensors / 6.2.4:
Fluorescent Reagents / 6.3:
Fluorescent Reagents for pH Measurements / 6.3.1:
Halides / 6.3.2:
Sodium / 6.3.3:
Potassium / 6.3.4:
Gas Sensors / 6.3.5:
Indirect Methods Using Competitive Binding / 6.4:
Reflectance Methods--Internal Reflectance Spectroscopy / 6.5:
Evanescent Waves / 6.5.1:
Reflectance Methods / 6.5.2:
Attenuated Total Reflectance / 6.5.3:
Total Internal Reflection Fluorescence / 6.5.4:
Surface Plasmon Resonance / 6.5.5:
Light Scattering Techniques / 6.6:
Types of Light Scattering / 6.6.1:
Quasi-Elastic Light Scattering Spectroscopy / 6.6.2:
Photon Correlation Spectroscopy / 6.6.3:
Laser Doppler Velocimetry / 6.6.4:
Mass-Sensitive and Thermal Sensors / 7:
The Piezo-Electric Effect / 7.1:
Principles / 7.1.1:
Gas Sensor Applications / 7.1.2:
Biosensor Applications / 7.1.3:
The Quartz Crystal Microbalance / 7.1.4:
Surface Acoustic Waves / 7.2:
Plate Wave Mode / 7.2.1:
Evanescent Wave Mode / 7.2.2:
Lamb Mode / 7.2.3:
Thickness Shear Mode / 7.2.4:
Thermal Sensors / 7.3:
Thermistors / 7.3.1:
Catalytic Gas Sensors / 7.3.2:
Thermal Conductivity Devices / 7.3.3:
Specific Applications / 8:
Determination of Glucose in Blood--Amperometric Biosensor / 8.1:
Survey of Biosensor Methods for the Determination of Glucose / 8.1.1:
Aim / 8.1.2:
Determination of Nanogram Levels of Copper(I) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent / 8.2:
Background to Stripping Voltammetry--Anodic and Cathodic / 8.2.1:
Determination of Several Ions Simultaneously--'The Laboratory on a Chip' / 8.2.2:
Sensor Arrays and 'Smart' Sensors / 8.3.1:
Background to Ion-Selective Field-Effect Transistors / 8.3.3:
Determination of Attomole Levels of a Trinitrotoluene--Antibody Complex with a Luminescent Transducer / 8.3.4:
Background to Immuno--Luminescent Assays / 8.4.1:
Determination of Flavanols in Beers / 8.4.2:
Background / 8.5.1:
Responses to Self-Assessment Questions / 8.5.2:
Bibliography
Glossary of Terms
SI Units and Physical Constants
Periodic Table
Index
Series Preface
Preface
Acronyms, Abbreviations and Symbols
20.

図書

図書
Qing Liu ; translated by Reinie Erné
出版情報: Oxford : Oxford University Press, 2002  xv, 576 p. ; 24 cm
シリーズ名: Oxford graduate texts in mathematics ; 6
所蔵情報: loading…
目次情報: 続きを見る
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
Right-exactness of the tensor product / 1.1.2:
Tensor product of algebras / 1.1.3:
Flatness / 1.2:
Left-exactness: flatness / 1.2.1:
Local nature of flatness / 1.2.2:
Faithful flatness / 1.2.3:
Formal completion / 1.3:
Inverse limits and completions / 1.3.1:
The Artin-Rees lemma and applications / 1.3.2:
The case of Noetherian local rings / 1.3.3:
General properties of schemes / 2:
Spectrum of a ring / 2.1:
Zariski topology / 2.1.1:
Algebraic sets / 2.1.2:
Ringed topological spaces / 2.2:
Sheaves / 2.2.1:
Schemes / 2.2.2:
Definition of schemes and examples / 2.3.1:
Morphisms of schemes / 2.3.2:
Projective schemes / 2.3.3:
Noetherian schemes, algebraic varieties / 2.3.4:
Reduced schemes and integral schemes / 2.4:
Reduced schemes / 2.4.1:
Irreducible components / 2.4.2:
Integral schemes / 2.4.3:
Dimension / 2.5:
Dimension of schemes / 2.5.1:
The case of Noetherian schemes / 2.5.2:
Dimension of algebraic varieties / 2.5.3:
Morphisms and base change / 3:
The technique of base change / 3.1:
Fibered product / 3.1.1:
Base change / 3.1.2:
Applications to algebraic varieties / 3.2:
Morphisms of finite type / 3.2.1:
Algebraic varieties and extension of the base field / 3.2.2:
Points with values in an extension of the base field / 3.2.3:
Frobenius / 3.2.4:
Some global properties of morphisms / 3.3:
Separated morphisms / 3.3.1:
Proper morphisms / 3.3.2:
Projective morphisms / 3.3.3:
Some local properties / 4:
Normal schemes / 4.1:
Normal schemes and extensions of regular functions / 4.1.1:
Normalization / 4.1.2:
Regular schemes / 4.2:
Tangent space to a scheme / 4.2.1:
Regular schemes and the Jacobian criterion / 4.2.2:
Flat morphisms and smooth morphisms / 4.3:
Flat morphisms / 4.3.1:
Etale morphisms / 4.3.2:
Smooth morphisms / 4.3.3:
Zariski's 'Main Theorem' and applications / 4.4:
Coherent sheaves and Cech cohomology / 5:
Coherent sheaves on a scheme / 5.1:
Sheaves of modules / 5.1.1:
Quasi-coherent sheaves on an affine scheme / 5.1.2:
Coherent sheaves / 5.1.3:
Quasi-coherent sheaves on a projective scheme / 5.1.4:
Cech cohomology / 5.2:
Differential modules and cohomology with values in a sheaf / 5.2.1:
Cech cohomology on a separated scheme / 5.2.2:
Higher direct image and flat base change / 5.2.3:
Cohomology of projective schemes / 5.3:
Direct image theorem / 5.3.1:
Connectedness principle / 5.3.2:
Cohomology of the fibers / 5.3.3:
Sheaves of differentials / 6:
Kahler differentials / 6.1:
Modules of relative differential forms / 6.1.1:
Sheaves of relative differentials (of degree 1) / 6.1.2:
Differential study of smooth morphisms / 6.2:
Smoothness criteria / 6.2.1:
Local structure and lifting of sections / 6.2.2:
Local complete intersection / 6.3:
Regular immersions / 6.3.1:
Local complete intersections / 6.3.2:
Duality theory / 6.4:
Determinant / 6.4.1:
Canonical sheaf / 6.4.2:
Grothendieck duality / 6.4.3:
Divisors and applications to curves / 7:
Cartier divisors / 7.1:
Meromorphic functions / 7.1.1:
Inverse image of Cartier divisors / 7.1.2:
Weil divisors / 7.2:
Cycles of codimension 1 / 7.2.1:
Van der Waerden's purity theorem / 7.2.2:
Riemann-Roch theorem / 7.3:
Degree of a divisor / 7.3.1:
Riemann-Roch for projective curves / 7.3.2:
Algebraic curves / 7.4:
Classification of curves of small genus / 7.4.1:
Hurwitz formula / 7.4.2:
Hyperelliptic curves / 7.4.3:
Group schemes and Picard varieties / 7.4.4:
Singular curves, structure of Pic[superscript 0](X) / 7.5:
Birational geometry of surfaces / 8:
Blowing-ups / 8.1:
Definition and elementary properties / 8.1.1:
Universal property of blowing-up / 8.1.2:
Blowing-ups and birational morphisms / 8.1.3:
Normalization of curves by blowing-up points / 8.1.4:
Excellent schemes / 8.2:
Universally catenary schemes and the dimension formula / 8.2.1:
Cohen-Macaulay rings / 8.2.2:
Fibered surfaces / 8.2.3:
Properties of the fibers / 8.3.1:
Valuations and birational classes of fibered surfaces / 8.3.2:
Contraction / 8.3.3:
Desingularization / 8.3.4:
Regular surfaces / 9:
Intersection theory on a regular surface / 9.1:
Local intersection / 9.1.1:
Intersection on a fibered surface / 9.1.2:
Intersection with a horizontal divisor, adjunction formula / 9.1.3:
Intersection and morphisms / 9.2:
Factorization theorem / 9.2.1:
Projection formula / 9.2.2:
Birational morphisms and Picard groups / 9.2.3:
Embedded resolutions / 9.2.4:
Minimal surfaces / 9.3:
Exceptional divisors and Castelnuovo's criterion / 9.3.1:
Relatively minimal surfaces / 9.3.2:
Existence of the minimal regular model / 9.3.3:
Minimal desingularization and minimal embedded resolution / 9.3.4:
Applications to contraction; canonical model / 9.4:
Artin's contractability criterion / 9.4.1:
Determination of the tangent spaces / 9.4.2:
Canonical models / 9.4.3:
Weierstrass models and regular models of elliptic curves / 9.4.4:
Reduction of algebraic curves / 10:
Models and reductions / 10.1:
Models of algebraic curves / 10.1.1:
Reduction / 10.1.2:
Reduction map / 10.1.3:
Graphs / 10.1.4:
Reduction of elliptic curves / 10.2:
Reduction of the minimal regular model / 10.2.1:
Neron models of elliptic curves / 10.2.2:
Potential semi-stable reduction / 10.2.3:
Stable reduction of algebraic curves / 10.3:
Stable curves / 10.3.1:
Stable reduction / 10.3.2:
Some sufficient conditions for the existence of the stable model / 10.3.3:
Deligne-Mumford theorem / 10.4:
Simplifications on the base scheme / 10.4.1:
Proof of Artin-Winters / 10.4.2:
Examples of computations of the potential stable reduction / 10.4.3:
Bibliography
Index
Some topics in commutative algebra / 1:
Tensor products / 1.1:
Tensor product of modules / 1.1.1:
21.

図書

図書
Petra Perner
出版情報: Berlin ; Tokyo : Springer, c2002  x, 131 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2558
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
What Is Data Mining? / 1.1:
Some More Real-World Applications / 1.2:
Data Mining Methods - An Overview / 1.3:
Basic Problem Types / 1.3.1:
Prediction / 1.3.2:
Classification / 1.3.2.1:
Regression / 1.3.2.2:
Knowlegde Discovery / 1.3.3:
Deviation Detection / 1.3.3.1:
Cluster Analysis / 1.3.3.2:
Visualization / 1.3.3.3:
Association Rules / 1.3.3.4:
Segmentation / 1.3.3.5:
Data Mining Viewed from the Data Side / 1.4:
Types of Data / 1.5:
Conclusion / 1.6:
Data Preparation / 2:
Data Cleaning / 2.1:
Handling Outlier / 2.2:
Handling Noisy Data / 2.3:
Missing Values Handling / 2.4:
Coding / 2.5:
Recognition of Correlated or Redundant Attributes / 2.6:
Abstraction / 2.7:
Attribute Construction / 2.7.1:
Images / 2.7.2:
Time Series / 2.7.3:
Web Data / 2.7.4:
Conclusions / 2.8:
Methods for Data Mining / 3:
Decision Tree Induction / 3.1:
Basic Principle / 3.1.1:
Terminology of Decision Tree / 3.1.2:
Subtasks and Design Criteria for Decision Tree Induction / 3.1.3:
Attribute Selection Criteria / 3.1.4:
Information Gain Criteria and Gain Ratio / 3.1.4.1:
Gini Function / 3.1.4.2:
Discretization of Attribute Values / 3.1.5:
Binary Discretization / 3.1.5.1:
Multi-interval Discretization / 3.1.5.2:
Discretization of Categorical or Symbolical Attributes / 3.1.5.3:
Pruning / 3.1.6:
Overview / 3.1.7:
Cost-Complexity Pruning / 3.1.8:
Some General Remarks / 3.1.9:
Summary / 3.1.10:
Case-Based Reasoning / 3.2:
Background / 3.2.1:
The Case-Based Reasoning Process / 3.2.2:
CBR Maintenance / 3.2.3:
Knowledge Containers in a CBR System / 3.2.4:
Design Consideration / 3.2.5:
Similarity / 3.2.6:
Formalization of Similarity / 3.2.6.1:
Similarity Measures / 3.2.6.2:
Similarity Measures for Images / 3.2.6.3:
Case Description / 3.2.7:
Organization of Case Base / 3.2.8:
Learning in a CBR System / 3.2.9:
Learning of New Cases and Forgetting of Old Cases / 3.2.9.1:
Learning of Prototypes / 3.2.9.2:
Learning of Higher Order Constructs / 3.2.9.3:
Learning of Similarity / 3.2.9.4:
Clustering / 3.2.10:
General Comments / 3.3.1:
Distance Measures for Metrical Data / 3.3.3:
Using Numerical Distance Measures for Categorical Data / 3.3.4:
Distance Measure for Nominal Data / 3.3.5:
Contrast Rule / 3.3.6:
Agglomerate Clustering Methods / 3.3.7:
Partitioning Clustering / 3.3.8:
Graphs Clustering / 3.3.9:
Similarity Measure for Graphs / 3.3.10:
Hierarchical Clustering of Graphs / 3.3.11:
Conceptual Clustering / 3.3.12:
Concept Hierarchy and Concept Description / 3.4.1:
Category Utility Function / 3.4.3:
Algorithmic Properties / 3.4.4:
Algorithm / 3.4.5:
Conceptual Clustering of Graphs / 3.4.6:
Notion of a Case and Similarity Measure / 3.4.6.1:
Evaluation Function / 3.4.6.2:
Prototype Learning / 3.4.6.3:
An Example of a Learned Concept Hierarchy / 3.4.6.4:
Evaluation of the Model / 3.4.7:
Error Rate, Correctness, and Quality / 3.5.1:
Sensitivity and Specifity / 3.5.2:
Test-and-Train / 3.5.3:
Random Sampling / 3.5.4:
Cross Validation / 3.5.5:
Feature Subset Selection / 3.5.6:
Feature Subset Selection Algorithms / 3.6.1:
The Wrapper and the Filter Model for Feature Subset Selection / 3.6.2.1:
Feature Selection Done by Decision Tree Induction / 3.6.3:
Feature Subset Selection Done by Clustering / 3.6.4:
Contextual Merit Algorithm / 3.6.5:
Floating Search Method / 3.6.6:
Applications / 3.6.7:
Controlling the Parameters of an Algorithm/Model by Case-Based Reasoning / 4.1:
Modelling Concerns / 4.1.1:
Case-Based Reasoning Unit / 4.1.2:
Management of the Case Base / 4.1.3:
Case Structure and Case Base / 4.1.4:
Non-image Information / 4.1.4.1:
Image Information / 4.1.4.2:
Image Similarity Determination / 4.1.5:
Image Similarity Measure 1 (ISim_1) / 4.1.5.1:
Image Similarity Measure 2 (iSIM_2) / 4.1.5.2:
Comparision of ISim_1 and ISim_2 / 4.1.5.3:
Segmentation Algorithm and Segmentation Parameters / 4.1.6:
Similarity Determination / 4.1.7:
Overall Similarity / 4.1.7.1:
Similarity Measure for Non-image Information / 4.1.7.2:
Similarity Measure for Image Information / 4.1.7.3:
Knowledge Acquisition Aspect / 4.1.8:
Mining Images / 4.1.9:
Preparing the Experiment / 4.2.1:
Image Mining Tool / 4.2.3:
The Application / 4.2.4:
Brainstorming and Image Catalogue / 4.2.5:
Interviewing Process / 4.2.6:
Setting Up the Automatic Image Analysis and Feature Extraction Procedure / 4.2.7:
Image Analysis / 4.2.7.1:
Feature Extraction / 4.2.7.2:
Collection of Image Descriptions into the Data Base / 4.2.8:
The Image Mining Experiment / 4.2.9:
Review / 4.2.10:
Using the Discovered Knowledge / 4.2.11:
Lessons Learned
Appendix / 5:
The IRIS Data Set
References
Index
Introduction / 1:
What Is Data Mining? / 1.1:
Some More Real-World Applications / 1.2:
22.

図書

図書
Dan C. Marinescu
出版情報: New York : Wiley, c2002  xxiv, 627 p. ; 25 cm
シリーズ名: Wiley series on parallel and distributed computing
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acronyms
Internet-Based Workflows / 1:
Workflows and the Internet / 1.1:
Historic Perspective / 1.1.1:
Enabling Technologies / 1.1.2:
Nomadic, Network-Centric, and Network-Aware Computing / 1.1.3:
Information Grids; the Semantic Web / 1.1.4:
Workflow Management in a Semantic Web / 1.1.5:
Informal Introduction to Workflows / 1.2:
Assembly of a Laptop / 1.2.1:
Computer Scripts / 1.2.2:
A Metacomputing Example / 1.2.3:
Automatic Monitoring and Benchmarking of Web Services / 1.2.4:
Lessons Learned / 1.2.5:
Workflow Reference Model / 1.3:
Workflows and Database Management Systems / 1.4:
Database Transactions / 1.4.1:
Workflow Products / 1.4.2:
Internet Workflow Models / 1.5:
Basic Concepts / 1.5.1:
The Life Cycle of a Workflow / 1.5.2:
States, Events, and Transition Systems / 1.5.3:
Safe and Live Processes / 1.5.4:
Transactional versus Internet-Based Workflows / 1.6:
Workflow Patterns / 1.7:
Workflow Enactment / 1.8:
Task Activation and States / 1.8.1:
Workflow Enactment Models / 1.8.2:
Workflow Coordination / 1.9:
Challenges of Dynamic Workflows / 1.10:
Further Reading / 1.11:
Exercises and Problems / 1.12:
References
Basic Concepts and Models / 2:
Introduction / 2.1:
System Models / 2.1.1:
Functional and Dependability Attributes / 2.1.2:
Major Concerns in the Design of a Distributed System / 2.1.3:
Information Transmission and Communication Channel Models / 2.2:
Channel Bandwidth and Latency / 2.2.1:
Entropy and Mutual Information / 2.2.2:
Binary Symmetric Channels / 2.2.3:
Information Encoding / 2.2.4:
Channel Capacity: Shannon's Theorems / 2.2.5:
Error Detecting and Error Correcting Codes / 2.2.6:
Final Remarks on Communication Channel Models / 2.2.7:
Process Models / 2.3:
Processes and Events / 2.3.1:
Local and Global States / 2.3.2:
Process Coordination / 2.3.3:
Time, Time Intervals, and Global Time / 2.3.4:
Cause-Effect Relationship, Concurrent Events / 2.3.5:
Logical Clocks / 2.3.6:
Message Delivery to Processes / 2.3.7:
Process Algebra / 2.3.8:
Final Remarks on Process Models / 2.3.9:
Synchronous and Asynchronous Message Passing System Models / 2.4:
Time and the Process Channel Model / 2.4.1:
Synchronous Systems / 2.4.2:
Asynchronous Systems / 2.4.3:
Final Remarks on Synchronous and Asynchronous Systems / 2.4.4:
Monitoring Models / 2.5:
Runs / 2.5.1:
Cuts; the Frontier of a Cut / 2.5.2:
Consistent Cuts and Runs / 2.5.3:
Causal History / 2.5.4:
Consistent Global States and Distributed Snapshots / 2.5.5:
Monitoring and Intrusion / 2.5.6:
Quantum Computing, Entangled States, and Decoherence / 2.5.7:
Examples of Monitoring Systems / 2.5.8:
Final Remarks on Monitoring / 2.5.9:
Reliability and Fault Tolerance Models. Reliable Collective Communication / 2.6:
Failure Modes / 2.6.1:
Redundancy / 2.6.2:
Broadcast and Multicast / 2.6.3:
Properties of a Broadcast Algorithm / 2.6.4:
Broadcast Primitives / 2.6.5:
Terminating Reliable Broadcast and Consensus / 2.6.6:
Resource Sharing, Scheduling, and Performance Models / 2.7:
Process Scheduling in a Distributed System / 2.7.1:
Objective Functions and Scheduling Policies / 2.7.2:
Real-Time Process Scheduling / 2.7.3:
Queuing Models: Basic Concepts / 2.7.4:
The M/M/1 Queuing Model / 2.7.5:
The M/G/1 System: The Server with Vacation / 2.7.6:
Network Congestion Example / 2.7.7:
Final Remarks Regarding Resource Sharing and Performance Models / 2.7.8:
Security Models / 2.8:
Basic Terms and Concepts / 2.8.1:
An Access Control Model / 2.8.2:
Challenges in Distributed Systems / 2.9:
Concurrency / 2.9.1:
Mobility of Data and Computations / 2.9.2:
Net Models of Distributed Systems and Workflows / 2.10:
Informal Introduction to Petri Nets / 3.1:
Basic Definitions and Notations / 3.2:
Modeling with Place/Transition Nets / 3.3:
Conflict/Choice, Synchronization, Priorities, and Exclusion / 3.3.1:
State Machines and Marked Graphs / 3.3.2:
Marking Independent Properties of P/T Nets / 3.3.3:
Marking Dependent Properties of P/T Nets / 3.3.4:
Petri Net Languages / 3.3.5:
State Equations / 3.4:
Properties of Place/Transition Nets / 3.5:
Coverability Analysis / 3.6:
Applications of Stochastic Petri Nets to Performance Analysis / 3.7:
Stochastic Petri Nets / 3.7.1:
Informal Introduction to SHLPNs / 3.7.2:
Formal Definition of SHLPNs / 3.7.3:
Compound Marking of an SHLPN / 3.7.4:
Modeling and Performance Analysis of a Multiprocessor System Using SHLPNs / 3.7.5:
Performance Analysis / 3.7.6:
Modeling Horn Clauses with Petri Nets / 3.8:
Workflow Modeling with Petri Nets / 3.9:
Basic Models / 3.9.1:
Branching Bisimilarity / 3.9.2:
Dynamic Workflow Inheritance / 3.9.3:
Internet Quality of Service / 3.10:
Brief Introduction to Networking / 4.1:
Layered Network Architecture and Communication Protocols / 4.1.1:
Internet Applications and Programming Abstractions / 4.1.2:
Messages and Packets / 4.1.3:
Encapsulation and Multiplexing / 4.1.4:
Circuit and Packet Switching. Virtual Circuits and Datagrams / 4.1.5:
Networking Hardware / 4.1.6:
Routing Algorithms and Wide Area Networks / 4.1.7:
Local Area Networks / 4.1.8:
Residential Access Networks / 4.1.9:
Forwarding in Packet-Switched Network / 4.1.10:
Protocol Control Mechanisms / 4.1.11:
Internet Addressing / 4.2:
Internet Address Encoding / 4.2.1:
Subnetting / 4.2.2:
Classless IP Addressing / 4.2.3:
Address Mapping, the Address Resolution Protocol / 4.2.4:
Static and Dynamic IP Address Assignment / 4.2.5:
Packet Forwarding in the Internet / 4.2.6:
Tunneling / 4.2.7:
Wireless Communication and Host Mobility in Internet / 4.2.8:
Internet Routing and the Protocol Stack / 4.2.9:
Autonomous Systems. Hierarchical Routing / 4.3.1:
Firewalls and Network Security / 4.3.2:
IP, the Internet Protocol / 4.3.3:
ICMP, the Internet Control Message Protocol / 4.3.4:
UDP, the User Datagram Protocol / 4.3.5:
TCP, the Transport Control Protocol / 4.3.6:
Congestion Control in TCP / 4.3.7:
Routing Protocols and Internet Traffic / 4.3.8:
Quality of Service / 4.4:
Service Guarantees and Service Models / 4.4.1:
Flows / 4.4.2:
Resource Allocation in the Internet / 4.4.3:
Best-Effort Service Networks / 4.4.4:
Buffer Acceptance Algorithms / 4.4.5:
Explicit Congestion Notification (ECN) in TCP / 4.4.6:
Maximum and Minimum Bandwidth Guarantees / 4.4.7:
Delay Guarantees and Packet Scheduling Strategies / 4.4.8:
Constrained Routing / 4.4.9:
Resource Reservation Protocol (RSVP) / 4.4.10:
Integrated Services / 4.4.11:
Differentiated Services / 4.4.12:
Final Remarks on Internet QoS / 4.4.13:
From Ubiquitous Internet Services to Open Systems / 4.5:
The Client-Server Paradigm / 5.1:
Internet Directory Service / 5.3:
Electronic Mail / 5.4:
Overview / 5.4.1:
Simple Mail Transfer Protocol / 5.4.2:
Multipurpose Internet Mail Extensions / 5.4.3:
Mail Access Protocols / 5.4.4:
The World Wide Web / 5.5:
HTTP Communication Model / 5.5.1:
Hypertext Transfer Protocol (HTTP) / 5.5.2:
Web Server Response Time / 5.5.3:
Web Caching / 5.5.4:
Nonpersistent and Persistent HTTP Connections / 5.5.5:
Web Server Workload Characterization / 5.5.6:
Scalable Web Server Architecture / 5.5.7:
Web Security / 5.5.8:
Reflections on the Web / 5.5.9:
Multimedia Services / 5.6:
Sampling and Quantization; Bandwidth Requirements for Digital Voice, Audio, and Video Streams / 5.6.1:
Delay and Jitter in Data Streaming / 5.6.2:
Data Streaming / 5.6.3:
Real-Time Protocol and Real-Time Streaming Protocol / 5.6.4:
Audio and Video Compression / 5.6.5:
Open Systems / 5.7:
Resource Management, Discovery and Virtualization, and Service Composition in an Open System / 5.7.1:
Mobility / 5.7.2:
Network Objects / 5.7.3:
Java Virtual Machine and Java Security / 5.7.4:
Remote Method Invocation / 5.7.5:
Jini / 5.7.6:
Information Grids / 5.8:
Resource Sharing and Administrative Domains / 5.8.1:
Services in Information Grids / 5.8.2:
Service Coordination / 5.8.3:
Computational Grids / 5.8.4:
Coordination and Software Agents / 5.9:
Coordination and Autonomy / 6.1:
Coordination Models / 6.2:
Coordination Techniques / 6.3:
Coordination Based on Scripting Languages / 6.3.1:
Coordination Based on Shared-Data Spaces / 6.3.2:
Coordination Based on Middle Agents / 6.3.3:
Software Agents / 6.4:
Software Agents as Reactive Programs / 6.4.1:
Reactivity and Temporal Continuity / 6.4.2:
Persistence of Identity and State / 6.4.3:
Autonomy / 6.4.4:
Inferential Ability / 6.4.5:
Mobility, Adaptability, and Knowledge-Level Communication Ability / 6.4.6:
Internet Agents / 6.5:
Agent Communication / 6.6:
Agent Communication Languages / 6.6.1:
Speech Acts and Agent Communication Language Primitives / 6.6.2:
Knowledge Query and Manipulation Language / 6.6.3:
FIPA Agent Communication Language / 6.6.4:
Software Engineering Challenges for Agents / 6.7:
Knowledge Representation, Inference, and Planning / 6.8:
Software Agents and Knowledge Representation / 7.1:
Software Agents as Reasoning Systems / 7.2.1:
Knowledge Representation Languages / 7.2.2:
Propositional Logic / 7.3:
Syntax and Semantics of Propositional Logic / 7.3.1:
Inference in Propositional Logic / 7.3.2:
First-Order Logic / 7.4:
Syntax and Semantics of First-Order Logic / 7.4.1:
Applications of First-Order Logic / 7.4.2:
Changes, Actions, and Events / 7.4.3:
Inference in First-Order Logic / 7.4.4:
Building a Reasoning Program / 7.4.5:
Knowledge Engineering / 7.5:
Knowledge Engineering and Programming / 7.5.1:
Ontologies / 7.5.2:
Automatic Reasoning Systems / 7.6:
Forward- and Backward-Chaining Systems / 7.6.1:
Frames - The Open Knowledge Base Connectivity / 7.6.3:
Metadata / 7.6.4:
Planning / 7.7:
Problem Solving and State Spaces / 7.7.1:
Problem Solving and Planning / 7.7.2:
Partial-Order and Total-Order Plans / 7.7.3:
Planning Algorithms / 7.7.4:
Summary / 7.8:
Middleware for Process Coordination: A Case Study / 7.9:
The Core / 8.1:
The Objects / 8.1.1:
Communication Architecture / 8.1.2:
Understanding Messages / 8.1.3:
Security / 8.1.4:
The Agents / 8.2:
The Bond Agent Model / 8.2.1:
Communication and Control. Agent Internals / 8.2.2:
Agent Description / 8.2.3:
Agent Transformations / 8.2.4:
Agent Extensions / 8.2.5:
Applications of the Framework / 8.3:
Adaptive Video Service / 8.3.1:
Web Server Monitoring and Benchmarking / 8.3.2:
Agent-Based Workflow Management / 8.3.3:
Other Applications / 8.3.4:
Glossary / 8.4:
Index
Preface
Acronyms
Internet-Based Workflows / 1:
23.

