close
1.

図書

図書
by Henri Sauvageot
出版情報: Boston : Artech House, c1991  xii, 366 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
The Sensor / 1.2:
Noncoherent Pulse Radar / 1.2.1:
Pulsed Doppler Radar / 1.2.2:
Display of the Data / 1.2.3:
Sensitivity of the Receiver / 1.2.4:
Antenna / 1.2.5:
Resolution / 1.2.6:
Refraction / 1.2.7:
Attenuation / 1.2.8:
The Radar Equation: General Forms / 1.3:
Single Scatterer / 1.3.1:
Distributed Target / 1.3.2:
Calibration and Setting Up / 1.4:
Meteorological Signals / 1.5:
Meteorological Targets / 1.5.1:
Signal Statistics / 1.5.2:
Decorrelation Time: Independent Samples / 1.5.3:
Sample Time Averaging: Reducing the Variance of the Mean / 1.5.4:
Reducing the Integration Time / 1.5.5:
Detecting Weak Signals / 1.5.6:
Sampling and Demultiplexing / 1.5.7:
Hydrological Measurements / Chapter 2:
Clouds and Precipitation / 2.1:
Physical Processes of Formation / 2.2.1:
Hydrometeor Size Distributions: General Forms / 2.2.2:
Integral Parameters / 2.2.3:
Clouds / 2.2.4:
Precipitation / 2.2.5:
Terminal Fall Velocity of Hydrometeors / 2.2.6:
The Shape of Hydrometeors / 2.2.7:
Scattering and Attenuation Cross Sections / 2.3:
Homogeneous Spherical Particles / 2.3.1:
Nonhomogeneous Particles / 2.3.2:
Nonspherical Particles / 2.3.3:
Atmospheric Attenuation / 2.4:
Attenuation by Gases / 2.4.1:
Attenuation by Clouds / 2.4.2:
Attenuation by Precipitation / 2.4.3:
Backscattering by Clouds and Precipitation / 2.5:
Radar Reflectivity Factor / 2.5.1:
Z and X Relations / 2.5.2:
Polarization Measurements / 2.5.3:
Hail Precipitation Detection / 2.5.4:
Lightning Detection / 2.5.5:
Artifacts / 2.5.6:
Particular Meteorological Forms of the Radar Equation / 2.5.7:
Precipitation Measurements / 2.6:
Single-Wavelength Reflectivity / 2.6.1:
Radar and Rain Gauge / 2.6.3:
Single-Wavelength Attenuation Measurements / 2.6.4:
Dual-Wavelength a-R Method / 2.6.5:
Dual-Wavelength N(D) Method / 2.6.6:
Dual Polarization / 2.6.7:
Area Integral Methods for Convective Rainfall / 2.6.8:
Radar Networks / 2.7:
Short-Term Forecasting / 2.8:
Radars and Satellites / 2.9:
Technical Aspects / 2.9.1:
Estimation of Precipitation with Visible and Infrared Data / 2.9.2:
Rain Estimation by Passive Microwave Methods / 2.9.3:
Orbital Radars / 2.9.4:
Velocity Measurements / Chapter 3:
The Doppler Spectrum / 3.1:
Spectral Parameters / 3.1.1:
Discrete-Fourier Transform / 3.1.2:
Estimators of Spectral Moments / 3.1.3:
Factors Affecting the Width of the Doppler Spectrum / 3.1.4:
Ground Clutter Suppression / 3.1.5:
Doppler Spectra at Vertical Incidence / 3.2:
Size Distribution of Precipitation / 3.2.1:
Vertical Air Velocity / 3.2.2:
Measurement of the Velocity Fields with a Single Doppler Radar / 3.3:
Analysis of the Mean Field by the VAD Method / 3.3.1:
The VVP Method / 3.3.2:
Display of the Radial Velocity / 3.3.3:
Measurement of Turbulence / 3.4:
The Inertial Domain / 3.4.1:
Measurement of Rate of Dissipation of Turbulent Kinetic Energy / 3.4.2:
The Turbulence Field / 3.4.3:
Measurement of the Velocity Fields with Several Doppler Radars / 3.5:
Retrieval of the Thermodynamic and Microphysical Fields / 3.6:
Airborne Radar / 3.7:
Observation of Clear Air / Chapter 4:
Scattering of Electromagnetic Waves by a Turbulent Medium / 4.1:
General Relations / 4.2.1:
Reflectivity in the Inertial Domain / 4.2.2:
Relationship Between Radar Reflectivity and the Average Atmospheric Field / 4.2.3:
ST Radar / 4.3:
Influence of the Wavelength / 4.3.1:
Wind Measurements / 4.3.2:
Reflectivity / 4.3.3:
Networks of ST Radar / 4.3.4:
Rass / 4.4:
Insects / 4.5:
General Characteristics / 4.5.1:
Insects and Birds / 4.5.2:
Observations / 4.5.3:
Artificial Tracers / 4.6:
General Properties / 4.6.1:
Applications to Atmospheric Observation / 4.6.2:
Introduction to the Study of Some Meteorological Structures by Radar / Chapter 5:
Diversity of Meteorological Structures / 5.1:
Movements of the Atmosphere / 5.1.2:
The Area of Radar Application / 5.1.3:
Convection in the Planetary Boundary Layer / 5.2:
The Convective Boundary Layer / 5.2.1:
Observation of the Convective Field / 5.2.2:
The Aerobiological Field / 5.2.3:
Pollution and Plumes / 5.2.4:
Deep Convection and Thunderstorms / 5.3:
The Convective Cells / 5.3.1:
Convective Storm Structure / 5.3.2:
Squall Lines / 5.3.3:
Microbursts / 5.3.4:
Hail / 5.3.5:
Electrical Activity of Storms / 5.3.6:
Tornadoes and Vortexes / 5.4:
Identification of Vortexes by Radar / 5.4.1:
Application to Warning Systems / 5.4.3:
Extratropical Cyclone Disturbances and Stratiform Clouds / 5.5:
Structure of Extratropical Cyclone Disturbances / 5.5.1:
Stratiform Precipitation / 5.5.2:
Tropical Cyclones / 5.6:
Turbulent Stratifications and Shear Instability / 5.7:
Experimental Modification of Clouds and Precipitation / 5.8:
Bibliographical Note / Appendix 1:
Units and Symbols / Appendix 2:
List of Constants / Appendix 3:
Definitions and Various Numerical Values / Appendix 4:
References
Index
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
2.

図書

図書
George Wolberg
出版情報: Los Alamitos, Calif. ; Tokyo : IEEE Computer Society Press, c1990  xvi, 318 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
Spatial Transformations / 1.2.1:
Sampling Theory / 1.2.2:
Resampling / 1.2.3:
Aliasing / 1.2.4:
Scanline Algorithms / 1.2.5:
Conceptual Layout / 1.3:
Preliminaries / Chapter 2:
Fundamentals / 2.1:
Signals and Images / 2.1.1:
Filters / 2.1.2:
Impulse Response / 2.1.3:
Convolution / 2.1.4:
Frequency Analysis / 2.1.5:
An Analogy to Audio Signals / 2.1.5.1:
Fourier Transforms / 2.1.5.2:
Discrete Fourier Transforms / 2.1.5.3:
Image Acquisition / 2.2:
Imaging Systems / 2.3:
Electronic Scanners / 2.3.1:
Vidicon Systems / 2.3.1.1:
Image Dissectors / 2.3.1.2:
Solid-State Sensors / 2.3.2:
CCD Cameras / 2.3.2.1:
CID Cameras / 2.3.2.2:
Mechanical Scanners / 2.3.3:
Video Digitizers / 2.4:
Digitized Imagery / 2.5:
Summary / 2.6:
Definitions / Chapter 3:
Forward Mapping / 3.1.1:
Inverse Mapping / 3.1.2:
General Transformation Matrix / 3.2:
Homogeneous Coordinates / 3.2.1:
Affine Transformations / 3.3:
Translation / 3.3.1:
Rotation / 3.3.2:
Scale / 3.3.3:
Shear / 3.3.4:
Composite Transformations / 3.3.5:
Inverse / 3.3.6:
Inferring Affine Transformations / 3.3.7:
Perspective Transformations / 3.4:
Inferring Perspective Transformations / 3.4.1:
Case 1: Square-to-Quadrilateral / 3.4.2.1:
Case 2: Quadrilateral-to-Square / 3.4.2.2:
Case 3: Quadrilateral-to-Quadrilateral / 3.4.2.3:
Bilinear Transformations / 3.5:
Bilinear Interpolation / 3.5.1:
Separability / 3.5.2:
Interpolation Grid / 3.5.3:
Polynomial Transformations / 3.6:
Inferring Polynomial Coefficients / 3.6.1:
Pseudoinverse Solution / 3.6.2:
Least-Squares With Ordinary Polynomials / 3.6.3:
Least-Squares With Orthogonal Polynomials / 3.6.4:
Weighted Least-Squares / 3.6.5:
Piecewise Polynomial Transformations / 3.7:
A Surface Fitting Paradigm for Geometric Correction / 3.7.1:
Procedure / 3.7.2:
Triangulation / 3.7.3:
Linear Triangular Patches / 3.7.4:
Cubic Triangular Patches / 3.7.5:
Global Splines / 3.8:
Basis Functions / 3.8.1:
Regularization / 3.8.2:
Grimson, 1981 / 3.8.2.1:
Terzopoulos, 1984 / 3.8.2.2:
Discontinuity Detection / 3.8.2.3:
Boult and Kender, 1986 / 3.8.2.4:
A Definition of Smoothness / 3.8.2.5:
Sampling / 3.9:
Reconstruction / 4.3:
Reconstruction Conditions / 4.3.1:
Ideal Low-Pass Filter / 4.3.2:
Sinc Function / 4.3.3:
Nonideal Reconstruction / 4.4:
Antialiasing / 4.5:
Image Resampling / 4.7:
Ideal Image Resampling / 5.1:
Interpolation / 5.3:
Interpolation Kernels / 5.4:
Nearest Neighbor / 5.4.1:
Linear Interpolation / 5.4.2:
Cubic Convolution / 5.4.3:
Two-Parameter Cubic Filters / 5.4.4:
Cubic Splines / 5.4.5:
B-Splines / 5.4.5.1:
Interpolating B-Splines / 5.4.5.2:
Windowed Sinc Function / 5.4.6:
Hann and Hamming Windows / 5.4.6.1:
Blackman Window / 5.4.6.2:
Kaiser Window / 5.4.6.3:
Lanczos Window / 5.4.6.4:
Gaussian Window / 5.4.6.5:
Exponential Filters / 5.4.7:
Comparison of Interpolation Methods / 5.5:
Implementation / 5.6:
Interpolation with Coefficient Bins / 5.6.1:
Fant's Resampling Algorithm / 5.6.2:
Discussion / 5.7:
Point Sampling / Chapter 6:
Area Sampling / 6.1.2:
Space-Invariant Filtering / 6.1.3:
Space-Variant Filtering / 6.1.4:
Regular Sampling / 6.2:
Supersampling / 6.2.1:
Adaptive Supersampling / 6.2.2:
Reconstruction from Regular Samples / 6.2.3:
Irregular Sampling / 6.3:
Stochastic Sampling / 6.3.1:
Poisson Sampling / 6.3.2:
Jittered Sampling / 6.3.3:
Point-Diffusion Sampling / 6.3.4:
Adaptive Stochastic Sampling / 6.3.5:
Reconstruction from Irregular Samples / 6.3.6:
Direct Convolution / 6.4:
Catmull, 1974 / 6.4.1:
Blinn and Newell, 1976 / 6.4.2:
Feibush, Levoy, and Cook, 1980 / 6.4.3:
Gangnet, Perny, and Coueignoux, 1982 / 6.4.4:
Greene and Heckbert, 1986 / 6.4.5:
Prefiltering / 6.5:
Pyramids / 6.5.1:
Summed-Area Tables / 6.5.2:
Frequency Clamping / 6.6:
Antialiased Lines and Text / 6.7:
Separable Mapping / 6.8:
Incremental Algorithms / 7.2:
Texture Mapping / 7.2.1:
Gouraud Shading / 7.2.2:
Incremental Texture Mapping / 7.2.3:
Incremental Perspective Transformations / 7.2.4:
Approximation / 7.2.5:
Quadratic Interpolation / 7.2.6:
Cubic Interpolation / 7.2.7:
Braccini and Marino, 1980 / 7.3:
Weiman, 1980 / 7.3.2:
Catmull and Smith, 1980 / 7.3.3:
Paeth, 1986/ Tanaka, et. al., 1986 / 7.3.4:
Cordic Algorithm / 7.3.5:
2-Pass Transforms / 7.4:
First Pass / 7.4.1:
Second Pass / 7.4.1.2:
2-Pass Algorithm / 7.4.1.3:
An Example: Rotation / 7.4.1.4:
Another Example: Perspective / 7.4.1.5:
Bottleneck Problem / 7.4.1.6:
Foldover Problem / 7.4.1.7:
Fraser, Schowengerdt, and Briggs, 1985 / 7.4.2:
Smith, 1987
2-Pass Mesh Warping / 7.5:
Special Effects / 7.5.1:
Description of the Algorithm / 7.5.2:
Examples / 7.5.2.1:
Source Code / 7.5.4:
More Separable Mappings / 7.6:
Perspective Projection: Robertson, 1987 / 7.6.1:
Warping Among Arbitrary Planar Shapes: Wolberg, 1988 / 7.6.2:
Spatial Lookup Tables: Wolberg and Boult, 1989 / 7.6.3:
Separable Image Warping / 7.7:
Spatial Lookup Tables / 7.7.1:
Intensity Resampling / 7.7.2:
Coordinate Resampling / 7.7.3:
Distortions and Errors / 7.7.4:
Filtering Errors / 7.7.4.1:
Perspective / 7.7.4.2:
Distortion Measures / 7.7.4.4:
Bottleneck Distortion / 7.7.4.6:
Representing Foldovers / 7.7.5:
Tracking Foldovers / 7.7.5.2:
Storing Information From Foldovers / 7.7.5.3:
Intensity Resampling with Foldovers / 7.7.5.4:
Compositor / 7.7.6:
Epilogue / 7.7.7:
Fast Fourier Transforms / Appendix 1:
Discrete Fourier Transform / A1.1:
Danielson-Lanczos Lemma / A1.2:
Butterfly Flow Graph / A1.2.1:
Putting It All Together / A1.2.2:
Recursive FFT Algorithm / A1.2.3:
Cost of Computation / A1.2.4:
Cooley-Tukey Algorithm / A1.3:
Computational Cost / A1.3.1:
Cooley-Sande Algorithm / A1.4:
Cooley-Tukey FFT Algorithm / A1.5:
Interpolating Cubic Splines / Appendix 2:
Definition / A2.1:
Constraints / A2.2:
Solving for the Spline Coefficients / A2.3:
Derivation of A[subscript 2] / A2.3.1:
Derivation of A[subscript 3] / A2.3.2:
Derivation of A[subscript 1] and A[subscript 3] / A2.3.3:
Evaluting the Unknown Derivatives / A2.4:
First Derivatives / A2.4.1:
Second Derivatives / A2.4.2:
Boundary Conditions / A2.4.3:
Ispline / A2.5:
Ispline_gen / A2.5.2:
Forward Difference Method / Appendix 3:
References
Index
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
3.

図書

図書
Stephen E. Palmer
出版情報: Cambridge, MA : MIT Press, c1999  xxii, 810 p., [8] p. of plates ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Contents
Contents
Preface
Organization of the Book
Foundations
Spatial Vision
Visual Dynamics
Tailoring the Book to Different Needs
Acknowledgments
An Introduction to Vision Science / Part I:
Visual Perception / 1.1:
Defining Visual Perception / 1.1.1:
The Evolutionary Utility of Vision / 1.1.2:
Perception as a Constructive Act / 1.1.3:
Perception as Modeling the Environment / 1.1.4:
Perception as Apprehension of Meaning / 1.1.5:
Optical Information / 1.2:
The Behavior of Light / 1.2.1:
The Formation of Images / 1.2.2:
Vision as an "Inverse" Problem / 1.2.3:
Visual Systems / 1.3:
The Human Eye / 1.3.1:
The Retina / 1.3.2:
Visual Cortex / 1.3.3:
Theoretical Approaches / 2:
Classical Theories of Vision / 2.1:
Structuralism / 2.1.1:
Gestaltism / 2.1.2:
Ecological Optics / 2.1.3:
Constructivism / 2.1.4:
A Brief History of Information Processing / 2.2:
Computer Vision / 2.2.1:
Information Processing Psychology / 2.2.2:
Biological Information Processing / 2.2.3:
Information Processing Theory / 2.3:
The Computer Metaphor / 2.3.1:
Three Levels of Information Processing / 2.3.2:
Three Assumptions of Information Processing / 2.3.3:
Representation / 2.3.4:
Processes / 2.3.5:
Four Stages of Visual Perception / 2.4:
The Retinal Image / 2.4.1:
The Image-Based Stage / 2.4.2:
The Surface-Based Stage / 2.4.3:
The Object-Based Stage / 2.4.4:
The Category-Based Stage / 2.4.5:
Color Vision: A Microcosm of Vision Science / 3:
The Computational Description of Color Perception / 3.1:
The Physical Description of Light / 3.1.1:
The Psychological Description of Color / 3.1.2:
The Psychophysical Correspondence / 3.1.3:
Image-Based Color Processing / 3.2:
Basic Phenomena / 3.2.1:
Theories of Color Vision / 3.2.2:
Physiological Mechanisms / 3.2.3:
Development of Color Vision / 3.2.4:
Surface-Based Color Processing / 3.3:
Lightness Constancy / 3.3.1:
Chromatic Color Constancy / 3.3.2:
Color Naming / 3.4:
Focal Colors and Prototypes / 3.4.2:
A Fuzzy-Logical Model of Color Naming / 3.4.3:
Processing Image Structure / Part II:
Retinal and Geniculate Cells / 4.1:
Striate Cortex / 4.1.2:
Striate Architecture / 4.1.3:
Development of Receptive Fields / 4.1.4:
Psychophysical Channels / 4.2:
Spatial Frequency Theory / 4.2.1:
Physiology of Spatial Frequency Channels / 4.2.2:
Computational Approaches / 4.3:
Marr's Primal Sketches / 4.3.1:
Edge Detection / 4.3.2:
Alternative Computational Theories / 4.3.3:
A Theoretical Synthesis / 4.3.4:
Visual Pathways / 4.4:
Physiologlcal Evidence / 4.4.1:
Perceptual Evidence / 4.4.2:
Perceiving Surfaces Oriented in Depth / 5:
The Problem of Depth Perception / 5.1:
Heuristic Assumptions / 5.1.1:
Marr's 2.5-D Sketch / 5.1.2:
Ocular Information / 5.2:
Accormmodation / 5.2.1:
Convergence / 5.2.2:
Stereoscopic Information / 5.3:
Binocular Disparity / 5.3.1:
The Correspondence Problem / 5.3.2:
Computational Theories / 5.3.3:
Vertical Disparity / 5.3.4:
Da Vinci Stereopsis / 5.3.6:
Dynamic Information / 5.4:
Motion Parallax / 5.4.1:
Optic Flow Caused by a Moving Observer / 5.4.2:
Optic Flow Caused by Moving Objects / 5.4.3:
Accretion/Deletion of Texture / 5.4.4:
Pictorial Information / 5.5:
Perspective Projection / 5.5.1:
Convergence of Parallel Lines / 5.5.2:
Position Relative to the Horizon of a Surface / 5.5.3:
Relative Size / 5.5.4:
Familiar Size / 5.5.5:
Texture Gradients / 5.5.6:
Edge Interpretation / 5.5.7:
Shading Information / 5.5.8:
Aerial Perspective / 5.5.9:
Integrating Information Sources / 5.5.10:
Development of Depth Perception / 5.6:
Organizing Objects and Scenes / 5.6.1:
Perceptual Grouping / 6.1:
The Classical Principles of Grouping / 6.1.1:
New Principles of Grouping / 6.1.2:
Measuring Grouping Effects Quantitatively / 6.1.3:
Is Grouping an Early or Late Process? / 6.1.4:
Past Experience / 6.1.5:
Region Analysis / 6.2:
Uniform Connectedness / 6.2.1:
Region Segmentation / 6.2.2:
Texture Segregation / 6.2.3:
Figure/Ground Organization / 6.3:
Principles of Figure/Ground Organization / 6.3.1:
Ecological Considerations / 6.3.2:
Effects of Meaningfulness / 6.3.3:
The Problem of Holes / 6.3.4:
Visual Interpolation / 6.4:
Visual Completion / 6.4.1:
Illusory Contours / 6.4.2:
Perceived Transparency / 6.4.3:
Figural Scission / 6.4.4:
The Principle of Nonaccidentalness / 6.4.5:
Multistability / 6.5:
Connectionist Network Models / 6.5.1:
Neural Fatigue / 6.5.2:
Eye Fixations / 6.5.3:
The Role of Instructions / 6.5.4:
Development of Perceptual Organization / 6.6:
The Habituation Paradigm / 6.6.1:
The Development of Grouping / 6.6.2:
Perceiving Object Properties and Parts / 7:
Size / 7.1:
Size Constancy / 7.1.1:
Size Illusions / 7.1.2:
Shape / 7.2:
Shape Constancy / 7.2.1:
Shape Illusions / 7.2.2:
Orientation / 7.3:
Orientation Constancy / 7.3.1:
Orientation Illusions / 7.3.2:
Position / 7.4:
Perception of Direction / 7.4.1:
Position Constancy / 7.4.2:
Position Illusions / 7.4.3:
Perceptual Adaptation / 7.5:
Parts / 7.6:
Evidence for Perception of Parts / 7.6.1:
Part Segmentation / 7.6.2:
Global and Local Processing / 7.6.3:
Representing Shape and Structure / 8:
Shape Equivalence / 8.1:
Defining Objective Shape / 8.1.1:
Invariant Features / 8.1.2:
Transformational Alignment / 8.1.3:
Object-Centered Reference Frames / 8.1.4:
Theories of Shape Representation / 8.2:
Templates / 8.2.1:
Fourier Spectra / 8.2.2:
Features and Dimensions / 8.2.3:
Structural Descriptions / 8.2.4:
Figural Goodness and Pragnanz / 8.3:
Theories of Figural Goodness / 8.3.1:
Structural Information Theory / 8.3.2:
Perceiving Function and Category / 9:
The Perception of Function / 9.1:
Direct Perception of Affordances / 9.1.1:
Indirect Perception of Function by Categorization / 9.1.2:
Phenomena of Perceptual Categorization / 9.2:
Categorical Hierarchies / 9.2.1:
Perspective Viewing Conditions / 9.2.2:
Part Structure / 9.2.3:
Contextual Effects / 9.2.4:
Visual Agnosia / 9.2.5:
Theories of Object Categorization / 9.3:
Recognition by Components Theory / 9.3.1:
Accounting for Empirical Phenomena / 9.3.2:
Viewpoint-Specific Theories / 9.3.3:
Identifying Letters and Words / 9.4:
Identifying Letters / 9.4.1:
Identifying Words and Letters Within Words / 9.4.2:
The Interactive Activation Model / 9.4.3:
Perceiving Motion and Events / Part III:
Image Motion / 10.1:
The Computational Problem of Motion / 10.1.1:
Continuous Motion / 10.1.2:
Apparent Motion / 10.1.3:
Object Motion / 10.1.4:
Perceiving Object Velocity / 10.2.1:
Depth and Motion / 10.2.2:
Long-Range Apparent Motion / 10.2.3:
Dynamic Perceptual Organization / 10.2.4:
Self-Motion and Optic Flow / 10.3:
Induced Motion of the Self / 10.3.1:
Perceiving Self-Motion / 10.3.2:
Understanding Events / 10.4:
Biological Motion / 10.4.1:
Perceiving Causation / 10.4.2:
Intuitive Physics / 10.4.3:
Visual Selection: Eye Movements And Attention / 11:
Eye Movements / 11.1:
Types Of Eye Movements / 11.1.1:
The Physiology Of The Oculomotor System / 11.1.2:
Saccaadic Exploration Of The Visual Environment / 11.1.3:
Visual Attention / 11.2:
Early Versus Late Selection / 11.2.1:
Costs and Benefits of Attention / 11.2.2:
Theories of Spatial Attention / 11.2.3:
Selective Attention to Properties / 11.2.4:
Distributed versus Focused Attention / 11.2.5:
Feature Integration Theory / 11.2.6:
The Physiology of Attention / 11.2.7:
Attention and Eye Movements / 11.2.8:
Visual Memory and Imagery / 12:
Visual Memory / 12.1:
Three Memory Systems / 12.1.1:
Iconic Memory / 12.1.2:
Visual Short-Term Memory / 12.1.3:
Visual Long-Term Memory / 12.1.4:
Memory Dynamics / 12.1.5:
Visual Imagery / 12.2:
The Analog/Propositional Debate / 12.2.1:
Mental Transformtions / 12.2.2:
Image Inspection / 12.2.3:
Kosslyn's Model of Imagery / 12.2.4:
The Relation of Imagery to Perception / 12.2.5:
Visual Awareness / 13:
Philosophical Foundations / 13.1:
The Mind-Body Problem / 13.1.1:
The Problem of Other Minds / 13.1.2:
Neuropsychology of Visual Awareness / 13.2:
Split-Brain Patients / 13.2.1:
Blindsight / 13.2.2:
Unconscious Processing in Neglect and Balint's Syndrome / 13.2.3:
Unconscious Face Recognition in Prosopagnosia / 13.2.4:
Visual Awareness in Normal Observers / 13.3:
Perceptual Defense / 13.3.1:
Subliminal Perception / 13.3.2:
Inattentional Blindsight / 13.3.3:
Theories of Consciousness / 13.4:
Functional Architecture Theories / 13.4.1:
Biological Theories / 13.4.2:
Consciousness and the Limits of Science / 13.4.3:
Psychophysical Methods / Appendix A:
Measuring Thresholds / A.1:
Method of Adjustment / A.1.1:
Method of Limits / A.1.2:
Method of Constant Stimuli / A.1.3:
The Theoretical Status of Thresholds / A.1.4:
Signal Detection Theory / A.2:
Response Bias / A.2.1:
The Signal Detection Paradigm / A.2.2:
The Theory of Signal Detectability / A.2.3:
Difference Thresholds / A.3:
Just Noticeable Differences / A.3.1:
Weber's Law / A.3.2:
Psychophysical Scaling / A.4:
Fechner's Law / A.4.1:
Stevens's Law / A.4.2:
Suggestions for Futher Reading
Connectionist Modeling / Appendix B:
Network Behavior / B.1:
Unit Behavior / B.1.1:
System Architecture / B.1.2:
Systemic Behavior / B.1.3:
Connectionist Learning Algorithms / B.2:
Back Propagation / B.2.1:
Gradient Descent / B.2.2:
Color Technology / Appendix C:
Additive versus Subtractive Color Mixture / C.1:
Adding versus Multiplying Spectra / C.1.1:
Maxwell's Color Triangle / C.1.2:
C.I.E. Color Space / C.1.3:
Subtractive Color Mixture Space? / C.1.4:
Color Television / C.2:
Paints and Dyes / C.3:
Subtractive Combination of Paints / C.3.1:
Additive Combination of Paints / C.3.2:
Color Photography / C.4:
Color Printing / C.5:
Suggestions for Further Reading
Glossary
References
Name Index
Subject Index
Brief Contents
Contents
Preface
4.

図書

図書
Jacques Thuery ; edited by Edward H. Grant
出版情報: Boston : Artech House, c1992  xviii, 670 p. ; 24 cm
シリーズ名: The Artech House microwave library
所蔵情報: loading…
目次情報: 続きを見る
Preface to the English Edition
Foreword
Microwaves / Part I:
Electromagnetism and Radiation / 1:
Electromagnetic spectrum, ISM bands / 1.1:
Electromagnetism / 1.2:
Radio broadcasting / 1.3:
Electromagnetic detection / 1.4:
Thermal applications / 1.5:
Microwaves in industry / 1.6:
The Laws of Radiation / 2:
Basic definitions / 2.1:
Maxwell's equations / 2.2:
Propagation equation / 2.3:
Plane wave / 2.4:
Spherical and cylindrical waves / 2.5:
Propagation media / 2.6:
Boundary conditions / 2.7:
Reflection and transmission / 2.8:
Guided propagation / 2.9:
Stationary wave / 2.10:
Electromagnetic cavities / 2.11:
Resonant modes / 2.11.1:
Energy balance / 2.11.2:
Power loss in the walls / 2.11.3:
Quality factor / 2.11.4:
Radiation sources / 2.12:
Characteristics / 2.12.1:
Radiation from a slot / 2.12.2:
Radiation of an aperture / 2.12.3:
Radiation from a horn / 2.12.4:
Radiation zones / 2.12.5:
Microwaves and Matter / 3:
Dielectric polarization / 3.1:
Polarization by dipole alignment in a static field / 3.2:
Polar and nonpolar media / 3.2.1:
Induced dipole moment / 3.2.2:
Permanent dipole moment / 3.2.3:
Dipole alignment polarization in an alternating field / 3.3:
Dielectric relaxation / 3.4:
Hysteresis / 3.4.1:
Debye equation / 3.4.2:
Intermolecular bonds / 3.4.3:
Relaxation time / 3.4.4:
Debye and Cole-Cole diagrams / 3.4.5:
Different types of dielectrics / 3.5:
Permittivity measurements / 3.5.1:
Lowloss dielectrics / 3.5.2:
Aqueous dielectrics / 3.5.3:
Mixtures / 3.5.4:
Saline solutions and biological constituents / 3.5.5:
Heat generation / 3.6:
Thermal runaway / 3.7:
Generators and applicators / 4:
Introduction / 4.1:
Microwave generators / 4.2:
The magnetron / 4.2.1:
Klystron and TWT / 4.2.2:
RF energy transmission / 4.2.3:
Applicators / 4.3:
Different types / 4.3.1:
Design constraints / 4.3.2:
Conclusion / 4.4:
Industrial Applications / Part II:
Drying
Humidity and drying
Drying kinetics
Microwave drying
Paper and printing industries
Paper / 1.4.1:
Printing inks / 1.4.2:
Glued products / 1.4.3:
Leather and textile industries
Leathers / 1.5.1:
Tufts and yarns / 1.5.2:
Dyeing and finishing / 1.5.3:
Tufted carpets / 1.5.4:
Construction
Wood and plywood / 1.6.1:
Plaster, concrete, and ceramics / 1.6.2:
Foundries / 1.7:
Rubbers and plastics / 1.8:
Drying of polymers / 1.8.1:
Photographic film and magnetic tape / 1.8.2:
Pharmaceutical industry / 1.9:
Drying of tobacco / 1.10:
Regeneration of zeolites / 1.11:
The treatment of elastomers
Macromolecules and
Principles of interaction / 2.1.1:
Relaxation mechanisms / 2.1.2:
Dielectric properties of elastomers / 2.1.3:
Vulcanization
Microwave vulcanization
Formulation of mixtures / 2.3.1:
Advantages and disadvantages of microwave vulcanization / 2.3.2:
Materials available / 2.3.3:
Thawing and preheating of rubber
Microwave devulcanization
Miscellaneous applications
Polymerization
Thermosetting and thermoplastic polymers / 3.1.1:
Microwave reticulation of thermosetting resins / 3.1.2:
Thermoplastic polymers / 3.1.3:
Fusion
Dewaxing of casting moulds
Viscous materials in metal
Oil and shale oil
Road repairs / 3.2.4:
Defrosting of soil / 3.2.5:
Consolidation
Hardening of foundry mouldings / 3.3.1:
Fast-setting concrete / 3.3.2:
Sintering of ferrites and ceramics / 3.3.3:
Emulsification
Crushing
Purification of coal
Nuclear waste treatment
Cellulosic waste treatment / 3.8:
Applications in the Food Industry / Part III:
Cooking
Mechanisms
Animal products
Red meat / 1.2.1:
Poultry / 1.2.2:
Bacon and fat / 1.2.3:
Meat patties / 1.2.4:
Fish / 1.2.5:
Dairy products / 1.2.6:
Vegetable products
Vegetables / 1.3.1:
Cereals and soya / 1.3.2:
Roasting / 1.3.3:
Catering
Baking
Bread
Doughnuts
Digestibility of foods cooked by microwaves
Thawing and tempering
Conventional thawing
Mechanisms of microwave
Dielectric properties of frozen products / 2.2.1:
Energy limitations / 2.2.2:
Surface cooling / 2.2.4:
Available equipment
896 and 915 MHz
2.45 GHz
Advantages of microwave processing
Industrial aspects / 2.4.1:
Qualitative aspects / 2.4.2:
Vaporization
Drying at atmospheric pressure
Final drying of potato chips
The drying of pasta
Miscellaneous food products
Drying at low pressure
Freeze drying
Expansion in vacuum
Various processes
Determination of dry content
Preservation
Enzymatic inactivation
Blanching of fruits and vegetables / 4.1.1:
Inactivation of [alpha]-amylase in wheat / 4.1.2:
Treatment of grains and soya beans / 4.1.3:
Sterilization
Prepared meals
Disinfestation / 5:
Soil treatment / 5.2:
Germination / 5.3:
Crop protection / 5.4:
Wine-making by carbonic fermentation / 5.5:
Opening of oysters / 5.6:
Biological Effects and Medical Applications / Part IV:
Interactions with the organism
Dielectric behavior of biological material
Biomolecules / 1.1.1:
Cells and membranes / 1.1.2:
Tissues / 1.1.3:
Quantum aspects
Basic interaction with cell membranes
Continuous wave
The modulated wave
Pearl chain formation
Thermal interaction with the living organism
Absorption and dosimetry
Experimental aspects
Modeling / 1.4.4:
Near-field interaction / 1.4.5:
Main results / 1.4.6:
Biological effects
Cells and micro-organisms
Blood and hematopoiesis
Immune system
Natural resistance
Lymphopoiesis
Multiplication of lymphocytes FcR[superscript +] and CR[superscript +]
Stimulation of the response of lymphocytes to mitogens / 2.3.4:
Modulation of the activity of activator T lymphocytes / 2.3.5:
Nervous system
Fluxes of calcium ions
Neurons and synapses
Blood-brain barrier / 2.4.3:
Central nervous system / 2.4.4:
Peripheral nervous system and sensory perception / 2.4.5:
Auditory perception / 2.4.6:
Autonomic nervous system / 2.4.7:
Psychophysiology / 2.4.8:
Endocrine system
Pituitary-thyroid axis / 2.5.1:
Pituitary-suprarenal axis / 2.5.2:
Pituitary-ovarian and pituitary-testicular axes / 2.5.3:
Growth hormones / 2.5.4:
Thermal regulation and metabolism
Effects on growth
Insects / 2.7.1:
Birds / 2.7.2:
Mammals / 2.7.3:
Lesions and cataracts
Safety standards
Soviet Union
United States of America
Eastern Europe
Canada
Australia
Sweden
European Community
International organisations
Biomedical applications
Hyperthermia for cancer treatment
Historical development
Mode of action
Integrated systems / 4.1.4:
Clinical results / 4.1.5:
Specific effects
Bioelectric vibrations
Antigenicity
Immune response
Clinical
Biological
Addresses
Index
Preface to the English Edition
Foreword
Microwaves / Part I:
5.

