close
1.

電子ブック

EB
Hajime Akimoto
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2020
所蔵情報: loading…
目次情報: 続きを見る
Preface
Historical Background of Atmospheric Secondary Aerosol Research / 1:
Introduction / 1.1:
Secondary Inorganic Aerosols / 1.2:
Sulfate / 1.2.1:
Nitrate / 1.2.2:
Secondary Organic Aerosols / 1.3:
Photochemical Smog / 1.3.1:
Blue Haze / 1.3.2:
References
Fundamentals of Multiphase Chemical Reactions / 2:
Gas-Liquid Phase Equilibrium and Equilibrium in Liquid Phase / 2.1:
Fundamentals of Thermodynamics / 2.2.1:
Internal Energy and Enthalpy / 2.2.1.1:
Entropy / 2.2.1.2:
Gibbs Energy / 2.2.1.3:
Chemical Potential / 2.2.1.4:
Chemical Equilibrium and Equilibrium Constant / 2.2.2:
Chemical Equilibrium / 2.2.2.1:
Equilibrium Constant of Gas-Phase Reaction / 2.2.2.2:
Equilibrium Constant of Liquid-Phase Reaction / 2.2.2.3:
A Temperature Dependence of Equilibrium Constant
Gas-Liquid Equilibrium and Henry's Law Constant / 2.2.3:
Hydration of Carbonyl Compounds and Effective Henry's Law Constant / 2.2.4:
pH and Equilibrium in the Aqueous Solution / 2.2.5:
Dissociation Equilibrium of Pure Water and pH / 2.2.5.1:
Ion Dissociation and Equilibrium in Aqueous Solution / 2.2.5.2:
Reactions in the Liquid Phase / 2.3:
Thermodynamics and Activity Coefficients of Nonideal Solutions / 2.3.1:
Salting-in, Salting-out / 2.3.1.1:
Chemical Kinetics of Aqueous-Phase Reaction / 2.3.2:
Diffusion Process and Chemical Reaction Kinetics / 2.3.2.1:
Transition State Theory of Solution Reaction and Thermodynamic Expression / 2.3.2.2:
Cage Effect and Aqueous-Phase Solvent Effect / 2.3.3:
Cage Effect / 2.3.3.1:
Solvent Effect in the Aqueous Phase / 2.3.3.2:
Uptake Coefficient and Resistance Model / 2.4:
Accommodation Coefficient and Uptake Coefficient / 2.4.1:
Resistance Model / 2.4.2:
Physical Chemistry of Interface Reaction / 2.5:
Langmuir-Hinshelwood Mechanism and Eley-Rideal Mechanism / 2.5.1:
Resistance Model Including Interface Reaction / 2.5.2:
Surface Tension of Air-Water Interface and Thermodynamics of Accommodation Coefficient / 2.5.3:
Surface Tension / 2.5.3.1:
Thermodynamics of Accommodation Coefficient at Air-Water Interface / 2.5.3.2:
Chemical Compositions and Physical Characters of Particles / 2.6:
Elemental and Molecular Composition of Particles / 2.6.1:
Inorganic Elements and Compounds / 2.6.1.1:
Organic Compounds / 2.6.1.2:
van Krevelen Diagram / 2.6.1.3:
Molecular Composition and Vapor Pressure / 2.6.2:
Gas-Particle Partitioning and Volatility Basis Set Model / 2.6.3:
Gas-Particle Partitioning and SOA Formation Yield / 2.6.3.1:
Volatility Basis Set Model / 2.6.3.2:
Gas-Aqueous Phase Partitioning of Hydrophilic Compounds / 2.6.3.3:
A Phase State of Particles and Mass Transfer
Gas-Phase Reactions Related to Secondary Organic Aerosols / 3:
Ozone Reactions / 3.1:
Properties and Reactions of Criegee Intermediates / 3.2.1:
Direct Detection of Criegee Intermediate and Molecular Structure / 3.2.1.1:
Formation of CH2OO in Ozone-Ethene Reaction / 3.2.1.2:
Formation of syn- and anti-CH3CHOO in Ozone-Alkene Reactions / 3.2.1.3:
Alkenes and Dialkenes / 3.2.2:
Ethene / 3.2.2.1:
>C3 Alkenes / 3.2.2.2:
1,3-Butadiene / 3.2.2.3:
Isoprene / 3.2.3:
Cycloalkenes / 3.2.4:
Cyclohexene / 3.2.4.1:
1-Methylcyclohexene / 3.2.4.2:
Methylenecyclohexane / 3.2.4.3:
Monoterpenes / 3.2.5:
¿-Pinene / 3.2.5.1:
ß-Pinene / 3.2.5.2:
Limonene / 3.2.5.3:
Sesquiterpenes / 3.2.6:
OH Radical-Induced Oxidation Reactions / 3.3:
Alkanes / 3.3.1:
Reactions of Alkyl Peroxy Radicals / 3.3.1.1:
Reactions of Alkoxy Radicals / 3.3.1.2:
Alkynes / 3.3.2:
Alkenes, Dialkenes, and Cycloalkenes / 3.3.3:
Alkenes / 3.3.3.1:
Cycloalkenes and Methylene cyclohexane / 3.3.3.2:
Fundamental Processes of OH-Induced Oxidation Reaction / 3.3.4:
HOx Radicals Regeneration Reaction / 3.3.4.2:
Formation of Isoprene Hydroxy Hydroperoxide (ISOPOOH) and Isoprene Epoxydiol (IEPOX) / 3.3.4.3:
Formation of Hydroxy Isoprene Nitrates / 3.3.4.4:
Reactions of Methyl Vinyl Ketone and Methacrolein / 3.3.4.5:
Monocyclic Aromatic Hydrocarbons / 3.3.5:
Benzene / 3.3.6.1:
Toluene / 3.3.6.2:
Polycyclic Aromatic Hydrocarbons / 3.3.7:
Naphthalene / 3.3.7.1:
Other Polycyclic Aromatic Hydrocarbons / 3.3.7.2:
Carbonyl Compounds: OH Radical Reactions and Photolysis / 3.3.8:
Glyoxal / 3.3.8.1:
Methylglyoxal / 3.3.8.2:
Glycolaldehyde / 3.3.8.3:
Hydroxyacetone / 3.3.8.4:
NO3 Oxidation Reactions / 3.4:
Monocyclic and Polycyclic Aromatic Hydrocarbons / 3.4.1:
Phenol, and Cresol / 3.4.3.1:
Aqueous-Phase Reactions Related to Secondary Organic Aerosols / 3.4.3.2:
OH Radical Reactions / 4.1:
UV Absorption Spectrum of OH Radicals in Aqueous Solution / 4.2.1:
Formation of OH Radicals in Cloud/Fog Droplets and Deliquescent Aerosols / 4.2.2:
Reaction Rate Constants of OH Radicals in the Aqueous Phase / 4.2.3:
Reactions of Formaldehyde and OH Radical Chain Reaction / 4.2.4:
OH Radical Reactions and Photolysis of ≥C2 Carbonyl Compounds / 4.2.5:
Glyoxal and Glyoxylic Acid / 4.2.5.1:
Methylglyoxal, Pyruvic Acid, and Acetic Acid / 4.2.5.2:
Glycolaldehyde and Glycolic Acid / 4.2.5.3:
Methacrolein and Methyl Vinyl Ketone / 4.2.5.4:
Oligomer Formation Reactions from ≥C2 Carbonyl Compounds / 4.2.6:
Glyoxal and Methylglyoxal / 4.2.6.1:
Methyl Vinyl Ketone and Methacrolein / 4.2.6.2:
Nonradical Reactions / 4.3:
Diels-Alder Reaction / 4.3.1:
Hemiacetal and Acetal Formation Reactions / 4.3.2:
1,4-Hydroxycarbonyl Compounds / 4.3.2.1:
Aldol Reaction / 4.3.3:
Acetaldehyde / 4.3.3.1:
Esterification Reactions / 4.3.3.2:
Formation Reactions of Organic Sulfates / 4.4:
C2 and C3 Carbonyl Compounds / 4.4.1:
Formation Reactions of Organic Nitrogen Compounds / 4.4.2:
Organic Nitrates / 4.5.1:
Imidazoles / 4.5.2:
Heterogeneous Oxidation Reactions at Organic Aerosol Surfaces / 5:
Aging of Organic Aerosols in the Atmosphere / 5.1:
Reactions of Ozone / 5.3:
Oleic Acid and Unsaturated Long-Chain Carboxylic Acids / 5.3.1:
Squalene / 5.3.2:
Reactions of OH Radicals / 5.3.3:
Squalane and Long-Chain Alkanes / 5.4.1:
Levoglucosan, Erythritol, and Hopane / 5.4.2:
Saturated Dicarboxylic Acids / 5.4.3:
Squalene and Long-Chain Unsaturated Carboxylic Acids / 5.4.4:
Reactions of NO3 Radicals / 5.4.5:
Levoglucosan, Squalane, Long-Chain Alkane, and Alkanoic Acid / 5.5.1:
Squalene and Oleic Acid / 5.5.2:
Reactions at the Air-Water and Air-Solid Particle Interface / 5.5.3:
Molecular Pictures and Reactions at the Air-Water Interface / 6.1:
Thermodynamics of Adsorption / 6.2.1:
OH, HO2, and O3 / 6.2.1.1:
Organic and Inorganic Compounds / 6.2.1.2:
Microscopic Picture of Molecules / 6.2.2:
Air-Pure Water Interface / 6.2.2.1:
Hydrophilic Organic Compounds / 6.2.2.2:
Amphophilic Organic Compounds (Surfactants) / 6.2.2.3:
Hydrophobic Organic Compounds / 6.2.2.4:
NH3 and SO2 / 6.2.2.5:
Reactions of O3 and Organic Compounds / 6.2.3:
Oleic Acid / 6.2.3.1:
Sesquiterpene Criegee Intermediates / 6.2.3.2:
Reactions of OH Radicals and Organic Compounds / 6.2.3.3:
Carboxylic and Dicarboxylic Acids / 6.2.4.1:
Organic Sulfur Compounds / 6.2.4.2:
Air-Sea Salt Particle, Seawater, and Sulfate/Nitrate Aerosol Interface / 6.3:
Microscopic View of Interface of Air and Alkaline Halide Aqueous Solution / 6.3.1:
Reactions at the Interface of Sea Salt and Alkali Halide Aqueous Solution / 6.3.2:
Reaction with O3 / 6.3.2.1:
Reaction with OH Radicals / 6.3.2.2:
Uptake of HO2 Radicals / 6.3.2.3:
Reaction with N2O5 / 6.3.2.4:
Reaction with HNO3 / 6.3.2.5:
Reactions of Organic Compounds at the Air-Seawater and Air-Sea Salt Interface / 6.3.3:
Microscopic View of the Interface of Air and Sulfate/Nitrate Aqueous Solution / 6.3.4:
Sulfate Ion (SO42-) / 6.3.4.1:
Nitrate Ion (NO3-) / 6.3.4.2:
Reactions on Snow/Ice Surface / 6.4:
Formation of NO¿ in the Photochemical Reaction of NO3- / 6.4.1:
Formation of Inorganic Halogens on the Snow Ice and Sea Ice Surface / 6.4.2:
Reactions with N2O5 / 6.4.2.1:
Interface of Water and Mineral Dust, Quartz, and Metal Oxide Surface / 6.5:
Microscopic View of Adsorbed Water on Mineral Surface / 6.5.1:
HONO Formation Reaction from NO2 on the Mineral Surface / 6.5.2:
Dark Reaction / 6.5.2.1:
Photochemical Reaction / 6.5.2.2:
Reaction of Organic Monolayer on Mineral Surface / 6.5.3:
Atmospheric New Particle Formation and Cloud Condensation Nuclei / 7:
Classical Homogeneous Nucleation Theory / 7.1:
Homogeneous Nucleation in One-Component Systems / 7.2.1:
Homogeneous Nucleation in Two-Component Systems / 7.2.2:
Atmospheric New Particle Formation / 7.3:
New Particle Formation Rate and Growth Rate / 7.3.1:
Sulfuric Acid in New Particle Formation / 7.3.2:
Basic Substances in New Particle Formation / 7.3.3:
Organic Species in New Particle Formation / 7.3.4:
Other Species in New Particle Formation / 7.3.5:
Iodine Oxides / 7.3.5.1:
Atmospheric Ions / 7.3.5.2:
Field Observation of Nanoclusters / 7.3.6:
Aerosol Hygroscopicity and Cloud Condensation Nuclei / 7.4:
Kohler Theory / 7.4.1:
Nonideality of Solution in a Droplet / 7.4.2:
Hygroscopicity Parameter, K / 7.4.3:
Field Observations of Secondary Organic Aerosols / 8:
Global Budget of Aerosols / 8.1:
Analysis Methods of Ambient Aerosol Compositions / 8.3:
Positive Matrix Factorization / 8.3.1:
Mass Spectrum Peak Intensity and Elemental Ratio / 8.3.2:
Elemental Composition / 8.3.3:
Marine Air / 8.4:
Forest Air / 8.5:
Amazon Tropical Forest / 8.5.1:
Finland Boreal Forest / 8.5.2:
Urban/Rural Air / 8.6:
Characterization of Ambient Aerosols / 8.6.1:
PMF Analysis / 8.6.1.1:
Mass Signal Intensity Ratio and Elemental Ratio / 8.6.1.2:
Particle Size Distribution / 8.6.1.3:
Molecular Composition / 8.6.1.4:
Dicarboxylic Acid / 8.6.2.1:
Plant Origin VOC Tracers / 8.6.2.2:
Anthropogenic VOC Tracer / 8.6.2.3:
Organic Sulfate / 8.6.2.4:
Organic Nitrates and Imidazoles / 8.6.2.5:
High-Molecular-Weight Compounds and Oligomers / 8.6.2.6:
Index
Preface
Historical Background of Atmospheric Secondary Aerosol Research / 1:
Introduction / 1.1:
2.