電子ブック

EB
Bernhard Schmidt
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The nature of the problems / 1.1:
The combinatorial structures in question / 1.2:
Designs / 1.2.1:
Difference Sets / 1.2.2:
Projective planes and planar functions / 1.2.3:
Projective geometries and Singer difference sets / 1.2.4:
Hadamard matrices and weighing matrices / 1.2.5:
Irreducible cyclic codes, two-intersection sets and sub- difference sets / 1.2.6:
Group rings, characters, Fourier analysis / 1.3:
Number theoretic tools / 1.4:
Algebraic-combinatorial tools / 1.5:
The field descent / 2:
The fixing theorem / 2.1:
Prescribed absolute value / 2.2:
Bounding the absolute value / 2.3:
The modulus equation and class groups / 2.4:
Class groups of cyclotomic fields / 2.4.1:
Class groups of CM-fields / 2.4.2:
p-ranks and class fields towers / 2.4.3:
Exponent bounds / 3:
Self-conjugacy exponent bounds / 3.1:
Turyn's exponent bound / 3.1.1:
The coset intersection lemma / 3.1.2:
McFarland difference sets / 3.1.3:
Semiregular relative difference sets / 3.1.4:
Two recent families of difference sets / 3.1.5:
Chen difference sets / 3.1.6:
Davis-Jedwab difference sets / 3.1.7:
Field descent exponent bounds / 3.2:
A general exponent bound for difference sets / 3.2.1:
Difference sets with gcd(v,n) > 1 / 3.2.2:
Towards Ryser's conjecture / 3.2.3:
Circulant Hadamard matrices and Barker sequences / 3.2.4:
Relative difference sets and planar functions / 3.2.5:
Group invariant weighing matrices / 3.2.6:
Two-weight irreducible cyclic codes / 4:
A necessary and sufficient condition / 4.1:
All two-weight irreducible cyclic codes? / 4.2:
Subfield and semiprimitive codes / 4.2.1:
The exceptional codes / 4.2.2:
Partial proof of Conjecture 4.2.4 / 4.3:
Two-intersection sets and sub-difference sets / 4.4:
Two-intersection sets in PG(<$$>) / 4.4.1:
Sub-difference sets of Singer difference sets / 4.4.2:
Bibliography
Index
Introduction / 1:
The nature of the problems / 1.1:
The combinatorial structures in question / 1.2:
24.

電子ブック

EB
William Meeks, Gian Pietro Pirola, Antonio Ros, Harold Rosenberg, Centro internazionale matematico estivo., Gian P. Pirola, A. Ros, H. Rosenberg
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin / Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Einführung in die Reflexlokomotion / 1:
Grundbegriffe des Vojta-Prinzips / 1.1:
Die globalen Muster Reflexkriechen und Reflexumdrehen in der motorischen Ontogenese / 1.2:
Haltungsmuster der idealmotorischen Ontogenese und ihre motorischen Teilmuster in der Reflexlokomotion / 1.3:
Die wichtigsten spontanen Haltungsmuster aus der Bauchlage / 1.3.1:
Die wichtigsten spontanen Haltungsmuster aus der Rückenlage / 1.3.2:
Bedeutung der Teilmuster der Reflexlokomotion für die motorische Ontogenese / 1.3.3:
Zeitlicher und räumlicher Ablauf des Reflexkriechens und Reflexumdrehens / 1.4:
Die Reflexfortbewegung - Punktum fixum, seine Bedeutung und Folgen / 1.5:
Auswirkungen der Reflexfortbewegung / 1.6:
Einfluss auf den neurologischen Status / 1.6.1:
Einfluss auf Feinmotorik, Arthrie, Gnosie und Vegetativum / 1.6.2:
Anwendung der Reflexlokomotion bei Säuglingen, Kleinkindern und Erwachsenen / 1.7:
Anwendung bei Säuglingen und Kleinkindern / 1.7.1:
Speicherung der Muster der Reflexfortbewegung im ZNS / 1.7.2:
Anwendung bei älteren Kindern und Erwachsenen / 1.7.3:
Das Lokomotionsprinzip / 1.8:
Muskeln als Antigravitatoren und Aufrichter / 1.8.1:
Aufrichtung und Winkelgrade der Gelenkbewegungen bei der Fortbewegung / 1.8.2:
Gewichtsverlagerung, Greiffunktion und Fortbewegung / 1.8.3:
Das Lokomotionsprinzip in der Therapie / 1.8.4:
Muskelfunktion bei spontaner Fortbewegung und bei der Reflexlokomotion / 1.8.5:
Fortbewegungsarten des Menschen in Bauchlage / 1.9:
Reflexfortbewegungsmuster aus Bauch- und Rückenlage / 1.10:
Reflexkriechen - das globale Muster aus der Bauchlage und entwicklungsgeschichtliche Analogien / 1.10.1:
Reflexumdrehen - das globale Muster aus der Rückenlage / 1.10.2:
Prinzipien der Reflexfortbewegung / 1.11:
Funktionen, gebunden an die Reflexfortbewegung / 1.11.1:
Vordehnung von Muskelgruppen / 1.11.2:
Technik der Anwendung der Reflexfortbewegung / 1.11.3:
Die reziproken Muster / 1.11.4:
Synergistenfunktion und Körperhaltung / 1.11.5:
Reflexkriechen / 2:
Inhalte des Reflexkriechens / 2.1:
Gelenkstellungen in der Ausgangslage / 2.1.1:
Auslösezonen / 2.1.2:
Räumliche und zeitliche Summation der Auslösereize / 2.1.3:
Auslösezonen an den Extremitäten / 2.1.4:
Auslösezonen an Rumpf und Gliedergürteln / 2.1.5:
Stützfunktion von Gesichtsarm und Schultergürtel / 2.2:
Funktion der Skapula / 2.2.1:
Dorsale muskuläre Bindung des Rumpfes an die Skapula / 2.2.2:
Ventrale muskuläre Bindung des Schultergürtels an den Oberarm / 2.2.3:
Muskuläre Bindungen im Schultergelenk / 2.2.4:
Vergleich: Spinal übergeordnete synergistische Muskelfunktion und Kokontraktion / 2.2.5:
Aufrichtung des Rumpfes durch antigravitatorische Funktion von M. pectoralis major und Schulterblattmuskulatur / 2.2.6:
M. latissimus dorsi und Rotatoren des Schultergürtels / 2.2.7:
Aktivitäten im Hand- und Unterarmbereich / 2.2.8:
Idealmotorische Entwicklung: Stützfunktion der Arme, Kopfbewegung und Thoraxhebung bis zum 3. Monat / 2.2.9:
Teilmuster des Reflexkriechens in der ideal-motorischen Entwicklung: Stützfunktion der Arme und Kopfbewegung / 2.2.10:
Schrittbewegung des Hinterhauptsarms und seine Beziehung zum stützenden Gesichtsarm / 2.3:
Bewegungen im Schultergelenk (Oberarm und Schulterblatt) / 2.3.1:
Besondere Funktion des M. serratus anterior / 2.3.2:
Bewegungen im Ellenbogengelenk / 2.3.3:
Bewegungen der Hand / 2.3.4:
Streckung und Drehung von Kopf und Halswirbelsäule bei Vorwärtsbewegung der Schultergürtelachse / 2.4:
Die abnormale Kopfhaltung bei Zerebralparesen und anderen motorischen Störungen / 2.4.1:
Die einheitliche Koordinationsebene beim Reflexkriechen: Beispiel Kopfbewegungen / 2.4.2:
Idealmotorische Entwicklung: Zusammenhang zwischen Kopfbewegung und Aufrichtung des Rumpfes bei der Haltungssteuerung / 2.4.3:
Schrittzyklus beim Vierfüßlergang niederer Wirbeltiere, beim menschlichen Krabbelgang und bei der Reflexlokomotion / 2.5:
Schrittphasen beim Reflexkriechen und ihre Abhängigkeit von der Kopfdrehung über die Mittellinie / 2.5.1:
Schaltstellen der afferenten und efferenten Impulse bei den Schrittphasen des Reflexkriechens / 2.5.2:
Kreuzgangmuster "Reflexkriechen": Schrittphasen und ihre relativen Zeiteinheiten / 2.5.3:
Zusammenfassung / 2.5.4:
Hypothese zur Diskussion der Bahnungsvorgänge im ZNS / 2.5.5:
Beinbewegungen und Schrittphasen / 2.6:
Verschmelzung der Relaxationsphase mit dem Stütz auf dem Kniegelenk / 2.6.1:
Beugephase des Gesichtsbeins / 2.6.2:
Stütz des Gesichtsbeins auf dem Kniegelenk / 2.6.3:
Stand- und Stoßphase des Hinterhauptsbeins / 2.6.4:
Bewegungen des Axisorgans: Kopf und zervikaler Bereich / 2.7:
Bewegungen der Schultergürtelachse auf der Drehscheibe des gesichtsseitigen Schultergelenks / 2.7.1:
Das bindegewebige Gerüst der autochthonen Muskulatur und ihr Servomechanismus / 2.7.2:
Streckung im Axisorgan / 2.7.3:
Die Bauchmuskelketten / 2.7.4:
Bauchpresse, Atmung, Blase und Beckenboden / 2.7.5:
Aktivitäten im orofazialen Bereich / 2.8:
Blickwendungen / 2.8.1:
Aktivierung von Mundspalte und Unterkiefer / 2.8.2:
Zungen- und Mundbodenmotorik sowie Schluckfunktion / 2.8.3:
Reflexumdrehen aus der Rückenlage / 3:
Vergleich: Reflexumdrehen und Reflexkriechen / 3.1:
Historischer Rückblick: Entstehung des Reflexumdrehens / 3.2:
Reflexumdrehen aus Rückenlage / 3.3:
Die asymmetrische Körperhaltung des Neugeborenen / 3.3.1:
Der adäquate Reiz für den Mechanismus des Reflexumdrehens: Die Brustzone / 3.3.2:
Einstellung der Wirbelsäule in axiale Streckung / 3.4:
Außenrotation in den Schlüsselgelenken / 3.4.1:
Reflexumdrehen aus der Rückenlage beim Erwachsenen: Vergleich zum Neugeborenen / 3.4.2:
Zwerchfellkontraktion, Bauchpresse und Interozeption von Pleura, Mediastinum und Bauchorganen, Rippenbewegungen und Atemtätigkeit / 3.5:
Gelenk- und Muskelfunktionen beim Reflexumdrehen aus der Rückenlage / 3.6:
Rumpfbewegungen / 3.7:
Beckenextension und Funktion der dorsalen und ventralen Muskulatur des Axisorgans / 3.7.1:
Hinterhaupt und kontrahierter M. trapezius als Stützbasis für die Beckenextension / 3.7.2:
Beckenschrägstellung, Kopfdrehung und Konvexität der Lendenwirbelsäule / 3.7.3:
Beckenrotation zum Hinterhauptsarm bei Konvexität der Lendenwirbelsäule zur Hinterhauptsseite: Die erste schräge Bauchmuskelkette / 3.7.4:
Brustkorbrotation zum Hinterhauptsarm: Die zweite schräge Bauchmuskelkette und die Bewegungen des Gesichtsarms / 3.7.5:
Hinterhauptsarm mit Skapula / 3.7.6:
Weitere Rotatoren des Oberkörpers: M. pectoralis minor und M. serratus anterior der Hinterhauptsseite / 3.7.7:
Idealmotorische Entwicklung des gesunden Neugeborenen: Aus der Rückenlage über das Drehen in den Krabbelgang / 3.8:
Funktion der belasteten Skapula: Vergleich beim Reflexkriechen und Reflexumdrehen / 3.9:
Reflexumdrehen aus der Seitenlage / 4:
Lage der Extremitäten beim Reflexumdrehen aus der Seitenlage / 4.1:
Unten liegender Arm / 4.1.1:
Unten liegendes Bein / 4.1.2:
Oben liegender Arm / 4.1.3:
Oben liegendes Bein / 4.1.4:
Auslösezonen beim Reflexumdrehen aus der Seitenlage / 4.2:
Auslösezonen an oben liegender Rumpfhälfte / 4.2.1:
Extremitätenbewegungen des Reflexumdrehens aus der Seitenlage: Vergleich mit den Schrittphasen des Krabbelgangs / 4.2.2:
Muskelfunktionen der stützenden Extremitäten / 4.4:
Der stützende Arm / 4.4.1:
Das stützende Bein / 4.4.2:
Funktionen der entlasteten Extremitäten / 4.5:
Der entlastete Arm / 4.5.1:
Das entlastete Bein / 4.5.2:
Axisorgan beim Reflexumdrehen aus der Seitenlage / 4.6:
Aufrichtende Funktion der autochthonen Muskulatur: Ihre Einheit und ideale Afferenz zur Steuerung der reziproken Muster / 4.6.1:
Autochthone Muskulatur in Entwicklungs-kinesiologie und motorischer Pathologie / 4.6.2:
Rotatorische Funktion der autochthonen Muskulatur: Ihre Beziehung zu Mm. serratus posterior superior und inferior / 4.6.3:
Zusammenfassung: Funktion der autochthonen Muskulatur / 4.6.4:
Beginn der Kopfdrehung in der motorischen Entwicklung: Fechterstellung in der 6.-8. Lebenswoche / 4.7:
Kopfdrehung und Auflagefläche bei der Fechterstellung / 4.7.1:
Opisthotone Kopfdrehung (6. Lebenswoche) und ihre Folgen / 4.7.2:
Opisthotone Kopfdrehung bei infantiler Zerebralparese / 4.7.3:
Kopfdrehung im Muster des Reflexumdrehens / 4.8:
Wirkung von M. longus capitis und M. longus colli auf die Kopfbasis bei intersegmentaler Rotation der Halswirbel / 4.8.1:
Mm. serratus posterior superior und inferior / 4.8.2:
Skalenusgruppe und Pars superior des M. trapezius / 4.8.3:
Zusammenfassung: Kopf und Halswirbelsäule / 4.8.4:
Differenzierung der dorsalen Muskulatur desAxisorgans beim Reflexumdrehen / 4.9:
M. quadratus lumborum und M. serratus posterior inferior: Synergisten der schrägen Bauchmuskulatur / 4.9.1:
Drehvorgang bei Zerebralparesen und anderen motorischen Störungen / 4.9.2:
Ungewöhnliche Funktion von M. serratus posterior inferior, unterem und mittlerem M. trapezius beim Drehvorgang / 4.9.3:
M. serratus posterior inferior: Sein Kontrahent M. iliopsoas / 4.9.4:
M. serratus anterior: Initiator der schrägen Bauchmuskelkette beim Drehvorgang / 4.9.5:
M. latissimus dorsi: Seine Beziehung zur autochthonen Muskulatur beim Drehvorgang / 4.9.6:
Drehvorgang im Schultergürtel / 4.10:
Mm. pectoralis minor und major: Ihre Synergisten, Mm. rhomboidei und M. trapezius / 4.10.1:
Das Schulterblatt: Vom stützenden Knochen zum Os interpositum / 4.10.2:
Abdominale Atmung, Harrison-Furche und intersegmentale Drehung der Wirbelsäule / 4.10.3:
Muskulatur der Bauchdecke bei der Reflexlokomotion / 4.10.4:
Phasenwechsel beim Reflexumdrehen aus der Seitenlage / 4.10.5:
Zusammenfassung: Drehvorgang / 4.10.6:
Aktiver Vertikalisierungsprozess beim Reflexumdrehen: Vergleich zu anderen Formen der Bewegungstherapie / 4.10.7:
Literaturverzeichnis
Sachverzeichnis
Einführung in die Reflexlokomotion / 1:
Grundbegriffe des Vojta-Prinzips / 1.1:
Die globalen Muster Reflexkriechen und Reflexumdrehen in der motorischen Ontogenese / 1.2:
25.

図書

図書
George Casella, Roger L. Berger
出版情報: Belmont, Calif. : Brooks/Cole, c2002  xxviii, 660 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Probability Theory / 1:
Set Theory / 1.1:
Basics of Probability Theory / 1.2:
Axiomatic Foundations / 1.2.1:
The Calculus of Probabilities / 1.2.2:
Counting / 1.2.3:
Enumerating Outcomes / 1.2.4:
Conditional Probability and Independence / 1.3:
Random Variables / 1.4:
Distribution Functions / 1.5:
Density and Mass Functions / 1.6:
Exercises / 1.7:
Miscellanea / 1.8:
Transformations and Expectations / 2:
Distributions of Functions of a Random Variable / 2.1:
Expected Values / 2.2:
Moments and Moment Generating Functions / 2.3:
Differentiating Under an Integral Sign / 2.4:
Common Families of Distributions / 2.5:
Introduction / 3.1:
Discrete Distributions / 3.2:
Continuous Distributions / 3.3:
Exponential Families / 3.4:
Location and Scale Families / 3.5:
Inequalities and Identities / 3.6:
Probability Inequalities / 3.6.1:
Identities / 3.6.2:
Multiple Random Variables / 3.7:
Joint and Marginal Distributions / 4.1:
Conditional Distributions and Independence / 4.2:
Bivariate Transformations / 4.3:
Hierarchical Models and Mixture Distributions / 4.4:
Covariance and Correlation / 4.5:
Multivariate Distributions / 4.6:
Inequalities / 4.7:
Numerical Inequalities / 4.7.1:
Functional Inequalities / 4.7.2:
Properties of a Random Sample / 4.8:
Basic Concepts of Random Samples / 5.1:
Sums of Random Variables from a Random Sample / 5.2:
Sampling from the Normal Distribution / 5.3:
Properties of the Sample Mean and Variance / 5.3.1:
The Derived Distributions: Student's t and Snedecor's F / 5.3.2:
Order Statistics / 5.4:
Convergence Concepts / 5.5:
Convergence in Probability / 5.5.1:
Almost Sure Convergence / 5.5.2:
Convergence in Distribution / 5.5.3:
The Delta Method / 5.5.4:
Generating a Random Sample / 5.6:
Direct Methods / 5.6.1:
Indirect Methods / 5.6.2:
The Accept/Reject Algorithm / 5.6.3:
Principles of Data Reduction / 5.7:
The Sufficiency Principle / 6.1:
Sufficient Statistics / 6.2.1:
Minimal Sufficient Statistics / 6.2.2:
Ancillary Statistics / 6.2.3:
Sufficient, Ancillary, and Complete Statistics / 6.2.4:
The Likelihood Principle / 6.3:
The Likelihood Function / 6.3.1:
The Formal Likelihood Principle / 6.3.2:
The Equivariance Principle / 6.4:
Point Estimation / 6.5:
Methods of Finding Estimators / 7.1:
Method of Moments / 7.2.1:
Maximum Likelihood Estimators / 7.2.2:
Bayes Estimators / 7.2.3:
The EM Algorithm / 7.2.4:
Methods of Evaluating Estimators / 7.3:
Mean Squared Error / 7.3.1:
Best Unbiased Estimators / 7.3.2:
Sufficiency and Unbiasedness / 7.3.3:
Loss Function Optimality / 7.3.4:
Hypothesis Testing / 7.4:
Methods of Finding Tests / 8.1:
Likelihood Ratio Tests / 8.2.1:
Bayesian Tests / 8.2.2:
Union-Intersection and Intersection-Union Tests / 8.2.3:
Methods of Evaluating Tests / 8.3:
Error Probabilities and the Power Function / 8.3.1:
Most Powerful Tests / 8.3.2:
Sizes of Union-Intersection and Intersection-Union Tests / 8.3.3:
p-Values / 8.3.4:
Interval Estimation / 8.3.5:
Methods of Finding Interval Estimators / 9.1:
Inverting a Test Statistic / 9.2.1:
Pivotal Quantities / 9.2.2:
Pivoting the CDF / 9.2.3:
Bayesian Intervals / 9.2.4:
Methods of Evaluating Interval Estimators / 9.3:
Size and Coverage Probability / 9.3.1:
Test-Related Optimality / 9.3.2:
Bayesian Optimality / 9.3.3:
Asymptotic Evaluations / 9.3.4:
Consistency / 10.1:
Efficiency / 10.1.2:
Calculations and Comparisons / 10.1.3:
Bootstrap Standard Errors / 10.1.4:
Robustness / 10.2:
The Mean and the Median / 10.2.1:
M-Estimators / 10.2.2:
Asymptotic Distribution of LRTs / 10.3:
Other Large-Sample Tests / 10.3.2:
Approximate Maximum Likelihood Intervals / 10.4:
Other Large-Sample Intervals / 10.4.2:
Analysis of Variance and Regression / 10.5:
Oneway Analysis of Variance / 11.1:
Model and Distribution Assumptions / 11.2.1:
The Classic ANOVA Hypothesis / 11.2.2:
Inferences Regarding Linear Combinations of Means / 11.2.3:
The ANOVA F Test / 11.2.4:
Simultaneous Estimation of Contrasts / 11.2.5:
Partitioning Sums of Squares / 11.2.6:
Simple Linear Regression / 11.3:
Least Squares: A Mathematical Solution / 11.3.1:
Best Linear Unbiased Estimators: A Statistical Solution / 11.3.2:
Models and Distribution Assumptions / 11.3.3:
Estimation and Testing with Normal Errors / 11.3.4:
Estimation and Prediction at a Specified x = x[subscript 0] / 11.3.5:
Simultaneous Estimation and Confidence Bands / 11.3.6:
Regression Models / 11.4:
Regression with Errors in Variables / 12.1:
Functional and Structural Relationships / 12.2.1:
A Least Squares Solution / 12.2.2:
Maximum Likelihood Estimation / 12.2.3:
Confidence Sets / 12.2.4:
Logistic Regression / 12.3:
The Model / 12.3.1:
Estimation / 12.3.2:
Robust Regression / 12.4:
Computer Algebra / 12.5:
Table of Common Distributions
References
Author Index
Subject Index
Probability Theory / 1:
Set Theory / 1.1:
Basics of Probability Theory / 1.2:
26.