図書

図書
F. Albert Cotton and Richard A. Walton
出版情報: Oxford : Clarendon Press , New York : Oxford University Press, 1993  xxii, 787 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
6.

図書

図書
Gerald Burns
出版情報: Boston : Academic Press, c1992  xiii, 199 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Introduction / Chapter 1:
Problems
Review of Conventional Superconductors / Chapter 2:
Two-Fluid Model / 2-1:
London Equation / 2-3:
Nonlocal Fields / 2-4:
Nonlocal Electrodynamics Sketched / 2-4a:
Various Situations and Dirty Superconductors / 2-4b:
Ginzburg-Landau Theory / 2-5:
GL Free Energy / 2-5a:
GL Differential Equations / 2-5c:
Flux Quantization / 2-5d:
GL Coherence Length / 2-5e:
Type II Superconductors / 2-5f:
BCS Theory / 2-6:
Cooper Pairs and BCS Introduction / 2-6a:
BCS Results / 2-6c:
Specific Heat / 2-6d:
Anisotropic Superconducting Gap / 2-6e:
Coherence Effects / 2-6f:
Strong-Coupled Superconductors / 2-7:
McMillan Equation / 2-7a:
Maximum T[subscript c]? / 2-7c:
Electron-Phonon Parameter Calculations / 2-7d:
Tunneling / 2-8:
Tunneling Review / 2-8a:
Tunneling Experiments / 2-8b:
Phonon Structure / 2-8c:
Other Topics / 2-9:
Magnetic Superconductors / 2-9a:
Earlier Oxide Superconductors / 2-9b:
Heavy-Electron Metals / 2-9c:
Organic Superconductors / 2-9d:
[superscript 3]He / 2-9e:
Structures / Chapter 3:
Overview / 3-1:
La(n = 1) / 3-2:
2-Tl(n) / 3-2b:
2-Bi(n) / 3-2c:
1-Tl(n) / 3-2d:
Distances / 3-2e:
Y123 / 3-2f:
Other High-T[subscript c] Structures / 3-2g:
Other Phases / 3-3:
Y123 with Intermediate Oxygen Content / 3-3a:
Other Distortions / 3-3d:
Conventional Superconductors / 3-4:
Normal-State Properties / Chapter 4:
Cu-Charge State / 4-1:
Charges / 4-2a:
Molecular Orbitals / 4-2b:
Resistance / 4-3:
Conventional Resistivity Behavior / 4-3a:
Resistivity of High-T[subscript c] Materials / 4-3b:
Hall Effect / 4-4:
Magnetism / 4-5:
Insulator Phase / 4-5a:
Superconducting Phase / 4-5b:
Structural Phase Transitions / 4-6:
Bands--General / 4-7:
Fermi Liquid / 4-7a:
Resonating-Valence-Band State / 4-7b:
Band Theory / 4-7c:
Simple Two-Dimensional Bands / 4-7d:
More Advanced Two-Dimensional Bands / 4-7e:
One-Electron Bands / 4-8:
Photoemission Spectroscopy / 4-9:
PES 2-Bi(n = 2) Results / 4-9a:
PES Y123 Results / 4-9c:
PES Summary / 4-9d:
Superconducting Properties / Chapter 5:
T[subscript c] Values / 5-1:
Cooper Pairs and BCS / 5-2:
Paired Electrons? / 5-2a:
Spin Singlet or Triplet Pairing? / 5-2c:
Symmetry of Electron Pairs / 5-2d:
BCS Superconductors? / 5-3:
Superconducting Energy Gap and Other Properties / 5-4:
PES Results / 5-4a:
Tunneling Spectroscopy / 5-4b:
Infrared Results / 5-4c:
Raman Results / 5-4e:
NMR Results / 5-4f:
Isotope Effect / 5-5:
The Pairing Mechanism / 5-6:
Soft Phonon Modes / 5-6a:
Temperature-Dependent Phonon Modes / 5-6c:
Neutron Measurements / 5-6d:
High-Energy Tunneling Results / 5-6e:
Electron-Phonon Coupling Parameter Calculations / 5-6f:
Electron-Phonon Coupling Parameter Measurements / 5-6g:
Phonons plus Electron Density of States Singularity / 5-6h:
Phonons Alone / 5-6i:
Magnetic Properties / 5-7:
Type II Materials / 5-7a:
Penetration Depth / 5-7b:
H[subscript c1] / 5-7c:
Coherence Length and H[subscript c2] / 5-7d:
Anisotropic Ginzburg-Landau Results / 5-7e:
Torque Magnetometry / 5-7f:
Postscript / 5-8:
Vortex Behavior, J[subscript c], and Applications / Chapter 6:
Flux Lattice, Flux Glass, and Pinning / 6-1:
Flux Lattice and Glass / 6-2a:
Pinning / 6-2b:
Films and Critical Currents / 6-3:
Films / 6-3a:
Superlattices / 6-3b:
Wires / 6-3c:
Critical Current / 6-3d:
Macroscopic Magnetic Properties / 6-4:
Vortex Glass / 6-4a:
Flux Creep / 6-4c:
A True Zero Resistance State? / 6-4d:
Experimental Vortex Glass-Liquid Measurements / 6-4e:
Irreversibility Line / 6-4f:
Applications Introduction / 6-5:
Large-Scale Applications / 6-6:
Wires and Superconducting Magnets / 6-6a:
Levitation / 6-6c:
Small-Scale Applications / 6-7:
Bibliography
Notes for the Chapters
Index
Preface
Acknowledgements
Introduction / Chapter 1:
7.

図書

図書
P. M. Gresho, R. L. Sani in collaboration with M. S. Engelman
出版情報: Chichester : Wiley, c1998  xx, 1021p ; 25cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Glossary of Abbreviations
Introduction / 1:
Incompressible Flow / 1.1:
The Finite Element Method / 1.3:
Incompressible Flow and the Finite Element Method / 1.4:
Overview of this Book; Some Subjective Discussion / 1.5:
Why Finite Elements? Why not Finite Volume? / 1.6:
The Advection-Diffusion Equation / 2:
The Continuum Equation / 2.1:
The Advective (Convective) Form / 2.1.1:
Dimensionless Forms and Limiting Cases of the Equation / 2.1.2:
The Divergence (Conservation) Form / 2.1.3:
Conservation Laws / 2.1.4:
Weak forms of PDE's/Natural Boundary Conditions / 2.1.5:
The Finite Element Equations/Discretization of the Weak Form / 2.2:
Advective Form / 2.2.1:
Divergence Form / 2.2.2:
An Absolutely Conserving Form / 2.2.3:
A Finite Difference Interpretation / 2.2.5:
A Control Volume FEM... / 2.2.6:
Some Semi-Discrete Equations / 2.3:
One Dimension / 2.3.1:
Two Dimensions with Bilinear Elements / 2.3.2:
Two Dimension with Biquadratic Elements / 2.3.3:
Two Dimensions with Serendipity Elements / 2.3.4:
Open Boundary Conditions (OBC's) / 2.4:
Two Dimensions / 2.4.1:
Some Non-Galerkin Results / 2.5:
The Lumped Mass Approximation / 2.5.1:
One-point Quadrature / 2.5.2:
Control Volume Finite Element (CVFEM) / 2.5.3:
The Group FEM/Product Approximation / 2.5.4:
The Petrov-Galerkin FEM / 2.5.5:
Dispersion, Dissipation, Phase Speed, Group Velocity, Mesh Design, and - Wiggles / 2.6:
Qualitative Discussion / 2.6.1:
Qualitative Discussion for some 1D Problems / 2.6.2:
Extension to 2D / 2.6.3:
Time Integration / 2.7:
Some Explicit ODE Methods / 2.7.1:
Application to Advection Diffusion (Scalar Transport) / 2.7.2:
Some Implicit ODE Methods / 2.7.3:
A Variable-Step Implicit Method for Advection-Diffusion / 2.7.4:
A Semi-Implicit Method / 2.7.5:
Dispersion (et al.) Errors for some Fully Discrete Methods / 2.7.6:
Concluding remarks and Suggestions / 2.7.8:
Additional Numerical Examples / 2.8:
Unstable ODE Examples / 2.8.1:
Advection-Diffusion of a Puff (Point Source) / 2.8.2:
The Rotating Cone - A Pure Advection Test Problem / 2.8.3:
The Navier-Stokes Equations / 3:
Notational Introduction / 3.1:
The Continuum, Equations (PDE's) / 3.2:
Alternate Forms of the Viscous Term / 3.3:
Stress-Divergence Form / 3.3.1:
Div-Curl Form / 3.3.2:
Curl Form / 3.3.3:
Alternate Forms of the Non-Linear Term / 3.4:
Rotational Form / 3.4.1:
Skew-Symmetric Form / 3.4.3:
A Symmetric Form / 3.4.4:
Derived Equations / 3.5:
The Pressure Poisson Equation (PPE) / 3.5.1:
The Vorticity Transport Equation / 3.5.2:
The Penalized Momentum Equation / 3.5.3:
Alternate Statements of the NS Equations / 3.6:
Velocity-Pressure in Divergence Form / 3.6.1:
Velocity-Pressure in Rotational Form / 3.6.2:
PPE Form / 3.6.3:
The Stream Function-Vorticity (-) / 3.6.4:
The Velocity-Vorticity Formulation / 3.6.5:
Other Formulations / 3.6.6:
Special Cases of Interest / 3.7:
Stokes Flow / 3.7.1:
Inviscid Flow / 3.7.2:
Potential Flow / 3.7.3:
Axisymmetric Flow / 3.7.4:
Boundary Conditions / 3.8:
u-P Equations / 3.8.1:
The Pressure Poisson Equation and Pressure Boundary Conditions / 3.8.2:
The Vorticity Transport Equation and Boundary Conditions on the Vorticity / 3.8.3:
Initial Conditions (and Well-Posedness) / 3.9:
The u-P Formulation / 3.9.1:
The PPE Formulation / 3.9.2:
Vorticity-Based Methods / 3.9.3:
Interim Summary / 3.10:
A Well-Posed IBVP for Incompressible Flow, and the Equivalence Theorem / 3.10.1:
Some Ill-Posed Problems / 3.10.2:
The Simplified PPE is also Ill-Posed / 3.10.3:
Fixing the SPPE and PPE Paradox / 3.10.4:
PPE Solutions that are not NSE Solutions / 3.10.5:
A Remark on the Penalty Method / 3.10.6:
Key Features of Incompressible Flow / 3.10.7:
Global Conservation Laws / 3.11:
Preface
Glossary of Abbreviations
Introduction / 1:
8.

図書

東工大
目次DB

図書
東工大
目次DB
edited and published by the Architectural Institute of Japan (AIJ)
出版情報: Tokyo : The Architectural Institute of Japan, 1993  4, 5, 596 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
AIJ Committee Members
Editors and Authors
PART I. FUNDAMENTAL ASPECTS OF EARTHQUAKE MOTION
   1. Earthquake Source Mechanisms and Their Characteristics 1
   1.1 Overview of earthquake sources [R. Inoue, K. Shimazaki, and M. Takeo] 2
   1.1.1 Fault models 2
   1.1.2 Quantification of earthquakes 9
   1.1.3 Seismicity 15
   1.1.4 Earthquakes and active faults 19
   1.2 Earthquake source spectrum from complex faulting processes [J. Koyama] 22
   1.2.1 Earthquake source spectra 22
   1.2.2 Acceleration spectra 35
   1.2.3 Earthquake magnitude and complex faulting processes 45
   2. Propagation and Attenuation of Seismic Waves 65
   2.1 Observed attenuation of seismic waves [M. Takemura] 65
   2.1.1 Definition of a Q-value 65
   2.1.2 Evaluation of Q-values from observed records 66
   2.1.3 Attenuation curves 73
   2.2 Seismic wave propagation in a homogeneous random medium [M. Kawano] 79
   2.2.1 Review of the problems 79
   2.2.2 Effective wave number 80
   2.2.3 Average wave motion 81
   2.2.4 Numerical example 82
   3. Amplification of Seismic Waves 97
   3.1 Amplification of body waves [J. Shibuya] 98
   3.1.1 Effects of local site conditions on damages and earthquake motion 98
   3.1.2 Body waves in layered media 102
   3.1.3 Nonlinear response of soil layers 105
   3.2 Excitation of surface waves in multilayered ground [S. Noda] 106
   3.2.1 Significance of surface waves 106
   3.2.2 Surface waves in layered media 107
   3.2.3 Spatial and temporal variation of earthquake motion 111
   3.2.4 Simulation of surface waves 112
   3.2.5 Site amplification factors 115
   3.3 Effects of surface and subsurface irregularities [H. Kawase] 118
   3.3.1 Various types of irregularities 118
   3.3.2 Material heterogeneity 119
   3.3.3 Input wave type 120
   3.3.4 Surface irregularities 120
   3.3.5 Subsurface irregularities 134
   4. Intensity of Earthquake Motion 157
   4.1 Ground motion severity measures and structure damage [S.Midorikawa] 157
   4.1.1 Ground motion severity measures 157
   4.1.2 Damage and ground motion intensity 161
   4.2 Seismic intensity distribution of large earthquakes [H. Kagami] 166
   4.2.1 Spatial patterns of isoseismals and factors affecting them 167
   4.2.2 Utilization of seismic intensity data 172
   4.3 Seismic intensity measurement and its application [S. Okada] 176
   4.3.1 Advantage of using seismic intensity measurements 176
   4.3.2 Seismic intensity scales 177
   4.3.3 Prospects of an advanced seismic intensity scale 184
   4.3.4 Seismic intensity measurements as the key to seismic disaster management 184
PART II. EARTHQUAKE MOTION OBSERVATION AND GEOTECHNICAL SURVEY
   1. Observation of Strong Ground Motion 191
   1.1 Historical review, instrumentation, and observation system [Y. Kitagawa] 191
   1.1.1 Strong ground motion accelerographs 191
   1.1.2 Observation of subsurface earthquake motion 198
   1.2 Array observation of strong ground motion [K. Kudo and T. Tanaka] 199
   1.2.1 Brief historical review 199
   1.2.2 Purpose and method 200
   1.2.3 Examples 201
   1.3 Data processing and databases for strong motion records [S. Sugito] 206
   1.3.1 Digitization and correction 206
   1.3.2 Databases 211
   1.3.3 Current situation regarding the release of data in Japan 216
   1.4 Application of strong ground motion records and future tasks [K. Ishida and M. Tohdo] 217
   1.4.1 Application of strong ground motion records 217
   1.4.2 Future tasks of strong motion recording systems 225
   1.4.3 Future development of a world-wide data exchange system 227
   2. Subsurface Investigation and Soil Dynamics 231
   2.1 Geophysical properties and soil investigation [N. Yoshida] 231
   2.1.1 In-situ tests 232
   2.1.2 Laboratory tests 234
   2.2 Deformation characteristics of soils [N. Yoshida] 237
   2.2.1 Evaluation at small strains 238
   2.2.2 Evaluation at large strains 242
   2.2.3 Strength characteristics 246
   2.3 Modeling the stress-strain relationship of soils [N. Yoshida] 250
   2.3.1 1-dimensional analysis 250
   2.3.2 2- and 3-dimensional analysis 255
   2.3.3 Equivalent linear method 256
   2.4 Soil liquefaction [N. Yoshida] 258
   2.4.1 Mechanism of liquefaction 258
   2.4.2 Damage caused by soil liquefaction 259
   2.4.3 Evaluation of liquefaction potential 261
   2.4.4 Effective stress analysis for liquefaction 266
   2.4.5 Liquefaction-induced large ground displacement 271
   3. Survey of Deep Subsurface Structure 277
   3.1 Artificial seismic sources [H. Yamanaka] 277
   3.2 Surveying methods [H. Yamanaka and S. Zama] 281
   3.2.1 Seismic refraction method 281
   3.2.2 Seismic reflection method 283
   3.2.3 Other geophysical methods 288
   3.3 Exploration results in Japan [S. Zama] 292
   3.3.1 Examples 292
   3.3.2 Comparison of exploration results obtained by different methods 300
   3.4 Applications to earthquake engineering problems [H. Yamanaka] 304
   3.5 Future prospects [K. Seo] 308
   4. Measurement of Microtremors 315
   4.1 Microtremor or microvibration [N. Taga] 315
   4.1.1 Definition 315
   4.1.2 Measurement 315
   4.1.3 Nature 317
   4.1.4 Applications 319
   4.1.5 Examples 322
   4.1.6 Special cases 323
   4.2 Long-period microtremors [H. Kagami] 324
   4.2.1 Observation scheme 324
   4.2.2 Analysis and interpretation 325
PART III. PREDICTION OF STRONG GROUND MOTION AND ITS APPLICATION TO EARTHQUAKE ENGINEERING
   1. Simulation and Prediction of Strong Ground Motion 335
   1.1 Theoretical approach [K. Irikura and T. Iwata] 335
   1.1.1 Basic theory for simulating ground motion 335
   1.1.2 Characterization of earthquake ground motions 337
   1.1.3 Numerical simulations of earthquake ground motions 345
   1.2 Semi-empirical approach [K. Irikura, T. Iwata, and M. Takemura] 349
   1.2.1 Basic theory and review 349
   1.2.2 Modeling of heterogeneous faulting 363
   1.2.3 Stochastic modeling and scaling relation of strong motion spectra 370
   1.3 Empirical approach [M. Takemura] 377
   1.3.1 Attenuation curves in near-source regions 377
   1.3.2 Duration time of strong ground motion 383
   1.3.3 Stochastic simulation of high-frequency ground motion 386
   2. Effects of Surface Geology on Strong Ground Motion 395
   2.1 General review of site effects studies [M. Motosaka and T. Ohta] 395
   2.1.1 Effects of soil irregularity and heterogeneity on strong ground motion 395
   2.1.2 Average characteristics and effects of surface geology 402
   2.2 Effects of surface geology on strong motion during destructive earthquakes [Y. Hisada and S. Midorikawa] 406
   2.2.1 Strong ground motion in Mexico City during the 1985 Mexico earthquake 406
   2.2.2 Strong ground motion during the 1989 Loma Prieta, California, earthquake 412
   2.3 International experiments on ground motion prediction [C. Cramer and K. Kudo] 416
   2.3.1 The Turkey Flat, California, experiment 416
   2.3.2 The Ashigara Valley, Japan, experiment 420
   3. Seismic Zonation 435
   3.1 Seismic macrozonation [H. Murakami] 435
   3.1.1 Purpose and overview of macrozonation 435
   3.1.2 Statistical and probabilistic approach 437
   3.1.3 An approach that reflects geological fault information 439
   3.1.4 Linkage to microzonation and future research needs 442
   3.2 Seismic microzonation map [H. Kagami] 443
   3.2.1 Evaluation of seismic input motions and ground failure 443
   3.2.2 Risk zonation map 448
   3.2.3 Recent trends and future problems 453
   3.3 Seismic zonation and earthquake risk management [M. Naganoh] 455
   3.3.1 Critical need for earthquake risk management 455
   3.3.2 Seismic disaster processes 456
   3.3.3 Damage assessment and earthquake planning scenarios 458
   3.3.4 Countermeasures and studies implemented by the government 463
   3.3.5 Countermeasures and studies implemented by the business community 464
   3.3.6 Urban disaster prevention planning 465
   4. Strong Ground Motion in Seismic Design 471
   4.1 Seismic design in current codes [S. Nagahashi, M. Tohdo, K. Wakamatsu, and M. Yamada] 471
   4.1.1 Philosophy behind earthquake resistant design 471
   4.1.2 The Building Standard Law of Japan 472
   4.1.3 High-rise buildings 476
   4.1.4 Specialized buildings 479
   4.2 Approaches to new seismic design codes [M. Hisano, Y. Inoue, M. Kawano, M. Niwa, S. Ohba, T. Ohta, M. Tohdo, K. Ukai, and H. Yokota] 481
   4.2.1 Strong ground motion in seismic design in Japan 481
   4.2.2 Strong ground motion in the Tokyo bay area 483
   4.2.3 Strong ground motion in the Osaka bay area 491
   4.2.4 Strong ground motion for new types of buildings 499
   4.3 Needs and prospects for design earthquake motion [K. Hagio] 502
APPENDICES : FINDINGS FROM RECENT EARTHQUAKES
   A1. Overview [H. Kagami] 507
   A2. Lessons learned from the destructive damage of recent earthquakes in Japan [N. Taga] 515
   A3. Accumulation of strong ground motion records in Japan [T. Watanabe] 527
   A4. Review of recent earthquakes 534
   (1) The 1968 Tokachi-oki earthquake [Y. Kitagawa] 534
   (2) The 1978 Miyagiken-oki earthquake [J. Shibuya] 537
   (3) The 1979 Imperial Valley earthquake [S. Midorikawa] 542
   (4) The 1982 Urakawa-oki earthquake [H. Kagami] 546
   (5) The 1983 Nihonkai-chubu earthquake [S. Noda] 550
   (6) The 1984 Naganoken-seibu earthquake [K. Imaoka and N. Taga] 560
   (7) The 1985 Central Chile earthquake [S. Midorikawa] 565
   (8) The 1985 Michoacan-Guerrero, Mexico, earthquake [T. Ohta] 568
   (9) The 1987 Chibaken Toho-oki earthquake [S. Zama] 575
   (10) The 1989 Loma Prieta, California, earthquake [M. Naganoh] 583
   Index 593
Preface
AIJ Committee Members
Editors and Authors
9.

図書

図書
V J Morris, A R Kirdy, A P Gunning
出版情報: London : Imperial College Press, c1999  xiv, 332 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
An Introduction / Chapter 1:
Apparatus / Chapter 2:
The atomic force microscope / 2.1.:
Piezoelectric scanners / 2.2.:
Probes and cantilevers / 2.3.:
Cantilever geometry / 2.3.1.:
Tip shape / 2.3.2.:
Tip functionality / 2.3.3.:
Sample holders / 2.4.:
Liquid cells / 2.4.1.:
Detection methods / 2.5.:
Optical detectors: laser beam deflection / 2.5.1.:
Optical detectors: interferometry / 2.5.2.:
Electrical detectors: electron tunnelling / 2.5.3.:
Electrical detectors: capacitance / 2.5.4.:
Electrical detectors: piezoelectric cantilevers / 2.5.5.:
Control systems / 2.6.:
AFM electronics / 2.6.1.:
Operation of the electronics / 2.6.2.:
Feedback control loops / 2.6.3.:
Design limitations / 2.6.4.:
Enhancing the performance of large scanners / 2.6.5.:
Vibration isolation: thermal and mechanical / 2.7.:
Calibration / 2.8.:
Piezoelectric scanner non-linearity / 2.8.1.:
Tip related factors / 2.8.2.:
Determining cantilever force constants / 2.8.3.:
Calibration standards / 2.8.4.:
Tips for scanning a calibration specimen / 2.8.5.:
Integrated AFMs / 2.9.:
Combined AFM-light microscope (AFM-LM) / 2.9.1.:
'Submarine' AFM-the combined AFM-Langmuir Trough / 2.9.2.:
Combined AFM-surface plasmon resonance (AFM-SPR) / 2.9.3.:
Cryo-AFM / 2.9.4.:
Basic Principles / Chapter 3:
Forces / 3.1.:
The Van der Waals force and force-distance curves / 3.1.1.:
The electrostatic force / 3.1.2.:
Capillary and adhesive forces / 3.1.3.:
Double layer forces / 3.1.4.:
Imaging modes / 3.2.:
Contact dc mode / 3.2.1.:
Non-contact ac modes / 3.2.2.:
Error signal or deflection mode / 3.2.3.:
Image types / 3.3.:
Topographical / 3.3.1.:
Frictional force / 3.3.2.:
Phase / 3.3.3.:
Substrates / 3.4.:
Mica / 3.4.1.:
Glass / 3.4.2.:
Graphite / 3.4.3.:
Common problems / 3.5.:
Thermal drift / 3.5.1.:
Multiple tip effects / 3.5.2.:
Tip convolution and probe broadening / 3.5.3.:
Sample roughness / 3.5.4.:
Sample mobility / 3.5.5.:
Imaging under liquid / 3.5.6.:
Getting started / 3.6.:
DNA / 3.6.1.:
Troublesome large samples / 3.6.2.:
Image optimisation / 3.7.:
Grey levels and colour tables / 3.7.1.:
Brightness and contrast / 3.7.2.:
High and low pass filtering / 3.7.3.:
Normalisation and plane fitting / 3.7.4.:
Despike / 3.7.5.:
Fourier filtering / 3.7.6.:
Correlation averaging / 3.7.7.:
Stereographs / 3.7.8.:
Do your homework! / 3.7.9.:
Macromolecules / Chapter 4:
Imaging methods / 4.1.:
Tip adhesion, molecular damage and displacement / 4.1.1.:
Depositing macromolecules onto substrates / 4.1.2.:
Metal coated samples / 4.1.3.:
Imaging in air / 4.1.4.:
Imaging under non aqueous liquids / 4.1.5.:
Binding molecules to the substrate / 4.1.6.:
Imaging under water or buffers / 4.1.7.:
Nucleic acids: DNA / 4.2.:
Imaging DNA / 4.2.1.:
DNA conformation, size and shape / 4.2.2.:
DNA-protein interactions / 4.2.3.:
Location and mapping of specific sites / 4.2.4.:
Chromosomes / 4.2.5.:
Nucleic acids: RNA / 4.3.:
Polysaccharides / 4.4.:
Imaging polysaccharides / 4.4.1.:
Size, shape, structure and conformation / 4.4.2.:
Aggregates, networks and gels / 4.4.3.:
Cellulose, plant cell walls and starch / 4.4.4.:
Proteoglycans / 4.4.5.:
Proteins / 4.5.:
Globular proteins / 4.5.1.:
Antibodies / 4.5.2.:
Fibrous proteins / 4.5.3.:
Interfacial Systems / Chapter 5:
Introduction to interfaces / 5.1.:
Surface activity / 5.1.1.:
AFM of interfacial systems / 5.1.2.:
The Langmuir trough / 5.1.3.:
Langmuir-Blodgett film transfer / 5.1.4.:
Sample preparation / 5.2.:
Cleaning protocols: glassware and trough / 5.2.1.:
Performing the dip / 5.2.2.:
Phospholipids / 5.3.:
AFM studies / 5.3.1.:
Modification of phospholipid bilayers with the AFM / 5.3.2.:
Studying intrinsic bilayer properties by AFM / 5.3.3.:
Ripple phases in phospholipid bilayers / 5.3.4.:
Mixed phospholipid films / 5.3.5.:
Effect of supporting layers / 5.3.6.:
Dynamic processes of phopholipid layers / 5.3.7.:
Liposomes and intact vesicles / 5.4.:
Lipid-protein mixed films / 5.5.:
Miscellaneous lipid films / 5.6.:
Interfacial protein films / 5.7.:
Specific precautions / 5.7.1.:
AFM studies of interfacial protein films / 5.7.2.:
Ordered Macromolecules / Chapter 6:
Three dimensional crystals / 6.1:
Crystalline cellulose / 6.1.1.:
Protein crystals / 6.1.2.:
Nucleic acid crystals / 6.1.3.:
Viruses and virus crystals / 6.1.4.:
Two dimensional protein crystals / 6.2.:
What does AFM have to offer? / 6.2.1.:
Sample preparation: membrane proteins / 6.2.2.:
Sample preparation: soluble proteins / 6.2.3.:
AFM studies of 2D membrane protein crystals / 6.3.:
Purple membrane / 6.3.1.:
Gap junctions / 6.3.2.:
Photosynthetic protein membranes / 6.3.3.:
ATPase in kidney membranes / 6.3.4.:
OmpF porin / 6.3.5.:
Bacterial S layers / 6.3.6.:
Bacteriophage [phis]29 head-tail connector / 6.3.7.:
Gas vesicle protein / 6.3.8.:
AFM studies of 2D crystals of soluble proteins / 6.4.:
Imaging conditions / 6.4.1.:
Electrostatic considerations / 6.4.2.:
Cells, Tissue and Biominerals / Chapter 7:
Force mapping and mechanical measurements / 7.1.:
Microbial cells: bacteria, spores and yeasts / 7.2.:
Bacteria / 7.2.1.:
Yeasts / 7.2.2.:
Blood cells / 7.3.:
Erythrocytes / 7.3.1.:
Leukocytes and lymphocytes / 7.3.2.:
Platelets / 7.3.3.:
Neurons and Glial cells / 7.4.:
Epithelial cells / 7.5.:
Non-confluent renal cells / 7.6.:
Endothelial cells / 7.7.:
Cardiocytes / 7.8.:
Other mammalian cells / 7.9.:
Plant cells / 7.10.:
Tissue / 7.11.:
Embedded sections / 7.11.1.:
Embedment-free sections / 7.11.2.:
Hydrated sections / 7.11.3.:
Freeze-fracture replicas / 7.11.4.:
Immunolabelling / 7.11.5.:
Biominerals / 7.12.:
Bone, tendon and cartilage / 7.12.1.:
Teeth / 7.12.2.:
Shells / 7.12.3.:
Other Probe Microscopes / Chapter 8:
Overview / 8.1.:
Scanning tunnelling microscope (STM) / 8.2.:
Scanning near-field optical microscope (SNOM) / 8.3.:
Scanning ion conductance microscope (SICM) / 8.4.:
Scanning thermal microscope (SThM) / 8.5.:
Optical tweezers and the photonic force microscope (PFM) / 8.6.:
SPM books
Index
An Introduction / Chapter 1:
Apparatus / Chapter 2:
The atomic force microscope / 2.1.:
10.