電子ブック

EB
Crocker, Santillan-Jimenez Eduardo
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2020
所蔵情報: loading…
目次情報: 続きを見る
Preface
Upgrading of Biomass via Catalytic Fast Pyrolysis (CFP) / Charles A. Mullen1:
Introduction / 1.1:
Catalytic Pyrolysis Over Zeolites / 1.1.1:
Catalytic Pyrolysis Over HZSM-5 / 1.1.1.1:
Deactivation of HZSM-5 During CFP / 1.1.1.2:
Modification of ZSM-5 with Metals / 1.1.1.3:
Modifications of ZSM-5 Pore Structure / 1.1.1.4:
CFP with Metal Oxide Catalysts / 1.1.2:
CFP to Produce Fine Chemicals / 1.1.3:
Outlook and Conclusions / 1.1.4:
References
The Upgrading of Bio-Oil via Hydrodeoxygenation / Adetoyese O. Oyedun and Madhumita Patel and Mayank Kumar and Amit Kumar2:
Hydrodeoxygenation (HDO) / 2.1:
Hydrodeoxygenation of Phenol as a Model Compound / 2.2.1:
HDO of Phenolic (Guaiacol) Model Compounds / 2.2.1.1:
HDO of Phenolic (Anisole) Model Compounds / 2.2.1.2:
HDO of Phenolic (Cresol) Model Compounds / 2.2.1.3:
Hydrodeoxygenation of Aldehyde Model Compounds / 2.2.2:
Hydrodeoxygenation of Carboxylic Acid Model Compounds / 2.2.3:
Hydrodeoxygenation of Alcohol Model Compounds / 2.2.4:
Hydrodeoxygenation of Carbohydrate Model Compounds / 2.2.5:
Chemical Catalysts for the HDO Reaction / 2.3:
Catalyst Promoters for HDO / 2.3.1:
Catalyst Supports for HDO / 2.3.2:
Catalyst Selectivity for HDO / 2.3.3:
Catalyst Deactivation During HDO / 2.3.4:
Research Gaps / 2.4:
Conclusions / 2.5:
Acknowledgments
Upgrading of Bio-oil via Fluid Catalytic Cracking / Idoia Hita and Jose Maria Arandes and Javier Bilbao3:
Bio-oil / 3.1:
Bio-oil Production via Fast Pyrolysis / 3.2.1:
General Characteristics, Composition, and Stabilization of Bio-oil / 3.2.2:
Adjustment of Bio-oil Composition Through Pyrolytic Strategies / 3.2.2.1:
Bio-oil Stabilization / 3.2.2.2:
Valorization Routes for Bio-oil / 3.2.3:
Hydroprocessing / 3.2.3.1:
Steam Reforming / 3.2.3.2:
Extraction of Valuable Components from Bio-oil / 3.2.3.3:
Catalytic Cracking of Bio-oil: Fundamental Aspects / 3.3:
The FCC Unit / 3.3.1:
Cracking Reactions and Mechanisms / 3.3.2:
Cracking of Oxygenated Compounds / 3.3.3:
Cracking of Bio-oil / 3.3.4:
Bio-oil Cracking in the FCC Unit / 3.4:
Cracking of Model Oxygenates / 3.4.1:
Coprocessing of Oxygenates and Their Mixtures with Vacuum Gas Oil (VGO) / 3.4.2:
Cracking of Bio-oil and Its Mixtures with VGO / 3.4.3:
Conclusions and Critical Discussion / 3.5:
Stabilization of Bio-oil via Esterification / Xun Hu4:
Reactions of the Main Components of Bio-Oil Under Esterification Conditions / 4.1:
Sugars / 4.2.1:
Carboxylic Acids / 4.2.2:
Furans / 4.2.3:
Aldehydes and Ketones / 4.2.4:
Phenolics / 4.2.5:
Other Components / 4.2.6:
Processes for Esterification of Bio-oil / 4.3:
Esterification of Bio-oil Under Subcritical or Supercritical Conditions / 4.3.1:
Removal of the Water in Bio-oil to Enhance Conversion of Carboxylic Acids / 4.3.2:
In-line Esterification of Bio-oil / 4.3.3:
Esterification Coupled with Oxidation / 4.3.4:
Esterification Coupled with Hydrogenation / 4.3.5:
Steric Hindrance in Bio-oil Esterification / 4.3.6:
Coking in Esterification of Bio-oil / 4.3.7:
Effects of Bio-oil Esterification on the Subsequent Hydrotreatment / 4.3.8:
Catalysts / 4.4:
Summary and Outlook / 4.5:
Catalytic Upgrading of Holocellulose-Derived C5 and C6 Sugars / Xingguang Zhang and Zhijun Tai and Amin Osatiashtiani and Lee Durndell and Adam F. Lee and Karen Wilson5:
Catalytic Transformation of C5-C6 Sugars / 5.1:
Isomerization Catalysts / 5.2.1:
Zeolites / 5.2.1.1:
Hydrotalcites / 5.2.1.2:
Other Solid Catalysts / 5.2.1.3:
Dehydration Catalysts / 5.2.2:
Zeolitic and Mesoporous Brønsted Solid Acids / 5.2.2.1:
Sulfonic Acid Functionalized Hybrid Organic-Inorganic Silicas / 5.2.2.2:
Metal-Organic Frameworks / 5.2.2.3:
Supported Ionic Liquids / 5.2.2.4:
Catalysts for Tandem Isomerization and Dehydration of C5-C6 Sugars / 5.2.3:
Bifunctional Zeolites and Mesoporous Solid Acids / 5.2.3.1:
Metal Oxides, Sulfates, and Phosphates / 5.2.3.2:
Catalysts for the Hydrogenation of C5-C6 Sugars / 5.2.3.3:
Ni Catalysts / 5.2.4.1:
Ru Catalysts / 5.2.4.2:
Pt Catalysts / 5.2.4.3:
Other Hydrogenation Catalysts / 5.2.4.4:
Hydrogenolysis Catalysts / 5.2.5:
Other Reactions / 5.2.6:
Conclusions and Future Perspectives / 5.3:
Chemistry of C-C Bond Formation Reactions Used in Biomass Upgrading: Reaction Mechanisms, Site Requirements, and Catalytic Materials / Tuong V. Bui and Nhung Duong and Felipe Anaya and Duong Ngo and Gap Warakunwit and Daniel E. Resasco6:
Mechanisms and Site Requirements of C-C Coupling Reactions / 6.1:
Aldol Condensation: Mechanism and Site Requirement / 6.2.1:
Base-Catalyzed Aldol Condensation / 6.2.1.1:
Acid-Catalyzed Aldol Condensation: Mechanism and Site Requirement / 6.2.1.2:
Alkylation: Mechanism and Site Requirement / 6.2.2:
Lewis Acid-Catalyzed Alkylation Mechanism / 6.2.2.1:
Brønsted Acid-Catalyzed Alkylation Mechanism / 6.2.2.2:
Base-Catalyzed Alkylation: Mechanism and Site Requirement / 6.2.2.3:
Hydroxyalkylation: Mechanism and Site Requirement / 6.2.3:
Brønsted Acid-Catalyzed Mechanism / 6.2.3.1:
Site Requirement / 6.2.3.2:
Acylation: Mechanism and Site Requirement / 6.2.4:
Mechanistic Aspects of Acylation Reactions / 6.2.4.1:
Role of Brønsted vs. Lewis Acid in Acylation Over Zeolites / 6.2.4.2:
Ketonization: Mechanism and Site Requirement / 6.2.5:
Mechanism of Surface Ketonization / 6.2.5.1:
Optimization and Design of Catalytic Materials for C-C Bond Forming Reactions / 6.2.5.2:
Oxides / 6.3.1:
Magnesia (MgO) / 6.3.1.1:
Zirconia (ZrO2) / 6.3.1.2:
ZSM-5 / 6.3.2:
HY / 6.3.2.2:
HBEA / 6.3.2.3:
Downstream Conversion of Biomass-Derived Oxygenates to Fine Chemicals / Michèle Besson and Stéphane Loridant and Noémie Perret and Catherine Pinel7:
Selective Catalytic Oxidation / 7.1:
Catalytic Oxidation of Glycerol / 7.2.1:
Glycerol to Glyceric Acid (GLYAC) / 7.2.2.1:
Glycerol to Tartronic Acid (TARAC) / 7.2.2.2:
Glycerol to Dihydroxyacetone (DHA) / 7.2.2.3:
Glycerol to Mesoxalic Acid (MESAC) / 7.2.2.4:
Glycerol to Glycolic Acid (GLYCAC) / 7.2.2.5:
Glycerol to Lactic Acid (LAC) / 7.2.2.6:
Oxidation of 5-HydroxymethylfurfuraI (HMF) / 7.2.3:
HMF to 2,5-Furandicarboxylic Acid (FDCA) / 7.2.3.1:
HMF to 2,5-Diformylfuran (DFF) / 7.2.3.2:
HMF to 5-Hydroxymethyl-2-furancarboxylic Acid (HMFCA) or 5-Formyl-2-furancarboxylic Acid (FFCA) / 7.2.3.3:
Hydrogenation/Hydrogenolysis / 7.3:
Hydrogenolysis of Polyols / 7.3.1:
Hydrodeoxygenation of Polyols / 7.3.2.1:
C-C Hydrogenolysis of Polyols / 7.3.2.2:
Hydrogenation of Carboxylic Acids / 7.3.3:
Levulinic Acid / 7.3.3.1:
Succinic Acid / 7.3.3.2:
Selective Hydrogenation of Furanic Compounds / 7.3.4:
Reductive Amination of Acids and Furans / 7.3.5:
Catalyst Design for the Dehydration of Biosourced Molecules / 7.4:
Glycerol to Acrolein / 7.4.1:
Lactic Acid to Acrylic Acid / 7.4.3:
Sorbitol to Isosorbide / 7.4.4:
Conclusions and Outlook / 7.5:
Conversion of Lignin to Value-added Chemicals via Oxidative Depolymerization / Justin K. Mobley8:
Cautionary Statements / 8.1:
Catalytic Systems for the Oxidative Depolymerization of Lignin / 8.2:
Enzymes and Bio-mimetic Catalysts / 8.2.1:
Cobalt Schiff Base Catalysts / 8.2.2:
Vanadium Catalysts / 8.2.3:
Methyltrioxorhenium (MTO) Catalysts / 8.2.4:
Commercial Products from Lignin / 8.3:
Stepwise Depolymerization of ß-O-4 Linkages / 8.4:
Benzylic Oxidation / 8.4.1:
Secondary Depolymerization / 8.4.2:
Heterogeneous Catalysts for Lignin Depolymerization / 8.5:
Outlook / 8.6:
Lignin Valorization via Reductive Depolymerization / Yang (Vanessa) Song9:
Late-stage Reductive Lignin Depolymerization / 9.1:
Mild Hydroprocessing / 9.2.1:
Harsh Hydroprocessing / 9.2.2:
Bifunctional Hydroprocessing / 9.2.3:
Liquid Phase Reforming / 9.2.4:
Reductive Lignin Depolymerization Using Hydrosilanes, Zinc, and Sodium / 9.2.5:
Reductive Catalytic Fractionation (RCF) / 9.3:
Reaction Conditions / 9.3.1:
Lignocellulose Source / 9.3.2:
Applied Catalyst / 9.3.3:
Acknowledgment / 9.4:
Conversion of Lipids to Biodiesel via Esterification and Transesterification / Amin Talebian-Kiakalaieh and Amin Nor Aishah Saidina10:
Different Feedstocks tor Biodiesel Production / 10.1:
Biodiesel Production / 10.3:
Algal Bio diesel Production / 10.3.1:
Nutrients for Microalgae Growth / 10.3.1.1:
Microalgae Cultivation System / 10.3.1.2:
Harvesting / 10.3.1.3:
Drying / 10.3.1.4:
Lipid Extraction / 10.3.1.5:
Catalytic Transesterification / 10.4:
Homogeneous Catalysts / 10.4.1:
Alkali Catalysts / 10.4.1.1:
Acid Catalysts / 10.4.1.2:
Two-step Esterification-Transesterification Reactions / 10.4.1.3:
Heterogeneous Catalysts / 10.4.2:
Solid Acid Catalysts / 10.4.2.1:
Solid Base Catalysts / 10.4.2.2:
Enzyme-Catalyzed Transesterification Reactions / 10.4.3:
Supercritical Transesterification Processes / 10.5:
Alternative Processes for Biodiesel Production / 10.6:
Ultrasonic Processes / 10.6.1:
Microwave-Assisted Processes / 10.6.2:
Summary / 10.7:
Upgrading of Lipids to Hydrocarbon Fuels via (Hydro)deoxygenation / David Kubicka11:
Feedstocks / 11.1:
Chemistry / 11.3:
Technologies / 11.4:
Sulfided Catalysts / 11.5:
Metallic Catalysts / 11.5.2:
Metal Carbide, Nitride, and Phosphide Catalysts / 11.5.3:
Upgrading of Lipids to Fuel-like Hydrocarbons and Terminal Olefins via Decarbonylation/Decarboxylation / Ryan Loe and Eduardo Santillan-Jimenez and Mark Crocker11.6:
Lipid Feeds / 12.1:
deCOx Catalysts: Active Phases / 12.3:
deCOx Catalysts: Support Materials / 12.4:
Reaction Mechanism / 12.5:
Catalyst Deactivation / 12.7:
Conversion of Terpenes to Chemicals and Related Products / Anne E. Harman-Ware12.8:
Terpene Biosynthesis and Structure / 13.1:
Sources of Terpenes / 13.3:
Conifers and Other Trees / 13.3.1:
Essential Oils and Other Extracts / 13.3.2:
Isolation of Terpenes / 13.4:
Tapping and Extraction / 13.4.1:
Terpenes as a By-product of Pulping Processes / 13.4.2:
Historical Uses of Raw Terpenes / 13.5:
Adhesives and Turpentine / 13.5.1:
Flavors, Fragrances, Therapeutics, and Pharmaceutical Applications / 13.5.2:
Catalytic Methods for Conversion of Terpenes to Fine Chemicals and Materials / 13.6:
Homogeneous Processes / 13.6.1:
Hydration and Oxidation Reactions / 13.6.1.1:
Homogeneous Catalysis for the Epoxidation of Monoterpenes / 13.6.1.2:
Isomerizations / 13.6.1.3:
Production of Terpene Carbonates from CO2 and Epoxides / 13.6.1.4:
Polymers and Other Materials from Terpenes / 13.6.1.5:
"Click Chemistry" Routes for the Production of Materials and Medicinal Compounds from Terpenes / 13.6.1.6:
Heterogeneous Processes / 13.6.2:
Isomerization and Hydration of ¿-Pinene / 13.6.2.1:
Heterogeneous Catalysts for the Epoxidation of Monoterpenes / 13.6.2.2:
Isomerization of ¿-Pinene Oxide / 13.6.2.3:
Vitamins from Terpenes / 13.6.2.4:
Dehydrogenation and Hydrogenation Reactions of Terpenes / 13.6.2.5:
Conversion of Terpenes to Fuels / 13.6.2.6:
Conversion of Chitin to Nitrogen-containing Chemicals / Xi Chen and Ning Yan14:
Waste Shell Biorefinery / 14.1:
Production of Amines and Amides from Chitin Biomass / 14.2:
Sugar Amines/Amides / 14.2.1:
Furanic Amines/Amides / 14.2.2:
Polyol Amines/Amides / 14.2.3:
Production of N-heterocyclic Compounds from Chitin Biomass / 14.3:
Production of Carbohydrates and Acetic Acid from Chitin Biomass / 14.4:
Production of Advanced Products from Chitin Biomass / 14.5:
Conclusion / 14.6:
Index / Eduardo Santillan-Jimenez and Mark Crocker15:
Preface
Upgrading of Biomass via Catalytic Fast Pyrolysis (CFP) / Charles A. Mullen1:
Introduction / 1.1:
3.