図書

図書
Dang Dinh Ang ... [et al.]
出版情報: Berlin ; Tokyo : Springer, c2002  viii, 183 p. ; 24 cm
シリーズ名: Lecture notes in mathematics ; 1792
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Mathematical preliminaries / 1:
Banach spaces / 1.1:
Hilbert spaces / 1.2:
Some useful function spaces / 1.3:
Spaces of continuous functions / 1.3.1:
Spaces of integrable functions / 1.3.2:
Sobolev spaces / 1.3.3:
Analytic functions and harmonic functions / 1.4:
Fourier transform and Laplace transform / 1.5:
Regularization of moment problems by truncated expansion and by the Tikhonov method / 2:
Method of truncated expansion / 2.1:
A construction of regularized solutions / 2.1.1:
Convergence of regularized solutions and error estimates / 2.1.2:
Error estimates using eigenvalues of the Laplacian / 2.1.3:
Method of Tikhonov / 2.2:
Case 1: exact solutions in L2(Ω) / 2.2.1:
Case 2: exact solutions in Lα* (Ω), 1 < α&infinity; < 8 / 2.2.2:
Case 3: exact solutions in H1(Ω) / 2.2.3:
Notes and remarks / 2.3:
Backus-Gilbert regularization of a moment problem / 3:
Backus-Gilbert solutions and their stability / 3.1:
Definition of the Backus-Gilbert solutions / 3.2.1:
Stability of the Backus-Gilbert solutions / 3.2.2:
Regularization via Backus-Gilbert solutions / 3.3:
Definitions and notations / 3.3.1:
Main results / 3.3.2:
The Hausdorff moment problem: regularization and error estimates / 4:
Finite moment approximation of (4.1) / 4.1:
Proof of Theorem 4.1 / 4.1.1:
Proof of Theorem 4.2 / 4.1.2:
A moment problem from Laplace transform / 4.2:
Analytic functions: reconstruction and Sinc approximations / 4.3:
Reconstruction of functions in H2(U): approximation by polynomials / 5.1:
Reconstruction of an analytic function: a problem of optimal recovery / 5.2:
Cardinal series representation and approximation: reformulation of moment problems / 5.3:
Two-dimensional Sinc theory / 5.3.1:
Approximation theorems / 5.3.2:
Regularization of some inverse problems in potential theory / 6:
Analyticity of harmonic functions / 6.1:
CauchyÆs problem for the Laplace equation / 6.2:
Surface temperature determination from borehole measurements (steady case) / 6.3:
Regularization of some inverse problems in heat conduction147 / 7:
The backward heat equation / 7.1:
Surface temperature determination from borehole measurements: a two-dimensional problem / 7.2:
An inverse two-dimensional Stefan problem: identification of boundary values / 7.3:
Epilogue / 7.4:
References
Index
Introduction
Mathematical preliminaries / 1:
Banach spaces / 1.1:
27.

電子ブック

EB
Silke Goronzy
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Outline of This Book / 1.1:
ASR: An Overview / 2:
General Overview / 2.1:
Automatic Processing of Speech / 2.2:
Evaluation of ASR Systems / 2.3:
Adaptation in ASR Systems / 2.4:
Pre-processing of the Speech Data / 3:
A/D Conversion / 3.1:
Windowing / 3.2:
Filter Bank Analysis / 3.3:
Stochastic Modelling of Speech / 4:
Hidden Markov Models (HMMs) / 4.1:
Solving the Three HMM Problems / 4.2:
Recognition / 4.2.1:
Finding the Optimal State Sequence / 4.2.2:
Training / 4.2.3:
Knowledge Bases of an ASR System / 5:
Acoustic Models / 5.1:
Pronunciation Dictionary / 5.2:
Language Models (LMs) / 5.3:
Speaker Adaptation / 6:
The State of the Art in Speaker Adaptation / 6.1:
Feature-Based Approaches / 6.1.1:
Model-Based Approaches / 6.1.2:
Maximum Likelihood Linear Regression / 6.2:
MLLR for Small Amounts of Adaptation Data / 6.2.1:
The Weighted MLLR Approach / 6.2.2:
Implementation Issues / 6.2.3:
Experiments and Results / 6.2.4:
Summary / 6.3:
Confidence Measures / 7:
The State of the Art in Confidence Measures / 7.1:
Statistical Hypothesis Testing / 7.1.1:
Using a Set of Features / 7.1.2:
Neural Networks / 7.2:
Activation Function / 7.2.1:
Output Function / 7.2.2:
Learning in NNs / 7.2.3:
Evaluating Confidence Measures / 7.3:
CM Features / 7.4:
Phone-Duration Based Features / 7.4.1:
Additional Features / 7.4.2:
Combining the NN Classifier with Speaker Adaptation / 7.4.3:
Evaluation of the NN Classifier / 7.5:
Semi-supervised Adaptation / 7.5.2:
Pronunciation Adaptation / 7.6:
The State of the Art in Pronunciation Modelling / 8.1:
Rule-Based Approaches / 8.1.1:
Data-Driven Approaches / 8.1.2:
Combined Approaches / 8.1.3:
Miscellaneous Approaches / 8.1.4:
Re-training the Acoustic Models / 8.1.5:
Pronunciation Modelling of Accented and Dialect Speech / 8.2:
Recognising Non-native Speech / 8.3:
Generating Non-native Pronunciation Variants / 8.4:
Classification Trees / 8.4.1:
Future Work / 8.4.2:
Dynamic Selection of Pronunciation Rules / 9.1:
Bibliography / 10:
Index
Glossary
Databases and ExperimentalSettings / A:
The German Database / A.1:
Settings for NN Training and Testing / A.1.1:
The British English WSJ Database / A.3:
ISLE Database / A.4:
MLLR Results / B:
Phoneme Inventory / C:
German Symbol Inventory / C.1:
English Symbol Inventory / C.2:
Manually Derived Pronunciation Rules for the ISLE Corpus / C.3:
Introduction / 1:
Outline of This Book / 1.1:
ASR: An Overview / 2:
28.

電子ブック

EB
Ang, Dang Dinh Ang, Rudolf Gorenflo, Vy K. Le, Dang D. Trong
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin / Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Mathematical preliminaries / 1:
Banach spaces / 1.1:
Hilbert spaces / 1.2:
Some useful function spaces / 1.3:
Spaces of continuous functions / 1.3.1:
Spaces of integrable functions / 1.3.2:
Sobolev spaces / 1.3.3:
Analytic functions and harmonic functions / 1.4:
Fourier transform and Laplace transform / 1.5:
Regularization of moment problems by truncated expansion and by the Tikhonov method / 2:
Method of truncated expansion / 2.1:
A construction of regularized solutions / 2.1.1:
Convergence of regularized solutions and error estimates / 2.1.2:
Error estimates using eigenvalues of the Laplacian / 2.1.3:
Method of Tikhonov / 2.2:
Case 1: exact solutions in L2(Ω) / 2.2.1:
Case 2: exact solutions in Lα* (Ω), 1 < α&infinity; < 8 / 2.2.2:
Case 3: exact solutions in H1(Ω) / 2.2.3:
Notes and remarks / 2.3:
Backus-Gilbert regularization of a moment problem / 3:
Backus-Gilbert solutions and their stability / 3.1:
Definition of the Backus-Gilbert solutions / 3.2.1:
Stability of the Backus-Gilbert solutions / 3.2.2:
Regularization via Backus-Gilbert solutions / 3.3:
Definitions and notations / 3.3.1:
Main results / 3.3.2:
The Hausdorff moment problem: regularization and error estimates / 4:
Finite moment approximation of (4.1) / 4.1:
Proof of Theorem 4.1 / 4.1.1:
Proof of Theorem 4.2 / 4.1.2:
A moment problem from Laplace transform / 4.2:
Analytic functions: reconstruction and Sinc approximations / 4.3:
Reconstruction of functions in H2(U): approximation by polynomials / 5.1:
Reconstruction of an analytic function: a problem of optimal recovery / 5.2:
Cardinal series representation and approximation: reformulation of moment problems / 5.3:
Two-dimensional Sinc theory / 5.3.1:
Approximation theorems / 5.3.2:
Regularization of some inverse problems in potential theory / 6:
Analyticity of harmonic functions / 6.1:
CauchyÆs problem for the Laplace equation / 6.2:
Surface temperature determination from borehole measurements (steady case) / 6.3:
Regularization of some inverse problems in heat conduction147 / 7:
The backward heat equation / 7.1:
Surface temperature determination from borehole measurements: a two-dimensional problem / 7.2:
An inverse two-dimensional Stefan problem: identification of boundary values / 7.3:
Epilogue / 7.4:
References
Index
Introduction
Mathematical preliminaries / 1:
Banach spaces / 1.1:
29.

図書

図書
Jie Chen, Ut-Va Koc, K.J. Ray Liu
出版情報: New York : Marcel Dekker, c2002  xv, 475 p. ; 24 cm
シリーズ名: Signal processing and communications series ; 12
所蔵情報: loading…
目次情報: 続きを見る
Series Introduction
Preface
Background and Standards / Part I:
Video Communications / 1:
Importance of Video Compression / 1.1:
Advances in Video Coding / 1.2:
Waveform-Based Video Coding / 1.2.1:
Model-Based Video Coding / 1.2.2:
Motion-Compensated DCT Video Coding / 2:
Basic Principles of Motion Compensated Transform Coding / 2.1:
Picture Formats / 2.2:
Color Spaces and Sample Positions / 2.3:
Layers in Video Stream / 2.4:
Intraframe Block-Based Coding / 2.5:
Spatial Decorrelation Through DCT / 2.5.1:
Exploitation of Visual Insensitivity Through Quantization / 2.5.2:
Lossless Compression Through Entropy Codin / 2.5.3:
Interframe Block-Based Coding / 2.6:
Block-Based Motion Estimation Algorithms / 2.6.1:
Block-Based Motion Compensation / 2.6.2:
Coding DCT Coefficients in Interframes / 2.6.3:
Motion-Compensated DCT Video Encoder and Decoder / 2.7:
Fully DCT-Based Motion-Compensated Video Coder Structure / 2.8:
Video Coding Standards / 3:
Overview of Video Coding Standards / 3.1:
JPEG Standards / 3.1.1:
ITU H series / 3.1.2:
MPEG Standards / 3.1.3:
H.261 / 3.2:
H.263 / 3.2.2:
MPEG-1 / 3.2.3:
MPEG-2 (H.262) and HDTV / 3.2.4:
MPEG-4 / 3.2.5:
Algorithms / Part II:
DCT-Based Motion Estimation / 4:
DCT Pseudo-Phase Techniques / 4.1:
2-D Translational Motion Model / 4.2:
The DXT-ME Algorithm / 4.3:
Unitary Property of the System Matrix / 4.4:
Motion Estimation in Uniformly Bright Background / 4.5:
Computational Issues and Complexity / 4.6:
Simulation for Application to Image Registration / 4.7:
DCT-Based Motion Estimation Approach / 4.8:
Preprocessing / 4.8.1:
Adaptive Overlapping Approach / 4.8.2:
Simulation Results / 4.9:
Rough Count of Computations / 4.10:
Interpolation-Free Subpixel Motion Estimation / 5:
Pseudo Phases at Subpixel Level / 5.1:
One-Dimensional Signal Model / 5.1.1:
Two-Dimensional Image Model / 5.1.2:
Subpel Sinusoidal Orthogonality Principles / 5.2:
DCT-Based Subpixel Motion Estimation / 5.3:
DCT-Based Half-Pel Motion Estimation Algorithm (HDXT-ME) / 5.3.1:
DCT-Based Quarter-Pel Motion Estimation Algorithm (QDXT-ME and Q4DXT-ME) / 5.3.2:
Simulation Result / 5.4:
DCT-Based Motion Compensation / 6:
Integer-Pel DCT-Based Motion Compensation / 6.1:
Subpixel DCT-Based Motion Compensation / 6.2:
Interpolation Filter / 6.2.1:
Bilinear Interpolated Subpixel Motion Compensation / 6.2.2:
Cubic Interpolated Subpixel Motion Compensation / 6.2.3:
Interpolation By DCT/DST / 6.2.4:
DCT-I Interpolated Sequence / 6.3.1:
DCT-II of DCT-I Interpolated Half-Pel Motion Compensated Block / 6.3.2:
Matching Encoders with Decoders / 6.4:
Matching SE with SD / 6.4.1:
Matching TE with SD / 6.4.2:
Matching SE with TD / 6.4.3:
MPEG-4 and Content-Based Video Coding / 7:
Overview of MPEG-4 Standard / 7.1:
MPEG-4 Architecture / 7.1.1:
MPEG-4 Video Coding / 7.2:
Overview of MPEG-4 Video Coding / 7.2.1:
Arbitrarily Shaped Region Texture Coding / 7.2.2:
Motion Estimation and Compensation / 7.2.3:
Arbitrary Shape Coding / 7.2.4:
Advanced Coding Techniques / 7.2.5:
Deliver Video Bitstream over Networks / 7.3:
Rate Control / 7.3.1:
Error Resilience / 7.3.2:
Universal Accessibility / 7.3.3:
DCT-Domain Content-Based Video Coding / 7.4:
Transform Domain Motion Estimation/Compensation / 7.4.1:
Architectures and Implementation / 7.4.2:
Dual Generation of DCT and DST / 8:
Discrete Sinusoidal Transforms / 8.1:
Evolution of the Algorithms and Architectures / 8.1.1:
What Is Unique in Our Design? / 8.1.2:
One-Dimensional DCT Lattice Structures / 8.2:
Inverse Transforms / 8.2.1:
Multiplier-Reduction of the Lattice Structure / 8.2.3:
Comparisons of Architectures / 8.2.4:
Two-Dimensional DCT Lattice Structures / 8.3:
Dual Generation of 2-D DCT and DSCT / 8.3.1:
Architectures of Frame-Recursive Lattice 2D-DCT and 2-D DSCT / 8.3.3:
Comparisons / 8.3.4:
Applications to the HDTV Systems / 8.3.5:
Efficient Design of Video Coding Engine / 9:
Overview of Embedded Video Coding Engine / 9.1:
Overview of an Embedded Video Coder Design / 9.1.1:
Efficient Architecture of a Video Coding Engine / 9.2:
Why Should We Use CORDIC-Based Design? / 9.2.1:
2D-DXT/IDXT-II Programmable Module / 9.2.2:
Type Transformation Module / 9.2.3:
Pseudo-Phase Computation / 9.2.4:
Peak Searching / 9.2.5:
Half-Pel Motion Estimator Design / 9.2.6:
VLSI Design of Video Coding Engine / 9.2.7:
Design Criteria / 9.3.1:
VLSI Implementation / 9.3.2:
Low-Power and High-Performance Design / 10:
Low-Power Design / 10.1:
Low-Power Design Approaches / 10.1.1:
Algorithm/Architecture-Based Low-Power/High-Performance Approaches / 10.1.2:
Look-Ahead and Multirate Computing Concepts / 10.1.3:
Low-Power and High-Performance Architectures / 10.2:
Two-Stage Look-Ahead Type-II DCT/IDCT Coder / 10.2.1:
Pipelining Design for DCT Coefficients Conversion / 10.2.2:
Multirate Design for Pseudo-Phase Computation / 10.2.3:
Pipelining Design for Peak-Search / 10.2.4:
Two-Stage Look-Ahead Half-Pel Motion Estimator / 10.2.5:
Simulation Results and Hardware Cost / 10.3:
Applications / Part IV:
End-to-End Video over IP Delivery / 11:
Overview of Our Design / 11.1:
A Sonet Network Adapter Design / 11.1.1:
Joint Source-Channel Multistream Coding / 11.1.2:
The Brief Overview of Sonet / 11.2:
Packet over Sonet or Directly over Fiber / 11.2.2:
Design and Implement a Sonet Network Adapter / 11.2.3:
The Performance of Sonet Device / 11.2.4:
Multistream Video Coding / 11.3:
What is Unique in the Multistream Video Coding? / 11.3.1:
The Design of Multistream Video Coding / 11.3.2:
Bibliography / 11.4:
Index
Series Introduction
Preface
Background and Standards / Part I:
30.

図書

図書
Terry Lyons and Zhongmin Qian
出版情報: Oxford : Clarendon, 2002  x, 216 p. ; 25 cm
シリーズ名: Oxford mathematical monographs
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Background and general description / 1.1:
Controlled systems / 1.1.1:
Vector systems / 1.1.2:
Iterated integral expansions / 1.1.3:
Mathematics of rough paths / 1.2:
Lipschitz paths / 2:
Several examples / 2.1:
Integration theory / 2.2:
Equations driven by Lipschitz paths / 2.3:
Existence of solutions / 2.3.1:
Uniqueness / 2.3.2:
Existence of solutions revisited / 2.3.3:
Continuity of the Ito map / 2.3.4:
Comments and notes on Chapter 2 / 2.4:
Rough paths / 3:
Basic definitions and properties / 3.1:
The binomial inequality / 3.1.1:
Several basic results / 3.1.2:
Almost rough paths / 3.2:
Spaces of rough paths / 3.3:
Variation distances and variation topology / 3.3.1:
Young's integration theory / 3.3.2:
Elementary operations on rough paths / 3.3.3:
Comments and notes on Chapter 3 / 3.4:
Brownian rough paths / 4:
Control variation distances / 4.1:
Dyadic polygonal approximations / 4.2:
Holder's condition / 4.3:
Processes with long-time memory / 4.4:
Gaussian processes / 4.5:
Wiener processes in Banach spaces / 4.6:
Gaussian analysis / 4.6.1:
Wiener processes as geometric rough paths / 4.6.2:
Comments and notes on Chapter 4 / 4.7:
Path integration along rough paths / 5:
Lipschitz one-forms / 5.1:
Integration theory: degree two / 5.2:
Lipschitz continuity of integration / 5.3:
Ito's formula and stochastic integration / 5.4:
Ito's formula / 5.4.1:
Stochastic integration / 5.4.2:
Integration against geometric rough paths / 5.5:
Appendix of Chapter 5 / 5.6:
Banach tensor products / 5.6.1:
Differentiation, Taylor's theorem / 5.6.2:
Comments and notes on Chapter 5 / 5.7:
Universal limit theorem / 6:
Ito maps: rough paths with 2 [less than or equal] p [less than sign] 3 / 6.1:
The Picard iteration / 6.2.1:
Basic estimates / 6.2.2:
Lipschitz continuity / 6.2.3:
Continuity theorem / 6.2.4:
Flows of diffeomorphisms / 6.2.6:
The Ito map: geometric rough paths / 6.3:
Comments and notes on Chapter 6 / 6.4:
Vector fields and flow equations / 7:
Smoothness of Ito maps / 7.1:
Ito's vector fields / 7.2:
Flows of Ito vector fields / 7.3:
Appendix: Driver's flow equation / 7.4:
Comments and notes on Chapter 7 / 7.5:
Bibliography
Index
Introduction / 1:
Background and general description / 1.1:
Controlled systems / 1.1.1:
31.