図書

図書
Stephen I. Gallant
出版情報: Cambridge, Mass. : MIT Press, c1993  xvi, 365 p. ; 24 cm
シリーズ名: Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Basics / I:
Introduction and Important Definitions / 1:
Why Connectionist Models? / 1.1:
The Grand Goals of Al and Its Current Impasse / 1.1.1:
The Computational Appeal of Neural Networks / 1.1.2:
The Structure of Connectionist Models / 1.2:
Network Properties / 1.2.1:
Cell Properties / 1.2.2:
Dynamic Properties / 1.2.3:
Learning Properties / 1.2.4:
Two Fundamental Models: Multilayer Perceptrons (MLP's) and Backpropagation Networks (BPN's) / 1.3:
Multilayer Perceptrons (MLP's) / 1.3.1:
Backpropagation Networks (BPN's) / 1.3.2:
Gradient Descent / 1.4:
The Algorithm / 1.4.1:
Practical Problems / 1.4.2:
Comments / 1.4.3:
Historic and Bibliographic Notes / 1.5:
Early Work / 1.5.1:
The Decline of the Perceptron / 1.5.2:
The Rise of Connectionist Research / 1.5.3:
Other Bibliographic Notes / 1.5.4:
Exercises / 1.6:
Programming Project / 1.7:
Representation Issues / 2:
Representing Boolean Functions / 2.1:
Equivalence of {+1, -1,0} and {1,0} Forms / 2.1.1:
Single-Cell Models / 2.1.2:
Nonseparable Functions / 2.1.3:
Representing Arbitrary Boolean Functions / 2.1.4:
Representing Boolean Functions Using Continuous Connectionist Models / 2.1.5:
Distributed Representations / 2.2:
Definition / 2.2.1:
Storage Efficiency and Resistance to Error / 2.2.2:
Superposition / 2.2.3:
Learning / 2.2.4:
Feature Spaces and ISA Relations / 2.3:
Feature Spaces / 2.3.1:
Concept-Function Unification / 2.3.2:
ISA Relations / 2.3.3:
Binding / 2.3.4:
Representing Real-Valued Functions / 2.4:
Approximating Real Numbers by Collections of Discrete Cells / 2.4.1:
Precision / 2.4.2:
Approximating Real Numbers by Collections of Continuous Cells / 2.4.3:
Example: Taxtime! / 2.5:
Programming Projects / 2.6:
Learning In Single-Layer Models / II:
Perceptron Learning and the Pocket Algorithm / 3:
Perceptron Learning for Separable Sets of Training Examples / 3.1:
Statement of the Problem / 3.1.1:
Computing the Bias / 3.1.2:
The Perceptron Learning Algorithm / 3.1.3:
Perceptron Convergence Theorem / 3.1.4:
The Perceptron Cycling Theorem / 3.1.5:
The Pocket Algorithm for Nonseparable Sets of Training Examples / 3.2:
Problem Statement / 3.2.1:
Perceptron Learning Is Poorly Behaved / 3.2.2:
The Pocket Algorithm / 3.2.3:
Ratchets / 3.2.4:
Examples / 3.2.5:
Noisy and Contradictory Sets of Training Examples / 3.2.6:
Rules / 3.2.7:
Implementation Considerations / 3.2.8:
Proof of the Pocket Convergence Theorem / 3.2.9:
Khachiyan's Linear Programming Algorithm / 3.3:
Winner-Take-All Groups or Linear Machines / 3.4:
Generalizes Single-Cell Models / 4.1:
Perceptron Learning for Winner-Take-All Groups / 4.2:
The Pocket Algorithm for Winner-Take-All Groups / 4.3:
Kessler's Construction, Perceptron Cycling, and the Pocket Algorithm Proof / 4.4:
Independent Training / 4.5:
Autoassociators and One-Shot Learning / 4.6:
Linear Autoassociators and the Outer-Product Training Rule / 5.1:
Anderson's BSB Model / 5.2:
Hopfieid's Model / 5.3:
Energy / 5.3.1:
The Traveling Salesman Problem / 5.4:
The Cohen-Grossberg Theorem / 5.5:
Kanerva's Model / 5.6:
Autoassociative Filtering for Feedforward Networks / 5.7:
Concluding Remarks / 5.8:
Mean Squared Error (MSE) Algorithms / 5.9:
Motivation / 6.1:
MSE Approximations / 6.2:
The Widrow-Hoff Rule or LMS Algorithm / 6.3:
Number of Training Examples Required / 6.3.1:
Adaline / 6.4:
Adaptive Noise Cancellation / 6.5:
Decision-Directed Learning / 6.6:
Unsupervised Learning / 6.7:
Introduction / 7.1:
No Teacher / 7.1.1:
Clustering Algorithms / 7.1.2:
k-Means Clustering / 7.2:
Topology-Preserving Maps / 7.2.1:
Example / 7.3.1:
Demonstrations / 7.3.4:
Dimensionality, Neighborhood Size, and Final Comments / 7.3.5:
Art1 / 7.4:
Important Aspects of the Algorithm / 7.4.1:
Art2 / 7.4.2:
Using Clustering Algorithms for Supervised Learning / 7.6:
Labeling Clusters / 7.6.1:
ARTMAP or Supervised ART / 7.6.2:
Learning In Multilayer Models / 7.7:
The Distributed Method and Radial Basis Functions / 8:
Rosenblatt's Approach / 8.1:
The Distributed Method / 8.2:
Cover's Formula / 8.2.1:
Robustness-Preserving Functions / 8.2.2:
Hepatobiliary Data / 8.3:
Artificial Data / 8.3.2:
How Many Cells? / 8.4:
Pruning Data / 8.4.1:
Leave-One-Out / 8.4.2:
Radial Basis Functions / 8.5:
A Variant: The Anchor Algorithm / 8.6:
Scaling, Multiple Outputs, and Parallelism / 8.7:
Scaling Properties / 8.7.1:
Multiple Outputs and Parallelism / 8.7.2:
A Computational Speedup for Learning / 8.7.3:
Computational Learning Theory and the BRD Algorithm / 8.7.4:
Introduction to Computational Learning Theory / 9.1:
PAC-Learning / 9.1.1:
Bounded Distributed Connectionist Networks / 9.1.2:
Probabilistic Bounded Distributed Concepts / 9.1.3:
A Learning Algorithm for Probabilistic Bounded Distributed Concepts / 9.2:
The BRD Theorem / 9.3:
Polynomial Learning / 9.3.1:
Noisy Data and Fallback Estimates / 9.4:
Vapnik-Chervonenkis Bounds / 9.4.1:
Hoeffding and Chernoff Bounds / 9.4.2:
Pocket Algorithm / 9.4.3:
Additional Training Examples / 9.4.4:
Bounds for Single-Layer Algorithms / 9.5:
Fitting Data by Limiting the Number of Iterations / 9.6:
Discussion / 9.7:
Exercise / 9.8:
Constructive Algorithms / 9.9:
The Tower and Pyramid Algorithms / 10.1:
The Tower Algorithm / 10.1.1:
Proof of Convergence / 10.1.2:
A Computational Speedup / 10.1.4:
The Pyramid Algorithm / 10.1.5:
The Cascade-Correlation Algorithm / 10.2:
The Tiling Algorithm / 10.3:
The Upstart Algorithm / 10.4:
Other Constructive Algorithms and Pruning / 10.5:
Easy Learning Problems / 10.6:
Decomposition / 10.6.1:
Expandable Network Problems / 10.6.2:
Limits of Easy Learning / 10.6.3:
Backpropagation / 10.7:
The Backpropagation Algorithm / 11.1:
Statement of the Algorithm / 11.1.1:
A Numerical Example / 11.1.2:
Derivation / 11.2:
Practical Considerations / 11.3:
Determination of Correct Outputs / 11.3.1:
Initial Weights / 11.3.2:
Choice of r / 11.3.3:
Momentum / 11.3.4:
Network Topology / 11.3.5:
Local Minima / 11.3.6:
Activations in [0,1] versus [-1, 1] / 11.3.7:
Update after Every Training Example / 11.3.8:
Other Squashing Functions / 11.3.9:
NP-Completeness / 11.4:
Overuse / 11.5:
Interesting Intermediate Cells / 11.5.2:
Continuous Outputs / 11.5.3:
Probability Outputs / 11.5.4:
Using Backpropagation to Train Multilayer Perceptrons / 11.5.5:
Backpropagation: Variations and Applications / 11.6:
NETtalk / 12.1:
Input and Output Representations / 12.1.1:
Experiments / 12.1.2:
Backpropagation through Time / 12.1.3:
Handwritten Character Recognition / 12.3:
Neocognitron Architecture / 12.3.1:
The Network / 12.3.2:
Robot Manipulator with Excess Degrees of Freedom / 12.3.3:
The Problem / 12.4.1:
Training the Inverse Network / 12.4.2:
Plan Units / 12.4.3:
Simulated Annealing and Boltzmann Machines / 12.4.4:
Simulated Annealing / 13.1:
Boltzmann Machines / 13.2:
The Boltzmann Model / 13.2.1:
Boltzmann Learning / 13.2.2:
The Boltzmann Algorithm and Noise Clamping / 13.2.3:
Example: The 4-2-4 Encoder Problem / 13.2.4:
Remarks / 13.3:
Neural Network Expert Systems / 13.4:
Expert Systems and Neural Networks / 14:
Expert Systems / 14.1:
What Is an Expert System? / 14.1.1:
Why Expert Systems? / 14.1.2:
Historically Important Expert Systems / 14.1.3:
Critique of Conventional Expert Systems / 14.1.4:
Neural Network Decision Systems / 14.2:
Example: Diagnosis of Acute Coronary Occlusion / 14.2.1:
Example: Autonomous Navigation / 14.2.2:
Other Examples / 14.2.3:
Decision Systems versus Expert Systems / 14.2.4:
MACIE, and an Example Problem / 14.3:
Diagnosis and Treatment of Acute Sarcophagal Disease / 14.3.1:
Network Generation / 14.3.2:
Sample Run of Macie / 14.3.3:
Real-Valued Variables and Winner-Take-All Groups / 14.3.4:
Not-Yet-Known versus Unavailable Variables / 14.3.5:
Applicability of Neural Network Expert Systems / 14.4:
Details of the MACIE System / 14.5:
Inferencing and Forward Chaining / 15.1:
Discrete Multilayer Perceptron Models / 15.1.1:
Continuous Variables / 15.1.2:
Winner-Take-All Groups / 15.1.3:
Using Prior Probabilities for More Aggressive Inferencing / 15.1.4:
Confidence Estimation / 15.2:
A Confidence Heuristic Prior to Inference / 15.2.1:
Confidence in Inferences / 15.2.2:
Information Acquisition and Backward Chaining / 15.3:
Concluding Comment / 15.4:
Noise, Redundancy, Fault Detection, and Bayesian Decision Theory / 15.5:
The High Tech Lemonade Corporation's Problem / 16.1:
The Deep Model and the Noise Model / 16.2:
Generating the Expert System / 16.3:
Probabilistic Analysis / 16.4:
Noisy Single-Pattern Boolean Fault Detection Problems / 16.5:
Convergence Theorem / 16.6:
Extracting Rules from networks / 16.7:
Why Rules? / 17.1:
What Kind of Rules? / 17.2:
Criteria / 17.2.1:
Inference Justifications versus Rule Sets / 17.2.2:
Which Variables in Conditions / 17.2.3:
Inference Justifications / 17.3:
MACIE's Algorithm / 17.3.1:
The Removal Algorithm / 17.3.2:
Key Factor Justifications / 17.3.3:
Justifications for Continuous Models / 17.3.4:
Rule Sets / 17.4:
Limiting the Number of Conditions / 17.4.1:
Approximating Rules / 17.4.2:
Conventional + Neural Network Expert Systems / 17.5:
Debugging an Expert System Knowledge Base / 17.5.1:
The Short-Rule Debugging Cycle / 17.5.2:
Appendix Representation Comparisons / 17.6:
DNF Expressions / A.1 DNF Expressions and Polynomial Representability:
Polynomial Representability / A.1.2:
Space Comparison of MLP and DNF Representations / A.1.3:
Speed Comparison of MLP and DNF Representations / A.1.4:
MLP versus DNF Representations / A.1.5:
Decision Trees / A.2:
Representing Decision Trees by MLP's / A.2.1:
Speed Comparison / A.2.2:
Decision Trees versus MLP's / A.2.3:
p-lDiagrams / A.3:
Symmetric Functions and Depth Complexity / A.4:
Bibliography / A.5:
Index
Foreword
Basics / I:
Introduction and Important Definitions / 1:
11.

図書

図書
Francis G. McCabe
出版情報: Englewood Cliffs, NJ : Prentice Hall, c1992  xxii, 289 p. ; 24 cm
シリーズ名: Prentice-Hall International series in computer science
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction and background / 1:
What is logic programming? / 1.1:
Extensions to logic programming / 1.2:
Functions and relations / 1.2.1:
Programming on a larger scale / 1.2.2:
Object oriented and logic programming / 1.3:
Logic programming and static objects / 1.3.1:
Dynamic objects / 1.3.2:
Summary / 1.4:
Elements of LandO / 2:
Class templates / 2.1:
Syntax of LandO programs / 2.1.1:
Computing with class rules / 2.1.2:
Functions and conditional equalities / 2.2:
Expressions in programs / 2.2.1:
Mutable theories / 2.3:
assert, retract and LandO programs / 2.3.1:
Dynamic variables in LandO programs / 2.3.2:
Programming techniques / 2.4:
Class templates and modules / 3.1:
Generic modules / 3.1.1:
Data driven programming / 3.2:
The structure of objects / 3.3:
Inclusion and broadcasting / 3.3.1:
Specialization and inheritance / 3.3.2:
LandO programming methodology / 3.4:
Logic programming methodologies / 4.1:
The 'divide and conquer' programming methodology / 4.1.1:
The 'browse and modify' programming methodology / 4.1.2:
Application classification / 4.2:
Single-function applications / 4.2.1:
Multi-function applications / 4.2.2:
Abstract pipelines / 4.2.3:
Composite applications / 4.3:
LandO graphics / 4.4:
Introduction / 5.1:
Objects versus command sequences / 5.1.1:
Denoting pictures by terms / 5.2:
Simple pictures / 5.2.1:
Computing with pictures / 5.2.2:
More complex pictures / 5.3:
Aggregate pictures / 5.3.1:
Recursively defined pictures / 5.3.2:
Graphics calculations and aggregate pictures / 5.3.3:
Drawing modified pictures / 5.3.4:
Graphics and applications / 5.4:
The link between an application and its tools / 5.4.1:
Displaying graphic edit windows / 5.4.2:
Related work / 5.5:
Helm and Marriott / 5.5.1:
The travelling salesman / 5.6:
Two solutions to the travelling salesman / 6.1:
Incremental algorithms / 6.1.1:
Analysis of route in Program 6.3 / 6.1.2:
The driving salesman / 6.1.3:
The travelling salesman application / 6.2:
The representation of a town / 6.2.1:
The application's tools / 6.2.2:
A general purpose packer/scheduler / Tony Solomonides6.3:
The problems / 7.1:
Attributes and features: a wish list / 7.2:
The nature of boxes / 7.2.1:
Constraints / 7.3:
Three kinds of constraints / 7.3.1:
Content-related constraints / 7.3.2:
The underlying engine / 7.4:
How to stack boxes / 7.4.1:
The geometry of planar arrangements / 7.4.2:
Interval operations and their computation / 7.4.3:
Interval problems in three dimensions / 7.4.4:
Stacking boxes in three dimensions / 7.4.5:
The user interface / 7.5:
Semantics / 7.6:
Semantics of class templates / 8.1:
The fundamental intuition / 8.1.1:
The approach to understanding / 8.1.2:
A proof theory for LandO programs / 8.1.3:
Mapping LandO programs into clausal form / 8.1.4:
The soundness of LandO inference / 8.1.5:
The completeness of LandO inference / 8.1.6:
Conventional logic programs and LandO programs / 8.1.7:
A model theory for LandO programs / 8.1.8:
The logic of functions / 8.2:
Functions, terms and canonical forms / 8.2.1:
A simple evaluator for canon / 8.2.2:
The effect of evaluation order / 8.2.3:
Compiling expressions / 8.2.4:
Quoted expressions and evaluation / 8.2.5:
Implementing LandO / 8.3:
A preprocessor for LandO programs / 9.1:
Constraints on the translated programs / 9.1.1:
A strategy for compiling LandO programs / 9.1.2:
The label phase / 9.1.3:
The body phase / 9.1.4:
Class rules / 9.1.5:
A complete example / 9.1.6:
Equations and expressions / 9.1.7:
Dynamic variables / 9.1.8:
Tracing and debugging LandO programs / 9.1.9:
Dynamic LandO programs / 9.2:
A performance comparison of LandO programs / 9.3:
The LandO preprocessor / 9.4:
The top-level of the LandO preprocessor / A.1:
Consulting an LandO file / A.1.1:
The translator proper / A.1.2:
A single class body / A.1.3:
Examples of LandO programs / A.1.4:
The benchmark programs / B.1:
Naive reverse / B.1.1:
Quicksorting a list / B.1.2:
An air-line planner / B.2:
The travelling salesman program / C:
The packer algorithms / D:
Two-dimensional arrangements / D.1:
Three dimensional arrangements / D.2:
Interval algebra in three dimensions / D.3:
One-dimensional interval algebra / D.3.1:
Two dimensional interval algebra / D.3.2:
Three dimensional interval algebra / D.3.3:
General library programs / D.4:
Bibliography
Index
Preface
Introduction and background / 1:
What is logic programming? / 1.1:
12.

図書

図書
Yoshiharu Doi
出版情報: New York, N.Y. : VCH, c1990  ix, 156 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
Environmentally Degradable Polyesters / 1.3:
References
Fermentation and Analysis of Microbial Polyesters / Chapter 2:
Fermentation Production / 2.1:
Poly(3-hydroxybutyrate) / 2.1.1:
Poly(hydroxyalkanoates) / 2.1.2:
Polymer Isolation / 2.2:
Solvent Extraction / 2.2.1:
Alkaline Hypochlorite Treatment / 2.2.2:
Enzyme Treatment / 2.2.3:
Analysis / 2.3:
Polyester Content of Cells / 2.3.1:
Composition of Copolymers / 2.3.2:
Molecular Weight? / 2.3.3:
Microorganisms and Poly(3-hydroxyalkanoates) / Chapter 3:
Poly(3-hydroxybutyrate) in Microorganisms / 3.1:
Functions of Poly(3-hydroxybutyrate) / 3.1.1:
Structure of Native P(3HB) Granules / 3.1.2:
Biosynthesis of Poly(3-hydroxyalkanoates) / 3.2:
Alcaligenes eutrophus / 3.2.1:
Pseudomonas oleovorans / 3.2.2:
Other Bacterial Strains / 3.2.3:
Molecular Structures of Poly(3-hydroxyalkanoates) / 3.3:
Poly(3-hydroxybutyrate-co-3-hydroxyalerate) / 3.3.1:
Poly(3-hydroxyalkanoates-co-3-hydroxy--chloroalkanoates) / 3.3.2:
Poly(3-hydroxyalkanoates) Metabolism / Chapter 4:
Pathways of Poly(3-hydroxybutyrate) Synthesis / 4.1:
Pathways of Poly(3-hydroxyalkanoates) Synthesis / 4.2:
Enzymology of Poly(3-hydroxyalkanoates) Synthesis / 4.3:
3-Ketothiolase / 4.3.1:
Acetoacetyl-CoA Reductase / 4.3.2:
P(3HB) Synthase / 4.3.3:
Pathways of P(3-hydroxybutyrate) Degradation / 4.4:
Cyclic Nature of Poly(3-hydroxyalkanoates) Metabolism / 4.5:
Replacement of P(3HB) by P(3HB-co-3HV) / 4.5.1:
Replacement of P(3HB-co-3HV) by P(3HB) / 4.5.2:
Application to PHA Fermentation / 4.5.3:
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) / Chapter 5:
Alcaligenes eutrophus and Carbon Substrates / 5.1:
Molecular Structure / 5.2:
Biosynthetic Pathway? / 5.3:
Structure and Properties of Poly(3-hydroxybutyrate) / Chapter 6:
Crystal Structure and Properties / 6.1:
Crystal Structure / 6.1.1:
Solid-State Properties / 6.1.2:
Solution Properties / 6.2:
Solid-State Properties of Copolyesters / Chapter 7:
Composition and Physical Properties / 7.1:
X-Ray Diffraction Analysis / 7.1.1:
Solid-State CP/MAS 13C-NMR Analysis / 7.1.2:
Mechanical Properties / 7.1.3:
Thermal Properties / 7.2:
Melting Temperatures / 7.2.1:
Glass-Transition Temperatures / 7.2.2:
Thermal Stability / 7.2.3:
Kinetics of Crystallization / 7.3:
Biodegradation of Microbial Polyesters / Chapter 8:
Extracellular P(3HB) Depolymerase / 8.1:
Pseudomonas lemoignei / 8.1.1:
Alcaligenes faecalis / 8.1.2:
Enzymatic Hydrolysis of Copolyesters / 8.2:
Simple Hydrolysis of Polyesters / 8.3:
Applications and Prospects / 8.4:
Environmentally Degradable Plastics / 8.4.1:
Medical Applications / 8.4.2:
Index
Introduction / Chapter 1:
Microbial Poly(3-hydroxybutyrate) / 1.1:
Microbial Poly(hydroxyalkanoates) / 1.2:
13.

