close
1.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
2.

図書

図書
M. Elwenspoek, R. Wiegerink
出版情報: Berlin : Springer-Verlag, c2001  x, 295 p. ; 25 cm
シリーズ名: Microtechnology and MEMS
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
Examples for MEMS / 2.2:
Bubble Jet / 2.2.1:
Actuators / 2.2.2:
Micropumps / 2.2.3:
Small and Large: Scaling / 2.3:
Electromagnetic Forces / 2.3.1:
Coulomb Friction / 2.3.2:
Mechanical Strength / 2.3.3:
Dynamic Properties / 2.3.4:
Available Fabrication Technology / 2.4:
Technologies Based on Lithography / 2.4.1:
Silicon Micromachining / 2.4.1.1:
LIGA / 2.4.1.2:
Miniaturisation of Conventional Technologies / 2.4.2:
Introduction into Silicon Micromachining / 3:
Photolithography / 3.1:
Thin Film Deposition and Doping / 3.2:
Silicon Dioxide / 3.2.1:
Chemical Vapour Deposition / 3.2.2:
Evaporation / 3.2.3:
Sputterdeposition / 3.2.4:
Doping / 3.2.5:
Wet Chemical Etching / 3.3:
Isotropic Etching / 3.3.1:
Anisotropic Etching / 3.3.2:
Etch Stop / 3.3.3:
Waferbonding / 3.4:
Anodic Bonding / 3.4.1:
Silicon Fusion Bonding / 3.4.2:
Plasma Etching / 3.5:
Plasma / 3.5.1:
Anisotropic Plasma Etching Modes / 3.5.2:
Configurations / 3.5.3:
Black Silicon Method / 3.5.4:
Surface Micromachining / 3.6:
Thin Film Stress / 3.6.1:
Sticking / 3.6.2:
Mechanics of Membranes and Beams / 4:
Dynamics of the Mass Spring System / 4.1:
Strings / 4.2:
Beams / 4.3:
Stress and Strain / 4.3.1:
Bending Energy / 4.3.2:
Radius of Curvature / 4.3.3:
Lagrange Function of a Flexible Beam / 4.3.4:
Differential Equation for Beams / 4.3.5:
Boundary Conditions for Beams / 4.3.6:
Examples / 4.3.7:
Mechanical Stability / 4.3.8:
Transversal Vibration of Beams / 4.3.9:
Diaphragms and Membranes / 4.4:
Circular Diaphragms / 4.4.1:
Square Membranes / 4.4.2:
Buckling of Bridges / Appendix 4.1:
Principles of Measuring Mechanical Quantities: Transduction of Deformation / 5:
Metal Strain Gauges / 5.1:
Semiconductor Strain Gauges / 5.2:
Piezoresistive Effect in Single Crystalline Silicon / 5.2.1:
Piezoresistive Effect in Polysilicon Thin Films / 5.2.2:
Transduction from Deformation to Resistance / 5.2.3:
Capacitive Transducers / 5.3:
Electromechanics / 5.3.1:
Diaphragm Pressure Sensors / 5.3.2:
Force and Pressure Sensors / 6:
Force Sensors / 6.1:
Load Cells / 6.1.1:
Pressure Sensors / 6.2:
Piezoresistive Pressure Sensors / 6.2.1:
Capacitive Pressure Sensors / 6.2.2:
Force Compensation Pressure Sensors / 6.2.3:
Resonant Pressure Sensors / 6.2.4:
Miniature Microphones / 6.2.5:
Tactile Imaging Arrays / 6.2.6:
Acceleration and Angular Rate Sensors / 7:
Acceleration Sensors / 7.1:
Bulk Micromachined Accelerometers / 7.1.1:
Surface Micromachined Accelerometers / 7.1.3:
Force Feedback / 7.1.4:
Angular Rate Sensors / 7.2:
Flow sensors / 8:
The Laminar Boundary Layer / 8.1:
The Navier-Stokes Equations / 8.1.1:
Heat Transport / 8.1.2:
Hydrodynamic Boundary Layer / 8.1.3:
Thermal Boundary Layer / 8.1.4:
Skin Friction and Heat Transfer / 8.1.5:
Heat Transport in the Limit of Very Small Reynolds Numbers / 8.2:
Thermal Flow Sensors / 8.3:
Anemometer Type Flow Sensors / 8.3.1:
Two-Wire Anemometers / 8.3.2:
Calorimetric Type Flow Sensors / 8.3.3:
Sound Intensity Sensors - The Microflown / 8.3.4:
Time of Flight Sensors / 8.3.5:
Skin Friction Sensors / 8.4:
"Dry Fluid Flow" Sensors / 8.5:
"Wet Fluid Flow" Sensors / 8.6:
Resonant Sensors / 9:
Basic Principles and Physics / 9.1:
The Differential Equation of a Prismatic Microbridge / 9.1.1:
Solving the Homogeneous, Undamped Problem using Laplace Transforms / 9.1.3:
Solving the Inhomogeneous Problem by Modal Analysis / 9.1.4:
Response to Axial Loads / 9.1.5:
Quality Factor / 9.1.6:
Nonlinear Large-Amplitude Effects / 9.1.7:
Excitation and Detection Mechanisms / 9.2:
Electrostatic Excitation and Capacitive Detection / 9.2.1:
Magnetic Excitation and Detection / 9.2.2:
Piezoelectric Excitation and Detection / 9.2.3:
Electrothermal Excitation and Piezoresistive Detection / 9.2.4:
Optothermal Excitation and Optical Detection / 9.2.5:
Dielectric Excitation and Detection / 9.2.6:
Examples and Applications / 9.3:
Electronic Interfacing / 10:
Piezoresistive Sensors / 10.1:
Wheatstone Bridge Configurations / 10.1.1:
Amplification of the Bridge Output Voltage / 10.1.2:
Noise and Offset / 10.1.3:
Feedback Control Loops / 10.1.4:
Interfacing with Digital Systems / 10.1.5:
Analog-to-Digital Conversion / 10.1.5.1:
Voltage to Frequency Converters / 10.1.5.2:
Capacitive Sensors / 10.2:
Impedance Bridges / 10.2.1:
Capacitance Controlled Oscillators / 10.2.2:
Frequency Dependent Behavior of Resonant Sensors / 10.3:
Realizing an Oscillator / 10.3.2:
One-Port Versus Two-Port Resonators / 10.3.3:
Oscillator Based on One-Port Electrostatically Driven Beam Resonator / 10.3.4:
Oscillator Based on Two-Port Electrodynamically Driven H-shaped Resonator / 10.3.5:
Packaging / 11:
Packaging Techniques / 11.1:
Standard Packages / 11.1.1:
Chip Mounting Methods / 11.1.2:
Wafer Level Packaging
Interconnection Techniques / 11.1.3:
Multichip Modules / 11.1.4:
Encapsulation Processes / 11.1.5:
Stress Reduction / 11.2:
Inertial Sensors / 11.3:
References / 11.5:
Index
Introduction / 1:
MEMS / 2:
Miniaturisation and Systems / 2.1:
3.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
4.

図書

図書
Thomas Heinzel
出版情報: Weinheim : Wiley-VCH, c2003  337 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
Ballistic transport / 1.2.1:
The quantum Hall effect and Shubnikov - de Haas oscillations / 1.2.2:
Size quantization / 1.2.3:
Phase coherence / 1.2.4:
Single electron tunnelling and quantum dots / 1.2.5:
Superlattices / 1.2.6:
Samples and experimental techniques / 1.2.7:
An Update of Solid State Physics / 2:
Crystal structures / 2.1:
Electronic energy bands / 2.2:
Occupation of energy bands / 2.3:
The electronic density of states / 2.3.1:
Occupation probability and chemical potential / 2.3.2:
Intrinsic carrier concentration / 2.3.3:
Envelope wave functions / 2.4:
Doping / 2.5:
Diffusive transport and the Boltzmann equation / 2.6:
The Boltzmann equation / 2.6.1:
The conductance predicted by the simplified Boltzmann equation / 2.6.2:
The magneto-resistivity tensor / 2.6.3:
Scattering mechanisms / 2.7:
Screening / 2.8:
Surfaces, Interfaces, and Layered Devices / 3:
Electronic surface states / 3.1:
Surface states in one dimension / 3.1.1:
Surfaces of 3-dimensional crystals / 3.1.2:
Band bending and Fermi level pinning / 3.1.3:
Semiconductor-metal interfaces / 3.2:
Band alignment and Schottky barriers / 3.2.1:
Ohmic contacts / 3.2.2:
Semiconductor heterointerfaces / 3.3:
Field effect transistors and quantum wells / 3.4:
The silicon metal-oxide-semiconductor FET (Si-MOSFET) / 3.4.1:
The Ga[Al]As high electron mobility transistor (GaAs-HEMT) / 3.4.2:
Other types of layered devices / 3.4.3:
Quantum confined carriers in comparison to bulk carriers / 3.4.4:
Experimental Techniques / 4:
Sample fabrication / 4.1:
Single crystal growth / 4.1.1:
Growth of layered structures / 4.1.2:
Lateral patterning / 4.1.3:
Metallization / 4.1.4:
Bonding / 4.1.5:
Elements of cryogenics / 4.2:
Properties of liquid helium / 4.2.1:
Helium cryostats / 4.2.2:
Electronic measurements on nanostructures / 4.3:
Sample holders / 4.3.1:
Application and detection of electronic signals / 4.3.2:
Important Quantities in Mesoscopic Transport / 5:
Magnetotransport Properties of Quantum Films / 6:
Landau quantization / 6.1:
2DEGs in perpendicular magnetic fields / 6.1.1:
The chemical potential in strong magnetic fields / 6.1.2:
The quantum Hall effect / 6.2:
Phenomenology / 6.2.1:
Origin of the integer quantum Hall effect / 6.2.2:
The quantum Hall effect and three dimensions / 6.2.3:
Elementary analysis of Shubnikov-de Haas oscillations / 6.3:
Some examples of magnetotransport experiments / 6.4:
Quasi-two-dimensional electron gases / 6.4.1:
Mapping of the probability density / 6.4.2:
Displacement of the quantum Hall plateaux / 6.4.3:
Parallel magnetic fields / 6.5:
Quantum Wires and Quantum Point Contacts / 7:
Diffusive quantum wires / 7.1:
Basic properties / 7.1.1:
Boundary scattering / 7.1.2:
Ballistic quantum wires / 7.2:
Conductance quantization in QPCs / 7.2.1:
Magnetic field effects / 7.2.3:
The "0.7 structure" / 7.2.4:
Four-probe measurements on ballistic quantum wires / 7.2.5:
The Landauer-Buttiker formalism / 7.3:
Edge states / 7.3.1:
Edge channels / 7.3.2:
Further examples of quantum wires / 7.4:
Conductance quantization in conventional metals / 7.4.1:
Carbon nanotubes / 7.4.2:
Quantum point contact circuits / 7.5:
Non-ohmic behavior of collinear QPCs / 7.5.1:
QPCs in parallel / 7.5.2:
Concluding remarks / 7.6:
Electronic Phase Coherence / 8:
The Aharonov-Bohm effect in mesoscopic conductors / 8.1:
Weak localization / 8.2:
Universal conductance fluctuations / 8.3:
Phase coherence in ballistic 2DEGs / 8.4:
Resonant tunnelling and S - matrices / 8.5:
Singe Electron Tunnelling / 9:
The principle of Coulomb blockade / 9.1:
Basic single electron tunnelling circuits / 9.2:
Coulomb blockade at the double barrier / 9.2.1:
Current-voltage characteristics: the Coulomb staircase / 9.2.2:
The SET transistor / 9.2.3:
SET circuits with many islands; the single electron pump / 9.3:
Quantum Dots / 10:
Phenomenology of quantum dots / 10.1:
The constant interaction model / 10.2:
Beyond the constant interaction model / 10.3:
Shape of conductance resonances and current-voltage characteristics / 10.4:
Other types of quantum dots / 10.5:
Mesoscopic Superlattices / 11:
One-dimensional superlattices / 11.1:
Two-dimensional superlattices / 11.2:
SI and cgs Units / A:
Appendices
Correlation and Convolution / B:
Fourier transofrmation / B.1:
Convolutions / B.2:
Correlation functions / B.3:
Capacitance Matrix and Electrostatic Energy / C:
The Transfer Hamiltonian / D:
Solutions to Selected Exercises / E:
References
Index
Introduction / 1:
Preliminary remarks / 1.1:
Mesoscopic transport / 1.2:
5.

図書

図書
Alfredo H-S. Ang, Wilson H. Tang
出版情報: New York : Wiley, 1975  xiii, 409 p. ; 24 cm
シリーズ名: Probability concepts in engineering planning and design ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
Uncertainty Associated with Randomness / 1.2.1:
Uncertainty Associated with Imperfect Modeling and Estimation / 1.2.2:
Design and Decision-Making Under Uncertainty / 1.3:
Planning and Design of Airport Pavement / 1.3.1:
Hydrologic Design / 1.3.2:
Design of Structures and Machines / 1.3.3:
Geotechnical Design / 1.3.4:
Construction Planning and Management / 1.3.5:
Photogrammetric, Geodetic, and Surveying Measurements / 1.3.6:
Control and Standards / 1.4:
Concluding Remarks / 1.5:
Basic Probability Concepts / 2:
Events and Probability / 2.1:
Characteristics of Probability Problems / 2.1.1:
Calculation of Probability / 2.1.2:
Elements of Set Theory / 2.2:
Definitions / 2.2.1:
Combination of Events / 2.2.2:
Operational Rules / 2.2.3:
Mathematics of Probability / 2.3:
Basic Axioms of Probability Addition Rule / 2.3.1:
Conditional Probability Multiplication Rule / 2.3.2:
Theorem of Total Probability / 2.3.3:
Bayes' Theorem / 2.3.4:
Concluding Remarks Problems / 2.4:
Analytical Models of Random Phenomena / 3:
Random Variables / 3.1:
Probability Distribution of a Random Variable / 3.1.1:
Main Descriptors of a Random Variable / 3.1.2:
Useful Probability Distributions / 3.2:
The Normal Distribution / 3.2.1:
The Logarithmic Normal Distribution / 3.2.2:
Bernoulli Sequence and the Binomial Distribution / 3.2.3:
The Geometric Distribution / 3.2.4:
The Negative Binomial Distribution / 3.2.5:
The Poisson Process and Poisson Distribution / 3.2.6:
The Exponential Distribution / 3.2.7:
The Gamma Distribution / 3.2.8:
The Hypergeometric Distribution / 3.2.9:
The Beta Distribution / 3.2.10:
Other Distributions / 3.2.11:
Multiple Random Variables / 3.3:
Joint and Conditional Probability Distributions / 3.3.1:
Covariance and Correlation / 3.3.2:
Conditional Mean and Variance / 3.3.3:
Functions of Random Variables / 3.4:
Derived Probability Distributions / 4.1:
Function of Single Random Variable / 4.2.1:
Function of Multiple Random Variables / 4.2.2:
Moments of Functions of Random Variables / 4.3:
Mean and Variance of a Linear Function / 4.3.1:
Product of Independent Variates / 4.3.3:
Mean and Variance of a General Function / 4.3.4:
Estimating Parameters from Observational Data / 4.4:
The Role of Statistical Inference in Engineering / 5.1:
Inherent Variability and Estimation Error / 5.1.1:
Classical Approach to Estimation of Parameters / 5.2:
Random Sampling and Point Estimation / 5.2.1:
Interval Estimation of the Mean / 5.2.2:
Problems of Measurement Theory / 5.2.3:
Interval Estimation of the Variance / 5.2.4:
Estimation of Proportion / 5.2.5:
Empirical Determination of Distribution Models / 5.3:
Probability Paper / 6.1:
The Normal Probability Paper / 6.2.1:
The Log-Normal Probability Paper / 6.2.2:
Construction of General Probability Paper / 6.2.3:
Testing Validity of Assumed Distribution / 6.3:
Chi-Square Test for Distribution / 6.3.1:
Kolmogorov-Smirnov Test for Distribution / 6.3.2:
Regression and Correlation Analyses / 6.4:
Basic Formulation of Linear Regression / 7.1:
Regression with Constant Variance / 7.1.1:
Regression with Nonconstant Variance / 7.1.2:
Multiple Linear Regression / 7.2:
Nonlinear Regression / 7.3:
Applications of Regression Analysis in Engineering / 7.4:
Correlation Analysis / 7.5:
Estimation of Correlation Coefficient / 7.5.1:
The Bayesian Approach / 7.6:
Basic Concepts-The Discrete Case / 8.1:
The Continuous Case / 8.3:
General Formulation / 8.3.1:
A Special Application of Bayesian Up-dating Process / 8.3.2:
Bayesian Concepts in Sampling Theory / 8.4:
Sampling from Normal Population / 8.4.1:
Error in Estimation / 8.4.3:
Use of Conjugate Distributions / 8.4.4:
Elements of Quality Assurance and Acceptance Sampling / 8.5:
Acceptance Sampling by Attributes / 9.1:
The Operating Characteristic (OC) Curve / 9.1.1:
The Success Run / 9.1.2:
The Average Outgoing Quality Curve / 9.1.3:
Acceptance Sampling by Variables / 9.2:
Average Quality Criterion, sigma Known / 9.2.1:
Average Quality Criterion, sigma Unknown / 9.2.2:
Fraction Defective Criterion / 9.2.3:
Multiple-Stage Sampling / 9.3:
Probability Tables / 9.4:
Table of Standard Normal Probability / Table A.1:
p-Percentile Values of the t-Distribution / Table A.2:
p-Percentile Values of the x 2 -Distribution / Table A.3:
Critical Values of D alpha; in the Kolmogorov-Smirnov Test / Table A.4:
Combinatorial Formulas / Appendix B:
Derivation of the Poisson Distribution / Appendix C:
References
Index
Role of Probability in Engineering / 1:
Introduction / 1.1:
Uncertainty in Real-World Information / 1.2:
6.

図書

図書
Govind P. Agrawal
出版情報: Boston ; Tokyo : Academic Press, c1989  xii, 342 p. ; 24 cm
シリーズ名: Quantum electronics : principles and applications
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Historical Perspective / 1.1:
Fiber Characteristics / 1.2:
Material and Fabrication / 1.2.1:
Fiber Losses / 1.2.2:
Chromatic Dispersion / 1.2.3:
Polarization-Mode Dispersion / 1.2.4:
Fiber Nonlinearities / 1.3:
Nonlinear Refraction / 1.3.1:
Stimulated Inelastic Scattering / 1.3.2:
Importance of Nonlinear Effects / 1.3.3:
Overview / 1.4:
Problems
References
Pulse Propagation in Fibers / 2:
Maxwell's Equations / 2.1:
Fiber Modes / 2.2:
Eigenvalue Equation / 2.2.1:
Single-Mode Condition / 2.2.2:
Characteristics of the Fundamental Mode / 2.2.3:
Pulse-Propagation Equation / 2.3:
Nonlinear Pulse Propagation / 2.3.1:
Higher-Order Nonlinear Effects / 2.3.2:
Numerical Methods / 2.4:
Split-Step Fourier Method / 2.4.1:
Finite-Difference Methods / 2.4.2:
Group-Velocity Dispersion / 3:
Different Propagation Regimes / 3.1:
Dispersion-Induced Pulse Broadening / 3.2:
Gaussian Pulses / 3.2.1:
Chirped Gaussian Pulses / 3.2.2:
Hyperbolic-Secant Pulses / 3.2.3:
Super-Gaussian Pulses / 3.2.4:
Experimental Results / 3.2.5:
Third-Order Dispersion / 3.3:
Changes in Pulse Shape / 3.3.1:
Broadening Factor / 3.3.2:
Arbitrary-Shape Pulses / 3.3.3:
Ultrashort-Pulse Measurements / 3.3.4:
Dispersion Management / 3.4:
GVD-Induced Limitations / 3.4.1:
Dispersion Compensation / 3.4.2:
Compensation of Third-Order Dispersion / 3.4.3:
Self-Phase Modulation / 4:
SPM-Induced Spectral Broadening / 4.1:
Nonlinear Phase Shift / 4.1.1:
Changes in Pulse Spectra / 4.1.2:
Effect of Pulse Shape and Initial Chirp / 4.1.3:
Effect of Partial Coherence / 4.1.4:
Effect of Group-Velocity Dispersion / 4.2:
Pulse Evolution / 4.2.1:
Optical Wave Breaking / 4.2.2:
Effect of Third-Order Dispersion / 4.2.4:
Self-Steepening / 4.3:
Effect of GVD on Optical Shocks / 4.3.2:
Intrapulse Raman Scattering / 4.3.3:
Optical Solitons / 5:
Modulation Instability / 5.1:
Linear Stability Analysis / 5.1.1:
Gain Spectrum / 5.1.2:
Experimental Observation / 5.1.3:
Ultrashort Pulse Generation / 5.1.4:
Impact on Lightwave Systems / 5.1.5:
Fiber Solitons / 5.2:
Inverse Scattering Method / 5.2.1:
Fundamental Soliton / 5.2.2:
Higher-Order Solitons / 5.2.3:
Experimental Confirmation / 5.2.4:
Soliton Stability / 5.2.5:
Other Types of Solitons / 5.3:
Dark Solitons / 5.3.1:
Dispersion-Managed Solitons / 5.3.2:
Bistable Solitons / 5.3.3:
Perturbation of Solitons / 5.4:
Perturbation Methods / 5.4.1:
Soliton Amplification / 5.4.2:
Soliton Interaction / 5.4.4:
Higher-Order Effects / 5.5:
Propagation of Femtosecond Pulses / 5.5.1:
Polarization Effects / 6:
Nonlinear Birefringence / 6.1:
Origin of Nonlinear Birefringence / 6.1.1:
Coupled-Mode Equations / 6.1.2:
Elliptically Birefringent Fibers / 6.1.3:
Nondispersive XPM / 6.2:
Optical Kerr Effect / 6.2.2:
Pulse Shaping / 6.2.3:
Evolution of Polarization State / 6.3:
Analytic Solution / 6.3.1:
Poincare-Sphere Representation / 6.3.2:
Polarization Instability / 6.3.3:
Polarization Chaos / 6.3.4:
Vector Modulation Instability / 6.4:
Low-Birefringence Fibers / 6.4.1:
High-Birefringence Fibers / 6.4.2:
Isotropic Fibers / 6.4.3:
Birefringence and Solitons / 6.4.4:
Soliton-Dragging Logic Gates / 6.5.1:
Vector Solitons / 6.5.4:
Random Birefringence / 6.6:
Polarization State of Solitons / 6.6.1:
Cross-Phase Modulation / 7:
XPM-Induced Nonlinear Coupling / 7.1:
Nonlinear Refractive Index / 7.1.1:
Coupled NLS Equations / 7.1.2:
Propagation in Birefringent Fibers / 7.1.3:
XPM-Induced Modulation Instability / 7.2:
XPM-Paired Solitons / 7.2.1:
Bright-Dark Soliton Pair / 7.3.1:
Bright-Gray Soliton Pair / 7.3.2:
Other Soliton Pairs / 7.3.3:
Spectral and Temporal Effects / 7.4:
Asymmetric Spectral Broadening / 7.4.1:
Asymmetric Temporal Changes / 7.4.2:
Applications of XPM / 7.4.3:
XPM-Induced Pulse Compression / 7.5.1:
XPM-Induced Optical Switching / 7.5.2:
XPM-Induced Nonreciprocity / 7.5.3:
Stimulated Raman Scattering / 8:
Basic Concepts / 8.1:
Raman-Gain Spectrum / 8.1.1:
Raman Threshold / 8.1.2:
Coupled Amplitude Equations / 8.1.3:
Quasi-Continuous SRS / 8.2:
Single-Pass Raman Generation / 8.2.1:
Raman Fiber Lasers / 8.2.2:
Raman Fiber Amplifiers / 8.2.3:
Raman-Induced Crosstalk / 8.2.4:
SRS with Short Pump Pulses / 8.3:
Pulse-Propagation Equations / 8.3.1:
Nondispersive Case / 8.3.2:
Effects of GVD / 8.3.3:
Synchronously Pumped Raman Lasers / 8.3.4:
Soliton Effects / 8.4:
Raman Solitons / 8.4.1:
Raman Soliton Lasers / 8.4.2:
Soliton-Effect Pulse Compression / 8.4.3:
Effect of Four-Wave Mixing / 8.5:
Stimulated Brillouin Scattering / 9:
Physical Process / 9.1:
Brillouin-Gain Spectrum / 9.1.2:
Quasi-CW SBS / 9.2:
Coupled Intensity Equations / 9.2.1:
Brillouin Threshold / 9.2.2:
Gain Saturation / 9.2.3:
Dynamic Aspects / 9.2.4:
Relaxation Oscillations / 9.3.1:
Modulation Instability and Chaos / 9.3.3:
Transient Regime / 9.3.4:
Brillouin Fiber Lasers / 9.4:
CW Operation / 9.4.1:
Pulsed Operation / 9.4.2:
SBS Applications / 9.5:
Brillouin Fiber Amplifiers / 9.5.1:
Fiber Sensors / 9.5.2:
Parametric Processes / 10:
Origin of Four-Wave Mixing / 10.1:
Theory of Four-Wave Mixing / 10.2:
Approximate Solution / 10.2.1:
Effect of Phase Matching / 10.2.3:
Ultrafast FWM / 10.2.4:
Phase-Matching Techniques / 10.3:
Physical Mechanisms / 10.3.1:
Phase Matching in Multimode Fibers / 10.3.2:
Phase Matching in Single-Mode Fibers / 10.3.3:
Phase Matching in Birefringent Fibers / 10.3.4:
Parametric Amplification / 10.4:
Gain and Bandwidth / 10.4.1:
Pump Depletion / 10.4.2:
Parametric Amplifiers / 10.4.3:
Parametric Oscillators / 10.4.4:
FWM Applications / 10.5:
Wavelength Conversion / 10.5.1:
Phase Conjugation / 10.5.2:
Squeezing / 10.5.3:
Supercontinuum Generation / 10.5.4:
Second-Harmonic Generation / 10.6:
Physical Mechanism / 10.6.1:
Simple Theory / 10.6.3:
Quasi-Phase-Matching Technique / 10.6.4:
Decibel Units / Appendix A:
Acronyms / Appendix B:
Index
Preface
Introduction / 1:
Historical Perspective / 1.1:
7.

図書

図書
edited by Yoshimi Ito
出版情報: New York : McGraw-Hill, c2010  xx, 214 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Nomenclature
Table for Conversation
Fundamentals in Design of Structural Body Components / 1:
Necessities and Importance of Lightweighted Structure in Reduction of Thermal Deformation-Discussion Using Mathematical Models / 1.1:
First-hand View for Lightweighted Structures with High Stiffness and Damping in Practice / 1.2:
Axi-symmetrical Configuration-Portal Column (Column of Twin-Pillar Type) / 1.2.1:
Placement and Allocation of Structural Configuration Entities / 1.2.2:
References
What Is Thermal Deformation? / 2:
General Behavior of Thermal Deformation / 2.1:
Estimation of Heat Sources and Their Magnitudes / 2.2:
Estimation of Heat Source Position / 2.2.1:
Estimation of Magnitude of Heat Generation / 2.2.2:
Estimation of Thermal Deformation of Machine Tools / 2.3:
Estimation of Thermal Deformation in General / 2.3.1:
Thermal Deformation Caused by Inner Heat Sources / 2.3.2:
Thermal Deformation Caused by Both Inner and Outer Heat Sources / 2.3.3:
Heat Sources Generated by Chips and Their Dissipation / 2.4:
Mathematical Model of Chips / 2.4.1:
Thermal Properties of Chips-Equivalent Thermal Conductivity and Contact Resistance / 2.4.2:
An Example of Heat Transfer from Piled Chips to Machine Tool Structure / 2.4.3:
Dissipation of Chips / 2.4.4:
Future Perspectives in Research and Development for Heat Sources and Dissipation / 2.5:
Structural Materials and Design for Preferable Thermal Stability / 3:
Remedies Concerning Raw Materials for Structural Body Components / 3.1:
Concrete / 3.1.1:
Painting and Coating Materials / 3.1.2:
New Materials / 3.1.3:
Remedies Concerning Structural Configurations and Plural-Spindle Systems / 3.2:
Non-Sensitive Structure / 3.2.1:
Non-Constraint Structure / 3.2.2:
Deformation Minimization Structure / 3.2.3:
Plural-Spindle Systems-Twin-Spindle Configuration Including Spindle-over-Spindle Type / 3.2.4:
Future Perspectives in Research and Development for Structural Configuration to Minimize Thermal Deformation / 3.3:
Two-Layered Spindle with Independent Rotating Function / 3.3.1:
Selective Modular Design for Advanced Quinaxial-Controlled MC with Turning Function / 3.3.2:
Various Remedies for Reduction of Thermal Deformation / 4:
Thermal Deformations and Effective Remedies / 4.1:
Classification of Remedies for Reduction of Thermal Deformation / 4.2:
Separation of Heat Sources / 4.2.1:
Reduction of Generated Heat / 4.2.2:
Equalization of Temperature Distribution / 4.2.3:
Compensation of Thermal Deformations / 4.2.4:
Innovative Remedies for Minimizing Thermal Deformation in the Near Future / 4.3:
Appendix
Optimization of Structural Design / A.1:
Finite Element Analysis for Thermal Behavior / 5:
Numerical Computation for Thermal Problems in General / 5.1:
Introduction / 5.1.1:
Finite Element Method / 5.1.2:
Finite Differences Method / 5.1.3:
Decision Making for the Selection of Methods / 5.1.4:
Procedure for Thermal Finite Element Analysis / 5.2:
Discretisation / 5.2.1:
Materials / 5.2.3:
Assembling Components to an Entire Machine Tool Model / 5.2.4:
Boundary Conditions / 5.2.5:
Loadcases / 5.2.6:
Linear and Non-Linear Thermal Computation / 5.2.7:
Determination of Boundary Conditions / 5.3:
Convection Heat Transfer Coefficients / 5.3.1:
Emission Coefficients and View Factors / 5.3.3:
Heat Sources and Sinks / 5.3.4:
Thermomechanical Simulation Process / 5.4:
Serial Processing / 5.4.1:
Coupled Processing / 5.4.3:
Future Perspectives in Research and Development for Thermal FEA / 5.5:
Engineering Computation for Thermal Behavior and Thermal Performance Test / 6:
Tank Model / 6.1:
Bond Graph Simulation to Estimate Thermal Behavior within High-Voltage and NC Controllers / 6.2:
Thermal Performance Testing / 6.3:
Index
Preface
Abbreviations
Nomenclature
8.