図書

図書
Wolf, Wayne Hendrix
出版情報: Upper Saddle River, N.J. ; London : Prentice Hall PTR, c2002  xx, 618 p. ; 24 cm
シリーズ名: Modern semiconductor design series
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Third Edition
Preface to the Second Edition
Preface
Digital Systems and VLSI / 1:
Why Design Integrated Circuits? / 1.1:
Integrated Circuit Manufacturing / 1.2:
Technology / 1.2.1:
Economics / 1.2.2:
CMOS Technology / 1.3:
CMOS Circuit Techniques / 1.3.1:
Power Consumption / 1.3.2:
Design and Testability / 1.3.3:
Integrated Circuit Design Techniques / 1.4:
Hierarchical Design / 1.4.1:
Design Abstraction / 1.4.2:
Computer-Aided Design / 1.4.3:
A Look into the Future / 1.5:
Transistors and Layout / 2:
Introduction / 2.1:
Fabrication Processes / 2.2:
Overview / 2.2.1:
Fabrication Steps / 2.2.2:
Transistors / 2.3:
Structure of the Transistor / 2.3.1:
A Simple Transistor Model / 2.3.2:
Transistor Parasitics / 2.3.3:
Tub Ties and Latchup / 2.3.4:
Advanced Transistor Characteristics / 2.3.5:
Leakage and Subthreshold Currents / 2.3.6:
Advanced Transistor Structures / 2.3.7:
Spice Models / 2.3.8:
Wires and Vias / 2.4:
Wire Parasitics / 2.4.1:
Skin Effect in Copper Interconnect / 2.4.2:
Design Rules / 2.5:
Fabrication Errors / 2.5.1:
Scalable Design Rules / 2.5.2:
SCMOS Design Rules / 2.5.3:
Typical Process Parameters / 2.5.4:
Layout Design and Tools / 2.6:
Layouts for Circuits / 2.6.1:
Stick Diagrams / 2.6.2:
Hierarchical Stick Diagrams / 2.6.3:
Layout Design and Analysis Tools / 2.6.4:
Automatic Layout / 2.6.5:
Logic Gates / 3:
Combinational Logic Functions / 3.1:
Static Complementary Gates / 3.3:
Gate Structures / 3.3.1:
Basic Gate Layouts / 3.3.2:
Logic Levels / 3.3.3:
Delay and Transition Time / 3.3.4:
The Speed-Power Product / 3.3.5:
Layout and Parasitics / 3.3.7:
Driving Large Loads / 3.3.8:
Switch Logic / 3.4:
Alternative Gate Circuits / 3.5:
Pseudo-nMOS Logic / 3.5.1:
DCVS Logic / 3.5.2:
Domino Logic / 3.5.3:
Low-Power Gates / 3.6:
Delay Through Resistive Interconnect / 3.7:
Delay Through an RC Transmission Line / 3.7.1:
Delay Through RC Trees / 3.7.2:
Buffer Insertion in RC Transmission Lines / 3.7.3:
Crosstalk Between RC Wires / 3.7.4:
Delay Through Inductive Interconnect / 3.8:
RLC Basics / 3.8.1:
RLC Transmission Line Delay / 3.8.2:
Buffer Insertion in RLC Transmission Lines / 3.8.3:
Combinational Logic Networks / 4:
Standard Cell-Based Layout / 4.1:
Single-Row Layout Design / 4.2.1:
Standard Cell Layout Design / 4.2.2:
Simulation / 4.3:
Combinational Network Delay / 4.4:
Fanout / 4.4.1:
Path Delay / 4.4.2:
Transistor Sizing / 4.4.3:
Automated Logic Optimization / 4.4.4:
Logic and Interconnect Design / 4.5:
Delay Modeling / 4.5.1:
Wire Sizing / 4.5.2:
Buffer Insertion / 4.5.3:
Crosstalk Minimization / 4.5.4:
Power Optimization / 4.6:
Power Analysis / 4.6.1:
Switch Logic Networks / 4.7:
Combinational Logic Testing / 4.8:
Gate Testing / 4.8.1:
Combinational Network Testing / 4.8.2:
Sequential Machines / 5:
Latches and Flip-Flops / 5.1:
Categories of Memory Elements / 5.2.1:
Latches / 5.2.2:
Flip-Flops / 5.2.3:
Sequential Systems and Clocking Disciplines / 5.3:
One-Phase Systems for Flip-Flops / 5.3.1:
Two-Phase Systems for Latches / 5.3.2:
Advanced Clocking Analysis / 5.3.3:
Clock Generation / 5.3.4:
Sequential System Design / 5.4:
Structural Specification of Sequential Machines / 5.4.1:
State Transition Graphs and Tables / 5.4.2:
State Assignment / 5.4.3:
Design Validation / 5.5:
Sequential Testing / 5.7:
Subsystem Design / 6:
Subsystem Design Principles / 6.1:
Pipelining / 6.2.1:
Data Paths / 6.2.2:
Combinational Shifters / 6.3:
Adders / 6.4:
ALUs / 6.5:
Multipliers / 6.6:
High-Density Memory / 6.7:
ROM / 6.7.1:
Static RAM / 6.7.2:
The Three-Transistor Dynamic RAM / 6.7.3:
The One-Transistor Dynamic RAM / 6.7.4:
Field-Programmable Gate Arrays / 6.8:
Programmable Logic Arrays / 6.9:
Floorplanning / 7:
Floorplanning Methods / 7.1:
Block Placement and Channel Definition / 7.2.1:
Global Routing / 7.2.2:
Switchbox Routing / 7.2.3:
Power Distribution / 7.2.4:
Clock Distribution / 7.2.5:
Floorplanning Tips / 7.2.6:
Off-Chip Connections / 7.2.7:
Packages / 7.3.1:
The I/O Architecture / 7.3.2:
Pad Design / 7.3.3:
Architecture Design / 8:
Hardware Description Languages / 8.1:
Modeling with Hardware Description Languages / 8.2.1:
VHDL / 8.2.2:
Verilog / 8.2.3:
C as a Hardware Description Language / 8.2.4:
Register-Transfer Design / 8.3:
Data Path-Controller Architectures / 8.3.1:
ASM Chart Design / 8.3.2:
High-Level Synthesis / 8.4:
Functional Modeling Programs / 8.4.1:
Data / 8.4.2:
Control / 8.4.3:
Data and Control / 8.4.4:
Design Methodology / 8.4.5:
Architectures for Low Power / 8.5:
Architecture-Driven Voltage Scaling / 8.5.1:
Power-Down Modes / 8.5.2:
Systems-on-Chips and Embedded CPUs / 8.6:
Architecture Testing / 8.7:
Chip Design / 9:
Design Methodologies / 9.1:
Kitchen Timer Chip / 9.3:
Timer Specification and Architecture / 9.3.1:
Logic and Layout Design / 9.3.2:
Microprocessor Data Path / 9.3.4:
Data Path Organization / 9.4.1:
Clocking and Bus Design / 9.4.2:
CAD Systems and Algorithms / 9.4.3:
CAD Systems / 10.1:
Switch-Level Simulation / 10.3:
Layout Synthesis / 10.4:
Placement / 10.4.1:
Detailed Routing / 10.4.2:
Layout Analysis / 10.5:
Timing Analysis and Optimization / 10.6:
Logic Synthesis / 10.7:
Technology-Independent Logic Optimization / 10.7.1:
Technology-Dependent Logic Optimizations / 10.7.2:
Test Generation / 10.8:
Sequential Machine Optimizations / 10.9:
Scheduling and Binding / 10.10:
Hardware/Software Co-Design / 10.11:
Chip Designer's Lexicon / A:
Chip Design Projects / B:
Class Project Ideas / B.1:
Project Proposal and Specification / B.2:
Design Plan / B.3:
Design Checkpoints and Documentation / B.4:
Subsystems Check / B.4.1:
First Layout Check / B.4.2:
Project Completion / B.4.3:
Kitchen Timer Model / C:
Hardware Modeling in C / C.1:
Simulator / C.1.1:
Sample Execution / C.1.2:
Index
Preface to the Third Edition
Preface to the Second Edition
Preface
32.

電子ブック

EB
Jan Hendrik Bruinier
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin / Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Vector valued modular forms for the metaplectic group / 1:
The Weil representation / 1.1:
Poincaré series and Eisenstein series / 1.2:
Poincaré series / 1.2.1:
The Petersson scalar product / 1.2.2:
Eisenstein series / 1.2.3:
Non-holomorphic Poincare series of negative weight / 1.3:
The regularized theta lift / 2:
Siegel theta functions / 2.1:
The theta integral / 2.2:
The Fourier expansion of the theta lift / 2.3:
Lorentzian lattices / 3.1:
The hyperbolic Laplacian / 3.1.1:
Lattices of signature (2,l) / 3.2:
Modular forms on orthogonal groups / 3.3:
Borcherds products / 3.4:
Examples / 3.4.1:
Some Riemann geometry on O(2, l) / 4:
The invariant Laplacian / 4.1:
Modular forms with zeros and poles on Heegner divisors / 4.2:
Chern classes of Heegner divisors / 5:
A lifting into the cohomology / 5.1:
Comparison with the classical theta lift / 5.1.1:
Modular forms with zeros and poles on Heegner divisors II / 5.2:
References
Notation
Index
Introduction
Vector valued modular forms for the metaplectic group / 1:
The Weil representation / 1.1:
33.

図書

図書
Ralph Bergmann
出版情報: Berlin : Springer, c2002  xx, 393 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2432 . Lecture notes in artificial intelligence
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Complex Problem Solving in the Internet Age / 1.1:
Knowledge Intensive Problem Solving / 1.1.1:
Complexity Issues / 1.1.2:
Internet-Based Applications / 1.1.3:
Example Application Scenarios / 1.2:
Electronic Commerce / 1.2.1:
Diagnosis of Complex Technical Equipment / 1.2.2:
Electronics Design / 1.2.3:
Experience Reuse / 1.3:
Basic Scenarios of Experience Reuse / 1.3.1:
Expected Benefits of Experience Reuse / 1.3.2:
Experience Management / 1.4:
Knowledge Management / 1.4.1:
Experience Management versus Knowledge Management / 1.4.2:
Experience Management Activities / 1.4.3:
Experience Management Definition / 1.4.4:
Web Technologies for Experience Management / 1.5:
Representing and Storing Experience on the Web / 1.5.1:
Accessing Experience from the Web / 1.5.2:
Limitations of Information Access Approaches for Experience Reuse / 1.5.3:
Internet Technologies as Infrastructure for Experience Management / 1.5.4:
Methods for Experience Management on the Conceptual Level / 1.6:
Overview of This Book / 1.7:
The Topic in a Nutshell / 1.7.1:
Contributions from Recent Projects / 1.7.2:
Structure of the Book / 1.7.3:
Knowledge, Experience and Their Characteristics / 2:
Data, Information, and Knowledge / 2.1.1:
Specific and General Knowledge / 2.1.2:
Experience / 2.1.3:
Representation of Experience and Related Knowledge for Reuse / 2.1.4:
General Model for Experience Management / 2.2:
Problem Solving Cycle / 2.2.1:
Development and Maintenance Methodology / 2.2.2:
Related Models / 2.3:
Knowledge Management and Organizational Memory / 2.3.1:
Quality Improvement Paradigm and Experience Factory / 2.3.2:
The Case-Based Reasoning Cycle / 2.3.3:
Knowledge Representation for Experience Management / Part I:
Representing Experience / 3:
Cases for Representing Experience / 3.1:
Basic Case Structure / 3.1.1:
A First General Formalization of Cases / 3.1.2:
Utility of Experience / 3.1.3:
Representing Experience with Respect to Utility / 3.1.4:
Overview of Case Representation Approaches / 3.2:
The Textual Approach / 3.2.1:
The Conversational Approach / 3.2.2:
The Structural Approach / 3.2.3:
Comparing the Different Approaches / 3.2.4:
Effort Required for the Different Approaches / 3.2.5:
Focus on the Structural Approach / 3.2.6:
Formalizing Structural Case Representations / 3.3:
Attribute-Value Representation / 3.3.1:
Object-Oriented Representations / 3.3.2:
Graph Representations / 3.3.3:
Predicate Logic Representations / 3.3.4:
Relation to the General Definition / 3.3.5:
Comparing Different Structural Case Representation Approaches / 3.3.6:
Generalized Cases / 3.4:
Extensional Definition of Generalized Cases / 3.4.1:
Different Kinds of Generalized Cases / 3.4.2:
Representation of Generalized Cases / 3.4.3:
Hierarchical Representations and Abstract Cases / 3.5:
Advantages of Abstract Cases / 3.5.1:
Levels of Abstraction / 3.5.2:
Kind of Cases / 3.5.3:
Languages for Structural Case Representations / 3.6:
Common Case Representation Language CASUEL / 3.6.1:
The XML-based Orenge Modeling Language OML / 3.6.2:
Choice of the Vocabulary / 3.7:
Characterization Part / 3.7.1:
Lesson Part / 3.7.2:
Choice of Types / 3.7.3:
Assessing Experience Utility / 4:
Approximating Utility with Similarity / 4.1:
Traditional View of Case-Based Reasoning / 4.1.1:
Extended View / 4.1.2:
Similarity Measures / 4.1.3:
Relations between Similarity and Utility / 4.1.4:
General Considerations Concerning Similarity and Distance / 4.2:
Distance Measures / 4.2.1:
Possible Properties of Similarity Measures / 4.2.2:
Similarity and Fuzzy Sets / 4.2.3:
Similarity Measures for Attribute-Value Representations / 4.3:
Simple Measures for Binary Attributes / 4.3.1:
Simple Measures for Numerical Attributes / 4.3.2:
TheLocal-Global Principle / 4.3.3:
Local Similarity Measures for Numeric Attributes / 4.3.4:
Local Similarity Measures for Unordered and Totally Ordered Symbolic Attributes / 4.3.5:
Taxonomically Ordered Symbolic Types / 4.3.6:
Global Similarity Measures / 4.3.7:
Similarity Measures for Object-Oriented Representations / 4.4:
Example Use of Class Hierarchies and Object Similarities / 4.4.1:
Computing Object Similarities / 4.4.2:
Handling Multi-value Attributes / 4.4.3:
Related Approaches / 4.4.4:
Similarity Measures for Graph Representations / 4.5:
Graph Matching / 4.5.1:
Graph Editing / 4.5.2:
Similarity Measures for Predicate Logic Representations / 4.6:
Treating Atomic Formulas as Binary Attributes / 4.6.1:
Similarity between Atomic Formulas / 4.6.2:
Similarity through Logical Inference / 4.6.3:
Similarity for Generalized Cases / 4.7:
Canonical Extension of a Similarity Measure / 4.7.1:
The General Problem of Similarity Assessment / 4.7.2:
Representing Knowledge for Adaptation / 5:
Rule-Based Representations / 5.1:
Different Kinds of Rules / 5.1.1:
Formalization for Rules in an Object-Oriented Framework / 5.1.2:
An Example / 5.1.3:
Operator-Based Representations / 5.2:
Basic Approach / 5.2.1:
Representation / 5.2.2:
Restricting Adaptability with Consistency Constraints / 5.3:
Methods for Experience Management / 5.4:
User Communication / 6:
Introduction to User Interaction / 6.1:
A Basic Communication Architecture / 6.1.1:
Requirements / 6.1.2:
Distribution between Client and Server Side / 6.1.3:
A Formal Dialog Model / 6.2:
Overview / 6.2.1:
Dialog Situation / 6.2.2:
Dialog Interactions / 6.2.3:
Dialog Strategy and Its Execution / 6.2.4:
Predefined Static Dialog / 6.3:
Three-Step Questionnaire-Based Problem Acquisition / 6.3.1:
Static Domain Specific Dialogs / 6.3.2:
Dynamic and Adaptable Strategies / 6.4:
Criteria for Attribute Selection / 6.4.1:
Compiling Dialog Strategies / 6.4.2:
Dynamically Interpreted Strategies / 6.4.3:
Learning from User Interaction / 6.4.4:
Experience Presentation / 6.5:
Simple Lesson Lists / 6.5.1:
Experience Lists with External Links / 6.5.2:
Adding Similarity Explanations / 6.5.3:
Adaptive Experience Presentation / 6.5.4:
Experience Retrieval / 7:
General Considerations / 7.1:
Formal Retrieval Task / 7.1.1:
Storing Case Data in Databases / 7.1.2:
Overview of Approaches / 7.1.3:
Sequential Retrieval / 7.2:
Indexing by kd-Tree Variants / 7.3:
The Standard kd-Tree / 7.3.1:
The Inreca Tree / 7.3.2:
Building the Inreca Tree / 7.3.3:
Retrieval with the Inreca-Tree / 7.3.4:
Properties of kd-Tree Based Retrieval / 7.3.5:
Fish and Shrink Retrieval / 7.4:
BasicIdea / 7.4.1:
Retrieval Algorithm / 7.4.2:
Properties ofFish and Shrink / 7.4.3:
Case Retrieval Nets / 7.5:
The Case Retrieval Net Index Structure / 7.5.1:
The Retrieval Algorithm / 7.5.2:
Properties of Case Retrieval Nets / 7.5.3:
SQL Approximation / 7.6:
The Basic Idea / 7.6.1:
Properties of SQL Approximation / 7.6.2:
Summary / 7.7:
Experience Adaptation / 8:
Overview and Characterization of Different Adaptation Approaches / 8.1:
The Continuum of Adaptation Models / 8.1.1:
Generative Adaptation / 8.1.2:
Compositional Adaptation / 8.1.3:
Hierarchical Adaptation / 8.1.4:
Adaptation for Experience Management for Complex Problem Solving / 8.1.5:
Theory of Transformational Adaptation / 8.2:
Experience Transformations / 8.2.1:
The Experience Transformation Process / 8.2.2:
Similarity Measures in the Context of Experience Transformations / 8.2.3:
Relation to Rewrite Systems / 8.2.4:
Relation to Generalized Cases / 8.2.5:
Adaptation with Explicit Transformation Knowledge / 8.3:
Rule-Based Adaptation / 8.3.1:
Interactive Operator-Based Adaptation / 8.3.2:
Incremental Compositional Adaptation / 8.4:
Highly Structured Problems / 8.4.1:
Compositional Approach / 8.4.2:
The Adaptation Cycle / 8.4.3:
Controlling the Adaptation Cycle / 8.4.4:
Adaptation as Hill-Climbing Search / 8.4.5:
Developing and Maintaining Experience Management Applications / 9:
General Purpose of a Methodology / 9.1:
Methodology for Experience Management / 9.1.2:
Contributions to Methodology Development / 9.1.3:
INRECA Methodology Overview / 9.2:
Process Modeling / 9.2.1:
Experience Captured in Software Process Models / 9.2.2:
The INRECA Experience Base / 9.3:
Process Modeling in INRECA / 9.4:
Technical, Organizational, and Managerial Processes / 9.4.1:
Interaction among Processes / 9.4.2:
Combining Processes to Process Models / 9.4.3:
Generic and Specific Descriptions / 9.4.4:
The Common Generic Level / 9.5:
Managerial Processes / 9.5.1:
Technical Processes: Software Development / 9.5.3:
Organizational Processes / 9.5.4:
Documenting the INRECA Experience / 9.6:
Process Description Sheets / 9.6.1:
Product Description Sheets / 9.6.2:
Simple Method Description Sheets / 9.6.3:
Complex Method Description Sheets / 9.6.4:
Reusing and Maintaining INRECA Experience / 9.7:
The INRECA Reuse Procedure / 9.7.1:
Relations to the EMM Problem Solving Cycle / 9.7.2:
Development and Maintenance of the INRECA Experience Base / 9.7.3:
Tool Support for the INRECA Methodology / 9.8:
INRECA Experience Modeling Methodology Tool / 9.8.1:
Knowledge Modeling Tools / 9.8.2:
Experience Management Application Areas / Part III:
Experience Management for Electronic Commerce / 10:
Introduction to the Electronic Commerce Scenario / 10.1:
Electronic Commerce Definition / 10.1.1:
Transaction Model / 10.1.2:
Knowledge Involved in Electronic Commerce / 10.1.3:
Opportunities for Experience Management Support / 10.1.4:
Analyzing Pre-sales Scenarios / 10.2:
Customer Wishes / 10.2.1:
Products / 10.2.2:
Experience Representation for Product Search / 10.2.3:
WEBSELL: A Generic Electronic Commerce Architecture / 10.3:
Pathways Server and Dialog Components / 10.3.1:
Case-Based Retrieval / 10.3.2:
Collaborative Recommendation / 10.3.3:
Customization / 10.3.4:
Methodology Recipe for Electronic Commerce / 10.4:
Requirements Acquisition / 10.4.1:
Knowledge Modeling / 10.4.2:
GUI Development / 10.4.3:
Implement CBR Retrieval Engine / 10.4.4:
Integrate CBR and GUI / 10.4.5:
Application Overview / 10.5:
Application: Product Catalog for Operational Amplifiers / 10.6:
Vocabulary and User Interface / 10.6.1:
Benefit Analysis / 10.6.2:
Application: Customization of Electro-mechanical Components / 10.7:
Vocabulary, Retrieval, Customization, and User Interface / 10.7.1:
Experience Management for Self-Service and Help-Desk Support / 10.7.2:
Structure and Representation of the Experience Base / 11.1:
Object-Oriented Representation / 11.2.1:
Case Structure / 11.2.2:
Partitioning the Experience Base / 11.2.3:
User and Roles / 11.3:
Overall Architecture / 11.4:
The Server / 11.4.1:
The HOMER Client / 11.4.2:
Hotline Component / 11.5:
Create a New Problem Description / 11.5.1:
Retrieving Problem Solutions / 11.5.2:
Feedback from Problem Solving / 11.5.3:
Methodology Recipe for Help-Desk Applications / 11.6:
Managerial Processes during System Development / 11.6.1:
Organizational Processes during System Development / 11.6.2:
Technical Processes during System Development / 11.6.3:
Managerial Processes during System Use / 11.6.4:
Organizational Processes during System Use / 11.6.5:
Technical Processes during System Use / 11.6.6:
Process Model for a Help-Desk Project / 11.6.7:
Evaluation of HOMER / 11.7:
Benefits for the Help-Desk Operators / 11.7.1:
Evaluation of the Methodology Recipe / 11.7.2:
Experience Management for Electronic Design Reuse / 11.8:
Electronic Design Reuse / 12.1:
Intellectual Properties / 12.1.1:
IP Reuse / 12.1.2:
Existing IP Reuse Support / 12.1.3:
Challenges of Experience Management for IP Reuse / 12.1.4:
Representation of Intellectual Properties / 12.2:
IP Taxonomy / 12.2.1:
IP Attributes / 12.2.2:
IP Representation as Generalized Cases / 12.2.3:
An Example IP / 12.2.4:
Descriptions of Design Problems and Reuse-Related Knowledge / 12.3:
Problem Descriptions / 12.3.1:
The READEE Prototype for DSP Selection / 12.3.2:
Issues ofFuture Research / 12.5:
List of Symbols
References
Index
Introduction / 1:
Complex Problem Solving in the Internet Age / 1.1:
Knowledge Intensive Problem Solving / 1.1.1:
34.