図書

図書
A.P. Sutton and R.W. Balluffi
出版情報: Oxford : Clarendon Press , New York : Oxford University, 1995  xxxii, 819 p. ; 25 cm
シリーズ名: Monographs on the physics and chemistry of materials ; 51
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Glossary
Interfacial Structure / Part I:
The geometry of interfaces / 1:
Introduction / 1.1:
All the group theory we need / 1.2:
The relationship between two crystals / 1.3:
Crystals and lattices / 1.3.1:
Vector and coordinate transformations / 1.3.2:
Descriptions of lattice rotations / 1.3.3:
Vector and matrix representations / 1.3.3.1:
The Frank-Rodrigues map / 1.3.3.2:
Fundamental zones / 1.3.3.3:
Quaternions / 1.3.3.4:
Geometrical specification of an interface / 1.4:
Macroscopic and microscopic geometrical degrees of freedom / 1.4.1:
Macroscopic geometrical degrees of freedom of an arbitrary interface / 1.4.2:
Grain boundaries in cubic materials / 1.4.3:
The median lattice and the mean boundary plane / 1.4.3.1:
Tilt and twist components / 1.4.3.2:
Symmetric and asymmetric tilt boundaries / 1.4.3.3:
Bicrystallography / 1.5:
Outline of crystallographic methodology / 1.5.1:
Introduction to Seitz symbols / 1.5.3:
Symmetry of dichromatic patterns / 1.5.4:
Symmetry of dichromatic complexes / 1.5.5:
Symmetry of ideal bicrystals / 1.5.6:
Symmetry of real bicrystals / 1.5.7:
Two examples / 1.6:
Lattice matched polar-non-polar epitaxial interfaces / 1.6.1:
Lattice matched metal-silicide silicon interfaces / 1.6.2:
Classification of isolated interfacial line defects / 1.7:
General formulation / 1.7.1:
Interfacial dislocations / 1.7.2:
DSC dislocations / 1.7.2.1:
Supplementary displacement dislocations / 1.7.2.2:
Relaxation displacement dislocations / 1.7.2.3:
Non-holosymmetric crystals and interfacial defects / 1.7.2.4:
Interfacial disclinations and dispirations / 1.7.2.5:
The morphologies of embedded crystals / 1.8:
Quasiperiodicity and incommensurate interfaces / 1.9:
References
Dislocation models for interfaces / 2:
Classification of interfacial dislocations / 2.1:
The Frank-Bilby equation / 2.3:
Comments on the Frank-Bilby equation and the dislocation content of an interface / 2.4:
Frank's formula / 2.5:
The O-lattice / 2.6:
The geometry of discrete dislocation arrays in interfaces / 2.7:
The general interface / 2.7.1:
Application to a grain boundary with arbitrary geometrical parameters / 2.7.2:
Grain boundaries containing one and two sets of dislocations / 2.7.3:
Epitaxial interfaces / 2.7.4:
Local dislocation interactions / 2.8:
Pt-NiO interfaces / 2.9:
A1-A1[subscript 3] Ni eutectic interfaces / 2.9.2:
Elastic fields of interfaces / 2.10:
Stress and distortion fields of grain boundaries in isotropic elasticity / 2.10.1:
Grain boundary energies / 2.10.3:
Stress fields of heterophase interfaces in isotropic elasticity / 2.10.4:
Dislocation arrays at interfaces in anisotropic elasticity / 2.10.5:
Isotropic elastic analysis of epitaxial interfaces / 2.10.6:
Stress fields of precipitates and non-planar interfaces / 2.10.7:
Degree of localization of the cores of interfacial dislocations / 2.11:
Lattice theories of dislocation arrays / 2.11.1:
Peierls-Nabarro model for an isolated edge dislocation / 2.11.2.1:
Peierls-Nabarro model for a symmetrical tilt boundary / 2.11.2.3:
The van der Merwe model for a symmetrical tilt boundary / 2.11.2.4:
Atomistic models using computer simulation and interatomic forces / 2.11.3:
Experimental observations of arrays of interfacial dislocations / 2.12:
Mainly room-temperature observations / 2.12.1:
High-temperature observations / 2.12.2:
Models of interatomic forces at interfaces / 3:
Density functional theory / 3.1:
The variational principle and the Kohn-Sham equations / 3.2.1:
The Harris-Foulkes energy functional / 3.2.2:
Valence and core electrons: pseudopotentials / 3.3:
The force theorem and Hellmann-Feynman forces / 3.4:
Cohesion and pair potentials in sp-bonded metals / 3.5:
Effective medium theory / 3.6:
The embedded atom method / 3.7:
Tight binding models / 3.8:
The diatomic molecule / 3.8.1:
Bands, bonds, and Green functions / 3.8.3:
Moments of the spectral density matrix / 3.8.4:
The tight binding bond (TBB) model / 3.8.5:
The second moment approximation / 3.8.6:
Beyond the second moment approximation / 3.8.7:
Temperature dependence of atomic interactions / 3.9:
Ionic bonding / 3.10:
Interatomic forces at heterophase interfaces / 3.11:
Models and experimental observations of atomic structure / 4:
Introduction: classification of interfaces / 4.1:
Diffuse interfaces / 4.2:
Heterophase interfaces in systems with a miscibility gap / 4.2.1:
Antiphase domain boundaries in systems with long-range order / 4.2.2:
Displacive transformation interfaces in systems near a mechanical instability / 4.2.3:
Sharp homophase interfaces: large-angle grain boundaries / 4.3:
Large-angle grain boundaries in metals / 4.3.1:
The significance of the rigid body displacement parallel to the boundary plane / 4.3.1.1:
The significance of the expansion normal to the boundary plane / 4.3.1.2:
Testing the analytic model / 4.3.1.3:
The significance of individual atomic relaxation / 4.3.1.4:
Discussion: singular, vicinal, and general interfaces / 4.3.1.5:
Methods of computer simulation / 4.3.1.6:
The polyhedral unit model / 4.3.1.7:
The structural unit model / 4.3.1.8:
Three-dimensional grain boundary structures / 4.3.1.9:
The influence of temperature / 4.3.1.10:
Grain boundaries in ionic crystals / 4.3.2:
Grain boundaries in covalent crystals / 4.3.3:
Sharp heterophase interfaces / 4.4:
Metal-metal interfaces / 4.4.1:
Metal-insulator interfaces / 4.4.3:
Metal-semiconductor interfaces / 4.4.4:
Interfacial Thermodynamics / Part II:
Thermodynamics of interfaces / 5:
The interface free energy / 5.1:
Additional interface thermodynamic quantities and relationships between them / 5.3:
Introduction of the interface stress and strain variables / 5.4:
Introduction of the geometric thermodynamic variables / 5.5:
Dependence of [sigma] on the interface inclination / 5.6:
The Wulff plot / 5.6.1:
Equilibrium shape (Wulff form) of embedded second-phase particle / 5.6.2:
Faceting of initially flat interface / 5.6.3:
The capillarity vector, [xi] / 5.6.4:
Capillary pressure associated with smoothly curved interface / 5.6.5:
Equilibrium lattice solubility at a smoothly curved heterophase interface / 5.6.6:
Equilibrium solubility at embedded second-phase particle / 5.6.7:
Equilibrium interface configurations at interface junction lines / 5.6.8:
Further thermodynamic relationships involving changes in interface inclination / 5.6.9:
Dependence of [sigma] on the crystal misorientation / 5.7:
Dependence of [sigma] on simultaneous variations of the interface inclination and crystal misorientation / 5.8:
Chemical potentials and diffusion potentials, M[subscript i], in non-uniform systems containing interfaces / 5.9:
Analysis of system at equilibrium; introduction of the diffusion potential, M[subscript i] / 5.9.1:
Incoherent interface / 5.9.2.1:
Coherent interface / 5.9.2.2:
Summary / 5.9.2.3:
Diffusional transport in non-equilibrium systems / 5.9.3:
Interface phases and phase transitions / 6:
Interface phase equilibria / 6.1:
Interface phase transitions / 6.3:
Non-congruent phase transitions / 6.3.1:
Faceting of initially flat interfaces / 6.3.1.1:
Faceting of embedded particle interfaces / 6.3.1.2:
Interface dissociation / 6.3.1.3:
Congruent phase transitions / 6.3.2:
Various transitions induced by changes in temperature, composition, or crystal misorientation / 6.3.2.1:
Interface wetting by a solid phase / 6.3.2.2:
Interface wetting by a liquid phase in alloy systems / 6.3.2.3:
Grain boundary melting in a one-component system / 6.3.2.4:
Segregation of solute atoms to interfaces / 7:
Overview of some of the main features of interface segregation in metals / 7.1:
Physical models for the interaction between solute atoms and interfaces / 7.3:
Elastic interaction models / 7.3.1:
Size accommodation model / 7.3.2.1:
Hydrostatic pressure (P[Delta]V) and elastic inhomogeneity models / 7.3.2.2:
Further elastic models / 7.3.2.3:
Atomistic models at 0 K / 7.3.3:
Electronic interaction models / 7.3.4:
Statistical mechanical models of segregation / 7.4:
Regular solution model / 7.4.1:
Mean field models / 7.4.3:
McLean isotherm / 7.4.3.1:
Fowler-Guggenheim isotherm / 7.4.3.2:
Multiple segregation site models / 7.4.3.3:
Beyond mean field models / 7.4.4:
Some additional models / 7.4.5:
Atomistic models at a finite temperature / 7.5:
Interface segregation in ionic solids / 7.6:
Interfacial Kinetics / Part III:
Diffusion at interfaces / 8:
Fast diffusion along interfaces of species which are substitutional in the crystal lattice / 8.1:
Slab model and regimes of diffusion behaviour / 8.2.1:
Mathematical analysis of the diffusant distribution in the type A, B, and C regimes / 8.2.2:
Experimental observations / 8.2.3:
Some major results for diffusion along interfaces / 8.2.3.1:
Effects of interface structure / 8.2.3.2:
Mechanisms for fast grain boundary diffusion / 8.2.4:
Equilibrium point defects in the grain boundary core / 8.2.4.1:
'Ring', vacancy, interstitialcy, and interstitial mechanisms / 8.2.4.2:
Models for grain boundary self-diffusivities via the different mechanisms / 8.2.5:
Vacancy mechanism / 8.2.5.1:
Interstitialcy mechanism / 8.2.5.2:
Interstitial mechanism / 8.2.5.3:
General characteristics of the models for boundary self-diffusion / 8.2.6:
On the question of the mechanism (or mechanisms) of fast grain boundary diffusion / 8.2.7:
Metals / 8.2.7.1:
Ionic materials / 8.2.7.2:
Covalent materials / 8.2.7.3:
Diffusion along interfaces of solute species which are interstitial in the crystal lattice / 8.3:
Slow diffusion across interfaces in fast ion conductors / 8.4:
Diffusion-induced grain boundary motion (DIGM) / 8.5:
Conservative motion of interfaces / 9:
'Conservative' versus 'non-conservative' motion of interfaces / 9.1:
Driving pressures for conservative motion / 9.1.2:
Basic mechanisms: correlated versus uncorrelated processes / 9.1.3:
Impediments to interface motion / 9.1.4:
Mechanisms and models for sharp interfaces / 9.2:
Glissile motion of interfacial dislocations / 9.2.1:
Small-angle grain boundaries / 9.2.1.1:
Large-angle grain boundaries / 9.2.1.2:
Heterophase interfaces / 9.2.1.3:
Glide and climb of interfacial dislocations / 9.2.2:
Shuffling motion of pure steps / 9.2.2.1:
Uncorrelated atom shuffling and/or diffusional transport / 9.2.4:
Uncorrelated atom shuffling / 9.2.4.1:
Uncorrelated diffusional transport / 9.2.4.2:
Solute atom drag / 9.2.5:
Experimental observations of non-glissile (thermally activated) grain boundary motion in metals / 9.2.6:
General large-angle grain boundaries / 9.2.6.1:
Singular (or vicinal) large-angle grain boundaries / 9.2.6.2:
Solute atom drag effects / 9.2.6.3:
Mechanisms and models for diffuse interfaces / 9.2.6.4:
Propagation of non-linear elastic wave (or, alternatively, coherency dislocations) / 9.3.1:
Self-diffusion / 9.3.2:
Equations of interface motion / 9.4:
Motion when v = v(n) / 9.4.1:
Motion of curved interfaces under capillary pressure / 9.4.2:
More general conservative motion / 9.4.3:
Impediments to interface motion due to pinning / 9.5:
Pinning effects due to embedded particles / 9.5.1:
Pinning at stationary particles at low temperatures / 9.5.1.1:
Thermally activated unpinning / 9.5.1.2:
Diffusive motion of pinned particles along with the interface / 9.5.1.3:
Pinning at free surface grooves / 9.5.2:
Non-conservative motion of interfaces: interfaces as sources/sinks for diffusional fluxes of atoms / 10:
General aspects of interfaces as sources/sinks / 10.1:
'Diffusion-controlled', 'interface-controlled', and 'mixed' kinetics / 10.2.1:
Dissipation of energy during source/sink action / 10.2.2:
The maximum energy available to drive the source/sink action / 10.2.3:
Grain boundaries as sources/sinks for fluxes of atoms / 10.3:
Models / 10.3.1:
Models for singular or vicinal grain boundaries / 10.3.2.2:
Models for general grain boundaries / 10.3.3.2:
Sharp heterophase interfaces as sources/sinks for fluxes of atoms / 10.3.3.3:
Singular or vicinal heterophase interfaces / 10.4.1:
General heterophase interfaces / 10.4.1.2:
Growth, coarsening, shape-equilibration, and shrinkage of small precipitate particles / 10.4.2:
Growth of phases in the form of flat parallel layers / 10.4.2.2:
Annealing of supersaturated vacancies / 10.4.2.3:
Diffusional accommodation of boundary sliding at second phase particles / 10.4.2.4:
Diffuse heterophase interfaces as sources/sinks for solute atoms / 10.5:
On the question of interface stability during source/sink action / 10.6:
Interfacial Properties / Part IV:
Electronic properties of interfaces / 11:
The Schottky model / 11.1:
The Bardeen model / 11.2.3:
Metal-induced gap states (MIGS) / 11.2.4:
The defect model / 11.2.5:
The development of the Schottky barrier as a function of metal coverage / 11.2.6:
Schottky barriers on Si / 11.2.7:
Discussion of models for Schottky barriers / 11.2.8:
Inhomogeneous Schottky barriers / 11.2.9:
Semiconductor heterojunctions / 11.3:
The band offsets / 11.3.1:
Grain boundaries in metals / 11.4:
Grain boundaries in semiconductors / 11.5:
Grain boundaries in high temperature superconductors / 11.6:
Mechanical properties of interfaces / 12:
Compatibility stresses in bicrystals and polycrystals / 12.1:
Compatibility stresses caused by applied elastic stress / 12.2.1:
Compatibility stresses caused by plastic straining / 12.2.2:
Compatibility stresses caused by heating/cooling / 12.2.3:
Elastic interactions between dislocations and interfaces / 12.3:
Interfaces as sinks, or traps, for lattice dislocations / 12.4:
Large-angle grain boundaries and heterophase boundaries / 12.4.1:
Singular boundaries / 12.4.3.1:
General boundaries / 12.4.3.2:
On the global equilibration of impinged lattice dislocations / 12.4.4:
Interfaces as sources of both interfacial and lattice dislocations / 12.5:
Interfaces as sources of interfacial dislocations / 12.5.1:
Interfaces as sources of lattice dislocations / 12.5.2:
Singular interfaces / 12.5.2.1:
General interfaces / 12.5.2.2:
Interfaces as barriers to the glide of lattice dislocations (slip) / 12.6:
Grain boundaries / 12.6.1:
Effects of interfaces on the plastic deformation of bicrystals and polycrystals at low temperatures / 12.6.2:
Homophase bicrystals and polycrystals / 12.7.1:
Heterophase bicrystals and polycrystals / 12.7.2:
Role of interfaces in the plastic deformation of bicrystals and polycrystals at high temperatures / 12.8:
Interface sliding / 12.8.1:
Sliding at an ideally planar grain boundary / 12.8.1.1:
Sliding at a non-planar grain boundary by means of elastic accommodation / 12.8.1.2:
Sliding at a non-planar grain boundary by means of diffusional accommodation / 12.8.1.3:
Sliding at a non-planar grain boundary by means of plastic flow accommodation in the lattice / 12.8.1.4:
Experimental observations of sliding at interfaces / 12.8.1.5:
Creep of polycrystals / 12.8.2:
Creep of homophase polycrystals controlled by diffusional transport / 12.8.2.1:
Creep of homophase polycrystals controlled by boundary sliding / 12.8.2.2:
Creep of homophase polycrystals controlled by movement of lattice dislocations / 12.8.2.3:
Further aspects of the creep of polycrystals / 12.8.2.4:
Fracture at homophase interfaces / 12.9:
Overview of the different types of fracture observed experimentally in homophase polycrystals / 12.9.1:
Propagation of cleavage cracks / 12.9.2:
Crack propagation in a single crystal / 12.9.2.1:
Crack propagation along a grain boundary / 12.9.2.2:
Crack propagation in homophase polycrystals / 12.9.2.3:
Growth and coalescence of cavities at grain boundaries at low temperatures by plastic flow due to dislocation glide / 12.9.3:
Growth and coalescence of cavities at grain boundaries at high temperatures by diffusion, power-law creep, and boundary sliding / 12.9.4:
Initiation of cavities / 12.9.4.1:
Growth of cavities / 12.9.4.2:
Coalescence of cavities and complete intergranular fracture / 12.9.4.3:
Fracture at heterophase interfaces / 12.10:
Index
List of symbols
Glossary
Interfacial Structure / Part I:
14.

図書

図書
Sune Svanberg
出版情報: Berlin ; Tokyo : Springer-Verlag, c1992  xiii, 405 p. ; 24 cm
シリーズ名: Springer series on atoms + plasmas ; 6
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Atomic Structure / 2:
One-Electron Systems / 2.1:
Alkali Atoms / 2.2:
Magnetic Effects / 2.3:
Precessional Motion / 2.3.1:
Spin-Orbit Interaction / 2.3.2:
General Many-Electron Systems / 2.4:
The Influence of External Fields / 2.5:
Magnetic Fields / 2.5.1:
Electric Fields / 2.5.2:
Hyperfine Structure / 2.6:
Magnetic Hyperfine Structure / 2.6.1:
Electric Hyperfine Structure / 2.6.2:
The Influence of External Fields (hfs) / 2.7:
Isotopic Shifts / 2.8:
Molecular Structure / 3:
Electronic Levels / 3.1:
Rotational Energy / 3.2:
Vibrational Energy / 3.3:
Polyatomic Molecules / 3.4:
Clusters / 3.5:
Other Molecular Structures / 3.6:
Radiation and Scattering Processes / 4:
Resonance Radiation / 4.1:
Spectra Generated by Dipole Transitions / 4.2:
Atoms / 4.2.1:
Molecules / 4.2.2:
Rayleigh and Raman Scattering / 4.3:
Raman Spectra / 4.4:
Vibrational Raman Spectra / 4.4.1:
Rotational Raman Spectra / 4.4.2:
Vibrational-Rotational Raman Spectra / 4.4.3:
Mie Scattering / 4.5:
Atmospheric Scattering Phenomena / 4.6:
Comparison Between Different Radiation and Scattering Processes / 4.7:
Collision-Induced Processes / 4.8:
Spectroscopy of Inner Electrons / 5:
X-Ray Spectroscopy / 5.1:
X-Ray Emission Spectroscopy / 5.1.1:
X-Ray Absorption Spectroscopy / 5.1.2:
X-Ray Imaging Applications / 5.1.3:
Photoelectron Spectroscopy / 5.2:
XPS Techniques and Results / 5.2.1:
Chemical Shifts / 5.2.2:
Auger Electron Spectroscopy / 5.3:
Optical Spectroscopy / 6:
Light Sources / 6.1:
Line Light Sources / 6.1.1:
Continuum Light Sources / 6.1.2:
Synchrotron Radiation / 6.1.3:
Natural Radiation Sources / 6.1.4:
Spectral Resolution Instruments / 6.2:
Prism Spectrometers / 6.2.1:
Grating Spectrometers / 6.2.2:
The Fabry-Pérot Interferometer / 6.2.3:
The Fourier Transform Spectrometer / 6.2.4:
Detectors / 6.3:
Optical Components and Materials / 6.4:
Interference Filters and Mirrors / 6.4.1:
Absorption Filters / 6.4.2:
Polarizers / 6.4.3:
Optical Materials / 6.4.4:
Influence of the Transmission Medium / 6.4.5:
Optical Methods of Chemical Analysis / 6.5:
The Beer-Lambert Law / 6.5.1:
Atomic Absorption/Emission Spectrophotometry / 6.5.2:
Burners, Flames, Sample Preparation and Measurements / 6.5.3:
Modified Methods of Atomization / 6.5.4:
Multi-Element Analysis / 6.5.5:
Molecular Spectrophotometry / 6.5.6:
Raman Spectroscopy / 6.5.7:
Optical Remote Sensing / 6.6:
Atmospheric Monitoring with Passive Techniques / 6.6.1:
Land and Water Measurements with Passive Techniques / 6.6.2:
Astrophysical Spectroscopy / 6.7:
Radio-Frequency Spectroscopy / 7:
Resonance Methods / 7.1:
Magnetic Resonance / 7.1.1:
Atomic-Beam Magnetic Resonance / 7.1.2:
Optical Pumping / 7.1.3:
Optical Double Resonance / 7.1.4:
Level-Crossing Spectroscopy / 7.1.5:
Resonance Methods for Liquids and Solids / 7.1.6:
Microwave Radiometry / 7.2:
Radio Astronomy / 7.3:
Lasers / 8:
Basic Principles / 8.1:
Coherence / 8.2:
Resonators and Mode Structure / 8.3:
Fixed-Frequency Lasers / 8.4:
The Ruby Laser / 8.4.1:
Four-Level Lasers / 8.4.2:
Pulsed Gas Lasers / 8.4.3:
The He-Ne Laser / 8.4.4:
Gaseous Ion Lasers / 8.4.5:
Tunable Lasers / 8.5:
Dye Lasers / 8.5.1:
Colour-Centre Lasers / 8.5.2:
Tunable Solid-State Lasers / 8.5.3:
Tunable CO2 Lasers / 8.5.4:
Semiconductor Lasers / 8.5.5:
Nonlinear Optical Phenomena / 8.6:
Ultra-short and Ultra-high-Power Laser Pulse Generation / 8.7:
Short-Pulse Generation by Mode-Locking / 8.7.1:
Generation of Ultra-high Power Pulses / 8.7.2:
Laser Spectroscopy / 9:
Comparison Between Conventional Light Sources and Lasers / 9.1:
Saturation / 9.1.2:
Excitation Methods / 9.1.3:
Detection Methods / 9.1.4:
Laser Wavelength Setting / 9.1.5:
Doppler-Limited Techniques / 9.2:
Absorption Measurements / 9.2.1:
Intracavity Absorption Measurements / 9.2.2:
Absorption Measurements on Excited States / 9.2.3:
Level Labelling / 9.2.4:
Two-Photon Absorption Measurements / 9.2.5:
Opto-Galvanic Spectroscopy / 9.2.6:
Single-Atom and Single-Molecule Detection / 9.2.7:
Opto-Acoustic Spectroscopy / 9.2.8:
Optical Double-Resonance and Level-Crossing Experiments with Laser Excitation / 9.3:
Time-Resolved Atomic and Molecular Spectroscopy / 9.4:
Generation of Short Optical Pulses / 9.4.1:
Measurement Techniques for Optical Transients / 9.4.2:
Background to Lifetime Measurements / 9.4.3:
Survey of Methods of Measurement for Radiative Properties / 9.4.4:
Quantum-Beat Spectroscopy / 9.4.5:
Ultrafast Spectroscopy / 9.5:
Ultrafast Measurement Techniques / 9.5.1:
Molecular Reaction Dynamics (Femtochemistry) / 9.5.2:
Coherent Control / 9.5.3:
High-Power Laser Experiments / 9.6:
Above Threshold Ionization (ATI) / 9.6.1:
High Harmonic Generation / 9.6.2:
X-Ray Laser Pumping / 9.6.3:
Broadband X-Ray Generation / 9.6.4:
Relativistic Effects and Laser Accelerators / 9.6.5:
Laser-Nuclear Interactions and Laser-Driven Fusion / 9.6.6:
High-Resolution Laser Spectroscopy / 9.7:
Spectroscopy on Collimated Atomic and Ionic Beams / 9.7.1:
Saturation Spectroscopy and Related Techniques / 9.7.2:
Doppler-Free Two-Photon Absorption / 9.7.3:
Cooling and Trapping of Ions and Atoms / 9.8:
Ion Traps / 9.8.1:
Basic Laser Cooling in Traps / 9.8.3:
Trapped Ion Spectroscopy / 9.8.4:
Atom Cooling and Trapping / 9.8.5:
Sub-Recoil Cooling / 9.8.6:
Atom Optics / 9.8.7:
Bose-Einstein Condensation and "Atom Lasers" / 9.8.8:
Fermionic "Condensation" / 9.8.9:
Laser-Spectroscopic Applications / 10:
Diagnostics of Combustion Processes / 10.1:
Background / 10.1.1:
Laser-Induced Fluorescence and Related Techniques / 10.1.2:
Coherent Anti-Stokes Raman Scattering / 10.1.3:
Velocity Measurements / 10.1.5:
Laser Remote Sensing of the Atmosphere / 10.2:
Optical Heterodyne Detection / 10.2.1:
Long-Path Absorption Techniques / 10.2.2:
Lidar Techniques / 10.2.3:
Laser-Induced Fluorescence and Raman Spectroscopy in Liquids and Solids / 10.3:
Hydrospheric Remote Sensing / 10.3.1:
Vegetation Monitoring / 10.3.2:
Monitoring of Surface Layers / 10.3.3:
Laser-Induced Chemical Processes / 10.4:
Laser-Induced Chemistry / 10.4.1:
Laser Isotope Separation / 10.4.2:
Spectroscopic Aspects of Lasers in Medicine / 10.5:
Thermal Interaction of Laser Light with Tissue / 10.5.1:
Photodynamic Tumour Therapy / 10.5.2:
Tissue Diagnostics with Laser-Induced Fluorescence / 10.5.3:
Scattering Spectroscopy and Tissue Transillumination / 10.5.4:
Questions and Exercises
References
Index
Introduction / 1:
Atomic Structure / 2:
One-Electron Systems / 2.1:
15.

図書

東工大
目次DB

図書
東工大
目次DB
Tomoya Kitazume and Takashi Yamazaki
出版情報: Tokyo : Kodansha , Amsterdam : Gordon and Breach Science Publishers, 1998  vii, 260p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
General Remarks
Abbreviations
Chapter 1 Introduction 1
   1.1 Effect of Fluorine on Physical Properties 1
   1.1.1 Mimic and Block Effects 1
   1.1.2 Effect of the Electron-withdrawing Nature of Fluorine 3
   1.1.2.1 Deactivation Effect 3
   1.1.2.2 Activation Effect 5
   1.1.3 Conformational Preference Including Hydrogen Bonding Ability 7
   1.1.4 Steric Size of Fluorine-containing Groups 9
   1.2 Effect of Fluorine on Chemical Reactivity 10
   1.2.1 Stability of Cationic or Anionic Species Next to Fluorine or Fluoroalkyl Groups 10
   1.2.2 SN1 and SN2 Reactivity of Fluorinated Materials 14
   1.3 Preparation of Fluorine-containing Materials 16
   1.4 Handling Fluorinated Materials 20
   1.5 References and Notes 21
Chapter 2 Preparation of Monofluorinated Materials 31
   2.1 Fluorination 31
   2.1.1 Nucleophilic Fluorination (Substitution) 31
   2.1.2 Nucleophilic Fluorination (Addition) 42
   2.1.3 Nucleophilic Fluorination (Miscellaneous) 44
   2.1.4 Electrophilic Fluorination 45
   2.2 Carbon-Carbon Bond-forming Reactions 49
   2.2.1 Aldol Type Reactions 49
   2.2.2 Wittig Type Reactions 53
   2.2.3 Rearrangement and Cycloaddition 57
   2.2.4 Alkylations 59
   2.2.5 Miscellaneous 62
   2.3 Removal of Fluorine from Difluorinated Materials 68
   2.4 Optically Active Materials by Bioorganic Methods 70
   2.5 Substitution Reactions 72
   2.6 Miscellaneous Reactions 74
Chapter 3 Preparation of Difluorinated Materials 79
   3.1 Fluorination 79
   3.1.1 Nucleophilic Fluorination 79
   3.1.2 Electrophilic Fluorination 81
   3.1.3 Miscellaneous 82
   3.2 Difluoromethylenation 83
   3.3 Introduction of Difluoromethyl and Related Groups 85
   3.4 Carbon-Carbon Bond-forming Reactions 91
   3.4.1 Reformatsky Type Reactions 91
   3.4.2 Aldol Reactions and Claisen Condensation 95
   3.4.3 Diels-Alder Reactions 98
   3.4.4 Claisen Rearrangement 100
   3.4.5 Alkylations and Acylations 102
   3.5 Removal of Fluorine from Trifluorinated Materials 106
   3.6 Reactions of Hemiacetals 111
   3.7 Oxidations and Reductions 115
   3.8 Miscellaneous Reactions 118
Chapter 4 Preparation of Trifluorinated Materials 121
   4.1 Introduction of a Trifluoromethyl Group 121
   4.1.1 Introduction of a Trifluoromethyl Group (Nucleophilic) 121
   4.1.2 Introduction of a Trifluoromethyl Group (Electrophilic, Radical) 127
   4.1.3 Introduction of a Trifluoromethyl Group (Miscellaneous) 131
   4.2 Conversion to a Trifluoromethyl Group 132
   4.3 Carbon-Carbon Bond-forming Reactions 135
   4.3.1 Aldol Type Reactions 135
   4.3.2 Michael Reactions 140
   4.3.3 Ene Reactions 146
   4.3.4 Diels-Alder Reactions and 1,3-Dipolar Cycloadditions 148
   4.3.5 Wittig Type Reactions 152
   4.3.6 Rearrangements 154
   4.3.7 Nucleophilic Additions 158
   4.3.8 Electrophilic Additions 166
   4.3.9 Miscellaneous 172
   4.4 Reactions with Hetero Nucleophiles 175
   4.4.1 Reactions with Nitrogen Nucleophiles 175
   4.4.2 Reactions with Oxygen Nucleophiles 177
   4.4.3 Reaction with a Sulfur Nucleophile 181
   4.5 Dehydrations 183
   4.6 Oxidations and Reductions 184
   4.6.1 Oxidations 184
   4.6.2 Reductions 189
   4.7 Optical Resolutions 194
   4.7.1 Bioorganic Methods 194
   4.7.2 Chemical Method 198
   4.8 Miscellaneous Reactions 199
Chapter 5 Preparation of Poly- or Perfluorinated Materials 209
   5.1 Introduction of Poly- or Perfluorinated Groups 209
   5.1.1 Introduction of Poly- or Perfluorinated Groups (Nucleophilic) 209
   5.1.2 Introduction of Poly- or Perfluorinated Groups (Electrophilic, Radical) 212
   5.2 Carbon-Carbon Bond-forming Reactions 216
   5.2.1 Aldol Type Reactions 216
   5.2.2 Wittig Reactions 221
   5.2.3 Alkylations 223
   5.2.4 Anti-Michael Reactions 225
   5.2.5 Miscellaneous 228
   5.3 Miscellaneous Reactions 230
Appendix Representative Distributors of Fluorochemicals 233
Appendix Availability of Fluorinated Reagents 235
Compound Index 239
Reagent Index 243
Product Index 247
Author Index 256
Preface
General Remarks
Abbreviations
16.

図書

図書
Motoichi Ohtsu
出版情報: Boston : Artech House, c1992  xi, 340 p. ; 24 cm
シリーズ名: The Artech House optoelectronics library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
Five Requirements to Be Met / 1.2:
Structure and Oscillation Mechanisms / Chapter 2:
Coherence of Light / 2.1:
Device Structures / 2.2:
Formulation of Laser Oscillation / 2.3:
Noise Characteristics / 2.4:
Intensity Noise / 2.4.1:
Frequency Noise / 2.4.2:
Coherence Deterioration Induced in Semiconductor Lasers by Specific Noise / 2.5:
Oscillation Instabilities Induced by Reflected Lightwaves / 2.5.1:
Mode-Hopping and Mode-Partition Noise / 2.5.2:
Optical Frequency Discriminators, Detections, and Modulations / Chapter 3:
Optical Frequency Demodulators / 3.1:
Noise Sources in the FM Noise Detection System / 3.2:
Modulation Characteristics of a Semiconductor Laser / 3.3:
FM Noise Reduction and Improvement of Frequency Accuracy / Chapter 4:
Center Frequency Stabilization of the Field Spectrum / 4.1:
Improvements in the Accuracy and Reproducibility of the Stabilized Laser Frequency / 4.2:
Wideband FM Noise Reduction / 4.3:
Negative Electrical Feedback / 4.3.1:
Injection Locking and Optical Feedback / 4.3.2:
Optical Phase Locking and Frequency Sweep / Chapter 5:
Optical Phase- and Frequency-Locked Loops / 5.1:
Heterodyne Optical Phase-Locked Loop / 5.1.1:
Homodyne Optical Phase-Locked Loop / 5.1.2:
Other Promising Techniques / 5.1.3:
Stable, Accurate, and Wideband Optical Frequency Sweep / 5.2:
Fine Frequency Sweep / 5.2.1:
Wideband Coarse Frequency Sweep / 5.2.2:
Applications of Highly Coherent Semiconductor Lasers / Chapter 6:
Optical Communication Systems / 6.1:
Optical Measurements / 6.2:
Passive Ring Resonator-Type Fiber Gyroscope / 6.2.1:
Velocity and Displacement Measurements / 6.2.2:
Photon Scanning Tunneling Microscope / 6.3:
Analytical Spectroscopy / 6.4:
Laser Radar (Lidar) / 6.4.1:
Isotope Separation and Analysis of Radicals / 6.4.2:
Optical Pumping of Atomic Clocks / 6.5:
Cesium Atomic Clock at 9.2 GHz / 6.5.1:
Rubidium Atomic Clock at 6.8 GHz / 6.5.2:
Quantum Optics and Basic Physics / 6.6:
High-Resolution Spectroscopy of Atoms and Molecules / 6.6.1:
Test of Basic Principles of Physics / 6.6.2:
Manipulations of Atoms and Ions / 6.6.3:
Cavity Quantum Electrodynamics (Cavity QED) / 6.6.4:
Toward the Future / Chapter 7:
Improvement in Device Structure / 7.1:
Advanced Longitudinal-Mode Controlled Lasers / 7.1.1:
Narrow-Linewidth Lasers / 7.1.2:
Wideband Frequency Sweep / 7.1.3:
Realization of Novel Lasing Wavelengths / 7.1.4:
High-Power Laser Devices / 7.1.5:
Reduction of Chirping / 7.1.6:
Expansion of the Lasing Frequency Range / 7.2:
Short-Wavelength Lasers / 7.2.1:
Stable, Wideband Optical Sweep Generators / 7.2.2:
Ultrafast Detection of Lightwaves, Waveform Conversion, and Optical-Frequency Counting Systems / 7.3:
Generation and Application of Nonclassical Photons / 7.4:
Photon Antibunching and the Properties of the Squeezed State of Light / 7.4.1:
Quantum Nondemolition Measurements / 7.4.2:
Control and Manipulation of Atoms and Photons / 7.5:
High-Power Lasers and Optical Energy Storage / 7.6:
Conclusion / Chapter 8:
Quantization of the Light Field / Appendix I:
Definitions of the Measures for Evaluating the FM Noise Magnitude / Appendix II:
Methods for Measuring FM Noise and the Allan Variance Real-Time Processing System / Appendix III:
Rate Equation and Relaxation Oscillation / Appendix IV:
Theoretical Analyses of Optical Phase-Locked Loops / Appendix V:
Index
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
17.

図書

図書
editors, M. Guisnet ... [et al.]
出版情報: Amsterdam ; Tokyo : Elsevier, 1991  xviii, 608 p.
シリーズ名: Studies in surface science and catalysis ; 59
所蔵情報: loading…
18.