図書

図書
editor, Gerald D. Fasman
出版情報: Cleveland, Ohio ; Boca Raton, Fla. : CRC Press, c1976  2 v. ; 26 cm
シリーズ名: CRC handbook of biochemistry and molecular biology / editor, Gerald D. Fasman ; [D]
所蔵情報: loading…
目次情報: 続きを見る
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
Process equipment / 1.2.1:
Sensors and actuators / 1.2.2:
Electrical cabling, fieldbus technology and smart devices / 1.2.3:
Programmable logic controllers / 1.2.4:
Soft programmable logic controllers and embedded controllers / 1.2.5:
Supervisory control and data acquisition / 1.2.6:
Network communications and systems integration / 1.2.7:
Manufacturing execution systems / 1.2.8:
Enterprise resource planning / 1.2.9:
Designing an automated process line / 1.3:
User requirements specification / 1.3.1:
Functional design specification / 1.3.2:
Design implementation: project management / 1.3.3:
The future / 1.4:
Further reading
Primary milk production / A. L. Kelly2:
Introduction / 2.1:
Global milk production trends / 2.1.1:
Farm production trends / 2.1.2:
Husbandry management and milk quality / 2.2:
Lactation cycle and milk quality / 2.2.1:
Effect of diet on milk composition / 2.2.3:
Influence of genetic factors and breed on milk quality / 2.2.4:
Mastitis, somatic cell counts and milk quality / 2.2.5:
Milking and feeding systems / 2.3:
Milking machines and effects on milk quality / 2.3.1:
Automated concentrate feeding systems / 2.3.2:
Bulk storage, collection and transportation / 2.4:
Milk cooling and storage / 2.4.1:
Milk collection and handling in developing countries / 2.4.2:
Quality payment schmes and quality optimization / 2.5:
Mastitis control strategies / 2.5.1:
Other animal welfare issues / 2.5.2:
Milk payment and acceptance schemes / 2.5.3:
Acknowledgements
References
Liquid milk / D. D. Muir ; A. Y. Tamime3:
Milk composition / 3.1:
Proteins in milk / 3.1.1:
Lactose and minerals / 3.1.2:
Milk fat / 3.1.3:
Heat-treated milk products / 3.2:
Chemical effects / 3.2.1:
Destruction of microorganisms and enzymes / 3.2.2:
Effects on other milk constituents / 3.2.3:
From farm to factory / 3.3:
Milk collection / 3.3.1:
Milk distribution / 3.3.2:
Delivery to the factory / 3.3.3:
Extension of the shelf-life of raw milk / 3.3.4:
At the factory / 3.3.5:
Milk handling in dairies / 3.4:
Reception of milk / 3.4.1:
Milk processing / 3.4.2:
Pasteurisation systems / 3.4.3:
Extended-shelf-life milk / 3.4.4:
High-temperature pasteurisation / 3.4.5:
In-container sterilisation / 3.4.6:
Ultra high temperature (UHT) / 3.4.7:
Recombination technology / 3.5:
Packaging lines and storage / 3.6:
Statistical process control / 3.7:
Acknowledgement
Concentrated and dried dairy products / P. De Jong ; R. E. M. Verdurmen4:
Evaporation / 4.1:
Drying / 4.1.2:
Product and process technology / 4.2:
Evaporated and dried products / 4.2.1:
Process design and operation / 4.2.2:
Quality control / 4.3:
Control of process conditions / 4.3.1:
Control of product properties / 4.3.2:
High fat content dairy products / H. M. P. Ranjith ; K. K. Rajah5:
Properties of milk fat / 5.1:
Melting and crystallisation / 5.1.2:
High fat content emulsions: oil-in-water type / 5.2:
Centrifugal separation / 5.2.1:
Control of fat content in creams / 5.2.2:
Cleaning of milk separators / 5.2.3:
Description of creams / 5.2.4:
Processing of cream / 5.2.5:
Factors affecting cream quality / 5.2.6:
Processing recommendations for high fat content products / 5.3:
Properties required of high fat emulsions for table spreads / 5.3.1:
Butter manufacture / 5.3.2:
Anhydrous milk fat / 5.3.3:
Ghee / 5.3.4:
Butterschmalz / 5.3.5:
Fractionation of milk fat / 5.4:
Yoghurt and other fermented milks / R. K. Robinson ; E. Latrille6:
Background / 6.1:
Classification of fermented milks / 6.2:
Mesophilic microfloras / 6.2.1:
Thermophilic and/or therapeutic microfloras / 6.2.2:
Microfloras including yeasts and lactic acid bacteria / 6.2.3:
Microfloras including moulds and lactic acid bacteria / 6.2.4:
Manufacture of fermented milks / 6.3:
Raw materials / 6.3.1:
Fortification of the milk / 6.3.2:
Heat treatment of the milk / 6.3.3:
Microbiology of the processes / 6.3.4:
Fermentation / 6.3.5:
Final processing / 6.3.6:
Retail products / 6.3.7:
Options for automation and mechanisation / 6.4:
Processing plants / 6.4.1:
Quick chilling, cold storage and retrieval of products / 6.4.4:
Product recovery / 6.4.5:
Automation in handling systems for finished product / 6.4.6:
Recent developments in some fermented-milk products / 6.5:
Long-life yoghurt / 6.5.1:
Strained or concentrated yoghurt / 6.5.2:
Dried fermented milks / 6.5.3:
Frozen yoghurt / 6.5.4:
Drinking yoghurt / 6.5.5:
Process control systems / 6.6:
Controlled variables / 6.6.1:
New reliable sensors for fermentation monitoring / 6.6.3:
Advanced monitoring: prediction of the final process time / 6.6.4:
Statistical process control and future trends / 6.6.5:
Cheddar cheese production / B. A. Law7:
Cheesemaking as process engineering / 7.1:
Coagulation of milk and curd formation / 7.3:
Vat design / 7.3.1:
Cutting and stirring / 7.3.2:
Theoretical aids to the optimisation of the cutting and scalding stage / 7.3.3:
Curd draining, cheddaring, milling and salting / 7.4:
Production of pressed cheese blocks ready for maturation / 7.5:
Storage and maturation of cheese / 7.6:
Semi-hard cheeses / G. Van Den Berg8:
Cheese varieties involved / 8.1:
General technology / 8.1.2:
General historical background / 8.1.3:
Basic technology / 8.2:
Milk handling and processing / 8.3:
Milk fat standardisation / 8.3.1:
Control of sporeformers by bactofugation and microfiltration / 8.3.2:
Pasteurisation / 8.3.3:
Cheese vats and curd production / 8.4:
Horizontal vats / 8.4.1:
Vertical vats / 8.4.2:
Preparation of the curd / 8.4.3:
Instrumentation to control and automate curd cutting time / 8.4.4:
Curd drainage and moulding / 8.5:
Buffer tanks / 8.5.1:
Casomatic systems / 8.5.2:
Pre-pressing vats / 8.5.3:
Pressing / 8.6:
Cheese pressing / 8.6.1:
Mould handling / 8.6.2:
Brining / 8.7:
Brine composition / 8.7.1:
Hygiene measures / 8.7.2:
Brining systems / 8.7.3:
Dry salting / 8.7.4:
Treatment during natural ripening / 8.8:
Cheese handling systems / 8.8.1:
Conditioning of the ripening room / 8.8.2:
Soft fresh cheese and soft ripened cheese / H. Pointurier9:
Characteristics of ripened and fresh soft cheeses / 9.1:
Soft ripened cheeses (les fromages a pate molle) / 9.2.1:
Fresh cheese (fromage frais) / 9.2.2:
The key phases in the process plant for soft cheese manufacture / 9.3:
Soft ripened cheeses / 9.3.1:
Soft fresh cheeses / 9.3.2:
Cottage cheese / 9.3.3:
Mechanisation and automation solutions / 9.4:
Pasta Filata cheeses / O. Salvadori del Prato9.4.1:
General introduction and basic classification / 10.1:
Technology of Pasta Filata cheeses / 10.2:
Mozzarella and soft Pasta Filata cheeses / 10.2.1:
Provolone and hard Pasta Filata cheeses / 10.2.2:
Mechanisation and control of Pasta Filata cheese production / 10.3:
Coagulators or cheese vats / 10.3.1:
Filatrici and moulding machines / 10.3.2:
Hardening and brining / 10.3.3:
Packaging / 10.3.4:
Miscellaneous systems / 10.3.5:
Quality control of Pasta Filata cheese processing / 10.4:
Rheological properties / 10.4.1:
Microstructure / 10.4.2:
Hazard analysis critical control points / 10.4.3:
Membrane processing / H.C. Van der Horst11:
Principles of membrane processes / 11.1:
Process control and automation of membrane processes / 11.2:
Membrane applications for milk / 11.3:
Milk concentration by reverse osmosis / 11.3.1:
Demineralisation by nanofiltration / 11.3.2:
Milk protein standardisation by ultrafiltration / 11.3.3:
Milk protein concentration by ultrafiltration and microfiltration / 11.3.4:
Removal of bacteria, spores and somatic cells from raw milk by microfiltration / 11.3.5:
Applications to cheese / 11.4:
Soft and hard cheese varieties / 11.4.1:
Applications for whey / 11.5:
Concentration of whey by reverse osmosis / 11.5.1:
Demineralisation of whey by nanofiltration / 11.5.2:
Whey protein concentrate production by ultrafiltration / 11.5.3:
Whey protein fractionation / 11.5.4:
Miscellaneous processes / 11.6:
Clarification of brine / 11.6.1:
Recycling of cleaning solutions / 11.6.2:
Nonproduct operations, services and waste handling / L. Robertson12:
Nonproduct operation and maintenance / 12.1:
Plant commissioning / 12.1.1:
Start-up and shut-down / 12.1.2:
Maintenance, including predictive or planned maintenance / 12.1.3:
Cleaning-in-place operation, control and automation / 12.1.4:
Supply and control of services / 12.2:
Water quality / 12.2.1:
Electricity / 12.2.2:
Steam / 12.2.3:
Hot water / 12.2.4:
Chilled water / 12.2.5:
Compressed air / 12.2.6:
Dryer air / 12.2.7:
Cogeneration / 12.2.8:
Waste heat recovery and re-use / 12.2.9:
Waste handling / 12.3:
Legal issues / 12.3.1:
Waste minimisation / 12.3.2:
Waste characterisation / 12.3.3:
Waste product and by-product treatment / 12.3.4:
Nutrient and biological oxygen demand reduction / 12.3.5:
Index
Principles of automation in the dairy industry / W. Kirkland1:
Introduction and historical development / 1.1:
Automation and control of dairy processes / 1.2:
9.

図書

図書
Stephen I. Gallant
出版情報: Cambridge, Mass. : MIT Press, c1993  xvi, 365 p. ; 24 cm
シリーズ名: Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Basics / I:
Introduction and Important Definitions / 1:
Why Connectionist Models? / 1.1:
The Grand Goals of Al and Its Current Impasse / 1.1.1:
The Computational Appeal of Neural Networks / 1.1.2:
The Structure of Connectionist Models / 1.2:
Network Properties / 1.2.1:
Cell Properties / 1.2.2:
Dynamic Properties / 1.2.3:
Learning Properties / 1.2.4:
Two Fundamental Models: Multilayer Perceptrons (MLP's) and Backpropagation Networks (BPN's) / 1.3:
Multilayer Perceptrons (MLP's) / 1.3.1:
Backpropagation Networks (BPN's) / 1.3.2:
Gradient Descent / 1.4:
The Algorithm / 1.4.1:
Practical Problems / 1.4.2:
Comments / 1.4.3:
Historic and Bibliographic Notes / 1.5:
Early Work / 1.5.1:
The Decline of the Perceptron / 1.5.2:
The Rise of Connectionist Research / 1.5.3:
Other Bibliographic Notes / 1.5.4:
Exercises / 1.6:
Programming Project / 1.7:
Representation Issues / 2:
Representing Boolean Functions / 2.1:
Equivalence of {+1, -1,0} and {1,0} Forms / 2.1.1:
Single-Cell Models / 2.1.2:
Nonseparable Functions / 2.1.3:
Representing Arbitrary Boolean Functions / 2.1.4:
Representing Boolean Functions Using Continuous Connectionist Models / 2.1.5:
Distributed Representations / 2.2:
Definition / 2.2.1:
Storage Efficiency and Resistance to Error / 2.2.2:
Superposition / 2.2.3:
Learning / 2.2.4:
Feature Spaces and ISA Relations / 2.3:
Feature Spaces / 2.3.1:
Concept-Function Unification / 2.3.2:
ISA Relations / 2.3.3:
Binding / 2.3.4:
Representing Real-Valued Functions / 2.4:
Approximating Real Numbers by Collections of Discrete Cells / 2.4.1:
Precision / 2.4.2:
Approximating Real Numbers by Collections of Continuous Cells / 2.4.3:
Example: Taxtime! / 2.5:
Programming Projects / 2.6:
Learning In Single-Layer Models / II:
Perceptron Learning and the Pocket Algorithm / 3:
Perceptron Learning for Separable Sets of Training Examples / 3.1:
Statement of the Problem / 3.1.1:
Computing the Bias / 3.1.2:
The Perceptron Learning Algorithm / 3.1.3:
Perceptron Convergence Theorem / 3.1.4:
The Perceptron Cycling Theorem / 3.1.5:
The Pocket Algorithm for Nonseparable Sets of Training Examples / 3.2:
Problem Statement / 3.2.1:
Perceptron Learning Is Poorly Behaved / 3.2.2:
The Pocket Algorithm / 3.2.3:
Ratchets / 3.2.4:
Examples / 3.2.5:
Noisy and Contradictory Sets of Training Examples / 3.2.6:
Rules / 3.2.7:
Implementation Considerations / 3.2.8:
Proof of the Pocket Convergence Theorem / 3.2.9:
Khachiyan's Linear Programming Algorithm / 3.3:
Winner-Take-All Groups or Linear Machines / 3.4:
Generalizes Single-Cell Models / 4.1:
Perceptron Learning for Winner-Take-All Groups / 4.2:
The Pocket Algorithm for Winner-Take-All Groups / 4.3:
Kessler's Construction, Perceptron Cycling, and the Pocket Algorithm Proof / 4.4:
Independent Training / 4.5:
Autoassociators and One-Shot Learning / 4.6:
Linear Autoassociators and the Outer-Product Training Rule / 5.1:
Anderson's BSB Model / 5.2:
Hopfieid's Model / 5.3:
Energy / 5.3.1:
The Traveling Salesman Problem / 5.4:
The Cohen-Grossberg Theorem / 5.5:
Kanerva's Model / 5.6:
Autoassociative Filtering for Feedforward Networks / 5.7:
Concluding Remarks / 5.8:
Mean Squared Error (MSE) Algorithms / 5.9:
Motivation / 6.1:
MSE Approximations / 6.2:
The Widrow-Hoff Rule or LMS Algorithm / 6.3:
Number of Training Examples Required / 6.3.1:
Adaline / 6.4:
Adaptive Noise Cancellation / 6.5:
Decision-Directed Learning / 6.6:
Unsupervised Learning / 6.7:
Introduction / 7.1:
No Teacher / 7.1.1:
Clustering Algorithms / 7.1.2:
k-Means Clustering / 7.2:
Topology-Preserving Maps / 7.2.1:
Example / 7.3.1:
Demonstrations / 7.3.4:
Dimensionality, Neighborhood Size, and Final Comments / 7.3.5:
Art1 / 7.4:
Important Aspects of the Algorithm / 7.4.1:
Art2 / 7.4.2:
Using Clustering Algorithms for Supervised Learning / 7.6:
Labeling Clusters / 7.6.1:
ARTMAP or Supervised ART / 7.6.2:
Learning In Multilayer Models / 7.7:
The Distributed Method and Radial Basis Functions / 8:
Rosenblatt's Approach / 8.1:
The Distributed Method / 8.2:
Cover's Formula / 8.2.1:
Robustness-Preserving Functions / 8.2.2:
Hepatobiliary Data / 8.3:
Artificial Data / 8.3.2:
How Many Cells? / 8.4:
Pruning Data / 8.4.1:
Leave-One-Out / 8.4.2:
Radial Basis Functions / 8.5:
A Variant: The Anchor Algorithm / 8.6:
Scaling, Multiple Outputs, and Parallelism / 8.7:
Scaling Properties / 8.7.1:
Multiple Outputs and Parallelism / 8.7.2:
A Computational Speedup for Learning / 8.7.3:
Computational Learning Theory and the BRD Algorithm / 8.7.4:
Introduction to Computational Learning Theory / 9.1:
PAC-Learning / 9.1.1:
Bounded Distributed Connectionist Networks / 9.1.2:
Probabilistic Bounded Distributed Concepts / 9.1.3:
A Learning Algorithm for Probabilistic Bounded Distributed Concepts / 9.2:
The BRD Theorem / 9.3:
Polynomial Learning / 9.3.1:
Noisy Data and Fallback Estimates / 9.4:
Vapnik-Chervonenkis Bounds / 9.4.1:
Hoeffding and Chernoff Bounds / 9.4.2:
Pocket Algorithm / 9.4.3:
Additional Training Examples / 9.4.4:
Bounds for Single-Layer Algorithms / 9.5:
Fitting Data by Limiting the Number of Iterations / 9.6:
Discussion / 9.7:
Exercise / 9.8:
Constructive Algorithms / 9.9:
The Tower and Pyramid Algorithms / 10.1:
The Tower Algorithm / 10.1.1:
Proof of Convergence / 10.1.2:
A Computational Speedup / 10.1.4:
The Pyramid Algorithm / 10.1.5:
The Cascade-Correlation Algorithm / 10.2:
The Tiling Algorithm / 10.3:
The Upstart Algorithm / 10.4:
Other Constructive Algorithms and Pruning / 10.5:
Easy Learning Problems / 10.6:
Decomposition / 10.6.1:
Expandable Network Problems / 10.6.2:
Limits of Easy Learning / 10.6.3:
Backpropagation / 10.7:
The Backpropagation Algorithm / 11.1:
Statement of the Algorithm / 11.1.1:
A Numerical Example / 11.1.2:
Derivation / 11.2:
Practical Considerations / 11.3:
Determination of Correct Outputs / 11.3.1:
Initial Weights / 11.3.2:
Choice of r / 11.3.3:
Momentum / 11.3.4:
Network Topology / 11.3.5:
Local Minima / 11.3.6:
Activations in [0,1] versus [-1, 1] / 11.3.7:
Update after Every Training Example / 11.3.8:
Other Squashing Functions / 11.3.9:
NP-Completeness / 11.4:
Overuse / 11.5:
Interesting Intermediate Cells / 11.5.2:
Continuous Outputs / 11.5.3:
Probability Outputs / 11.5.4:
Using Backpropagation to Train Multilayer Perceptrons / 11.5.5:
Backpropagation: Variations and Applications / 11.6:
NETtalk / 12.1:
Input and Output Representations / 12.1.1:
Experiments / 12.1.2:
Backpropagation through Time / 12.1.3:
Handwritten Character Recognition / 12.3:
Neocognitron Architecture / 12.3.1:
The Network / 12.3.2:
Robot Manipulator with Excess Degrees of Freedom / 12.3.3:
The Problem / 12.4.1:
Training the Inverse Network / 12.4.2:
Plan Units / 12.4.3:
Simulated Annealing and Boltzmann Machines / 12.4.4:
Simulated Annealing / 13.1:
Boltzmann Machines / 13.2:
The Boltzmann Model / 13.2.1:
Boltzmann Learning / 13.2.2:
The Boltzmann Algorithm and Noise Clamping / 13.2.3:
Example: The 4-2-4 Encoder Problem / 13.2.4:
Remarks / 13.3:
Neural Network Expert Systems / 13.4:
Expert Systems and Neural Networks / 14:
Expert Systems / 14.1:
What Is an Expert System? / 14.1.1:
Why Expert Systems? / 14.1.2:
Historically Important Expert Systems / 14.1.3:
Critique of Conventional Expert Systems / 14.1.4:
Neural Network Decision Systems / 14.2:
Example: Diagnosis of Acute Coronary Occlusion / 14.2.1:
Example: Autonomous Navigation / 14.2.2:
Other Examples / 14.2.3:
Decision Systems versus Expert Systems / 14.2.4:
MACIE, and an Example Problem / 14.3:
Diagnosis and Treatment of Acute Sarcophagal Disease / 14.3.1:
Network Generation / 14.3.2:
Sample Run of Macie / 14.3.3:
Real-Valued Variables and Winner-Take-All Groups / 14.3.4:
Not-Yet-Known versus Unavailable Variables / 14.3.5:
Applicability of Neural Network Expert Systems / 14.4:
Details of the MACIE System / 14.5:
Inferencing and Forward Chaining / 15.1:
Discrete Multilayer Perceptron Models / 15.1.1:
Continuous Variables / 15.1.2:
Winner-Take-All Groups / 15.1.3:
Using Prior Probabilities for More Aggressive Inferencing / 15.1.4:
Confidence Estimation / 15.2:
A Confidence Heuristic Prior to Inference / 15.2.1:
Confidence in Inferences / 15.2.2:
Information Acquisition and Backward Chaining / 15.3:
Concluding Comment / 15.4:
Noise, Redundancy, Fault Detection, and Bayesian Decision Theory / 15.5:
The High Tech Lemonade Corporation's Problem / 16.1:
The Deep Model and the Noise Model / 16.2:
Generating the Expert System / 16.3:
Probabilistic Analysis / 16.4:
Noisy Single-Pattern Boolean Fault Detection Problems / 16.5:
Convergence Theorem / 16.6:
Extracting Rules from networks / 16.7:
Why Rules? / 17.1:
What Kind of Rules? / 17.2:
Criteria / 17.2.1:
Inference Justifications versus Rule Sets / 17.2.2:
Which Variables in Conditions / 17.2.3:
Inference Justifications / 17.3:
MACIE's Algorithm / 17.3.1:
The Removal Algorithm / 17.3.2:
Key Factor Justifications / 17.3.3:
Justifications for Continuous Models / 17.3.4:
Rule Sets / 17.4:
Limiting the Number of Conditions / 17.4.1:
Approximating Rules / 17.4.2:
Conventional + Neural Network Expert Systems / 17.5:
Debugging an Expert System Knowledge Base / 17.5.1:
The Short-Rule Debugging Cycle / 17.5.2:
Appendix Representation Comparisons / 17.6:
DNF Expressions / A.1 DNF Expressions and Polynomial Representability:
Polynomial Representability / A.1.2:
Space Comparison of MLP and DNF Representations / A.1.3:
Speed Comparison of MLP and DNF Representations / A.1.4:
MLP versus DNF Representations / A.1.5:
Decision Trees / A.2:
Representing Decision Trees by MLP's / A.2.1:
Speed Comparison / A.2.2:
Decision Trees versus MLP's / A.2.3:
p-lDiagrams / A.3:
Symmetric Functions and Depth Complexity / A.4:
Bibliography / A.5:
Index
Foreword
Basics / I:
Introduction and Important Definitions / 1:
10.

図書

図書
authorized translation from the Russian by Herbert Lashinsky ; edited by M.A. Leontovich
出版情報: New York : Consultants Bureau, 1965-  v. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
Waves and Particles / 3:
Plasma in a Magnetic Field / 4:
Linear Waves / 5:
Relativistic Interaction of Laser Pulse With Plasmas / S.V. Bulanov ; F. Califano ; G.I. Dudnikova ; T.Zh. Esirkepov ; I.N. Inovenkov ; F.F. Kamenets ; T.V. Liseikina ; M. Lontano ; K. Mima ; N. M. Naumova ; K. Nishihara ; F. Pegoraro ; H. Ruhl ; A.S. Sakharov ; Y. Sentoku ; V.A. Vshivkov ; V.V. ZhakhovskiiPart 2:
Introduction
Relativistically strong electromagnetic waves in underdense plasmas
Acceleration of charged particles and photons
Filamentation of the laser light and magnetic interaction of filaments and electromagnetic radiation
Relativistic solitons
Interactions of an ultrashort, relativistically strong, laser pulse with an overdense plasma
Nonlinear interactions of laser pulses with a foil / 6:
Coulomb explosion of a cluster irradiated by a high intensity laser pulse / 7:
Conclusions / 8:
References
Theoretical Principles of the Plasma-Equilibrium Control in Stellarators / V. D. Pustovitov
History of the problem and a general review of the theory / 1.:
The first problems of tokamaks and stellarators / 1.1.:
The problem of high [beta] / 1.2.:
Development of the MHD theory of stellarators / 1.3.:
High [beta] and the problem of plasmaequilibrium control / 1.4.:
Free-boundary plasma equilibrium / 1.5.:
Plasma-shape control in stellarators / 1.6.:
General equations of the theory of plasma equilibrium in conventional stellarators / 2.:
Stellarator approximation and the magnetic differential equation / 2.1.:
Real and averaged magnetic surfaces / 2.2.:
Integral quantities / 2.3.:
Currents in equilibrium configurations / 2.4.:
Longitudinal current in a stellarator / 2.5.:
Two-dimensional equation of plasma equilibrium in stellarators / 2.6.:
Analytical models / 3.:
Two-dimensional model of a stellarator / 3.1.:
Minimal set of parameters / 3.2.:
Description of the inner part of the plasma / 3.3.:
Effect of satellite harmonics on the stellarator configuration / 3.4.:
Control of plasma equilibrium using a vertical magnetic field / 4.:
Boundary conditions in equilibrium problems / 4.1.:
Reduction of the boundary conditions / 4.2.:
Effect of a vertical field on the plasmacolumn position in stellarators / 4.3.:
Suppression of the Pfirsch-Schluter current in conventional stellarators / 4.4.:
Integral independence on [beta] and "overcompensation" / 4.5.:
The influence of a quadrupole field on the stellarator configuration / 5.:
Control of the vacuum stellarator configuration using a quadrupole field / 5.1.:
Doublet-like stellarator configurations / 5.2.:
Control of the rotational-transform profile with the help of the quadrupole field / 5.3.:
Elongation of the plasma column as a means of increasing [beta][subscript eq] in stellarators / 5.4.:
List of main symbols
Fundamentals of Stationary Plasma Thruster Theory / A. I. Morozov ; V. V. Savelyev
General picture of processes in SPTs
Principal scheme of an SPT
Specifics of physical processes in SPTs
Quasi-autonomous functional units of SPTs
General system of equations and boundary conditions for SPT processes
Magnetic and electric fields in SPTs
Magnetic fields in SPTs
"Equipotentialization" of the magnetic force lines. Magnetic drift surfaces
The "loading" of magnetic force lines
Plasma electric field for the quasi-Maxwellian electron component
Remarks
Electron kinetics in the SPT channel
Characteristics of particle collisions with each other and with the surfaces
Electron distribution functions in the SPT channel
Debye layers on the SPT channel walls
The near-wall conductivity (NWC)
UHF-oscillations in the SPT channel / 3.5.:
Some conclusions / 3.6.:
Erosion of insulators in SPTs
The role and form of insulator erosion
Ion sputtering
Mathematical modeling of the anomalous erosion
Heavy particle dynamics in the SPT channel
Dynamics of single heavy particles
A kinetic description of ionizing heavy particles
Similarity criteria for discharges in SPT
The "inverse" problem of heavy particle dynamics
An analysis of processes using the emerging flux characteristics / 5.5.:
Estimate of energetic balance components in the SPT-ATON / 5.6.:
Low-frequency oscillations in SPTs / 6.:
Experimental data on LF-oscillations in the SPT channel / 6.1.:
Linear oscillations in a one-dimensional flux model without ionization / 6.2.:
One-dimensional self-consistent models for plasma flow in an SPT channel / 7.:
Modeling an SPT in the one-dimensional hydrodynamic approximation / 7.1.:
The results of calculations in the hydrodynamic model / 7.2.:
Dynamics of oscillations / 7.3.:
A hybrid model for the plasma flow in an SPT / 7.4.:
SPTs in real conditions / 8.:
The particle influx from the VC into the SPT / 8.1.:
Preventing particle influx from the VC / 8.2.:
Supersynchronization phenomenon / 8.3.:
Appendix
The necessity of electric propulsion thrusters / A.:
Preface
Mechanisma of Transverse Conductivity and Generation of Self-Consistent Electric Fields in Strongly Ionized Magnetized Plasma / V. Rozhansky
Conductivity Tensor in Partially Ionized Plasma / 1.1:
Main Mechanisms of Perpendicular Conductivity in Fully Ionized Plasma: Currents Caused by Viscosity, Inertia, Collisions with Neutrals, and [down triangle, open]B, and Mass-Loading Currents / 1.3:
Inertia Currents / 1.3.1:
Currents Caused by Ion-Neutral Collisions / 1.3.2:
Diamagnetic Currents / 1.3.3:
Viscosity-Driven Currents / 1.3.4:
Mass-Loading Current / 1.3.5:
Inertial (Polarization) and [down triangle, open]B Currents. Acceleration of Plasma Clouds in an Inhomogeneous Magnetic Field / 1.4:
Alfven Conductivity / 1.5:
Perpendicular Viscosity, Radial Current, and Radial Electric Field in an Infinite Cylinder / 1.6:
Current Systems in Front of a Biased Electrode (Flush-Mounted Probe) and Spot of Emission / 1.7:
Viscosity-Driven Perpendicular Currents / 1.7.1:
Currents Driven by Ion-Neutral Collisions / 1.7.2:
General Situation / 1.7.3:
Spot of Emission / 1.7.5:
Currents in the Vicinity of a Biased Electrode That is Smaller Than the Ion Gyroradius / 1.8:
Neoclassical Perpendicular Conductivity in a Tokamak / 1.9:
Steady State Current / 1.9.1:
Time-Dependent Current / 1.9.2:
Transverse Conductivity in a Reversed Field Pinch / 1.10:
Modeling of Electric Field and Currents in the Tokamak Edge Plasma / 1.11:
Mechanisms of Anomalous Perpendicular Viscosity and Viscosity-Driven Currents / 1.12:
Transverse Conductivity in a Stochastic Magnetic Field / 1.13:
Nonstochastic Magnetic Field / 1.13.1:
Stochastic Magnetic Field / 1.13.2:
Electric Fields Generated in the Shielding Layer between Hot Plasma and a Solid State / 1.14:
Correlations and Anomalous Transport Models / O.G. Bakunin
Turbulent Diffusion and Transport / 2.1:
The Correlation Function and the Taylor Diffusivity / 2.2.1:
The Richardson Law / 2.2.2:
The Davydov Model of Turbulent Diffusion / 2.2.3:
The Batchelor Approximation for the Diffusion Coefficient / 2.2.4:
Nonlocal Effects and Diffusion Equations / 2.3:
The Functional Equation for Random Walks / 2.3.1:
Nonlocality and the Levy Distribution / 2.3.2:
The Monin Fractional Differential Equation / 2.3.3:
The Corrsin Conjecture / 2.4:
The Corrsin Independence Hypothesis / 2.4.1:
The Simplified Corrsin Conjecture / 2.4.2:
The Correlation Function and Scalings / 2.4.3:
Effects of Seed Diffusivity / 2.5:
Seed Diffusivity and Correlations / 2.5.1:
"Returns" and Correlations / 2.5.2:
The Stochastic Magnetic Field and Scalings / 2.5.3:
The Howells Result / 2.5.4:
The Diffusive Tracer Equation and Averaging / 2.6:
The Taylor Shear Flow Model / 2.6.1:
Generalization of the Taylor Model / 2.6.2:
The Zeldovich Flow and the Kubo Number / 2.6.3:
Advection and Zeldovich Scaling / 2.6.4:
The System of Random Shear Flows / 2.7:
The Dreizin-Dykhne Superdiffusion Regime / 2.7.1:
The Matheron-de Marsily Model / 2.7.2:
The "Manhattan Grid" Flow and Transport / 2.7.3:
The Quasi-Linear Approximation / 2.8:
Quasi-Linear Equations / 2.8.1:
Short-Range and Long-Range Correlations / 2.8.2:
The Telegraph Equation / 2.8.3:
Magnetic Diffusivity and the Kubo Number / 2.8.4:
The Diffusive Renormalization / 2.9:
The Dupree Approximation / 2.9.1:
The Dupree Theory Revisited / 2.9.2:
The Taylor-McNamara Correlation Function / 2.9.3:
The Kadomtsev-Pogutse Renormalization and the Stochastic Magnetic Field / 2.9.4:
Anomalous Transport and Convective Cells / 2.10:
Bohm Scaling and Electric Field Fluctuations / 2.10.1:
The Bohm Regime and Correlations / 2.10.2:
Convective Cells and Transport / 2.10.3:
Complex Structures and Convective Transport / 2.10.4:
Stochastic Instability and Transport / 2.11:
Stochastic Instability and Correlations / 2.11.1:
The Rechester-Rosenbluth Model / 2.11.2:
Collisional Effects and the Stix Formula / 2.11.3:
The Quasi-Isotropic Stochastic Magnetic Field and Transport / 2.11.4:
Quasi-Linear Scaling for the Stochastic Instability Increment / 2.11.5:
Fractal Conceptions and Turbulence / 2.12:
Fractality and Transport / 2.12.1:
The Richardson Law and Fractality / 2.12.2:
Intermittency and the Kolmogorov Law / 2.12.3:
Percolation and Scalings / 2.13:
Continuum Percolation and Transport / 2.13.1:
Renormalization and Percolation / 2.13.2:
Graded Percolation / 2.13.3:
Percolation and Turbulent Transport Scalings / 2.14:
Random Steady Flows and Seed Diffusivity / 2.14.1:
The Spatial Hierarchy of Scales and Stochastic Instability / 2.14.2:
Low Frequency Regimes / 2.14.3:
The Temporal Hierarchy of Scales and Correlations / 2.15:
The Spatial and Temporal Hierarchy of Scales / 2.15.1:
The Isichenko Intermediate Regime / 2.15.2:
Dissipation and Percolation Transport / 2.15.3:
The Stochastic Magnetic Field and Percolation Transport / 2.16:
Percolation and the Kadomtsev-Pogutse Scaling / 2.16.1:
Percolation Renormalization and the Stochastic Instability Increment / 2.16.3:
Percolation in Drift Flows / 2.17:
Graded Percolation and Drift Flows / 2.17.1:
Low Frequency Regimes and Drift Effects / 2.17.2:
Compressibility and Percolation / 2.17.3:
Multiscale Flows / 2.18:
The Nested Hierarchy of Scales and Drift Effects / 2.18.1:
The Brownian Landscape and Percolation / 2.18.2:
Correlations and Transport Scalings / 2.18.3:
The Diffusive Approximation and the Multiscale Model / 2.18.4:
Stochastic Instability and Time Scales / 2.18.5:
Isotropic and Anisotropic Turbulent Energy Spectra / 2.18.6:
The Multiscale Model of Transport in a Tangled Magnetic Field / 2.18.7:
Subdiffusion and Traps / 2.19:
The Balagurov and Vaks Model of Diffusion with Traps / 2.19.1:
Subdiffusion and Fractality / 2.19.2:
Comb Structures and Transport / 2.19.3:
Continuous Time Random Walks / 2.20:
The Montroll and Weiss Approach and Memory Effects / 2.20.1:
Fractional Differential Equations / 2.20.2:
The Taylor Definition and Memory Effects / 2.20.3:
Fractional Differential Equations and Scalings / 2.21:
The Klafter, Blumen, and Shlesinger Approximation / 2.21.1:
The Stochastic Magnetic Field and Balescu Approach / 2.21.2:
Longitudinal Correlations and the Diffusive Approximation / 2.21.3:
Vortex Structures and Trapping / 2.21.4:
Correlations and Trapping / 2.21.5:
Correlation and Phase-Space / 2.22:
The Corrsin Conjecture and Phase-Space / 2.22.1:
The Hamiltonian Nature of the Universal Hurst Exponent / 2.22.2:
The One-Flight Model and Transport / 2.22.3:
Correlations and Nonlocal Velocity Distribution / 2.22.4:
The Arrhenius Law and Phase-Space Distribution / 2.22.5:
Conclusion / 2.23:
Acknowledgements
Cooperative Effects in Plasmas / B.B. KadomtsevPart 1:
Preliminaries / 1:
Nonlinear Waves / 2:
11.