電子ブック

EB
Ralph Bergmann
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Complex Problem Solving in the Internet Age / 1.1:
Knowledge Intensive Problem Solving / 1.1.1:
Complexity Issues / 1.1.2:
Internet-Based Applications / 1.1.3:
Example Application Scenarios / 1.2:
Electronic Commerce / 1.2.1:
Diagnosis of Complex Technical Equipment / 1.2.2:
Electronics Design / 1.2.3:
Experience Reuse / 1.3:
Basic Scenarios of Experience Reuse / 1.3.1:
Expected Benefits of Experience Reuse / 1.3.2:
Experience Management / 1.4:
Knowledge Management / 1.4.1:
Experience Management versus Knowledge Management / 1.4.2:
Experience Management Activities / 1.4.3:
Experience Management Definition / 1.4.4:
Web Technologies for Experience Management / 1.5:
Representing and Storing Experience on the Web / 1.5.1:
Accessing Experience from the Web / 1.5.2:
Limitations of Information Access Approaches for Experience Reuse / 1.5.3:
Internet Technologies as Infrastructure for Experience Management / 1.5.4:
Methods for Experience Management on the Conceptual Level / 1.6:
Overview of This Book / 1.7:
The Topic in a Nutshell / 1.7.1:
Contributions from Recent Projects / 1.7.2:
Structure of the Book / 1.7.3:
Knowledge, Experience and Their Characteristics / 2:
Data, Information, and Knowledge / 2.1.1:
Specific and General Knowledge / 2.1.2:
Experience / 2.1.3:
Representation of Experience and Related Knowledge for Reuse / 2.1.4:
General Model for Experience Management / 2.2:
Problem Solving Cycle / 2.2.1:
Development and Maintenance Methodology / 2.2.2:
Related Models / 2.3:
Knowledge Management and Organizational Memory / 2.3.1:
Quality Improvement Paradigm and Experience Factory / 2.3.2:
The Case-Based Reasoning Cycle / 2.3.3:
Knowledge Representation for Experience Management / Part I:
Representing Experience / 3:
Cases for Representing Experience / 3.1:
Basic Case Structure / 3.1.1:
A First General Formalization of Cases / 3.1.2:
Utility of Experience / 3.1.3:
Representing Experience with Respect to Utility / 3.1.4:
Overview of Case Representation Approaches / 3.2:
The Textual Approach / 3.2.1:
The Conversational Approach / 3.2.2:
The Structural Approach / 3.2.3:
Comparing the Different Approaches / 3.2.4:
Effort Required for the Different Approaches / 3.2.5:
Focus on the Structural Approach / 3.2.6:
Formalizing Structural Case Representations / 3.3:
Attribute-Value Representation / 3.3.1:
Object-Oriented Representations / 3.3.2:
Graph Representations / 3.3.3:
Predicate Logic Representations / 3.3.4:
Relation to the General Definition / 3.3.5:
Comparing Different Structural Case Representation Approaches / 3.3.6:
Generalized Cases / 3.4:
Extensional Definition of Generalized Cases / 3.4.1:
Different Kinds of Generalized Cases / 3.4.2:
Representation of Generalized Cases / 3.4.3:
Hierarchical Representations and Abstract Cases / 3.5:
Advantages of Abstract Cases / 3.5.1:
Levels of Abstraction / 3.5.2:
Kind of Cases / 3.5.3:
Languages for Structural Case Representations / 3.6:
Common Case Representation Language CASUEL / 3.6.1:
The XML-based Orenge Modeling Language OML / 3.6.2:
Choice of the Vocabulary / 3.7:
Characterization Part / 3.7.1:
Lesson Part / 3.7.2:
Choice of Types / 3.7.3:
Assessing Experience Utility / 4:
Approximating Utility with Similarity / 4.1:
Traditional View of Case-Based Reasoning / 4.1.1:
Extended View / 4.1.2:
Similarity Measures / 4.1.3:
Relations between Similarity and Utility / 4.1.4:
General Considerations Concerning Similarity and Distance / 4.2:
Distance Measures / 4.2.1:
Possible Properties of Similarity Measures / 4.2.2:
Similarity and Fuzzy Sets / 4.2.3:
Similarity Measures for Attribute-Value Representations / 4.3:
Simple Measures for Binary Attributes / 4.3.1:
Simple Measures for Numerical Attributes / 4.3.2:
TheLocal-Global Principle / 4.3.3:
Local Similarity Measures for Numeric Attributes / 4.3.4:
Local Similarity Measures for Unordered and Totally Ordered Symbolic Attributes / 4.3.5:
Taxonomically Ordered Symbolic Types / 4.3.6:
Global Similarity Measures / 4.3.7:
Similarity Measures for Object-Oriented Representations / 4.4:
Example Use of Class Hierarchies and Object Similarities / 4.4.1:
Computing Object Similarities / 4.4.2:
Handling Multi-value Attributes / 4.4.3:
Related Approaches / 4.4.4:
Similarity Measures for Graph Representations / 4.5:
Graph Matching / 4.5.1:
Graph Editing / 4.5.2:
Similarity Measures for Predicate Logic Representations / 4.6:
Treating Atomic Formulas as Binary Attributes / 4.6.1:
Similarity between Atomic Formulas / 4.6.2:
Similarity through Logical Inference / 4.6.3:
Similarity for Generalized Cases / 4.7:
Canonical Extension of a Similarity Measure / 4.7.1:
The General Problem of Similarity Assessment / 4.7.2:
Representing Knowledge for Adaptation / 5:
Rule-Based Representations / 5.1:
Different Kinds of Rules / 5.1.1:
Formalization for Rules in an Object-Oriented Framework / 5.1.2:
An Example / 5.1.3:
Operator-Based Representations / 5.2:
Basic Approach / 5.2.1:
Representation / 5.2.2:
Restricting Adaptability with Consistency Constraints / 5.3:
Methods for Experience Management / 5.4:
User Communication / 6:
Introduction to User Interaction / 6.1:
A Basic Communication Architecture / 6.1.1:
Requirements / 6.1.2:
Distribution between Client and Server Side / 6.1.3:
A Formal Dialog Model / 6.2:
Overview / 6.2.1:
Dialog Situation / 6.2.2:
Dialog Interactions / 6.2.3:
Dialog Strategy and Its Execution / 6.2.4:
Predefined Static Dialog / 6.3:
Three-Step Questionnaire-Based Problem Acquisition / 6.3.1:
Static Domain Specific Dialogs / 6.3.2:
Dynamic and Adaptable Strategies / 6.4:
Criteria for Attribute Selection / 6.4.1:
Compiling Dialog Strategies / 6.4.2:
Dynamically Interpreted Strategies / 6.4.3:
Learning from User Interaction / 6.4.4:
Experience Presentation / 6.5:
Simple Lesson Lists / 6.5.1:
Experience Lists with External Links / 6.5.2:
Adding Similarity Explanations / 6.5.3:
Adaptive Experience Presentation / 6.5.4:
Experience Retrieval / 7:
General Considerations / 7.1:
Formal Retrieval Task / 7.1.1:
Storing Case Data in Databases / 7.1.2:
Overview of Approaches / 7.1.3:
Sequential Retrieval / 7.2:
Indexing by kd-Tree Variants / 7.3:
The Standard kd-Tree / 7.3.1:
The Inreca Tree / 7.3.2:
Building the Inreca Tree / 7.3.3:
Retrieval with the Inreca-Tree / 7.3.4:
Properties of kd-Tree Based Retrieval / 7.3.5:
Fish and Shrink Retrieval / 7.4:
BasicIdea / 7.4.1:
Retrieval Algorithm / 7.4.2:
Properties ofFish and Shrink / 7.4.3:
Case Retrieval Nets / 7.5:
The Case Retrieval Net Index Structure / 7.5.1:
The Retrieval Algorithm / 7.5.2:
Properties of Case Retrieval Nets / 7.5.3:
SQL Approximation / 7.6:
The Basic Idea / 7.6.1:
Properties of SQL Approximation / 7.6.2:
Summary / 7.7:
Experience Adaptation / 8:
Overview and Characterization of Different Adaptation Approaches / 8.1:
The Continuum of Adaptation Models / 8.1.1:
Generative Adaptation / 8.1.2:
Compositional Adaptation / 8.1.3:
Hierarchical Adaptation / 8.1.4:
Adaptation for Experience Management for Complex Problem Solving / 8.1.5:
Theory of Transformational Adaptation / 8.2:
Experience Transformations / 8.2.1:
The Experience Transformation Process / 8.2.2:
Similarity Measures in the Context of Experience Transformations / 8.2.3:
Relation to Rewrite Systems / 8.2.4:
Relation to Generalized Cases / 8.2.5:
Adaptation with Explicit Transformation Knowledge / 8.3:
Rule-Based Adaptation / 8.3.1:
Interactive Operator-Based Adaptation / 8.3.2:
Incremental Compositional Adaptation / 8.4:
Highly Structured Problems / 8.4.1:
Compositional Approach / 8.4.2:
The Adaptation Cycle / 8.4.3:
Controlling the Adaptation Cycle / 8.4.4:
Adaptation as Hill-Climbing Search / 8.4.5:
Developing and Maintaining Experience Management Applications / 9:
General Purpose of a Methodology / 9.1:
Methodology for Experience Management / 9.1.2:
Contributions to Methodology Development / 9.1.3:
INRECA Methodology Overview / 9.2:
Process Modeling / 9.2.1:
Experience Captured in Software Process Models / 9.2.2:
The INRECA Experience Base / 9.3:
Process Modeling in INRECA / 9.4:
Technical, Organizational, and Managerial Processes / 9.4.1:
Interaction among Processes / 9.4.2:
Combining Processes to Process Models / 9.4.3:
Generic and Specific Descriptions / 9.4.4:
The Common Generic Level / 9.5:
Managerial Processes / 9.5.1:
Technical Processes: Software Development / 9.5.3:
Organizational Processes / 9.5.4:
Documenting the INRECA Experience / 9.6:
Process Description Sheets / 9.6.1:
Product Description Sheets / 9.6.2:
Simple Method Description Sheets / 9.6.3:
Complex Method Description Sheets / 9.6.4:
Reusing and Maintaining INRECA Experience / 9.7:
The INRECA Reuse Procedure / 9.7.1:
Relations to the EMM Problem Solving Cycle / 9.7.2:
Development and Maintenance of the INRECA Experience Base / 9.7.3:
Tool Support for the INRECA Methodology / 9.8:
INRECA Experience Modeling Methodology Tool / 9.8.1:
Knowledge Modeling Tools / 9.8.2:
Experience Management Application Areas / Part III:
Experience Management for Electronic Commerce / 10:
Introduction to the Electronic Commerce Scenario / 10.1:
Electronic Commerce Definition / 10.1.1:
Transaction Model / 10.1.2:
Knowledge Involved in Electronic Commerce / 10.1.3:
Opportunities for Experience Management Support / 10.1.4:
Analyzing Pre-sales Scenarios / 10.2:
Customer Wishes / 10.2.1:
Products / 10.2.2:
Experience Representation for Product Search / 10.2.3:
WEBSELL: A Generic Electronic Commerce Architecture / 10.3:
Pathways Server and Dialog Components / 10.3.1:
Case-Based Retrieval / 10.3.2:
Collaborative Recommendation / 10.3.3:
Customization / 10.3.4:
Methodology Recipe for Electronic Commerce / 10.4:
Requirements Acquisition / 10.4.1:
Knowledge Modeling / 10.4.2:
GUI Development / 10.4.3:
Implement CBR Retrieval Engine / 10.4.4:
Integrate CBR and GUI / 10.4.5:
Application Overview / 10.5:
Application: Product Catalog for Operational Amplifiers / 10.6:
Vocabulary and User Interface / 10.6.1:
Benefit Analysis / 10.6.2:
Application: Customization of Electro-mechanical Components / 10.7:
Vocabulary, Retrieval, Customization, and User Interface / 10.7.1:
Experience Management for Self-Service and Help-Desk Support / 10.7.2:
Structure and Representation of the Experience Base / 11.1:
Object-Oriented Representation / 11.2.1:
Case Structure / 11.2.2:
Partitioning the Experience Base / 11.2.3:
User and Roles / 11.3:
Overall Architecture / 11.4:
The Server / 11.4.1:
The HOMER Client / 11.4.2:
Hotline Component / 11.5:
Create a New Problem Description / 11.5.1:
Retrieving Problem Solutions / 11.5.2:
Feedback from Problem Solving / 11.5.3:
Methodology Recipe for Help-Desk Applications / 11.6:
Managerial Processes during System Development / 11.6.1:
Organizational Processes during System Development / 11.6.2:
Technical Processes during System Development / 11.6.3:
Managerial Processes during System Use / 11.6.4:
Organizational Processes during System Use / 11.6.5:
Technical Processes during System Use / 11.6.6:
Process Model for a Help-Desk Project / 11.6.7:
Evaluation of HOMER / 11.7:
Benefits for the Help-Desk Operators / 11.7.1:
Evaluation of the Methodology Recipe / 11.7.2:
Experience Management for Electronic Design Reuse / 11.8:
Electronic Design Reuse / 12.1:
Intellectual Properties / 12.1.1:
IP Reuse / 12.1.2:
Existing IP Reuse Support / 12.1.3:
Challenges of Experience Management for IP Reuse / 12.1.4:
Representation of Intellectual Properties / 12.2:
IP Taxonomy / 12.2.1:
IP Attributes / 12.2.2:
IP Representation as Generalized Cases / 12.2.3:
An Example IP / 12.2.4:
Descriptions of Design Problems and Reuse-Related Knowledge / 12.3:
Problem Descriptions / 12.3.1:
The READEE Prototype for DSP Selection / 12.3.2:
Issues ofFuture Research / 12.5:
List of Symbols
References
Index
Introduction / 1:
Complex Problem Solving in the Internet Age / 1.1:
Knowledge Intensive Problem Solving / 1.1.1:
35.

図書

図書
Peter Dalgaard
出版情報: New York, NY : Springer, c2002  xv, 267 p. ; 24 cm
シリーズ名: Statistics and computing
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basics / 1:
First steps / 1.1:
An overgrown calculator / 1.1.1:
Assignments / 1.1.2:
Vectorized arithmetic / 1.1.3:
Standard procedures / 1.1.4:
Graphics / 1.1.5:
R language essentials / 1.2:
Expressions and objects / 1.2.1:
Functions and arguments / 1.2.2:
Vectors / 1.2.3:
Missing values / 1.2.4:
Functions that create vectors / 1.2.5:
Matrices and arrays / 1.2.6:
Factors / 1.2.7:
Lists / 1.2.8:
Data frames / 1.2.9:
Indexing / 1.2.10:
Conditional selection / 1.2.11:
Indexing of data frames / 1.2.12:
subset and transform / 1.2.13:
Grouped data and data frames / 1.2.14:
Sorting / 1.2.15:
Implicit loops / 1.2.16:
The graphics subsystem / 1.3:
Plot layout / 1.3.1:
Building a plot from pieces / 1.3.2:
Using par / 1.3.3:
Combining plots / 1.3.4:
R programming / 1.4:
Flow control / 1.4.1:
Classes and generic functions / 1.4.2:
Session management / 1.5:
The workspace / 1.5.1:
Getting help / 1.5.2:
Packages / 1.5.3:
Built-in data / 1.5.4:
attach and detach / 1.5.5:
Data entry / 1.6:
Reading from a text file / 1.6.1:
The data editor / 1.6.2:
Interfacing to other programs / 1.6.3:
Exercises / 1.7:
Probability and distributions / 2:
Random sampling / 2.1:
Probability calculations and combinatorics / 2.2:
Discrete distributions / 2.3:
Continuous distributions / 2.4:
The built-in distributions in R / 2.5:
Densities / 2.5.1:
Cumulative distribution functions / 2.5.2:
Quantiles / 2.5.3:
Random numbers / 2.5.4:
Descriptive statistics and graphics / 2.6:
Summary statistics for a single group / 3.1:
Graphical display of distributions / 3.2:
Histograms / 3.2.1:
Empirical cumulative distribution / 3.2.2:
Q-Q plots / 3.2.3:
Boxplots / 3.2.4:
Summary statistics by groups / 3.3:
Graphics for grouped data / 3.4:
Parallel boxplots / 3.4.1:
Stripcharts / 3.4.3:
Tables / 3.5:
Generating tables / 3.5.1:
Marginal tables and relative frequency / 3.5.2:
Graphical display of tables / 3.6:
Bar plots / 3.6.1:
Dotcharts / 3.6.2:
Pie charts / 3.6.3:
One- and two-sample tests / 3.7:
One-sample t test / 4.1:
Wilcoxon signed-rank test / 4.2:
Two-sample t test / 4.3:
Comparison of variances / 4.4:
Two-sample Wilcoxon test / 4.5:
The paired t test / 4.6:
The matched-pairs Wilcoxon test / 4.7:
Regression and correlation / 4.8:
Simple linear regression / 5.1:
Residuals and fitted values / 5.2:
Prediction and confidence bands / 5.3:
Correlation / 5.4:
Pearson correlation / 5.4.1:
Spearman's ? / 5.4.2:
Kendall's ? / 5.4.3:
ANOVA and Kruskal-Wallis / 5.5:
One-way analysis of variance / 6.1:
Pairwise comparisons and multiple testing / 6.1.1:
Relaxing the variance assumption / 6.1.2:
Graphical presentation / 6.1.3:
Bartlett's test / 6.1.4:
Kruskal-Wallis test / 6.2:
Two-way analysis of variance / 6.3:
Graphics for repeated measurements / 6.3.1:
The Friedman test / 6.4:
The ANOVA table in regression analysis / 6.5:
Tabular data / 6.6:
Single proportions / 7.1:
Two independent proportions / 7.2:
k proportions, test for trend / 7.3:
r × c tables / 7.4:
Power and the computation of sample size / 7.5:
The principles of power calculations / 8.1:
The power of one-sample and paired t tests / 8.1.1:
Power of two-sample t test / 8.1.2:
Approximate methods / 8.1.3:
Power of comparisons of proportions / 8.1.4:
Two-sample problems / 8.2:
One-sample problems and paired tests / 8.3:
Comparison of proportions / 8.4:
Multiple regression / 8.5:
Plotting multivariate data / 9.1:
Model specification and output / 9.2:
Model search / 9.3:
Linear models / 9.4:
Polynomial regression / 10.1:
Regression through the origin / 10.2:
Design matrices and dummy variables / 10.3:
Linearity over groups / 10.4:
Interactions / 10.5:
Two-way ANOVA with replication / 10.6:
Analysis of covariance / 10.7:
Graphical description / 10.7.1:
Comparison of regression lines / 10.7.2:
Diagnostics / 10.8:
Logistic regression / 10.9:
Generalized linear models / 11.1:
Logistic regression on tabular data / 11.2:
The analysis of deviance table / 11.2.1:
Connection to test for trend / 11.2.2:
Logistic regression using raw data / 11.3:
Prediction / 11.4:
Model checking / 11.5:
Survival analysis / 11.6:
Essential concepts / 12.1:
Survival objects / 12.2:
Kaplan-Meier estimates / 12.3:
The log-rank test / 12.4:
The Cox proportional hazards model / 12.5:
Obtaining and installing R / 12.6:
Data sets in the ISwR package / B:
Compendium / C:
Index
Preface
Basics / 1:
First steps / 1.1:
36.

図書

図書
S. Morita, R. Wiesendanger, E. Meyer (eds.)
出版情報: Berlin : Springer-Verlag, c2002-2015  2 v. ; 24 cm
シリーズ名: Nanoscience and technology
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
Future Prospects for NC-AFM / 1.3:
References
Principle of NC-AFM / Franz J. Giessibl2:
Basics / 2.1:
Relation to the Scanning Tunneling Microscope (STM) / 2.1.1:
Atomic Force Microscope (AFM) / 2.1.2:
Operating Modes of AFMs / 2.1.3:
Scanning Speed, Signal Bandwidth and Noise / 2.1.4:
The Four Additional Challenges Faced by AFM / 2.2:
Jump-to-Contact and Other Instabilities / 2.2.1:
Contribution of Long-Range Forces / 2.2.2:
Noisein theImagingSignal / 2.2.3:
Non-MonotonicImaging Signal / 2.2.4:
Frequency-Modulation AFM (FM-AFM) / 2.3:
Experimental Setup / 2.3.1:
Applications / 2.3.2:
Relation between Frequency Shift and Forces / 2.4:
Generic Calculation / 2.4.1:
Frequency Shift for a Typical Tip-Sample Force / 2.4.2:
Calculation of the Tunneling Current for Oscillating Tips / 2.4.3:
Noise in Frequency-Modulation AFM / 2.5:
Noisein theFrequencyMeasurement / 2.5.1:
Optimal Amplitude for Minimal Vertical Noise / 2.5.3:
A Novel Force Sensor Based on a Quartz Tuning Fork / 2.6:
Quartz Versus Silicon as a Cantilever Material / 2.6.1:
Benefits in Clamping One of the Beams (qPlus Configuration) / 2.6.2:
Conclusion and Outlook / 2.7:
Semiconductor Surfaces / Yasuhiro Sugawara3:
Instrumentation / 3.1:
Three-Dimensional Mapping of Atomic Force / 3.2:
Control ofAtomic Force / 3.3:
Imaging Mechanisms for Si(100)2×1 and Si(100)2×1: H / 3.4:
Surface Strain on an Atomic Scale / 3.5:
Low Temperature Image of Si(100) Clean Surface / 3.6:
Mechanical Control ofAtomPosition / 3.7:
Atom Identification Using Covalent Bonding Force / 3.8:
Charge Imaging with Atomic Resolution / 3.9:
Mechanical Atom Manipulation / 3.10:
Bias Dependence of NC-AFM Images and TunnelingCurrent Variations on Semiconductor Surfaces / Toyoko Arai ; Masahiko Tomitori4:
Experimental Conditions / 4.1:
Bias Dependence of NC-AFM Images for Si(111)7×7 / 4.2:
MechanismofInvertedAtomicCorrugation / 4.2.1:
NC-AFM Imaging and Tunneling Current / 4.2.2:
NC-AFM Images for Ge/Si(111) / 4.3:
Concluding Remarks / 4.4:
Alkali Halides / Roland Bennewitz ; Martin Bammerlin ; Ernst Meyer5:
Experimental Techniques / 5.1:
Relevant Forces / 5.1.2:
Imaging of Single Crystals / 5.2:
Sample Preparation / 5.2.1:
Atomic Corrugation / 5.2.2:
Imaging of Defects / 5.2.3:
Mixed Alkali Halide Crystals / 5.2.4:
Imaging of Thin Films / 5.3:
Preparation of Thin Films / 5.3.1:
Atomic Resolutionat Low-Coordinated Sites / 5.3.2:
Radiation Damage / 5.4:
Metallization and Bubble Formation in CaF2 / 5.4.1:
Monatomic Pits in KBr / 5.4.2:
Dissipation Measurements / 5.5:
Material and Site-Specific Contrast / 5.5.1:
Using Damping for Distance Control / 5.5.2:
Atomic Resolution Imaging on Fluorides / Michael Reichling ; Clemens Barth6:
Tip Instabilities / 6.1:
Flat Surfaces / 6.3:
Step Edges / 6.4:
Atomically Resolved Imaging of a NiO(001) Surface / Hirotaka Hosoi ; Kazuhisa Sueoka ; Kazunobu Hayakawa ; Koichi Mukasa7:
Antiferromagnetic Nickel Oxide / 7.1:
ExperimentalConsiderations / 7.2:
Morphology ofthe Cleaved Surface / 7.3:
Atomically Resolved Imaging UsingNon-CoatedandFe-CoatedSiTips / 7.4:
Short-Range Magnetic Interaction / 7.5:
Analysis ofthe Cross-Section / 7.6:
Conclusion / 7.7:
Atomic Structure, Order and Disorder on High Temperature Reconstructed α-Al2O3(0001) / 8:
TheCleanSurface / 8.1:
Defect Formation upon Water Exposure / 8.2:
Self-Organized Formation of Nanoclusters / 8.3:
NC-AFM Imaging of Surface Reconstructions and Metal Growth on Oxides / Chi Lun Pang ; Geoff Thornton9:
1×1 to 1×3 Phase Transition of TiO2(100) / 9.1:
Surface Reconstructions of TiO2(110) / 9.3:
The 1×2 Reconstruction of SnO2(110) / 9.4:
Imaging Thin Film Alumina: NiAl(110)-Al2O3 / 9.5:
Growth of Cu and Pd on α-Al2O3(0001)- <$$> / 9.6:
A Short-Range-Ordered Overlayer of K on TiO2(110) / 9.7:
Conclusions / 9.8:
Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces / Ken-ichi Fukui ; Yasuhiro Iwasawa10:
Background / 10.1:
Brief Description of Experiments / 10.2:
Surface Structures of TiO2(110) / 10.3:
Adsorbed Atoms and Molecules on TiO2(110) / 10.4:
Carboxylate Ions on TiO2(110) / 10.4.1:
Hydrogen Adatoms on TiO2(110) / 10.4.2:
Fluctuation ofAcetate Ions on TiO2(110) / 10.5:
Surface Structures of CeO2(111) / 10.6:
NC-AFM Imaging of Adsorbed Molecules / 10.7:
NucleicAcidBasesonaGraphiteSurface / 11.1:
Double-StrandedDNAonaMicaSurface / 11.2:
Alkanethiol on a Au(111) Surface / 11.3:
Organic Molecular Films / Hirofumi Yamada12:
AFM Imaging of Molecular Films / 12.1:
Fullerenes / 12.1.1:
AlkanethiolSAMs / 12.1.2:
Ferroelectric Molecular Films / 12.1.3:
Surface Potential Measurements / 12.2:
Technical Developments in NC-AFM Imaging ofMolecules / 12.3:
Single-Molecule Analysis / Akira Sasahara ; Hiroshi Onishi12.4:
Molecules and Surface / 13.1:
Experimental Methods / 13.3:
Alkyl-Substituted Carboxylates / 13.4:
Numerical Simulation ofPropiolate Topography / 13.5:
Sphere-Substrate Force / 13.5.1:
Sphere-Carboxylate Force / 13.5.2:
Cluster-Substrate Force / 13.5.3:
Cluster-Carboxylate Force / 13.5.4:
Simulated Topography / 13.5.5:
Fluorine-Substituted Acetates / 13.6:
Conclusions and Perspectives / 13.7:
Low-Temperature Measurements: Principles, Instrumentation, and Application / Wolf Allers ; Alexander Schwarz ; Udo D. Schwarz14:
Microscope Operation at Low Temperatures / 14.1:
Drift / 14.2.1:
Noise / 14.2.2:
Van der Waals Surfaces / 14.3:
HOPG(0001) / 14.4.1:
Xenon / 14.4.2:
Nickel Oxide / 14.5:
Semiconductors / 14.6:
Δf(z) Curves on Specific Atomic Sites / 14.6.1:
Tip-Dependent Atomic Scale Contrast / 14.6.2:
Tip-Induced Relaxation / 14.6.3:
Magnetic Force Microscopy at Low Temperatures / 14.7:
MFM Data Acquisition / 14.7.1:
Domain Structure of La0.7Ca0.3MnO3-δ / 14.7.2:
Vortices on YBa2Cu3O7-δ / 14.7.3:
Theory of Non-Contact Atomic Force Microscopy / Masaru Tsukada ; Naruo Sasaki ; Michel Gauthier ; Katsunori Tagami ; Satoshi Watanabe14.8:
Cantilever Dynamics / 15.1:
Theoretical Simulation of NC-AFM Images / 15.3:
Non-Contact Atomic Force Microscopy Images ofDynamic Surfaces / 15.4:
Effect of Tip on Image for the Si(100)2×1: H Surface / 15.5:
Effect of Tip on Surface Structure Change and its Relation to Dissipation / 15.6:
Chemical Interaction in NC-AFM on Semiconductor Surfaces / San-Huang Ke ; Tsuyoshi Uda ; Kiyoyuki Terakura ; Ruben Pérez ; Ivan Štich15.7:
First-Principles Calculation of Tip-Surface Chemical Interaction / 16.1:
Simulation of NC-AFM Images / 16.3:
Simulations on Various Surfaces / 16.4:
Tip-Induced Surface Relaxation on the GaAs(110) Surface / 16.5:
Vertical Scan Over an As Atom / 16.5.1:
Vertical Scan Over a Ga Atom / 16.5.2:
RelevancetoNear-Contact STM Observations / 16.5.3:
Tip-Induced Surface Atomic Processes and EnergyDissipation in NC-AFM / 16.5.4:
Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence / 16.6:
Effect of Tip Morphology on NC-AFM Images / 16.7:
Image Contrast for the Ga/Si Tip / 16.7.1:
Image Contrast for the As/Si Tip / 16.7.2:
Contrast Mechanisms on InsulatingSurfaces / Adam Foster ; Alexander Shluger16.8:
Model ofAFM and Main Forces / 17.1:
Tip-Surface Setup / 17.2.1:
Forces / 17.2.2:
Simulating Scanning / 17.3:
TheSurface / 17.3.1:
TheTip / 17.3.2:
Tip-Surface Interaction / 17.3.3:
Modelling Oscillations / 17.3.4:
Generating a Theoretical Surface Image / 17.3.5:
The Calcium Fluoride (111) Surface / 17.4:
Calcite: Surface Deformations During Scanning / 17.4.2:
Studying Surface and Defect Properties / 17.5:
Analysis of Microscopy and Spectroscopy Experiments / Hendrik Hölscher17.6:
BasicPrinciples / 18.1:
Origin ofthe Frequency Shift / 18.2.1:
Calculation ofthe FrequencyShift / 18.2.3:
Frequency Shift for Conservative Tip-Sample Forces / 18.2.4:
Experimental NC-AFM Images of van der Waals Surfaces 355 / 18.3:
BasicPrinciplesoftheSimulationMethod / 18.3.2:
Applications ofthe Simulation Method / 18.3.3:
Dynamic Force Spectroscopy / 18.4:
Determining Forces fromFrequencies / 18.4.1:
Analysis ofTip-Sample Interaction Forces / 18.4.2:
Theory of Energy Dissipation into Surface Vibrations / Lev Kantorovich18.5:
Possible Dissipation Mechanisms / 19.1:
Adhesion Hysteresis / 19.2.1:
Stochastic Dissipation / 19.2.2:
Other Mechanisms / 19.2.3:
Brownian Particle MechanismofEnergy Dissipation / 19.3:
Brownian Particle / 19.3.1:
Fluctuation-Dissipation Theorem / 19.3.2:
Oscillating Tip as a Brownian Particle / 19.3.3:
Energy Dissipated Per Oscillation Cycle / 19.3.4:
Nonequilibrium Considerations for NC-AFM Systems / 19.4:
Preliminary Remarks / 19.4.1:
Mixed Quantum-Classical Representation / 19.4.2:
Equation ofMotion for the Tip / 19.4.3:
Estimation ofDissipation Energies in NC-AFM / 19.5:
Comparison with STM / 19.6:
Conclusions and Future Directions / 19.7:
Measurement of Dissipation Induced by Tip-Sample Interactions / H.J. Hug ; A. Baratoff20:
Experimental Aspects of Energy Dissipation / 20.1:
ExperimentalMethods / 20.3:
ApparentEnergyDissipation / 20.4:
Velocity-DependentDissipation / 20.5:
Electric-Field-MediatedJouleDissipation / 20.5.1:
Magnetic-Field-MediatedJouleDissipation / 20.5.2:
Magnetic-Field-MediatedDissipation / 20.5.3:
Brownian Dissipation / 20.5.4:
Hysteresis-Related Dissipation / 20.6:
Magnetic-Field-Induced Hysteresis / 20.6.1:
Hysteresis Due to Adhesion / 20.6.2:
Hysteresis Due to Atomic Instabilities / 20.6.3:
DissipationImagingwithAtomicResolution / 20.7:
DissipationSpectroscopy / 20.8:
Index / 20.9:
Introduction / Seizo Morita1:
AFM in Retrospective / 1.1:
Present Status of NC-AFM / 1.2:
37.