図書

図書
Joseph Shamir
出版情報: Bellingham, WA : Spie, 1999  xv, 415 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Review of electromagnetic wave propagation / 2:
Wave fronts / 2.1:
Phase velocity and the speed of ligh / 2.2:
Power and intensity / 2.3:
Reflection and transmission at a boundary / 2.4:
Stratified layers / 2.5:
Problems / 2.6:
Linear systems theory / 3:
Linear systems / 3.1:
Fourier transformation / 3.2:
Singular functions / 3.3:
Fourier transform theorems / 3.4:
Frequently used functions and their Fourier transforms / 3.5:
Linear system response / 3.6:
Wavefront transformations / 3.7:
Free-space propagation / 4.1:
The paraxial approximation / 4.1.1:
The free-space propagation operator / 4.1.2:
Operator relations / 4.2:
Discussion / 4.3:
Refraction in dielectric materials / 4.4:
Thin optical elements / 4.5:
The transparency / 4.5.1:
The thin dielectric slab / 4.5.2:
The thin prism / 4.5.3:
The thin lens / 4.5.4:
Gratings / 4.5.5:
Mirrors as optical elements / 4.5.6:
One-dimensional operator definitions / 4.5.7:
Cylindrical lens operators / 4.7:
Transformations with the C operator / 4.7.1:
The Gaussian beam and its transformations / 4.8:
Free-space propagation of Gaussian beams / 4.8.1:
Lens transformations of Gaussian beams / 4.8.2:
Operator algebra--discussion / 4.9:
Basic optical systems / 4.10:
Imaging with a thin lens / 5.1:
Fourier transformation with a thin lens / 5.2:
Some aspects of geometrical optics / 5.3:
Applications of single lens systems / 5.4:
The single lens image projector / 5.4.1:
The magnifying glass / 5.4.2:
Applications of a single Fourier transforming system / 5.4.3:
Two lenses in free space / 5.5:
Bonnet spheres and field flattening / 5.5.1:
Microscope and some of its characteristics / 5.5.2:
The double Fourier transforming system / 5.5.3:
The telescope / 5.5.4:
An invariance property of the two-lens system / 5.5.5:
Spatial filtering and optical correlation / 5.6:
The joint transform correlator JTC / 5.6.1:
The matched filter / 5.6.2:
Bandwidth consideration / 5.6.3:
Space-variant and space-invariant systems / 5.7:
Non-ideal optical systems / 5.8:
Optical systems of finite extent / 6.1:
Apertured imaging system / 6.1.1:
Apertured Fourier transforming system / 6.1.2:
Depth of focus / 6.1.3:
Real optical elements / 6.2:
Aberrations / 6.2.1:
Real lenses / 6.2.2:
Statistical aspects of light / 6.3:
Interference / 7.1:
Mutual coherence / 7.2:
Self coherence / 7.3:
Temporal coherence / 7.4:
The Michelson interferometer / 7.5:
Spatial coherence and spatial correlation / 7.6:
Propagation of the coherence function / 7.7:
Spatial coherence from incoherent sources / 7.8:
Speckle patterns / 7.9:
Correlation function model of speckle patterns / 7.9.1:
Rigid translation / 7.9.2:
Free space observation / 7.9.3:
Interference and interferometers / 7.9.4:
Interference fringes / 8.1:
Dynamic interference fringes / 8.2:
Interference of two plane waves / 8.2.1:
Interference between a plane wave and a spherical wave / 8.2.2:
Interferometry / 8.3:
Interferometers and energy conservation / 8.4:
Interferometric displacement measurement / 8.5:
Interferometric velocity measurement / 8.5.2:
Interferometric profile and phase analysis / 8.5.3:
Other double-beam interferometers / 8.6:
The Mach Zender interferometer / 8.6.1:
Ring interferometer / 8.6.2:
The Jamin interferometer / 8.6.3:
Beam splitters / 8.6.4:
The Kosters prism interferometer / 8.6.5:
Using corner cubes / 8.7:
Advanced interferometric procedures / 8.8:
Amplitude modulation interferometry / 8.8.1:
Phase shifting interferometry / 8.8.2:
Heterodyne interferometry / 8.8.3:
Multiwavelength interferometry / 8.8.4:
Coherence interferometer / 8.8.5:
The laser Doppler velocimeter / 8.9:
Multibeam interferometers / 8.10:
Elementary diffraction gratings / 8.10.1:
Generalized diffraction gratings / 8.10.2:
The grating spectroscope / 8.10.3:
The Fabry Perot interferometer / 8.10.4:
Self-referencing interferometers / 8.11:
Phase visualization by spatial filtering / 8.11.1:
Polarization / 8.12:
Polarization of plane waves / 9.1:
Superposition of polarized waves / 9.2:
Superposition of two plane polarized waves / 9.2.1:
Superposition of two circularly polarized waves / 9.2.2:
Propagation in an isotropic media / 9.3:
Maxwell's equations in anisotropic media / 9.3.1:
The index ellipsoid / 9.3.2:
Birefringence / 9.3.3:
Basic polarization components / 9.4:
The polarizer / 9.4.1:
The retardation plate / 9.4.2:
Optical isolator / 9.4.3:
Electro-optic modulation / 9.5:
The Jones matrix representation / 9.6:
Circular birefringence / 9.7:
Polarization aberrations / 9.8:
Spatial light modulation / 9.9:
Intensity response of a recording material / 10.1:
Spatial frequency response of recording materials / 10.2:
Diffractive optical elements / 10.3:
Electronic recording / 10.4:
Acousto-optic modulation / 10.5:
Two-dimensional spatial light modulators / 10.6:
Controllable birefringence / 10.6.1:
Deformable mirrors / 10.6.2:
Semiconductor modulators / 10.6.3:
Holography / 10.7:
The holographic process / 11.1:
Hologram recording with plane reference wave / 11.2:
Spherical wave recording magnification / 11.3:
Wavelength changes in holography / 11.4:
Phase conjugation / 11.5:
Classification of holograms: conditions and properties / 11.6:
On-axis and off-axis holography / 11.6.1:
Transmission and reflection holograms / 11.6.2:
Object wave configurations / 11.6.3:
Hologram recording conditions / 11.7:
Coherence and stability conditions / 11.7.1:
Recording medium consideration / 11.7.2:
Phase holograms / 11.8:
Thermoplastic films / 11.8.1:
Surface relief recording / 11.8.2:
Photopolymers / 11.8.3:
Photorefractive materials / 11.8.4:
Synthetic holograms / 11.9:
Holographic interferometry / 11.10:
Time average holographic interferometry / 11.11.1:
Real-time holographic interferometry / 11.11.2:
Double exposure holographic interferometry / 11.11.3:
Phase conjugate interferometry / 11.11.4:
Generalized treatment of the holographic process / 11.12:
Advanced operator algebra / 11.13:
Ray transfer matrix of optical systems / 12.1:
The canonical operator / 12.2:
Integral representation of canonical operators / 12.3:
Wave optics and geometrical ray matrices / 12.4:
Canonical operator relations / 12.5:
Gaussian beam transformations / 12.6:
Roots and powers of optical systems / 12.8:
Matrix calculus / 12.8.1:
Roots and powers of specific optical systems / 12.8.2:
Optical information processing / 12.9:
Electro-optic pattern recognition / 13.1:
DOE design as an optimization problem / 13.2:
Optimization algorithms an overview / 13.2.1:
Cost function in filter design / 13.2.2:
Transformations with cylindrical lenses / 13.3:
The variable focal length astigmatic system / 13.3.1:
Imaging and Fourier transformation with astigmatic systems / 13.3.2:
One-dimensional signal processing / 13.4:
The vector matrix multiplier / 13.4.1:
Optical interconnection network / 13.4.2:
Scale and coordinate transformation / 13.4.3:
The ambiguity function / 13.4.4:
Wavelet transform / 13.4.5:
Space-variant convolution / 13.4.6:
Convolution of 1D functions using the C operator / 13.4.7:
Matrix matrix multiplication / 13.5:
Summary of operator relations / 13.6:
Definition of basic operators / A.1:
Commutation rules among the basic operators / A.2:
Operations of the quadratic phase factor / A.2.1:
Operations by the linear phase factor / A.2.2:
Operations of the scaling operator / A.2.3:
Operations of the shift operator / A.2.4:
Operations by the FT operator / A.2.5:
Operations by the FPO / A.2.6:
Other useful relations / A.2.7:
Normalized operator relations / A.3:
Bibliography / B:
Problems and solutions / C:
Index / D:
Preface
Introduction / 1:
Review of electromagnetic wave propagation / 2:
19.

図書

図書
edited by Hiroo Tominaga and Masakazu Tamaki
出版情報: Chichester : John Wiley, 1997  x, 403 p.; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
Introduction / 1.1:
Science and Engineering for Reactor Design / 1.2:
Theory of Chemical Reaction / 1.3:
Chemical Reaction Engineering and Reactor Design / 1.4:
Reactor Design for Industrial Processes / 1.5:
Naphtha Cracking / 1.5.1:
Tubular Steam Reforming / 1.5.2:
Epoxy Resin Production / 1.5.3:
Hydrotreating / 1.5.4:
Fluid Catalytic Cracking / 1.5.5:
Flue Gas Desulphurization / 1.5.6:
Equilibrium and Reaction Rate / Hiroshi KomiyamaChapter 2:
Nature of Chemical Reaction / 2.1:
Supply of Activation Energy / 2.1.1:
Elementary and Complex Reactions / 2.1.2:
Other Factors in Reactor Design / 2.1.3:
Direction of the Reaction Progress and Chemical Equilibrium / 2.2:
Direction of the Reaction Progress / 2.2.1:
Role of the Catalyst / 2.2.2:
Reversible and Irreversible Reactions / 2.2.3:
How to Calculate the Heat of Reaction and the Equilibrium Constant / 2.2.4:
Operating Conditions and Energy Efficiency of Chemical Reactions / 2.2.5:
The Rate of Reaction / 2.3:
Factors Governing the Rate of Reaction / 2.3.1:
Complex Reaction System / 2.4:
Rate-determining Step / 2.4.1:
Patterning of Reaction Systems / 2.4.2:
Relations with Other Transfer Processes / 2.4.3:
Fundamentals of Heat and Mass Transfer / Koichi AsanoChapter 3:
Rate Equations / 3.1:
Conduction of Heat / 3.1.1:
Diffusion / 3.1.2:
Diffusion Flux and Mass Flux / 3.1.3:
Mass and Heat Transfer Coefficients / 3.2:
Mass Transfer Coefficient / 3.2.1:
Overall Mass Transfer Coefficient / 3.2.2:
Heat Transfer Coefficient / 3.2.3:
Overall Heat Transfer Coefficient / 3.2.4:
Heat and Mass Transfer in a Laminar Boundary Layer along a Flat Plate / 3.3:
Governing Equations of Heat and Mass Transfer / 3.3.1:
Physical Interpretation of the Dimensionless Groups used in Heat and Mass Transfer Correlation / 3.3.2:
Similarity Transformation / 3.3.3:
Numerical Solutions for Heat and Mass Transfer / 3.3.4:
High Mass Flux Effect / 3.3.5:
Heat Transfer inside a Circular Tube in Laminar Flow / 3.4:
Heat Transfer inside a Circular Tube with Uniform Velocity Profile / 3.4.1:
Heat Transfer inside a Circular Tube with Parabolic Velocity Profile (Graetz problem) / 3.4.2:
Mass Transfer of Bubbles, Drops and Particles / 3.5:
Hadamard Flow / 3.5.1:
Evaporation of a Drop in the Gas Phase / 3.5.2:
Continuous Phase Mass Transfer of Bubbles or Drops in the Liquid Phase / 3.5.3:
Dispersed Phase Mass Transfer / 3.5.4:
Heat and Mass Transfer of a Group of Particles and the Void Function / 3.5.5:
Radiant Heat Transfer / 3.6:
Heat Radiation / 3.6.1:
Governing Equations of Radiant Heat Transfer / 3.6.2:
Fundamentals of Reactor Design / Chapter 4:
Reactor Types and Their Applications / Shintaro Furusaki4.1:
Homogeneous Reactors / 4.1.1:
Heterogeneous Reactors / 4.1.2:
Design of Homogeneous Reactors / Yukihiro Shimogaki4.2:
Material and Heat Balances in Reaction Systems / 4.2.1:
Design of Batch Stirred Tank Reactor / 4.2.2:
Design of Continuous Stirred Tank Reactors / 4.2.3:
Design of Tubular Reactors / 4.2.4:
Homogeneous and Heterogeneous Complex Reactions / 4.2.5:
Planning and Design of Multiphase Reactors / Masayuki Horio4.3:
Features of Planning and Design of Multiphase Reaction Processes / 4.3.1:
Model Description of Multiphase Processes / 4.3.2:
Concepts of Multiphase Reaction Processes / 4.3.3:
Development and Scale-up of Multiphase Reactors / 4.3.4:
Dynamic Analysis of Reaction System / Hisayoshi Matsuyama4.4:
Dynamics of Reactors / 4.4.1:
Stability of Reactors / 4.4.2:
Control of Reactors / 4.4.3:
Optimization of Reactor Systems / 4.4.4:
Design of an Industrial Reactor / Chapter 5:
Petrochemical Complex in Japan / Hiroshi Yagi5.1:
Cracking Furnace for Naphtha / 5.1.2:
Treatment of a Cracked Gas / 5.1.3:
Quench and Heat Recovery / 5.1.4:
Thermodynamics of Thermal Cracking Reaction / 5.1.5:
Mechanism of Thermal Cracking / 5.1.6:
Reaction Model for Yield Estimation / 5.1.7:
Design Procedure of Cracking Furnace / 5.1.8:
Results of Thermal Cracking Simulation / 5.1.9:
Technology Trend of a Cracking Furnace / 5.1.10:
The Reactions / J. R. Rostrup-Nielsen ; Lars J. Christiansen5.2:
The Tubular Reformer / 5.2.2:
The Catalyst and Reaction Rate / 5.2.3:
Poisoning / 5.2.4:
Carbon Formation / 5.2.5:
CO[subscript 2] Reforming / 5.2.6:
Reforming of High Hydrocarbons / 5.2.7:
Alternatives to Steam Reforming Technology / 5.2.8:
Epoxy Resin / Goro Soma ; Yasuo Hosono5.3:
Quality Parameters of Epoxy Resin / 5.3.2:
Elementary Reactions for Epoxy Resin Production / 5.3.3:
Epoxy Resin Production Processes / 5.3.4:
Process Operating Factors / 5.3.5:
The Reaction Model / 5.3.6:
Batch Operation / 5.3.7:
Simulation Using the Reaction Model / 5.3.8:
Design of the First-stage Reactor / 5.3.9:
Design of the Second-stage Reactor / 5.3.10:
Hydrotreating Reactor Design / Alan G. Bridge ; E. Morse Blue5.4:
Hydrotreating Objectives / 5.4.1:
Process Fundamentals / 5.4.2:
VGO Hydrotreating Reactions / 5.4.3:
VGO Hydrotreating Catalysts / 5.4.4:
VGO Hydrotreating Process Conditions / 5.4.5:
VGO Hydrotreating Reactor Design / 5.4.6:
VGO Hydrotreating Operation / 5.4.7:
VGO Hydrotreating Safety Procedures / 5.4.8:
Future Trends / 5.4.9:
Outline of the FCC Process / Toru Takatsuka ; Hideki Minami5.5:
Basic Theory of Fluid Catalytic Cracking / 5.5.2:
Theoretical Discussion of FCC Reactor Design / 5.5.3:
Practice of FCC Reactor Design / 5.5.4:
Material Balance and Heat Balance around Reactors / 5.5.5:
Wet Flue Gas Desulphurization / Hiroshi Yanagioka ; Teruo Sugiya5.6:
Process Description / 5.6.1:
Structure of JBR / 5.6.2:
Chemical Reactions in JBR / 5.6.3:
Heat and Material Balance around the Reactor / 5.6.4:
Reactive Impurities in the Flue Gas / 5.6.5:
Applicable Materials for the Wet FGD Plant / 5.6.6:
Index
Preface to the English Edition
Preface
Chemical Reactions and Design of Chemical Reactors / Hiroo TominagaChapter 1:
20.

図書

図書
David B. Fogel
出版情報: New York : IEEE Press, c1995  xv, 272 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Defining Artificial Intelligence / 1:
Background / 1.1:
The Turing Test / 1.2:
Simulation of Human Expertise / 1.3:
Samuel's Checker Program / 1.3.1:
Chess Programs / 1.3.2:
Expert Systems / 1.3.3:
A Criticism of the Expert Systems or Knowledge-Based Approach / 1.3.4:
Fuzzy Systems / 1.3.5:
Perspective on Methods Employing Specific Heuristics / 1.3.6:
Neural Networks / 1.4:
Definition of Intelligence / 1.5:
Intelligence, the Scientific Method, and Evolution / 1.6:
Evolving Artificial Intelligence / 1.7:
References
Chapter 1 Exercises
Natural Evolution / 2:
The Neo-Darwinian Paradigm / 2.1:
The Genotype and the Phenotype: The Optimization of Behavior / 2.2:
Implications of Wright's Adaptive Topography: Optimization Is Extensive Yet Incomplete / 2.3:
The Evolution of Complexity: Minimizing Surprise / 2.4:
Sexual Reproduction / 2.5:
Sexual Selection / 2.6:
Assessing the Beneficiary of Evolutionary Optimization / 2.7:
Challenges to Neo-Darwinism / 2.8:
Neutral Mutations and the Neo-Darwinian Paradigm / 2.8.1:
Punctuated Equilibrium / 2.8.2:
Summary / 2.9:
Chapter 2 Exercises
Computer Simulation of Natural Evolution / 3:
Early Speculations and Specific Attempts / 3.1:
Evolutionary Operation / 3.1.1:
A Learning Machine / 3.1.2:
Artificial Life / 3.2:
Evolutionary Programming / 3.3:
Evolution Strategies / 3.4:
Genetic Algorithms / 3.5:
The Evolution of Evolutionary Computation / 3.6:
Chapter 3 Exercises
Theoretical and Empirical Properties of Evolutionary Computation / 4:
The Challenge / 4.1:
Theoretical Analysis of Evolutionary Computation / 4.2:
The Framework for Analysis / 4.2.1:
Convergence in the Limit / 4.2.2:
The Error of Minimizing Expected Losses in Schema Processing / 4.2.3:
The Two-Armed Bandit Problem / 4.2.3.1:
Extending the Analysis for "Optimally" Allocating Trials / 4.2.3.2:
Limitations of the Analysis / 4.2.3.3:
Misallocating Trials and the Schema Theorem in the Presence of Noise / 4.2.4:
Analyzing Selection / 4.2.5:
Convergence Rates for Evolutionary Algorithms / 4.2.6:
Does a Best Evolutionary Algorithm Exist? / 4.2.7:
Empirical Analysis / 4.3:
Variations of Crossover / 4.3.1:
Dynamic Parameter Encoding / 4.3.2:
Comparing Crossover to Mutation / 4.3.3:
Crossover as a Macromutation / 4.3.4:
Self-Adaptation in Evolutionary Algorithms / 4.3.5:
Fitness Distributions of Search Operators / 4.3.6:
Discussion / 4.4:
Chapter 4 Exercises
Intelligent behavior / 5:
Intelligence in Static and Dynamic Environments / 5.1:
General Problem Solving: Experiments with Tic-Tac-Toe / 5.2:
The Prisoner's Dilemma: Coevolutionary Adaptation / 5.3:
Evolving Finite-State Representations / 5.3.1:
Learning How to Play Checkers without Relying on Expert Knowledge / 5.4:
Evolving a Self-Learning Chess Player / 5.5:
Chapter 5 Exercises / 5.6:
Perspective / 6:
Evolution as a Unifying Principle of Intelligence / 6.1:
Prediction and the Languagelike Nature of Intelligence / 6.2:
The Misplaced Emphasis on Emulating Genetic Mechanisms / 6.3:
Bottom-Up Versus Top-Down / 6.4:
Toward a New Philosophy of Machine Intelligence / 6.5:
Chapter 6 Exercises
Glossary
Index
About the Author
Intelligent Behavior
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
21.

図書

図書
P. Hariharan
出版情報: Boston : Academic Press, c1992  xvii, 213 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / 1:
Interference: A Primer / 2:
Light Waves / 2.1:
Intensity in an Interference Pattern / 2.2:
Visibility of Interference Fringes / 2.3:
Interference with a Point Source / 2.4:
Localization of Fringes / 2.5:
Summary / 2.6:
Problems / 2.7:
Two-Beam Interferometers / 3:
Wavefront Division / 3.1:
Amplitude Division / 3.2:
The Rayleigh Interferometer / 3.3:
The Michelson Interferometer / 3.4:
Fringes Formed with a Point Source / 3.4.1:
Fringes Formed with an Extended Source / 3.4.2:
Fringes Formed with Collimated Light / 3.4.3:
Applications / 3.4.4:
The Mach-Zehnder Interferometer / 3.5:
The Sagnac Interferometer / 3.6:
Light Sources / 3.7:
Coherence / 4.1:
Source-Size Effects / 4.2:
Slit Source / 4.2.1:
Circular Pinhole / 4.2.2:
Spectral Effects / 4.3:
Polarization Effects / 4.4:
White-Light Fringes / 4.5:
Channeled Spectra / 4.6:
Multiple-Beam Interference / 4.7:
Multiple-Beam Fringes by Transmission / 5.1:
Multiple-Beam Fringes by Reflection / 5.2:
Multiple-Beam Fringes of Equal Thickness / 5.3:
Fringes of Equal Chromatic Order (FECO Fringes) / 5.4:
The Fabry-Perot Interferometer / 5.5:
The Laser as a Light Source / 5.6:
Lasers for Interferometry / 6.1:
Laser Modes / 6.2:
Single-Wavelength Operation of Lasers / 6.3:
Polarization of Laser Beams / 6.4:
Wavelength Stabilization of Lasers / 6.5:
Laser Beam Expansion / 6.6:
Problems with Laser Sources / 6.7:
Laser Safety / 6.8:
Detectors / 6.9:
Photomultipliers / 7.1:
Photodiodes / 7.2:
Charge-Coupled Detector Arrays / 7.3:
Linear CCD Sensors / 7.3.1:
Area CCD Sensors / 7.3.2:
Frame-Transfer CCD Sensors / 7.3.3:
Photoconductive Detectors / 7.4:
Pyroelectric Detectors / 7.5:
Measurements of Length / 7.6:
The Definition of the Metre / 8.1:
Length Measurements / 8.2:
The Fractional-Fringe Method / 8.2.1:
Fringe Counting / 8.2.2:
Heterodyne Techniques / 8.2.3:
Synthetic Long-Wavelength Signals / 8.2.4:
Laser Frequency Modulation / 8.2.5:
Environmental Effects / 8.2.6:
Measurement of Changes in Length / 8.3:
Phase Compensation / 8.3.1:
Heterodyne Methods / 8.3.2:
Optical Testing / 8.4:
The Fizeau Interferometer / 9.1:
The Twyman-Green Interferometer / 9.2:
Analysis of Wavefront Aberrations / 9.3:
Laser Unequal-Path Interferometers / 9.4:
The Point-Diffraction Interferometer / 9.5:
Shearing Interferometers / 9.6:
Lateral Shearing Interferometers / 9.6.1:
Radial Shearing Interferometers / 9.6.2:
Digital Techniques / 9.7:
Digital Fringe Analysis / 10.1:
Digital Phase Measurements / 10.2:
Testing Aspheric Surfaces / 10.3:
Direct Measurements of Surface Shape / 10.3.1:
Long-Wavelength Tests / 10.3.2:
Tests with Shearing Interferometers / 10.3.3:
Tests with Computer-Generated Holograms / 10.3.4:
Macro- and Micro-Interferometry / 10.4:
Interferometry of Refractive Index Fields / 11.1:
Interference Microscopy / 11.2:
Two-Beam Interference Microscopes / 11.4:
The Nomarski Interferometer / 11.6:
Holographic and Speckle Interferometry / 11.7:
Holographic Interferometry / 12.1:
Holographic Nondestructive Testing / 12.2:
Holographic Strain Analysis / 12.3:
Holographic Vibration Analysis / 12.4:
Speckle Interferometry / 12.5:
Electronic Speckle-Pattern Interferometry / 12.6:
Studies of Vibrating Objects / 12.7:
Interferometric Sensors / 12.8:
Laser-Doppler Interferometry / 13.1:
Measurements of Vibration Amplitudes / 13.2:
Fiber Interferometers / 13.3:
Rotation Sensing / 13.4:
Interference Spectroscopy / 13.5:
Resolving Power and Etendue / 14.1:
The Scanning Fabry-Perot Interferometer / 14.2:
The Confocal Fabry-Perot Interferometer / 14.2.2:
The Multiple-Pass Fabry-Perot Interferometer / 14.2.3:
Interference Filters / 14.3:
Birefringent Filters / 14.4:
Interference Wavelength Meters / 14.5:
Fourier-Transform Spectroscopy / 14.6:
The Multiplex Advantage / 15.1:
Theory of Fourier-Transform Spectroscopy / 15.2:
Practical Aspects of Fourier-Transform Spectroscopy / 15.3:
Computation of the Spectrum / 15.4:
Applications of Fourier-Transform Spectroscopy / 15.5:
Choosing an Interferometer / 15.6:
Monochromatic Light Waves / A:
Complex Representation / A.1:
Optical Intensity / A.2:
Phase Shifts on Reflection / B:
Diffraction / C:
Diffraction Gratings / C.1:
Polarized Light / D:
Production of Polarized Light / D.1:
Quarter-Wave and Half-Wave Plates / D.2:
Adjustment of the Mach-Zehnder Interferometer / E:
Fourier Transforms and Correlation / G:
Fourier Transforms / G.1:
Correlation / G.2:
Quasi-Monochromatic Light / H:
The Mutual Coherence Function / H.2:
Complex Degree of Coherence / H.3:
Visibility of the Interference Fringes / H.4:
Spatial Coherence / H.5:
Temporal Coherence / H.6:
Coherence Length / H.7:
Heterodyne Interferometry / I:
Laser Frequency Shifting / J:
Evaluation of Shearing Interferograms / K:
Phase-Stepping Interferometry / K.1:
Holographic Imaging / M:
Hologram Recording / M.1:
Image Reconstruction / M.2:
Laser Speckle / N:
Index / O:
Preface
Acknowledgments
Introduction / 1:
22.

図書

図書
Mortimer J. Adler, editor in chief
出版情報: Chicago : Encyclopædia Britannica, c1990  2 v. ; 24 cm
シリーズ名: Great books of the Western World / Mortimer J. Adler, editor in chief ; 1-2
所蔵情報: loading…
23.

図書

図書
[editors,] Rodney Boyer, Gerhard Welsch, E.W. Collings
出版情報: Materials Park, OH : ASM International, 1994  xxii, 1176 p. ; 29 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contributors and Reviewers
Summary Table of Titanium Alloys
Alloy Data Sheet Contents
Technical Note Contents
Abbreviations and Symbols
Physical Metallurgy of Titanium Alloys / Section I:
Introduction
Classification of Titanium Alloys
Physical Properties
Equilibrium Phases
Nonequilibrium Phases
Deformation
Aging
Titanium Alloys for Low-Temperature Service
Evolution of Conventional (Ingot Metallurgy) High-Temperature Titanium Alloys
Powder Metallurgy and Rapid-Solidification Processing
Rapid-Solidification Processing of Precipitate and Dispersion-Strengthened Titanium Alloys
Mechanical Properties
References
Titanium Data Sheets / Section II:
High-Purity Ti
Commercially Pure and Modified Ti
Alpha and Near-Alpha Alloys / Section III:
Ti-3Al-2.5V
Ti-5Al-2.5Sn
Ti-6Al-2Nb-1Ta-0.8 Mo (Ti-6211)
Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) Si
Ti-8Al-1Mo-1V
Ti-11
Timetal (R) 1100
IMI 230
IMI 417
IMI 679
IMI 685
IMI 829
IMI 834
Ti-5Al-6Sn-2Zr-1Mo-0.1Si
Alpha-Beta Alloys / Section IV:
Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17)
Ti-6Al-2Sn-4Zr-6Mo (Ti-6246)
Ti-6Al-4V
Ti-6Al-6V-2Sn
Ti-7Al-4Mo
Timetal (R) 62S
Ti-4.5Al-3V-2Mo-2Fe (SP-700)
IMI 367
IMI 550
IMI 551
Corona 5
Ti-6-22-22-S
Ti-4Al-3Mo-1V
Ti-5Al-1.5Fe-1.4Cr-1.2Mo
Ti-5Al-2.5Fe
Ti-5Al-5Sn-2Zr-2Mo-0.25Si
Ti-6.4Al-1.2Fe (RMI Low-Cost Alloy)
Ti-2Fe-2Cr-2Mo
Ti-8Mn
Beta and Near-Beta Alloys / Section V:
Ti-11.5Mo-6Zr-4.5Sn (Beta III)
Ti-8V-3Al-6Cr-4Mo-4Zr (Beta C)
Ti-10V-2Fe-3Al (Ti-10-2-3)
Ti-13V-11Cr-3Al
Ti-15V-3Al-3Cr-3Sn (Ti-15-3)
Timetal 21S
Beta CEZ (R)
Ti-8Mo-8V-2Fe-3Al
Ti-15Mo-5Zr
Ti-15Mo-5Zr-3Al
Ti-11.5V-2Al-2Sn-11Zr (Transage 129)
Ti-12V-2.5Al-2Sn-6Zr (Transage 134)
Ti-13V-2.7Al-7Sn-2Zr (Transage 175)
Ti-8V-5Fe-1Al
Ti-16V-2.5Al
Advanced Materials / Section VI:
Titanium Aluminides
Ti3Al Alloys
Gamma (Ti-Al) Alloys
Ti-Ni Shape Memory Alloys
Technical Notes / Section VII:
Metallography and Microstructure / Technical Note 1:
Corrosion / Technical Note 2:
Casting / Technical Note 3:
Forging / Technical Note 4:
Forming / Technical Note 5:
Superplastic Forming / Technical Note 5a:
Heat Treating / Technical Note 6:
Machining / Technical Note 7:
Powder Metallurgy / Technical Note 8:
Surface Treatments / Technical Note 9:
Welding and Brazing / Technical Note 10:
Rolling
Friction and Wear of Titanium Alloys
Preface
Contributors and Reviewers
Summary Table of Titanium Alloys
24.

コンピュータファイル

コンピュータファイル
by Carl Branden and John Tooze ; illustrated by Nigel Orme
出版情報: New York : Garland, c1999  1 computer optical disc ; 12 cm
所蔵情報: loading…
25.

図書

図書
edited by J. Larson, C. Unger
出版情報: Amsterdam ; New York : North-Holland, 1992  xi, 423 p. ; 23 cm
シリーズ名: IFIP transactions ; A . Computer science and technology ; 18
所蔵情報: loading…
26.