図書

図書
Roel Prins ... [et al]
出版情報: Hackensack, New Jersey : World Scientific, c2022  xviii, 392 p. ; 24 cm
シリーズ名: Advanced textbooks in chemistry
所蔵情報: loading…
目次情報: 続きを見る
Preface
About the Authors
Introduction / 1:
Catalysis and Catalysts / 1.1:
Heterogeneous and Homogeneous Catalysis / 1.2:
Production of Ammonia / 1.3:
Kinetics and Thermodynamics / 1.3.1:
Activity, Selectivity and Stability / 1.3.2:
H2 Production / 1.3.3:
Ammonia Synthesis / 1.3.4:
Relevance of Catalysis / 1.4:
References
Questions
Catalyst Preparation and Characterisation / 2:
Supported Catalysts / 2.1:
Crystal Structures / 2.2:
Crystal Lattices / 2.2.1:
X-ray Diffraction / 2.2.2:
Aluminas / 2.3:
Aluminium Hydroxides and Oxyhydroxides / 2.3.1:
Transition Aluminas / 2.3.2:
¿-Al2O3 / 2.3.3:
Surface of ¿-Al2O3 / 2.3.4:
Lewis acid sites / 2.3.5.1:
Brønsted acid sites / 2.3.5.2:
Surface reconstruction / 2.3.5.3:
Silica / 2.4:
Preparation of Supported Catalysts / 2.5:
Adsorption / 3:
Physisorption / 3.1:
Adsorption on Surfaces / 3.1.1:
Langmuir Adsorption Isotherm / 3.1.2:
Multilayer Adsorption, BET / 3.1.3:
Surface Diffusion / 3.2:
Chemisorption / 3.3:
Chemical Bonding / 3.3.1:
Dissociative Chemisorption / 3.3.2:
Kinetics / 4:
Langmuir-Hinshelwood Model / 4.1:
Monomolecular Reaction / 4.1.1:
Surface reaction is rate-determining / 4.1.1.1:
Adsorption of the reactant or product is rate-determining / 4.1.1.2:
Bimolecular Reaction / 4.1.2:
Influence of Diffusion / 4.2:
Bifunctional Catalysis / 4.3:
Metal Surfaces / 5:
Surface Structures / 5.1:
Surface Analysis / 5.2:
X-ray Photoelectron Spectroscopy / 5.2.1:
Auger Electron Spectroscopy / 5.2.2:
Surface Sensitivity / 5.2.3:
Surface Enrichment / 5.3:
Metal Binding / 5.4:
Metal Catalysis / 6:
Dissociation of H2 / 6.1:
Hydrogenation of Ethene / 6.2:
Synthesis of CO and H2 / 6.3:
Hydrogenation of CO / 6.4:
CO Hydrogenation to Hydrocarbons / 6.4.1:
CO dissociation / 6.4.1.1:
Methanation / 6.4.1.2:
Fischer-Tropsch reaction / 6.4.1.3:
Hydrogenation of CO and CO2 to Methanol / 6.4.2:
CO hydrogenation to methanol / 6.4.2.1:
CO2 hydrogenation to methanol / 6.4.2.2:
Hydrogenation of N2 to Ammonia / 6.5:
Fe Catalyst / 6.5.1:
Ru Catalyst / 6.5.2:
Volcano Curves / 6.6:
Catalysis by Solid Acids / 7:
Solid Acid Catalysts / 7.1:
Zeolites / 7.1.1:
Amorphous Silica-Alumina / 7.1.2:
Reactions of Hydrocarbons / 7.2:
Reactions of Alkenes and Alkanes / 7.2.1:
Isomerisation of Pentane, Hexane and Butene / 7.2.2:
Alcohols from Alkenes / 7.3:
Alkylation of Aromatics / 7.4:
Ethylation and Propylation of Benzene / 7.4.1:
Methylation of Toluene / 7.4.2:
Isomerisation, Disproportionation, Transalkylation / 7.4.3:
Gasoline Production / 7.5:
Fluid Catalytic Cracking and Hydrocracking / 7.5.1:
Methanol to Hydrocarbons / 7.5.2:
Reforming of Hydrocarbons by Bifunctional Catalysis / 7.5.3:
Cleaning of Fuels by Hydrotreating / 8:
Hydrotreating / 8.1:
Hydrotreating Catalysts / 8.2:
Metal Sulfides / 8.2.1:
Structure of sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 / 8.2.1.1:
Active sites / 8.2.1.2:
Metal Phosphides / 8.2.2:
Reaction Mechanisms / 8.3:
Hydro desulfurisation / 8.3.1:
Hydrodenitrogenation / 8.3.2:
Hydrodeoxygenation / 8.3.3:
Hydrotreating of Mixtures / 8.3.4:
Hydrotreating Processes / 8.4:
Hydrodesulfurisation of Naphtha / 8.4.1:
Hydrotreating of Diesel / 8.4.2:
Residue Hydro conversion / 8.4.3:
Oxidation Catalysis / 9:
CO Oxidation / 9.1:
Mechanism / 9.1.1:
Three-way Catalysis / 9.1.2:
Production of Sulfuric and Nitric Acid / 9.2:
Sulfuric Acid / 9.2.1:
Nitric Acid / 9.2.2:
Selective Catalytic Reduction / 9.2.3:
Oxidation of Hydrocarbons / 9.3:
Oxidation by Oxygen / 9.3.1:
Oxidation by Hydroperoxide / 9.3.2:
Selective Partial Oxidation of Hydrocarbons / 9.3.3:
Oxidation of propene to acrylic acid and acrylonitrile / 9.3.3.1:
Oxidation of C4 and C6 molecules / 9.3.3.2:
Platform Chemicals / 9.4:
Electrocatalysis / 10:
Fundamental Aspects / 10.1:
Electrochemical Cells / 10.2.1:
Cell and Electrode Potentials / 10.2.2:
The Nernst Equation / 10.2.3:
Overpotential / 10.2.4:
Electrode Kinetics / 10.2.5:
Experimental Methods and Techniques / 10.3:
Three-Electrode Cell Configuration / 10.3.1:
Techniques for Electrocatalyst Evaluation / 10.3.2:
Linear Sweep Voltammetry and Cyclic Voltammetry / 10.3.3:
Electrochemical Impedance Spectroscopy / 10.3.4:
Rotating Disc Electrode / 10.3.5:
The Electro chemically Active Surface Area / 10.3.6:
Electrocatalysis for the Production of Sustainable Fuels and Chemicals / 10.4:
Development of Electrocatalysts / 10.4.1:
Hydrogen Evolution Reaction / 10.4.2:
Oxygen Evolution Reaction / 10.4.3:
CO2 Electroreduction / 10.4.4:
Other Electrochemical Processes / 10.4.5:
Answers
Index
Preface
About the Authors
Introduction / 1:
4.