図書

図書
Yoshiharu Doi
出版情報: New York, N.Y. : VCH, c1990  ix, 156 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
Environmentally Degradable Polyesters / 1.3:
References
Fermentation and Analysis of Microbial Polyesters / Chapter 2:
Fermentation Production / 2.1:
Poly(3-hydroxybutyrate) / 2.1.1:
Poly(hydroxyalkanoates) / 2.1.2:
Polymer Isolation / 2.2:
Solvent Extraction / 2.2.1:
Alkaline Hypochlorite Treatment / 2.2.2:
Enzyme Treatment / 2.2.3:
Analysis / 2.3:
Polyester Content of Cells / 2.3.1:
Composition of Copolymers / 2.3.2:
Molecular Weight? / 2.3.3:
Microorganisms and Poly(3-hydroxyalkanoates) / Chapter 3:
Poly(3-hydroxybutyrate) in Microorganisms / 3.1:
Functions of Poly(3-hydroxybutyrate) / 3.1.1:
Structure of Native P(3HB) Granules / 3.1.2:
Biosynthesis of Poly(3-hydroxyalkanoates) / 3.2:
Alcaligenes eutrophus / 3.2.1:
Pseudomonas oleovorans / 3.2.2:
Other Bacterial Strains / 3.2.3:
Molecular Structures of Poly(3-hydroxyalkanoates) / 3.3:
Poly(3-hydroxybutyrate-co-3-hydroxyalerate) / 3.3.1:
Poly(3-hydroxyalkanoates-co-3-hydroxy--chloroalkanoates) / 3.3.2:
Poly(3-hydroxyalkanoates) Metabolism / Chapter 4:
Pathways of Poly(3-hydroxybutyrate) Synthesis / 4.1:
Pathways of Poly(3-hydroxyalkanoates) Synthesis / 4.2:
Enzymology of Poly(3-hydroxyalkanoates) Synthesis / 4.3:
3-Ketothiolase / 4.3.1:
Acetoacetyl-CoA Reductase / 4.3.2:
P(3HB) Synthase / 4.3.3:
Pathways of P(3-hydroxybutyrate) Degradation / 4.4:
Cyclic Nature of Poly(3-hydroxyalkanoates) Metabolism / 4.5:
Replacement of P(3HB) by P(3HB-co-3HV) / 4.5.1:
Replacement of P(3HB-co-3HV) by P(3HB) / 4.5.2:
Application to PHA Fermentation / 4.5.3:
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) / Chapter 5:
Alcaligenes eutrophus and Carbon Substrates / 5.1:
Molecular Structure / 5.2:
Biosynthetic Pathway? / 5.3:
Structure and Properties of Poly(3-hydroxybutyrate) / Chapter 6:
Crystal Structure and Properties / 6.1:
Crystal Structure / 6.1.1:
Solid-State Properties / 6.1.2:
Solution Properties / 6.2:
Solid-State Properties of Copolyesters / Chapter 7:
Composition and Physical Properties / 7.1:
X-Ray Diffraction Analysis / 7.1.1:
Solid-State CP/MAS 13C-NMR Analysis / 7.1.2:
Mechanical Properties / 7.1.3:
Thermal Properties / 7.2:
Melting Temperatures / 7.2.1:
Glass-Transition Temperatures / 7.2.2:
Thermal Stability / 7.2.3:
Kinetics of Crystallization / 7.3:
Biodegradation of Microbial Polyesters / Chapter 8:
Extracellular P(3HB) Depolymerase / 8.1:
Pseudomonas lemoignei / 8.1.1:
Alcaligenes faecalis / 8.1.2:
Enzymatic Hydrolysis of Copolyesters / 8.2:
Simple Hydrolysis of Polyesters / 8.3:
Applications and Prospects / 8.4:
Environmentally Degradable Plastics / 8.4.1:
Medical Applications / 8.4.2:
Index
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
12.

図書

図書
Joel H. Ferziger, Milovan Perić
出版情報: Berlin : Springer, c2002  xiv, 423 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
Conservation Principles / 1.2:
Mass Conservation / 1.3:
Momentum Conservation / 1.4:
Conservation of Scalar Quantities / 1.5:
Dimensionless Form of Equations / 1.6:
Simplified Mathematical Models / 1.7:
Incompressible Flow / 1.7.1:
Inviscid (Euler) Flow / 1.7.2:
Potential Flow / 1.7.3:
Creeping (Stokes) Flow / 1.7.4:
Boussinesq Approximation / 1.7.5:
Boundary Layer Approximation / 1.7.6:
Modeling of Complex Flow Phenomena / 1.7.7:
Mathematical Classification of Flows / 1.8:
Hyperbolic Flows / 1.8.1:
Parabolic Flows / 1.8.2:
Elliptic Flows / 1.8.3:
Mixed Flow Types / 1.8.4:
Plan of This Book / 1.9:
Introduction to Numerical Methods / 2.:
Approaches to Fluid Dynamical Problems / 2.1:
What is CFD? / 2.2:
Possibilities and Limitations of Numerical Methods / 2.3:
Components of a Numerical Solution Method / 2.4:
Mathematical Model / 2.4.1:
Discretization Method / 2.4.2:
Coordinate and Basis Vector Systems / 2.4.3:
Numerical Grid / 2.4.4:
Finite Approximations / 2.4.5:
Solution Method / 2.4.6:
Convergence Criteria / 2.4.7:
Properties of Numerical Solution Methods / 2.5:
Consistency / 2.5.1:
Stability / 2.5.2:
Convergence / 2.5.3:
Conservation / 2.5.4:
Boundedness / 2.5.5:
Realizability / 2.5.6:
Accuracy / 2.5.7:
Discretization Approaches / 2.6:
Finite Difference Method / 2.6.1:
Finite Volume Method / 2.6.2:
Finite Element Method / 2.6.3:
Finite Difference Methods / 3.:
Basic Concept / 3.1:
Approximation of the First Derivative / 3.3:
Taylor Series Expansion / 3.3.1:
Polynomial Fitting / 3.3.2:
Compact Schemes / 3.3.3:
Non-Uniform Grids / 3.3.4:
Approximation of the Second Derivative / 3.4:
Approximation of Mixed Derivatives / 3.5:
Approximation of Other Terms / 3.6:
Implementation of Boundary Conditions / 3.7:
The Algebraic Equation System / 3.8:
Discretization Errors / 3.9:
An Introduction to Spectral Methods / 3.10:
Another View of Discretization Error / 3.10.1:
Example / 3.11:
Finite Volume Methods / 4.:
Approximation of Surface Integrals / 4.1:
Approximation of Volume Integrals / 4.3:
Interpolation and Differentiation Practices / 4.4:
Upwind Interpolation (UDS) / 4.4.1:
Linear Interpolation (CDS) / 4.4.2:
Quadratic Upwind Interpolation (QUICK) / 4.4.3:
Higher-Order Schemes / 4.4.4:
Other Schemes / 4.4.5:
Examples / 4.5:
Solution of Linear Equation Systems / 5.:
Direct Methods / 5.1:
Gauss Elimination / 5.2.1:
LU Decomposition / 5.2.2:
Tridiagonal Systems / 5.2.3:
Cyclic Reduction / 5.2.4:
Iterative Methods / 5.3:
Some Basic Methods / 5.3.1:
Incomplete LU Decomposition: Stone's Method / 5.3.4:
ADI and Other Splitting Methods / 5.3.5:
Conjugate Gradient Methods / 5.3.6:
Biconjugate Gradients and CGSTAB / 5.3.7:
Multigrid Methods / 5.3.8:
Other Iterative Solvers / 5.3.9:
Coupled Equations and Their Solution / 5.4:
Simultaneous Solution / 5.4.1:
Sequential Solution / 5.4.2:
Under-Relaxation / 5.4.3:
Non-Linear Equations and their Solution / 5.5:
Newton-like Techniques / 5.5.1:
Other Techniques / 5.5.2:
Deferred-Correction Approaches / 5.6:
Convergence Criteria and Iteration Errors / 5.7:
Methods for Unsteady Problems / 5.8:
Methods for Initial Value Problems in ODEs / 6.1:
Two-Level Methods / 6.2.1:
Predictor-Corrector and Multipoint Methods / 6.2.2:
Runge-Kutta Methods / 6.2.3:
Other Methods / 6.2.4:
Application to the Generic Transport Equation / 6.3:
Explicit Methods / 6.3.1:
Implicit Methods / 6.3.2:
Solution of the Navier-Stokes Equations / 6.3.3:
Special Features of the Navier-Stokes Equations / 7.1:
Discretization of Convective and Viscous Terms / 7.1.1:
Discretization of Pressure Terms and Body Forces / 7.1.2:
Conservation Properties / 7.1.3:
Choice of Variable Arrangement on the Grid / 7.2:
Colocated Arrangement / 7.2.1:
Staggered Arrangements / 7.2.2:
Calculation of the Pressure / 7.3:
The Pressure Equation and its Solution / 7.3.1:
A Simple Explicit Time Advance Scheme / 7.3.2:
A Simple Implicit Time Advance Method / 7.3.3:
Implicit Pressure-Correction Methods / 7.3.4:
Fractional Step Methods / 7.4:
Streamfunction-Vorticity Methods / 7.4.2:
Artificial Compressibility Methods / 7.4.3:
Solution Methods for the Navier-Stokes Equations / 7.5:
Implicit Scheme Using Pressure-Correction and a Staggered Grid / 7.5.1:
Treatment of Pressure for Colocated Variables / 7.5.2:
SIMPLE Algorithm for a Colocated Variable Arrangement / 7.5.3:
Note on Pressure and Incompressibility / 7.6:
Boundary Conditions for the Navier-Stokes Equations / 7.7:
Complex Geometries / 7.8:
The Choice of Grid / 8.1:
Stepwise Approximation Using Regular Grids / 8.1.1:
Overlapping Grids / 8.1.2:
Boundary-Fitted Non-Orthogonal Grids / 8.1.3:
Grid Generation / 8.2:
The Choice of Velocity Components / 8.3:
Grid-Oriented Velocity Components / 8.3.1:
Cartesian Velocity Components / 8.3.2:
The Choice of Variable Arrangement / 8.4:
Methods Based on Coordinate Transformation / 8.4.1:
Method Based on Shape Functions / 8.5.2:
Approximation of Convective Fluxes / 8.6:
Approximation of Diffusive Fluxes / 8.6.2:
Approximation of Source Terms / 8.6.3:
Three-Dimensional Grids / 8.6.4:
Block-Structured Grids / 8.6.5:
Unstructured Grids / 8.6.6:
Control-Volume-Based Finite Element Methods / 8.7:
Pressure-Correction Equation / 8.8:
Axi-Symmetric Problems / 8.9:
Inlet / 8.10:
Outlet / 8.10.2:
Impermeable Walls / 8.10.3:
Symmetry Planes / 8.10.4:
Specified Pressure / 8.10.5:
Turbulent Flows / 8.11:
Direct Numerical Simulation (DNS) / 9.1:
Example: Spatial Decay of Grid Turbulence / 9.2.1:
Large Eddy Simulation (LES) / 9.3:
Smagorinsky and Related Models / 9.3.1:
Dynamic Models / 9.3.2:
Deconvolution Models / 9.3.3:
Example: Flow Over a Wall-Mounted Cube / 9.3.4:
Example: Stratified Homogeneous Shear Flow / 9.3.5:
RANS Models / 9.4:
Reynolds-Averaged Navier-Stokes (RANS) Equations / 9.4.1:
Simple Turbulence Models and their Application / 9.4.2:
The v2f Model / 9.4.3:
Example: Flow Around an Engine Valve / 9.4.4:
Reynolds Stress Models / 9.5:
Very Large Eddy Simulation / 9.6:
Compressible Flow / 10.:
Pressure-Correction Methods for Arbitrary Mach Number / 10.1:
Pressure-Velocity-Density Coupling / 10.2.1:
Boundary Conditions / 10.2.2:
Methods Designed for Compressible Flow / 10.2.3:
An Overview of Some Specific Methods / 10.3.1:
Efficiency and Accuracy Improvement / 11.:
Error Analysis and Estimation / 11.1:
Description of Errors / 11.1.1:
Estimation of Errors / 11.1.2:
Recommended Practice for CFD Uncertainty Analysis / 11.1.3:
Grid quality and optimization / 11.2:
Multigrid Methods for Flow Calculation / 11.3:
Adaptive Grid Methods and Local Grid Refinement / 11.4:
Parallel Computing in CFD / 11.5:
Iterative Schemes for Linear Equations / 11.5.1:
Domain Decomposition in Space / 11.5.2:
Domain Decomposition in Time / 11.5.3:
Efficiency of Parallel Computing / 11.5.4:
Special Topics / 12.:
Heat and Mass Transfer / 12.1:
Flows With Variable Fluid Properties / 12.3:
Moving Grids / 12.4:
Free-Surface Flows / 12.5:
Interface-Tracking Methods / 12.5.1:
Hybrid Methods / 12.5.2:
Meteorological and Oceanographic Applications / 12.6:
Multiphase flows / 12.7:
Combustion / 12.8:
Appendices / A.:
List of Computer Codes and How to Access Them / A.1:
List of Frequently Used Abbreviations / A.2:
References
Index
Preface
Basic Concepts of Fluid Flow / 1.:
Introduction / 1.1:
13.

図書

図書
Leon Lapidus, George F. Pinder
出版情報: New York : Wiley, c1982  677 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Fundamental Concepts / Chapter 1.:
Notation / 1.0.:
First-Order Partial Differential Equations / 1.1.:
First-Order Quasilinear Partial Differential Equations / 1.1.1.:
Initial Value or Cauchy Problem / 1.1.2.:
Application of Characteristic Curves / 1.1.3.:
Nonlinear First-Order Partial Differential Equations / 1.1.4.:
Second-Order Partial Differential Equations / 1.2.:
Linear Second-Order Partial Differential Equations / 1.2.1.:
Classification and Canonical Form of Selected Partial Differential Equations / 1.2.2.:
Quasilinear Partial Differential Equations and Other Ideas / 1.2.3.:
Systems of First-Order PDEs / 1.3.:
First-Order and Second-Order PDEs / 1.3.1.:
Characteristic Curves / 1.3.2.:
Applications of Characteristic Curves / 1.3.3.:
Initial and Boundary Conditions / 1.4.:
References
Basic Concepts in the Finite Difference and Finite Element Methods / Chapter 2.:
Introduction / 2.0.:
Finite Difference Approximations / 2.1.:
Taylor Series Expansions / 2.1.1.:
Operator Notation for u(x) / 2.1.3.:
Finite Difference Approximations in Two Dimensions / 2.1.4.:
Additional Concepts / 2.1.5.:
Introduction to Finite Element Approximations / 2.2.:
Method of Weighted Residuals / 2.2.1.:
Application of the Method of Weighted Residuals / 2.2.2.:
The Choice of Basis Functions / 2.2.3.:
Two-Dimensional Basis Functions / 2.2.4.:
Approximating Equations / 2.2.5.:
Relationship between Finite Element and Finite Difference Methods / 2.3.:
Finite Elements on Irregular Subspaces / Chapter 3.:
Triangular Elements / 3.0.:
The Linear Triangular Element / 3.1.1.:
Area Coordinates / 3.1.2.:
The Quadratic Triangular Element / 3.1.3.:
The Cubic Triangular Element / 3.1.4.:
Higher-Order Triangular Elements / 3.1.5.:
Isoparametric Finite Elements / 3.2.:
Transformation Functions / 3.2.1.:
Numerical Integration / 3.2.2.:
Isoparametric Serendipity Hermitian Elements / 3.2.3.:
Isoparametric Hermitian Elements in Normal and Tangential Coordinates / 3.2.4.:
Boundary Conditions / 3.3.:
Three-Dimensional Elements / 3.4.:
Parabolic Partial Differential Equations / Chapter 4.:
Partial Differential Equations / 4.0.:
Well-Posed Partial Differential Equations / 4.1.1.:
Model Difference Approximations / 4.2.:
Well-Posed Difference Forms / 4.2.1.:
Derivation of Finite Difference Approximations / 4.3.:
The Classic Explicit Approximation / 4.3.1.:
The Dufort-Frankel Explicit Approximation / 4.3.2.:
The Richardson Explicit Approximation / 4.3.3.:
The Backwards Implicit Approximation / 4.3.4.:
The Crank-Nicolson Implicit Approximation / 4.3.5.:
The Variable-Weighted Implicit Approximation / 4.3.6.:
Consistency and Convergence / 4.4.:
Stability / 4.5.:
Heuristic Stability / 4.5.1.:
Von Neumann Stability / 4.5.2.:
Matrix Stability / 4.5.3.:
Some Extensions / 4.6.:
Influence of Lower-Order Terms / 4.6.1.:
Higher-Order Forms / 4.6.2.:
Predictor-Corrector Methods / 4.6.3.:
Asymmetric Approximations / 4.6.4.:
Variable Coefficients / 4.6.5.:
Nonlinear Parabolic PDEs / 4.6.6.:
The Box Method / 4.6.7.:
Solution of Finite Difference Approximations / 4.7.:
Solution of Implicit Approximations / 4.7.1.:
Explicit versus Implicit Approximations / 4.7.2.:
Composite Solutions / 4.8.:
Global Extrapolation / 4.8.1.:
Some Numerical Results / 4.8.2.:
Local Combination / 4.8.3.:
Composites of Different Approximations / 4.8.4.:
Finite Difference Approximations in Two Space Dimensions / 4.9.:
Explicit Methods / 4.9.1.:
Irregular Boundaries / 4.9.2.:
Implicit Methods / 4.9.3.:
Alternating Direction Explicit (ADE) Methods / 4.9.4.:
Alternating Direction Implicit (ADI) Methods / 4.9.5.:
LOD and Fractional Splitting Methods / 4.9.6.:
Hopscotch Methods / 4.9.7.:
Mesh Refinement / 4.9.8.:
Three-Dimensional Problems / 4.10.:
ADI Methods / 4.10.1.:
Iterative Solutions / 4.10.2.:
Finite Element Solution of Parabolic Partial Differential Equations / 4.11.:
Galerkin Approximation to the Model Parabolic Partial Differential Equation / 4.11.1.:
Approximation of the Time Derivative / 4.11.2.:
Approximation of the Time Derivative for Weakly Nonlinear Equations / 4.11.3.:
Finite Element Approximations in One Space Dimension / 4.12.:
Formulation of the Galerkin Approximating Equations / 4.12.1.:
Linear Basis Function Approximation / 4.12.2.:
Higher-Degree Polynomial Basis Function Approximation / 4.12.3.:
Formulation Using the Dirac Delta Function / 4.12.4.:
Orthogonal Collocation Formulation / 4.12.5.:
Asymmetric Weighting Functions / 4.12.6.:
Finite Element Approximations in Two Space Dimensions / 4.13.:
Galerkin Approximation in Space and Time / 4.13.1.:
Galerkin Approximation in Space Finite Difference in Time / 4.13.2.:
Asymmetric Weighting Functions in Two Space Dimensions / 4.13.3.:
Lumped and Consistent Time Matrices / 4.13.4.:
Collocation Finite Element Formulation / 4.13.5.:
Treatment of Sources and Sinks / 4.13.6.:
Alternating Direction Formulation / 4.13.7.:
Finite Element Approximations in Three Space Dimensions / 4.14.:
Example Problem / 4.14.1.:
Summary / 4.15.:
Elliptic Partial Differential Equations / Chapter 5.:
Model Elliptic PDEs / 5.0.:
Specific Elliptic PDEs / 5.1.1.:
Further Items / 5.1.2.:
Finite Difference Solutions in Two Space Dimensions / 5.2.:
Five-Point Approximations and Truncation Error / 5.2.1.:
Nine-Point Approximations and Truncation Error / 5.2.2.:
Approximations to the Biharmonic Equation / 5.2.3.:
Boundary Condition Approximations / 5.2.4.:
Matrix Form of Finite Difference Equations / 5.2.5.:
Direct Methods of Solution / 5.2.6.:
Iterative Concepts / 5.2.7.:
Formulation of Point Iterative Methods / 5.2.8.:
Convergence of Point Iterative Methods / 5.2.9.:
Line and Block Iteration Methods / 5.2.10.:
Acceleration and Semi-Iterative Overlays / 5.2.11.:
Finite Difference Solutions in Three Space Dimensions / 5.3.:
Iteration Concepts / 5.3.1.:
Finite Element Methods for Two Space Dimensions / 5.3.3.:
Galerkin Approximation / 5.4.1.:
Collocation Approximation / 5.4.2.:
Mixed Finite Element Approximation / 5.4.4.:
Approximation of the Biharmonic Equation / 5.4.5.:
Boundary Integral Equation Methods / 5.5.:
Fundamental Theory / 5.5.1.:
Boundary Element Formulation / 5.5.2.:
Linear Interpolation Functions / 5.5.3.:
Poisson's Equation / 5.5.5.:
Nonhomogeneous Materials / 5.5.6.:
Combination of Finite Element and Boundary Integral Equation Methods / 5.5.7.:
Three-Dimensional Finite Element Simulation / 5.6.:
Hyperbolic Partial Differential Equations / 5.7.:
Equations of Hyperbolic Type / 6.0.:
Finite Difference Solution of First-Order Scalar Hyperbolic Partial Differential Equations / 6.2.:
Stability, Truncation Error, and Other Features / 6.2.1.:
Other Approximations / 6.2.2.:
Dissipation and Dispersion / 6.2.3.:
Hopscotch Methods and Mesh Refinement / 6.2.4.:
Finite Difference Solution of First-Order Vector Hyperbolic Partial Differential Equations / 6.3.:
Finite Difference Solution of First-Order Vector Conservative Hyperbolic Partial Differential Equations / 6.4.:
Finite Difference Solutions to Two- and Three-Dimensional Hyperbolic Partial Differential Equations / 6.5.:
Finite Difference Schemes / 6.5.1.:
Two-Step, ADI, and Strang-Type Algorithms / 6.5.2.:
Conservative Hyperbolic Partial Differential Equations / 6.5.3.:
Finite Difference Solution of Second-Order Model Hyperbolic Partial Differential Equations / 6.6.:
One-Space-Dimension Hyperbolic Partial Differential Equation / 6.6.1.:
Explicit Algorithms / 6.6.2.:
Implicit Algorithms / 6.6.3.:
Simultaneous First-Order Partial Differential Equations / 6.6.4.:
Mixed Systems / 6.6.5.:
Two- and Three-Space-Dimensional Hyperbolic Partial Differential Equations / 6.6.6.:
Implicit ADI and LOD Methods / 6.6.7.:
Finite Element Solution of First-Order Model Hyperbolic Partial Differential Equations / 6.7.:
Asymmetric Weighting Function Approximation / 6.7.1.:
An H[superscript -1] Galerkin Approximation / 6.7.3.:
Orthogonal Collocation with Asymmetric Bases / 6.7.4.:
Finite Element Solution of Two- and Three-Space-Dimensional First-Order Hyperbolic Partial Differential Equations / 6.7.6.:
Galerkin Finite Element Formulation / 6.8.1.:
Finite Element Solution of First-Order Vector Hyperbolic Partial Differential Equations / 6.8.2.:
Finite Element Solution of Two- and Three-Space-Dimensional First-Order Vector Hyperbolic Partial Differential Equations / 6.9.1.:
Finite Element Solution of One-Space-Dimensional Second-Order Hyperbolic Partial Differential Equations / 6.10.1.:
Time Approximations / 6.11.1.:
Finite Element Solution of Two- and Three-Space-Dimensional Second-Order Hyperbolic Partial Differential Equations / 6.11.3.:
Index / 6.12.1.:
Fundamental Concepts / Chapter 1.:
Notation / 1.0.:
First-Order Partial Differential Equations / 1.1.:
14.

図書

図書
出版情報: Providence, R.I. : American Mathematical Society, 1955-  v. ; 26 cm
所蔵情報: loading…
15.

図書

図書
Werner Massa ; translated into English by Robert O. Gould
出版情報: New York : Springer, 2000  xi, 206 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
The Unit Cell / 2.1.1:
Atom Parameters / 2.1.2:
The Seven Crystal Systems / 2.1.3:
The Fourteen Bravais Lattices / 2.2:
The Hexagonal, Trigonal and Rhombohedral Systems / 2.2.1:
The Reduced Cell / 2.2.2:
The Geometry of X-Ray Diffraction / 3:
X-Rays / 3.1:
Interference by a One-Dimensional Lattice / 3.2:
The Laue Equations / 3.3:
Lattice Planes and hkl-Indices / 3.4:
The Bragg Equation / 3.5:
Higher Orders of Diffraction / 3.6:
The Quadratic Form of the Bragg Equation / 3.7:
The Reciprocal Lattice / 4:
From the Direct to the Reciprocal Lattice / 4.1:
The Ewald Construction / 4.2:
Structure Factors / 5:
Atom Formfactors / 5.1:
Atom Displacement Factors / 5.2:
Crystal Symmetry / 5.3:
Simple Symmetry Elements / 6.1:
Coupling of Symmetry Elements / 6.1.1:
Combination of Symmetry Elements / 6.1.2:
Symmetry Directions / 6.2:
Symmetry Elements Involving Translation / 6.3:
Combination of Translation with Other Symmetry Elements / 6.3.1:
Coupling of Translation with Other Symmetry Elements / 6.3.2:
The 230 Space Groups / 6.4:
Space-group Notation in International Tables for Crystallography / 6.4.1:
Centrosymmetric Crystal Structures / 6.4.2:
The Asymmetric Unit / 6.4.3:
Space Group Types / 6.4.4:
Group-Subgroup Relationships / 6.4.5:
Visible Effects of Symmetry / 6.5:
Microscopic Structure / 6.5.1:
Macroscopic Properties and Crystal Classes / 6.5.2:
Symmetry of the Lattice / 6.5.3:
Symmetry of the Diffraction Pattern--The Laue Groups / 6.5.4:
Determination of the Space Group / 6.6:
Determination of the Laue Group / 6.6.1:
Systematic Absences / 6.6.2:
Transformations / 6.7:
Experimental Methods / 7:
Growth, Choice and Mounting of a Single Crystal / 7.1:
Measuring the Diffraction Pattern of Single Crystals / 7.2:
Film Methods / 7.2.1:
The Four-circle (serial) Diffractometer / 7.2.2:
Reflection profile and scan type / 7.2.3:
Area Detector Systems / 7.3:
Data Reduction / 7.4:
Lp correction / 7.4.1:
Standard Uncertainty / 7.4.2:
Absorption Correction / 7.4.3:
Other Diffraction Methods / 7.5:
Neutron Scattering / 7.5.1:
Electron Scattering / 7.5.2:
Structure Solution / 8:
Fourier Transforms / 8.1:
Patterson Methods / 8.2:
Symmetry in Patterson Space / 8.2.1:
Structure Solution Using Harker Peaks / 8.2.2:
Patterson shift methods / 8.2.3:
Direct Methods / 8.3:
Harker-Kasper Inequalities / 8.3.1:
Normalized Structure Factors / 8.3.2:
The Sayre Equation / 8.3.3:
The Triplet Relationship / 8.3.4:
Origin Fixation / 8.3.5:
Strategies of Phase Determination / 8.3.6:
Structure Refinement / 9:
The Method of Least Squares / 9.1:
Refinement Based on F[subscript o] or F[superscript 2 subscript o] Data / 9.1.1:
Weights / 9.2:
Crystallographic R-Values / 9.3:
Refinement Techniques / 9.4:
Location and Treatment of Hydrogen Atoms / 9.4.1:
Restricted Refinement / 9.4.2:
Damping / 9.4.3:
Symmetry Restrictions / 9.4.4:
Residual Electron Density / 9.4.5:
Rietveld Refinement / 9.5:
Additional Topics / 10:
Disorder / 10.1:
Site Occupancy Disorder / 10.1.1:
Positional and Orientational Disorder / 10.1.2:
One- and Two-Dimensional Disorder / 10.1.3:
Modulated Structures / 10.1.4:
Quasicrystals / 10.1.5:
Anomalous Dispersion and "Absolute Structure" / 10.2:
Chiral and Polar Space Groups / 10.2.1:
Extinction / 10.3:
The Renninger Effect / 10.4:
The [lambda]/2-Effect / 10.5:
Thermal Diffuse Scattering (TDS) / 10.6:
Errors and Pitfalls / 11:
Wrong Atom-Types / 11.1:
Twinning / 11.2:
Classification by the Twin-Element / 11.2.1:
Classification According to Macroscopic Appearance / 11.2.2:
Classification According to Origin / 11.2.3:
Diffraction Patterns of Twinned Crystals and their Interpretation / 11.2.4:
Twinning or Disorder? / 11.2.5:
False Unit Cells / 11.3:
Space Group Errors / 11.4:
Misplaced Origins / 11.5:
Poor Atom Displacement Parameters / 11.6:
Interpretation and Presentation of Results / 12:
Bond Lengths and Bond Angles / 12.1:
Best Planes and Torsion Angles / 12.2:
Structural Geometry and Symmetry / 12.3:
Structural Diagrams / 12.4:
Electron Density / 12.5:
Crystallographic Databases / 13:
The Inorganic Crystal Structure Database (ICSD) / 13.1:
The Cambridge Structural Database (CSD) / 13.2:
The Metals Crystallographic Data File (CRYST-MET) / 13.3:
Other Collections of Crystal Structure Data / 13.4:
Deposition of Structural Data in Data Bases / 13.5:
Crystallography on the Internet / 13.6:
Outline of a Crystal Structure Determination / 14:
Worked Example of a Structure Determination / 15:
Bibliography
Index
Introduction / 1:
Crystal Lattices / 2:
The Lattice / 2.1:
16.