図書

図書
edited by Kenneth E. Kinnear, Jr.
出版情報: Cambridge, Mass. : MIT Press, c1994-  v. ; 24 cm
シリーズ名: Complex adaptive systems
Bradford book
所蔵情報: loading…
目次情報: 続きを見る
Contributors
Acknowledgments
An Introduction to the Third Volume / 1:
A brief overview of genetic programming / 1.1:
Other GP Resources / 1.2:
Public Domain GP Implementations (unsupported) / 1.3:
The work in this volume / 1.4:
Part I: Applications / 1.4.1:
Part II: Theory / 1.4.2:
Part III: Extensions / 1.4.3:
Bibliography
Applications / I:
An Automatic Software Re-Engineering Tool Based on Genetic Programming / 2:
Introduction / 2.1:
Software Re-engineering / 2.1.1:
Parallel Problems / 2.2:
Problems with Data Dependency Analysis / 2.2.1:
Genetic Structure / 2.3:
Atom Mode / 2.3.1:
Atom Mode Transformations. / 2.3.2:
P and S / 2.3.2.1:
F and L / 2.3.2.2:
Shift / 2.3.2.3:
Null/Parnull / 2.3.2.4:
Atom Mode Fitness / 2.3.3:
Directed Analysis for Fpar / 2.3.3.1:
Directed Analysis for Lpar / 2.3.3.2:
Directed Analysis for Pxx / 2.3.3.3:
Directed Analysis / 2.3.3.4:
Loop Mode / 2.3.4:
Loop Fusion / 2.3.4.1:
Loop Shrinking / 2.3.4.2:
Example Individual / 2.4:
Resumption of Atom Mode / 2.4.1:
Directed Data Dependency Analysis / 2.4.3:
Experimental Results / 2.4.4:
Scheduling / 2.4.5:
Conclusion / 2.5:
CAD Surface Reconstruction from Digitized 3D Point Data with a Genetic Programming/Evolution Strategy Hybrid / 3:
Classic Context / 3.1:
Digitizing and Preprocessing / 3.2.1:
Gridded Representation and Topological Information / 3.2.2:
Surreal- a Genetic Programming/Evolution Strategy Hybrid / 3.3:
The Approach / 3.3.1:
Overview / 3.3.2:
Algorithmic Structure / 3.3.3:
Genetic Representation / 3.3.4:
Constructive Solid Geometry / 3.3.4.1:
Terminal and Function Set / 3.3.4.2:
Search Space / 3.3.4.3:
Quality Measure / 3.3.5:
Distance Criterion Delta / 3.3.5.1:
Angle Criterion Abn / 3.3.5.2:
Curvature-type Criterion Ctype / 3.3.5.3:
Primitive-number Criterion Prim / 3.3.5.4:
Variation / 3.3.6:
Mutation / 3.3.6.1:
Recombination / 3.3.6.2:
Creation / 3.3.7:
Selection for variation / 3.3.8:
Selection for the next generation / 3.3.9:
Results / 3.4:
Problem: dowel reconstruction / 3.4.1:
Parameters / 3.4.2:
Discussion / 3.4.3:
Incremental optimization / 3.4.3.1:
Fitness progression / 3.4.3.2:
Population size and convergence / 3.4.3.3:
Interactive evolution / 3.4.3.4:
Problem: cross-structure reconstruction / 3.4.4:
Conclusion and future work / 3.5:
A Genetic Programming Approach for Robust Language Interpretation / 4:
Abstraction on the Problem of Parse Repair / 4.1:
The Basic Problem / 4.2.1:
Program Induction as a Solution / 4.2.2:
ROSE's Application of GP / 4.3:
The Partial Parsing Stage / 4.3.1:
The Combination Stage / 4.3.2:
Applying Genetic Programming / 4.3.2.1:
Fitness Evaluation for the Combination Problem / 4.3.2.2:
Why GP? / 4.4:
Evaluation / 4.5:
Challenges / 4.6:
Acknowledgements
Time Series Modeling Using Genetic Programming: An Application to Rainfall-Runoff Models / 5:
The Genetic Programming System CFG-GP / 5.1:
Rainfall Runoff Modelling / 5.3:
CFG-GP Setup / 5.4:
Catchment Descriptions and Results / 5.5:
The Glan Teifi Catchment / 5.5.1:
The Namoi River Catchment / 5.5.2:
References / 5.5.4:
Automatic Synthesis, Placement, and Routing of Electrical Circuits by Means of Genetic Programming / 6:
Automatic Creation of Circuit Topology and Sizing / 6.1:
Method for Automatic Creation of Circuit Topology, Sizing, Placement, and Routing / 6.3:
The Initial Circuit / 6.3.1:
Circuit-Constructing Functions / 6.3.2:
Component-Creating Functions / 6.3.2.1:
Topology-Modifying Functions / 6.3.2.2:
Development-Controlling Functions / 6.3.2.3:
The Developmental Process / 6.3.3:
Statement of the Illustrative Problem / 6.4:
Preparatory Steps / 6.5:
Initial Circuit / 6.5.1:
Program Architecture / 6.5.2:
Function and Terminal Sets / 6.5.3:
Fitness Measure / 6.5.4:
Control Parameters / 6.5.5:
Termination Criterion and Results Designation / 6.5.6:
Implementation on Parallel Computer / 6.5.7:
Computer Time / 6.6:
Genetic Programming as an Invention Machine / 6.8:
Quantum Computing Applications of Genetic Programming / 6.9:
Quantum Computation / 7.1:
A Virtual Quantum Computer / 7.2:
State Representation and Notation / 7.2.1:
Quantum Gates / 7.2.2:
Quantum NOT and SQUARE ROOT OF NOT / 7.2.2.1:
Applying quantum gates to multi-qubit systems / 7.2.2.2:
Other Quantum Gates / 7.2.2.3:
Running a Quantum Algorithm / 7.2.3:
Example Execution Trace / 7.2.4:
The Power of Quantum Computation / 7.2.5:
Evolving Quantum Algorithms / 7.3:
Standard Tree-based Genetic Programming / 7.3.1:
Stack-Based, Linear Genome Genetic Programming / 7.3.2:
Stackless Linear Genome Genetic Programming / 7.3.3:
Fitness Function / 7.3.4:
Deutsch's Early Promise Problem / 7.4:
The Scaling Majority-On Problem / 7.4.2:
The Database Search Problem / 7.4.3:
The And-Or Query Problem / 7.4.4:
Conclusions / 7.5:
Theory / II:
The Evolution of Size and Shape / 8:
Background / 8.1:
Program Search Spaces / 8.3:
Bloat Inherent in Variable Length Representations / 8.4:
Sextic Polynomial / 8.5:
GP Runs / 8.5.1:
Non GP Search Strategies / 8.5.2:
New Tree Mutation Operators / 8.5.3:
50-150% Fair Mutation Runs / 8.5.3.1:
Subtree Fair Mutation Runs / 8.5.3.2:
Direct Measurement of Genetic Operators Effects on Performance / 8.5.4:
Self Crossover / 8.5.4.1:
Mutation Operators / 8.5.4.2:
Bloat in Discrete Problems / 8.6:
Code Bloat as Protection / 8.6.1:
Code bloat due to "Removal Bias" / 8.6.2:
Evolution of Program Shapes / 8.7:
Future Work / 8.8:
Fitness Distributions: Tools for Designing Efficient Evolutionary Computations / 9:
Fitness distributions / 9.1:
Evolving computer programs using evolutionary programming / 9.4:
Initialization / 9.4.1:
Offspring generation through variation / 9.4.2:
Parent selection / 9.4.3:
Test problems / 9.4.4:
Experiments / 9.4.5:
Analysis of Single-Node (Building) Blocks in Genetic Programming / 9.5:
Current Usages and Definitions / 10.1:
Objectives / 10.1.2:
Case Study Description / 10.2:
Motivations / 10.2.1:
Method / 10.2.2:
Fitness-Centric Experiment / 10.3:
Fitness-Centric Results / 10.3.1:
Fitness-Centric Discussion / 10.3.2:
ERC-Centric Experiment / 10.4:
ERC-Centric Results / 10.4.1:
ERC-Centric Discussion / 10.4.2:
Implications for Building Blocks / 10.5:
Appendix A.10.1 Approaches to Solving f(x) / 10.6:
Appendix A.10.2 Known ERC Strategies
Appendix A.10.3 Alternative Frame for Analyzing GP and ERCs
Rooted-Tree Schemata in Genetic Programming / 11:
Schema Theory / 11.1:
Schemata in genetic algorithms / 11.2.1:
Schemata in genetic programming / 11.2.2:
Portraying Variable Complexity Representations / 11.3:
The rooted-tree schema property / 11.3.1:
Growth of rooted-tree schemata / 11.3.2:
The role of variable size during evolution / 11.3.3:
Adding Parsimony / 11.4:
Selection with a parsimonious fitness function / 11.4.1:
Growth of rooted-tree schemata with parsimony / 11.4.2:
Controlling Schema Growth / 11.5:
Fitness based on pure performance / 11.6:
Parsimonious fitness / 11.6.2:
Adaptive probability of destruction / 11.6.3:
Summary of experiments / 11.6.4:
Solution Acquisition in GP / 11.7:
Related Work / 11.8:
Extensions / 11.9:
Efficient Evolution of Machine Code for CISC Architectures Using Instruction Blocks and Homologous Crossover / 12:
Why Evolve Machine Code? / 12.1:
Advantages of Evolving Machine Code / 12.2.1:
Why is Binary Manipulation so Fast? / 12.3:
Overview of AIM-GP / 12.4:
Making Machine Code Genetic Programming Work on CISC Processors / 12.5:
The Importance of Extending AIM-GP to CISC Processors / 12.5.1:
Challenges in Moving AIM-GP to CISC Processors / 12.5.2:
Instruction Blocks / 12.5.3:
Instruction Annotations / 12.5.4:
The Benefits of ''Glue'' / 12.5.5:
Other AIM-GP Innovations / 12.6:
Memory Access and Large Input Sets / 12.6.1:
Decompilation / 12.6.2:
Homologous Crossover / 12.6.3:
Floating Point Arithmetic / 12.6.4:
Automatically Defined Functions / 12.6.5:
AIM-GP and Tree-Based GP / 12.7:
Summary and Conclusion / 12.8:
Sub-machine-code Genetic Programming / 13:
Sub-machine-code GP / 13.1:
Examples / 13.4:
1-bit and 2-bit Adder Problems / 13.4.1:
Character Recognition Problem / 13.4.2:
Fast Parallel Evaluation of Fitness Cases / 13.4.3:
Appendix: Implementation / 13.6:
Description / 13.A.1:
Code / 13.A.2:
The Internal Reinforcement of Evolving Algorithms / 14:
Neural Programming / 14.1:
The Neural Programming Representation / 14.2.1:
Illustrative Examples / 14.2.2:
Example 1: The Fibonacci Series / 14.2.2.1:
Example 2: The Golden Mean / 14.2.2.2:
Example 3: Foveation / 14.2.2.3:
Internal Reinforcement in NP / 14.3:
Creating a Credit-Blame Map / 14.3.1:
Accumulation of Explicit Credit Scores / 14.3.1.1:
Function Sensitivity Approximation / 14.3.1.2:
Refining the Credit-Blame Map / 14.3.1.3:
Credit Scoring the NP arcs / 14.3.1.4:
Exploration vs. Exploitation Within a Program / 14.3.2:
Using a Credit-Blame Map / 14.3.3:
Mutation: Applying a Credit-Blame Map / 14.3.3.1:
Crossover: Applying a Credit-Blame Map / 14.3.3.2:
The Credit-Blame Map Before/After Refinement / 14.3.4:
IRNP Discussion / 14.3.5:
Experimental Overview / 14.4:
Natural Images / 14.4.2:
Setting PADO up to Solve the Problem / 14.4.2.1:
The Results / 14.4.2.2:
Acoustic Signals / 14.4.3:
Acoustic Signals Revisited / 14.4.3.1:
Inductive Genetic Programming with Immune Network Dynamics / 14.4.4.1:
Immune Version of the GP System / 15.1:
Biological Networks / 15.2.1:
Computational CounterParts in GP / 15.2.2:
The Dynamic Fitness Function / 15.2.3:
Micromechanisms of the Inductive GP / 15.3:
Inductive Learning and Regression / 15.3.1:
Multivariate Trees / 15.3.2:
Context-Preserving Mutation / 15.3.3:
Crossover by Cut and Splice / 15.3.4:
Practical Induction by Immune Dynamics / 15.4:
Traditional and Immune Versions of iGP / 15.4.1:
Performance Measures / 15.4.2:
Machine Learning / 15.4.3:
Time-Series Prediction / 15.4.4:
Relevance to Other Works / 15.5:
A Self-Tuning Mechanism for Depth-Dependent Crossover / 15.7:
The 11MX problem / 16.1:
The ANT problem / 16.3.2:
The robot problem / 16.3.3:
Genetic Recursive Regression for Modeling and Forecasting Real-World Chaotic Time Series / 16.4:
Problem Definition: Data Driven Model Building / 17.1:
Genetic Symbolic Regression and Data Driven Model Building / 17.2:
A New Algorithm Genetic Recursive Regression (GRR) / 17.3:
Recursive Regression / 17.3.1:
Representation of the Regression Model as a Series Expansion / 17.3.2:
Parallel Computational Architecture / 17.3.3:
Adaptive Update of the Numerical Coefficients. / 17.3.4:
Derived Terminal Set / 17.3.5:
Implementation Issues / 17.4:
Fitness Assignment / 17.4.1:
Super Population and Migration between Multiple Populations / 17.4.2:
Dealing with Absurd Attributes of a Symbolic Form / 17.4.3:
Division of the Data Set: Training, Validation and Prediction Regions / 17.4.4:
Termination Conditions / 17.4.5:
Some Manipulations on the Raw Data / 17.4.6:
Application to Read World Chaotic Time Series / 17.5:
Benchmarking / 17.5.1:
Data and Computational Settings / 17.5.1.1:
Benchmarking Results and Discussion / 17.5.1.2:
Effects of the Adaptive Update of the Numerical Coefficients
Effects of the Parallel Architecture
Effects of the Recursive Model Building
Rend World Chaotic Time Series / 17.5.2:
Results and Discussion / 17.5.2.1:
Effects of the Derived Terminal Set (DTS)
Comparisons with Earlier Works / 17.5.3:
ASHRAE and Santa Fe Competitions / 17.5.3.1:
Mackey-Glass Equation / 17.5.3.2:
Conclusion and Issues Remaining / 17.6:
Co-evolutionary Fitness Switching: Learning Complex Collective Behaviors Using Genetic Programming / 18:
Genetic Programming with Coevolutionary Fitness Switching / 18.1:
Results on Table Transport / 18.3:
Application to Robotic Soccer / 18.4:
Evolving Multiple Agents by Genetic Programming / 18.5:
Example Tasks / 19.1:
Fitness Assignment and Breeding Strategies / 19.3:
Comparison with Reinforcement Learning / 19.4:
Evolving Agents with Communication / 19.5:
Evolving Controlling Agents / 19.5.1:
Evolving Negotiating Agents / 19.5.2:
Evolving Other Types of Communicating Agents / 19.6:
Q-learning and Genetic Programming / 19.6.2:
A Multi-agent reinforcement learning / 19.6.3:
Index
Preface
A Perspective on the Work in this Book
What is Evolutionary Computation?
Why is Evolutionary Computation interesting? / 1.1.1:
Styles of Evolutionary Computation / 1.1.2:
What defines Genetic Programming?
Current activity in Genetic Programming
Part II: Increasing the Power of Genetic Programming / 1.3.1:
Part III: Innovative Applications of Genetic Programming / 1.3.2:
Practical Guidance
It isn't as easy as it looks -- but it does work.
The fitness function is exceptionally important.
Representation is important too.
It all comes together in the transmission function. / 1.4.4:
Population size and diversity are also important. / 1.4.5:
Don't generalize from one run. / 1.4.6:
Genetic programming is robust. / 1.4.7:
Know your problem, know your data. / 1.4.8:
Where to go for more information and inspiration. / 1.5:
Biology / 1.5.1:
Complex Adaptive Systems / 1.5.2:
Genetic Algorithms and other Evolutionary Computation paradigms / 1.5.3:
Introduction to Genetic Programming / 1.6:
Introduction to Genetic Algorithms
Program Trees and the LISP Programming Language
Genetic Programming
Automatic Function Definition in Genetic Programming
Sources of Additional Information about Genetic Programming
Sources of Additional Information about Genetic Algorithms / 2.6:
Increasing the Power of Genetic Programming
The Evolution of Evolvability in Genetic Programming
Evolvability / 3.1.1:
Representations / 3.1.2:
Evolving evolvability / 3.1.3:
Constructional selection / 3.1.4:
Synopsis of the models / 3.1.5:
Selection, Transmission, and Evolvability
A general model of the canonical genetic algorithm
Measurement functions
Price's theorem applied to evolvability / 3.2.3:
Price's theorem and the Schema Theorem / 3.2.4:
Dynamics of Genetic Programming
A model of genetic programming dynamics
The "constructional" fitness of a block of code
The constructional fitness is distinct from the marginal fitness
Conservative versus exploratory code
Principle 1 applied to genetic programming
Further work
Notice
Genetic Programming and Emergent Intelligence
Prelude
General Computational Problem Solving
Weak and Strong Methods
Credit Assignment
Evolutionary Weak Methods and Empirical Credit Assignment / 4.2.3:
Emergent Intelligence / 4.2.4:
Genetic Programming: The Inside Story
Comparing Genetic Algorithms and Genetic Programming
Representation of Genotypes / 4.3.1.1:
Complexity of Interpretation / 4.3.1.2:
Syntax Preserving Crossover / 4.3.1.3:
Innate Emergent Intelligence in GP
Emergence of Introns
Emergent Diploidy and Dominance
Exploiting Emergent Intelligence
Emergent Problem Decomposition in Genetic Programs / 4.4.1:
The Genetic Library Builder / 4.4.1.1:
Emergent Evaluation of Modules / 4.4.1.2:
Comparison to ADFs / 4.4.1.3:
Emergence of High-Level Representations / 4.4.1.4:
Generality of Emergent Modules / 4.4.1.5:
Emergent Goal-Directed Behavior / 4.4.2:
Guidelines for Emergent Intelligence
Coaxing Rather than Coercing / 4.5.1:
Hitchhiking as a Technique / 4.5.2:
Opportunism Over Prespecification / 4.5.3:
Explicit Knowledge As A Last Resort / 4.5.4:
Scalable Learning in Genetic Programming using Automatic Function Definition
The Lawn Mower Problem
Preparatory Steps Without Automatic Function Definition
Lawn Size of 64 Without Automatic Function Definition
Lawn Size of 96 Without Automatic Function Definition / 5.4.1:
Lawn Size of 32 Without Automatic Function Definition / 5.4.2:
Preparatory Steps With Automatic Function Definition
Lawn Size of 64 With Automatic Function Definition / 5.6:
Lawn Size of 96 With Automatic Function Definition / 5.6.1:
Lawn Size of 32 With Automatic Function Definition / 5.6.2:
Relationship of Parsimony to Problem Size
Relationship of Computational Effort to Problem Size
Alternatives in Automatic Function Definition: A Comparison of Performance / 5.9:
The Even-4-Parity Problem
Automatic Function Definition: Two Approaches
Automatically Defined Functions: ADF
Module Acquisition: MA
The Genetic Programming Environment
Steady State GP / 6.4.1:
Selection Procedures / 6.4.2:
Genetic Operators / 6.4.3:
Comparisons of ADF and MA strategies
Basic Performance Comparison
Use of a priori Knowledge
Frequency of Function Calls
Functions Including Global Variables
Multiple Use of Parameters
Local vs. Global Function Definitions
Evolution of Function Definitions
Structural Regularity / 6.5.8:
Self-Crossover / 6.5.8.1:
Modular Crossover / 6.5.8.2:
Discussion of Structural Regularity / 6.5.8.3:
Further Work
The Donut Problem: Scalability, Generalization and Breeding Policies in Genetic Programming
Introduction: Depth vs. Breadth
The Donut Problem
Purposely Introduced Imperfections
There is a Solution (Sort of)
Breeding Policies
"Demes" and Spatially Distributed Evolution
Implementation of Distributed Evolution
Elitism and the Steady State Model
Implementation of Steady-State Elitism
Experimental Method
Performance of GP as Class Overlap Increases
Generalization and Uniform Undersampling of the Training Set
Generalization and Nonuniform Sampling of the Training Set
Assessing the Effects of Demes and Elitism
Summary of Experimental Configurations / 7.4.5:
Scalability With Respect to Class Overlap / 7.5.1:
Generalization With Respect to Class Overlap / 7.5.2:
Generalization and Uniform Undersampling of Training Data / 7.5.3:
Generalization and Nonuniformly Distributed Training Data / 7.5.4:
Comparative Performance and the Optimal Function Set / 7.5.5:
Comparative Performance of Breeding Policies / 7.5.6:
Performance Across All Experiments / 7.5.6.1:
Performance Using Uniformly Sparse Training Data / 7.5.6.2:
Performance Using Nonuniform Training Data / 7.5.6.3:
Performance Using Sparse and Nonuniform Training Data / 7.5.6.4:
Performance Using Sparse Data With High Degree of Class Overlap / 7.5.6.5:
Performance Using Non-Sparse Data Sets / 7.5.6.6:
Conclusions About Distributed Evolution / 7.6:
Conclusions Concerning Elitism / 7.6.2:
Comments on the Procedures Used / 7.6.3:
Need for Benchmark Test Functions / 7.6.4:
Big Deme Grids and Other Parameters / 7.6.5:
Gene Frequencies and Distributed Evolution / 7.6.6:
Effects of Locality in Individual and Population Evolution
Domain
Terminal Set / 8.3.1:
Function Set / 8.3.2:
Fitness Evaluation / 8.3.3:
Discussion of Results
Population Seeding
Statistical Analysis
Emergence of Demes
Structural Analysis of Individuals
Recommendations for Future Work
Appendix A: Seed Tank Code
Appendix B: Original Example Tank Code
Appendix C: Stimulus-Response Maps of Example Tanks
The Evolution of Mental Models
The Method and The Model
The Environment
The Implementation
Discussion of Indexed Memory
Discussion of Mental Models
Evolution of Obstacle Avoidance Behavior: Using Noise to Promote Robust Solutions / 9.8:
Previous Work
Obstacle Avoidance as Genetic Programming
The Vehicle
The Obstacle Course
Sensors
Noise / 10.7:
Measuring Fitness in the Presence of Noise / 10.8:
Pygmies and Civil Servants / 10.9:
The Problem Space / 11.1.1:
Genetic Programming Or String GA? / 11.1.2:
Implementation Notes / 11.1.3:
The Benefits of Elitism / 11.1.4:
Traditional Methods
The Fitness Function - Punish or Reward?
Early Results
Maintaining Diversity In Artificial Evolution
Sharing And Crowding
Isolation by Distance
Steady State Genetic Algorithms
Restricted Mating / 11.3.4:
Breeding For Secondary Features / 11.3.5:
Pygmies And Civil Servants / 11.3.6:
Implementation / 11.3.6.1:
Extending the model / 11.3.6.2:
Generalising the model / 11.3.6.3:
Pygmies and Genetic Programming / 11.4.0:
Appendix: The Pygmy Algorithm / 11.5.0:
Acknowlegements
Genetic Programming Using a Minimum Description Length Principle
GP using an MDL principle
Decision Trees and Genetic Programming
MDL-based fitness functions / 12.2.2:
Evolving decision trees / 12.2.3:
Evolving trees with an MDL-based fitness function
Genetic Programming in C++: Implementation Issues
Pointer Based Implementations
A Postfix, Stack-Based Approach
Memory Efficiency / 13.3.1:
Manipulating Postfix Programs / 13.3.2:
Postfix Initialization / 13.3.2.1:
Postfix Crossover / 13.3.2.2:
Postfix Mutation / 13.3.2.3:
The Flow Control Problem with Postfix / 13.3.3:
Mixfix
Prefix Ordering
Initialization, Crossover and Mutation with Prefix / 13.5.1:
Handling Program Flow with Prefix / 13.5.2:
The Node Representation
General Data Support / 13.6.1:
The Opcode Format / 13.6.2:
The Jump Table Mechanism / 13.6.3:
The Prefix, Jump-Table (PJT) Approach / 13.7:
Advanced Topics (Looking for Roadblocks) / 13.8:
Beyond Closure: Handling Multiple Data Types / 13.9.1:
Module Implementation / 13.9.2:
Encapsulation / 13.9.2.1:
Module Execution / 13.9.2.2:
Handling Recursion / 13.9.3:
Simulated Multi-Tasking / 13.9.4:
Using Tables to Evaluate Diversity / 13.9.5:
Conclusion and Future Directions / 13.10:
A Compiling Genetic Programming System that Directly Manipulates the Machine Code
Prologue / 14.0:
Reading Guidance / 14.0.1:
The Compiling Genetic Programming System (CGPS)
The Hardware Environment
The Language for the Genetic Algorithm Implementation
The Structure of a Machine Code Function Callable by a 'C'-function / 14.2.3:
The SPARC Architecture / 14.2.4:
The Instruction Set / 14.2.5:
The Genetic Algorithm / 14.2.6:
Comparison between CGPS and interpreting GP Systems. / 14.2.7:
A Genetic Programming System for Heuristic Classification
Comparison between the CGPS and a Neural Network
The Sample Problem
The Training Set / 14.4.1.1:
Coding of Words for the Genetic Programming System. / 14.4.1.2:
Coding of words for the Neural Network / 14.4.1.3:
The Neural Network
Training Method
Results of comparison
Population Size and Efficiency / 14.4.5:
Applicability
Concluding Remarks / 14.7:
Biblography
Innovative Applications of Genetic Programming
Automatic Generation of Programs for Crawling and Walking
The problem
The approach
Functions and terminals
Side-effecting functions and simulated memory
Constant perturbation
Fitness evaluation
Program structure / 15.3.5:
Experiment 1 / 15.3.6:
Experiment 2
Experiment 3
Analysis of the results
Analysis of the method
Comparison with random search / 15.6.1:
Comparison with other methods / 15.6.2:
Practical considerations / 15.6.3:
Scalability / 15.6.3.1:
Real-Time control / 15.6.3.2:
Genetic Programming for the Acquisition of Double Auction Market Strategies
Double Auction Markets and the Santa Fe Tournaments
The Double Auction Mechanism / 16.1.1:
Measuring Trading Efficiency / 16.1.2:
The Santa Fe Tournaments / 16.1.3:
Structure of Local Double Auctions / 16.1.4:
The Local Experiments / 16.1.5:
Genetic Programming of Strategies
The GP Environment / 16.2.1:
The Programming Constructs / 16.2.2:
GP Selection Parameters / 16.2.3:
A Comparable Simulated Annealing Environment / 16.2.4:
Is Genetic Search Useful ?
Economising on Fitness Evaluations
Two Scientific Applications of Genetic Programming: Stack Filters and Non-Linear Equation Fitting to Chaotic Data
Development of Stack Filters
Methods / 17.2.1:
Fitting of Non-Linear Equations to Chaotic Data / 17.2.3:
Deception and Fitness / 17.3.4.1:
Fitness Measures / 17.3.4.2:
Effectiveness of Prediction / 17.3.4.3:
Structural Insights / 17.3.4.4:
Conclusions and Prospects
The Automatic Generation of Plans for a Mobile Robot via Genetic Programming with Automatically Defined Functions
The Genetic Planner
An Example World: A Robot on a 2-D Grid.
A set of procedurally-defined operators / 18.3.1:
A set of predicates that describe the world / 18.3.2:
Fitness functions for each of the predicates. / 18.3.3:
A ground goal expression / 18.3.4:
A simulation of the world / 18.3.5:
A Demonstration of The Genetic Planner
Analysis of Some Best-Of-Run ADFs / 18.6:
Competitively Evolving Decision Trees Against Fixed Training Cases for Natural Language Processing / 18.7:
The Domain: Word Sense Disambiguation
The Training Cases
How Decision Trees Work
Crossover Operations on Decision Trees
How Fixed Training Data Participate in Competitive Adaptation
Averting Overlearning with Decision Trees: Fitness Penalty
Non-trivial Learning and Generalization Performance / 19.8:
Competition / 19.8.2:
Fitness Penalty / 19.8.3:
Linguistic Data / 19.8.4:
Cracking and Co-Evolving Randomizers / 19.9:
Motivation / 20.1:
Arguments for Success / 20.3:
Two Player Penny Matching Game / 20.3.1:
Uniform Distribution / 20.3.2:
Models / 20.4:
Two Player Multi-Penny Matching Game / 20.4.1:
Single Generator / 20.4.2:
Separate Generators and Guessers / 20.4.4:
Sexing Populations / 20.4.5:
New Techniques / 20.5:
Dynamic Sampling / 20.5.1:
Fitness Tournament / 20.5.2:
Tested Randomizers / 20.6:
Tableau / 20.6.2:
Functions and Terminals / 20.6.3:
GP Shell Modifications / 20.6.4:
Optimizing Confidence of Text Classification by Evolution of Symbolic Expressions / 20.7:
The News Story Classification Problem / 21.1:
Automated keyword assignment using MBR / 21.3:
The Coding Algorithm / 21.4:
The Referral Problem / 21.5:
Referral with single keyword per document / 21.5.1:
Referral with multiple keywords / 21.5.2:
Brief Overview of Genetic Algorithms / 21.6:
Example formulae / 21.7:
example results / 21.7.0.1:
Representation of evolved formulae / 21.7.1:
The environment for Genetic evolution / 21.8:
Generation of the initial random populations / 21.8.1:
Evaluating fitness / 21.8.2:
Fitness proportionate reproduction / 21.8.3:
Cross-over / 21.8.4:
Population size / 21.8.5:
Number of generations / 21.8.7:
The test environment / 21.9:
Discussion of results / 21.10:
Continuing and Future Work / 21.11:
Evolvable 3D Modeling for Model-Based Object Recognition Systems / 22:
Evolvable 3D Modeling with Multi-level GP/GA / 22.1:
Evolvable modeling of jetliners--implementation / 22.3:
The Data Structure of the Evolvable 3D Jet Models / 22.3.1:
The Parameter Constraints and Parametric Relations / 22.3.2:
The Population Structure and Population Transition / 22.3.3:
Related Works, Extensions, and Applications / 22.4:
Comments and Conclusions / 22.5:
Automatically Defined Features: The Simultaneous Evolution of 2-Dimensional Feature Detectors and an Algorithm for Using Them / 23:
Introduction and Overview / 23.1:
Hit-Miss Matrices and the Two-Dimensional Genetic Algorithm / 23.2:
Hit-miss Matrices in OCR / 23.2.1:
Hit-Miss Matrices in GP / 23.2.2:
Evolutionary Operators for Hit-Miss Matrices / 23.2.3:
Definition of Three Test Problem Sets / 23.3:
Problem Set 1: The {L,T} problem: / 23.3.1:
Problem Set 2: The single example digit discrimination task: / 23.3.2:
Problem Set 3: The multiple example digit discrimination task: / 23.3.3:
Method for applying GP and GA to digit recognition / 23.4:
Functions, Terminals, and Basic Architecture / 23.4.1:
Methods of generation and application of the genetic operators / 23.4.2:
Example of an individual / 23.4.3:
The fitness function / 23.4.4:
Values of run parameters and the success predicate / 23.4.5:
Problem Set #2: Single example digit discrimination problem / 23.5:
Problem Set #3: Multiple example digit discrimination tasks / 23.5.3:
Conclusions and Future work / 23.6:
Genetic Micro Programming of Neural Networks / 24:
Review of Cellular Encoding / 24.1:
JaNNeT: A Neural Compiler of Pascal Program / 24.3:
A Hierarchy of Genetic Languages / 24.5:
Cellular Encoding Versus LISP / 24.6:
Author Index / 24.7:
Contributors
Acknowledgments
An Introduction to the Third Volume / 1:
27.

図書

図書
Ronald L. Graham, Jaroslav Nešetřil (eds.)
出版情報: Berlin : Springer, c1997  2 v. ; 25 cm
シリーズ名: Algorithms and combinatorics ; 13-14
所蔵情報: loading…
28.

図書

図書
editor, Franz Müller
出版情報: Boca Raton : CRC Press, c1991-c1992  3 v. ; 27 cm
所蔵情報: loading…
29.