図書

図書
Christian Borgelt and Rudolf Kruse
出版情報: Chichester : J. Wiley, c2002  viii, 358 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Data and Knowledge / 1.1:
Knowledge Discovery and Data Mining / 1.2:
The KDD Process / 1.2.1:
Data Mining Tasks / 1.2.2:
Data Mining Methods / 1.2.3:
Graphical Models / 1.3:
Outline of this Book / 1.4:
Imprecision and Uncertainty / 2:
Modeling Inferences / 2.1:
Imprecision and Relational Algebra / 2.2:
Uncertainty and Probability Theory / 2.3:
Possibility Theory and the Context Model / 2.4:
Experiments with Dice / 2.4.1:
The Context Model / 2.4.2:
The Insufficient Reason Principle / 2.4.3:
Overlapping Contexts / 2.4.4:
Mathematical Formalization / 2.4.5:
Normalization and Consistency / 2.4.6:
Possibility Measures / 2.4.7:
Mass Assignment Theory / 2.4.8:
Degrees of Possibility for Decision Making / 2.4.9:
Conditional Degrees of Possibility / 2.4.10:
Open Problems / 2.4.11:
Decomposition / 3:
Decomposition and Reasoning / 3.1:
Relational Decomposition / 3.2:
A Simple Example / 3.2.1:
Reasoning in the Simple Example / 3.2.2:
Decomposability of Relations / 3.2.3:
Tuple-Based Formalization / 3.2.4:
Possibility-Based Formalization / 3.2.5:
Conditional Possibility and Independence / 3.2.6:
Probabilistic Decomposition / 3.3:
Factorization of Probability Distributions / 3.3.1:
Conditional Probability and Independence / 3.3.4:
Possibilistic Decomposition / 3.4:
Transfer from Relational Decomposition / 3.4.1:
Conditional Degrees of Possibility and Independence / 3.4.2:
Possibility versus Probability / 3.5:
Graphical Representation / 4:
Conditional Independence Graphs / 4.1:
Axioms of Conditional Independence / 4.1.1:
Graph Terminology / 4.1.2:
Separation in Graphs / 4.1.3:
Dependence and Independence Maps / 4.1.4:
Markov Properties of Graphs / 4.1.5:
Graphs and Decompositions / 4.1.6:
Markov Networks and Bayesian Networks / 4.1.7:
Evidence Propagation in Graphs / 4.2:
Propagation in Polytrees / 4.2.1:
Join Tree Propagation / 4.2.2:
Other Evidence Propagation Methods / 4.2.3:
Computing Projections / 5:
Databases of Sample Cases / 5.1:
Relational and Sum Projections / 5.2:
Expectation Maximization / 5.3:
Maximum Projections / 5.4:
Computation via the Support / 5.4.1:
Computation via the Closure / 5.4.3:
Experimental Results / 5.4.4:
Limitations / 5.4.5:
Naive Classifiers / 6:
Naive Bayes Classifiers / 6.1:
The Basic Formula / 6.1.1:
Relation to Bayesian Networks / 6.1.2:
A Naive Possibilistic Classifier / 6.1.3:
Classifier Simplification / 6.3:
Learning Global Structure / 6.4:
Principles of Learning Global Structure / 7.1:
Learning Relational Networks / 7.1.1:
Learning Probabilistic Networks / 7.1.2:
Learning Possibilistic Networks / 7.1.3:
Components of a Learning Algorithm / 7.1.4:
Evaluation Measures / 7.2:
General Considerations / 7.2.1:
Notation and Presuppositions / 7.2.2:
Relational Evaluation Measures / 7.2.3:
Probabilistic Evaluation Measures / 7.2.4:
Possibilistic Evaluation Measures / 7.2.5:
Search Methods / 7.3:
Exhaustive Graph Search / 7.3.1:
Guided Random Graph Search / 7.3.2:
Conditional Independence Search / 7.3.3:
Greedy Search / 7.3.4:
Learning Local Structure / 7.4:
Local Network Structure / 8.1:
Inductive Causation / 8.2:
Correlation and Causation / 9.1:
Causal and Probabilistic Structure / 9.2:
Stability and Latent Variables / 9.3:
The Inductive Causation Algorithm / 9.4:
Critique of the Underlying Assumptions / 9.5:
Evaluation / 9.6:
Applications / 10:
Application in Telecommunications / 10.1:
Application at Volkswagen / 10.2:
Application at Daimler Chrysler / 10.3:
Proofs of Theorems / A:
Proof of Theorem 4.1.2 / A.1:
Proof of Theorem 4.1.18 / A.2:
Proof of Theorem 4.1.20 / A.3:
Proof of Theorem 4.1.22 / A.4:
Proof of Theorem 4.1.24 / A.5:
Proof of Theorem 4.1.26 / A.6:
Proof of Theorem 4.1.27 / A.7:
Proof of Theorem 5.4.8 / A.8:
Proof of Theorem 7.3.2 / A.9:
Proof of Lemma 7.2.2 / A.10:
Proof of Lemma 7.2.4 / A.11:
Proof of Lemma 7.2.6 / A.12:
Proof of Theorem 7.3.4 / A.13:
Proof of Theorem 7.3.5 / A.14:
Proof of Theorem 7.3.6 / A.15:
Proof of Theorem 7.3.8 / A.16:
Software Tools / B:
Bibliography
Index
Preface
Introduction / 1:
Data and Knowledge / 1.1:
38.

図書

図書
Jan H. Bruinier
出版情報: Berlin : Springer, c2002  viii, 152 p. ; 24 cm
シリーズ名: Lecture notes in mathematics ; 1780
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Vector valued modular forms for the metaplectic group / 1:
The Weil representation / 1.1:
Poincaré series and Eisenstein series / 1.2:
Poincaré series / 1.2.1:
The Petersson scalar product / 1.2.2:
Eisenstein series / 1.2.3:
Non-holomorphic Poincare series of negative weight / 1.3:
The regularized theta lift / 2:
Siegel theta functions / 2.1:
The theta integral / 2.2:
The Fourier expansion of the theta lift / 2.3:
Lorentzian lattices / 3.1:
The hyperbolic Laplacian / 3.1.1:
Lattices of signature (2,l) / 3.2:
Modular forms on orthogonal groups / 3.3:
Borcherds products / 3.4:
Examples / 3.4.1:
Some Riemann geometry on O(2, l) / 4:
The invariant Laplacian / 4.1:
Modular forms with zeros and poles on Heegner divisors / 4.2:
Chern classes of Heegner divisors / 5:
A lifting into the cohomology / 5.1:
Comparison with the classical theta lift / 5.1.1:
Modular forms with zeros and poles on Heegner divisors II / 5.2:
References
Notation
Index
Introduction
Vector valued modular forms for the metaplectic group / 1:
The Weil representation / 1.1:
39.

図書

図書
edited by Ei-ichi Negishi ; A. de Meijere, associate editor ; editorial board, J.E. Bäckvall ... [et al.]
出版情報: New York ; Chichester : Wiley, c2002  2 v. (xxxv, 3279 p.) ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contributors
Abbreviations
Volume 1
Introduction And Background / I:
Historical Background of Organopalladium Chemistry / Ei-ichi NegishiI.1:
Fundamental Properties of Palladium and Patterns of the Reactions of Palladium and Its Complexes / I.2:
Palladium Compounds: Stoichiometric Preparation, In Situ Generation, And Some Physical And Chemical Properties / II:
Background for Part II 39 / II.1:
Pd(0) and Pd(II) Compounds without Carbon-Palladium Bonds / II.2:
Metallic Palladium and Its Mixtures / II 2.1:
Palladium Complexes Containing Halogen and Oxygen Ligands / II 2.2:
Pd(0) and Pd(II) Complexes Containing Phosphorus and Other Group 15 Atom Ligands / Danietilde;le ChoueiryII 2.3:
Pd(0) and Pd(II) Complexes Containing Sulfur and Selenium Ligands / Kunio HiroiII 2.4:
Hydridopalladium Complexes / King Kuok (Mimi)Hii)II 2.5:
Palladium Complexes Containing Metal Ligands / Koichiro Oshima)II 2.6:
Chiral Pd(0) and Pd(II) Complexes / Masamichi Ogasawara ; Tamio HayashiII 2.7:
Organopalladium Compounds Containing Pd(0) and Pd(II) / II.3:
General Discussion of the Methods of Synthesis and in-Situ Generation of Organopalladium Compounds / II 3.1:
Stoichiometric Synthesis and Some Notable Properties of Organopalladium Compounds of Pd(0) and Pd(II) / II 3.2:
Palladium Complexes Containing Pd(I), Pd(III), or Pd(IV) / Allan J. CantyII.4:
Palladium-Catalyzed Reactions Involving Reductive Elimination / III:
Background for Part III / III 1:
Palladium-Catalyzed Carbon-Carbon Cross-Coupling / III 2:
Overview of the Negishi Protocol with Zn, Al, Zr, and Related Metals / III 2.1:
Overview of the Suzuki Protocol with B / Akira SuzukiIII 2.2:
Overview of the Stille Protocol with Sn / Masanori Kosugi ; Keigo FugamiIII 2.3:
Overview of Other Palladium-Catalyzed Cross-Coupling Protocols / Tamejiro Hiyama ; Eiji ShirakawaIII 2.4:
Palladium-Catalyzed Aryl-Aryl Coupling / Luigi AnastasiaIII 2.5:
Palladium-Catalyzed Alkenyl-Aryl, Aryl-Alkenyl, and Alkenyl-Alkenyl Coupling Reactions / Shouquan HuoIII 2.6:
Heteroaromatics via Palladium-Catalyzed Cross-Coupling / Kjell UndheimIII 2.7:
Palladium-Catalyzed Alkynylation / III 2.8:
Sonogashira Alkyne Synthesis / Kenkichi SonogashiraIII 2.8.1:
Palladium-Catalyzed Alkynylation with Alkynylmetals and Alkynyl Electrophiles / Carding XuIII 2.8.2:
Palladium-Catalyzed Cross-Coupling between Allyl, Benzyl, or Propargyl Groups and Unsaturated Groups / Fang LiuIII 2.9:
Palladium-Catalyzed Cross-Coupling between Allyl-, Benzyl-, or Propargylmetals and Allyl, Benzyl, or Propargyl Electrophiles / Baiqiao LiaoIII 2.10:
Palladium-Catalyzed Cross-Coupling Involving Alkylmetals or Alkyl Electrophiles / III 2.11:
Palladium-Catalyzed Cross-Coupling Involving Saturated Alkylmetals / Sebastien GagneurIII 2.11.1:
Reactions between Homoallyl-, Homopropargyl-, or Homobenzylmetals and Alkenyl or Aryl Electrophiles / Fanxing ZengIII 2.11.2:
Palladium-Catalyzed Cross-Coupling Involving alpha;-Hetero-Substituted Organic Electrophiles / III 2.12:
Palladium-Catalyzed Cross-Coupling with Acyl Halides and Related Electrophiles / Takumichi SugiharaIII 2.12.1:
Palladium-Catalyzed Cross-Coupling with Other alpha;-Hetero-Substituted Organic Electrophiles / III 2.12.2:
Palladium-Catalyzed Cross-Coupling Involving alpha;-Hetero-Substituted Organometals / III 2.13:
Palladium-Catalyzed Cross-Coupling Involving Metal Cyanides / Kentaro TakagiIII 2.13.1:
Other alpha;-Hetero-Substitu / III 2.13.2:
Preface
Contributors
Abbreviations
40.

図書

図書
Vicent J. Martinez, Enn Saar
出版情報: Boca Raton, Fla. : Chapman & Hall/CRC, c2002  432 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
The clumpy universe / 1:
Galaxies / 1.1:
The Milky Way Galaxy / 1.1.1:
Morphological classification and properties / 1.1.2:
Brightness and magnitude systems / 1.1.3:
Distance estimators / 1.1.4:
Mapping the universe / 1.2:
Redshift surveys / 1.2.1:
Peculiar motions / 1.2.2:
Selection effects and biases / 1.3:
Galaxy obscuration / 1.3.1:
Flux limit, luminosity function, and selection function / 1.3.2:
Segregation / 1.3.3:
Cosmic variance / 1.3.4:
Malmquist bias / 1.3.5:
K-correction / 1.3.6:
Velocity corrections / 1.3.7:
Current and future galaxy catalogs / 1.4:
The galaxy distribution in projection / 1.4.1:
The three-dimensional galaxy distribution / 1.4.2:
The observed structures: clusters, filaments, walls, and voids / 1.5:
Groups and clusters of galaxies / 1.5.1:
Catalogs of clusters of galaxies / 1.5.2:
Superclusters: filaments and walls of galaxies / 1.5.3:
Voids / 1.5.4:
The texture of the galaxy distribution / 1.5.5:
The standard model of the universe / 2:
Introduction / 2.1:
The Friedmann--Robertson--Walker universe / 2.2:
Comoving and physical distances and volumes / 2.2.1:
Hubble's law and redshift / 2.2.2:
The Friedmann equations / 2.2.3:
Cosmological time / 2.2.4:
The light cone equation / 2.2.5:
Observational distances / 2.2.6:
Basic observational data / 2.3:
Olber's paradox and the microwave background / 2.3.1:
Isotropy of the matter distribution / 2.3.2:
Homogeneity of the matter distribution / 2.3.3:
Light element abundances / 2.3.4:
The cosmological parameters / 2.3.5:
Cosmological point processes / 3:
Point processes / 3.1:
Intensity functions / 3.2.1:
The binomial random field / 3.2.2:
Poisson processes / 3.2.3:
The relation between discrete and continuous distributions / 3.3:
Estimators of the density field: intensity functions / 3.3.1:
The two-point correlation function / 3.4:
Measuring the two-point galaxy correlation function / 3.4.1:
The angular two-point correlation function / 3.4.2:
The correlation integral / 3.4.3:
N-point correlation functions / 3.5:
Hierarchical models for higher-order correlations / 3.5.1:
Moments and counts in cells / 3.6:
The void probability function / 3.7:
Nearest neighbor distances / 3.8:
Galaxy distribution as a marked point field / 3.9:
The normalized mark correlation function / 3.9.1:
Fractal properties of the galaxy distribution / 4:
Fractal models for the universe / 4.1:
Rayleigh--Levy dust / 4.2.1:
Soneira and Peebles fractal model / 4.2.2:
Tests on projected data / 4.3:
Fractal dimensions / 4.4:
Hausdorff dimension / 4.4.1:
Box-counting dimension / 4.4.2:
Correlation dimension / 4.4.3:
Correlation length and fractal behavior / 4.4.4:
Estimators, edge effects, and possible homogenization / 4.4.5:
Mass--radius dimension / 4.4.6:
Multifractal measures / 4.5:
Multiscaling / 4.6:
Lacunarity / 4.7:
Statistical and geometrical models / 5:
The Neyman--Scott process and related models / 5.1:
Cox fields / 5.2.1:
Neyman--Scott fields / 5.2.2:
The Voronoi model / 5.3:
Simulating galaxy surveys / 5.3.1:
Spatial interpolation through Voronoi/Delaunay tessellations / 5.3.2:
Statistical models for the counts in cells / 5.4:
The lognormal model / 5.4.1:
The Saslaw distribution function / 5.4.2:
Formation of structure / 6:
Dynamics of structure / 6.1:
The linear approximation / 6.3:
Density evolution / 6.3.1:
Velocity evolution / 6.3.2:
Dimensionless growth rate / 6.3.3:
The Zeldovich approximation / 6.3.4:
Exact solutions / 6.4:
Plane-parallel collapse / 6.4.1:
Spherical collapse / 6.4.2:
Numerical experiments / 6.5:
Dynamics of dark matter / 6.5.1:
Gas and galaxies / 6.5.2:
Random fields in cosmology / 7:
Random fields / 7.1:
Spatial correlations / 7.2.1:
Fourier representation / 7.2.2:
Power spectrum / 7.2.3:
Gaussian random fields / 7.3:
Filtered fields / 7.3.1:
Spectra of cosmological Gaussian random fields / 7.3.2:
Realizations of random fields / 7.4:
Fourier method / 7.4.1:
Noise convolution / 7.4.2:
Erratic realizations / 7.4.3:
Non-Gaussian fields / 7.5:
Statistics of peaks in Gaussian random fields / 7.6:
Number density of peaks / 7.6.1:
Structure of peaks in Gaussian random fields / 7.6.2:
Clustering of peaks / 7.6.3:
High-peak asymptotics / 7.6.4:
Peak-background split / 7.6.5:
Peak theory and cluster correlations / 7.6.6:
Peak--patch theory / 7.6.7:
Press--Schechter method / 7.7:
Halo model of galaxy clustering / 7.8:
Stochastic and nonlinear biasing / 7.9:
Fourier analysis of clustering / 8:
Estimation of power spectra / 8.1:
Direct methods / 8.2.1:
Selection of weights / 8.2.2:
Integral constraint / 8.2.3:
Bayesian and maximum likelihood methods / 8.2.4:
Karhunen--Loewe transform / 8.2.5:
Signal-to-noise eigenmodes / 8.2.6:
Quadratic compression / 8.2.7:
Pixelized integral constraint / 8.2.8:
Redshift distortions / 8.3:
General case / 8.3.1:
Far-field approximation / 8.3.2:
Velocity distortions in power spectrum / 8.4:
Fourier--Bessel expansion / 8.4.1:
Modeling the correlation function / 8.4.2:
Methods for estimating power spectra / 8.5:
Bispectrum / 8.6:
Models of the bispectrum / 8.6.1:
Estimation of the bispectrum / 8.6.2:
Low-dimensional samples / 8.7:
Limber's equation / 8.7.1:
Evolution of correlations / 8.7.2:
Power spectra / 8.7.3:
Lucy deconvolution / 8.7.4:
Wide-angle surveys / 8.7.5:
Pencil-beams and slices / 8.7.6:
Cosmography / 9:
Potent method / 9.1:
Wiener filtering / 9.3:
Filtering in spherical basis / 9.3.1:
Density interpolation / 9.3.2:
Wiener reconstruction / 9.3.3:
Maps / 9.3.4:
Velocity reconstruction / 9.3.5:
Constrained fields / 9.4:
Constrained realizations for models / 9.4.1:
Time machines / 9.5:
Gravitational lensing / 9.6:
Physics of gravitational lensing / 9.6.1:
Weak lensing / 9.6.2:
Cosmic shear / 9.6.3:
Structure statistics / 10:
Topological description / 10.1:
The theory of topological analysis: the genus / 10.2.1:
Estimation of the topology, technicalities / 10.2.2:
Topological measurements: observations / 10.2.3:
Structure functions / 10.3:
Three-dimensional shape statistics / 10.3.1:
Minkowski functionals / 10.3.2:
Cluster and percolation analysis / 10.4:
Minimal spanning trees / 10.5:
Wavelets / 10.6:
Wavelet theory / 10.6.1:
Wavelets and multifractals / 10.6.2:
Cluster-finding algorithms / 10.7:
MST / 10.7.1:
Modified friends-of-friends / 10.7.2:
Void statistics / 10.7.3:
Checking for periodicity / 10.9:
Coordinate transformations / Appendix A:
The equatorial system / A.1:
Galactic coordinates / A.3:
The supergalactic coordinates / A.3.1:
Sky projections / A.4:
Some basic concepts in statistics / Appendix B:
General definitions / B.1:
Estimation / B.3:
Properties of estimators / B.4:
Confidence intervals and tests / B.5:
Probability / B.5.1:
Bayesian methods / B.5.2:
Confidence intervals / B.5.3:
Testing hypotheses / B.5.4:
References
Web site references
Index
Preface
Acknowledgments
The clumpy universe / 1:
41.

