close
1.

図書

図書
S.W.S. McKeever
出版情報: Cambridge : Cambridge University Press, 1985  xiv, 376 p. ; 22 cm
シリーズ名: Cambridge solid state science series
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
Luminescence / 1.2:
Early observations of thermoluminescence (pre-1948) / 1.3:
Applications / 1.4:
Radiation dosimetry / 1.4.1.:
Age determination / 1.4.2.:
Geology / 1.4.3.:
Defects in solids / 1.4.4.:
Other applications / 1.4.5.:
This book / 1.5:
Theoretical background / 2:
Elementary concepts / 2.1:
Energy bands and localized levels: crystalline materials / 2.1.1.:
Non-crystalline materials / 2.1.2.:
Traps and recombination centres / 2.1.3.:
Transitions not involving the delocalized bands / 2.1.4.:
Recombination processes / 2.2:
Direct and indirect recombination / 2.2.1.:
Radiative and non-radiative recombination / 2.2.2.:
Models for thermoluminescence / 2.3:
Simple model / 2.3.1.:
Additions to the simple model / 2.3.2.:
An alternative model / 2.3.3.:
More complex models / 2.3.4.:
Thermoluminescence analysis / 3:
Trap emptying / 3.1:
Equations for the simple model: order of kinetics / 3.2.1.:
Equations for other models / 3.2.2.:
Methods of analysis / 3.3:
Partial and whole curve analyses / 3.3.1.:
Peak shape methods / 3.3.2.:
Peak position methods / 3.3.3.:
Curve-fitting / 3.3.4.:
Isothermal analysis / 3.3.5.:
Energy distributions / 3.3.6.:
Calculation of the frequency factor, s / 3.3.7.:
Summary / 3.3.8.:
Trap filling / 3.4:
The simple model / 3.4.1.:
Additional factors governing thermoluminescence / 3.4.2.:
Further discussions of supralinearity / 4.1:
Multi-stage reaction models / 4.1.1.:
More on competition models / 4.1.2.:
Trap creation models / 4.1.3.:
Sensitization / 4.2:
Competing trap models / 4.2.1.:
Centre conversion models / 4.2.2.:
Trap creation models (radiation and thermal) / 4.2.3.:
Optical effects / 4.3:
Optical stimulation / 4.3.1.:
Phototransfer / 4.3.2.:
Tunnelling and anomalous fading / 4.4:
Quenching effects / 4.5:
Thermal quenching / 4.5.1.:
Concentration quenching / 4.5.2.:
Impurity quenching / 4.5.3.:
Defects and thermoluminescence / 5:
General introduction / 5.1:
The alkali halides / 5.2:
Structure and defects / 5.2.1.:
Irradiation effects / 5.2.2.:
Thermoluminescence from KCl, KBr, KI and NaCl, irradiated at 4K / 5.2.3.:
Samples irradiated at 80K / 5.2.4.:
Samples irradiated at room temperature / 5.2.5.:
Thermoluminescence from LiF / 5.2.6.:
Quartz and silica / 5.3:
Structure / 5.3.1.:
Defects / 5.3.2.:
Thermoluminescence; samples irradiated below room temperature / 5.3.3.:
Thermoluminescence dosimetry (TLD) / 5.3.5.:
General requirements for TLD materials / 6.1:
Dose response / 6.1.1.:
Energy response / 6.1.2.:
Fading and stability / 6.1.3.:
Annealing procedures / 6.1.4.:
Other factors / 6.1.5.:
Specific examples / 6.2:
Lithium fluoride, LiF / 6.2.1.:
Lithium borate, Li[subscript 2]B[subscript 4]O[subscript 7] / 6.2.2.:
Magnesium borate, MgB[subscript 4]O[subscript 7] / 6.2.3.:
Magnesium orthosilicate, Mg[subscript 2]SiO[subscript 4] / 6.2.4.:
Calcium sulphate, CaSO[subscript 4] / 6.2.5.:
Calcium fluoride, CaF[subscript 2] / 6.2.6.:
Beryllium oxide, BeO / 6.2.7.:
Aluminium oxide, Al[subscript 2]O[subscript 3] / 6.2.8.:
Ultra-violet effects and dose re-estimation / 6.3:
Personal dosimetry / 6.4:
Materials / 6.4.1.:
Practical application / 6.4.3.:
Environmental monitoring / 6.5:
Medical applications / 6.5.1.:
Thermoluminescence dating / 6.6.1.:
General / 7.1:
Techniques in pottery dating / 7.2:
Fine-grain dating / 7.2.1.:
Inclusion dating / 7.2.3.:
Pre-dose dating / 7.2.4.:
Phototransfer dating / 7.2.5.:
General problems / 7.3:
Fading / 7.3.1.:
Spurious thermoluminescence / 7.3.2.:
Sensitization and supralinearity / 7.3.3.:
Dose rate evaluation / 7.4:
Thermoluminescence dosimetry / 7.4.1.:
Alpha-counting and K-analysis / 7.4.3.:
Other techniques / 7.4.4.:
Special dating applications / 7.5:
Sediments / 7.5.1.:
Stones and rocks / 7.5.2.:
Shells, bones and teeth / 7.5.3.:
Authenticity testing / 7.5.4.:
Geological applications / 8:
Meteorites / 8.1:
Mineralogy / 8.2.1.:
Thermoluminescence / 8.2.2.:
The use of the natural glow-curve / 8.2.3.:
The use of the artificial glow-curve / 8.2.4.:
Lunar material / 8.3:
Mineralogy and ages / 8.3.1.:
Terrestrial geology / 8.3.2.:
Shock detection / 8.4.1.:
Geo- and palaeothermometry / 8.4.2.:
Prospecting / 8.4.3.:
Miscellaneous applications / 8.4.4.:
Concluding remarks / 8.5:
Instrumentation / 9:
Cryostat design / 9.1:
High temperature (] room temperature) / 9.2.1.:
Low temperature ([ room temperature) / 9.2.2.:
Heater design and temperature control / 9.3:
Heater design / 9.3.1.:
Temperature control / 9.3.2.:
Light detection / 9.4:
Photomultiplier tube: d.c. current mode / 9.4.1.:
Photon counting / 9.4.2.:
Special considerations / 9.5:
Background subtraction / 9.5.1.:
Emission spectra / 9.5.2.:
Commercial systems / 9.6:
Minerals / Appendix A:
Commercial thermoluminescence systems / Appendix B:
References
Index
Preface
Introduction / 1:
What is thermoluminescence? / 1.1:
2.