図書

図書
Peter Y. Yu, Manuel Cardona
出版情報: Berlin : Springer Verlag, 2005, c2001  xviii, 639 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
A Survey of Semiconductors / 1.1:
Elemental Semiconductors / 1.1.1:
Binary Compounds / 1.1.2:
Oxides / 1.1.3:
Layered Semiconductors / 1.1.4:
Organic Semiconductors / 1.1.5:
Magnetic Semiconductors / 1.1.6:
Other Miscellaneous Semiconductors / 1.1.7:
Growth Techniques / 1.2:
Czochralski Method / 1.2.1:
Bridgman Method / 1.2.2:
Chemical Vapor Deposition / 1.2.3:
Molecular Beam Epitaxy / 1.2.4:
Liquid Phase Epitaxy / 1.2.5:
Summary
Electronic Band Structures / 2:
Quantum Mechanics / 2.1:
Translational Symmetry and Brillouin Zones / 2.2:
A Pedestrian's Guide to Group Theory / 2.3:
Definitions and Notations / 2.3.1:
Symmetry Operations of the Diamond and Zinc-Blende Structures / 2.3.2:
Representations and Character Tables / 2.3.3:
Some Applications of Character Tables / 2.3.4:
Empty Lattice or Nearly Free Electron Energy Bands / 2.4:
Nearly Free Electron Band Structure in a Zinc-Blende Crystal / 2.4.1:
Nearly Free Electron Energy Bands in Diamond Crystals / 2.4.2:
Band Structure Calculation by Pseudopotential Methods / 2.5:
Pseudopotential Form Factors in Zinc-Blende- and Diamond-Type Semiconductors / 2.5.1:
Empirical and Self-Consistent Pseudopotential Methods / 2.5.2:
The kċp Method of Band-Structure Calculations / 2.6:
Effective Mass of a Nondegenerate Band Using the kċp Method / 2.6.1:
Band Dispersion near a Degenerate Extremum: Top Valence Bands in Diamondand Zinc-Blende-Type Semiconductors / 2.6.2:
Tight-Binding or LCAO Approach to the Band Structure of Semiconductors / 2.7:
Molecular Orbitals and Overlap Parameters / 2.7.1:
Band Structure of Group-IV Elements by the Tight-Binding Method / 2.7.2:
Overlap Parameters and Nearest-Neighbor Distances / 2.7.3:
Problems
Vibrational Properties of Semiconductors, and Electron-Phonon Interactions / 3:
Phonon Dispersion Curves of Semiconductors / 3.1:
Models for Calculating Phonon Dispersion Curves of Semiconductors / 3.2:
Force Constant Models / 3.2.1:
Shell Model / 3.2.2:
Bond Models / 3.2.3:
Bond Charge Models / 3.2.4:
Electron-Phonon Interactions / 3.3:
Strain Tensor and Deformation Potentials / 3.3.1:
Electron-Acoustic-Phonon Interaction at Degenerate Bands / 3.3.2:
Piezoelectric Electron-Acoustic-Phonon Interaction / 3.3.3:
Electron-Optical-Phonon Deformation Potential Interactions / 3.3.4:
Frohlich Interaction / 3.3.5:
Interaction Between Electrons and Large-Wavevector Phonons: Intervalley Electron-Phonon Interaction / 3.3.6:
Electronic Properties of Defects / 4:
Classification of Defects / 4.1:
Shallow or Hydrogenic Impurities / 4.2:
Effective Mass Approximation / 4.2.1:
Hydrogenic or Shallow Donors / 4.2.2:
Donors Associated with Anisotropic Conduction Bands / 4.2.3:
Acceptor Levels in Diamond-and Zinc-Blende-Type Semiconductors / 4.2.4:
Deep Centers / 4.3:
Green's Function Method for Calculating Defect Energy Levels / 4.3.1:
An Application of the Green's Function Method: Linear Combination of Atomic Orbitals / 4.3.2:
Another Application of the Green's Function Method: Nitrogen in GaP and Ga AsP Alloys / 4.3.3:
Final Note on Deep Centers / 4.3.4:
Electrical Transport / 5:
Quasi-Classical Approach / 5.1:
Carrier Mobility for a Nondegenerate Electron Gas / 5.2:
Relaxation Time Approximation / 5.2.1:
Nondegenerate Electron Gas in a Parabolic Band / 5.2.2:
Dependence of Scattering and Relaxation Times on Electron Energy / 5.2.3:
Momentum Relaxation Times / 5.2.4:
Temperature Dependence of Mobilities / 5.2.5:
Modulation Doping / 5.3:
High-Field Transport and Hot Carrier Effects / 5.4:
Velocity Saturation / 5.4.1:
Negative Differential Resistance / 5.4.2:
Gunn Effect / 5.4.3:
Magneto-Transport and the Hall Effect / 5.5:
Magneto-Conductivity Tensor / 5.5.1:
Hall Effect / 5.5.2:
Hall Coefficient for Thin Film Samples (van der Pauw Method) / 5.5.3:
Hall Effect for a Distribution of Electron Energies / 5.5.4:
Optical Properties I / 6:
Macroscopic Electrodynamics / 6.1:
Digression: Units for the Frequency of Electromagnetic Waves / 6.1.1:
Experimental Determination of Optical Constants / 6.1.2:
Kramers-Kronig Relations / 6.1.3:
The Dielectric Function / 6.2:
Experimental Results / 6.2.1:
Microscopic Theory of the Dielectric Function / 6.2.2:
Joint Density of States and Van Hove Singularities / 6.2.3:
Van Hove Singularities in ϵi / 6.2.4:
Direct Absorption Edges / 6.2.5:
Indirect Absorption Edges / 6.2.6:
""""Forbidden"""" Direct Absorption Edges / 6.2.7:
Excitons / 6.3:
Exciton Effect at M0 Critical Points / 6.3.1:
Absorption Spectra of Excitons / 6.3.2:
Exciton Effect at M1 Critical Points or Hyperbolic Excitons / 6.3.3:
Exciton Effect at M3 Critical Points / 6.3.4:
Phonon-Polaritons and Lattice Absorption / 6.4:
Phonon-Polaritons / 6.4.1:
Lattice Absorption and Reflection / 6.4.2:
Multiphonon Lattice Absorption / 6.4.3:
Dynamic Effective Ionic Charges in Heteropolar Semiconductors / 6.4.4:
Absorption Associated with Extrinsic Electrons / 6.5:
Free-Carrier Absorption in Doped Semiconductors / 6.5.1:
Absorption by Carriers Bound to Shallow Donors and Acceptors / 6.5.2:
Modulation Spectroscopy / 6.6:
Frequency Modulated Reflectance and Thermoreflectance / 6.6.3:
Piezoreflectance / 6.6.4:
Electroreflectance (Franz-Keldysh Effect) / 6.6.5:
Photoreflectance / 6.6.6:
Reflectance Difference Spectroscopy / 6.6.7:
Optical Properties II / 7:
Emission Spectroscopies / 7.1:
Band-to-Band Transitions / 7.1.1:
Free-to-Bound Transitions / 7.1.2:
Donor-Acceptor Pair Transitions / 7.1.3:
Excitons and Bound Excitons / 7.1.4:
Luminescence Excitation Spectroscopy / 7.1.5:
Light Scattering Spectroscopies / 7.2:
Macroscopic Theory of Inelastic Light Scattering by Phonons / 7.2.1:
Raman Tensor and Selection Rules / 7.2.2:
Experimental Determination of Raman Spectra / 7.2.3:
Microscopic Theory of Raman Scattering / 7.2.4:
A Detour into the World of Feynman Diagrams / 7.2.5:
Brillouin Scattering / 7.2.6:
Experimental Determination of Brillouin Spectra / 7.2.7:
Resonant Raman and Brillouin Scattering / 7.2.8:
Photoelectron Spectroscopy / 8:
Photoemission / 8.1:
Angle-Integrated Photoelectron Spectra of the Valence Bands / 8.1.1:
Angle-Resolved Photoelectron Spectra of the Valence Bands / 8.1.2:
Core Levels / 8.1.3:
Inverse Photoemission
Surface Effects / 8.2:
Surface States and Surface Reconstruction / 8.3.1:
Surface Energy Bands / 8.3.2:
Fermi Level Pinning and Space Charge Layers / 8.3.3:
Effect of Quantum Confinement on Electrons and Phonons in Semiconductors / 9:
Quantum Confinement and Density of States / 9.1:
Quantum Confinement of Electrons and Holes / 9.2:
Semiconductor Materials for Quantum Wells and Superlattices / 9.2.1:
Classification of Multiple Quantum Wells and Superlattices / 9.2.2:
Confinement of Energy Levels of Electrons and Holes / 9.2.3:
Some Experimental Results / 9.2.4:
Phonons in Superlattices / 9.3:
Phonons in Superlattices: Folded Acoustic and Confined Optic Modes / 9.3.1:
Folded Acoustic Modes: Macroscopic Treatment / 9.3.2:
Confined Optical Modes: Macroscopic Treatment / 9.3.3:
Electrostatic Effects in Polar Crystals: Interface Modes / 9.3.4:
Raman Spectra of Phonons in Semiconductor Superlattices / 9.4:
Raman Scattering by Folded Acoustic Phonons / 9.4.1:
Raman Scattering by Confined Optical Phonons / 9.4.2:
Raman Scattering by Interface Modes / 9.4.3:
Macroscopic Models of Electron-LO Phonon (Fröhlich) Interaction in Multiple Quantum Wells / 9.4.4:
Electrical Transport: Resonant Tunneling / 9.5:
Resonant Tunneling Through a Double-Barrier Quantum Well / 9.5.1:
I-V Characteristics of Resonant Tunneling Devices / 9.5.2:
Quantum Hall Effects in Two-Dimensional Electron Gases / 9.6:
Landau Theory of Diamagnetism in a Three-Dimensional Free Electron Gas / 9.6.1:
Magneto-Conductivity of a Two-Dimensional Electron Gas: Filling Factor / 9.6.2:
The Experiment of von Klitzing, Pepper and Dorda / 9.6.3:
Explanation of the Hall Plateaus in the Integral Quantum Hall Effect / 9.6.4:
Concluding Remarks / 9.7:
Appendix: Pioneers of Semiconductor Physics Remember
Ultra-Pure Germanium: From Applied to Basic Research or an Old Semiconductor Offering New Opportunities / Eugene E. Haller
Two Pseudopotential Methods: Empirical and Ab Initio / Marvin L. Cohen
The Early Stages of Band-Structures Physics and Its Struggles for a Place in the Sun / Conyers Herring
Cyclotron Resonance and Structure of Conduction and Valence Band Edges in Silicon and Germanium / Charles Kittel
Optical Properties of Amorphous Semiconductors and Solar Cells / Jan Tauc
Optical Spectroscopy of Shallow Impurity Centers / Elias Burstein
On the Prehistory of Angular Resolved Photoemission / Neville V. Smith
The Discovery and Very Basics of the Quantum Hall Effect / Klaus von Klitzing
The Birth of the Semiconductor Superlattice / Leo Esaki
References
Subject Index
Table of Fundamental Physical Constants (Inside Front Cover)
Table of Units (Inside Back Cover)
Introduction / 1:
A Survey of Semiconductors / 1.1:
Elemental Semiconductors / 1.1.1:
17.

図書

東工大
目次DB

図書
東工大
目次DB
Satoshi Kawata, Motoichi Ohtsu, Masahiro Irie (eds.)
出版情報: Berlin : Springer, c2002  xv, 321 p. ; 24 cm
シリーズ名: Springer series in optical sciences ; v. 84
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
   1.1.2 Resonant SNOM 9
   1.1.3 Coupling of Cavity Modes and Matter Excitation 11
   1.2 Quantization of Evanescent Waves and Optical Near-Rield Interaction of Atoms 13
   1.2.1 State of Vector Fields 14
   1.2.2 Radiative Fields Near a Planar Dielectric Surface 17
   1.2.3 Detector-Mode Functions and Field Quantization 19
   1.2.4 Multipole Radiation near a Dielectric Surface 23
   1.2.5 Spontaneous Radiative Lifetime in an Optical Near-Field 25
   1.3 Quantum Mechanical Aspects of Optical Near-Field Problems 27
   1.3.1 Properties of Near-Field Optical Interactions 27
   1.3.2 Observations and Transport Properties in the Near-Field 29
   1.3.3 Local Mode Descriptions and Compatibility with Macroscopic Descriptions 30
   References 32
2 Electromagnetism Theory and Analysis for Near-Field Nano-Optics S. Kawata, K. Tanaka, N. Takahashi 35
   2.1 Finite-Difference Time-Domain Analysis of a Near-Field Microscope System 36
   2.1.1 Near-Field Microscope as a Multiple Scattering System 36
   2.1.2 Finite-Difference Time-Domain Algorithm for NSOM Imaging 37
   2.1.3 NSOM Image Without Effects of Probe-Sample Interaction 39
   2.1.4 NSOM Image When the Probe-Sample Interaction in Included 41
   2.1.5 Effect of the Probe-Sample Distance on the Generated NSOM Images 44
   2.1.6 Dependence of NSOM Image on the Spatial Frequency Content of Sample Surface 45
   2.2 Reconstruction of an Optical Image from NSOM Data 47
   2.2.1 Necessity for Numerical Inversion of the NSOM System 47
   2.2.2 NSOM Image of Dielectric Strips 47
   2.2.3 Deconvolution of Dielectric Strips with Nonnegativity Constraint 49
   2.2.4 Reconstruction of Metal Strips 50
   2.3 Radiation Force Exerted near a Nano-Aperture 51
   2.3.1 Radiation Force to Trap a Small Particle 51
   2.3.2 Force Distribution Exerted on the Sphere near a Subwavelength Aperture 54
   2.3.3 Force Exerted on Two Spheres in the Near-Field of a Small Aperture 57
   References 58
3 High-Resolution and High-Throughput Probes M. Ohtsu, K. Sawada 61
   3.1 Excitation of a HE-Plasmon Mode 64
   3.1.1 Mode Analysis 64
   3.1.2 Edged Probes for Exciting a HE-Plasmon Mode 64
   3.2 Multiple-Tapered Probes 66
   3.2.1 Double-Tapered Probe 66
   3.2.2 Triple-Tapered Probe 70
   References 73
Apertureless Near-Field Probes S. Kawata, Y. Inouye, T. Kataoka, T. Okamoto 75
   4.1 Local Plasmon in a Metallic Nanoparticle 76
   4.1.1 Local Plasmon Resonance in a Metallic Nanoparticle 76
   4.1.2 Local Plasmon Resonance in a Metallic Nanoparticle above a Substrate 79
   4.1.3 Optical Sensor Using Colloidal Gold Monolayers 82
   4.1.4 Gold Nanoparticle Probe 85
   4.2 Laser-Trapping of a Metallic Particle for a Near-Field Microscope Probe 87
   4.2.1 Mechanism of Laser Trapping 88
   4.2.2 Laser Trapping of a Probe for NSOM 89
   4.2.3 Experimental Setup 90
   4.2.4 Feedback Stabilization of a Particle 90
   4.2.5 Experimental Results 91
   4.3 Near-Field Enhancement at a Metallic Probe 93
   4.3.1 Field Enhancement at the Tip 93
   4.3.2 Near-Field Raman Spectroscopy 96
   4.4 Scattering Near-Field Optical Microscope with a Microcavity 101
   4.4.1 Resonant Microcavity Probe 101
   4.4.2 FDTD Simulation of a Resonant Microcavity Probe 102
   4.4.3 Fabrication of a "Resonant Microcavity Probe" 104
   4.4.4 Observation of a Vacuum-Evaporated Gold Film 106
   References 107
5 Integrated and Functional Probes T. Ono, M. Esashi, H. Yamada, Y. Sugawara, J. Takahara, K. Hane 111
   5.1 Micromachined Probes 111
   5.1.1 Fabrication of a Miniature Aperture 112
   5.1.2 Throughput Measurement 116
   5.1.3 Fabrication of an Aperture Having a Metal Nanowire at the Center 117
   5.1.4 Imaging with a Fabricated Aperture Probe 119
   5.2 Light Detection from Force 120
   5.2.1 Method of Measuring Optical Near-Field Using Force 121
   5.2.2 Imaging Properties 124
   5.3 High Efficiency Light Transmission Through a Nano-Waveguide 126
   5.3.1 Low-Dimensional Optical Wave and Negative Dielectric 126
   5.3.2 One-Dimensional Optical Waveguides 127
   5.3.3 Negative-Dielectric Pin and Hole 128
   5.3.4 Negative-Dielectric Tube 131
   5.3.5 Lossy Waveguides and Applications 132
   References 133
6 High-Density Optical Memory and Ultrafine Photofabrication M. Irie 137
   6.1 Photochromic Memory Media 138
   6.2 Near-Field Optical Memory 141
   6.2.1 Diarylethenes 141
   6.2.2 Perinaphthothioindigo 142
   6.3 Future Prospects for Near-Field Optical Memory 144
   6.4 Nanofabrication: Chemical Vapor Deposition 144
   6.5 Nanofabrication: Organic Film 147
   References 149
7 Near-Field Imaging of Molecules and Thin Films M. Fujihira, S. Itoh, A. Takahara, O. Karthaus, S. Okazaki, K. Kajikawa 151
   7.1 Near-Field Imaging of Molecules and Thin Films 151
   7.1.1 Preparation of Organic Thin Films 151
   7.1.2 Control of Tip-Sample Separation 151
   7.1.3 Various Modes of Observations 152
   7.1.4 Optical Recording on Organic Thin Films 152
   7.2 Two-Dimensional Morphology of Ultrathin Polymer Films 152
   7.2.1 Materials, Preparation of Films, and Apparatus 153
   7.2.2 Observation of Two-Dimensional Morphology 156
   7.2.3 Conclusion 161
   7.3 Observation of Polyethylene (PE) Crystals 161
   7.3.1 AFM and NSOM Observation of PE Single Crystals 161
   7.3.2 AFM and NSOM Observation of Melt-Crystallized PE Thin Films 163
   7.3.3 Conclusions 167
   7.4 Preparation of Micrometer-Sized Chromophore Aggregates 168
   7.4.1 Control of Aggregation 168
   7.4.2 Mesoscopic Patterns 169
   7.4.3 Mechanism of Pattern Formation 169
   7.4.4 Chromophore-Containing Mesoscopic Patterns 170
   7.4.5 Azobenzene-Containing Polyion Complex 171
   7.4.6 Mesoscopic Line Pattern of Poly (hexylthiophene) 173
   7.5 Application to Electrochemical Research 174
   7.5.1 Fabrication of an Aluminum Nanoelectrode SNOM Probe to Stimulate Electroluminescent (EL) Polymers 174
   7.5.2 Integration of STM with SNOM Microscopy by Fabricating Original Chemically Etched Conducting Hybrid Probes 176
   7.5.3 Development of a New Type of AFM/SNOM Integrated System 178
   7.5.4 Biological Applications 180
   7.6 Second-Harmonic Generation in Near-Field Optics 184
   7.6.1 Materials and Apparatus 186
   7.6.2 SHG Observation 186
   7.6.3 Conclusion 187
   References 187
8 Near-Field Microscopy for Biomolecular Systems T. Yanagida, E. Tamiya, H. Muramatsu, P. Degenaar, Y. Ishii, Y. Sako, K. Saito, S. Ohta-Iino, S. Ogawa, G. Marriott, A. Kusumi, H. Tatsumi 191
   8.1 Near-Field Imaging of Human Chromosomes and Single DNA Molecules 192
   8.1.1 SNOAM System 193
   8.1.2 SNOAM Imaging of Human Chromosomes [19] 194
   8.1.3 SNOAM Imaging of a Single DNA Molecule [20} 198
   8.2 Imaging of Biological Molecules 199
   8.2.1 Myosin-Actin Motors 199
   8.2.2 Membrane Receptors 209
   8.2.3 ATP Synthase 215
   8.3 Cell and Cellular Functions 220
   8.3.1 Near-Field Fluorescent Microscopy of Living Cells 220
   8.3.2 Dynamics of Cell Membranes 222
   8.3.3 Near-Field Imaging of Neuronal Cell and Transmitter 229
   References 233
9 Near-Field Imaging of Quantum Devices and Photonic Structures M. Gonokami, H. Akiyama, M. Fukui 237
   9.1 Spectroscopy of Quantum Devices and Structures 237
   9.1.1 Near-Field Microscopy with a Solid-Immersion Lens 238
   9.1.2 Solid-Immersion Microscopy of GaAs Nanostructures 242
   9.1.3 Time-Resolved Spectroscopy of Single Quantum Dots Using NSOM 247
   9.2 Observation of Polysilane by Near-Field Scanning Optical Microscope in the Ultraviolet (UV) Region 251
   9.2.1 Morphologies and Quantum Size Effects of Single InAs Quantum Dots Studied by Scanning Tunneling Microscopy/Spectroscopy 255
   9.2.2 Photonic Structures Consisting of Dielectric Spheres 257
   9.2.3 Interaction of a Near-Field Light with Two-Dimensionally Ordered Spheres 265
   9.2.4 Photonic-Band Effect on Near-Field Optical Images of 2-D Sphere Arrays 270
   9.3 Near-Field Photon Tunneling 275
   9.3.1 What is Photon Tunneling? 275
   9.3.2 Resonant Photon Tunneling Through a Photonic Double-Barrier Structure 277
   9.3.3 Resonant Photon Tunneling Mediated by a Photonic Dot 280
   9.3.4 Concluding Remarks 281
   References 281
10 Other Imaging and Applications N. Umeda, A. Yamamoto, R. Nishitani, J. Bae, T. Tanaka, S. Yamamoto 287
   10.1 Birefringent Imaging with an Illumination-Mode Near-Field Scanning Optical Microscope 287
   10.1.1 Principle 288
   10.1.2 Apparatus 289
   10.1.3 System Performance 291
   10.1.4 Observation of Sample 292
   10.1.5 Conclusion 294
   10.2 Plain-Type Low-Temperature NSOM System 294
   10.2.1 Experimental Setup 295
   10.2.2 Results and Discussion 296
   10.2.3 Conclusion 298
   10.3 STM-Induced Luminescence 298
   10.3.1 Theoretical Model 298
   10.3.2 Experimental Method 299
   10.3.3 Results 300
   10.3.4 Conclusion 304
   10.4 Energy Modulation of Electrons with Evanescent Waves 304
   10.4.1 Sensing an Optical Near-Field with Electrons 304
   10.4.2 Metal Microslit 304
   10.4.3 Experiment 306
   10.4.4 Conclusion 308
   10.5 Manipulation of Particles by Photon Force 308
   10.5.1 Method 308
   10.5.2 Experiments 309
   10.5.3 Conclusion 314
   References 315
Index 317
1 Quantum Theory for Near-Field Nano-Optics K. Cho, H. Hori, K. Kitahara 1
   1.1 Resonant Near-Field Optics 4
   1.1.1 Outline of Microscopic Nonlocal Response Theory 5
18.

図書

図書
Motoichi Ohtsu
出版情報: Boston : Artech House, c1992  xi, 340 p. ; 24 cm
シリーズ名: The Artech House optoelectronics library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
Five Requirements to Be Met / 1.2:
Structure and Oscillation Mechanisms / Chapter 2:
Coherence of Light / 2.1:
Device Structures / 2.2:
Formulation of Laser Oscillation / 2.3:
Noise Characteristics / 2.4:
Intensity Noise / 2.4.1:
Frequency Noise / 2.4.2:
Coherence Deterioration Induced in Semiconductor Lasers by Specific Noise / 2.5:
Oscillation Instabilities Induced by Reflected Lightwaves / 2.5.1:
Mode-Hopping and Mode-Partition Noise / 2.5.2:
Optical Frequency Discriminators, Detections, and Modulations / Chapter 3:
Optical Frequency Demodulators / 3.1:
Noise Sources in the FM Noise Detection System / 3.2:
Modulation Characteristics of a Semiconductor Laser / 3.3:
FM Noise Reduction and Improvement of Frequency Accuracy / Chapter 4:
Center Frequency Stabilization of the Field Spectrum / 4.1:
Improvements in the Accuracy and Reproducibility of the Stabilized Laser Frequency / 4.2:
Wideband FM Noise Reduction / 4.3:
Negative Electrical Feedback / 4.3.1:
Injection Locking and Optical Feedback / 4.3.2:
Optical Phase Locking and Frequency Sweep / Chapter 5:
Optical Phase- and Frequency-Locked Loops / 5.1:
Heterodyne Optical Phase-Locked Loop / 5.1.1:
Homodyne Optical Phase-Locked Loop / 5.1.2:
Other Promising Techniques / 5.1.3:
Stable, Accurate, and Wideband Optical Frequency Sweep / 5.2:
Fine Frequency Sweep / 5.2.1:
Wideband Coarse Frequency Sweep / 5.2.2:
Applications of Highly Coherent Semiconductor Lasers / Chapter 6:
Optical Communication Systems / 6.1:
Optical Measurements / 6.2:
Passive Ring Resonator-Type Fiber Gyroscope / 6.2.1:
Velocity and Displacement Measurements / 6.2.2:
Photon Scanning Tunneling Microscope / 6.3:
Analytical Spectroscopy / 6.4:
Laser Radar (Lidar) / 6.4.1:
Isotope Separation and Analysis of Radicals / 6.4.2:
Optical Pumping of Atomic Clocks / 6.5:
Cesium Atomic Clock at 9.2 GHz / 6.5.1:
Rubidium Atomic Clock at 6.8 GHz / 6.5.2:
Quantum Optics and Basic Physics / 6.6:
High-Resolution Spectroscopy of Atoms and Molecules / 6.6.1:
Test of Basic Principles of Physics / 6.6.2:
Manipulations of Atoms and Ions / 6.6.3:
Cavity Quantum Electrodynamics (Cavity QED) / 6.6.4:
Toward the Future / Chapter 7:
Improvement in Device Structure / 7.1:
Advanced Longitudinal-Mode Controlled Lasers / 7.1.1:
Narrow-Linewidth Lasers / 7.1.2:
Wideband Frequency Sweep / 7.1.3:
Realization of Novel Lasing Wavelengths / 7.1.4:
High-Power Laser Devices / 7.1.5:
Reduction of Chirping / 7.1.6:
Expansion of the Lasing Frequency Range / 7.2:
Short-Wavelength Lasers / 7.2.1:
Stable, Wideband Optical Sweep Generators / 7.2.2:
Ultrafast Detection of Lightwaves, Waveform Conversion, and Optical-Frequency Counting Systems / 7.3:
Generation and Application of Nonclassical Photons / 7.4:
Photon Antibunching and the Properties of the Squeezed State of Light / 7.4.1:
Quantum Nondemolition Measurements / 7.4.2:
Control and Manipulation of Atoms and Photons / 7.5:
High-Power Lasers and Optical Energy Storage / 7.6:
Conclusion / Chapter 8:
Quantization of the Light Field / Appendix I:
Definitions of the Measures for Evaluating the FM Noise Magnitude / Appendix II:
Methods for Measuring FM Noise and the Allan Variance Real-Time Processing System / Appendix III:
Rate Equation and Relaxation Oscillation / Appendix IV:
Theoretical Analyses of Optical Phase-Locked Loops / Appendix V:
Index
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
19.

図書

図書
editors, M. Guisnet ... [et al.]
出版情報: Amsterdam ; Tokyo : Elsevier, 1991  xviii, 608 p.
シリーズ名: Studies in surface science and catalysis ; 59
所蔵情報: loading…
20.