図書

図書
Jorge Cortés Monforte
出版情報: Berlin ; Tokyo : Springer, c2002  xiv, 219 p. ; 24 cm
シリーズ名: Lecture notes in mathematics ; 1793
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Literature review / 1.1:
Contents / 1.2:
Basic geometric tools / 2:
Manifolds and tensor calculus / 2.1:
Generalized distributions and codistributions / 2.2:
Lie groups and group actions / 2.3:
Principal connections / 2.4:
Riemannian geometry / 2.5:
Metric connections / 2.5.1:
Symplectic manifolds / 2.6:
Symplectic and Hamiltonian actions / 2.7:
Almost-Poisson manifolds / 2.8:
Almost-Poisson reduction / 2.8.1:
The geometry of the tangent bundle / 2.9:
Nonholonomic systems / 3:
Variational principles in Mechanics / 3.1:
HamiltonÆs principle / 3.1.1:
Symplectic formulation / 3.1.2:
Introducing constraints / 3.2:
The rolling disk / 3.2.1:
A homogeneous ball on a rotating table / 3.2.2:
The Snakeboard / 3.2.3:
A variation of BenentiÆs example / 3.2.4:
The Lagrange-d'Alembert principle / 3.3:
Geometric formalizations / 3.4:
Symplectic approach / 3.4.1:
Affine connection approach / 3.4.2:
Symmetries of nonholonomic systems / 4:
Nonholonomic systems with symmetry / 4.1:
The purely kinematic case / 4.2:
Reduction / 4.2.1:
Reconstruction / 4.2.2:
The case of horizontal symmetries / 4.3:
The general case / 4.3.1:
A special subcase: kinematic plus horizontal / 4.4.1:
The nonholonomic free particle modified / 4.5.1:
Chaplygin systems / 5:
Generalized Chaplygin systems / 5.1:
Reduction in the affine connection formalism / 5.1.1:
Two motivating examples / 5.1.2:
Mobile robot with fixed orientation / 5.2.1:
Two-wheeled planar mobile robot / 5.2.2:
Relation between both approaches / 5.3:
Invariant measure / 5.4:
KoillerÆs question / 5.4.1:
A counter example / 5.4.2:
A class of hybrid nonholonomic systems / 6:
Mechanical systems subject to constraints of variable rank / 6.1:
Impulsive forces / 6.2:
Generalized constraints / 6.3:
Momentum jumps / 6.3.1:
The holonomic case / 6.3.2:
Examples / 6.4:
The rolling sphere / 6.4.1:
Particle with constraint / 6.4.2:
Nonholonomic integrators / 7:
Symplectic integration / 7.1:
Variational integrators / 7.2:
Discrete Lagrange-d'Alembert principle / 7.3:
Construction of integrators / 7.4:
Geometric invariance properties / 7.5:
The symplectic form / 7.5.1:
The momentum / 7.5.2:
Numerical examples / 7.5.3:
Nonholonomic particle / 7.6.1:
Mobile robot with fixed orientation with a potential / 7.6.2:
Control of mechanical systems / 8:
Simple mechanical control systems / 8.1:
Homogeneity and Lie algebraic structure / 8.1.1:
Controllability notions / 8.1.2:
Existing results / 8.2:
On controllability / 8.2.1:
Series expansions / 8.2.2:
The one-input case / 8.3:
Systems underactuated by one control / 8.4:
The planar rigid body / 8.5:
A simple example / 8.5.2:
Mechanical systems with isotropic damping / 8.6:
Local accessibility and controllability / 8.6.1:
Kinematic controllability / 8.6.2:
Series expansion / 8.6.3:
References / 8.6.4:
Index
Preface
Introduction / 1:
Literature review / 1.1:
42.

図書

図書
Agostino Abbate, Casimer M. DeCusatis, Pankaj K. Das
出版情報: Boston : Birkhäuser, c2002  xvii, 551 p. ; 25 cm
シリーズ名: Applied and numerical harmonic analysis / series editor, John J. Benedetto
所蔵情報: loading…
目次情報: 続きを見る
Preface
Notation
Introduction / 1.:
Historical Review: From Fourier Analysis to Wavelet Analysis and Subband / 1.1:
Organization of This Book / 1.2:
References / 1.3:
Fundamentals / Part I:
Wavelet Fundamentals / 2.:
Why Wavelet Transforms? / 2.1:
Fourier Transform as a Wave Transform / 2.3:
Wavelet Transform / 2.4:
Connection Between Wavelets and Filters / 2.5:
Time-Frequency Analysis: Short-Time Fourier Transform, Gabor Transform, and Tiling in the Time-Frequency Plane / 2.6:
Examples of Wavelets / 2.7:
From the Continuous to the Discrete Case / 2.8:
Frames / 2.9:
Subbands / 2.10:
Multiresolution Analysis / 2.11:
Matrix Formulation / 2.12:
Multiresolution Revisited / 2.13:
Two-Dimensional Case / 2.14:
DWT and Subband Example / 2.15:
Implementations / 2.16:
Summary and Conclusions / 2.17:
Wavelets and Subbands / 2.18:
Time and Frequency Analysis of Signals / 3.:
Fundamentals of Signal Analysis / 3.1:
Uncertainty Principle / 3.1.2:
Windowed Fourier Transform: Short-Time Fourier Transform and Gabor Transform / 3.2:
General Properties of the Windowed Fourier Transform / 3.2.1:
Uncertainty Principle for Windowed Fourier Transform / 3.2.2:
Inverse Windowed Fourier Transform / 3.2.3:
Continuous Wavelet Transform / 3.3:
Mathematics of the Continuous Wavelet Transform / 3.3.1:
Properties of the Continuous Wavelet Transform / 3.3.2:
Inverse Wavelet Transform / 3.3.3:
Examples of Mother Wavelets / 3.3.4:
Analytic Wavelet Transform / 3.4:
Analytic Signals / 3.4.1:
Analytic Wavelet Transform on Real Signals / 3.4.2:
Physical Interpretation of an Analytic Signal / 3.4.3:
Quadratic Time-Frequency Distributions / 3.5:
Discrete Wavelet Transform: From Frames to Fast Wavelet Transform / 3.6:
Fundamentals of Frame Theory / 4.1:
Sampling Theorem / 4.3:
Wavelet Frames / 4.4:
Examples of Wavelet Frames / 4.5:
Time-Frequency Localization / 4.6:
Orthonormal Discrete Wavelet Transforms / 4.7:
Scaling Functions / 4.8:
Construction of Wavelet Bases Using Multiresolution Analysis / 4.10:
Wavelet Bases / 4.11:
Shannon Wavelet / 4.11.1:
Meyer Wavelet / 4.11.2:
Haar Wavelet / 4.11.3:
Battle-Lemarie (Spline) Wavelets / 4.11.4:
Daubechies Compactly Supported Wavelets / 4.12:
Fast Wavelet Transform / 4.13:
Biorthogonal Wavelet Bases / 4.14:
Theory of Subband Decomposition / 4.15:
Fundamentals of Digital Signal Processing / 5.1:
Multirate Systems / 5.3:
Polyphase Decomposition / 5.4:
Two-Channel Filter Bank/PR Filter / 5.5:
Biorthogonal Filters / 5.6:
Lifting Scheme / 5.7:
M-Band Case / 5.8:
Applications of Multirate Filtering / 5.9:
Two-Dimensional Wavelet Transforms and Applications / 5.10:
Orthogonal Pyramid Transforms / 6.1:
Progressive Transforms for Lossless and Lossy Image Coding / 6.3:
Embedded Zerotree Wavelets / 6.4:
Applications / 6.5:
Applications of Wavelets in the Analysis of Transient Signals / 7.:
Introduction to Time-Frequency Analysis of Transient Signals / 7.1:
Ultrasonic Systems / 7.2.1:
Ultrasonic Characterization of Coatings by the Ridges of the Analytic Wavelet Transform / 7.2.2:
Characterization of Coatings / 7.2.3:
Biomedical Application of Wavelets: Analysis of EEG Signals for Monitoring Depth of Anesthesia / 7.3:
Wavelet Spectral Analysis of EEG Signals / 7.3.1:
System Response Wavelet Analysis of EEG Signals / 7.3.2:
Discussion of Results / 7.3.3:
Applications of Subband and Wavelet Transform in Communication Systems / 7.4:
Applications in Spread Spectrum Communication Systems / 8.1:
Excision / 8.2.1:
Adaptive Filter-Bank Exciser / 8.2.2:
Transform-Based Low Probability of Intercept Receiver / 8.2.3:
Application of Multirate Filter Bank in Spreading Code Generation and Multiple Access / 8.2.4:
Modulation Using Filter Banks and Wavelets / 8.3:
Multitione Modulation / 8.4:
Noise Reduction in Audio and Images Using Wavelets / 8.5:
Audio/Video/Image Compression / 8.6:
Progressive Pattern Recognition
Real-Time Implementations of Wavelet Transforms / 8.7:
Digital VLSI Implementation / 9.1:
Optical Implementation / 9.2:
Matrix Processing and Neural Networks / 9.2.1:
Acousto-Optic Devices / 9.2.2:
Other Optical Implementations / 9.2.3:
Appendix / 9.3:
Fourier Transform / A.:
Discrete Fourier Transform / B.:
z-Transform / C.:
Orthogonal Representation of Signals / D.:
Bibliography
Index
Preface
Notation
Introduction / 1.:
43.

図書

図書
European Space Agency
出版情報: Noordwijk, Netherlands : European Space Agency, [2002]  xii, 130 p. ; 30 cm
シリーズ名: ESA SP ; 504
所蔵情報: loading…
44.

電子ブック

EB
Jorge Cortés Monforte
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin / Heidelberg, 2002
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Literature review / 1.1:
Contents / 1.2:
Basic geometric tools / 2:
Manifolds and tensor calculus / 2.1:
Generalized distributions and codistributions / 2.2:
Lie groups and group actions / 2.3:
Principal connections / 2.4:
Riemannian geometry / 2.5:
Metric connections / 2.5.1:
Symplectic manifolds / 2.6:
Symplectic and Hamiltonian actions / 2.7:
Almost-Poisson manifolds / 2.8:
Almost-Poisson reduction / 2.8.1:
The geometry of the tangent bundle / 2.9:
Nonholonomic systems / 3:
Variational principles in Mechanics / 3.1:
HamiltonÆs principle / 3.1.1:
Symplectic formulation / 3.1.2:
Introducing constraints / 3.2:
The rolling disk / 3.2.1:
A homogeneous ball on a rotating table / 3.2.2:
The Snakeboard / 3.2.3:
A variation of BenentiÆs example / 3.2.4:
The Lagrange-d'Alembert principle / 3.3:
Geometric formalizations / 3.4:
Symplectic approach / 3.4.1:
Affine connection approach / 3.4.2:
Symmetries of nonholonomic systems / 4:
Nonholonomic systems with symmetry / 4.1:
The purely kinematic case / 4.2:
Reduction / 4.2.1:
Reconstruction / 4.2.2:
The case of horizontal symmetries / 4.3:
The general case / 4.3.1:
A special subcase: kinematic plus horizontal / 4.4.1:
The nonholonomic free particle modified / 4.5.1:
Chaplygin systems / 5:
Generalized Chaplygin systems / 5.1:
Reduction in the affine connection formalism / 5.1.1:
Two motivating examples / 5.1.2:
Mobile robot with fixed orientation / 5.2.1:
Two-wheeled planar mobile robot / 5.2.2:
Relation between both approaches / 5.3:
Invariant measure / 5.4:
KoillerÆs question / 5.4.1:
A counter example / 5.4.2:
A class of hybrid nonholonomic systems / 6:
Mechanical systems subject to constraints of variable rank / 6.1:
Impulsive forces / 6.2:
Generalized constraints / 6.3:
Momentum jumps / 6.3.1:
The holonomic case / 6.3.2:
Examples / 6.4:
The rolling sphere / 6.4.1:
Particle with constraint / 6.4.2:
Nonholonomic integrators / 7:
Symplectic integration / 7.1:
Variational integrators / 7.2:
Discrete Lagrange-d'Alembert principle / 7.3:
Construction of integrators / 7.4:
Geometric invariance properties / 7.5:
The symplectic form / 7.5.1:
The momentum / 7.5.2:
Numerical examples / 7.5.3:
Nonholonomic particle / 7.6.1:
Mobile robot with fixed orientation with a potential / 7.6.2:
Control of mechanical systems / 8:
Simple mechanical control systems / 8.1:
Homogeneity and Lie algebraic structure / 8.1.1:
Controllability notions / 8.1.2:
Existing results / 8.2:
On controllability / 8.2.1:
Series expansions / 8.2.2:
The one-input case / 8.3:
Systems underactuated by one control / 8.4:
The planar rigid body / 8.5:
A simple example / 8.5.2:
Mechanical systems with isotropic damping / 8.6:
Local accessibility and controllability / 8.6.1:
Kinematic controllability / 8.6.2:
Series expansion / 8.6.3:
References / 8.6.4:
Index
Preface
Introduction / 1:
Literature review / 1.1:
45.

図書

図書
Leland H. Hemming
出版情報: Piscataway, N.J. : IEEE Press, c2002  xvi, 220 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction / 1:
The Text Organization / 1.1:
References
Measurement Principles Pertaining to Anechoic Chamber Design / 2:
Measurement of Electromagnetic Fields / 2.1:
Antennas / 2.2.1:
Radiated Emissions / 2.2.3:
Radiated Susceptibility / 2.2.4:
Military Electromagnetic Compatibility / 2.2.5:
Antenna System Isolation / 2.2.6:
Radar Cross Section / 2.2.7:
Free-Space Test Requirements / 2.3:
Phase / 2.3.1:
Amplitude / 2.3.3:
Polarization / 2.3.4:
The Friis Transmission Formula / 2.3.5:
Supporting Measurement Concepts / 2.4:
Coordinate Systems and Device Positioners / 2.4.1:
Decibels / 2.4.3:
Effects of Reflected Energy / 2.4.4:
Effects of Antenna Coupling / 2.4.5:
Outdoor Measurement Facilities / 2.5:
Electromagnetic Design Considerations and Criteria / 2.5.1:
Elevated Outdoor Antenna Range / 2.5.3:
Ground Reflection Antenna Range / 2.5.4:
Open-Area Test Sites (OATS) / 2.5.5:
Electromagnetic Absorbing Materials / 3:
Microwave Absorbing Materials / 3.1:
Pyramidal Absorber / 3.2.1:
Wedge Absorber / 3.2.2:
Convoluted Microwave Absorber / 3.2.3:
Multilayer Dielectric Absorber / 3.2.4:
Hybrid Dielectric Absorber / 3.2.5:
Walkway Absorber / 3.2.6:
Low-Frequency Absorbing Material / 3.3:
Ferrite Absorbers / 3.3.1:
Hybrid Absorbers / 3.3.3:
Absorber Modeling / 3.4:
Absorber Testing / 3.5:
The Chamber Enclosure / 4:
Electromagnetic Interference / 4.1:
Controlling the Environment / 4.3:
Electromagnetic Shielding / 4.4:
The Welded Shield / 4.4.1:
The Clamped Seam or Prefabricated Shield / 4.4.3:
The Single-Shield Systems / 4.4.4:
Penetrations / 4.5:
Performance Verification / 4.6:
Shielded Enclosure Grounding / 4.7:
Fire Protection / 4.8:
Anechoic Chamber Design Techniques / 5:
Practical Design Procedures / 5.1:
Quick Estimate of Chamber Performance / 5.2.1:
Detailed Ray-Tracing Design Procedure / 5.2.3:
Computer Modeling / 5.3:
Ray Tracing / 5.3.1:
Finite-Difference Time-Domain Model / 5.3.3:
Other Techniques / 5.4:
Antennas Used In Anechoic Chambers / 5.5:
Rectangular Chamber Antennas / 5.5.1:
Antennas for Tapered Chambers / 5.5.3:
EMI Chambers / 5.5.4:
The Rectangular Chamber / 6:
Antenna Testing / 6.1:
Design Considerations / 6.2.1:
Design Example / 6.2.3:
Acceptance Test Procedures / 6.2.4:
Radar Cross-Section Testing / 6.3:
Near-Field Testing / 6.3.1:
Chamber Design Considerations / 6.4.1:
Acceptance Test Procedure / 6.4.3:
Electromagnetic Compatibility Testing / 6.5:
Design Examples / 6.5.1:
Immunity Testing / 6.5.4:
Mode-Stirred Test Facility / 6.6.1:
EM System Compatibility Testing / 6.7:
Acceptance Testing / 6.7.1:
The Compact Range Chamber / 7:
Prime Focus Compact Range / 7.1:
Dual Reflector Compact Range / 7.2.2:
Shaped Reflector Compact Range / 7.2.3:
Compact Antenna Range Absorber Layout / 7.2.4:
Acceptance Testing of the Compact Antenna Anechoic Chamber / 7.2.5:
Compact RCS Ranges / 7.3:
Incorporating Geometry in Anechoic Chamber Design / 7.3.1:
The Tapered Chamber / 8.1:
Radar Cross-Section Measurements / 8.2.1:
The Double Horn Chamber / 8.3:
Emissions and Immunity Testing / 8.3.1:
The Missile Hardware-in-the-Loop Chamber / 8.4:
Consolidated Facilities / 8.4.1:
The TEM Cell / 8.5.1:
TEM Principles of Operation / 8.6.1:
Typical Performance / 8.6.3:
Test Procedures / 9:
Testing of Microwave Absorber / 9.1:
Low-Frequency Testing / 9.2.3:
Compact Range Reflector Testing / 9.2.4:
Fire-Retardant Testing / 9.2.5:
Microwave Anechoic Chamber Test Procedures / 9.3:
Free-Space VSWR Method / 9.3.1:
Pattern Comparison Method / 9.3.3:
X-Y Scanner Method / 9.3.4:
RCS Chamber Evaluation / 9.3.5:
EMC Chamber Acceptance Test Procedures / 9.4:
Volumetric Site Attenuation / 9.4.1:
Field Uniformity / 9.4.3:
Shielding Effectiveness / 9.5:
Examples of Indoor Electromagnetic Test Facilities / 10:
Rectangular Test Chamber / 10.1:
Tapered Anechoic Chamber / 10.2.3:
Compact Range Test Chamber / 10.2.4:
Near-Field Test Chamber / 10.2.5:
Compact Range Radar Cross-Section Facilities / 10.3:
EMC Test Chambers / 10.4:
Emission Test Chambers / 10.4.1:
Electromagnetic System Compatibility Testing / 10.5:
Aircraft Systems / 10.5.1:
Spacecraft Test Facilities / 10.5.3:
Procedure for Determining the Area of Specular Absorber Treatment / Appendix A:
Fresnel Zone Analysis / A.1:
Test Region Amplitude Taper / Appendix B:
Antenna Data / B.1:
Design/Specification Checklists / Appendix C:
RCS Testing / C.1:
EMI Testing / C.2.4:
Isolation Testing / C.2.6:
Impedance Testing / C.2.7:
Compact Range / C.3:
Antenna/Radome Testing / C.3.1:
Shaped Chambers / C.3.3:
Tapered Chamber / C.4.1:
Double Horn Chamber / C.4.3:
Hardware-in-the-Loop Testing / C.4.4:
Shielding Design Checklist / C.5:
Checklist for Prefabricated Shielding / C.5.1:
Checklist for Welded Enclosures / C.5.3:
Checklist for Architectural Shielding / C.5.4:
Conventional Construction / C.5.5:
Glossary / C.5.6:
Selected Bibliography
Index
About the Author
Foreword
Preface
Introduction / 1:
46.

図書

図書
edited by Joel S. Miller and Marc Drillon
出版情報: Weinheim : Wiley-VCH, c2002  xv, 388 p. ; 25 cm
シリーズ名: Magnetism : molecules to materials / edited by Joel S. Miller and Marc Drillon ; 3
所蔵情報: loading…
目次情報: 続きを見る
Nanosized Magnetic Materials / 1:
Introduction / 1.1:
Synthesis / 1.2:
Inert Gas Condensation / 1.2.1:
Water-in-oil Microemulsion Method / 1.2.2:
Organic/Polymeric Precursor Method / 1.2.3:
Sonochemical Synthesis / 1.2.4:
Hydrothermal Synthesis / 1.2.5:
Pyrolysis / 1.2.6:
Arc Discharge Technique / 1.2.7:
Electrodeposition / 1.2.8:
Mechanical Alloying / 1.2.9:
Matrix-mediated Synthesis / 1.2.10:
Structure-Property Overview / 1.3:
Quantum Tunneling / 1.3.1:
Anisotropy / 1.3.2:
Analytical Instrumentation / 1.3.3:
Theory and Modeling / 1.4:
Single-domain Particles / 1.4.1:
Modeling / 1.4.2:
Applications / 1.5:
Magneto-optical Recording / 1.5.1:
Magnetic Sensors and Giant Magnetoresistance / 1.5.2:
High-density Magnetic Memory / 1.5.3:
Optically Transparent Materials / 1.5.4:
Soft Ferrites / 1.5.5:
Nanocomposite Magnets / 1.5.6:
Magnetic Refrigerant / 1.5.7:
High-T[subscript C] Superconductor / 1.5.8:
Ferrofluids / 1.5.9:
Biological Applications / 1.5.10:
References
Magnetism and Magnetotransport Properties of Transition Metal Zintl Isotypes / 2:
Structure / 2.1:
Magnetism / 2.3:
Alkaline Earth Compounds / 2.3.1:
High-temperature Paramagnetic Susceptibility / 2.3.2:
Ytterbium Compounds / 2.3.3:
Europium Compounds / 2.3.4:
Heat Capacity / 2.4:
Magnetotransport / 2.5:
Alkaline Earth and Ytterbium Compounds / 2.5.1:
Resistivity and Magnetoresistance of the Europium Compounds / 2.5.2:
Comparison with other Magnetoresistive Materials / 2.5.3:
Summary and Outlook / 2.6:
Magnetic Properties of Large Clusters / 3:
Calculation of the Energy Levels and Experimental Confirmations / 3.1:
Calculations / 3.2.1:
Inelastic Neutron Scattering / 3.2.2:
Polarized Neutron Scattering / 3.2.3:
High-field Magnetization / 3.2.4:
Magnetic Measurements / 3.3:
AC Susceptibility Measurements / 3.3.1:
Cantilever Magnetometry / 3.3.3:
MicroSQUID Arrays / 3.3.4:
Magnetic Resonance Techniques / 3.4:
HF-EPR / 3.4.1:
Zero-field EPR / 3.4.3:
Low-frequency EPR / 3.4.4:
NMR / 3.4.5:
[mu]SR / 3.4.6:
Control of the Nature of the Ground State and of the Anisotropy / 3.5:
Fe8-A Case History / 3.6:
Conclusions and Outlook / 3.7:
Quantum Tunneling of Magnetization in Molecular Complexes with Large Spins - Effect of the Environment / 4:
Mn[subscript 12]-acetate / 4.1:
Experimental Results / 4.2.1:
Basic Model / 4.2.2:
Fe[subscript 8] Octanuclear Iron (III) Complexes / 4.3:
Environmental Effects / 4.3.1:
Experimental Picture / 4.4.1:
Thermally Assisted Tunneling Regime / 4.4.2:
Ground-state Tunneling / 4.4.3:
Studies of Quantum Relaxation and Quantum Coherence in Molecular Magnets by Means of Specific Heat Measurements / 5:
Experimental Techniques / 5.1:
Theoretical Background / 5.3:
Spin-Hamiltonian for Molecular Magnets - Field-dependent Quantum Tunneling / 5.3.1:
Resonant Tunneling via Thermally Activated States / 5.3.2:
Master Equation - Calculation of [Gamma] / 5.3.3:
Calculation of Time-dependent Specific Heat and Susceptibility / 5.3.4:
Experimental Results and Discussion / 5.4:
Superparamagnetic Blocking in Zero Applied Field / 5.4.1:
Phonon-assisted Quantum Tunneling in Parallel Fields / 5.4.2:
Phonon-assisted Quantum Tunneling in Perpendicular Fields / 5.4.3:
Time-dependent Nuclear Specific Heat / 5.4.4:
Detection of the Tunnel Splitting for High Transverse Fields / 5.4.5:
Effect of Decoherence / 5.5:
Incoherent Tunneling and QC in MOlecules with Half-integer Spin / 5.6:
Conclusions / 5.7:
Self-organized Clusters and Nanosize Islands on Metal Surfaces / 6:
First Stage of Growth Kinetics / 6.1:
Island Density / 6.2.1:
Island Shapes / 6.2.2:
Growth Modes / 6.3:
Thermodynamic Growth Criterion / 6.3.1:
Microscopic Model / 6.3.2:
Elastic and Structural Considerations / 6.3.3:
Organized Growth / 6.4:
Incommensurate Modulated Layers / 6.4.1:
Atomic-scale Template / 6.4.2:
Self Organization / 6.4.3:
Periodic Patterning by Stress Relaxation / 6.4.4:
Organization on Vicinal Surfaces / 6.4.5:
Low-temperature Growth / 6.4.6:
Magnetic Properties / 6.5:
Magnetism in Low-dimensional Systems / 6.5.1:
Anisotropy in Ferromagnetic Nanostructures / 6.5.2:
Magnetic Domains / 6.5.3:
Superparamagnetism / 6.5.4:
Dimensionality and Critical Phenomena / 6.5.5:
Magnetic Nanostructures - Experimental Results / 6.6:
Isolated Islands / 6.6.1:
Interacting Islands and Chains / 6.6.2:
The 2D Limit / 6.6.3:
Conclusion and Outlook / 6.7:
Spin Electronics - An Overview / 7:
The Technical Basis of Spin Electronics - The Two-spin Channel Model / 7.1:
2.1 Spin Asymmetry / 7.2.1:
Spin Injection Across an Interface / 7.2.2:
The Role of Impurities in Spin Electronics / 7.2.3:
Two Terminal Spin Electronics - Giant Magnetoresistance (GMR) / 7.3:
The Analogy with Polarized Light / 7.3.1:
CIP and CPP GMR / 7.3.2:
Comparative Length Scales of CIP and CPP GMR / 7.3.3:
Inverse GMR / 7.3.4:
Methods of Achieving Differential Switching of Magnetization - RKKY Coupling Compared with Exchange Pinning / 7.3.5:
GMR in Nanowires / 7.3.6:
Three-terminal Spin Electronics / 7.4:
Mesomagnetism / 7.5:
Giant Thermal Magnetoresistance / 7.5.1:
The Domain Wall in Spin Electronics / 7.5.2:
Spin Tunneling / 7.6:
Theoretical Description of Spin Tunneling / 7.6.1:
Applications of Spin Tunneling / 7.6.2:
Hybrid Spin Electronics / 7.7:
The Monsma Transistor / 7.7.1:
Spin Transport in Semiconductors / 7.7.2:
The SPICE Transistor [55, 56] / 7.7.3:
Measuring Spin Decoherence in Semiconductors / 7.7.4:
Methods of Increasing Direct Spin-injection Efficiency / 7.7.5:
Novel Spin Transistor Geometries - Materials and Construction Challenges / 7.8:
The Rashba effect and the Spin FET / 7.9:
The Rashba Effect / 7.9.1:
The Datta-Das Transistor or Spin FET [68] / 7.9.2:
Methods for Measuring Spin Asymmetry / 7.10:
Ferromagnetic Single-electron Transistors (FSETs) / 7.10.1:
Spin Blockade / 7.10.2:
Unusual Ventures in Spin Electronics / 7.11:
The Future of Spin Electronics / 7.12:
Fast Magnetic Switching / 7.12.1:
Optically Pumped Magnetic Switching / 7.12.2:
Spin Diode / 7.12.3:
Spin Split Insulator as a Polarizing Injector - Application to Semiconductor Injection / 7.12.4:
Novel Fast-switching MRAM Storage Element / 7.12.5:
Quantum-coherent Spin Electronics / 7.12.6:
The Tunnel-grid Spin-triode / 7.12.7:
Multilayer Quantum Interference Spin-stacks / 7.12.8:
Multilayer Tunnel MRAM / 7.12.9:
Quantum Information Technology / 7.12.10:
NMR of Nanosized Magnetic Systems, Ultrathin Films, and Granular Systems / 8:
Local Structure / 8.1:
Local Atomic Configuration and Resonance Frequency / 8.2.1:
A Typical Example / 8.2.3:
Summary / 8.2.4:
Magnetization and Magnetic Anisotropy / 8.3:
Principles - Hyperfine Field in Ferromagnets / 8.3.1:
Local Magnetization / 8.3.2:
Local Anisotropy / 8.3.3:
Magnetic Stiffness - Anisotropy, Coercivity, and Coupling / 8.4:
Principles - NMR in Ferromagnets, Restoring Field, and Enhancement Factor / 8.4.1:
Local Magnetic Stiffness / 8.4.2:
Conclusion / 8.5:
Interlayer Exchange Interactions in Magnetic Multilayers / 9:
Survey of Experimental Observations / 9.1:
Survey of Theoretical Approaches / 9.3:
RKKY Theory / 9.3.1:
Quantum Well Model / 9.3.2:
sd-Mixing Model / 9.3.3:
Unified Picture in Terms of Quantum Interferences / 9.3.4:
First-principles Calculations / 9.3.5:
Quantum Confinement Theory of Interlayer Exchange Coupling / 9.4:
Elementary Discussion of Quantum Confinement / 9.4.1:
Interlayer Exchange Coupling Because of Quantum Interferences / 9.4.2:
Asymptotic Behavior for Large Spacer Thicknesses / 9.5:
Effect of Magnetic Layer Thickness / 9.6:
Effect of Overlayer Thickness / 9.7:
Strength and Phase of Interlayer Exchange Coupling / 9.8:
Co/Cu(001)/Co / 9.8.1:
Fe/Au(001/Fe / 9.8.2:
Concluding Remarks / 9.9:
Magnetization Dynamics on the Femtosecond Time-scale in Metallic Ferromagnets / 10:
Models / 10.1:
Heating Metals with Ultrashort Laser Pulses / 10.2.1:
Three-temperature Model of Ferromagnets / 10.2.2:
Model of Spin Dephasing / 10.2.3:
Magneto-optical Response and Measurement Techniques / 10.3:
Magneto-optical Response / 10.3.1:
Time-resolved magneto-optical techniques / 10.3.2:
Experimental Studies - Electron and Spin Dynamics in Ferromagnets / 10.4:
Electron Dynamics / 10.4.1:
Demagnetization Dynamics / 10.4.2:
Subject Index / 10.5:
Nanosized Magnetic Materials / 1:
Introduction / 1.1:
Synthesis / 1.2:
47.