図書

図書
Michael Pidd
出版情報: Chichester ; New York : Wiley, c1984  xiv, 237 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Fifth Edition
Fundamentals Of Computer Simulation In Management Science / Part I:
The computer simulation approach / 1:
Models, experiments and computers / 1.1:
Some applications of computer simulation / 1.2:
Manufacturing / 1.2.1:
Health care / 1.2.2:
Business process re-engineering / 1.2.3:
Transport systems / 1.2.4:
Defence / 1.2.5:
Models in management science / 1.3:
Simulation as experimentation / 1.4:
Why simulate? / 1.5:
Simulation versus direct experimentation / 1.5.1:
Simulation versus mathematical modelling / 1.5.2:
Summary / 1.6:
Exercises
References
A variety of modelling approaches / 2:
General considerations / 2.1:
Time handling / 2.2:
Time slicing / 2.2.1:
Next-event technique / 2.2.2:
Time slicing or next event? / 2.2.3:
Stochastic or deterministic? / 2.3:
Deterministic simulation: a time-slicing example / 2.3.1:
Stochastic simulation / 2.3.2:
Discrete or continuous change / 2.4:
Discrete change / 2.4.1:
Continuous change / 2.4.2:
A few words on simulation software / 2.4.3:
Computer simulation in practice / 3:
Process, content, problem and project / 3.1:
Process and content / 3.1.1:
Problems and projects / 3.1.2:
Two parallel streams / 3.1.3:
The simulation problem part of the study / 3.2:
Problem structuring / 3.3:
Problem structuring as exploration / 3.3.1:
Modelling / 3.4:
Conceptual model building / 3.4.1:
Computer implementation / 3.4.2:
Validation / 3.4.3:
Experimentation / 3.4.4:
Implementation / 3.4.5:
The project part of the study / 3.5:
Initial negotiation and project definition / 3.5.1:
Project management and control / 3.5.2:
Project completion / 3.5.3:
Static Monte Carlo simulation / 4:
Basic ideas / 4.1:
Risk and uncertainty / 4.1.1:
The replacement problem: a reprise / 4.1.2:
Static Monte Carlo simulation defined / 4.1.3:
Some important considerations / 4.2:
Subjective probabilities / 4.2.1:
Repeatability / 4.2.2:
Some simple static simulations / 4.3:
The loan repayment / 4.3.1:
An investment decision / 4.3.2:
Simulation on spreadsheets / 4.4:
Discrete Event Simulation / Part II:
Discrete event modelling / 5:
Fundamentals / 5.1:
Terminology / 5.2:
Objects of the system / 5.2.1:
The organization of entities / 5.2.2:
Operations of the entities / 5.2.3:
Activity cycle diagrams / 5.3:
Example 1: a simple job shop / 5.3.1:
Example 2: the harassed booking clerk / 5.3.2:
Example 3: the delivery depot / 5.3.3:
Using the activity cycle diagram / 5.3.4:
Activity cycle diagrams: a caveat / 5.4:
How discrete simulation software works / 6:
Introduction / 6.1:
Why understand how simulation software is organized? / 6.1.1:
Simulation executives in more detail / 6.1.2:
Application logic / 6.1.3:
The three-phase approach / 6.2:
Bs / 6.2.1:
Cs / 6.2.2:
The exception to the general rule / 6.2.3:
Bs and Cs in the harassed booking clerk problem / 6.2.4:
Another example: a T-junction / 6.2.5:
How the three-phase approach works / 6.3:
The A phase / 6.3.1:
The B phase / 6.3.2:
The C phase / 6.3.3:
The harassed booking clerk--a manual three-phase simulation / 6.4:
The first A phase / 6.4.1:
The first B phase / 6.4.2:
The first C phase / 6.4.3:
The second A phase / 6.4.4:
The next B and C phases / 6.4.5:
The third A phase / 6.4.6:
Preface to the Fifth Edition
Fundamentals Of Computer Simulation In Management Science / Part I:
The computer simulation approach / 1:
3.