図書

図書
edited by Hiroo Tominaga and Masakazu Tamaki
出版情報: Chichester : John Wiley, 1997  x, 403 p.; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
Introduction / 1.1:
Science and Engineering for Reactor Design / 1.2:
Theory of Chemical Reaction / 1.3:
Chemical Reaction Engineering and Reactor Design / 1.4:
Reactor Design for Industrial Processes / 1.5:
Naphtha Cracking / 1.5.1:
Tubular Steam Reforming / 1.5.2:
Epoxy Resin Production / 1.5.3:
Hydrotreating / 1.5.4:
Fluid Catalytic Cracking / 1.5.5:
Flue Gas Desulphurization / 1.5.6:
Equilibrium and Reaction Rate / Hiroshi KomiyamaChapter 2:
Nature of Chemical Reaction / 2.1:
Supply of Activation Energy / 2.1.1:
Elementary and Complex Reactions / 2.1.2:
Other Factors in Reactor Design / 2.1.3:
Direction of the Reaction Progress and Chemical Equilibrium / 2.2:
Direction of the Reaction Progress / 2.2.1:
Role of the Catalyst / 2.2.2:
Reversible and Irreversible Reactions / 2.2.3:
How to Calculate the Heat of Reaction and the Equilibrium Constant / 2.2.4:
Operating Conditions and Energy Efficiency of Chemical Reactions / 2.2.5:
The Rate of Reaction / 2.3:
Factors Governing the Rate of Reaction / 2.3.1:
Complex Reaction System / 2.4:
Rate-determining Step / 2.4.1:
Patterning of Reaction Systems / 2.4.2:
Relations with Other Transfer Processes / 2.4.3:
Fundamentals of Heat and Mass Transfer / Koichi AsanoChapter 3:
Rate Equations / 3.1:
Conduction of Heat / 3.1.1:
Diffusion / 3.1.2:
Diffusion Flux and Mass Flux / 3.1.3:
Mass and Heat Transfer Coefficients / 3.2:
Mass Transfer Coefficient / 3.2.1:
Overall Mass Transfer Coefficient / 3.2.2:
Heat Transfer Coefficient / 3.2.3:
Overall Heat Transfer Coefficient / 3.2.4:
Heat and Mass Transfer in a Laminar Boundary Layer along a Flat Plate / 3.3:
Governing Equations of Heat and Mass Transfer / 3.3.1:
Physical Interpretation of the Dimensionless Groups used in Heat and Mass Transfer Correlation / 3.3.2:
Similarity Transformation / 3.3.3:
Numerical Solutions for Heat and Mass Transfer / 3.3.4:
High Mass Flux Effect / 3.3.5:
Heat Transfer inside a Circular Tube in Laminar Flow / 3.4:
Heat Transfer inside a Circular Tube with Uniform Velocity Profile / 3.4.1:
Heat Transfer inside a Circular Tube with Parabolic Velocity Profile (Graetz problem) / 3.4.2:
Mass Transfer of Bubbles, Drops and Particles / 3.5:
Hadamard Flow / 3.5.1:
Evaporation of a Drop in the Gas Phase / 3.5.2:
Continuous Phase Mass Transfer of Bubbles or Drops in the Liquid Phase / 3.5.3:
Dispersed Phase Mass Transfer / 3.5.4:
Heat and Mass Transfer of a Group of Particles and the Void Function / 3.5.5:
Radiant Heat Transfer / 3.6:
Heat Radiation / 3.6.1:
Governing Equations of Radiant Heat Transfer / 3.6.2:
Fundamentals of Reactor Design / Chapter 4:
Reactor Types and Their Applications / Shintaro Furusaki4.1:
Homogeneous Reactors / 4.1.1:
Heterogeneous Reactors / 4.1.2:
Design of Homogeneous Reactors / Yukihiro Shimogaki4.2:
Material and Heat Balances in Reaction Systems / 4.2.1:
Design of Batch Stirred Tank Reactor / 4.2.2:
Design of Continuous Stirred Tank Reactors / 4.2.3:
Design of Tubular Reactors / 4.2.4:
Homogeneous and Heterogeneous Complex Reactions / 4.2.5:
Planning and Design of Multiphase Reactors / Masayuki Horio4.3:
Features of Planning and Design of Multiphase Reaction Processes / 4.3.1:
Model Description of Multiphase Processes / 4.3.2:
Concepts of Multiphase Reaction Processes / 4.3.3:
Development and Scale-up of Multiphase Reactors / 4.3.4:
Dynamic Analysis of Reaction System / Hisayoshi Matsuyama4.4:
Dynamics of Reactors / 4.4.1:
Stability of Reactors / 4.4.2:
Control of Reactors / 4.4.3:
Optimization of Reactor Systems / 4.4.4:
Design of an Industrial Reactor / Chapter 5:
Petrochemical Complex in Japan / Hiroshi Yagi5.1:
Cracking Furnace for Naphtha / 5.1.2:
Treatment of a Cracked Gas / 5.1.3:
Quench and Heat Recovery / 5.1.4:
Thermodynamics of Thermal Cracking Reaction / 5.1.5:
Mechanism of Thermal Cracking / 5.1.6:
Reaction Model for Yield Estimation / 5.1.7:
Design Procedure of Cracking Furnace / 5.1.8:
Results of Thermal Cracking Simulation / 5.1.9:
Technology Trend of a Cracking Furnace / 5.1.10:
The Reactions / J. R. Rostrup-Nielsen ; Lars J. Christiansen5.2:
The Tubular Reformer / 5.2.2:
The Catalyst and Reaction Rate / 5.2.3:
Poisoning / 5.2.4:
Carbon Formation / 5.2.5:
CO[subscript 2] Reforming / 5.2.6:
Reforming of High Hydrocarbons / 5.2.7:
Alternatives to Steam Reforming Technology / 5.2.8:
Epoxy Resin / Goro Soma ; Yasuo Hosono5.3:
Quality Parameters of Epoxy Resin / 5.3.2:
Elementary Reactions for Epoxy Resin Production / 5.3.3:
Epoxy Resin Production Processes / 5.3.4:
Process Operating Factors / 5.3.5:
The Reaction Model / 5.3.6:
Batch Operation / 5.3.7:
Simulation Using the Reaction Model / 5.3.8:
Design of the First-stage Reactor / 5.3.9:
Design of the Second-stage Reactor / 5.3.10:
Hydrotreating Reactor Design / Alan G. Bridge ; E. Morse Blue5.4:
Hydrotreating Objectives / 5.4.1:
Process Fundamentals / 5.4.2:
VGO Hydrotreating Reactions / 5.4.3:
VGO Hydrotreating Catalysts / 5.4.4:
VGO Hydrotreating Process Conditions / 5.4.5:
VGO Hydrotreating Reactor Design / 5.4.6:
VGO Hydrotreating Operation / 5.4.7:
VGO Hydrotreating Safety Procedures / 5.4.8:
Future Trends / 5.4.9:
Outline of the FCC Process / Toru Takatsuka ; Hideki Minami5.5:
Basic Theory of Fluid Catalytic Cracking / 5.5.2:
Theoretical Discussion of FCC Reactor Design / 5.5.3:
Practice of FCC Reactor Design / 5.5.4:
Material Balance and Heat Balance around Reactors / 5.5.5:
Wet Flue Gas Desulphurization / Hiroshi Yanagioka ; Teruo Sugiya5.6:
Process Description / 5.6.1:
Structure of JBR / 5.6.2:
Chemical Reactions in JBR / 5.6.3:
Heat and Material Balance around the Reactor / 5.6.4:
Reactive Impurities in the Flue Gas / 5.6.5:
Applicable Materials for the Wet FGD Plant / 5.6.6:
Index
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
21.

図書

図書
L. Ramdas Ram-Mohan
出版情報: Oxford : Oxford University Press, 2002  xviii, 605 p. ; 24 cm
シリーズ名: Oxford texts in applied and engineering mathematics ; 5
所蔵情報: loading…
目次情報: 続きを見る
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
Schrodinger's equation / 1.1.1:
Postulates of quantum mechanics / 1.1.2:
Principle of stationary action / 1.2:
The action integral / 1.2.1:
Examples / 1.2.2:
Finite elements / 1.3:
Historical comments / 1.4:
Problems / 1.5:
References
Simple quantum systems / 2:
The simple harmonic oscillator / 2.1:
The hydrogen atom / 2.2:
The Rayleigh-Ritz variational method / 2.3:
Programming considerations / 2.4:
Interpolation polynomials in one dimension / 2.5:
Lagrange interpolation polynomials / 3.1:
Hermite interpolation polynomials / 3.3:
Transition elements / 3.4:
Low order interpolation polynomials / 3.5:
Low order Lagrange interpolation / 3.5.1:
Low order Hermite interpolation / 3.5.2:
Interpolation polynomials in Mathematica / 3.6:
Lagrange interpolation / 3.6.1:
Hermite interpolation / 3.6.2:
Infinite elements / 3.7:
Simple quantum systems revisited / 3.8:
Adaptive FEM / 3.9:
Error in interpolation / 4.1:
Error in the discretized action / 4.3:
h-convergence / 4.3.1:
p-convergence / 4.3.2:
The action in adaptive calculations / 4.4:
An ordinary differential equation / 4.4.1:
The H atom again / 4.4.2:
Adaptive p-refinement / 4.4.3:
Concluding remarks / 4.5:
Applications in 1D / Part II:
Quantum mechanical tunneling / 5:
Mixed BCs: redefining the action / 5.1:
The Galerkin method / 5.3:
Tunneling calculations in the FEM / 5.4:
Evaluation of the residual / 5.4.1:
Applying mixed BCs / 5.4.2:
Comparing Galerkin FEM with WKB / 5.5:
Quantum states in asymmetric wells / 5.6:
Schrodinger-Poisson self-consistency / 5.7:
Schrodinger and Poisson equations / 6.1:
Source terms / 6.3:
The Fermi energy and charge neutrality / 6.4:
The Galerkin finite element approach / 6.5:
Boundary conditions / 6.5.1:
The iteration procedure / 6.5.2:
Numerical issues / 6.5.3:
Essential and natural boundary conditions / 6.5.4:
Further developments / 6.6:
Landau states in a magnetic field / 6.7:
Landau levels / 7.1:
Density of states / 7.1.2:
Heterostructures in a B-field / 7.2:
Faraday configuration / 7.2.1:
Voigt configuration / 7.2.2:
Comparison with experiments / 7.3:
Interband transitions / 7.3.1:
Energy dependence on the orbit center / 7.3.2:
Level mixing in superlattices with small band offsets / 7.3.3:
Density of states in the Voigt geometry / 7.3.4:
Voigt geometry and a semiclassical model / 7.4:
Landau orbit theory / 7.4.1:
Envelope functions and the FEM in k-space / 7.4.2:
Wavefunction engineering / 7.5:
k P theory of band structure / 8.1:
Designing mid-infrared lasers / 8.3:
The type-II W-laser / 8.3.1:
The interband cascade laser / 8.3.2:
Concluding comments / 8.4:
2D Applications of the FEM / Part III:
2D elements and shape functions / 9:
Rectangular elements / 9.1:
Lagrange elements / 9.2.1:
Hermite elements / 9.2.2:
Triangular elements / 9.3:
Defining curved edges / 9.4:
An element on a parametric curve / 9.4.1:
Parametric form of 2D surfaces / 9.4.2:
The action in 2D problems / 9.5:
Gauss integration in two dimensions / 9.6:
Mesh generation / 10:
Meshing simple regions / 10.1:
Distortion of regular regions / 10.1.1:
Using orthogonal curved coordinates / 10.1.2:
Regions of arbitrary shape / 10.2:
Delaunay meshing / 10.2.1:
Advancing front algorithms / 10.2.2:
The algebraic integer method / 10.2.3:
Applications in atomic physics / 11:
The H atom in a magnetic field / 11.1:
Schrodinger's equation and the action / 11.1.1:
Applying the FEM / 11.1.2:
Magnetic fields / 11.1.3:
Ground state energy in helium / 11.2:
Other results / 11.3:
Quantum wires / 12:
Quantum wires and the FEM / 12.1:
Symmetry properties of the square wire / 12.3:
The checkerboard superlattice / 12.4:
Optical nonlinearity in the CBSL / 12.5:
Quantum wires of any cross-section / 12.6:
Quantum waveguides / 13:
Quantization of resistance / 13.1:
The straight waveguide / 13.2:
Quantum bound states in waveguides / 13.3:
The quantum interference transistor / 13.4:
"Stealth" elements and absorbing BC / 13.5:
The Ginzburg-Landau equation / 13.6:
Time-dependent problems / 14:
Standard approaches to time evolution / 14.1:
Schrodinger's equation and the method of finite differences / 14.2.1:
The finite difference method for the wave equation / 14.2.2:
A transfer matrix for time evolution / 14.3:
Lanczos reduction of transfer matrices / 14.4:
Instability with initial conditions / 14.5:
Comparing IVBC and two-point BCs / 14.5.1:
The variational approach / 14.6:
A variational difficulty / 14.6.1:
Variations using adjoint functions / 14.6.2:
Adjoint variations for the wave equation / 14.6.3:
Connection with quantum field theory / 14.6.4:
Sparse Matrix Applications / 14.7:
Matrix solvers and related issues / 15:
Bandwidth reduction / 15.1:
Solution of linear equations / 15.3:
Gauss elimination / 15.3.1:
The conjugate gradient method / 15.3.2:
The standard eigenvalue problem / 15.4:
The generalized eigenvalue problem / 15.5:
Sturm sequence check / 15.5.1:
Inverse vector iteration / 15.5.2:
The subspace vectors / 15.5.3:
The Rayleigh quotient / 15.5.4:
Subspace iteration / 15.5.5:
The Davidson algorithm / 15.5.6:
Least square residual minimization / 15.5.7:
The Lanczos method / 15.5.8:
Boundary Elements / Part V:
The boundary element method / 16:
The boundary integral / 16.1:
An analytical approach / 16.3:
A Dirichlet problem / 16.3.1:
A Neumann problem / 16.3.2:
Infinite domain Green's function / 16.4:
Evaluation of the element integrals / 16.5:
Applying boundary conditions / 16.5.2:
Boundary condition at the corner node / 16.5.3:
Setting up the matrix equation / 16.5.4:
Construction of interior solution / 16.5.5:
A worked example / 16.6:
Two sum rules / 16.7:
Comparing the BEM with the FEM / 16.8:
The BEM and surface plasmons / 16.9:
Multiregion BEM: two regions / 17.1:
Linear interpolation / 17.2.1:
Bulk and surface plasmons / 17.2.2:
Bulk plasma oscillations / 17.3.1:
Surface plasmons at a single planar interface / 17.3.2:
Surface plasmons for slab geometry / 17.3.3:
Surface plasmons in a cylindrical wire / 17.3.4:
Two metallic wires / 17.3.5:
Metal wire on a substrate / 17.3.6:
Plasmons in other confining geometries / 17.3.7:
Surface-enhanced Raman scattering / 17.4:
The BEM and quantum applications / 17.5:
2D electron waveguides / 18.1:
Implementing boundary conditions / 18.2.1:
Multiregion waveguide problems / 18.2.2:
Multiple ports and transmission / 18.2.3:
The BEM and 2D scattering / 18.3:
Eigenvalue problems and the BEM / 18.4:
Hearing the shape of a drum / 18.4.1:
Concluding remarks on the BEM / 18.5:
Appendices / 18.6:
Gauss quadrature / A:
Gauss-Legendre quadrature / A.1:
Gauss-Legendre base points and weights / A.3:
An algorithm for adaptive quadrature / A.4:
Other Gauss formulas / A.5:
The Cauchy principal value of an integral / A.6:
Properties of Legendre functions / A.7:
Generalized functions / A.8:
The Dirac [delta]-function / B.1:
The [delta]-function as the limit of a "normal" function / B.2:
[delta]-functions in three dimensions / B.3:
Other generalized functions / B.4:
The step-function [theta](x) / B.4.1:
The sign-function [varepsilon](x) / B.4.2:
The Plemelj formula / B.4.3:
An integral representation for [theta](z) / B.4.4:
Green's functions / B.5:
Properties of Green's functions / C.1:
Sturm-Liouville differential operators / C.3:
Green's functions in electrostatics / C.4:
Boundary integral solutions: a comment / C.5:
Green's functions in electrodynamics / C.6:
The wave equation in one dimension / C.7:
The wave equation in two dimensions / C.8:
Green's functions and integral equations / C.9:
Physical constants / C.10:
Author index
Subject index
Introduction to the FEM / Part I:
Introduction / 1:
Basic concepts of quantum mechanics / 1.1:
22.

図書

図書
Yoshimi Ito
出版情報: New York : McGraw-Hill, c2008  xxiii, 504 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Terminology and Abbreviations
Nomenclature
Conversion Table
Engineering Guides of Modular Design and Description Methodology of Machine Tools / Part 1:
Basic Knowledge: What Is the Modular Design? / Chapter 1:
Definition and Overall View of Modular Design / 1.1:
Advantageous and Disadvantageous Aspects of Modular Design / 1.2:
A Firsthand View of Developing History and Representative Applications / 1.3:
Application to TL and FTL / 1.3.1:
Application to conventional machine tools / 1.3.2:
Application to NC machine tools / 1.3.3:
Different-kind generating modular design / 1.3.4:
References
Engineering Guides and Future Perspectives of Modular Design / Chapter 2:
Four Principles and Further Related Subjects / 2.1:
Effective Tools and Methodology for Modular Design / 2.2:
Classification of Modular Design Including Future Perspectives / 2.3:
Modular design being widely employed / 2.3.1:
Modular design in the very near future-a symptom of upheaval of new concepts / 2.3.2:
Characteristic Features of Modular Design Being Used in Machine Tools of the Most Advanced Type / 2.4:
System machines / 2.4.1:
Machining complex and processing complex / 2.4.2:
Description of Machine Tools / Chapter 3:
Basic Knowledge about Functional and Structural Description Methods / 3.1:
Details of Functional Description / 3.2:
Details of Structural Description / 3.3:
Application of Machine Tool Description to Engineering Design / Chapter 4:
Application of Functional Description / 4.1:
Classification of machining centers and its application to marketability analysis / 4.1.1:
Analysis of machining function and its application to evaluate compatibility with production systems / 4.1.2:
Automated generation of concept drawing / 4.1.3:
Estimation of assembly accuracy in design stage / 4.1.4:
Application of Structural Description / 4.2:
Similarity evaluation of structural configuration-availability constraints of modular design / 4.2.1:
Variant design for structural configuration / 4.2.2:
Free design for structural configuration / 4.2.3:
Engineering Design for Machine Tool Joints-Interfacial Structural Configuration in Modular Design / Part 2:
Basic Knowledge of Machine Tool Joints / Chapter 5:
Classification of Machine Tool Joints / 5.1:
Definition of Machine Tool Joint and Representation of Joint Characteristics / 5.2:
External Applied Loads to Be Considered and Fundamental Factors Governing Joint Characteristics / 5.3:
Effects of Joint on Static and Dynamic Stiffness, and Thermal Behavior of Machine Tool as a Whole / 5.4:
Firsthand View of Research History / 5.5:
Fundamentals of Engineering Design and Characteristics of the Single Flat Joint / Chapter 6:
Quick Notes for Single Flat Joint, Determination of Mathematical Model, and Fundamental Knowledge about Engineering Design Formulas / 6.1:
Design Formulas for Normal Joint Stiffness and Related Research / 6.2:
Expressions for static normal joint stiffness / 6.2.1:
Representative researches into behavior of the single flat joint under normal loading / 6.2.2:
Design Formulas for Tangential Joint Stiffness, Related Researches, and Peculiar Behavior of Microslip / 6.3:
Expressions for static tangential joint stiffness / 6.3.1:
Representative researches into behavior of the static tangential joint stiffness and the microslip / 6.3.2:
Peculiar behavior of microslip / 6.3.3:
Design Formulas for Damping Capacity and Related Researches / 6.4:
Expressions for damping capacity / 6.4.1:
Representative research into dynamic behavior / 6.4.2:
Thermal Behavior of Single Flat Joint / 6.5:
Forerunning Research into Single Flat Joint with Local Deformation / 6.6:
Supplement: Theoretical Proof of Ostrovskii's Expression
Design Guides, Practices, and Firsthand View of Engineering Developments-Stationary Joints / Chapter 7:
Bolted Joint / 7.1:
Design guides and knowledge-pressure cone and reinforcement remedies from structural configuration / 7.1.1:
Engineering design for practices-suitable configuration of bolt pocket and arrangement of connecting bolts / 7.1.2:
Engineering calculation for damping capacity / 7.1.3:
Representative researches and their noteworthy achievements-static behavior / 7.1.4:
Representative researches and their noteworthy achievements-dynamic behavior / 7.1.5:
Representative researches and their noteworthy achievements-thermal behavior / 7.1.6:
Foundation / 7.2:
Engineering calculation for foundation / 7.2.1:
Stiffness of leveling block / 7.2.2:
Firsthand View for Researches in Engineering Design in Consideration of Joints / Supplement 1:
Influences of Joints on Positioning and Assembly Accuracy / Supplement 2:
Supplement References
Design Guides, Practices, and Firsthand View of Engineering Developments-Sliding Joints / Chapter 8:
Slideways / 8.1:
Design knowledge-slideway materials / 8.1.1:
Design knowledge-keep plate and gib configurations / 8.1.2:
Linear Rolling Guideways (Linear Guide and Rolling Guideways) / 8.2:
Main Spindle-Bearing Systems / 8.3:
Static stiffness of rolling bearing / 8.3.1:
Dynamic stiffness and damping capacity of rolling bearing / 8.3.2:
Sliding Joints of Special Types / 8.4:
Screw-and-nut feed driving systems / 8.4.1:
Boring spindle of traveling type / 8.4.2:
Supplement: Deflection and Interface Pressure Distribution of Slideway
Supplement Reference
Rudimentary Engineering Knowledge about Other Joints / Chapter 9:
Joints for Light-Weighted Structures / 9.1:
Welded joint / 9.1.1:
Bonded joint / 9.1.2:
Taper Connection / 9.2:
Chucking / 9.3:
Measurement of Interface Pressure by Means of Ultrasonic Waves / Appendix 1:
Principle of Measurement and Its Verification / A1.1:
Some Applications and Perspectives in the Very Near Future / A1.2:
Model Testing and Theory / Appendix 2:
Model Testing and Theory for Structural Body Component / A2.1:
Model Testing in Consideration of Joints / A2.2:
Index
Preface
Terminology and Abbreviations
Nomenclature
23.

図書

東工大
目次DB

図書
東工大
目次DB
Masao Kaneko, Ichiro Okura (eds.)
出版情報: Tokyo : Kodansha , Berlin ; London : Springer, c2002  xvi, 356 p. ; 25 cm
シリーズ名: Biological and medical physics series
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
List of Contributors
Preface
   1 Introduction 1
   1.1 Background 1
   1.2 Aim and Outline of This Volume 2
   1.3 Summary 4
   1.4 Future Perspectives 4
   References 5
Ⅰ Fundamental Aspects of Photocatalysts
   2 Photoelectrochemical Processes of Semiconductors 9
   2.1 Semiconductor Electrodes for Solar Energy Conversion 11
   2.2 Reduction of CO2 at Illuminated Semiconductor Electrodes 15
   2.3 Photocatalysis 18
   2.3.1 General Remarks 18
   2.3.2 Mechanistic Studies 19
   2.3.3 Low Intensity Illumination 22
   2.3.4 Applications 24
   References 26
   3 Design, Preparation and Characterization of Highly Active Metal Oxide Photocatalysts 29
   3.1 Introduction 29
   3.2 Photocatalytic Activity 29
   3.2.1 Effect of Surface Area on Photocatalytic Activity 30
   3.2.2 Effect of Electron-hole Recombination on Photocatalytic Activity 32
   3.2.3 Design of Photocatalysts of High Activity 33
   3.3 Preparation of Titanium (IV) Oxide Powders 33
   3.3.1 Sulfate Method 33
   3.3.2 Chloride Method (Vapor Method) 34
   3.3.3 Alkoxide Method 34
   3.3.4 Specific Methods 34
   3.3.5 Activation of TiO2 Photocatalysts 36
   3.4 Preparation of Other Photocatalysts 38
   3.5 Characterization of TiO2 Photocatalysts of Both High Crystallinity and Large Surface Area 38
   3.5.1 Photocatalytic Activity of HyCOM TiO2 in Aqueous Suspension Systems 38
   3.5.2 Correlation Between Physical Properties and Photocatalytic Activity of HyCOM TiO2 39
   3.5.3 Novel Hypothesis for Activity of Photocatalyst 43
   3.6 Preparation and Characterization of Photocatalytic Thin Films 44
   3.6.1 Preparation of Photocatalytic TiO2 Thin Films 44
   3.6.2 Characterization of Photocatalytic Thin Films Prepared from HyCOM TiO2 Powders 45
   3.7 Summary 47
   References 47
   4 Photoelectrochemistry at Semiconductor/Liquid Interfaces 51
   4.1 Introduction 51
   4.2 Basic Properties of Semiconductor/Liquid Interface 52
   4.2.1 Band Bending 52
   4.2.2 Barrier Height and Flat Band Potential 54
   4.2.3 Electron Transfer and Corrosion Reactions 57
   4.3 Photoelectrochemistry at Atomically Well-defined Surfaces 59
   4.3.1 Atomically Flat H-terminated Si Surfaces 59
   4.3.2 Selective Exposition of (100) Face on n-TiO2 (Rutile) by Photoetching 62
   4.4 Photoelectrochemistry at Metal Dot-coated Semiconductors 64
   4.4.1 Ideal Semiconductor Electrodes 64
   4.4.2 Metal-loaded TiO2 Electrodes 66
   References 67
   5 Photoelectrochemical Reactions at Semiconductor Microparticle 69
   5.1 Introduction 69
   5.2 Energy Structure of Semiconductor Microparticle 69
   5.2.1 Depletion Layer 69
   5.2.2 Electric Heterogeneity of Surface 71
   5.2.3 Size Quantization Effect 72
   5.3 Kinetics at Semiconductor Microparticle 72
   5.3.1 Recombination Model 73
   5.3.2 2D Ladder Model 74
   5.3.3 Effect of Size 76
   5.4 Observation of Primary Reaction Intermediates 77
   5.4.1 ESR Analysis for Irradiated TiO2 Particles 78
   5.4.2 Direct Observation of Intermediate Radicals 81
   5.4.3 Chemiluminescent Probe for Active Oxygens 83
   References 85
   6 New Approaches in Solution-phase Processing of Semiconductor Thin Films 87
   6.1 Introduction 87
   6.2 Previous Methods for Solution-phase Deposition of Semiconductor Thin Films 89
   6.2.1 Chemical Bath Deposition of Metal Sulfide Thin Films 89
   6.2.2 Electrodeposition of Metal Sulfide Thin Films 90
   6.2.3 Chemical and Electrochemical Deposition of Metal Oxide Thin Films 92
   6.3 Electrochemically Induced Chemical Deposition (EICD) of Cds Thin Films 93
   6.3.1 Idea 93
   6.3.2 Morphological and Structural Analysis 94
   6.3.3 Growth Kinetics and Mechanism of EICD Process 95
   6.3.4 Modification of EICD Process 97
   6.4 True Electrodeposition of Metal Sulfide Thin Films by Reduction of Thiocyanato Complexes 97
   6.4.1 Idea 97
   6.4.2 Thermodynamic Consideration 98
   6.4.3 Electrochemical Layer-by-layer Growth of CdS Thin Films 98
   6.4.4 Electrodeposition of Other Metal Sulfides 100
   6.5 Electrochemical Self-assembly of ZnO/Dye Hybrid Thin Films 100
   6.5.1 Idea 100
   6.5.2 Electrochemical Self-assembly of ZnO/Dye Hybrid Structure 102
   6.5.3 Mechanism of Electrochemical Self-assembly 104
   6.6 Summary 104
   References 105
Ⅱ Application to Environmental Cleaning
   7 Self-cleaning Properties of TiO2-coated Substrates 109
   7.1 Introduction 109
   7.2 Photocatalytic Decomposition 110
   7.2.1 Air Purifying Effect 110
   7.2.2 Sterilization Effect 111
   7.2.3 Anti-fouling Effect 113
   7.2.4 Photo-induced High Amphiphilicity 114
   7.3 Conclusions 120
   References 121
   8 Cleaning Atmospheric Environment 123
   8.1 Introduction 123
   8.2 Photocatalytic Activities of TiO2 124
   8.2.1 Oxidation of Air Pollutants by Photogenerated Active Oxygen Species 124
   8.2.2 Photocatalytic Reactions of Volatile Hydrocarbons 125
   8.2.3 Photocatalytic Reactions of Halogenated Hydrocarbons 136
   8.2.4 Nitrogen Oxides (Nox) 143
   8.3 Development of Air Purifying Materials Based on Photocatalyst 147
   8.3.1 Immobilization of Powder Photocatalysts 147
   8.3.2 Preparation of Air-purifying Materials 148
   8.3.3 Performance Characteristics of Air-purifying Materials 149
   8.4 Application of Photocatalysis to Cleaning of Atmospheric Environment 151
   8.4.1 Passive Purification of Polluted Air 151
   8.4.2 Active Air Purification of Closed Space 153
   8.5 Summary 154
   References 155
   9 Water Purification - Degradation of Aqueous Pollutant and Application to Water Treatment 157
   9.1 Introduction 157
   9.2 Photocatalytic Characteristics of Titanium Dioxide 157
   9.3 Photocatalytic Degradation of Pollutant 160
   9.3.1 Volatile Organohalide Compound 160
   9.3.2 Pesticides 162
   9.3.3 Other Organic Compounds 164
   9.3.4 Environmental Hormones (Endocrine Disruptors) 165
   9.4 Enhancement of Degradation Rate 166
   9.4.1 Pt-loading 166
   9.4.2 Addition of H2O2 167
   9.4.3 Ozone 169
   9.4.4 Increase in Adsorption 169
   9.5 Solar System for Water Treatment 171
   9.6 Immobilization of TiO2 and Instrumentation 171
   9.7 Conclusion and Outlook 172
   References 172
   10 Second-generation TiO2 Photocatalysts Able to Initiate Reactions Under Visible Light Irradiation 175
   10.1 Introduction 175
   10.2 Experimental Section 175
   10.3 Results and Discussion 176
   10.4 Conclusion 182
   References 182
Ⅲ Application to Photoenergy Conversion
   11 Photocatalytic Organic Syntheses Using Semiconductor Particles 185
   11.1 Introduction 185
   11.2 Principle of Photocatalysis by Semiconductor Particles 186
   11.3 Photocatalytic Reactions by Semiconductor Suspension 187
   11.4 Redox Combined Photocatalytic Processes for Nitrogen-containing Substrates 189
   11.5 Further Development to Stereoselective Organic Synthesis of Nitrogen-containing Compounds 191
   11.6 Introduction of Oxygen Atoms into Organic Compounds 194
   11.6.1 Stereospecific Epoxidation of 2-hexene on Photoirradiated TiO2 Powders Using Molecular Oxygen as Oxidant 195
   11.6.2 Selective Oxidation of Naphthalene by Molecular Oxygen and Water Using TiO2 Photocatalysts 196
   11.6.3 Photocatalytic Oxygenation: Summary 198
   11.7 Concluding Remarks 199
   References 199
   12 Sonophotocatalysis - Joint System of Sonochemical and Photocatalytic Reactions 203
   12.1 Introduction - What is Sonophotocatalysis? 203
   12.2 Utilization of Sonophotocatalytic Reaction 204
   12.2.1 Sonophotocatalysis of Water 204
   12.2.2 Sonophotocatalysis of Artificial Seawater 216
   12.2.3 Sonophotocatalyses of Organic Compounds 219
   12.3 Conclusion and Future Scopes 220
   References 221
   13 Gas-phase Water Photolysis by NaOH-coated Photocatalysts 223
   13.1 Introduction 223
   13.2 Water Photolysis by Pt/TiO2 224
   13.3 Water Photolysis by Metallized Semiconductor Powders 226
   13.3.1 Gas-phase Water Photolysis by NaOH-coating 226
   13.3.2 Factors Influencing Yield of Water Photolysis 229
   13.4 Concluding Remarks 233
   References 234
   14 Water Photolysis by TiO2 Particles - Significant Effect of Na2CO3 Addition on Water Splitting 235
   14.1 Introduction 235
   14.2 Significant Effect of Carbonate Salt Addition on Water Splitting from Pt/TiO2 Water Suspension 236
   14.3 Role of Carbonate Salts on Water Splitting and Reaction Mechanism 240
   14.4 Effective Screening of Active Photocatalysts for Water Splitting Using Na2CO3 Addition Method 242
   14.5 Solar Hydrogen Production Using Na2CO3 Addition Method 246
   14.6 Conclusion 248
   References 248
   15 Water Photolysis by Titanates with Tunnel Structures 249
   15.1 Water Photolysis by RuO2/BaTi4O9 with Pentagonal Prism Tunnel Structure 250
   15.2 Water Photolysis by RuO2/N2Ti6O13 with Rectangular Tunnel Structure 257
   References 260
   16 Water Photolysis by Layered Compounds 261
   16.1 Introduction 261
   16.2 Layered Oxides of Transition Metals 261
   16.3 K4Nb6O17 263
   16.3.1 Structure and Physico-chemical Properties 263
   16.3.2 Photocatalytic Overall Water Splitting 265
   16.3.3 Structure of Ni-loaded K4Nb6O17 and Reaction Mechanism 267
   16.4 Perovskite-related Layered Oxides 268
   16.5 Summary 276
   References 276
   17 Splitting of Water by Combining Two Photocatalytic Reactions via Quinone Redox Couple Dissolved in Oil Phase: Artificial Photosynthesis 279
   17.1 Introduction 279
   17.2 Strategy for Water Splitting by Mimicking Photosynthesis 280
   17.3 Photocatalytic Hydrogen and Oxygen Evolution in Separate Systems 281
   17.3.1 Photooxidation of Water Using TiO2 Particles 282
   17.3.2 Photoreduction of Water Using Pt-loaded TiO2 Particles 285
   17.4 Approaches to Electrochemical and Chemical Combinations of Two Photocatalytic Reactions 286
   17.5 Splitting of Water by a Combination of Two Photocatalytic Reactions via DDQ/DDHQ 289
   17.6 Conclusions 291
   References 291
   18 Sensitization by Metal Complexes Towards Future Artificial Photosynthesis 293
   18.1 Introduction 293
   18.2 Photoinduced Hydrogen Evolution in Homogeneous Four-component Systems 294
   18.2.1 Photoinduced Hydrogen Evolution with Porphyrin Metal Complexes and Hydrogenase 294
   18.2.2 Photoinduced Hydrogen Evolution Using Cytochrome c3 as Electron Carrier 296
   18.2.3 Photoinduced Hydrogen Evolution Using Chemically-modified Chlorophyll 298
   18.3 Photoinduced Hydrogen Evolution with Viologen-linked orphyrin Metal Complexes 299
   18.3.1 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Cationic Porphyrin Metal Complexes and Hydrogenase 300
   18.3.2 Photoinduced Hydrogen Evolution with Water-soluble Viologen-linked Anionic Porphyrin and Hydrogenase 302
   18.4 Other Systems for Hydrogen Evolution Using Natural Photosensitizers 303
   18.5 Conclusion 306
   References 306
   19 Catalyses and Sensitization for Water Reaction Towards Future Artificial Photosynthesis 309
   19.1 Introduction 309
   19.2 Design of Artificial Photosynthesis 309
   19.2.1 Photosynthesis and Energy Cycle on Earth 309
   19.2.2 Artificial Photosynthesis 311
   19.3 Molecular Catalysts for Water Reactions and CO2 Reduction 312
   19.3.1 Catalysis in Water Oxidation 312
   19.3.2 Catalysis in Proton Reduction 316
   19.3.3 Catalysis in Carbon Dioxide Reduction 316
   19.4 Photoexcited State Electron Transfer in Heterogeneous Phases 317
   19.5 Sensitization of TiO2 Powders and Films in Water 320
   19.6 Conclusion and Future Prospects 322
   References 323
   20 Photoelectric TiO2 Solar Cells 325
   20.1 Introduction 325
   20.2 Dye-sensitization of Semiconductors 325
   20.2.1 History 325
   20.2.2 Innovative Dye-sensitized Solar Cells 327
   20.2.3 Fabrication of Dye-sensitized TiO2 Solar Cells 328
   20.2.4 Characterization of Innovative Dye-sensitized TiO2 Solar Cells 329
   20.3 Electron-transfer Sensitization on TiO2 330
   20.3.1 Bonding Structure of Dye on TiO2 Influencing ηei 331
   20.3.2 Dynamics in Electron Transfer from Photoexcited Dye 2 to TiO2 331
   20.3.3 Electron Transfer Between Oxidized Dye 2 and I-/I3- Electrolyte 332
   20.4 Electron Transport in Porous TiO2 Electrodes 333
   20.4.1 Electron Transport Models for High ηet 334
   20.4.2 Time-course Analysis 335
   20.4.3 Frequency Analysis 335
   20.4.4 Effect of TiO2 Films on Performance of Dye-sensitized Solar Cells 337
   20.5 Sensitization Dyes 337
   20.5.1 Ruthenium Polypyridine Complexes 337
   20.5.2 Other Metal Complexes 339
   20.5.3 Organic Dyes 340
   20.5.4 Natural Dyes 342
   20.6 Recent Research Progress in Dye-sensitized Solar Cells 343
   20.7 Future Work on Dye-sensitized Solar Cells 344
   20.8 Concluding Remarks 345
   References 346
Index 349
List of Contributors
Preface
   1 Introduction 1
24.