図書

東工大
目次DB

図書
東工大
目次DB
長井寿編著
出版情報: 東京 : 化学工業日報社, 1995.11  xii, 208p ; 21cm
シリーズ名: エコマテリアルシリーズ
所蔵情報: loading…
目次情報: 続きを見る
1. リサイクル設計の必要性 3
   1.1 持続型社会構築と環境調和型製品・素材開発(山本良一) 3
   1.1.1 持続可能な発展は実現可能か 3
   1.1.2 物質文明に内在する矛盾 4
   1.1.3 エコマテリアル開発の必要性 5
   1.1.4 ライフサイクル・アセスメント(Life Cycle Assessment) 6
   1.1.5 エコラベルの威力 7
   1.1.6 欧米諸国の先進的な取り組み 9
   1.1.7 持続可能製品開発の課題 10
   1.2 廃棄物をリサイクルする社会システムの構築(土肥義治) 13
   1.2.1 新しい産業体系の構築 14
   1.2.2 廃棄物のリサイクルシステムの構築 14
   1.3 材料のリサイクラブル設計の基本概念とその意義(古林英一) 17
   1.3.1 リサイクラブル設計の特質 17
   1.3.2 リサイクル技術の普遍性 18
   1.3.3 再生不能資源の再生は 19
   1.3.4 閉回路技術としてのリサイクルの意義 20
   1.3.5 材料のリサイクラブル設計の方法 21
   1 3.6 金属・合金の問題 22
2. リサイクルの現状とリサイクル設計から見た問題点 27
   2.1 鉄鋼材料 27
   2.1.1 プロセスから見た分析(雀部 実) 27
   2.1.1.1 はじめに 27
   2.1.1.2 鉄鋼スクラップの問題点 27
   2.1.1.3 研究の現状 28
   2.1.1.4 まとめ 30
   2.1.2 材質から見た分析(秋末 治) 31
   2.1.2.1 はじめに 31
   2.1.2.2 鉄鋼材料のリサイクル推進のための課題 34
   2.1.2.3 リサイクルのための鉄鋼材料設計 35
   2.1.2.4 おわりに 38
   2.2 非鉄金属材科(黒柳 卓) 39
   2.2.1 銅および銅合金(宮内理夫) 42
   2.2.1.1 プロセスからみた分析 42
   2.2.1.2 材質からみた分析 46
   2.2.1.3 リサイクルから見た課題 47
   2.2.1.4 有害金属 48
   2.2.2 アルミニウムとその合金(大園智哉) 49
   2.2.2.1 プロセスからみた分析 49
   2.2.2.2 リサイクルの課題 54
   2.2.2.3 材質から見た分析 54
   2.2.2.4 不純物への一般的な対応方法 55
   2.2.3 リサイクル設計への一考察(黒柳 卓) 57
   2.3 高分子材料 59
   2.3.1 塩化ビニル(鈴木正保) 59
   2.3.1.1 塩化ビニルをとりまく社会情勢 59
   2.3.1.2 PVCのリサイクル 60
   2.3.1.3 今後の課題 63
   2.3.2 PET,ナイロン,ポリアセタールおよびアクリル樹脂のリサイクル(草川紀久) 65
   2.3.2.1 はじめに 65
   2.3.2.2 PET 66
   2.3.2.3 ナイロン 72
   2.3.2.4 ポリアセタール(POM) 77
   2.3.2.5 アクリル樹脂(PMMA) 82
   2.3.2.6 おわりに 85
   2.3.3 ポリオレフィン系プラスチック(富川昌美) 86
   2.3.3.1 総論 86
   2.3.3.2 マテリアルリサイクル 88
   2.3.3.3 ケミカルリサイクル 88
   2.3.3.4 サーマルリサイクル(エネルギー回収) 90
   2.4 無機材料 91
   2.4.1 コンクリート(小沼栄一) 91
   2.4.1.1 はじめに 91
   2.4.1.2 リサイクル設計の概念 91
   2.4.1.3 マテリアルフロー上で生じる問題点 94
   2.4.1.4 問題解決の視点 95
   2.4.1.5 問題解決を阻害する科学技術上の未解決点 96
   2.4.1.6 おわりに 97
   2.4.2 セラミックス(若井史博) 97
   2.4.2.1 はじめに 97
   2.4.2.2 天然資源 99
   2.4.2.3 他産業の廃棄物・副生物の再資源化 99
   2.4.2.4 製造プロセスと産業廃棄物 100
   2.4.2.5 リサイクルとリユース 101
   2.4.2.6 地球環境保全におけるセラミックスの役割 101
   2.5 静脈からみた現状と問題点 103
   2.5.1 金属スクラップ回収業(長井 寿) 103
   2.5.1.1 スクラップ回収業者のクレーム 103
   2.5.1.2 スクラップ回収業者の「経済原則」 105
   2.5.1.3 鉄,アルミニウムスクラップリサイクル 105
   2.5.1.4 金属スクラップリサイクルをマテリアルフローの中に位置づけるために 107
   2.5.2 廃棄物処理(村田徳治) 108
   はじめに 108
   2.5.2.1 廃棄物処理の現状 109
   2.5.2.2 不合理な現行の廃棄物処理 111
   2.5.2.3 廃棄物の資源化と発生抑制 114
   2.5.2.4 清掃事業から肝腎産業へ 116
3.リサイクル設計の本格的取組みのために 121
   3.1 製品設計 121
   3.1.1 電子情報機器(吉見幸一) 121
   3.1.1.1 はじめに 121
   3.1.1.2 環境調和を考慮した製品の現状 121
   3.1.1.3 本格的リサイクル設計への展望 124
   3.1.1.4 おわりに 126
   3.1.2 電気機器(大橋敏二郎) 127
   3.1.2.1 はじめに 127
   3.1.2.2 背景と目的 127
   3.1.2.3 分解性評価法の概念 128
   3.1.2.4 分解性評価の手順 130
   3.1.2.5 おわりに 131
   3.1.3 OA機器(谷 達雄) 132
   3.1.3.1 リサイクルの概念 132
   3.1.3.2 OA機器のリサイクル対応設計 134
   3.1.3.3 プラスチックのマテリアルリサイクル 136
   3.1.3.4 実験結果 140
   3.1.3.5 おわりに 142
   3.1.4 自動車(羽鳥之彬) 143
   3.1.4.1 自動車の一生とリサイクル 143
   3.1.4.2 クルマ再資源化の問題点 144
   3.1.4.3 再生資源利用促進を目指した事前評価 145
   3.1.4.4 リサイクル推進に向けた取組み 145
   3.1.4.5 今後の自動車リサイクルの課題 149
   3.1.5 農業機械(大内久平) 151
   3.1.5.1 はじめに 151
   3.1.5.2 リサイクル及びリサイクル設計の現状 152
   3.1.5.3 今後のリサイクル設計のあり方 156
   3.1.5.4 環境保全型農業機械の例 156
   3.1.5.5 おわりに 157
   3.1.6 処理処分面からみたECP設計(和田安彦) 158
   3.1.6.1 はじめに 158
   3.1.6.2 処理処分面からみたECP設計の考え方 159
   3.1.6.3 おわりに 170
   3.2 材料設計 171
   3.2.1 金属材料(友田 陽) 171
   3.2.1.1 金属材料の特徴-人工的循環システムを必要とする材料- 171
   3.2.1.2 金属リサイクルに向けての社会的問題と科学技術的問題 172
   3.2.1.3 従来の材料設計とリサイクル指向材料設計 174
   3.2.1.4 リサイクル指向設計の提案 177
   3.2.1.5 おわりに 180
   3.2.2 高分子 180
   3.2.2.1 高分子材料(小林英一) 180
   3.2.2.2 DFD(Design For Disassembly)(上野晃史) 186
   3.2.3 セラミックス(若井史博) 190
   3.2.4 半導体(吉見幸一) 193
   3.2.4.1 はじめに 193
   3.2.4.2 半導体製造プロセスにイけるリサイクル設計 193
   3.2.4.3 半導体製品のリサイクル 196
   3.2.4.4 おわりに 197
おわりに 199
索引 203
1. リサイクル設計の必要性 3
   1.1 持続型社会構築と環境調和型製品・素材開発(山本良一) 3
   1.1.1 持続可能な発展は実現可能か 3
30.

図書

東工大
目次DB

図書
東工大
目次DB
Y. Horie and A.B. Sawaoka
出版情報: Tokyo : KTK Scientific, c1993  x, 364 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
   1.2 Compaction of Powders and Shock Activation, 6
   1.3 First-Order Phase Transitions and Chemical Reactions, 10
   1.4 Time Scales and Interactions of Basic Mechanisms, 12
   1.4.1 Shock propagation in a particle assemblage, 12
   1.4.2 Energy localization, 12
   1.4.3 Thermal relaxation of hot spots, 14
   1.4.4 Mass diffusion in solids, 14
   1.4.5 Kinetic constants, 14
   1.5 Some Roles of Shock Compression Techniques in Material Sciences Study, 16
   1.5.1 Shock Compression Techniques as a tool of high pressure production, 16
   1.5.2 Appearance of diamond anvil-type high-pressure apparatus, 16
   1.5.3 New roles of Shock Compression Technology as a unique method of very high temperature production, 18
   1.5.4 Development of conventional hypervelocity impact techniques for precise measurement of materials under shock compression, 19
Chapter 2 FUNDAMENTALS OF SHOCK WAVE PROPAGATION
   2.1 Hydrodynamic Jump Conditions and the Hugoniot Curve, 23
   2.2 Shock Transition in Hydrodynamic Solids, 32
   2.3 Non-Hydrostatic Deformation of Solids, 42
   2.3.1 Elastic-ideally-plastic solids, 42
   2.3.2 Experimental observations of elastic-plastic behavior, 53
   2.4 Wave-body interactions, 56
   2.4.1 Preliminaries, 57
   2.4.2 Planar impact of similar and dissimilar bodies, 60
   2.4.3 Shock wave interaction with material boundaries, 61
   2.4.4 Wave-wave interactions, 65
   2.4.5 Detonation wave and interaction with a solid surface 66
Chapter 3 SHOCK COMPRESSION TECHNOLOGY
   3.1 Gun Techniques, 80
   3.1.1 Single stage gun, 80
   3.1.2 Conventional two stage light gas gun, 80
   3.1.3 Velocity measurement of projectile, 83
   3.1.4 Magnetoflyer method, 83
   3.1.5 CW x-ray velocity meter, 84
   3.1.6 Measurement of interior projectile motion, 86
   3.1.7 Recovery experiments, 87
   3.2 Explosive Techniques, 89
   3.2.1 Plane shock wave generation and recovery fixture、 89
   3.2.2 Numerical simulaation of shock compression in the recovery capsule, 91
   3.2.3 Cylindrical recovery fixture, 94
   3.3 In-situ Measurements, 95
   3.3.1 Manganin pressure gauge, 95
   3.3.2 Particle velocity gauge, 99
   3.3.3 Observations of multiple shock reverberations by using a manganin pressure gauge and particle velocity gauge, 100
   3.3.4 Shock temperature measurement, 106
   3.3.5 Copper-Constantan thermocouple as a temperature and pressure gauge, 111
Chapter 4 THERMOMECHANICS OF POWDER COMPACTION AND MASS MIXING
   4.1 A One Dimensional Particulate Model, 117
   4.2 Continuum Models, 123
   4.2.1 Hydrodynamic models, 124
   4.2.2 Continuum plasticity theory, 141
   4.2.3 Application, 148
   4.3 Particle Bonding and Heterogeneous Processes, 154
   4.4 Mass Mixing, 160
Chapter 5 THERMOCHEMISTRY OF HETEROGENEOUS MIXTURES
   5.1 Thermodynamic Functions of Heterogeneous Mixtures, 172
   5.2 Analytical Equations of State, 187
   5.3 Hugoniots of Inert Mixtures, 191
   5.3.1 Thermodynamically equilibrium models, 191
   5.3.2 Mechanical models, 197
   5.4 First-Order Phase Transitions, 199
   5.5 Chemical Equilibria, 206
   5.6 Reaction Kinetics, 212
   5.6.1 Rate equations, 212
   5.6.2 Nucleation, 214
   5.6.3 Growth, 216
   5.6.4 Pressure effects, 217
   5.7 Shock-Induced Reactions in Powder Mixtures, 218
Chapter 6 HYDRODYNAMICAL CALCULATIONS
   6.1 Conservation Equations of Continuum Flow, 227
   6.1.1 Mass conservation, 228
   6.1.2 Conservation of linear momentum, 230
   6.1.3 Enegy conservation, 231
   6.2 Constitutive Modeling of Inorganic Shock Chemistry, 234
   6.2.1 VIR model, 235
   6.2.2 Pore collapse, 239
   6.2.3 Chemical kinetics, 239
   6.2.4 Computational constitutive reactions, 240
   6.3 Applications of the VIR Model, 245
   6.3.1 Shock wave profiles in Ni/Al powder mixtures, 245
   6.3.2 Compaction of diamond with Si and graphite, 250
   6.4 Continuum Mixture Theory and the VIR Model, 257
   6.4.1 Continuum mixture theory, 257
   6.4.2 Derivation of the VIR model using the CMT, 263
   6.4.3 A model of heterogeneous flow, 269
Chapter 7 SHOCK CONDITIONING AND PROCESSING OF CERAMICS
   7.1 Shock Conditioning of Powder of Inorganic Materials, 277
   7.1.1 Brief review of shock conditioning studies, 277
   7.1.2 Aluminum oxide powder, 277
   7.2 Shock Synthesis of Inorganic Materials, 281
   7.2.1 Shock synthesis studies, 281
   7.2.2 High dense forms of carbon, 281
   7.2.3 High dense forms of boron nitride, 285
   7.2.4 Shock treatment of boron nitride powders, 287
   7.3 Shock Consolidation of Ceramic Powders, 301
   7.3.1 Why non-oxide ceramics?, 301
   7.3.2 Dynamic consolidation of SiC powders, 302
   7.3.3 Approach to the fabrication of crack free compacts, 304
   7.3.4 Shock consolidation of SiC powder utilizing post shock heating by exothermic reaction, 305
   7.4 Dynamic Compaction of Zinc Blende Type Boron Nitride and Diamond Powders, 310
   7.4.1 Back ground, 310
   7.4.2 Cubic boron nitride, 311
   7.4.3 Diamond, 318
   7.4.4 Diamond composites obtained by utilizzing exothermic chemical reaction, 326
   7.5 Very High Pressure Sintering of Shock Treated Powders, 332
   7.5.1 Silicon nitride, 334
   7.5.2 w-BN, 336
   7.6 Rapid Condensation of High Temperature Ultrasupersaturated Gas, 347
   7.6.1 Silicon nitride, 347
   7.6.2 Carbon, 352
Index, 361
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
31.

図書

図書
edited by Shiro Matsuoka
出版情報: Munich ; New York : Hanser Publishers , New York : Distributed in the United States of America and Canada by Oxford University Press, 1992  322 p. ; 24 cm
シリーズ名: SPE books
所蔵情報: loading…
目次情報: 続きを見る
Stress and Strain / 1:
Free Energy and Stress / 1.1:
Interrelationship Among the Stresses in Elastic Body / 1.2:
Viscoelasticity / 1.3:
Stress Relaxation / 1.3.1:
Superposition of the Stress-Strain History / 1.3.2:
The Relaxation Spectrum / 1.4:
Phenomenological Aspects / 1.4.1:
The Three Stages of Relaxation / 1.4.2:
Molecular Interpretation / 1.4.3:
Conformational Relaxation without Cooperativity / 1.4.3.1:
Cooperativity in Stage 1 Relaxation / 1.4.3.2:
External Viscosity: Stage 2 and 3
Approximate Relations among Linear Viscoelastic Functions / 1.5:
The Yield Phenomenon / 1.6:
Intermolecular Cooperativity / 2:
A Molecular Model for Intermolecular Cooperativity / 2.1:
Distribution of Relaxation Times near the Glass Transition / 2.2:
Stage 1: Relaxation of Conformers / 2.2.1:
Stage 2: The "Transition" Stage / 2.2.2:
The Glassy State / 3:
Isothermal Contraction/Expansion in the Nonequilibrium State / 3.1:
Linear Viscoelastic Relaxation in the Glassy State / 3.2:
Plasticity and Nonlinear Viscoelasticity in the Glassy State / 3.3:
The Magnitude of Relaxation Time in Glassy Polymers / 3.3.1:
The Free Volume Hypothesis / 3.3.2:
Plasticity and Yield Phenomena / 3.3.3:
Viscoplasticity and Nonlinear Viscoelasticity / 3.3.4:
Engineering Scaling Rules for Creep, Relaxation, and Stress-Strain / 3.3.5:
Invariants in Elasticity / 3.3.6:
The Hypothesis of Domain Breakup During Yield / 3.3.7:
The Molten State / 4:
Elements of Melt Rheology / 4.1:
Rubber Elasticity / 4.2:
Linear Viscoelasticity without Entanglement: Stage 2 / 4.3:
Linear Viscoelasticity with Entanglement: Stage 3 / 4.4:
The Melt Flow / 4.5:
Additional Comments / 4.6:
The Vertical Shift Factor and the BKZ Theory / 4.6.1:
The Stress Overshoot / 4.6.2:
Normal Stresses / 4.6.3:
The Crystalline State / 5:
Melting and Crystallization / 5.1:
Relaxation of Semicrystalline Polymers as Composite Structures / 5.2:
Engineering Properties / 5.3:
Related Topics / 6:
The Glass Transition in Crosslinked Polymers (Thermosets) / 6.1:
Failure in Plastics / 6.2:
Polymers Above Tg / 6.2.1:
Polymer Solids / 6.2.2:
Crazing and Stress Cracking / 6.2.3:
Impact Strength and the Brittle-Ductile Transition Temperature / 6.2.4:
Polymer Solutions / 6.3:
Computer Programs in Basic / 7:
Engineering Properties of Glassy and Crystalline Polymers / 7.1:
Nomenclature for Polymer1.Bas / 7.1.1:
Nomenclature in the Program / 7.1.2:
Optional Subroutines / 7.1.3:
Function Keys / 7.1.4:
The Program / 7.2:
Thermodynamic Recovery / 7.3:
Stress and Strain / 1:
Free Energy and Stress / 1.1:
Interrelationship Among the Stresses in Elastic Body / 1.2:
32.

図書

東工大
目次DB

図書
東工大
目次DB
A.B. Sawaoka (ed.)
出版情報: Tokyo ; New York : Springer-Verlag, c1993  xiv, 227 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Chapter1 Heterogeneous Distribution of Temperatures and Pressures in the Shock Recovery Fixtures and its Utilization to Materials Science Study 1
   1 Introduction 1
   2 Reasonable Size of recovery fixture 2
   3 Sock wave reflection in solids 2
   4 Recovery assemblt of a very thin specimen,sandwiched bertween high impedance materials 5
   5 Recovery fixtvire having thick specimen chamber 6
   5.1 Gun recovery expermint
   5.2 Explosive recovery expermint
   6 Numerical simulation of shock compression in the recovery capsule 8
   7 Shock compression of a solid by means of converging shock waves 11
   7.1 Simulation of conically converging shock wave in the rod-in-cylinder structure 11
   7.2 Shock compression of iron by using the conically converging technique 13
   8 Conclusions 15
Chapter2 Dynamic Synthesis of Superhard Materials 17
   1 Introduction 17
   2 Dynamic synthesis of super hard materials 17
   3 Considerations of synthesis mechanism 21
   4 Conclusions 30
Chapter3 Solid State Reactivity of Shock-Processed Solids 35
   1 Introduction 35
   2 Shock modification of shock-processed solids 36
   3 Single-component system 36
   3.1 Solid -solid interaction 36
   3.2 Solid-liquid interactions 48
   3.3 Solid-gas interactions 50
   4 Multiple-component Systems 52
   4.1 Conventional reaction processing 53
   4.2 Shock compression processing 55
   5 Summary and concluding remarks 61
Chapter4 Shock-Induced Chemical Reactions in Inorganic Powder Mixtures 67
   1 Introduction 67
   2 Materials synthesis 68
   2.1 Aluminades 68
   2.2 Diamond 76
   2.3 Diamond/ceramics composites 77
   3 Computational modeling 79
   4 Conclusions 98
Chapter5 Shock Effects on Structural and Superconducting Properties of High Tc Oxides 101
   1 Introduction 101
   2 Specific features of high Tc oxides as type II superconductor 102
   3 Mechanical and chemical effects of shock waves on high Tc oxides 103
   3.1 Shock synthesis and decomposition 103
   3.2 Shock compaction 103
   3.3 Shock-induced strain 103
   3.4 Deformation textures and induced defects 105
   4 Shock effects on superconductiong properties 107
   4.1 Shock effects on Tc 107
   4.2 Effect on pinning energy 108
   5 Concluding remarks 110
Chapter6 Shock compression studies on ceramic materials 113
   1 Introduction 113
   2 Experimental facilities combined with the keyed-powder gun 114
   2.1 Keyed-powder gun 114
   2.2 Inclined-mirror method 116
   2.3 Manganin-gauge method 117
   2.4 Electromagnetic-gauge method 119
   3 Shock compression studies on selected ceramics 120
   3.1 Alumina(Al2O3) 120
   3.2 Zirconia(ZrO2) 124
   3.3 Silicon nitride(Si3N4) 131
   4 Phenomenological discussion on the shock-yielding phenomena of brittle materials 132
   4.1 Some problems in experimental and analysis of shock compression of solids 133
   4.2 Classification of the shock-yielding phenomena of solids 134
   4.3 Correlation with some crystal state and thermal property 138
   5 Concluding remarks 141
Chapter7 The role of Thermal Energy in Shock Consolidation 145
   1 Introduction 145
   2 Energy deposition during shock processing 145
   3 Experimental techniques 145
   3.1 Cylindrical system 154
   3.2 Sawaoka system 154
   4 Consolidation experiments:Results and discussion 158
   4.1 Hot shock consolidation 159
   4.2 shock consolidation followed by annealing or hot isostatic pressing 165
   4.3 Reaction-assisted shock consolidation 171
   5 Conclusions 175
Chapter8 A New Processing for rhe Self-propagating High Temperature Synthesis(SHS)Combined with Shock Compression Technique 177
   1 Introduction 177
   2 Explosive treatment of final SHS products 179
   3 Shock wave effects in starting SHS compositions 185
   4 Concomitant occurrence of SHS and explosive pressing 186
   5 Conclusions 192
Chapter9 Shock wave interaction in solid materials 195
   1 Introduction 195
   2 Gas gun based methods of realizing wave interaction 196
   2.1 Shock wave registration system 197
   2.2 New procedure of generating shock convergence or collision 199
   3 Symmetrically converging cylindrical shock waves in solids 201
   3.1 Approximate theory of converging shock waves in condensed media 201
   3.2 Converging shock wave:a unique application 206
   4 Collision of plane shock waves and Mach stem produced by conical convergence 211
   4.1 Regular and irregular reflection 212
   4.2 Experimental procedures 216
   4.3 Results and discussion 219
   5 Concluding remarks 223
Chapter1 Heterogeneous Distribution of Temperatures and Pressures in the Shock Recovery Fixtures and its Utilization to Materials Science Study 1
   1 Introduction 1
   2 Reasonable Size of recovery fixture 2
33.

図書

図書
Arthur R. Weeks, Jr
出版情報: Bellingham : SPIE Optical Engineering Press , New York : IEEE Press, c1996  xiii, 570 p. ; 26 cm
シリーズ名: SPIE/IEEE series on imaging science & engineering
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction to Electronic Image Processing / 1:
Historical Background / 1.1:
Applications of Image Processing / 1.2:
Introduction to Visual Perception / 1.3:
Image Formation / 1.4:
Sampling and Quantization / 1.5:
Image Neighbors and Distances / 1.6:
Typical Image Processing Systems / 1.7:
Transforms Used in Electronic Image Processing / 2:
The Fourier Series / 2.1:
The One-Dimensional Fourier Transform / 2.2:
The Two-Dimensional Fourier Transform / 2.3:
Important Functions Relating to the Fourier Transform / 2.4:
The Discrete Fourier Transform / 2.5:
Example and Properties of the Discrete Fourier Transform / 2.6:
Computation of the Discrete Fourier Transform / 2.7:
Other Image Transforms / 2.8:
Image Enhancement by Point Operations / 3:
An Overview of Point Processing / 3.1:
Constant and Nonlinear Operations / 3.2:
Operations Between Images / 3.3:
Histogram Techniques / 3.4:
Spatial Filtering and Fourier Frequency Methods / 4:
Various Types of Noise That Appear in Images / 4.1:
Spatial Filtering / 4.2:
Spatial Frequency Filtering / 4.3:
Image Restoration / 4.4:
Nonlinear Image Processing Techniques / 5:
Nonlinear Spatial Filters Based on Order Statistics / 5.1:
Nonlinear Mean Filters / 5.2:
Adaptive Filters / 5.3:
The Homomorphic Filter / 5.4:
Color Image Processing / 6:
Color Fundamentals / 6.1:
Color Models / 6.2:
Examples of Color Image Processing / 6.3:
Pseudocoloring and Color Displays / 6.4:
Image Geometry and Morphological Filters / 7:
Spatial Interpolation / 7.1:
Image Geometry / 7.2:
Binary Morphology Dilation and Erosion / 7.3:
Binary Morphology Opening, Closing, Edge Detection, and Skeletonization / 7.4:
Binary Morphology Hit-Miss, Thinning, Thickening, and Pruning / 7.5:
Binary Morphology Granulometries and the Pattern Spectrum / 7.6:
Graylevel Morphology / 7.7:
Image Segmentation and Representation / 8:
Image Thresholding / 8.1:
Edge, Line, and Point Detection / 8.2:
Region Based Segmentation / 8.3:
Image Representation / 8.4:
Image Compression / 9:
Compression Fundamentals / 9.1:
Error-Free Compression Methods / 9.2:
Lossy Compression Methods / 9.3:
Bibliography
Index
Preface
Acknowledgments
Introduction to Electronic Image Processing / 1:
34.

図書

東工大
目次DB

図書
東工大
目次DB
Motoichi Ohtsu and Hirokazu Hori
出版情報: New York : Kluwer Academic/Plenum Pub., c1999  xii, 386 p. ; 24 cm
シリーズ名: Lasers, photonics, and electro-optics
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
   1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM) 4
   1.2.1. From Interference-to Interaction-Type Optical Microscopy 4
   1.2.2. Development of Near-Field Optical Microscopy and Related Techniques 6
   1.3. General Features of Optical Near-Field Problems 10
   1.3.1. Optical Processes and the Scale of Interest 10
   1.3.2. Effective Fields and Interacting Subsystems 12
   1.3.3. Electromagnetic Interaction in a Dielectric System 15
   1.3.4. Optical Near-Field Measurements 20
   1.4. Theoretical Treatment of Optical Near-Field Problems 25
   1.4.1. Near-Field Optics and Inhomogeneous Waves 25
   1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems 28
   1.4.3. Explicit Treatment of Field-Matter Interaction 32
   1.5. Remarks on Near-Field Optics and Outline of This Book 33
   1.5.1. Near-Field Optics and Related Problems 33
   1.5.2. Outline of This Book 34
   1.6. References 35
Chapter 2. Principles of Near-Field Optical Microscopy
   2.1. An Example of Near-Field Optical Microscopy 43
   2.2. Construction of the NOM System 45
   2.2.1. Building Blocks of the NOM System 45
   2.2.2. Environmental Conditions 47
   2.2.3. Functions of the Building Blocks 48
   2.3. Theoretical Description of Near-Field Optical Microscopy 50
   2.3.1. Basic Character of the NOM Process 50
   2.3.3. Demonstration of Localization in the Near-Field Interaction 53
   2.3.4. Representation of the Spatial Localization of an Electromagnetic Event 55
   2.3.5. Model Description of a Local Electromagnetic Interaction 55
   2.4. Near-Field Problems and the Tunneling Process 56
   2.4.1. Bardeen's Description of Tunneling Current in STM 57
   2.4.2. Comparison of the Theoretical Aspects of NOM and STM 58
   2.5. References 61
Chapter 3. Instrumentation
   3.1. Basic Systems of a Near-Field Optical Microscope 63
   3.1.1. Modes of Operation 66
   3.1.2. Position Control of the Probe 69
   3.1.3. Mechanical Components 74
   3.1.4. Noise Sources Internal to the NOM 75
   3.1.5. Operation under Special Circumstances 78
   3.2. Light Sources 82
   3.2.1. Basic Properties of Lasers 82
   3.2.2. Characteristics of CW Lasers 84
   3.2.3. Additional Noise Properties of CW Lasers 88
   3.2.4. Short-Pulse Generation 94
   3.2.5. Nonlinear Optical Wavelength Conversion 97
   3.3. Light Detection and Signal Amplification 98
   3.3.1. Detector 98
   3.3.2. Signal Detection and Amplification 103
   3.4. References 111
Chapter 4. Fabrication of Probes
   4.1. Sharpening of Fibers by Chemical Etching 113
   4.1.1. A Basic Sharpened Fiber 114
   4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding 118
   4.1.3. A Pencil-Shaped Fiber 119
   4.1.4. A Flattened-Top Fiber 122
   4.1.5. A Double-Tapered Fiber 127
   4.2. Metal Coating and Fabrication of a Protruded Probe 130
   4.2.1. Removal of Metallic Film by Selective Resin Coating 132
   4.2.2. Removal of Metallic Film by Nanometric Photolithography 135
   4.3. Other Noverl Probes 139
   4.3.1. Functional Probes 139
   4.3.2. Optically Trapped Probes 141
   4.4. References 141
Chapter 5. Imaging Experiments
   5.1. Basic Features of the Localized Evanescent Field 143
   5.1.1. Size-Dependent Decay Length of the Field Intensity 143
   5.1.2. Manifestation of the Short-Range Electromagnetic Interaction 146
   5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface 149
   5.2. Imaging Biological Samples 152
   5.2.1. Imaging by the C-Mode 152
   5.2.2. Imaging by the I-Mode 161
   5.3. Spatial Power Spectral Analysis of the NOM Image 170
   5.4. References 177
Chapter 6. Diagnostics and Spectroscopy of Photonic Devices and Materials
   6.1. Diagnosing a Dielectric Optical Waveguide 179
   6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide 184
   6.2.1. Photoluminescence and Electroluminescence Spectroscopy 185
   6.2.2. Photocurrent Measurement by Multiwavelength NOM 191
   6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot 196
   6.4. Imaging of Other Materials 201
   6.4.1. Fluorescence Detection from Dye Molecules 201
   6.4.2. Spectroscopy of Solid-State Materials 205
   6.5. References 207
Chapter 7. Fabrication and Manipulation
   7.1. Fabrication of Photonic Devices 209
   7.1.1. Development of a High-Efficiency Probe 212
   7.1.2. Development of a Highly Sensitive Storage Medium 212
   7.1.3. Fast Scanning of the Probe 213
   7.2. Manipulating Atoms 213
   7.2.1. Zero-Dimensional Manipulation 214
   7.2.2. One-Dimensional Manipulation 216
   7.3. References 231
Chapter 8. Optical Near-Field Theory
   8.1. Introduction 235
   8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems 237
   8.2.1. Microscopic Electromagnetic Interaction and Averaged Field 237
   8.2.2. Optical Response of Macroscopic Matter 241
   8.2.3. Optical Response of Small Objects and the Idea of System Susceptibility 244
   8.2.4. Electromagnetic Boundary Value Problem 245
   8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem 255
   8.3.1. Self-Consistent Approach for Multiple Scattering Problems 255
   8.3.2. Scattering Theory in the Near-Field Regime Based on Polarization Potential and Magnetic Current 260
   8.4. Diffraction Theory in Near-Field Optics 275
   8.4.1. Diffraction of Light from Subwavelength Aperture 275
   8.4.2. Kirchhoff's Diffraction Integral and Far-Field Theory 276
   8.4.3. Small-Aperture Diffraction and Equivalent Problem 277
   8.4.4. Magnetic Current Distribution and Self-Consistency 278
   8.4.5. Leviatan's "Exact" Solutions for the Aperture Problem 280
   8.5. Institutive Model of Optical Near-Field Processes 281
   8.5.1. Short-Range Quasistatic Nature of Optical Near-Field Processes 281
   8.5.2. Intuitive Model Based on Yukawa-Type Screened Potential 282
   8.5.3. Application of Virtual Photon Model for Diffraction from a Small Aperture 285
   8.5.4. Virtual Photon Model of NOM 288
   8.5.5. Meaning of the Screened Potential Model and Physical Meaning of the Virtual Photon 292
   8.6. References 297
Chapter 9. Theoretical Description of Near-Field Optical Microscope
   9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope 300
   9.2. Representation of the Electromagnetic Field and the Interaction Propagator 302
   9.2.1. Spherical Representation of Scalar Waves 302
   9.2.2. Vector Nature of the Electromagnetic Field 307
   9.3. States of Vector Fields and Their Representations 316
   9.3.1. State of Vector Plane Waves 316
   9.3.2. State of Vector Spherical Waves 318
   9.3.3. State of Vector Cylindrical Waves 319
   9.3.4. Spatial Fourier Representation of Electromagnetic Fields 319
   9.3.5. Multipole Expansion of Vector Plane Waves 321
   9.4. Angular Spectrum Representation of Electromagnetic Interactions 324
   9.4.1. Angular Spectrum Representation of Scattering Problems 325
   9.4.2. Meaning of the Angular Spectrum Representation 327
   9.4.3. Angular Spectrum Representation of Scalar Multipole Field and Propagator 329
   9.4.4. Angular Spectrum Representation of Vector Multipole Field and Propagator 332
   9.4.5. Angular Spectrum Representation of Cylindrical Field and Propagator 340
   9.4.6. Transformation between Spherical and Cylindrical Representations 341
   9.4.7. Summary: Representations of the Electromagnetic Fields Transformations between Mode Functions 343
   9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface 347
   9.5.1. Sample-Probe Interaction at a Dielectric Surface 348
   9.5.2. Mode Description of Evanescent Waves of Fresnel 351
   9.5.3. Multipolar Representation of Evanescent Modes 352
   9.5.4. Near-Field Interaction of Dielectric Spheres at a Planar Dielectric Surface 359
   9.6. References 379
Index 381
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
35.