図書

図書
Claude Itzykson, Jean-Michel Drouffe
出版情報: Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1989  xvi, 403 p. ; 24 cm
シリーズ名: Cambridge monographs on mathematical physics ; . Statistical field theory / Claude Itzykson, Jean-Michel Drouffe ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Contents of Volume 2
Preface
From Brownian motion to Euclidean fields / 1:
Brownian motion / 1.1:
Random walks / 1.1.1:
The sum over paths / 1.1.2:
The dimension two of Brownian curves / 1.1.3:
Euclidean fields / 1.2:
Free fields / 1.2.1:
Interacting fields and random walks / 1.2.2:
Self-avoiding walks and the limit n [right arrow] 0 / 1.2.3:
Comparison with the high temperature expansion / 1.2.4:
The one-dimensional case / 1.2.5:
Lattices / 1.A:
Notes
Grassmannian integrals and the two-dimensional Ising model / 2:
Grassmannian integrals / 2.1:
Anticommuting variables / 2.1.1:
Integrals / 2.1.2:
The two-dimensional Ising model / 2.2:
Duality / 2.2.1:
Transfer matrix / 2.2.2:
Fermionic representation / 2.2.3:
Free energy / 2.2.4:
Spontaneous magnetization / 2.2.5:
Correlation function in the high temperature phase / 2.2.6:
Surface tension / 2.2.7:
Critical continuous theory / 2.3:
Effective action / 2.3.1:
Correlation functions / 2.3.2:
Quadratic differences and Painleve equations / 2.A:
Spontaneous symmetry breaking, mean field / 3:
Mean field approximation / 3.1:
Dielectric constant of a polarizable medium / 3.1.1:
Classical spin model with a finite symmetry group / 3.1.2:
Continuous symmetry group / 3.1.3:
The Bethe approximation / 3.1.4:
Critical exponents / 3.1.5:
Lee-Yang zeroes / 3.2:
The Lee-Yang theorem / 3.2.1:
General properties / 3.2.2:
Zeroes in the temperature plane / 3.2.4:
Large n limit / 3.3:
Saddle point method / 3.3.1:
Factorization / 3.3.2:
Coupling to an external field / 3.3.3:
Corrections to mean field / 3.4:
Laplace transform / 3.4.1:
Scaling transformations and the XY-model / 4:
Scaling laws. Real space renormalization / 4.1:
Homogeneity and scale invariance / 4.1.1:
Recurrence relations in real space / 4.1.2:
Examples and approximations / 4.1.3:
The XY-model / 4.2:
High temperature behaviour / 4.2.1:
Low temperature expansion. Vortices / 4.2.2:
The Villain action / 4.2.3:
Correlations / 4.2.4:
Renormalization flow / 4.2.5:
Two-dimensional systems with continuous symmetry / 4.A:
Magnetization inequality / 4.A.1:
Correlation inequality / 4.A.2:
Phenomenological renormalization / 4.B:
Continuous field theory and the renormalization group / 5:
The Lagrangian and dimensional analysis / 5.1:
Introduction / 5.1.1:
Generating functionals and dimensional analysis / 5.1.2:
The perturbative method / 5.2:
Diagrammatic series / 5.2.1:
Loop expansion / 5.2.2:
Evaluation of integrals and dimensional continuation / 5.2.3:
Group theoretical factors / 5.2.4:
Power counting / 5.2.5:
Perturbative renormalization / 5.2.6:
The renormalization group / 5.3:
From the Gaussian ultraviolet fixed point to the infrared critical point in dimension less than four / 5.3.1:
Correlation functions at the critical point / 5.3.4:
Expansion near the critical point / 5.3.5:
Scaling laws below the critical temperature / 5.3.6:
Corrections to scaling laws / 5.4:
Deviation from the critical point in dimension lower than four / 5.4.1:
Logarithmic corrections in dimension four / 5.4.2:
Irrelevant operators / 5.4.3:
Numerical results / 5.5:
[varepsilon]-expansion of critical exponents / 5.5.1:
Equation of state / 5.5.2:
Amplitude ratios / 5.5.3:
Three-dimensional results / 5.5.4:
Multicritical points / 5.A:
Lattice gauge fields / 6:
Generalities / 6.1:
Presentation / 6.1.1:
The continuous limit / 6.1.2:
Order parameter and Elitzur's theorem / 6.1.3:
Structure of the phase diagram / 6.1.4:
Corrections to mean field and restoration of gauge invariance / 6.2.1:
Discrete groups: 1/d expansion / 6.2.3:
Continuous groups: computation of corrections / 6.2.4:
Strong coupling expansions / 6.3:
Convergence / 6.3.1:
Character expansions / 6.3.2:
String tension and roughening transition / 6.3.3:
Mass spectrum / 6.3.5:
Lattice fermions / 6.4:
The doubling problem / 6.4.1:
The Nielsen-Ninomiya theorem / 6.4.2:
Staggered fermions / 6.4.3:
Index
Grassmannian integrals and two-dimensional Ising models
Spontaneous symmetry breaking
Contents of Volume 2
Preface
From Brownian motion to Euclidean fields / 1:
4.