図書

図書
edited by Saul Patai
出版情報: Chichester [Eng.] ; New York : J. Wiley, 1979-1992  4 v. ; 24 cm
シリーズ名: The Chemistry of functional groups ; supplement B
所蔵情報: loading…
25.

図書

図書
edited by Paul D. Boyer
出版情報: New York : Academic Press, 1976  xxv, 542 p. ; 24 cm
シリーズ名: The enzymes / edited by Paul D. Boyer, Edwin G. Krebs ; v. 13 . Oxidation-reduction ; pt. C
所蔵情報: loading…
26.

図書

図書
出版情報: Washington : Hemisphere Pub. Corp., c1987  v. ; 25 cm
シリーズ名: Alternative energy sources VII / edited by T. Nejat Veziroğlu ; v. 1-v. 2
所蔵情報: loading…
27.

図書

東工大
目次DB

図書
東工大
目次DB
宗宮重行[ほか]編
出版情報: 東京 : 技報堂出版, 2002.8  xv, 384p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
共通基礎データ ⅷ
第Ⅰ編 環境・リサイクル分野
   第Ⅰ-1章 総 論 3
   1.1 はじめに 3
   1.2 環境問題 3
   1.3 材料技術の応用分野 4
   1.4 セラミックスの応用 5
   1.4.1 構造的なメリット 5
   1.4.2 機能的なメリット 6
   1.4.3 セラミックスのデメリット 6
   1.5 おわりに 7
   第Ⅰ-2章 各 論 9
   2.1 ろ過機能 9
   2.1.1 ディーゼルパティキュレートフィルター(DPF) 9
   2.1.2 高温集塵フィルター 12
   2.1.3 排水処理用セラミックス膜フィルター 19
   2.2 ケミカルセンター 22
   2.2.1 可燃性ガスセンサー 22
   2.2.2 有害ガスセンサー 26
   2.3 セラミックス担体 34
   2.3.1 セラミックスハニカム 34
   2.3.2 バイオリアクター 37
   2.4 表面機能性セラミックス 39
   2.4.1 抗菌部材 39
   2.4.2 親水性部材(半導体の光励起反応を利用した機能薄膜材料) 44
   2.4.3 ゼオライトとNOx分解触媒 54
   2.5 リサイクル関連技術 59
   2.5.1 リサイクルとは 59
   2.5.2 リサイクルの目的 59
   2.5.3 廃棄物総合対策の中でのリサイクルの位置付け 62
   2.5.4 セラミックス産業関連リサイクル 62
   2.6 そ の 他 64
   2.6.1 セラミックス吸音材 64
   2.6.2 セラミックス電波吸収体 69
   第Ⅰ-3章 基礎データ 73
第Ⅱ編 情報・通信分野
   第Ⅱ-1章 総 論 79
   1.1 エレクトロニクスの動向と機能性セラミックスの進歩 79
   1.1.1 エレクトロニクスの動向 79
   1.1.2 機能性セラミックスの進歩 80
   1.1.3 機能性セラミックスの分類と用途 82
   第Ⅱ-2章 各 論 85
   2.1 絶縁性セラミックス 85
   2.1.1 セラミックス多層配線基板 85
   2.1.2 IC基板について 90
   2.2 半導性セラミックス 94
   2.2.1 サーミスター(NTC,PTC) 94
   2.2.2 バリスタ 102
   2.2.3 各種センサー 106
   2.3 イオン導電性セラミックス 113
   2.3.1 リチウムイオン電池 113
   2.3.2 酸素センサー 117
   2.4 圧電性セラミックス 121
   2.4.1 セラミックスフィルター 121
   2.4.2 圧電振動ジャイロ 124
   2.4.3 圧電トランス 129
   2.4.4 薄膜デバイス 133
   2.5 誘電性セラミックス 139
   2.5.1 積層コンデンサー 139
   2.5.2 誘電体フィルター 143
   2.6 磁性セラミックス 147
   2.6.1 MR,GMRヘッド 147
   2.6.2 高周波電源用フェライト 152
   2.7 酸化物化学結晶 157
   2.7.1 固体レーザー 157
   第Ⅱ-3章 基礎データ 167
第Ⅲ編 エネルギー分野
   第Ⅲ-1章 総 論 173
   1.1 はじめに 173
   1.2 物理学の階層構造 173
   1.3 古典場における物理量の相関関係 175
   1.3.1 示強性物理量と示量性物理量 176
   1.3.2 物質定数の定義 176
   1.3.3 物質から材料へ 熱的・機械的機能に及ぼす諸因子 178
   1.4 おわりに 179
   第Ⅲ-2 各 論 181
   2.1 機械的機能 181
   2.1.1 高弾性エネルギー(ばね) 181
   2.1.2 高硬度(工具,コーティング) 185
   2.1.3 耐摩耗性(軸受,摺動部品) 189
   2.1.4 潤滑性(固体潤滑剤) 193
   2.1.5 複合材 198
   2.2 熱的機能 204
   2.2.1 高温強度(タービン用材料) 204
   2.2.2 耐熱性・耐熱衝撃性 207
   2.2.3 断熱性(断熱材) 212
   2.3 耐 食 性 217
   2.3.1 高温耐食性(炉材) 217
   2.3.2 耐薬品性(耐酸性ポンプ) 227
   2.4 エネルギー変換効率 232
   2.4.1 熱電変換 232
   2.4.2 燃料電池 239
   2.4.3 原 子 力 243
   2.5 加工・接合 247
   2.5.1 研削加工 247
   2.5.2 砥粒加工 251
   2.5.3 ビーム加工 254
   2.5.4 接合 259
   第Ⅲ-3章 基礎データ 279
第Ⅳ編 バイオ分野
   第Ⅳ-1章 総 論 287
   1.1 生体修復セラミックスの最新の動向 287
   1.1.1 はじめに 287
   1.1.2 高強度,高耐摩性セラミックス 287
   1.1.3 生体活性セラミックス 288
   1.1.4 吸収性セラミックス 289
   1.1.5 生体活性セメント 289
   1.1.6 生体活性セラミックス金属複合体 290
   1.1.7 生体活性セラミックス高分子複合体 291
   1.1.8 がん治療用セラミックス 291
   1.1.9 おわりに 292
   1.2 生体材料の臨床応用の基礎 293
   1.2.1 生体材料の使用目的 293
   1.2.2 期待する特性 294
   1.2.3 セラミックスと生体内環境 296
   第Ⅳ-2章 各 論 299
   2.1 バイオイナートセラミックス 299
   2.1.1 アルミナセラミックス 299
   2.1.2 ジルコニアセラミックス 306
   2.2 バイオアクティブセラミックス 310
   2.2.1 ハイドロキシアパタイト(HA) 310
   2.3 人口歯・人口歯根 314
   2.3.1 人口歯・人口歯根用セラミックス 314
   2.4 バイオセラミックスコーティング 320
   2.4.1 ハイドロキシアパタイト(HA)コーティング 320
   2.5 バイオアクティブセラミックスの臨床応用 342
   2.5.1 バイオアクティブ結晶化ガラス(A-W) 342
   2.5.2 ハイドロキシアパタイト(HA) 346
   2.5.3 バイオセラミックス複合体 350
   2.5.4 人口歯・人口歯根 354
   2.5.5 ガン治療用セラミックス 362
   第Ⅳ-3章 基礎データ 369
索 引 375
共通基礎データ ⅷ
第Ⅰ編 環境・リサイクル分野
   第Ⅰ-1章 総 論 3
28.

図書

図書
edited by J. Larson, C. Unger
出版情報: Amsterdam ; New York : North-Holland, 1992  xi, 423 p. ; 23 cm
シリーズ名: IFIP transactions ; A . Computer science and technology ; 18
所蔵情報: loading…
29.

図書

図書
edited by Saul Patai
出版情報: London ; New York : John Wiley & Sons, 1973  2 v. (xiii, 1215 p.) ; 24 cm
シリーズ名: The Chemistry of functional groups
所蔵情報: loading…
30.

図書

図書
Hilary Glasman-Deal
出版情報: London : Imperial College Press, c2010  xiii, 257 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
Grammar and Writing Skills / 1.2:
Tense pairs / 1.2.1:
Signalling language / 1.2.2:
Passive/Active / 1.2.3:
Writing Task: Build a Model / 1.3:
Building a model / 1.3.1:
Key / 1.3.2:
The model / 1.3.3:
Testing the Model / 1.3.4:
Vocabulary / 1.4:
Vocabulary for the Introduction / 1.4.1:
Writing an Introduction / 1.5:
Write an Introduction / 1.5.1:
Writing about Methodology / 1.5.2:
Passives and tense pairs / 2.1:
Use of 'a' and 'the' / 2.2.2:
Adverbs and adverb location / 2.2.3:
Testing the model / 2.3:
Vocabulary task / 2.4:
Vocabulary for the Methodology section / 2.4.2:
Writing a Methodology Section / 2.5:
Write a Methodology section / 2.5.1:
Writing about Results / 2.5.2:
Sequence / 3.1:
Frequency / 3.2.2:
Quantity / 3.2.3:
Causality / 3.2.4:
Vocabulary for the Results section / 3.3:
Writing a Results Section / 3.5:
Write a Results section / 3.5.1:
Writing the Discussion/Conclusion / 3.5.2:
Vocabulary for the Discussion/Conclusion / 4.1:
Writing a Discussion/Conclusion / 4.5:
Write a Discussion/Conclusion / 4.5.1:
Writing the Abstract / Unit 5:
Verb tense / 5.1:
Length / 5.2.2:
Language / 5.2.3:
The models / 5.3:
Testing the models / 5.3.4:
Vocabulary for the Abstract / 5.4:
Writing an Abstract / 5.5:
Write an Abstract / 5.5.1:
Creating a Tide / 5.5.2:
Sources and Credits
Useful Resources and Further Reading
Abbreviations Used in Science Writing / Appendix A:
Prefixes Used in Science Writing / Appendix B:
Latin and Greek Singular and Plural Forms / Appendix C:
Useful Verbs / Appendix D:
Index of Contents
Index of Vocabulary
Introduction: How to Use This Book
How to Write an Introduction / Unit 1:
Structure / l.l:
31.

図書

図書
Ronald L. Graham, Jaroslav Nešetřil (eds.)
出版情報: Berlin : Springer, c1997  2 v. ; 25 cm
シリーズ名: Algorithms and combinatorics ; 13-14
所蔵情報: loading…
32.

図書

図書
M. Loève
出版情報: New York ; Berlin : Springer-Verlag, c1977-1978  2 v. ; 24 cm
シリーズ名: Graduate texts in mathematics ; 45-46
所蔵情報: loading…
33.

図書

東工大
目次DB

図書
東工大
目次DB
Y. Horie and A.B. Sawaoka
出版情報: Tokyo : KTK Scientific, c1993  x, 364 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
   1.2 Compaction of Powders and Shock Activation, 6
   1.3 First-Order Phase Transitions and Chemical Reactions, 10
   1.4 Time Scales and Interactions of Basic Mechanisms, 12
   1.4.1 Shock propagation in a particle assemblage, 12
   1.4.2 Energy localization, 12
   1.4.3 Thermal relaxation of hot spots, 14
   1.4.4 Mass diffusion in solids, 14
   1.4.5 Kinetic constants, 14
   1.5 Some Roles of Shock Compression Techniques in Material Sciences Study, 16
   1.5.1 Shock Compression Techniques as a tool of high pressure production, 16
   1.5.2 Appearance of diamond anvil-type high-pressure apparatus, 16
   1.5.3 New roles of Shock Compression Technology as a unique method of very high temperature production, 18
   1.5.4 Development of conventional hypervelocity impact techniques for precise measurement of materials under shock compression, 19
Chapter 2 FUNDAMENTALS OF SHOCK WAVE PROPAGATION
   2.1 Hydrodynamic Jump Conditions and the Hugoniot Curve, 23
   2.2 Shock Transition in Hydrodynamic Solids, 32
   2.3 Non-Hydrostatic Deformation of Solids, 42
   2.3.1 Elastic-ideally-plastic solids, 42
   2.3.2 Experimental observations of elastic-plastic behavior, 53
   2.4 Wave-body interactions, 56
   2.4.1 Preliminaries, 57
   2.4.2 Planar impact of similar and dissimilar bodies, 60
   2.4.3 Shock wave interaction with material boundaries, 61
   2.4.4 Wave-wave interactions, 65
   2.4.5 Detonation wave and interaction with a solid surface 66
Chapter 3 SHOCK COMPRESSION TECHNOLOGY
   3.1 Gun Techniques, 80
   3.1.1 Single stage gun, 80
   3.1.2 Conventional two stage light gas gun, 80
   3.1.3 Velocity measurement of projectile, 83
   3.1.4 Magnetoflyer method, 83
   3.1.5 CW x-ray velocity meter, 84
   3.1.6 Measurement of interior projectile motion, 86
   3.1.7 Recovery experiments, 87
   3.2 Explosive Techniques, 89
   3.2.1 Plane shock wave generation and recovery fixture、 89
   3.2.2 Numerical simulaation of shock compression in the recovery capsule, 91
   3.2.3 Cylindrical recovery fixture, 94
   3.3 In-situ Measurements, 95
   3.3.1 Manganin pressure gauge, 95
   3.3.2 Particle velocity gauge, 99
   3.3.3 Observations of multiple shock reverberations by using a manganin pressure gauge and particle velocity gauge, 100
   3.3.4 Shock temperature measurement, 106
   3.3.5 Copper-Constantan thermocouple as a temperature and pressure gauge, 111
Chapter 4 THERMOMECHANICS OF POWDER COMPACTION AND MASS MIXING
   4.1 A One Dimensional Particulate Model, 117
   4.2 Continuum Models, 123
   4.2.1 Hydrodynamic models, 124
   4.2.2 Continuum plasticity theory, 141
   4.2.3 Application, 148
   4.3 Particle Bonding and Heterogeneous Processes, 154
   4.4 Mass Mixing, 160
Chapter 5 THERMOCHEMISTRY OF HETEROGENEOUS MIXTURES
   5.1 Thermodynamic Functions of Heterogeneous Mixtures, 172
   5.2 Analytical Equations of State, 187
   5.3 Hugoniots of Inert Mixtures, 191
   5.3.1 Thermodynamically equilibrium models, 191
   5.3.2 Mechanical models, 197
   5.4 First-Order Phase Transitions, 199
   5.5 Chemical Equilibria, 206
   5.6 Reaction Kinetics, 212
   5.6.1 Rate equations, 212
   5.6.2 Nucleation, 214
   5.6.3 Growth, 216
   5.6.4 Pressure effects, 217
   5.7 Shock-Induced Reactions in Powder Mixtures, 218
Chapter 6 HYDRODYNAMICAL CALCULATIONS
   6.1 Conservation Equations of Continuum Flow, 227
   6.1.1 Mass conservation, 228
   6.1.2 Conservation of linear momentum, 230
   6.1.3 Enegy conservation, 231
   6.2 Constitutive Modeling of Inorganic Shock Chemistry, 234
   6.2.1 VIR model, 235
   6.2.2 Pore collapse, 239
   6.2.3 Chemical kinetics, 239
   6.2.4 Computational constitutive reactions, 240
   6.3 Applications of the VIR Model, 245
   6.3.1 Shock wave profiles in Ni/Al powder mixtures, 245
   6.3.2 Compaction of diamond with Si and graphite, 250
   6.4 Continuum Mixture Theory and the VIR Model, 257
   6.4.1 Continuum mixture theory, 257
   6.4.2 Derivation of the VIR model using the CMT, 263
   6.4.3 A model of heterogeneous flow, 269
Chapter 7 SHOCK CONDITIONING AND PROCESSING OF CERAMICS
   7.1 Shock Conditioning of Powder of Inorganic Materials, 277
   7.1.1 Brief review of shock conditioning studies, 277
   7.1.2 Aluminum oxide powder, 277
   7.2 Shock Synthesis of Inorganic Materials, 281
   7.2.1 Shock synthesis studies, 281
   7.2.2 High dense forms of carbon, 281
   7.2.3 High dense forms of boron nitride, 285
   7.2.4 Shock treatment of boron nitride powders, 287
   7.3 Shock Consolidation of Ceramic Powders, 301
   7.3.1 Why non-oxide ceramics?, 301
   7.3.2 Dynamic consolidation of SiC powders, 302
   7.3.3 Approach to the fabrication of crack free compacts, 304
   7.3.4 Shock consolidation of SiC powder utilizing post shock heating by exothermic reaction, 305
   7.4 Dynamic Compaction of Zinc Blende Type Boron Nitride and Diamond Powders, 310
   7.4.1 Back ground, 310
   7.4.2 Cubic boron nitride, 311
   7.4.3 Diamond, 318
   7.4.4 Diamond composites obtained by utilizzing exothermic chemical reaction, 326
   7.5 Very High Pressure Sintering of Shock Treated Powders, 332
   7.5.1 Silicon nitride, 334
   7.5.2 w-BN, 336
   7.6 Rapid Condensation of High Temperature Ultrasupersaturated Gas, 347
   7.6.1 Silicon nitride, 347
   7.6.2 Carbon, 352
Index, 361
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
34.

図書

図書
Stanley T. Rolfe, John M. Barsom
出版情報: Englewood Cliffs, N.J. : Prentice-Hall, c1977  xiv, 562 p. ; 24 cm
シリーズ名: Prentice-Hall international series in civil engineering and engineering mechanics
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
Overview of the Problem of Fracture and Fatigue in Structures / Chapter 1:
Historical Background / 1.1:
Ductile vs. Brittle Behavior / 1.2:
Notch Toughness / 1.3:
Driving Force, K[subscript I] / 1.4:
Resistance Force, K[subscript c] / 1.4.2:
Fracture Mechanics Design / 1.5:
Fatigue and Stress-Corrosion Crack Growth / 1.6:
Fracture and Fatigue Control / 1.7:
Fracture Criteria / 1.8:
Fitness for Service / 1.9:
Case Studies / 1.10:
References / 1.11:
Stress Analysis for Members with Cracks--K[subscript I] / Chapter 2:
Introduction / 2.1:
Stress-Concentration Factor--k[subscript t] / 2.2:
Stress-Intensity Factor--K[subscript I] / 2.3:
Stress-Intensity-Factor Equations / 2.4:
Through-Thickness Crack / 2.4.1:
Single-Edge Notch / 2.4.2:
Embedded Elliptical or Circular Crack in Infinite Plate / 2.4.3:
Surface Crack / 2.4.4:
Cracks Growing from Round Holes / 2.4.5:
Single Crack in Beam in Bending / 2.4.6:
Holes or Cracks Subjected to Point or Pressure Loading / 2.4.7:
Estimation of Other K[subscript I] Factors / 2.4.8:
Superposition of Stress-Intensity Factors / 2.4.9:
Crack-Tip Deformation and Plastic Zone Size / 2.5:
Effective K[subscript I] Factor for Large Plastic Zone Size / 2.6:
J[subscript I] and [delta][subscript I] Driving Forces / 2.7:
J Integral / 2.7.1:
CTOD ([delta][subscript I]) / 2.7.2:
Summary / 2.8:
Appendix / 2.9:
Griffith, CTOD and J-Integral Theories / 2.10:
The Griffith Theory / 2.10.1:
Crack-Tip Opening Displacement (CTOD) and the Dugdale Model / 2.10.2:
J-Integral / 2.10.3:
Fracture Behavior / Part II:
Resistance Forces--K[subscript c]-J[subscript c]-[delta][subscript c] / Chapter 3:
General Overview / 3.1:
Service Conditions Affecting Fracture Toughness / 3.2:
Temperature / 3.2.1:
Loading Rate / 3.2.2:
Constraint / 3.2.3:
ASTM Standard Fracture Tests / 3.3:
Fracture Behavior Regions / 3.4:
General ASTM Fracture Test Methodology / 3.5:
Test Specimen Size / 3.5.1:
Test Specimen Notch / 3.5.2:
Test Fixtures and Instrumentation / 3.5.3:
Analysis of Results / 3.5.4:
Relations Between K-J-[delta] / 3.6:
Appendix A: K, J, CTOD ([delta]) Standard Test Method--E 1820 / 3.7:
Appendix B: Reference Temperature T[subscript o], to Establish a Master Curve Using K[subscript Jc] Values in Standard Test Method E 1921 / 3.9:
Effects of Temperature, Loading Rate, and Constraint / Chapter 4:
Effects of Temperature and Loading Rate on K[subscript Ic], K[subscript Ic](t), and K[subscript Id] / 4.1:
Effect of Loading Rate on Fracture Toughness / 4.3:
Effect of Constraint on Fracture Toughness / 4.4:
Loading-Rate Shift for Structural Steels / 4.5:
CVN Temperature Shift / 4.5.1:
K[subscript Ic]-K[subscript Id] Impact-Loading-Rate Shift / 4.5.2:
K[subscript Ic](t) Intermediate-Loading Rate Shift / 4.5.3:
Predictive Relationship for Temperature Shift / 4.5.4:
Significance of Temperature Shift / 4.5.5:
CVN-K[subscript Id]-K[subscript c] Correlations / 4.6:
General / 5.1:
Two-Stage CVN-K[subscript Id]-K[subscript c] Correlation / 5.2:
K[subscript Ic]-CVN Upper-Shelf Correlation / 5.3:
K[subscript Id] Value at NDT Temperature / 5.4:
Comparison of CVN-K[subscript Id]-K[subscript Ic]-J and [delta] Relations / 5.5:
Fracture-Mechanics Design / 5.6:
General Fracture-Mechanics Design Procedure for Terminal Failure / 6.1:
Design Selection of Materials / 6.3:
Design Analysis of Failure of a 260-In.-Diameter Motor Case / 6.4:
Design Example--Selection of a High-Strength Steel for a Pressure Vessel / 6.5:
Case I--Traditional Design Approach / 6.5.1:
Case II--Fracture-Mechanics Design / 6.5.2:
General Analysis of Cases I and II / 6.5.3:
Fatigue and Environmental Behavior / 6.6:
Introduction to Fatigue / Chapter 7:
Factors Affecting Fatigue Performance / 7.1:
Fatigue Loading / 7.3:
Constant-Amplitude Loading / 7.3.1:
Variable-Amplitude Loading / 7.3.2:
Fatigue Testing / 7.4:
Small Laboratory Tests / 7.4.1:
Fatigue-Crack-Initiation Tests / 7.4.1a:
Fatigue-Crack-Propagation Tests / 7.4.1b:
Tests of Actual or Simulated Structural Components / 7.4.2:
Some Characteristics of Fatigue Cracks / 7.5:
Fatigue-Crack Initiation / 7.6:
General Background / 8.1:
Effect of Stress Concentration on Fatigue-Crack Initiation / 8.2:
Generalized Equation for Predicting the Fatigue-Crack-Initiation Threshold for Steels / 8.3:
Methodology for Predicting Fatigue-Crack Initiation from Notches / 8.4:
Fatigue-Crack Propagation under Constant and Variable-Amplitude Load Fluctuation / 8.5:
Fatigue-Crack-Propagation Threshold / 9.1:
Constant Amplitude Load Fluctuation / 9.3:
Martensitic Steels / 9.3.1:
Ferrite-Pearlite Steels / 9.3.2:
Austenitic Stainless Steels / 9.3.3:
Aluminum and Titanium Alloys / 9.3.4:
Effect of Mean Stress on Fatigue-Crack Propagation Behavior / 9.4:
Effects on Cyclic Frequency and Waveform / 9.5:
Effects of Stress Concentration on Fatigue-Crack Growth / 9.6:
Fatigue-Crack Propagation in Steel Weldments / 9.7:
Design Example / 9.8:
Variable-Amplitude Load Fluctuation / 9.9:
Probability-Density Distribution / 9.9.1:
Fatigue-Crack Growth under Variable-Amplitude Loading / 9.9.2:
Single and Multiple High-Load Fluctuations / 9.9.3:
Variable-Amplitude Load Fluctuations / 9.9.4:
The Root-Mean-Square (RMS) Model / 9.9.4.1:
Fatigue-Crack Growth Under Variable-Amplitude Ordered-Sequence Cyclic Load / 9.9.4.2:
Fatigue-Crack Growth in Various Steels / 9.10:
Fatigue-Crack Growth Under Various Unimodal Distribution Curves / 9.11:
Fatigue and Fracture Behavior of Welded Components / 9.12:
Residual Stresses / 10.1:
Distortion / 10.3:
Stress Concentration / 10.4:
Weld Discontinuities and Their Effects / 10.5:
Fatigue Crack Initiation Sites / 10.5.1:
Fatigue Crack Behavior of Welded Components / 10.6:
Fatigue Behavior of Smooth Welded Components / 10.6.1:
Specimen Geometries and Test Methods / 10.6.1.1:
Effects of Surface Roughness / 10.6.1.2:
Fatigue Behavior of As-Welded Components / 10.6.2:
Effect of Geometry / 10.6.2.1:
Effect of Composition / 10.6.2.2:
Effect of Residual Stress / 10.6.2.3:
Effect of Postweld Heat Treatment / 10.6.2.4:
Methodologies of Various Codes and Standards / 10.7:
AASHTO Fatigue Design Curves for Welded Bridge Components / 10.7.1:
Variable Amplitude Cyclic Loads / 10.8:
Example Problem / 10.8.1:
Fracture-Toughness Behavior of Welded Components / 10.9:
General Discussion / 10.9.1:
Weldments / 10.9.2:
Fracture-Toughness Tests for Weldments / 10.9.3:
K[subscript Iscc] and Corrosion Fatigue Crack Initiation and Crack Propagation / 10.10:
Stress-Corrosion Cracking / 11.1:
Fracture-Mechanics Approach / 11.2.1:
Experimental Procedures / 11.2.2:
K[subscript Iscc]--A Material Property / 11.2.3:
Test Duration / 11.2.4:
K[subscript Iscc] Data for Some Material-Environment Systems / 11.2.5:
Crack-Growth-Rate Tests / 11.2.6:
Corrosion-Fatigue Crack Initiation / 11.3:
Test Specimens and Experimental Procedures / 11.3.1:
Corrosion-Fatigue-Crack-Initiation Behavior of Steels / 11.3.2:
Fatigue-Crack-Initiation Behavior / 11.3.2.1:
Corrosion Fatigue Crack-Initiation Behavior / 11.3.2.2:
Effect of Cyclic-Load Frequency / 11.3.2.3:
Effect of Stress Ratio / 11.3.2.4:
Long-Life Behavior / 11.3.2.5:
Generalized Equation for Predicting the Corrosion-Fatigue Crack-Initiation Behavior for Steels / 11.3.2.6:
Corrosion-Fatigue-Crack Propagation / 11.4:
Corrosion-Fatigue Crack-Propagation Threshold / 11.4.1:
Corrosion-Fatigue-Crack-Propagation Behavior Below K[subscript Iscc] / 11.4.2:
Effect of Cyclic-Stress Waveform / 11.4.3:
Environmental Effects During Transient Loading / 11.4.4:
Generalized Corrosion-Fatigue Behavior / 11.4.5:
Prevention of Corrosion-Fatigue Failures / 11.5:
Fracture and Fatigue Control Plan / 11.6:
Identification of the Factors / 12.3.1:
Establishment of the Relative Contribution / 12.3.2:
Determination of Relative Efficiency / 12.3.3:
Recommendation of Specific Design Considerations / 12.3.4:
Fracture Control Plan for Steel Bridges / 12.4:
Design / 12.4.1:
Fabrication / 12.4.3:
Material / 12.4.4:
AASHTO Charpy V-Notch Requirements / 12.4.5:
Verification of the AASHTO Fracture Toughness Requirement / 12.4.6:
High-Performance Steels / 12.4.7:
Comprehensive Fracture-Control Plans--George R. Irwin / 12.5:
General Levels of Performance / 12.6:
Consequences of Failure / 13.3:
Original 15-ft-lb CVN Impact Criterion for Ship Steels / 13.4:
Transition-Temperature Criterion / 13.5:
Through-Thickness Yielding Criterion / 13.6:
Leak-Before-Break Criterion / 13.7:
Fracture Criterion for Steel Bridges / 13.8:
Use of Fracture Mechanics in Fitness-for-Service Analysis / 13.9:
Effect of Loading Rate / 14.2.1:
Effect of Constraint / 14.2.3:
Effect of Many Factors / 14.2.4:
Existing Fitness-for-Service Procedures / 14.3:
PD 6493 / 14.3.1:
ASME Section XI / 14.3.3:
API 579 / 14.3.4:
Benefits of a Proof or Hydro-Test to Establish Fitness for Continued Service / 14.4:
Difference Between Initiation and Arrest (Propagation) Fracture Toughness Behavior / 14.5:
Applications of Fracture Mechanics--Case Studies / 14.6:
Importance of Fracture Toughness and Proper Fabrication Procedures--The Bryte Bend Bridge / Chapter 15:
AASHTO Fracture Control Plan for Steel Bridges / 15.1:
Bryte Bend Bridge Brittle Fracture / 15.3:
Design Aspects of the Bryte Bend Bridge as Related to the AASHTO Fracture Control Plan (FCP) / 15.4:
Adequacy of the Current AASHTO Fracture Control Plan / 15.5:
Implied vs. Guaranteed Notch Toughness / 15.5.1:
Effect of Details on Fatigue Life / 15.5.2:
Importance of Constraint and Loading--The Ingram Barge / 15.5.3:
Effect of Constraint on Structural Behavior / 16.1:
Constraint Experiences in the Ship Industry / 16.3:
Ingram Barge Failure / 16.4:
Importance of Loading and Inspection--Trans Alaska Pipeline Service Oil Tankers / 16.5:
Background / 17.1:
Fracture Mechanics Methodology / 17.3:
Application of Methodology to a Detail in an Oil Tanker / 17.4:
Identification of Critical Details / 17.4.1:
Fracture Toughness / 17.4.2:
Stress Intensity Factors and Critical Crack Size for Critical Details / 17.4.3:
Inspection Capability for Initial Crack Size, a[subscript o] / 17.4.4:
Determination of Histogram for Fatigue Loading / 17.4.5:
Fatigue Crack Propagation in Bottom Shell Plates / 17.4.6:
Effect of Reduced Fatigue Loading / 17.5:
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior--Failure Analysis of a Lock-and-Dam Sheet Piling / 17.6:
Description of the Failure / 18.1:
Steel Properties / 18.3:
Failure Analysis of Sheet 55 / 18.4:
Importance of Loading Rate on Structural Performance--Burst Tests of Steel Casings / 18.5:
Material and Experimental Procedures / 19.1:
Experimental Procedure / 19.3:
Failure Analysis / 19.4:
Metallographic Analysis / 19.5:
Examination of API Specifications for J-55 and K-55 Casing / 19.6:
Problems / 19.7:
Index
Foreword
Preface
Introduction to Fracture Mechanics / Part I:
35.