図書

図書
Daan Frenkel, Berend Smit
出版情報: San Diego ; Tokyo : Academic Press, a division of Harcourt, c2002  xxii, 638 p. ; 24 cm
シリーズ名: Computational science : from theory to applications / series editors, Daan Frenkel ... [et al.] ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface
List of Symbols
Introduction / 1:
Basics / Part I:
Statistical Mechanics / 2:
Entropy and Temperature / 2.1:
Classical Statistical Mechanics / 2.2:
Ergodicity / 2.2.1:
Questions and Exercises / 2.3:
Monte Carlo Simulations / 3:
The Monte Carlo Method / 3.1:
Importance Sampling / 3.1.1:
The Metropolis Method / 3.1.2:
A Basic Monte Carlo Algorithm / 3.2:
The Algorithm / 3.2.1:
Technical Details / 3.2.2:
Detailed Balance versus Balance / 3.2.3:
Trial Moves / 3.3:
Translational Moves / 3.3.1:
Orientational Moves / 3.3.2:
Applications / 3.4:
Molecular Dynamics Simulations / 3.5:
Molecular Dynamics: The Idea / 4.1:
Molecular Dynamics: A Program / 4.2:
Initialization / 4.2.1:
The Force Calculation / 4.2.2:
Integrating the Equations of Motion / 4.2.3:
Equations of Motion / 4.3:
Other Algorithms / 4.3.1:
Higher-Order Schemes / 4.3.2:
Liouville Formulation of Time-Reversible Algorithms / 4.3.3:
Lyapunov Instability / 4.3.4:
One More Way to Look at the Verlet Algorithm / 4.3.5:
Computer Experiments / 4.4:
Diffusion / 4.4.1:
Order-n Algorithm to Measure Correlations / 4.4.2:
Some Applications / 4.5:
Ensembles / 4.6:
Monte Carlo Simulations in Various Ensembles / 5:
General Approach / 5.1:
Canonical Ensemble / 5.2:
Justification of the Algorithm / 5.2.1:
Microcanonical Monte Carlo / 5.3:
Isobaric-Isothermal Ensemble / 5.4:
Statistical Mechanical Basis / 5.4.1:
Isotension-Isothermal Ensemble / 5.4.2:
Grand-Canonical Ensemble / 5.6:
Molecular Dynamics in Various Ensembles / 5.6.1:
Molecular Dynamics at Constant Temperature / 6.1:
The Andersen Thermostat / 6.1.1:
Nose-Hoover Thermostat / 6.1.2:
Nose-Hoover Chains / 6.1.3:
Molecular Dynamics at Constant Pressure / 6.2:
Free Energies and Phase Equilibria / 6.3:
Free Energy Calculations / 7:
Thermodynamic Integration / 7.1:
Chemical Potentials / 7.2:
The Particle Insertion Method / 7.2.1:
Other Ensembles / 7.2.2:
Overlapping Distribution Method / 7.2.3:
Other Free Energy Methods / 7.3:
Multiple Histograms / 7.3.1:
Acceptance Ratio Method / 7.3.2:
Umbrella Sampling / 7.4:
Nonequilibrium Free Energy Methods / 7.4.1:
The Gibbs Ensemble / 7.5:
The Gibbs Ensemble Technique / 8.1:
The Partition Function / 8.2:
Particle Displacement / 8.3:
Volume Change / 8.3.2:
Particle Exchange / 8.3.3:
Implementation / 8.3.4:
Analyzing the Results / 8.3.5:
Other Methods to Study Coexistence / 8.4:
Semigrand Ensemble / 9.1:
Tracing Coexistence Curves / 9.2:
Free Energies of Solids / 10:
Atomic Solids with Continuous Potentials / 10.1:
Free Energies of Molecular Solids / 10.3:
Atomic Solids with Discontinuous Potentials / 10.3.1:
General Implementation Issues / 10.3.2:
Vacancies and Interstitials / 10.4:
Free Energies / 10.4.1:
Numerical Calculations / 10.4.2:
Free Energy of Chain Molecules / 11:
Chemical Potential as Reversible Work / 11.1:
Rosenbluth Sampling / 11.2:
Macromolecules with Discrete Conformations / 11.2.1:
Extension to Continuously Deformable Molecules / 11.2.2:
Overlapping Distribution Rosenbluth Method / 11.2.3:
Recursive Sampling / 11.2.4:
Pruned-Enriched Rosenbluth Method / 11.2.5:
Advanced Techniques / Part IV:
Long-Range Interactions / 12:
Ewald Sums / 12.1:
Point Charges / 12.1.1:
Dipolar Particles / 12.1.2:
Dielectric Constant / 12.1.3:
Boundary Conditions / 12.1.4:
Accuracy and Computational Complexity / 12.1.5:
Fast Multipole Method / 12.2:
Particle Mesh Approaches / 12.3:
Ewald Summation in a Slab Geometry / 12.4:
Biased Monte Carlo Schemes / 13:
Biased Sampling Techniques / 13.1:
Beyond Metropolis / 13.1.1:
Orientational Bias / 13.1.2:
Chain Molecules / 13.2:
Configurational-Bias Monte Carlo / 13.2.1:
Lattice Models / 13.2.2:
Off-lattice Case / 13.2.3:
Generation of Trial Orientations / 13.3:
Strong Intramolecular Interactions / 13.3.1:
Generation of Branched Molecules / 13.3.2:
Fixed Endpoints / 13.4:
Fully Flexible Chain / 13.4.1:
Rebridging Monte Carlo / 13.4.3:
Beyond Polymers / 13.5:
Gibbs Ensemble Simulations / 13.6:
Recoil Growth / 13.7:
Algorithm / 13.7.1:
Justification of the Method / 13.7.2:
Accelerating Monte Carlo Sampling / 13.8:
Parallel Tempering / 14.1:
Hybrid Monte Carlo / 14.2:
Cluster Moves / 14.3:
Clusters / 14.3.1:
Early Rejection Scheme / 14.3.2:
Tackling Time-Scale Problems / 15:
Constraints / 15.1:
Constrained and Unconstrained Averages / 15.1.1:
On-the-Fly Optimization: Car-Parrinello Approach / 15.2:
Multiple Time Steps / 15.3:
Rare Events / 16:
Theoretical Background / 16.1:
Bennett-Chandler Approach / 16.2:
Computational Aspects / 16.2.1:
Diffusive Barrier Crossing / 16.3:
Transition Path Ensemble / 16.4:
Path Ensemble / 16.4.1:
Searching for the Saddle Point / 16.4.2:
Dissipative Particle Dynamics / 17:
Description of the Technique / 17.1:
Implementation of the Method / 17.1.1:
DPD and Energy Conservation / 17.1.3:
Other Coarse-Grained Techniques / 17.2:
Appendices / Part V:
Lagrangian and Hamiltonian / A:
Lagrangian / A.1:
Hamiltonian / A.2:
Hamilton Dynamics and Statistical Mechanics / A.3:
Canonical Transformation / A.3.1:
Symplectic Condition / A.3.2:
Non-Hamiltonian Dynamics / A.3.3:
Non-Hamiltonian Simulation of the N, V, T Ensemble / B.1:
The Nose-Hoover Algorithm / B.2.1:
The N, P, T Ensemble / B.2.2:
Linear Response Theory / C:
Static Response / C.1:
Dynamic Response / C.2:
Dissipation / C.3:
Electrical Conductivity / C.3.1:
Viscosity / C.3.2:
Elastic Constants / C.4:
Statistical Errors / D:
Static Properties: System Size / D.1:
Correlation Functions / D.2:
Block Averages / D.3:
Integration Schemes / E:
Nose-Hoover Algorithms / E.1:
The Isothermal-Isobaric Ensemble / E.2.1:
Saving CPU Time / F:
Verlet List / F.1:
Cell Lists / F.2:
Combining the Verlet and Cell Lists / F.3:
Efficiency / F.4:
Reference States / G:
Grand-Canonical Ensemble Simulation / G.1:
Statistical Mechanics of the Gibbs "Ensemble" / H:
Free Energy of the Gibbs Ensemble / H.1:
Basic Definitions / H.1.1:
Free Energy Density / H.1.2:
Chemical Potential in the Gibbs Ensemble / H.2:
Overlapping Distribution for Polymers / I:
Some General Purpose Algorithms / J:
Small Research Projects / K:
Adsorption in Porous Media / K.1:
Transport Properties in Liquids / K.2:
Diffusion in a Porous Media / K.3:
Multiple-Time-Step Integrators / K.4:
Hints for Programming / K.5:
Bibliography
Author Index
Index
Preface to the Second Edition
Preface
List of Symbols
48.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
49.

図書

図書
James A. Fay, Dan S. Golomb
出版情報: New York, N.Y. ; Oxford : Oxford University Press, 2002  xxi, 314 p. ; 25 cm
シリーズ名: The MIT-Pappalardo series in mechanical engineering
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
Foreword
Preface
Energy and the Environment / 1:
Introduction / 1.1:
An Overview of this Text / 1.1.1:
Energy / 1.2:
Electric Power / 1.2.1:
Transportation Energy / 1.2.2:
Energy as a Commodity / 1.2.3:
The Environment / 1.3:
Managing Industrial Pollution / 1.3.1:
Global Energy Use and Supply / 2:
Global Energy Consumption / 2.1:
Global Energy Sources / 2.3:
Global Electricity Consumption / 2.4:
Global Carbon Emissions / 2.5:
End-Use Energy Consumption in the United States / 2.6:
Industrial Sector / 2.6.1:
Residential Sector / 2.6.2:
Commercial Sector / 2.6.3:
Transportation Sector / 2.6.4:
Global Energy Supply / 2.7:
Coal Reserves / 2.7.1:
Petroleum Reserves / 2.7.2:
Unconventional Petroleum Resources / 2.7.3:
Natural Gas Reserves / 2.7.4:
Unconventional Gas Resources / 2.7.5:
Summary of Fossil Reserves / 2.7.6:
Thermodynamic Principles of Energy Conversion / 3:
The Forms of Energy / 3.1:
The Mechanical Energy of Macroscopic Bodies / 3.2.1:
The Energy of Atoms and Molecules / 3.2.2:
Chemical and Nuclear Energy / 3.2.3:
Electric and Magnetic Energy / 3.2.4:
Total Energy / 3.2.5:
Work and Heat Interactions / 3.3:
Work Interaction / 3.3.1:
Heat Interaction / 3.3.2:
The First Law of Thermodynamics / 3.4:
The Second Law of Thermodynamics / 3.5:
Thermodynamic Properties / 3.6:
Steady Flow / 3.7:
Heat Transfer and Heat Exchange / 3.8:
Combustion of Fossil Fuel / 3.9:
Fuel Heating Value / 3.9.1:
Ideal Heat Engine Cycles / 3.10:
The Carnot Cycle / 3.10.1:
The Rankine Cycle / 3.10.2:
The Otto Cycle / 3.10.3:
The Brayton Cycle / 3.10.4:
Combined Brayton and Rankine Cycle / 3.10.5:
The Vapor Compression Cycle: Refrigeration and Heat Pumps / 3.11:
Fuel Cells / 3.12:
Fuel (Thermal) Efficiency / 3.13:
Synthetic Fuels / 3.14:
The Hydrogen Economy / 3.14.1:
Electrical Energy Generation, Transmission, and Storage / 4:
Electromechanical Power Transformation / 4.1:
Electric Power Transmission / 4.3:
AC/DC Conversion / 4.3.1:
Energy Storage / 4.4:
Electrostatic Energy Storage / 4.4.1:
Magnetic Energy Storage / 4.4.2:
Electrochemical Energy Storage / 4.4.3:
Mechanical Energy Storage / 4.4.4:
Properties of Energy Storage Systems / 4.4.5:
Fossil-Fueled Power Plants / 5:
Fossil-Fueled Power Plant Components / 5.1:
Fuel Storage and Preparation / 5.2.1:
Burner / 5.2.2:
Boiler / 5.2.3:
Steam Turbine / 5.2.4:
Gas Turbine / 5.2.5:
Condenser / 5.2.6:
Cooling Tower / 5.2.7:
Generator / 5.2.8:
Emission Control / 5.2.9:
Waste Disposal / 5.2.10:
Advanced Cycles / 5.3:
Combined Cycles / 5.3.1:
Coal Gasification Combined Cycle / 5.3.2:
Cogeneration / 5.3.3:
Fuel Cell / 5.3.4:
Nuclear-Fueled Power Plants / 6:
Nuclear Energy / 6.1:
Radioactivity / 6.3:
Decay Rates and Half-Lives / 6.3.1:
Units and Dosage / 6.3.2:
Nuclear Reactors / 6.4:
Boiling Water Reactor (BWR) / 6.4.1:
Pressurized Water Reactor (PWR) / 6.4.2:
Gas-Cooled Reactor (GCR) / 6.4.3:
Breeder Reactor (BR) / 6.4.4:
Nuclear Fuel Cycle / 6.5:
Mining and Refining / 6.5.1:
Gasification and Enrichment / 6.5.2:
Spent Fuel Reprocessing and Temporary Waste Storage / 6.5.3:
Permanent Waste Disposal / 6.5.4:
Fusion / 6.6:
Magnetic Confinement / 6.6.1:
Laser Fusion / 6.6.2:
Renewable Energy / 7:
Hydropower / 7.1:
Environmental Effects / 7.2.1:
Biomass / 7.3:
Geothermal Energy / 7.3.1:
Environmental Energy / 7.4.1:
Solar Energy / 7.5:
The Flat Plate Collector / 7.5.1:
Focusing Collectors / 7.5.2:
Photovoltaic Cells / 7.5.3:
Wind Power / 7.6:
Tidal Power / 7.6.1:
Ocean Wave Power / 7.7.1:
Ocean Thermal Power / 7.9:
Captial Cost of Renewable Electric Power / 7.10:
Transportation / 8:
Internal Combustion Engines for Highway Vehicles / 8.1:
Combustion in SI and CI Engines / 8.2.1:
Engine Power and Performance / 8.3:
Engine Efficiency / 8.3.1:
Vehicle Power and Performance / 8.4:
Connecting the Engine to the Wheels / 8.4.1:
Vehicle Fuel Efficiency / 8.5:
U.S. Vehicle Fuel Efficiency Regulations and Test Cycles / 8.5.1:
Improving Vehicle Fuel Economy / 8.5.2:
Electric Drive Vehicles / 8.6:
Vehicles Powered by Storage Batteries / 8.6.1:
Hybrid Vehicles / 8.6.2:
Fuel Cell Vehicles / 8.6.3:
Vehicle Emissions / 8.7:
U.S. / 8.7.1:
List of Tables
Foreword
Preface
50.

図書

図書
Michael Beetz
出版情報: Berlin ; Tokyo : Springer, c2002  xi, 191 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2554 . Lecture notes in artificial intelligence
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
The Challenges of Controlling Robot Office Couriers / 1.1:
The Control Problem / 1.2:
The Computational Model / 1.3:
An Adaptive Robotic Office Courier / 1.4:
Previous Work / 1.5:
Descriptive Models of Everyday Activity / 1.5.1:
Computational Models of Everyday Activity / 1.5.2:
Contributions / 1.6:
Overview / 1.7:
Overview of the Control System / 2:
Abstract Models of Robotic Agents / 2.1:
The Dynamic System Model / 2.1.1:
Autonomous Robots as Rational Agents / 2.1.2:
The BDI Model of Rational Agents / 2.1.3:
Discussion of Our Robotic Agent Model / 2.1.4:
The Environment Maps / 2.2:
The Computational Structure of the Control System / 2.3:
The Functional Layer / 2.3.1:
The "Robotic Agent" Abstract Machine / 2.3.2:
The Structured Reactive Controller / 2.3.3:
Plan Representation for Robotic Agents / 3:
Low -Level Integration of Mechanisms / 3.1:
Navigation / 3.1.1:
Communication Mechanisms / 3.1.2:
Execution Time Planning / 3.1.3:
Image Processing / 3.1.4:
Summary of Low -Level Integration / 3.1.5:
Low -Level Plans / 3.2:
Low -Level Navigation Plans / 3.2.1:
Low -Level Image Processing Plans / 3.2.2:
Low -Level Conversational Plans / 3.2.3:
Task-Specific Low -Level Plans / 3.2.4:
Summary of Low -Level Plans / 3.2.5:
Structured Reactive Plans / 3.3:
Properties of SRCs and Their Sub-plans / 3.3.1:
High-Level Navigation Plans / 3.3.2:
Structured Reactive Plans for Other Mechanisms / 3.3.3:
The Plan Adaptation Framew ork / 3.4:
Properties of Revision Rules and Revisable Plans / 3.4.1:
Revision Rules / 3.4.2:
Related Work on Plan Representation / 3.5:
Discussion / 3.6:
Probabilistic Hybrid Action Models / 4:
Projecting Delivery Tour Plans / 4.1:
Modeling Reactive Control Processes and Continuous Change / 4.2:
Probabilistic, Totally-Ordered Temporal Projection / 4.3:
Probabilistic Temporal Rules for PHAMs / 4.3.1:
Properties of PHAMs / 4.3.2:
The Implementation of PHAMs / 4.4:
Projection with Adaptive Causal Models / 4.4.1:
Endogenous Event Scheduler / 4.4.2:
Projecting Exogenous Events, Passive Sensors, and Obstacle Avoidance / 4.4.3:
Probabilistic Sampling-Based Projection / 4.4.4:
Evaluation / 4.5:
Generality / 4.5.1:
Scaling Up / 4.5.2:
Qualitatively Accurate Predictions / 4.5.3:
Related Work on Temporal Projection / 4.6:
LearningStructured Reactive Navigation Plans / 4.7:
Navigation Planning as a Markov Decision Problem / 5.1:
An Overviewon XfrmLearn / 5.2:
Structured Reactive Navigation Plans / 5.3:
XfrmLearn in Detail / 5.4:
The "Analyze" Step / 5.4.1:
The "Revise" Step / 5.4.2:
The "Test" Step / 5.4.3:
Experimental Results / 5.5:
The First Learning Experiment / 5.5.1:
The Second Learning Experiment / 5.5.2:
Discussion of the Experiments / 5.5.3:
Related Work on Learning Robot Plans / 5.6:
Plan-Based Robotic Agents / 5.7:
A Robot Office Courier / 6.1:
The Plans of the Robot Courier / 6.1.1:
Plan Adaptors of the Robot Courier / 6.1.2:
Probabilistic Prediction-Based Schedule Debugging / 6.1.3:
Demonstrations and Experiments / 6.1.4:
Prediction-Based Plan Management / 6.1.5:
A Robot Museums Tourguide / 6.2:
The Plans of the Tourguide Robot / 6.2.1:
Learning Tours and Tour Management / 6.2.2:
Demonstrations of the Tourguide Robot / 6.2.3:
A Robot Party Butler / 6.3:
Demonstrations of Integrated Mechanisms / 6.4:
Communication / 6.4.1:
Resource-Adaptive Search / 6.4.2:
Active Localization / 6.4.4:
Related Work on Plan-Based Robotic Agents / 6.5:
XAVIER / 6.5.1:
CHIP / 6.5.2:
Flakey / 6.5.3:
An Architecture for Autonomy / 6.5.4:
Remote Agent / 6.5.5:
Conclusions / 6.6:
Bibliography
Introduction / 1:
The Challenges of Controlling Robot Office Couriers / 1.1:
The Control Problem / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