図書

図書
by Corneliu Constantinescu ... [et al.]
出版情報: Dordrecht : Kluwer Academic Publishers, c1998  ix, 861 p. ; 25 cm
シリーズ名: Mathematics and its applications ; v. 454
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Introduction
Suggestions to the Reader
Preliminaries / 0:
Vector Lattices / 1:
Ordered Vector Spaces / 1.1:
Substructures, Quotients, Products / 1.2:
Bands and Orthogonality / 1.4:
Homomorphisms / 1.5:
The Order Dual of a Vector Lattice / 1.6:
Continuous Functionals / 1.7:
Order and Topology / 1.8:
Metric Spaces and Banach Spaces / 1.9:
Banach Lattices / 1.10:
Hilbert Lattices / 1.11:
Lattice Products / 1.12:
Elementary Integration Theory / 2:
Riesz Lattices / 2.1:
Daniell Spaces / 2.2:
The Closure of a Daniell Space / 2.3:
The Integral for a Daniell Space / 2.4:
Systems of Sets, Step Functions, and Stone Lattices / 2.5:
Positive Measures / 2.6:
Closure, Completion, and Integrals for Positive Measure Spaces / 2.7:
Measurable Spaces and Measurability / 2.8:
Measurability versus Integrability / 2.9:
Stieltjes Functionals and Stieltjes Measures. Lebesgue Measure / 2.10:
L[superscript p]-Spaces / 3:
Classes modulo [mu] and Convergence in Measure / 3.1:
The Holder and Minkowski Inequalities and the L[superscript p]-Spaces / 3.2:
L[superscript p]-Spaces for 0 [ p [ [infinity] / 3.3:
Uniform integrability and the Generalized Lebesgue Convergence Theorem / 3.4:
Localization / 3.5:
Products and L[superscript [infinity]] / 3.6:
Real Measures / 4:
Nullcontinuous Functionals / 4.1:
Real Measures and Spaces of Real Measures / 4.2:
Integrals for Real Measures / 4.3:
Bounded Measures / 4.4:
Atomic and Atomless Measures / 4.5:
The Radon-Nikodym Theorem. Duality / 5:
Absolute Continuity / 5.1:
The Theorem of Radon-Nikodym / 5.2:
Duality for Function Spaces / 5.3:
The Classical Theory of Real Functions / 6:
Functions of Locally Finite Variation / 6.1:
Real Stieltjes Measures / 6.2:
Absolutely Continuous Functions / 6.3:
Vitali's Covering Theorem / 6.4:
Differentiable Functions / 6.5:
Spaces of Multiply Differentiable Functions / 6.6:
Riemann-Stieltjes Integrals / 6.7:
Historical Remarks
Name Index
Subject Index
Symbol Index
Preface
Acknowledgements
Introduction
36.

図書

東工大
目次DB

図書
東工大
目次DB
M. Ohtsu, ed
出版情報: Tokyo ; New York : Springer-Verlag, 1998  xiv, 302 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contents
List of Contributors
1. Introduction 1
   1.1 Near-Field Optics and Related Technologies 1
   1.2 History of Near-Field Optics and Related Technologies 2
   1.3 Basic Features of an Optical Near Field 3
   1.3.1 Optically “Near” System 3
   1.3.2 Effective Field and Evanescent Field 5
   1.3.3 Near-Field Detection of Effective Fields 6
   1.3.4 Role of a Probe Tip 8
   1.4 Building Blocks of Near-Field Optical Systems 9
   1.5 Comments on the Theory of Near-Field Optics 11
   1.6 Composition of This Book 13
   References 13
2. Principles of the Probe 15
   2.1 Basic Probe 15
   2.1.1 Optical Fiber Probe for the Near-Field Optical Microscope 15
   2.1.2 Principle of the Imaging Mechanism: Dipole-Dipole Interaction 16
   2.1.3 Resolution 17
   2.1.4 Contrast 19
   2.1.5 Sensitivity 24
   2.2 Functional Probe: New Contrast Mechanisms 25
   2.2.1 Signal Conversion by Functional Probes 25
   2.2.2 Absorption and Emission: Radiative and Nonradiative Energy Transfer 26
   2.2.3 Resonance, Nonlinearity, and Other Mechanisms 27
   References 29
3. Probe Fabrication 31
   3.1 Introduction 31
   3.2 Selective Etching of a Silica Fiber Composed of a Core and Cladding 34
   3.2.1 Geometrical Model of Selective Etching 34
   3.2.2 Pure Silica Fiber with a Fluorine Doped Cladding 35
   3.2.3 GeO2 Doped Fiber 36
   3.2.4 Tapered Fibers for Optical Transmission Systems 37
   3.3 Selective Etching of a Dispersion Compensating Fiber 38
   3.3.1 Shoulder-Shaped Probe 38
   3.3.1.1 Shoulder-Shaped Probe with a Controlled Cladding Diameter 38
   3.3.1.2 Shoulder-Shaped Probe with a Nanometric Flattened Apex 40
   3.3.1.3 Double-Tapered Probe 42
   3.3.2 Pencil-Shaped Probe 45
   3.3.2.1 Pencil-Shaped Probe with an Ultra-Small Cone Angle 45
   3.3.2.2 Pencil-Shaped Probe with a Nanometric Apex Diameter 47
   3.4 Protrusion-Type Probe 51
   3.4.1 Selective Resin Coating Method 52
   3.4.2 Chemical Polishing Method 54
   3.5 Hybrid Selective Etching of a Double-Cladding Fiber 56
   3.5.1 Triple-Tapered Probe 56
   3.5.2 Geometrical Model of Selective Etching of a Double-Cladding Fiber 57
   3.5.3 Application-Oriented Probes: Pencil-Shaped Probe and Triple-Tapered Probe 59
   3.6 Probe for Ultraviolet NOM Applications 62
   3.6.1 UV Single-Tapered Probe 62
   3.6.2 UV Triple-Tapered Probe 65
   3.6.2.1 Advanced Method Based on Hybrid Selective Etching of a Double Core Fiber 65
   3.6.2.2 Geometrical Model 67
   References 68
4. High-Throughput Probes 71
   4.1 Introduction 71
   4.2 Excitation of the HE-Plasmon Mode 73
   4.2.1 Mode Analysis 73
   4.2.2 Edged Probes for Exciting the HE-Plasmon Mode 74
   4.3 Multiple-Tapered Probes 77
   4.3.1 Double-Tapered Probe 77
   4.3.2 Triple-Tapered Probe 82
   References 87
5. Functional Probes 89
   5.1 Introduction 89
   5.2 Methods of Fixation 90
   5.3 Selecting a Functional Material 92
   5.4 Probe Characteristics and Applications 93
   5.4.1 Dye-Fixed Probes 93
   5.4.2 Chemical Sensing Probes 94
   5.5 Future Directions 98
   References 99
6. Instrumentation of Near-Field Optical Microscopy 101
   6.1 Operation Modes of NOM 101
   6.1.1 c-Mode NOM 102
   6.1.2 i-Mode NOM 104
   6.1.3 Comparative Features of Modes of NOM 105
   6.2 Scanning Control Modes 107
   6.2.1 Constant-height Mode 107
   6.2.2 Constant-Distance Mode 108
   6.2.2.1 Shear-force Feed Back 108
   6.2.2.2 Optical Near-Field Intensity Feedback 111
   References 114
7. Basic Features of Optical Near-Field and Imaging 117
   7.1 Resolution Characteristics 117
   7.1.1 Longitudinal Resolution 117
   7.1.2 Lateral Resolution 120
   7.2 Factors Influencing Resolution 123
   7.2.1 Influence of Probe Parameters 124
   7.2.2 Dependence on Sample-Probe Separation 124
   7.3 Polarization Dependence 125
   7.3.1 Influence of Polarization on the Images of an Ultrasmooth Sapphire Surface 126
   7.3.2 Influence of Polarization on the Images of LiNbO3 Nanocrystals 130
   References 130
8. Imaging Biological Specimens 133
   8.1 Introduction 133
   8.2 Observation of Flagellar Filaments by c-Mode NOM 133
   8.2.1 Imaging in Air 134
   8.2.2 Imaging in Water 136
   8.3 Observation of Subcellular Structures of Neurons by i-Mode NOM 136
   8.3.1 Imaging in Air Under Shear-Force Feedback 137
   8.3.1.1 Imaging of Neurons Without Dye Labeling 138
   8.3.1.2 Imaging of Neurons Labeled with Toluidine Blue 139
   8.3.2 Imaging in Water Under Optical Near-Field Intensity Feedback 140
   8.3.2.1 Imaging in Air 140
   8.3.2.2 Imaging in PBS 142
   8.4 Imaging of Microtubules by c-Mode NOM 144
   8.5 Imaging of Fluorescent-Labeled Biospecimens 145
   8.6 Imaging DNA Molecules by Optical Near-Field Intensity Feedback 148
   References 151
9. Diagnosing Semiconductor Nano-Materials and Devices 153
   9.1 Fundamental Aspects of Near-Field Study of Semiconductors 153
   9.1.1 Near-Field Spectroscopy of Semiconductors 153
   9.1.2 Optical Near Field Generated by a Small Aperture and Its Interaction with Semiconductors 154
   9.1.3 Operation in Illumination-Collection Hybrid Mode 156
   9.2 Multidiagnostics of Lateral p-n Junctions 158
   9.2.1 Sample and Experimental Set-up 158
   9.2.2 Spatially Resolved Photoluminescence Spectroscopy 159
   9.2.3 Two-Dimensional Mapping of Photoluminescence Intensity 163
   9.2.4 Collection-Mode Imaging of Electroluminescence 163
   9.2.5 Multiwavelength Photocurrent Spectroscopy 164
   9.3 Low-Temperature Single Quantum Dot Spectroscopy 169
   9.3.1 Near-Field single quantum dot spectroscopy 169
   9.3.2 Low-Temperature NOM 170
   9.3.3 Sample and Experimental Set-up 171
   9.3.4 Fundamental Performance of the System 172
   9.3.5 Physical Insight of Single Quantum Dot Photoluminescence 174
   9.3.6 Observation of Other Types of Quantum Dots 176
   9.4 Ultraviolet Spectroscopy of Polysilane Molecules 178
   9.4.1 Polysilanes 178
   9.4.2 Near-Field Ultraviolet Spectroscopy 180
   9.4.3 Imaging and Spectroscopy of Polysilane Aggregates 181
   9.5 Raman Spectroscopy of Semiconductors 183
   9.5.1 Near-Field Raman Spectroscopy 183
   9.5.2 Raman Imaging and Spectroscopy of Polydiacetylene and Si 184
   9.6 Diagnostics of A1 Stripes in an Integrated Circuit 186
   9.6.1 Principle of Detection 186
   9.6.2 Heating with a Metallized Probe 187
   9.6.3 Heating by an Apertured Probe 188
   References 189
10. Toward Nano-Photonic Devices 193
   10.1 Introduction 193
   10.2 Use of Surface Plasmons 193
   10.2.1 Principles of Surface Plasmons 193
   10.2.2 Observation of Surface Plasmons 195
   10.2.3 Toward Two-Dimensional Devices 197
   10.2.4 Toward Three-Dimensional Devices 200
   10.2.5 A Protruded Metallized Probe with an Aperture 204
   10.3 Application to High-Density Optical Memory 207
   10.3.1 Problems to Be Solved 207
   10.3.2 Approaches to Solving the Problems 208
   10.3.2.1 Structure of the Read-Out Head 208
   10.3.2.2 Storage Probe Array 210
   10.3.2.3 Track-less Read-out 210
   10.3.3 Fabrication of a Two-Dimensional Planar Probe Array 212
   References 214
11. Near-Field Optical Atom Manipulation: Toward Atom Photonics 217
   11.1 Introduction 217
   11.1.1 Control of Gaseous Atoms: From Far Field to Near Field 217
   11.1.2 Dipole Force 219
   11.1.3 Atomic Quantum Sheets: Atom Reflection Using a Planar Optical Near Field 220
   11.1.4 Atomic Quantum Wires: Atom Guidance Using a Cylindrical Optical Near Field 221
   11.1.5 Atomic Quantum Dots: Atom Manipulation Using a Localized Optical Near Field 222
   11.2 Cylindrical Optical Near Field for Atomic Quantum Wires 224
   11.2.1 Exact Light-Field Modes in Hollow Optical Fibers 224
   11.2.2 Approximate Light-Field Modes in Hollow Optical Fibers 227
   11.2.3 Field Intensity of the LP Modes 229
   11.3 Atomic Quantum Wires 230
   11.3.1 Near-Field Optical Potential 230
   11.3.2 Laser Spectroscopy of Guided Atoms with Two-Step Photoionization 231
   11.3.3 Observation of Cavity QED Effects in a Dielectric Cylinder 235
   11.3.4 Atomic Quantum Wires with a Light Coupled Sideways 239
   11.4 Optically Controlled Atomic Deposition 240
   11.4.1 Spatial Distribution of Guided Atoms 241
   11.4.2 Precise Control of Deposition Rate 243
   11.4.3 In-line Spatial Isotope Separation 244
   11.5 Near-Field Optical Atomic Funnels 246
   11.5.1 Atomic Funnel with Atomic Quantum Sheet 247
   11.5.2 Sisyphus Cooling Induced by Optical Near Field 248
   11.5.3 Monte Carlo Simulations 251
   11.6 Atomic Quantum Dots 254
   11.6.1 Phenomenological Approach to the Interaction Between Atoms and the Localized Optical Near Field 254
   11.6.2 Atom Deflection 256
   11.6.3 Atom Trap with a Sharpened Optical Fiber 258
   11.6.4 Three-Dimensional Atom Trap 259
   11.7 Future Outlook 261
   References 263
12. Related Theories 267
   12.1 Comparison of Theoretical Approaches 267
   12.2 Semi-microscopic and Microscopic Approaches 270
   12.2.1 Basic Equations 270
   12.2.2 Example of an Evanescent Field 272
   12.2.3 Direct and Indirect Field Propagators 273
   12.2.4 Electric Susceptibility of Matter 275
   12.3 Numerical Examples 277
   12.3.1 Weak vs. Strong Coupling 277
   12.3.2 Near-Field- and Far-Field-Propagating Signals 280
   12.3.3 Scanning Methods 282
   12.3.4 Possibility of Spin-Polarization Detection 284
   12.4 Effective Field and Massive Virtual Photon Model 288
   12.5 Future Direction 290
   References 290
Index 295
Preface
Contents
List of Contributors
37.

図書

図書
[edited by] Matthias Beller, Carsten Bolm
出版情報: Weinheim ; Chichester : Wiley-VCH, c1998  2 v. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface.
General. / 1:
Basic Aspects of Organic Synthesis with Transition Metals (Barry M. Trost). / 1.1:
Concepts for the Use of Transition Metals in Industrial Fine Chemical Synthesis (Wilhelm Keim). / 1.2:
Transition Metal-Catalyzed Reactions. / 2:
Hydroformylation: Applications in the Synthesis of Pharmaceuticals and Fine Chemicals (Matthias Beller and Kamal Kumar). / 2.1:
New Synthetic Applications of Tandem Reactions under Hydroformylation Conditions (Peter Eilbracht and Axel M. Schmidt). / 2.2:
Multiple Carbon-Carbon Bond Formations under Hydroformylation Conditions (Peter Eilbracht and Axel M. Schmidt). / 2.3:
Hydrocarboxylation and Hydroesterification Reactions Catalyzed by Transition Metal Complexes (Bassam El Ali and Howard Alper). / 2.4:
The Amidocarbonylation of Aldehydes (Axel Jacobi von Wangelin, Helfried Neumann, Dirk Gordes, and Matthias Beller). / 2.5:
Transition Metal-catalyzed Alkene and Alkyne Hydrocyanations (Albert L. Casalnuovo and T.V. Rajan Babu). / 2.6:
Cyclopropanation (Andreas Pfaltz). / 2.7:
Cyclomerization of Alkynes (H. Bonnemann and W. Brijoux). / 2.8:
Coupling of Aryl and Alkyl Halides with Organoboron Reagents (Suzuki Reaction) (Alexander Zapf). / 2.9 Isomerization of Olefin and the Related Reactions (Sei Otsuka and Kazuhide Tani).:
Transition Metal-Catalyzed Arylation of Amines and Alcohols (Alexander Zapf, Matthias Beller, and Thomas H. Riermeier). / 2.11:
Catalytic Enantioselective Alkylation of Alkenes by Chiral Metallocenes (Amir H. Hoveyda). / 2.12:
Palladium-Catalyzed Olefinations of Aryl Halides (Heck Reaction) and Related Transformations (Matthias Beller, Alexander Zapf, and Thomas H. Riermeier). / 2.13:
Palladium-Catalyzed Allylic Substitutions (Andreas Heumann). / 2.14:
Alkene and Alkyne Metathesis in Organic Synthesis (Oliver R. Thiel). / 2.15:
Homometallic Lanthanoids in Synthesis: Lanthanide Triflate-catalyzed Synthetic Reactions (Sh&umarc; Kobayashi). / 2.16:
Lanthanide Complexes in Asymmetric Two-Center Catalysis (Masakatsu Shibasaki, Hiroaki Sasai, and Naoki Yoshikawa). / 2.17:
Bismuth Reagents and Catalysts in Organic Synthesis (Axel Jacobi von Wangelin). / 2.18:
Transition Metal-Mediated Reactions. / 3:
Fischer-Type Carbene Complexes (Karl Heinz Dotz and Ana Minatti). / 3.1:
Titanium-Carbene Mediated Reactions (Nicos A. Petasis). / 3.2:
The McMurry Reaction and Related Transformations (Alois Furstner). / 3.3:
Chromium(II)-Mediated and -Catalyzed C-C Coupling Reactions (David M. Hodgson and Paul J. Comina). / 3.4:
Manganese(III)-Based Oxidative Free-Radical Cyclizations (Barry B. Snider). / 3.5:
Titanium-Mediated Reactions (Rudolf O. Duthaler, Frank Bienewald, and Andreas Hafner). / 3.6:
Zinc-Mediated Reactions (Axel Jacobi von Wangelin and Mathias U. Frederiksen). / 3.7:
The Conjugate Addition Reaction (A. Alexakis). / 3.8:
Carbometalation Reactions of Zinc Enolate Derivatives (Daniella Banon-Tenne and Ilan Marek). / 3.9:
Iron Acyl Complexes (Karola Ruck-Braun). / 3.10:
Iron-Diene Complexes (Hans-Joachim Knolker). / 3.11:
Chromium-Arene Complexes (Hans-Gunther Schmalz and Florian Dehmel). / 3.12:
Pauson-Khand Reactions (D. Strubing and M. Beller). / 3.13:
Subject Index.
Preface.
General. / 1:
Basic Aspects of Organic Synthesis with Transition Metals (Barry M. Trost). / 1.1:
38.

図書

図書
volume editor, J. Roovers ; with contributions by B. Charleux ... [et al.]
出版情報: Berlin : Springer-Verlag, c1999  2 v. ; 25 cm
シリーズ名: Advances in polymer science ; 142, 143
所蔵情報: loading…
39.

図書

図書
Hojjat Adeli, editor
出版情報: New York : McGraw-Hill, c1990  v. <1-2 > ; 25 cm
所蔵情報: loading…
目次情報:
v. 1. Fundamentals
v. 2. Applications
v. 1. Fundamentals
v. 2. Applications
40.

図書

図書
editor, H. Dugas ; with contributions by S.A. Benner ... [et al.]
出版情報: Berlin ; Tokyo : Springer-Verlag, c1990-  v. ; 25 cm
所蔵情報: loading…
41.

図書

図書
Peter Seyfried ... [et al.] (eds.)
出版情報: Berlin ; New York : Springer-Verlag, c1991  xii, 417 p. ; 25 cm
所蔵情報: loading…
42.

図書

東工大
目次DB

図書
東工大
目次DB
太田次郎著
出版情報: 東京 : 裳華房, 1996.10  xi, 240p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1 生命の単位
 1.1 生体を構成する物質 2
   1.1.1 生体を構成する元素 2
   1.1.2 生体の化学成分 3
 1.2 細胞の構造と機能 10
   1.2.1 細胞の形態 10
   1.2.2 細胞の内部構造 13
   1.2.3 細胞小器官の構造と機能 14
 1.3 細菌とウイルス 30
   1.3.1 細菌の構造 30
   1.3.2 ウイルス 31
2 物質代謝とエネルギー代謝
 2.1 生体反応の特性 39
   2.1.1 酵素とそのはたらき 39
   2.1.2 化学エネルギーとATP 41
 2.2 生体のエネルギー獲得 43
   2.2.1 光合成 43
   2.2.2 窒素同化 49
   2.2.3 発酵と解糖 51
   2.2.4 呼吸 54
 2.3 生体のエネルギー消費 57
   2.3.1 筋肉の収縮 57
   2.3.2 能動輸送 62
   2.3.3 生体物質の合成 64
3 生物の恒常性と調節
 3.1 神経による調節 66
   3.1.1 神経細胞と興奮の伝達 66
   3.1.2 ヒトの神経系 69
 3.2 ホルモンによる調節 77
   3.2.1 ヒトの内分泌器官とホルモン 77
   3.2.2 ホルモンの相互作用 80
   3.2.3 ホルモンの作用機構 82
 3.3 ホメオスタシス―恒常性の維持 84
   3.3.1 血糖量の維持 84
   3.3.2 体温の調節 86
   3.3.3 その他の恒常性と調節 87
   3.3.4 バイオリズムと体内時計 88
 3.4 免疫 89
   3.4.1 抗原と抗体 89
   3.4.2 抗体産生の機構 90
   3.4.3 細胞性免疫 91
 3.5 植物の調節 91
   3.5.1 植物の成長と調節 92
   3.5.2 光周性 97
4 生命の連続性-その(1)生殖と発生
 4.1 生殖 100
   4.1.1 無性生殖と有性生殖 100
   4.1.2 細胞分裂 102
   4.1.3 配偶子の形成 111
   4.1.4 受精 113
 4.2 発生 114
   4.2.1 動物の発生の経過 115
   4.2.2 動物の発生のしくみ 115
   4.2.3 ヒトの発生 120
   4.2.4 植物の発生 131
5 生命の連続性-その(2)遺伝と変異
 5.1 遺伝 133
   5.1.1 遺伝の法則 133
   5.1.2 遺伝子と染色体 136
   5.1.3 遺伝子の本体 141
   5.1.4 遺伝子の形質発現 114
   5.1.5 遺伝子工学とバイオテクノロジー 153
   5.1.6 細胞質と遺伝 156
   5.1.7 ヒトの遺伝 157
 5.2 変異 164
   5.2.1 環境変異 165
   5.2.2 突然変異 165
6 生物の集団
 6.1 個体群 169
   6.1.1 個体群の密度 169
   6.1.2 個体群の変動 171
   6.1.3 個体群の構造 173
   6.1.4 個体群の相互作用 175
 6.2 生物群集 177
   6.2.1 食物連鎖と食物網 178
   6.2.2 生態的地位 179
   6.2.3 生物群集の構造 180
   6.2.4 生物群集における物質経済 181
 6.3 生態系 183
   6.3.1 生態系の構造と種類 183
   6.3.2 生態系の遷移 190
   6.3.3 生態系におけるエネルギーの流れ 192
   6.3.4 生態系における物質の循環 194
 6.4 生物圏と人類 199
   6.4.1 生物圏 199
   6.4.2 物質循環におよぼす人類の影響 200
   6.4.3 自然保護 202
7 生命の変遷
 7.1 生命の起源 204
   7.1.1 自然発生説とその否定 204
   7.1.2 生命の出現 206
   7.1.3 物質代謝と細胞の進化 210
 7.2 生物の進化 214
   7.2.1 地質時代の生物の進化 214
   7.2.2 人類の起源と進化 220
 7.3 進化のしくみ 224
   7.3.1 進化論の確立 224
   7.3.2 現代の進化に関する研究 226
1 生命の単位
 1.1 生体を構成する物質 2
   1.1.1 生体を構成する元素 2
43.

図書

東工大
目次DB

図書
東工大
目次DB
日本機械学会著
出版情報: 東京 : 日本機械学会 , [東京] : 丸善 (発売), 1999.2-2008.12  2冊 ; 31cm
所蔵情報: loading…
目次情報: 続きを見る
第1章 材料力学
   1.1 緒言 1
   1.2 棒の断面に伝わっている荷重 1
   1.2.1 平衡条件 1
   1.2.2 棒の横断面に伝わっている力および偶力の種類 2
   1.2.3 応力とひずみ 2
   1.3 直線棒の応力と変形 3
   1.3.1 引張力による応力と変形 3
   1.3.2 曲げモーメントによる応力と変形 4
   1.3.3 ねじりモーメントによる応力と変形 15
   1.3.4 引張力、曲げモーメントおよびねじりモーメントによる応力と変形の統一的取扱い 18
   1.4 細長い曲線棒の応力と変形 22
   1.4.1 重ね合わせの原理による変形の求め方 22
   1.4.2 カスティリアーノの定理による変形の求め方 24
   1.5 太く短い曲線棒の引張りと曲げ 26
   1.5.1 応力と変形 26
   1.5.2 断面定数kの計算 28
   1.6 細長い直線棒の圧縮による座屈 28
   1.6.1 安定な釣合いと不安定な釣合い 28
   1.6.2 ばねで支えられた剛体棒の座屈荷重 29
   1.6.3 オイラーの座屈荷重 29
   1.7 材料力学と弾性力学の関係 31
第2章 弾性力学
   2.1 弾性学の基礎式 33
   2.1.1 応力成分とひずみ成分 33
   2.1.2 応力・ひずみ成分の座標変換 35
   2.1.3 弾性基礎式 38
   2.2 二次元弾性理論 42
   2.2.1 二次元弾性基礎式 42
   2.2.2 直角座標における平面応力理論 43
   2.2.3 極座標における平面応力理論 48
   2.2.4 半無限板に関する混合境界値問題 56
   2.2.5 複素応力関数による平面応力問題 61
   2.2.6 等角写像関数を用いた平面応力問題 69
   2.3 一様断面棒のねじり 72
   2.3.1 一様断面棒のねじり 72
   2.3.2 薄肉断面棒のねじり 76
   2.3.3 複素関数による解法(単連結領域) 78
   2.4 一様断面ばりの曲げ 79
   2.4.1 片持ちばりの曲げ 79
   2.4.2 せん断中心 81
   2.4.3 薄肉断面材の曲げ 82
   2.5 平板の曲げ 84
   2.5.1 たわみの基礎方程式(直角座標) 84
   2.5.2 たわみの基礎方程式(極座標) 90
   2.6 三次元弾性理論 91
   2.6.1 三次元弾性基礎式と変位関数 91
   2.6.2 軸対称ねじり 97
   2.6.3 ねじりなし軸対称応力状態 100
   2.6.4 半無限体に関する混合境界値問題 111
   2.7 弾性接触論 114
   2.7.1 ヘルツの弾性接触論 114
   2.7.2 摩擦を考慮した弾性接触問題 118
   2.8 熱応力 121
   2.8.1 熱弾性基礎式 121
   2.8.2 棒の定常熱応力 124
   2.8.3 円板・中空円板の熱応力 124
   2.8.4 厚板の熱応力 126
   2.8.5 円柱および円筒の熱応力 127
   2.8.6 球・中空球の熱応力 128
   2.9 衝撃応力 130
   2.9.1 棒の縦衝撃理論(一次元動弾性理論) 130
   2.9.2 二次元動弾性理論と三次元動弾性理論 133
   2.9.3 はりの曲げ衝撃 136
   2.9.4 ヘルツの弾性接触論に基づく衝撃荷重の解析 137
   2.10 付録 139
   2.10.1 調和関数と重調和関数 139
   2.10.2 フーリエ変換 141
   2.10.3 アーベル変換 142
   2.10.4 ヒルベルト問題 143
   2.10.5 連立積分方程式 144
   2.10.6 材料力学の歴史 146
第3章 塑性・クリープ力学
   3.1 単軸応力下の塑性変形 149
   3.1.1 引張応力-ひずみ曲線 149
   3.1.2 真応力と真ひずみ 149
   3.1.3 応力-ひずみ曲線の数式表示 151
   3.1.4 バウシンガ効果 151
   3.2 塑性構成式 151
   3.2.1 初期降伏曲面 151
   3.2.2 von Misesの降伏条件 152
   3.2.3 Tresca の降伏条件 153
   3.2.4 後続降伏条件 154
   3.2.5 Druckerの仮説と最大塑性仕事の原理 160
   3.2.6 関連流れ則 160
   3.2.7 繰返し塑性 163
   3.3 単軸応力下のクリープ変形 165
   3.3.1 クリープ現象と機構 165
   3.3.2 単軸クリープの数式化 167
   3.3.3 線形単軸粘弾性モデル 169
   3.4 クリープ構成式 172
   3.4.1 クリープポテンシャルと流れ則 172
   3.4.2 定常クリープの構成式 172
   3.4.3 非定常クリープの構成式 174
   3.4.4 応力反転時のクリープ則 176
   3.4.5 異方性クリープの構成式 176
   3.4.6 粘塑性構成式 177
   3.4.7 クリープ破断の構成式 179
第4章 応力解析法
   4.1 ひずみエネルギー 185
   4.1.1 エネルギー原理 185
   4.2 近似解法 189
   4.2.1 リッツの方法とガラーキンの方法 189
   4.2.2 塑性近似解法 191
   4.3 数値解析法 198
   4.3.1 有限要素法 198
   4.3.2 境界要素法 208
   4.3.3 体積力法 222
第1章 材料力学
   1.1 緒言 1
   1.2 棒の断面に伝わっている荷重 1
44.

図書

図書
edited by Wolfgang-M. Boerner ... [et al.]
出版情報: Dordrecht ; Boston : Kluwer Academic Publishers : D. Reidel, c1992  2 v. (xxxiv, 1938 p.) ; 26 cm
シリーズ名: NATO ASI series ; Series C . Mathematical and physical sciences ; v. 350
所蔵情報: loading…
45.

図書

図書
edited by Steven L. McKnight, Keith R. Yamamoto
出版情報: Plainview, N.Y. : Cold Spring Harbor Laboratory Press, 1992  2 v.(xii, 1334 p.) ; 24 cm
シリーズ名: Cold Spring Harbor monograph series ; 22
所蔵情報: loading…
46.

図書

図書
Hansch, Corwin ; Leo, Albert ; Hoekman, D. H.
出版情報: Washington, DC : American Chemical Society, 1995  2 v. ; 27-29 cm
シリーズ名: ACS professional reference book
所蔵情報: loading…
目次情報: 続きを見る
Octanol Log
POctanol Log
P Footnotes
Hammett Sigmas
Hammett Sigmas Footnotes
Depiction of Solute Structures
Electronic Effects on Organic Reactions
Applications of the Hammett Equation and Its Extended Forms Steric
Effects on Organic Reactions
The Hydrophobic Parameter: Measurement and Calculation
Calculation of Octanol-Water Partition Coefficients by Fragments
QSAR of Nonspecific Toxicity
QSAR of Proteins and Enzymes
QSAR in Metabolism
QSAR of Mutagenesis, Carcinogenesis, and Antitumor Drugs
QSAR of CNS Agents Microbial
QSAR Pesticide
QSAR Notes on the Design of Bioactive Compounds
Octanol Log
POctanol Log
P Footnotes
47.

図書

図書
volume editors, Jacques Buffle, Herman P. van Leeuwen
出版情報: Boca Raton, Fla. : Lewis Publishers, c1992-c1993  2 v. ; 24 cm
シリーズ名: Environmental analytical and physical chemistry series
所蔵情報: loading…
48.

図書

図書
Anthony Farrington
出版情報: London : British Library, 1991  2 v. (1658 p., [36] p. of plates) ; 24 cm
所蔵情報: loading…
49.

図書

図書
edited by John M. Cowley
出版情報: [Chester, England] : International Union of Crystallography , Oxford ; New York : Oxford University Press, 1992-1993  2 v. ; 24 cm
シリーズ名: International Union of Crystallography monographs on crystallography ; 3-4
所蔵情報: loading…
目次情報: 続きを見る
EM imaging and diffraction contrast / S. Amelinckx ; D. van Dyck
Rheed and REM3 / K. Yagi
Disorder and defect scattering / J. Gj°nnes
Electron diffraction effects due to modulated structures
Identifications of unknowns / M. Carr ; C. Lyman
Index
EM imaging and diffraction contrast / S. Amelinckx ; D. van Dyck
Rheed and REM3 / K. Yagi
Disorder and defect scattering / J. Gj°nnes
50.

図書

図書
Kanji Text Research Group University of Tokyo
出版情報: Rutland, Vt : Tokyo : Charles E. Tuttle, 1993-1998  2 v. ; 26 cm
シリーズ名: Tuttle language library
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