図書

東工大
目次DB

図書
東工大
目次DB
相良紘著
出版情報: 東京 : 日刊工業新聞社, 2008.6  viii, 210p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
プロローグ 1
第1章 固体の混ざったものを分離する 5
   1.1 固体の混ざり方を眺める 5
   1.2 固体どうしの混ざったものを分離する 6
    1.2.1 分離法を概観する 6
    1.2.2 ふるい分け 7
    1.2.3 風力分級 9
    1.2.4 水力分級 11
    1.2.5 起泡分離 13
    1.2.6 磁気分離 15
    1.2.7 静電分離 16
   1.3 固体と液体の混ざったものを分離する 18
    1.3.1 分離法を概観する 18
    1.3.2 沈降分離 19
    1.3.3 ろ過 23
    1.3.4 精密ろ過 27
    1.3.5 限外ろ過 30
   1.4 固体と気体の混ざったものを分離する 35
    1.4.1 分離法を概観する 35
    1.4.2 エアフィルター 36
    1.4.3 バグフィルター 38
    1.4.4 サイクロン 39
    1.4.5 スクラバー 42
    1.4.6 電気集じん 44
第2章 液体に含まれる成分を分離する 47
   2.1 液体の混ざり方を眺める 47
   2.2 蒸留で分離する 48
    2.2.1 分子間力と沸点 48
    2.2.2 気液平衡と比揮発度 52
    2.2.3 異種分子間力と沸点変化 55
    2.2.4 単蒸留 56
    2.2.5 フラッシュ蒸留 58
    2.2.6 再蒸留とバッチ精留 60
    2.2.7 連続精留 61
    2.2.8 共沸蒸留 68
    2.2.9 抽出蒸留 70
    2.2.10 水蒸気蒸留 72
    2.2.11 反応蒸留 73
    2.2.12 その他(気体や固体の分離精製) 74
   2.3 晶析で分離する 75
    2.3.1 結合力と融点 76
    2.3.2 固体の溶解度 78
    2.3.3 液体の凝固点降下 79
    2.3.4 固液平衡 80
    2.3.5 共晶型混合物と固溶体型混合物 82
    2.3.6 再結晶法 84
    2.3.7 溶融結晶化法 85
    2.3.8 帯溶融法 86
    2.3.9 異性体の分離 87
    2.3.10 連続晶析と結晶精製 89
   2.4 液液抽出で分離する 93
    2.4.1 分子間力と溶解性 93
    2.4.2 溶解性とエントロピー 94
    2.4.3 溶媒和と配位結合 96
    2.4.4 液液平衡と分配係数 98
    2.4.5 単抽出 100
    2.4.6 連続多段抽出 103
    2.4.7 芳香族の抽出 106
    2.4.8 酢酸の分離 109
    2.4.9 ウランの濃縮 109
   2.5 膜で分離する 110
    2.5.1 分離法を概観する 110
    2.5.2 膜透過のメカニズム 111
    2.5.3 半透膜と浸透圧 113
    2.5.4 逆浸透と逆浸透膜 115
    2.5.5 浸透気化と浸透気化膜 117
    2.5.6 電解質水溶液とイオン交換体 119
    2.5.7 イオン交換膜とイオン交換透析 120
    2.5.8 液体膜とエマルションの安定化 123
    2.5.9 逆浸透膜による海水の淡水化 126
    2.5.10 浸透気化膜によるアルコールの脱水 127
    2.5.11 イオン交換膜による海水の濃縮 128
    2.5.12 液体膜による金属の回収 129
   2.6 液相吸着で分離する 130
    2.6.1 吸着相互作用 130
    2.6.2 化学吸着と物理吸着 132
    2.6.3 吸着剤の構造と吸着特性 133
    2.6.4 吸着平衡と吸着等温線 134
    2.6.5 固定層吸着と吸着速度 136
    2.6.6 吸着帯と破過曲線 137
    2.6.7 液体クロマトグラフィー 139
    2.6.8 移動層吸着 141
    2.6.9 擬似移動層吸着装置 142
    2.6.10 イオン交換樹脂による純水の製造 143
   2.7 包接化で分離する 145
    2.7.1 尿素の包接化合物 145
    2.7.2 直鎖状炭化水素の分離 146
    2.7.3 チオ尿素の包接化合物 147
    2.7.4 分枝状化合物の分離 147
    2.7.5 無機錯化合物による芳香族化合物の分離 149
第3章 気体に含まれる成分を分離する 151
   3.1 ガス吸収で分離する 151
    3.1.1 気体の溶解度 151
    3.1.2 物質移動と二重境膜モデル 153
    3.1.3 吸収操作と吸収装置 155
    3.1.4 吸収塔の必要高さ 158
    3.1.5 吸収プロセス 161
   3.2 膜(気体分離膜)で分離する 163
    3.2.1 気体透過のメカニズム 164
    3.2.2 2成分系混合気体の分離 165
    3.2.3 気体分子の径 167
    3.2.4 水素の分離 168
   3.3 気相吸着で分離する 169
    3.3.1 圧力スイング吸着 169
    3.3.2 窒素と酸素の吸着等温線 170
    3.3.3 窒素と酸素の吸着速度 171
    3.3.4 空気分離プロセス 172
    3.3.5 ガスクロマトグラフィー 173
   3.4 昇華(逆昇華)で分離する 174
    3.4.1 昇華現象と昇華圧 175
    3.4.2 昇華法の長所と短所 176
    3.4.3 無水フタル酸の製造 177
    3.4.4 テレフタル酸の製造 178
    3.4.5 高機能性膜の製造 178
第4章 固体に含まれる成分を分離する 181
   4.1 固液抽出で分離する 181
    4.1.1 固液抽出装置 181
    4.1.2 植物油脂の採油 184
    4.1.3 香料の抽出 185
   4.2 超臨界流体抽出で分離する 185
    4.2.1 臨界温度と臨界圧力 186
    4.2.2 超臨界流体 187
    4.2.3 超臨界流体抽出プロセス 188
第5章 ウランの同位体を分離する 191
   5.1 わずかな差を見分ける 191
   5.2 分離の原理と方法を概説する 193
    5.2.1 ガス拡散法 193
    5.2.2 熱拡散法 195
    5.2.3 遠心分離法 197
    5.2.4 ノズル分離法 198
    5.2.5 化学交換法 200
エピローグ 203
参考図書 205
索引 207
プロローグ 1
第1章 固体の混ざったものを分離する 5
   1.1 固体の混ざり方を眺める 5
36.

図書

図書
I. Sommerville
出版情報: Wokingham, Eng. ; Reading, Mass. : Addison-Wesley, c1985  xi, 334 p. ; 24 cm
シリーズ名: International computer science series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Overview / Part 1:
Introduction / Chapter 1:
FAQs about software engineering / 1.1:
Professional and ethical responsibility / 1.2:
Key points
Further reading
Exercises
Computer-based system engineering / Chapter 2:
Emergent system properties / 2.1:
Systems and their environment / 2.2:
System modelling / 2.3:
The system engineering process / 2.4:
System procurement / 2.5:
Software processes / Chapter 3:
Software process models / 3.1:
Process iteration / 3.2:
Software specification / 3.3:
Software design and implementation / 3.4:
Software validation / 3.5:
Software evolution / 3.6:
Automated process support / 3.7:
Project management / Chapter 4:
Management activities / 4.1:
Project planning / 4.2:
Project scheduling / 4.3:
Risk management / 4.4:
Requirements / Part 2:
Software requirements / Chapter 5:
Functional and non-functional requirements / 5.1:
User requirements / 5.2:
System requirements / 5.3:
The software requirements document / 5.4:
Requirements engineering processes / Chapter 6:
Feasibility studies / 6.1:
Requirements elicitation and analysis / 6.2:
Requirements validation / 6.3:
Requirements management / 6.4:
System models / Chapter 7:
Context models / 7.1:
Behavioural models / 7.2:
Data models / 7.3:
Object models / 7.4:
CASE workbenches / 7.5:
Software prototyping / Chapter 8:
Prototyping in the software process / 8.1:
Rapid prototyping techniques / 8.2:
User interface prototyping / 8.3:
Formal specification / Chapter 9:
Formal specification in the software process / 9.1:
Interface specification / 9.2:
Behavioural specification / 9.3:
Design / Part 3:
Architectural design / Chapter 10:
System structuring / 10.1:
Control models / 10.2:
Modular decomposition / 10.3:
Domain-specific architectures / 10.4:
Distributed systems architectures / Chapter 11:
Multiprocessor architectures / 11.1:
Client-server architectures / 11.2:
Distributed object architectures / 11.3:
CORBA / 11.4:
Object-oriented design / Chapter 12:
Objects and object classes / 12.1:
An object-oriented design process / 12.2:
Design evolution / 12.3:
Real-time software design / Chapter 13:
System design / 13.1:
Real-time executives / 13.2:
Monitoring and control systems / 13.3:
Data acquisition systems / 13.4:
Design with reuse / Chapter 14:
Component-based development / 14.1:
Application families / 14.2:
Design patterns / 14.3:
User interface design / Chapter 15:
User interface design principles / 15.1:
User interaction / 15.2:
Information presentation / 15.3:
User support / 15.4:
Interface evaluation / 15.5:
Critical Systems / Part 4:
Dependability / Chapter 16:
Critical systems / 16.1:
Availability and reliability / 16.2:
Safety / 16.3:
Security / 16.4:
Critical systems specification / Chapter 17:
Software reliability specification / 17.1:
Safety specification / 17.2:
Security specification / 17.3:
Critical systems development / Chapter 18:
Fault minimisation / 18.1:
Fault tolerance / 18.2:
Fault-tolerant architectures / 18.3:
Safe system design / 18.4:
Verification and Validation / Part 5:
Verification and validation / Chapter 19:
Verification and validation planning / 19.1:
Software inspections / 19.2:
Automated static analysis / 19.3:
Cleanroom software development / 19.4:
Software testing / Chapter 20:
Defect testing / 20.1:
Integration testing / 20.2:
Object-oriented testing / 20.3:
Testing workbenches / 20.4:
Critical systems validation / Chapter 21:
Formal methods and critical systems / 21.1:
Reliability validation / 21.2:
Safety assurance / 21.3:
Security assessment / 21.4:
Management / Part 6:
Managing people / Chapter 22:
Limits to thinking / 22.1:
Group working / 22.2:
Choosing and keeping people / 22.3:
The People Capability Maturity Model / 22.4:
Software cost estimation / Chapter 23:
Productivity / 23.1:
Estimation techniques / 23.2:
Algorithmic cost modelling / 23.3:
Project duration and staffing / 23.4:
Quality management / Chapter 24:
Quality assurance and standards / 24.1:
Quality planning / 24.2:
Quality control / 24.3:
Software measurement and metrics / 24.4:
Process improvement / Chapter 25:
Process and product quality / 25.1:
Process analysis and modelling / 25.2:
Process measurement / 25.3:
The SEI Process Capability Maturity Model / 25.4:
Process classification / 25.5:
Evolution / Part 7:
Legacy systems / Chapter 26:
Legacy system structures / 26.1:
Legacy system design / 26.2:
Legacy system assessment / 26.3:
Software change / Chapter 27:
Program evolution dynamics / 27.1:
Software maintenance / 27.2:
Architectural evolution / 27.3:
Software re-engineering / Chapter 28:
Source code translation / 28.1:
Reverse engineering / 28.2:
Program structure improvement / 28.3:
Program modularisation / 28.4:
Data re-engineering / 28.5:
Configuration management / Chapter 29:
Configuration management planning / 29.1:
Change management / 29.2:
Version and release management / 29.3:
System building / 29.4:
CASE tools for configuration management / 29.5:
References
Index
Preface
Overview / Part 1:
Introduction / Chapter 1:
37.

図書

東工大
目次DB

図書
東工大
目次DB
A.B. Sawaoka (ed.)
出版情報: Tokyo ; New York : Springer-Verlag, c1993  xiv, 227 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Chapter1 Heterogeneous Distribution of Temperatures and Pressures in the Shock Recovery Fixtures and its Utilization to Materials Science Study 1
   1 Introduction 1
   2 Reasonable Size of recovery fixture 2
   3 Sock wave reflection in solids 2
   4 Recovery assemblt of a very thin specimen,sandwiched bertween high impedance materials 5
   5 Recovery fixtvire having thick specimen chamber 6
   5.1 Gun recovery expermint
   5.2 Explosive recovery expermint
   6 Numerical simulation of shock compression in the recovery capsule 8
   7 Shock compression of a solid by means of converging shock waves 11
   7.1 Simulation of conically converging shock wave in the rod-in-cylinder structure 11
   7.2 Shock compression of iron by using the conically converging technique 13
   8 Conclusions 15
Chapter2 Dynamic Synthesis of Superhard Materials 17
   1 Introduction 17
   2 Dynamic synthesis of super hard materials 17
   3 Considerations of synthesis mechanism 21
   4 Conclusions 30
Chapter3 Solid State Reactivity of Shock-Processed Solids 35
   1 Introduction 35
   2 Shock modification of shock-processed solids 36
   3 Single-component system 36
   3.1 Solid -solid interaction 36
   3.2 Solid-liquid interactions 48
   3.3 Solid-gas interactions 50
   4 Multiple-component Systems 52
   4.1 Conventional reaction processing 53
   4.2 Shock compression processing 55
   5 Summary and concluding remarks 61
Chapter4 Shock-Induced Chemical Reactions in Inorganic Powder Mixtures 67
   1 Introduction 67
   2 Materials synthesis 68
   2.1 Aluminades 68
   2.2 Diamond 76
   2.3 Diamond/ceramics composites 77
   3 Computational modeling 79
   4 Conclusions 98
Chapter5 Shock Effects on Structural and Superconducting Properties of High Tc Oxides 101
   1 Introduction 101
   2 Specific features of high Tc oxides as type II superconductor 102
   3 Mechanical and chemical effects of shock waves on high Tc oxides 103
   3.1 Shock synthesis and decomposition 103
   3.2 Shock compaction 103
   3.3 Shock-induced strain 103
   3.4 Deformation textures and induced defects 105
   4 Shock effects on superconductiong properties 107
   4.1 Shock effects on Tc 107
   4.2 Effect on pinning energy 108
   5 Concluding remarks 110
Chapter6 Shock compression studies on ceramic materials 113
   1 Introduction 113
   2 Experimental facilities combined with the keyed-powder gun 114
   2.1 Keyed-powder gun 114
   2.2 Inclined-mirror method 116
   2.3 Manganin-gauge method 117
   2.4 Electromagnetic-gauge method 119
   3 Shock compression studies on selected ceramics 120
   3.1 Alumina(Al2O3) 120
   3.2 Zirconia(ZrO2) 124
   3.3 Silicon nitride(Si3N4) 131
   4 Phenomenological discussion on the shock-yielding phenomena of brittle materials 132
   4.1 Some problems in experimental and analysis of shock compression of solids 133
   4.2 Classification of the shock-yielding phenomena of solids 134
   4.3 Correlation with some crystal state and thermal property 138
   5 Concluding remarks 141
Chapter7 The role of Thermal Energy in Shock Consolidation 145
   1 Introduction 145
   2 Energy deposition during shock processing 145
   3 Experimental techniques 145
   3.1 Cylindrical system 154
   3.2 Sawaoka system 154
   4 Consolidation experiments:Results and discussion 158
   4.1 Hot shock consolidation 159
   4.2 shock consolidation followed by annealing or hot isostatic pressing 165
   4.3 Reaction-assisted shock consolidation 171
   5 Conclusions 175
Chapter8 A New Processing for rhe Self-propagating High Temperature Synthesis(SHS)Combined with Shock Compression Technique 177
   1 Introduction 177
   2 Explosive treatment of final SHS products 179
   3 Shock wave effects in starting SHS compositions 185
   4 Concomitant occurrence of SHS and explosive pressing 186
   5 Conclusions 192
Chapter9 Shock wave interaction in solid materials 195
   1 Introduction 195
   2 Gas gun based methods of realizing wave interaction 196
   2.1 Shock wave registration system 197
   2.2 New procedure of generating shock convergence or collision 199
   3 Symmetrically converging cylindrical shock waves in solids 201
   3.1 Approximate theory of converging shock waves in condensed media 201
   3.2 Converging shock wave:a unique application 206
   4 Collision of plane shock waves and Mach stem produced by conical convergence 211
   4.1 Regular and irregular reflection 212
   4.2 Experimental procedures 216
   4.3 Results and discussion 219
   5 Concluding remarks 223
Chapter1 Heterogeneous Distribution of Temperatures and Pressures in the Shock Recovery Fixtures and its Utilization to Materials Science Study 1
   1 Introduction 1
   2 Reasonable Size of recovery fixture 2
38.

図書

図書
S. I. Rubinow
出版情報: New York : Wiley, [1975]  xiii, 386 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Cell Growth / Chapter 1:
Exponential Growth or Decay / 1.1:
Determination of Growth or Decay Rates / 1.2:
The Method of Least Squares / 1.3:
Nutrient Uptake by a Cell / 1.4:
Inhomogeneous Differential Equations / 1.5:
Growth of a Microbial Colony / 1.6:
Growth in a Chemostat / 1.7:
Interacting Populations: Predator-Prey System / 1.8:
Mutation and Reversion in Bacterial Growth / 1.9:
Problems
Enzyme Kinetics / Chapter 2:
The Michaelis-Menten Theory / 2.1:
Early Time Behavior of Enzymatic Reactions / 2.2:
Enzyme-Substrate-Inhibitor System / 2.3:
Cooperative Properties of Enzymes / 2.4:
The Cooperative Dimer / 2.5:
Allosteric Enzymes / 2.6:
Other Allosteric Theories / 2.7:
Hemoglobin / 2.8:
Graph Theory and Steady-State Enzyme Kinetics / 2.9:
Enzyme-Substrate-Modifier System / 2.10:
Enzyme-Substrate-Activator System / 2.11:
Aspartate Transcarbamylase / 2.12:
Tracers in Physiological Systems / Chapter 3:
Compartment Systems / 3.1:
The One-Compartment System / 3.2:
Indicator-Dilution Theory / 3.3:
Continuous Infusion / 3.4:
The Two-Compartment System / 3.5:
Leaky Compartments and Closed Systems / 3.6:
The Method of Exponential Peeling / 3.7:
Creatinine Clearance: A Two-Compartment System / 3.8:
The "Soaking Out" Experiment / 3.9:
The Three-Compartment Catenary System / 3.10:
The n-Compartment System / 3.11:
Biological Fluid Dynamics / Chapter 4:
The Equations of Motion of a Viscous Fluid / 4.1:
Poiseuille's Law / 4.2:
Properties of Blood / 4.3:
The Steady Flow of Blood Through a Vessel / 4.4:
The Pulse Wave / 4.5:
The Swimming of Microorganisms / 4.6:
Diffusion in Biology / Chapter 5:
Fick's Laws of Diffusion / 5.1:
The Fick Principle / 5.2:
The Unit One-Dimensional Source Solution / 5.3:
The Diffusion Constant / 5.4:
Olfactory Communication in Animals / 5.5:
Membrane Transport / 5.6:
Diffusion Through a Slab / 5.7:
Convective Transport: Ionic Flow in an Axon / 5.8:
The Gaussian Function / 5.9:
Ultracentrifugation / 5.10:
The Sedimentation Velocity Method / 5.11:
An Approximate Solution to the Lamm Equation / 5.12:
Sedimentation Equilibrium / 5.13:
Transcapillary Exchange / 5.14:
Cell Growth / Chapter 1:
Exponential Growth or Decay / 1.1:
Determination of Growth or Decay Rates / 1.2:
39.

図書

図書
Richard O. Duda, Peter E. Hart, David G. Stork
出版情報: New York ; Chichester : Wiley, c2001  xx, 654 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Machine Perception / 1.1:
An Example / 1.2:
Related Fields / 1.2.1:
Pattern Recognition Systems / 1.3:
Sensing / 1.3.1:
Segmentation and Grouping / 1.3.2:
Feature Extraction / 1.3.3:
Classification / 1.3.4:
Post Processing / 1.3.5:
The Design Cycle / 1.4:
Data Collection / 1.4.1:
Feature Choice / 1.4.2:
Model Choice / 1.4.3:
Training / 1.4.4:
Evaluation / 1.4.5:
Computational Complexity / 1.4.6:
Learning and Adaptation / 1.5:
Supervised Learning / 1.5.1:
Unsupervised Learning / 1.5.2:
Reinforcement Learning / 1.5.3:
Conclusion / 1.6:
Summary by Chapters
Bibliographical and Historical Remarks
Bibliography
Bayesian Decision Theory / 2:
Bayesian Decision Theory--Continuous Features / 2.1:
Two-Category Classification / 2.2.1:
Minimum-Error-Rate Classification / 2.3:
Minimax Criterion / 2.3.1:
Neyman-Pearson Criterion / 2.3.2:
Classifiers, Discriminant Functions, and Decision Surfaces / 2.4:
The Multicategory Case / 2.4.1:
The Two-Category Case / 2.4.2:
The Normal Density / 2.5:
Univariate Density / 2.5.1:
Multivariate Density / 2.5.2:
Discriminant Functions for the Normal Density / 2.6:
Case 1: [Sigma subscript i] = [sigma superscript 2]I / 2.6.1:
Case 2: [Sigma ubscript i] = [Sigma] / 2.6.2:
Case 3: [Sigma subscript i] = arbitrary / 2.6.3:
Decision Regions for Two-Dimensional Gaussian Data / Example 1:
Error Probabilities and Integrals / 2.7:
Error Bounds for Normal Densities / 2.8:
Chernoff Bound / 2.8.1:
Bhattacharyya Bound / 2.8.2:
Error Bounds for Gaussian Distributions / Example 2:
Signal Detection Theory and Operating Characteristics / 2.8.3:
Bayes Decision Theory--Discrete Features / 2.9:
Independent Binary Features / 2.9.1:
Bayesian Decisions for Three-Dimensional Binary Data / Example 3:
Missing and Noisy Features / 2.10:
Missing Features / 2.10.1:
Noisy Features / 2.10.2:
Bayesian Belief Networks / 2.11:
Belief Network for Fish / Example 4:
Compound Bayesian Decision Theory and Context / 2.12:
Summary
Problems
Computer exercises
Maximum-Likelihood and Bayesian Parameter Estimation / 3:
Maximum-Likelihood Estimation / 3.1:
The General Principle / 3.2.1:
The Gaussian Case: Unknown [mu] / 3.2.2:
The Gaussian Case: Unknown [mu] and [Sigma] / 3.2.3:
Bias / 3.2.4:
Bayesian Estimation / 3.3:
The Class-Conditional Densities / 3.3.1:
The Parameter Distribution / 3.3.2:
Bayesian Parameter Estimation: Gaussian Case / 3.4:
The Univariate Case: p([mu]|D) / 3.4.1:
The Univariate Case: p(x|D) / 3.4.2:
The Multivariate Case / 3.4.3:
Bayesian Parameter Estimation: General Theory / 3.5:
Recursive Bayes Learning
When Do Maximum-Likelihood and Bayes Methods Differ? / 3.5.1:
Noninformative Priors and Invariance / 3.5.2:
Gibbs Algorithm / 3.5.3:
Sufficient Statistics / 3.6:
Sufficient Statistics and the Exponential Family / 3.6.1:
Problems of Dimensionality / 3.7:
Accuracy, Dimension, and Training Sample Size / 3.7.1:
Overfitting / 3.7.2:
Component Analysis and Discriminants / 3.8:
Principal Component Analysis (PCA) / 3.8.1:
Fisher Linear Discriminant / 3.8.2:
Multiple Discriminant Analysis / 3.8.3:
Expectation-Maximization (EM) / 3.9:
Expectation-Maximization for a 2D Normal Model
Hidden Markov Models / 3.10:
First-Order Markov Models / 3.10.1:
First-Order Hidden Markov Models / 3.10.2:
Hidden Markov Model Computation / 3.10.3:
Hidden Markov Model / 3.10.4:
Decoding / 3.10.5:
HMM Decoding
Learning / 3.10.6:
Nonparametric Techniques / 4:
Density Estimation / 4.1:
Parzen Windows / 4.3:
Convergence of the Mean / 4.3.1:
Convergence of the Variance / 4.3.2:
Illustrations / 4.3.3:
Classification Example / 4.3.4:
Probabilistic Neural Networks (PNNs) / 4.3.5:
Choosing the Window Function / 4.3.6:
k[subscript n]-Nearest-Neighbor Estimation / 4.4:
k[subscript n]-Nearest-Neighbor and Parzen-Window Estimation / 4.4.1:
Estimation of A Posteriori Probabilities / 4.4.2:
The Nearest-Neighbor Rule / 4.5:
Convergence of the Nearest Neighbor / 4.5.1:
Error Rate for the Nearest-Neighbor Rule / 4.5.2:
Error Bounds / 4.5.3:
The k-Nearest-Neighbor Rule / 4.5.4:
Computational Complexity of the k-Nearest-Neighbor Rule / 4.5.5:
Metrics and Nearest-Neighbor Classification / 4.6:
Properties of Metrics / 4.6.1:
Tangent Distance / 4.6.2:
Fuzzy Classification / 4.7:
Reduced Coulomb Energy Networks / 4.8:
Approximations by Series Expansions / 4.9:
Linear Discriminant Functions / 5:
Linear Discriminant Functions and Decision Surfaces / 5.1:
Generalized Linear Discriminant Functions / 5.2.1:
The Two-Category Linearly Separable Case / 5.4:
Geometry and Terminology / 5.4.1:
Gradient Descent Procedures / 5.4.2:
Minimizing the Perceptron Criterion Function / 5.5:
The Perceptron Criterion Function / 5.5.1:
Convergence Proof for Single-Sample Correction / 5.5.2:
Some Direct Generalizations / 5.5.3:
Relaxation Procedures / 5.6:
The Descent Algorithm / 5.6.1:
Convergence Proof / 5.6.2:
Nonseparable Behavior / 5.7:
Minimum Squared-Error Procedures / 5.8:
Minimum Squared-Error and the Pseudoinverse / 5.8.1:
Constructing a Linear Classifier by Matrix Pseudoinverse
Relation to Fisher's Linear Discriminant / 5.8.2:
Asymptotic Approximation to an Optimal Discriminant / 5.8.3:
The Widrow-Hoff or LMS Procedure / 5.8.4:
Stochastic Approximation Methods / 5.8.5:
The Ho-Kashyap Procedures / 5.9:
The Descent Procedure / 5.9.1:
Some Related Procedures / 5.9.2:
Linear Programming Algorithms / 5.10:
Linear Programming / 5.10.1:
The Linearly Separable Case / 5.10.2:
Support Vector Machines / 5.10.3:
SVM Training / 5.11.1:
SVM for the XOR Problem
Multicategory Generalizations / 5.12:
Kesler's Construction / 5.12.1:
Convergence of the Fixed-Increment Rule / 5.12.2:
Generalizations for MSE Procedures / 5.12.3:
Multilayer Neural Networks / 6:
Feedforward Operation and Classification / 6.1:
General Feedforward Operation / 6.2.1:
Expressive Power of Multilayer Networks / 6.2.2:
Backpropagation Algorithm / 6.3:
Network Learning / 6.3.1:
Training Protocols / 6.3.2:
Learning Curves / 6.3.3:
Error Surfaces / 6.4:
Some Small Networks / 6.4.1:
The Exclusive-OR (XOR) / 6.4.2:
Larger Networks / 6.4.3:
How Important Are Multiple Minima? / 6.4.4:
Backpropagation as Feature Mapping / 6.5:
Representations at the Hidden Layer--Weights / 6.5.1:
Backpropagation, Bayes Theory and Probability / 6.6:
Bayes Discriminants and Neural Networks / 6.6.1:
Outputs as Probabilities / 6.6.2:
Related Statistical Techniques / 6.7:
Practical Techniques for Improving Backpropagation / 6.8:
Activation Function / 6.8.1:
Parameters for the Sigmoid / 6.8.2:
Scaling Input / 6.8.3:
Target Values / 6.8.4:
Training with Noise / 6.8.5:
Manufacturing Data / 6.8.6:
Number of Hidden Units / 6.8.7:
Initializing Weights / 6.8.8:
Learning Rates / 6.8.9:
Momentum / 6.8.10:
Weight Decay / 6.8.11:
Hints / 6.8.12:
On-Line, Stochastic or Batch Training? / 6.8.13:
Stopped Training / 6.8.14:
Number of Hidden Layers / 6.8.15:
Criterion Function / 6.8.16:
Second-Order Methods / 6.9:
Hessian Matrix / 6.9.1:
Newton's Method / 6.9.2:
Quickprop / 6.9.3:
Conjugate Gradient Descent / 6.9.4:
Additional Networks and Training Methods / 6.10:
Radial Basis Function Networks (RBFs) / 6.10.1:
Special Bases / 6.10.2:
Matched Filters / 6.10.3:
Convolutional Networks / 6.10.4:
Recurrent Networks / 6.10.5:
Cascade-Correlation / 6.10.6:
Regularization, Complexity Adjustment and Pruning / 6.11:
Stochastic Methods / 7:
Stochastic Search / 7.1:
Simulated Annealing / 7.2.1:
The Boltzmann Factor / 7.2.2:
Deterministic Simulated Annealing / 7.2.3:
Boltzmann Learning / 7.3:
Stochastic Boltzmann Learning of Visible States / 7.3.1:
Missing Features and Category Constraints / 7.3.2:
Deterministic Boltzmann Learning / 7.3.3:
Initialization and Setting Parameters / 7.3.4:
Boltzmann Networks and Graphical Models / 7.4:
Other Graphical Models / 7.4.1:
Evolutionary Methods / 7.5:
Genetic Algorithms / 7.5.1:
Further Heuristics / 7.5.2:
Why Do They Work? / 7.5.3:
Genetic Programming / 7.6:
Nonmetric Methods / 8:
Decision Trees / 8.1:
Cart / 8.3:
Number of Splits / 8.3.1:
Query Selection and Node Impurity / 8.3.2:
When to Stop Splitting / 8.3.3:
Pruning / 8.3.4:
Assignment of Leaf Node Labels / 8.3.5:
A Simple Tree
Multivariate Decision Trees / 8.3.6:
Priors and Costs / 8.3.9:
Missing Attributes / 8.3.10:
Surrogate Splits and Missing Attributes
Other Tree Methods / 8.4:
ID3 / 8.4.1:
C4.5 / 8.4.2:
Which Tree Classifier Is Best? / 8.4.3:
Recognition with Strings / 8.5:
String Matching / 8.5.1:
Edit Distance / 8.5.2:
String Matching with Errors / 8.5.3:
String Matching with the "Don't-Care" Symbol / 8.5.5:
Grammatical Methods / 8.6:
Grammars / 8.6.1:
Types of String Grammars / 8.6.2:
A Grammar for Pronouncing Numbers
Recognition Using Grammars / 8.6.3:
Grammatical Inference / 8.7:
Rule-Based Methods / 8.8:
Learning Rules / 8.8.1:
Algorithm-Independent Machine Learning / 9:
Lack of Inherent Superiority of Any Classifier / 9.1:
No Free Lunch Theorem / 9.2.1:
No Free Lunch for Binary Data
Ugly Duckling Theorem / 9.2.2:
Minimum Description Length (MDL) / 9.2.3:
Minimum Description Length Principle / 9.2.4:
Overfitting Avoidance and Occam's Razor / 9.2.5:
Bias and Variance / 9.3:
Bias and Variance for Regression / 9.3.1:
Bias and Variance for Classification / 9.3.2:
Resampling for Estimating Statistics / 9.4:
Jackknife / 9.4.1:
Jackknife Estimate of Bias and Variance of the Mode
Bootstrap / 9.4.2:
Resampling for Classifier Design / 9.5:
Bagging / 9.5.1:
Boosting / 9.5.2:
Learning with Queries / 9.5.3:
Arcing, Learning with Queries, Bias and Variance / 9.5.4:
Estimating and Comparing Classifiers / 9.6:
Parametric Models / 9.6.1:
Cross-Validation / 9.6.2:
Jackknife and Bootstrap Estimation of Classification Accuracy / 9.6.3:
Maximum-Likelihood Model Comparison / 9.6.4:
Bayesian Model Comparison / 9.6.5:
The Problem-Average Error Rate / 9.6.6:
Predicting Final Performance from Learning Curves / 9.6.7:
The Capacity of a Separating Plane / 9.6.8:
Combining Classifiers / 9.7:
Component Classifiers with Discriminant Functions / 9.7.1:
Component Classifiers without Discriminant Functions / 9.7.2:
Unsupervised Learning and Clustering / 10:
Mixture Densities and Identifiability / 10.1:
Maximum-Likelihood Estimates / 10.3:
Application to Normal Mixtures / 10.4:
Case 1: Unknown Mean Vectors / 10.4.1:
Case 2: All Parameters Unknown / 10.4.2:
k-Means Clustering / 10.4.3:
Fuzzy k-Means Clustering / 10.4.4:
Unsupervised Bayesian Learning / 10.5:
The Bayes Classifier / 10.5.1:
Learning the Parameter Vector / 10.5.2:
Unsupervised Learning of Gaussian Data
Decision-Directed Approximation / 10.5.3:
Data Description and Clustering / 10.6:
Similarity Measures / 10.6.1:
Criterion Functions for Clustering / 10.7:
The Sum-of-Squared-Error Criterion / 10.7.1:
Related Minimum Variance Criteria / 10.7.2:
Scatter Criteria / 10.7.3:
Clustering Criteria
Iterative Optimization / 10.8:
Hierarchical Clustering / 10.9:
Definitions / 10.9.1:
Agglomerative Hierarchical Clustering / 10.9.2:
Stepwise-Optimal Hierarchical Clustering / 10.9.3:
Hierarchical Clustering and Induced Metrics / 10.9.4:
The Problem of Validity / 10.10:
On-line clustering / 10.11:
Unknown Number of Clusters / 10.11.1:
Adaptive Resonance / 10.11.2:
Learning with a Critic / 10.11.3:
Graph-Theoretic Methods / 10.12:
Component Analysis / 10.13:
Nonlinear Component Analysis (NLCA) / 10.13.1:
Independent Component Analysis (ICA) / 10.13.3:
Low-Dimensional Representations and Multidimensional Scaling (MDS) / 10.14:
Self-Organizing Feature Maps / 10.14.1:
Clustering and Dimensionality Reduction / 10.14.2:
Mathematical Foundations / A:
Notation / A.1:
Linear Algebra / A.2:
Notation and Preliminaries / A.2.1:
Inner Product / A.2.2:
Outer Product / A.2.3:
Derivatives of Matrices / A.2.4:
Determinant and Trace / A.2.5:
Matrix Inversion / A.2.6:
Eigenvectors and Eigenvalues / A.2.7:
Lagrange Optimization / A.3:
Probability Theory / A.4:
Discrete Random Variables / A.4.1:
Expected Values / A.4.2:
Pairs of Discrete Random Variables / A.4.3:
Statistical Independence / A.4.4:
Expected Values of Functions of Two Variables / A.4.5:
Conditional Probability / A.4.6:
The Law of Total Probability and Bayes' Rule / A.4.7:
Vector Random Variables / A.4.8:
Expectations, Mean Vectors and Covariance Matrices / A.4.9:
Continuous Random Variables / A.4.10:
Distributions of Sums of Independent Random Variables / A.4.11:
Normal Distributions / A.4.12:
Gaussian Derivatives and Integrals / A.5:
Multivariate Normal Densities / A.5.1:
Bivariate Normal Densities / A.5.2:
Hypothesis Testing / A.6:
Chi-Squared Test / A.6.1:
Information Theory / A.7:
Entropy and Information / A.7.1:
Relative Entropy / A.7.2:
Mutual Information / A.7.3:
Index / A.8:
Preface
Introduction / 1:
Machine Perception / 1.1:
40.