電子ブック

EB
Felix. Bieker
出版情報: SpringerLink Books - AutoHoldings , Cham : Springer International Publishing AG, 2023
所蔵情報: loading…
5.

図書

図書
Jesse M. Kinder and Philip Nelson
出版情報: Princeton : Princeton University Press, c2021  xiii, 223 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
Algorithmic thinking / 1.1.1:
States / 1.1.2:
What does a = a + 1 mean? / 1.1.3:
Symbolic versus numerical / 1.1.4:
Launch Python / 1.2:
IPython console / 1.2.1:
Error messages / 1.2.2:
Sources of help / 1.2.3:
Good practice: Keep a log / 1.2.4:
Python modules / 1.3:
Import / 1.3.1:
From … import / 1.3.2:
NumPy and PyPlot / 1.3.3:
Python expressions / 1.4:
Numbers / 1.4.1:
Arithmetic operations and predefined functions / 1.4.2:
Good practice: Variable names / 1.4.3:
More about functions / 1.4.4:
Organizing Data / 2:
Objects and their methods / 2.1:
Lists, tuples, and arrays / 2.2:
Creating a list or tuple / 2.2.1:
NumPy arrays / 2.2.2:
Filling an array with values / 2.2.3:
Concatenation of arrays / 2.2.4:
Accessing array elements / 2.2.5:
Arrays and assignments / 2.2.6:
Slicing / 2.2.7:
Flattening an array / 2.2.8:
Reshaping an array / 2.2.9:
T2 Lists and arrays as indices / 2.2.10:
Strings / 2.3:
Raw strings / 2.3.1:
Formatting strings with the format () method / 2.3.2:
T2 Formatting strings with % / 2.3.3:
Structure and Control / 3:
Loops / 3.1:
For loops / 3.1.1:
While loops / 3.1.2:
Very long loops / 3.1.3:
Infinite loops / 3.1.4:
Array operations / 3.2:
Vectorizing math / 3.2.1:
Matrix math / 3.2.2:
Reducing an array / 3.2.3:
Scripts / 3.3:
The Editor / 3.3.1:
T2 Other editors / 3.3.2:
First steps to debugging / 3.3.3:
Good practice: Commenting / 3.3.4:
Good practice: Using named parameters / 3.3.5:
Good practice: Units / 3.3.6:
Contingent behavior: Branching / 3.4:
The if statement / 3.4.1:
Testing equality of floats / 3.4.2:
Nesting / 3.5:
Data In, Results Out / 4:
Importing data / 4.1:
Obtaining data / 4.1.1:
Bringing data into Python / 4.1.2:
Exporting data / 4.2:
Data files / 4.2.1:
Visualizing data / 4.3:
The plot command and its relatives / 4.3.1:
Log axes / 4.3.2:
Manipulate and embellish / 4.3.3:
Replacing curves / 4.3.4:
T2 More about figures and their axes / 4.3.5:
T2 Error bars / 4.3.6:
3D graphs / 4.3.7:
Multiple plots / 4.3.8:
Subplots / 4.3.9:
Saving figures / 4.3.10:
T2 Using figures in other applications / 4.3.11:
First Computer Lab / 5:
HIV example / 5.1:
Explore the model / 5.1.1:
Fit experimental data / 5.1.2:
Bacterial example / 5.2:
Random Number Generation and Numerical Methods / 5.2.1:
Writing your own functions / 6.1:
Defining functions in Python / 6.1.1:
Updating functions / 6.1.2:
Arguments, keywords, and defaults / 6.1.3:
Return values / 6.1.4:
Functional programming / 6.1.5:
Random numbers and simulation / 6.2:
Simulating coin flips / 6.2.1:
Generating trajectories / 6.2.2:
Histograms and bar graphs / 6.3:
Creating histograms / 6.3.1:
Finer control / 6.3.2:
Contour plots, surface plots, and heat maps / 6.4:
Generating a grid of points / 6.4.1:
Contour plots / 6.4.2:
Surface plots / 6.4.3:
Heat maps / 6.4.4:
Numerical solution of nonlinear equations / 6.5:
General real functions / 6.5.1:
Complex roots of polynomials / 6.5.2:
Solving systems of linear equations / 6.6:
Numerical integration / 6.7:
Integrating a predefined function / 6.7.1:
Integrating your own function / 6.7.2:
Oscillatory integrands / 6.7.3:
T2 Parameter dependence / 6.7.4:
Numerical solution of differential equations / 6.8:
Reformulating the problem / 6.8.1:
Solving an ODE / 6.8.2:
Other ODE solvers / 6.8.3:
Vector fields and streamlines / 6.9:
Vector fields / 6.9.1:
Streamlines / 6.9.2:
Second Computer Lab / 7:
Generating and plotting trajectories / 7.1:
Plotting the displacement distribution / 7.2:
Rare events / 7.3:
The Poisson distribution / 7.3.1:
Waiting times / 7.3.2:
Images and Animation / 8:
Image processing / 8.1:
Images as NumPy arrays / 8.1.1:
Saving and displaying images / 8.1.2:
Manipulating images / 8.1.3:
Displaying data as an image / 8.2:
Animation / 8.3:
Creating animations / 8.3.1:
Saving animations / 8.3.2:
HTML movies
T2 Using an encoder
Conclusion / 8.3.3:
Third Computer Lab / 9:
Convolution / 9.1:
Python tools for image processing / 9.1.1:
Averaging / 9.1.2:
Smoothing with a Gaussian / 9.1.3:
Denoising an image / 9.2:
Emphasizing features / 9.3:
T2 Image files and arrays / 9.4:
Advanced Techniques / 10:
Dictionaries and generators / 10.1:
Dictionaries / 10.1.1:
Special function arguments / 10.1.2:
List comprehensions and generators / 10.1.3:
Tools for data science / 10.2:
Series and data frames with pandas / 10.2.1:
Machine learning with scikit-learn / 10.2.2:
Next steps / 10.2.3:
Symbolic computing / 10.3:
Wolfram Alpha / 10.3.1:
The SymPy library / 10.3.2:
Other alternatives / 10.3.3:
First passage revisited / 10.3.4:
Writing your own classes / 10.4:
A random walk class / 10.4.1:
When to use classes / 10.4.2:
Get Going
Installing Python / A:
Install Python and Spyder / A.1:
Graphical installation / A.1.1:
Command line installation / A.1.2:
Setting up Spyder / A.2:
Working directory / A.2.1:
Interactive graphics / A.2.2:
Script template / A.2.3:
Restart / A.2.4:
Keeping up to date / A.3:
Installing FFmpeg / A.4:
Installing ImageMagick / A.5:
Command Line Tools / B:
The command line / B.1:
Navigating your file system / B.1.1:
Creating, renaming, moving, and removing files / B.1.2:
Creating and removing directories / B.1.3:
Python and Conda / B.1.4:
Text editors / B.2:
Version control / B.3:
How Git works / B.3.1:
Installing and using Git / B.3.2:
Tracking changes and synchronizing repositories / B.3.3:
Summary of useful workflows / B.3.4:
Troubleshooting / B.3.5:
Jupyter Notebooks / B.4:
Getting started / C.1:
Launch Jupyter Notebooks / C.1.1:
Open a notebook / C.1.2:
Multiple notebooks / C.1.3:
Quitting Jupyter / C.1.4:
T2 Setting the default directory / C.1.5:
Cells / C.2:
Code cells / C.2.1:
Graphics / C.2.2:
Markdown cells / C.2.3:
Edit mode and command mode / C.2.4:
Sharing / C.3:
More details / C.4:
Pros and cons / C.5:
Errors and Error Messages / D:
Python errors in general / D.1:
Some common errors / D.2:
Python 2 versus Python 3 / E:
Division / E.1:
Print command / E.2:
User input / E.3:
More assistance / E.4:
Under the Hood / F:
Assignment statements / F.1:
Memory management / F.2:
Functions / F.3:
Scope / F.4:
Name collisions / F.4.1:
Variables passed as arguments / F.4.2:
Summary / F.5:
Answers to "Your Turn" Questions / G:
Acknowledgments
Recommended Reading
Index
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
6.

電子ブック

EB
出版情報: AIP Conference Proceedings (American Institute of Physics) , AIP Publishing, 2021
所蔵情報: loading…
7.

電子ブック

EB
出版情報: AIP Conference Proceedings (American Institute of Physics) , AIP Publishing, 2021
所蔵情報: loading…
8.

電子ブック

EB
A. J. Larner
出版情報: SpringerLink Books - AutoHoldings , Cham : Springer International Publishing AG, 2022
所蔵情報: loading…
9.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2022
所蔵情報: loading…
10.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2022
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