図書

東工大
目次DB

図書
東工大
目次DB
Motoichi Ohtsu and Hirokazu Hori
出版情報: New York : Kluwer Academic/Plenum Pub., c1999  xii, 386 p. ; 24 cm
シリーズ名: Lasers, photonics, and electro-optics
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
   1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM) 4
   1.2.1. From Interference-to Interaction-Type Optical Microscopy 4
   1.2.2. Development of Near-Field Optical Microscopy and Related Techniques 6
   1.3. General Features of Optical Near-Field Problems 10
   1.3.1. Optical Processes and the Scale of Interest 10
   1.3.2. Effective Fields and Interacting Subsystems 12
   1.3.3. Electromagnetic Interaction in a Dielectric System 15
   1.3.4. Optical Near-Field Measurements 20
   1.4. Theoretical Treatment of Optical Near-Field Problems 25
   1.4.1. Near-Field Optics and Inhomogeneous Waves 25
   1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems 28
   1.4.3. Explicit Treatment of Field-Matter Interaction 32
   1.5. Remarks on Near-Field Optics and Outline of This Book 33
   1.5.1. Near-Field Optics and Related Problems 33
   1.5.2. Outline of This Book 34
   1.6. References 35
Chapter 2. Principles of Near-Field Optical Microscopy
   2.1. An Example of Near-Field Optical Microscopy 43
   2.2. Construction of the NOM System 45
   2.2.1. Building Blocks of the NOM System 45
   2.2.2. Environmental Conditions 47
   2.2.3. Functions of the Building Blocks 48
   2.3. Theoretical Description of Near-Field Optical Microscopy 50
   2.3.1. Basic Character of the NOM Process 50
   2.3.3. Demonstration of Localization in the Near-Field Interaction 53
   2.3.4. Representation of the Spatial Localization of an Electromagnetic Event 55
   2.3.5. Model Description of a Local Electromagnetic Interaction 55
   2.4. Near-Field Problems and the Tunneling Process 56
   2.4.1. Bardeen's Description of Tunneling Current in STM 57
   2.4.2. Comparison of the Theoretical Aspects of NOM and STM 58
   2.5. References 61
Chapter 3. Instrumentation
   3.1. Basic Systems of a Near-Field Optical Microscope 63
   3.1.1. Modes of Operation 66
   3.1.2. Position Control of the Probe 69
   3.1.3. Mechanical Components 74
   3.1.4. Noise Sources Internal to the NOM 75
   3.1.5. Operation under Special Circumstances 78
   3.2. Light Sources 82
   3.2.1. Basic Properties of Lasers 82
   3.2.2. Characteristics of CW Lasers 84
   3.2.3. Additional Noise Properties of CW Lasers 88
   3.2.4. Short-Pulse Generation 94
   3.2.5. Nonlinear Optical Wavelength Conversion 97
   3.3. Light Detection and Signal Amplification 98
   3.3.1. Detector 98
   3.3.2. Signal Detection and Amplification 103
   3.4. References 111
Chapter 4. Fabrication of Probes
   4.1. Sharpening of Fibers by Chemical Etching 113
   4.1.1. A Basic Sharpened Fiber 114
   4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding 118
   4.1.3. A Pencil-Shaped Fiber 119
   4.1.4. A Flattened-Top Fiber 122
   4.1.5. A Double-Tapered Fiber 127
   4.2. Metal Coating and Fabrication of a Protruded Probe 130
   4.2.1. Removal of Metallic Film by Selective Resin Coating 132
   4.2.2. Removal of Metallic Film by Nanometric Photolithography 135
   4.3. Other Noverl Probes 139
   4.3.1. Functional Probes 139
   4.3.2. Optically Trapped Probes 141
   4.4. References 141
Chapter 5. Imaging Experiments
   5.1. Basic Features of the Localized Evanescent Field 143
   5.1.1. Size-Dependent Decay Length of the Field Intensity 143
   5.1.2. Manifestation of the Short-Range Electromagnetic Interaction 146
   5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface 149
   5.2. Imaging Biological Samples 152
   5.2.1. Imaging by the C-Mode 152
   5.2.2. Imaging by the I-Mode 161
   5.3. Spatial Power Spectral Analysis of the NOM Image 170
   5.4. References 177
Chapter 6. Diagnostics and Spectroscopy of Photonic Devices and Materials
   6.1. Diagnosing a Dielectric Optical Waveguide 179
   6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide 184
   6.2.1. Photoluminescence and Electroluminescence Spectroscopy 185
   6.2.2. Photocurrent Measurement by Multiwavelength NOM 191
   6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot 196
   6.4. Imaging of Other Materials 201
   6.4.1. Fluorescence Detection from Dye Molecules 201
   6.4.2. Spectroscopy of Solid-State Materials 205
   6.5. References 207
Chapter 7. Fabrication and Manipulation
   7.1. Fabrication of Photonic Devices 209
   7.1.1. Development of a High-Efficiency Probe 212
   7.1.2. Development of a Highly Sensitive Storage Medium 212
   7.1.3. Fast Scanning of the Probe 213
   7.2. Manipulating Atoms 213
   7.2.1. Zero-Dimensional Manipulation 214
   7.2.2. One-Dimensional Manipulation 216
   7.3. References 231
Chapter 8. Optical Near-Field Theory
   8.1. Introduction 235
   8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems 237
   8.2.1. Microscopic Electromagnetic Interaction and Averaged Field 237
   8.2.2. Optical Response of Macroscopic Matter 241
   8.2.3. Optical Response of Small Objects and the Idea of System Susceptibility 244
   8.2.4. Electromagnetic Boundary Value Problem 245
   8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem 255
   8.3.1. Self-Consistent Approach for Multiple Scattering Problems 255
   8.3.2. Scattering Theory in the Near-Field Regime Based on Polarization Potential and Magnetic Current 260
   8.4. Diffraction Theory in Near-Field Optics 275
   8.4.1. Diffraction of Light from Subwavelength Aperture 275
   8.4.2. Kirchhoff's Diffraction Integral and Far-Field Theory 276
   8.4.3. Small-Aperture Diffraction and Equivalent Problem 277
   8.4.4. Magnetic Current Distribution and Self-Consistency 278
   8.4.5. Leviatan's "Exact" Solutions for the Aperture Problem 280
   8.5. Institutive Model of Optical Near-Field Processes 281
   8.5.1. Short-Range Quasistatic Nature of Optical Near-Field Processes 281
   8.5.2. Intuitive Model Based on Yukawa-Type Screened Potential 282
   8.5.3. Application of Virtual Photon Model for Diffraction from a Small Aperture 285
   8.5.4. Virtual Photon Model of NOM 288
   8.5.5. Meaning of the Screened Potential Model and Physical Meaning of the Virtual Photon 292
   8.6. References 297
Chapter 9. Theoretical Description of Near-Field Optical Microscope
   9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope 300
   9.2. Representation of the Electromagnetic Field and the Interaction Propagator 302
   9.2.1. Spherical Representation of Scalar Waves 302
   9.2.2. Vector Nature of the Electromagnetic Field 307
   9.3. States of Vector Fields and Their Representations 316
   9.3.1. State of Vector Plane Waves 316
   9.3.2. State of Vector Spherical Waves 318
   9.3.3. State of Vector Cylindrical Waves 319
   9.3.4. Spatial Fourier Representation of Electromagnetic Fields 319
   9.3.5. Multipole Expansion of Vector Plane Waves 321
   9.4. Angular Spectrum Representation of Electromagnetic Interactions 324
   9.4.1. Angular Spectrum Representation of Scattering Problems 325
   9.4.2. Meaning of the Angular Spectrum Representation 327
   9.4.3. Angular Spectrum Representation of Scalar Multipole Field and Propagator 329
   9.4.4. Angular Spectrum Representation of Vector Multipole Field and Propagator 332
   9.4.5. Angular Spectrum Representation of Cylindrical Field and Propagator 340
   9.4.6. Transformation between Spherical and Cylindrical Representations 341
   9.4.7. Summary: Representations of the Electromagnetic Fields Transformations between Mode Functions 343
   9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface 347
   9.5.1. Sample-Probe Interaction at a Dielectric Surface 348
   9.5.2. Mode Description of Evanescent Waves of Fresnel 351
   9.5.3. Multipolar Representation of Evanescent Modes 352
   9.5.4. Near-Field Interaction of Dielectric Spheres at a Planar Dielectric Surface 359
   9.6. References 379
Index 381
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
41.

図書

図書
Jerry Goodisman
出版情報: New York : Academic Press, 1973  2 v. ; 24 cm
シリーズ名: Physical chemistry : a series of monographs / edited by Eric Hutchinson ; v. 31-1,2
所蔵情報: loading…
42.

図書

図書
editors: J.C. Robb [&] F.W. Peaker
出版情報: London : Heywood Books, 1961-  v. ; 25 cm
所蔵情報: loading…
43.

図書

図書
by Dieter O. Hummel ; in collaboration with Agnes Solti
出版情報: Munich : Hanser, c1988 , Weinheim : VCH Verlagsgesellschaft , New York : VCH Publishers  2 v. ; 31 cm
シリーズ名: Atlas of polymer and plastics analysis = Atlas der Polymer- und Kunststoffanalyse / Hummel, Scholl ; v. 2
所蔵情報: loading…
44.

図書

図書
edited by Saul Patai, Zvi Rappoport
出版情報: Chichester ; New York : Wiley, 1974-1988  4 v. ; 24 cm
シリーズ名: The Chemistry of functional groups
所蔵情報: loading…
45.

図書

図書
W. Klyne and J. Buckingham
出版情報: London : Chapman and Hall, 1978  2 v. ; 31 cm
所蔵情報: loading…
46.

図書

図書
edited by Japanese Standards Association
出版情報: Tokyo : Japanese Standards Association, [c1965-]  v. ; 22 cm
シリーズ名: JIS handbook
所蔵情報: loading…
47.

図書

東工大
目次DB

図書
東工大
目次DB
柴田里程著
出版情報: 東京 : 共立出版, 2001.5  x, 171p ; 22cm
シリーズ名: データサイエンス・シリーズ / 柴田里程 [ほか] 編集委員 ; 1
所蔵情報: loading…
目次情報: 続きを見る
第1章 データサイエンス
   1.1 データサイエンスがめざすもの 1
   1.2 データの上流から下流まで 2
   1.2.1 データサンプリング 2
   1.2.2 データとその記述の一体化 3
   1.2.3 DandDルール 6
   1.2.4 データのブラウジング 7
   1.2.5 データに含まれる情報量 7
   1.2.6 データモデリング 8
   1.2.7 モデルヴァリデーション 10
   1.2.8 ソフトウェア 11
   1.3 データエンジニアリング 12
   1.3.1 データの同化 12
   1.3.2 データマイニング 13
   1.3.3 データ学習アルゴリズム 13
   1.4 データリテラシー 14
   1.4.1 データの型 14
   1.4.2 データの属性と構造 14
   1.4.3 日時の表現 15
   1.4.4 背景情報 18
   1.4.5 ランダム性と非ランダム性 19
   1.4.6 変量 22
   1.4.7 平均,分散,標準偏差 22
   1.4.8 相関と関係 24
   1.4.9 偏差値 25
第2章 データ
   2.1 データベクトル 27
   2.1.1 値 29
   2.1.2 属性 30
   2.2 データベクトルの構造化 44
   2.2.1 配列形式 45
   2.2.2 関係形式 46
   2.2.3 その他の形式 53
   2.3 特別な意味をもつ構造 54
   2.3.1 グラフ,関連度表 55
   2.3.2 並べ替え 56
   2.3.3 時系列 56
   2.3.4 点過程データ 57
   2.3.5 意図しない観測打切り 57
   2.3.6 制約 58
   2.3.7 区間 59
   2.3.8 基数系 59
   2.3.9 座標 61
   2.4 データ取得計画 64
   2.4.1 ランダム化 64
   2.4.2 システマティックな抽出,意図的な抽出 69
   2.4.3 実験計画 72
   2.5 背景情報 76
   2.5.1 改訂の記録 77
   2.5.2 参考文献 77
第3章 データの浄化と組織化
   3.1 事例研究 79
   3.1.1 実験データ 79
   3.1.2 地震データ 82
   3.1.3 気象観測データ 86
   3.1.4 マーケティングデータ 92
   3.1.5 給油記録データ 95
   3.1.6 高血圧症研究データ 98
   3.1.7 商品先物取引データ 100
   3.2 データの浄化 105
   3.2.1 人為的なミスの訂正 105
   3.2.2 表現の統一 105
   3.2.3 1次データへの絞り込み 106
   3.2.4 冗長な変量の削除 106
   3.2.5 単位の統一 106
   3.2.6 コーディング 106
   3.3 データの組織化 107
   3.3.1 新たな変量の導入 107
   3.3.2 関係形式と配列形式 107
   3.3.3 時間の扱い 107
   3.4 背景情報の記述 109
   3.4.1 データベクトルの属性 109
   3.4.2 関係形式や配列形式の背景情報 109
   3.4.3 文章での記述 110
第4章 データのブラウジング
   4.1 データを数値として眺める 112
   4.2 データをグラフィカルに眺める 113
   4.2.1 散布図 114
   4.2.2 時系列図 119
   4.2.3 箱型図 128
   4.2.4 累積分布図 134
   4.2.5 Q-Qプロマット 137
   4.3 関係を探る 143
   4.3.1 補間と平滑化 144
   4.3.2 独立性と無相関 146
   4.4 データを変換する 149
   4.5 データを分解する 149
第5章 データの流通と蓄積
   5.1 データの源泉 151
   5.2 データの公開 153
   5.2.1 データ公開の形式 156
   5.2.2 データの著作権 156
   5.2.3 データの価値 157
   5.3 インターデータベース 158
   5.3.1 フローティングDandDインスタンス 159
   5.3.2 データの蓄積 160
   5.3.3 モデルの蓄積 161
   5.4 データの流通と蓄積のもたらす未来 161
参考文献 163
索引 165
第1章 データサイエンス
   1.1 データサイエンスがめざすもの 1
   1.2 データの上流から下流まで 2
48.

図書

図書
Edwin D. Becker
出版情報: San Diego : Academic Press, c2000  xvi, 424 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Third Edition
Introduction / 1:
Origins and Early History of NMR / 1.1:
High Resolution NMR: An Overview / 1.2:
Additional Reading and Resources / 1.3:
The Theory of NMR / 2:
Nuclear Spin and Magnetic Moment / 2.1:
Theoretical Descriptions of NMR / 2.2:
Steady-State Quantum Mechanical Description / 2.3:
Effect of the Boltzmann Distribution / 2.4:
Spin-Lattice Relaxation / 2.5:
Precession of Nuclear Magnetic Moments / 2.6:
Classical Mechanical Description of NMR / 2.7:
Magnetization in the Rotating Frame / 2.8:
Methods of Obtaining NMR Spectra / 2.9:
Dynamic Processes / 2.10:
Terminology, Symbols, Units, and Conventions / 2.11:
Problems / 2.12:
Instrumentation and Techniques / 3:
Advantages of Pulse Fourier Transform NMR / 3.1:
Basic NMR Apparatus / 3.2:
Requirements for High Resolution NMR / 3.3:
Detection of NMR Signals / 3.4:
Phase Cycling / 3.5:
Fourier Transformation of the FID / 3.6:
Data Acquisition / 3.7:
Data Processing / 3.8:
Digital Filtering / 3.9:
Alternatives to Fourier Transformation / 3.10:
Sensitivity and Size of Sample / 3.11:
Useful Solvents / 3.12:
Chemical Shifts / 3.13:
The Origin of Chemical Shifts / 4.1:
Theory of Chemical Shifts / 4.2:
Measurement of Chemical Shifts / 4.3:
Empirical Correlations of Chemical Shifts / 4.4:
Some Aspects of Proton Chemical Shifts / 4.5:
Nuclei Other Than Hydrogen / 4.6:
Compilations of Spectral Data and Empirical Estimates of Chemical Shifts / 4.7:
Isotope Effects / 4.8:
Effects of Molecular Asymmetry / 4.9:
Paramagnetic Species / 4.10:
Coupling between Pairs of Spins / 4.11:
Origin of Spin Coupling Interactions / 5.1:
General Aspects of Spin-Spin Coupling / 5.2:
Theory of Spin-Spin Coupling / 5.3:
Correlation of Coupling Constants with Other Physical Properties / 5.4:
Effect of Exchange / 5.5:
Spin Decoupling and Double Resonance / 5.6:
Structure and Analysis of Complex Spectra / 5.7:
Symmetry and Equivalence / 6.1:
Notation / 6.2:
Energy Levels and Transitions in an AX System / 6.3:
Quantum Mechanical Treatment / 6.4:
The Two-Spin System without Coupling / 6.5:
Factoring the Secular Equation / 6.6:
Two Coupled Spins / 6.7:
The AB Spectrum / 6.8:
AX, AB, and A[subscript 2] Spectra / 6.9:
"First-Order" Spectra / 6.10:
Symmetry of Spin Wave Functions / 6.11:
General Procedures for Simulating Spectra / 6.12:
Three-Spin Systems / 6.13:
Relative Signs of Coupling Constants / 6.14:
Some Consequences of Strong Coupling and Chemical Equivalence / 6.15:
"Satellites" from Carbon-13 and Other Nuclides / 6.16:
The AA'BB' and AA'XX' Systems / 6.17:
Spectra of Solids / 6.18:
Spin Interactions in Solids / 7.1:
Dipolar Interactions / 7.2:
"Scalar Coupling" / 7.3:
The Heteronuclear Two-Spin System / 7.4:
Dipolar Decoupling / 7.5:
Cross Polarization / 7.6:
The Homonuclear Two-Spin System / 7.7:
Line Narrowing by Multiple Pulse Methods / 7.8:
Anisotropy of the Chemical Shielding / 7.9:
Magic Angle Spinning / 7.10:
Quadrupole Interactions and Line-Narrowing Methods / 7.11:
Other Aspects of Line Shapes / 7.12:
Orientation Effects in Liquids: Liquid Crystals / 7.13:
Relaxation / 7.14:
Molecular Motions and Processes for Relaxation in Liquids / 8.1:
Nuclear Magnetic Dipole Interactions / 8.2:
Nuclear Overhauser Effect / 8.3:
Relaxation via Chemical Shielding Anisotropy / 8.4:
Electric Quadrupole Relaxation / 8.5:
Scalar Relaxation / 8.6:
Spin-Rotation Relaxation / 8.7:
Relaxation by Paramagnetic Substances / 8.8:
Other Factors Affecting Relaxation / 8.9:
Pulse Sequences / 8.10:
The Spin Echo / 9.1:
The Carr-Purcell Pulse Sequence / 9.2:
Correcting for Pulse Imperfections / 9.3:
Spin Locking / 9.4:
Selective Excitation / 9.5:
Decoupling / 9.6:
Polarization Transfer Methods / 9.7:
Two-Dimensional NMR / 9.8:
General Aspects of 2D Spectra / 10.1:
A Survey of Basic 2D Experiments / 10.2:
Data Acquisition and Processing / 10.3:
Sensitivity Considerations / 10.4:
Density Matrix and Product Operator Formalisms / 10.5:
The Density Matrix / 11.1:
Transformations of the Density Matrix / 11.2:
The One-Spin System / 11.3:
The Two-Spin System / 11.4:
INEPT and Related Pulse Sequences / 11.5:
Product Operators / 11.6:
Coherence Transfer Pathways / 11.7:
Selected 1D, 2D, and 3D Experiments: A Further Look / 11.8:
Spectral Editing / 12.1:
Double Quantum Filtering Experiments / 12.2:
COSY / 12.3:
Heteronuclear Correlation by Indirect Detection / 12.4:
Three- and Four-Dimensional NMR / 12.5:
Elucidation of Molecular Structure and Macromolecular Conformation / 12.6:
Organic Structure Elucidation / 13.1:
Application of Some Useful 2D Methods / 13.2:
Structure and Configuration of Polymers / 13.3:
Three-Dimensional Structure of Biopolymers / 13.4:
NMR Imaging and Spatially Localized Spectroscopy / 13.5:
Use of Magnetic Field Gradients to Produce Images / 14.1:
Use of 2D NMR Methods in Imaging / 14.2:
k Space; Echo Planar Imaging / 14.3:
Factors Affecting Image Contrast / 14.4:
Chemical Shift Imaging and in Vivo Spectroscopy / 14.5:
NMR Imaging in Solids / 14.6:
Properties of Common Nuclear Spins / 14.7:
ABX and AA'XX' Spectra / Appendix B:
The ABX System / B.1:
The AA'XX' System / B.2:
Review of Relevant Mathematics / Appendix C:
Complex Numbers / C.1:
Trigonometric Identities / C.2:
Vectors / C.3:
Matrices / C.4:
Spin Matrices / Appendix D:
One Spin / D.1:
Two-Spin System / D.2:
Selected Answers to Problems / Appendix E:
References
Index
Preface to the Third Edition
Introduction / 1:
Origins and Early History of NMR / 1.1:
49.

図書

図書
edtied by R.I. Jaffee and H.M. Burte
出版情報: New York : Plenum Press, 1973  4 v. (xxviii, 2739 p.) ; 25 cm
所蔵情報: loading…
50.

図書

図書
edited by Markus Gewehr ; with contributions by Irene Schellner and Klaus Hinkelmann
出版情報: Weinheim : WILEY-VCH, c2008  xviii, 662 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations and General Notes
Contributors
General Part / I:
Introduction to the Japanese Language / 1:
The Japanese Language / 1.1:
Japanese Writing / 1.2:
Japanese in Scientific and Technical Publications / 2:
Scientific and Technical Publications / 2.1:
Frequently used kanji / 2.2:
Numbers, Symbols and Units / 2.3:
Suggestions for Reading Japanese Scientific and Technical Publications / 2.4:
Example Translations / 2.5:
Tools for Supporting Text Analysis / 2.6:
Naming of Chemical Compounds / 3:
Naming of Elements and Inorganic Compounds / 3.1:
Naming of Organic Compounds / 3.2:
Overview of Specific Organic Molecules / 3.3:
Japanese Patent Documentation / Irene Schellner and Markus Gewehr)4:
The Japanese Patent System / 4.1:
Special Characteristics of Japanese Patent Documentation / 4.2:
Online Sources of Japanese Patent Information / 4.3:
Overview of Japanese Patent Law / Klaus Hinkelmann)5:
Introduction / 5.1:
Drafting of Japanese Patent Applications / 5.2:
Filing of Japanese Patent Applications / 5.3:
Examination of Japanese Patent Applications / 5.4:
Attack on Patent Applications and Patents / 5.5:
The Patent Right / 5.6:
Enforcement of Patent Rights / 5.7:
Japanese-English Dictionary / II:
Dictionary Structure and Explanations / 6:
General Explanations / 6.1:
Dictionary / 6.2:
Scientific Terms beginning with kana / Part I:
Scientific Terms beginning with basic kanji / 6.3:
Further Scientific Terms beginning with kanji / 6.4:
Scientific Terms Beginning with kana / 7:
Scientific Terms Beginning with Basic kanji / 8:
Scientific Terms Beginning with kanji for Figures and Quantities / 8.1:
Scientific Terms Beginning with kanji for Chemical Elements / 8.2:
Scientific Terms Beginning with Characters Frequently Appearing in the Initial Position of Chemical Terms / 8.3:
Scientific Terms Beginning with Characters Representing Important Prefixes for Chemical Words / 8.4:
Dictionary Part III: Further Scientific Terms Beginning with kanji / 9:
kanji without Radicals.9.2 kanji based on Radicals / 9.1:
Appendices / III:
Bibliography / 10:
Character Dictionaries / 10.1:
Grammar and Related Topics / 10.2:
General Japanese-English Dictionaries / 10.3:
Scientific Books and Dictionaries / 10.4:
Further Literature and Information Sources / 10.5:
Online Sources of Japanese Chemical Societies / 10.5.1:
Online Sources of Authorities and Institutes in Japan / 10.5.2:
Subject Index / 11:
Preface
Abbreviations and General Notes
Contributors
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