図書

図書
F. Albert Cotton, Richard A. Walton
出版情報: New York : Wiley, c1982  xiv, 466 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
Prior to about 1963 / 1.1.2:
How It All Began / 1.2:
Rhenium chemistry from 1963 to 1965 / 1.2.1:
The recognition of the quadruple bond / 1.2.2:
Initial work on other elements / 1.2.3:
An Overview of the Multiple Bonds / 1.3:
A qualitative picture of the quadruple bond / 1.3.1:
Bond orders less than four / 1.3.2:
Oxidation states / 1.3.3:
Growth of the Field / 1.4:
Going Beyond Two / 1.5:
Complexes of the Group 5 Elements
General Remarks / 2.1:
Divanadium Compounds / 2.2:
Triply-bonded divanadium compounds / 2.2.1:
Metal-metal vs metal-ligand bonding / 2.2.2:
Divanadium compounds with the highly reduced V23+ core / 2.2.3:
Diniobium Compounds / 2.3:
Diniobium paddlewheel complexes / 2.3.1:
Diniobium compounds with calix[4]arene ligands and related species / 2.3.2:
Tantalum / 2.4:
Chromium Compounds
Dichromium Tetracarboxylates / 3.1:
History and preparation / 3.1.1:
Properties of carboxylate compounds / 3.1.2:
Unsolvated Cr2(O2CR)4 compounds / 3.1.3:
Other Paddlewheel Compounds / 3.2:
The first 'supershort' bonds / 3.2.1:
2-Oxopyridinate and related compounds / 3.2.2:
Carboxamidate compounds / 3.2.3:
Amidinate compounds / 3.2.4:
Guanidinate compounds / 3.2.5:
Miscellaneous Dichromium Compounds / 3.3:
Compounds with intramolecular axial interactions / 3.3.1:
Compounds with Cr-C bonds / 3.3.2:
Other pertinent results / 3.3.3:
Concluding Remarks / 3.4:
Molybdenum Compounds
Dimolybdenum Bridged by Carboxylates or Other O,O Ligands / 4.1:
General remarks / 4.1.1:
Mo2(O2CR)4 compounds / 4.1.2:
Other compounds with bridging carboxyl groups / 4.1.3:
Paddlewheels with other O,O anion bridges / 4.1.4:
Paddlewheel Compounds with O,N, N,N and Other Bridging Ligands / 4.2:
Compounds with anionic O,N bridging ligands / 4.2.1:
Compounds with anionic N,N bridging ligands / 4.2.2:
Compounds with miscellaneous other anionic bridging ligands / 4.2.3:
Non-Paddlewheel Mo24+ Compounds / 4.3:
Mo2X84- and Mo2X6(H2O)22- compounds / 4.3.1:
[Mo2X8H]3- compounds / 4.3.2:
Other aspects of dimolybdenum halogen compounds / 4.3.3:
M2X4L4 and Mo2X4(LL)2 compounds / 4.3.4:
Cationic complexes of Mo24+ / 4.3.5:
Complexes of Mo24+ with macrocyclic, polydentate and chelate ligands / 4.3.6:
Alkoxide compounds of the types Mo2(OR)4L4 and Mo2(OR)4(LL)2 / 4.3.7:
Other Aspects of Mo24+ Chemistry / 4.4:
Cleavage of Mo24+ compounds / 4.4.1:
Redox behavior of Mo24+ compounds / 4.4.2:
Hydrides and organometallics / 4.4.3:
Heteronuclear Mo-M compounds / 4.4.4:
An overview of Mo-Mo bond lengths in Mo24+ compounds / 4.4.5:
Higher-order Arrays of Dimolybdenum Units / 4.5:
General concepts / 4.5.1:
Two linked pairs with carboxylate spectator ligands / 4.5.2:
Two linked pairs with nonlabile spectator ligands / 4.5.3:
Squares: four linked pairs / 4.5.4:
Loops: two pairs doubly linked / 4.5.5:
Rectangular cyclic quartets / 4.5.6:
Other structural types / 4.5.7:
Tungsten Compounds
Multiple Bonds in Ditungsten Compounds / 5.1:
The W24+ Tetracarboxylates / 5.2:
W24+ Complexes Containing Anionic Bridging Ligands Other Than Carboxylate / 5.3:
W24+ Complexes without Bridging Ligands / 5.4:
Compounds coordinated by only anionic ligands / 5.4.1:
Compounds coordinated by four anionic ligands and four neutral ligands / 5.4.2:
Multiple Bonds in Heteronuclear Dimetal Compounds of Molybdenum and Tungsten / 5.5:
Paddlewheel Compounds with W25+ or W26+ Cores / 5.6:
X3 M ≡ MX3 Compounds of Molybdenum and Tungsten
Introduction / 6.1:
Homoleptic X3M ≡ MX3 Compounds / 6.2:
Synthesis and characterization of homoleptic M2X6 compounds / 6.2.1:
Bonding in M2X6 compounds / 6.2.2:
X3M ≡ MX3 Compounds as Molecular Precursors to Extended Solids / 6.2.3:
M2X2(NMe2)4 and M2X4(NMe2)2 Compounds / 6.3:
Other M2X2Y4, M2X6-n Yn and Related Compounds / 6.4:
Mo2X2(CH2SiMe3)4 compounds / 6.4.1:
1,2-M2R2(NMe2)4 compounds and their derivatives / 6.4.2:
M4 Complexes: Clusters or Dimers? / 6.5:
Molybdenum and tungsten twelve-electron clusters M4(OR)12 / 6.5.1:
M4X4(OPri)8 (X = Cl, Br) and Mo4Br3(OPri)9 / 6.5.2:
W4 (p-tolyl)2 (OPri)10 / 6.5.3:
W4O(X)(OPri)9, (X = Cl or OPri) / 6.5.4:
K(18-crown-6)2Mo44-H)(OCH2But)12 / 6.5.5:
Linked M4 units containing localized MM triple bonds / 6.5.6:
M2X6L, M2X6L2 and Related Compounds / 6.6:
Mo2(CH2Ph)2(OPri)4(PMe3) and [Mo2(OR)7]- / 6.6.1:
M2(OR)6L2 compounds and their congeners / 6.6.2:
Amido-containing compounds / 6.6.3:
Mo2Br2(CHSiMe3)2(PMe3)4 / 6.6.4:
Calix[4]arene complexes / 6.6.5:
Triple Bonds Uniting Five- and Six-Coordinate Metal Atoms / 6.7:
Redox Reactions at the M26+ Unit / 6.8:
Organometallic Chemistry of M2(OR)6 and Related Compounds / 6.9:
Carbonyl adducts and their products / 6.9.1:
Isocyanide complexes / 6.9.2:
Reactions with alkynes / 6.9.3:
Reactions with C≡N bonds / 6.9.4:
Reactions with C=C bonds / 6.9.5:
Reactions with H2 / 6.9.6:
Reactions with organometallic compounds / 6.9.7:
(η-C5H4R)2W2X4 compounds where R = Me, Pri and X = Cl, Br / 6.9.8:
Conclusion / 6.10:
Technetium Compounds
Synthesis and Properties of Technetium / 7.1:
Preparation of Dinuclear and Polynuclear Technetium Compounds / 7.2:
Bonds of Order 4 and 3.5 / 7.3:
Tc26+ and Tc25+ Carboxylates and Related Species with Bridging Ligands / 7.4:
Bonds of Order 3 / 7.5:
Hexanuclear and Octanuclear Technetium Clusters / 7.6:
Rhenium Compounds
The Last Naturally Occurring Element to Be Discovered / 8.1:
Synthesis and Structure of the Octachlorodirhenate(III) Anion / 8.2:
Synthesis and Structure of the Other Octahalodirhenate(III) Anions / 8.3:
Substitution Reactions of the Octahalodirhenate(III) Anions that Proceed with Retention of the Re26+ Core / 8.4:
Monodentate anionic ligands / 8.4.1:
The dirhenium(III) carboxylates / 8.4.2:
Other anionic ligands / 8.4.3:
Neutral ligands / 8.4.4:
Dirhenium Compounds with Bonds of Order 3.5 and 3 / 8.5:
The first metal-metal triple bond: Re2Cl5(CH3SCH2CH2SCH3)2 and related species / 8.5.1:
Simple electron-transfer chemistry involving the octahalodirhenate(III) anions and related species that contain quadruple bonds / 8.5.2:
Oxidation of [Re2X8]2- to the nonahalodirhenate anions [Re2X9]n- (n = 1 or 2) / 8.5.3:
Re25+ and Re24+ halide complexes that contain phosphine ligands / 8.5.4:
Other Re25+ and Re24+ complexes / 8.5.5:
Other dirhenium compounds with triple bonds / 8.5.6:
Dirhenium Compounds with Bonds of Order Less than 3 / 8.6:
Cleavage of Re-Re Multiple Bonds by o-donor and π-acceptor Ligands / 8.7:
σ-Donor ligands / 8.7.1:
Jπ-Acceptor ligands / 8.7.2:
Other Types of Multiply Bonded Dirhenium Compounds / 8.8:
Postscript on Recent Developments / 8.9:
Ruthenium Compounds
Ru25+ Compounds / 9.1:
Ru25+ compounds with O,O′-donor bridging ligands / 9.2.1:
Ru25+ compounds with N,O-donor bridging ligands / 9.2.2:
Ru25+ compounds with N,N′-donor bridging ligands / 9.2.3:
Ru24+ Compounds / 9.3:
Ru24+ compounds with O,O′-donor bridging ligands / 9.3.1:
Ru24+ compounds with N,O-donor bridging ligands / 9.3.2:
Ru24+ compounds with N,N′-donor bridging ligands / 9.3.3:
Ru26+ Compounds / 9.4:
Ru26+ compounds with O,O′-donor bridging ligands / 9.4.1:
Ru26+ compounds with N,N′-donor bridging ligands / 9.4.2:
Compounds with Macrocyclic Ligands / 9.5:
Applications / 9.6:
Catalytic activity / 9.6.1:
Biological importance / 9.6.2:
Osmium Compounds
Syntheses, Structures and Reactivity of Os26+ Compounds / 10.1:
Syntheses and Structures of Os25+ Compounds / 10.2:
Syntheses and Structures of Other Os2 Compounds / 10.3:
Magnetism, Electronic Structures, and Spectroscopy / 10.4:
Iron, Cobalt and Iridium Compounds / 10.5:
Di-iron Compounds / 11.1:
Dicobalt Compounds / 11.3:
Tetragonal paddlewheel compounds / 11.3.1:
Trigonal paddlewheel compounds / 11.3.2:
Dicobalt compounds with unsupported bonds / 11.3.3:
Compounds with chains of cobalt atoms / 11.3.4:
Di-iridium Compounds / 11.4:
Paddlewheel compounds and related species / 11.4.1:
Unsupported Ir-Ir bonds / 11.4.2:
Other species with Ir-Ir bonds / 11.4.3:
Iridium blues / 11.4.4:
Rhodium Compounds
Dirhodium Tetracarboxylato Compounds / 12.1:
Preparative methods and classification / 12.2.1:
Structural studies / 12.2.2:
Other Dirhodium Compounds Containing Bridging Ligands / 12.3:
Complexes with fewer than four carboxylate bridging groups / 12.3.1:
Complexes supported by hydroxypyridinato, carboxamidato and other (N, O) donor monoanionic bridging groups / 12.3.2:
Complexes supported by amidinato and other (N, N) donor bridging groups / 12.3.3:
Complexes supported by sulfur donor bridging ligands / 12.3.4:
Complexes supported by phosphine and (P, N) donor bridging ligands / 12.3.5:
Complexes supported by carbonate, sulfate and phosphate bridging groups / 12.3.6:
Dirhodium Compounds with Unsupported Rh-Rh Bonds / 12.4:
The dirhodium(II) aquo ion / 12.4.1:
The [Rh2(NCR)10]4+ cations / 12.4.2:
Complexes with chelating and macrocyclic nitrogen ligands / 12.4.3:
Other Dirhodium Compounds / 12.5:
Complexes with isocyanide ligands / 12.5.1:
Rhodium blues / 12.5.2:
Reactions of Rh24+ Compounds / 12.6:
Oxidation to Rh25+ and Rh26+ species / 12.6.1:
Cleavage of the Rh-Rh bond / 12.6.2:
Applications of Dirhodium Compounds / 12.7:
Catalysis / 12.7.1:
Supramolecular arrays based on dirhodium building blocks / 12.7.2:
Biological applications of dirhodium compounds / 12.7.3:
Photocatalytic reactions / 12.7.4:
Other applications / 12.7.5:
Chiral Dirhodium(II) Catalysts and Their Applications
Synthetic and Structural Aspects of Chiral Dirhodium(II) Carboxamidates / 13.1:
Synthetic and Structural Aspects of Dirhodium(II) Complexes Bearing Orthometalated Phosphines / 13.3:
Dirhodium(II) Compounds as Catalysts / 13.4:
Catalysis of Diazo Decomposition / 13.5:
Chiral Dirhodium(II) Carboxylates / 13.6:
Chiral Dirhodium(II) Carboxamidates / 13.7:
Catalytic Asymmetric Cyclopropanation and Cyclopropenation / 13.8:
Intramolecular reactions / 13.8.1:
Intermolecular reactions / 13.8.2:
Cyclopropenation / 13.8.3:
Macrocyclization / 13.8.4:
Metal Carbene Carbon-Hydrogen Insertion / 13.9:
Catalytic Ylide Formation and Reactions / 13.9.1:
Additional Transformations of Diazo Compounds Catalyzed by Dirhodium(II) / 13.11:
Silicon-Hydrogen Insertion / 13.12:
Nickel, Palladium and Platinum Compounds
Dinickel Compounds / 14.1:
Dipalladium Compounds / 14.3:
A singly bonded Pd26+ species / 14.3.1:
Chemistry of Pd25+ and similar species / 14.3.2:
Other compounds with Pd-Pd interactions / 14.3.3:
Diplatinum Compounds / 14.4:
Complexes with sulfate and phosphate bridges / 14.4.1:
Complexes with pyrophosphite and related ligands / 14.4.2:
Complexes with carboxylate, formamidinate and related ligands / 14.4.3:
Complexes containing monoanionic bridging ligands with N,O and N,S donor sets / 14.4.4:
Unsupported Pt-Pt bonds / 14.4.5:
Dinuclear Pt25+ species / 14.4.6:
The platinum blues / 14.4.7:
Other compounds
Extended Metal Atom Chains
Overview / 15.1:
EMACs of Chromium / 15.2:
EMACs of Cobalt / 15.3:
EMACs of Nickel and Copper / 15.4:
EMACs of Ruthenium and Rhodium / 15.5:
Other Metal Atom Chains / 15.6:
Physical, Spectroscopic and Theoretical Results
Structural Correlations / 16.1:
Bond orders and bond lengths / 16.1.1:
Internal rotation / 16.1.2:
Axial ligands / 16.1.3:
Comparison of second and third transition series homologs / 16.1.4:
Disorder in crystals / 16.1.5:
Rearrangements of M2X8 type molecules / 16.1.6:
Diamagnetic anisotropy of M-M multiple bonds / 16.1.7:
Thermodynamics / 16.2:
Thermochemical data / 16.2.1:
Bond energies / 16.2.2:
Electronic Structure Calculations / 16.3:
Background / 16.3.1:
[M2X8]n- and M2X4(PR3)4 species / 16.3.2:
The M2(O2CR)4 (M = Cr, Mo, W) molecules / 16.3.3:
M2(O2CR)4R′2 (M = Mo, W) compounds / 16.3.4:
Dirhodium species / 16.3.5:
Diruthenium compounds / 16.3.6:
M2X6 molecules (M = Mo, W) / 16.3.7:
Other calculations / 16.3.8:
Electronic Spectra / 16.4:
Details of the δ manifold of states / 16.4.1:
Observed δ → δ* transitions / 16.4.2:
Other electronic absorption bands of Mo2, W2, Tc2 and Re2 species / 16.4.3:
Spectra of Rh2, Pt2, Ru2 and Os2 compounds / 16.4.4:
CD and ORD spectra / 16.4.5:
Excited state distortions inferred from vibronic structure / 16.4.6:
Emission spectra and photochemistry / 16.4.7:
Photoelectron Spectra / 16.5:
Paddlewheel molecules / 16.5.1:
Other tetragonal molecules / 16.5.2:
M2X6 molecules / 16.5.3:
Miscellaneous other PES results / 16.5.4:
Vibrational Spectra / 16.6:
M-M stretching vibrations / 16.6.1:
M-L stretching vibrations / 16.6.2:
Other types of Spectra / 16.7:
Electron Paramagnetic Resonance / 16.7.1:
X-Ray spectra, EXAFS, and XPS / 16.7.2:
Abbreviations
Index
Introduction and Survey
Prolog / 1.1:
From Werner to the new transition metal chemistry / 1.1.1:
5.

図書

図書
Herausgegeben von Hans Jebsen-Marwedel und Rolf Brückner
出版情報: Berlin : Springer, 1980  xviii, 623 p. ; 28 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Challenges and motivation / 1.1:
Literature review / 1.2:
Overview of the content of the book / 1.3:
Multiscale finite element methods for linear problems and overview / 2:
Summary / 2.1:
Introduction to multiscale finite element methods / 2.2:
Reducing boundary effects / 2.3:
Motivation / 2.3.1:
Oversampling technique / 2.3.2:
Generalization of MsFEM: A look forward / 2.4:
Brief overview of various global couplings of multiscale basis functions / 2.5:
Multiscale finite volume (MsFV) and multiscale finite volume element method (MsFVEM) / 2.5.1:
Mixed multiscale finite element method / 2.5.2:
MsFEM for problems with scale separation / 2.6:
Extension of MsFEM to parabolic problems / 2.7:
Comparison to other multiscale methods / 2.8:
Performance and implementation issues / 2.9:
Cost and performance / 2.9.1:
Convergence and accuracy / 2.9.2:
Coarse-grid choice / 2.9.3:
An application to two-phase flow / 2.10:
Discussions / 2.11:
Multiscale finite element methods for nonlinear equations / 3:
MsFEM for nonlinear problems. Introduction / 3.1:
Multiscale finite volume element method (MsFVEM) / 3.2:
Examples of Ph / 3.3:
Relation to upscaling methods / 3.4:
Multiscale finite element methods for nonlinear parabolic equations / 3.5:
Summary of convergence of MsFEM for nonlinear partial differential equations / 3.6:
Numerical results / 3.7:
Multiscale finite element methods using limited global information / 3.8:
A motivating numerical example / 4.1:
Mixed multiscale finite element methods using limited global information / 4.2:
Elliptic equations / 4.2.1:
Parabolic equations / 4.2.2:
Galerkin multiscale finite element methods using limited global information / 4.2.3:
A special case / 4.3.1:
General case / 4.3.2:
The use of approximate global information / 4.3.3:
Iterative MsFEM / 4.4.1:
Applications of multiscale finite element methods / 4.4.2:
Multiscale methods for transport equation / 5.1:
Governing equations / 5.2.1:
Adaptive multiscale algorithm for transport equation / 5.2.2:
The coarse-to-fine grid interpolation operator / 5.2.3:
Results for a two-dimensional test case / 5.2.4:
Three-dimensional test cases / 5.2.6:
Discussion on local boundary conditions / 5.2.7:
Other approaches for coarsening the transport equation / 5.2.8:
Applications to Richards' equation / 5.2.9:
Problem statement / 5.3.1:
MsFVEM for Richards' equations / 5.3.2:
Applications to fluid-structure interaction / 5.3.3:
Multiscale numerical formulation / 5.4.1:
Numerical examples / 5.4.3:
Applications of mixed MsFEMs to reservoir modeling and simulation / J. E. Aarnes5.4.4:
Multiscale method for the three-phase black oil model / 5.5.1:
Adaptive coarsening of the saturation equations / 5.5.2:
Utilization of multiscale methods for operational decision support / 5.5.3:
Multiscale finite volume method for black oil systems / S. H. Lee ; C. Wolfsteiner ; H. A. Tchelepi5.5.4:
Governing equations and discretized formulation / 5.6.1:
Multiscale finite volume formulation / 5.6.2:
Sequential fully implicit coupling and adaptive computation / 5.6.3:
Remarks / 5.6.4:
Applications of multiscale finite element methods to stochastic flows in heterogeneous media / 5.7:
Multiscale methods for stochastic equations / 5.7.1:
The applications of MsFEMs to uncertainty quantification in inverse problems / 5.7.2:
Analysis / 5.8:
Analysis of MsFEMs for linear problems (from Chapter 2) / 6.1:
Analysis of conforming multiscale finite element methods / 6.1.1:
Analysis of nonconforming multiscale finite element methods / 6.1.2:
Analysis of mixed multiscale finite element methods / 6.1.3:
Analysis of MsFEMs for nonlinear problems (from Chapter 3) / 6.2:
Analysis of MsFEMs with limited global information (from Chapter 4) / 6.3:
Mixed finite element methods with limited global information / 6.3.1:
Glaerkin finite element methods with limited global information / 6.3.2:
Basic notations / A:
Review of homogenization / B:
Linear problems / B.1:
Special case: One-dimensional problem / B.1.1:
Multiscale asymptotic expansions / B.1.2:
Justification of formal expansions / B.1.3:
Boundary corrections / B.1.4:
Nonlocal memory effect of homogenization / B.1.5:
Convection of microstructure / B.1.6:
Nonlinear problems / B.2:
References
Index
Introduction / 1:
Challenges and motivation / 1.1:
Literature review / 1.2:
6.

図書

図書
Giovanni Cancellieri, Umberto Ravaioli
出版情報: Dedham, MA : Artech House, c1984  xvi, 496 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Light Propagation in Ideal Multimode Fibers / 1:
Outline of the Electromagnetic Model / 1.1:
General Considerations / 1.1.1:
Exact Electromagnetic Theory of Round Step-Index Fibers / 1.1.2:
Approximate Evaluation of the Total Number of Guided Modes / 1.1.3:
WKB Approximate Solution for Graded-Index Fibers / 1.1.4:
The Ray-Optics Model / 1.2:
Light Acceptance in Step Index Fibers / 1.2.1:
Correspondence between Modes and Rays / 1.2.2:
Light Acceptance in Graded-Index Fibers / 1.2.3:
General Ray-Optics in Inhomogeneous Media / 1.2.4:
Constants of the Motion / 1.2.5:
Ray Tracing / 1.2.6:
Ray Domain / 1.2.7:
The Radiance Law / 1.2.8:
Ray Distribution / 1.2.9:
Domain (r[subscript 1], theta[subscript 1]) / 1.2.10:
Intermodal Time Dispersion / 1.3:
Time Dispersion in Step-Index Fibers / 1.3.1:
alpha-Profiles / 1.3.2:
WKB Approximation for [characters not producible]-Profiles / 1.3.3:
Effects of Leaky Modes / 1.3.4:
Ray-Optics Approach for [characters not producible]-Profiles / 1.3.5:
The rms Pulsewidth / 1.3.6:
Simplified Description of the Launching Condition / 1.3.7:
Effects of the Launching Condition / 1.3.8:
Effects of Profile Imperfections / 1.3.9:
Compensation Effect of Time Dispersion in Fiber Chains / 1.3.10:
Intramodal Time Dispersion / 1.4:
Group Delays in the Presence of Material Dispersion / 1.4.1:
Effects of the Finite Extension of the Source Spectral Width / 1.4.2:
Wavelength of Zero Material Dispersion / 1.4.3:
Total Time Dispersion / 1.4.4:
Optimum Index Profile in the Presence of Material Dispersion / 1.4.5:
Linear Profile Dispersion / 1.4.6:
Nonlinear Profile Dispersion / 1.4.7:
Real Fibers / 2:
Intrinsic Attenuation / 2.1:
Causes of Intrinsic Attenuation / 2.1.1:
Absorption Loss / 2.1.2:
Scattering Loss / 2.1.3:
Fiber Perturbations / 2.2:
Kinds of Fiber Perturbation / 2.2.1:
Outline of the Electromagnetic Approach to the Study of Fiber Perturbations / 2.2.2:
Ray-Optics Approach to Core Diameter Fluctuations / 2.2.3:
Ray-Optics Approach to Microbending / 2.2.4:
Optical Power Flow Equation in the Electromagnetic Model / 2.2.5:
Optical Power Flow Equation in the Ray-Optics Model / 2.2.6:
Solutions of the Optical Power Flow Equation / 2.2.7:
The Time-Dependent Equation / 2.2.8:
Transmission Properties of Perturbed Fibers / 2.3:
Exact Solution of the Time-Independent Equation / 2.3.1:
Perturbative Solutions of the Time-Dependent Equation / 2.3.2:
Evolution of the Attenuation Coefficient while Approaching Steady-State / 2.3.3:
Evolution of the Baseband Response while Approaching Steady-State / 2.3.4:
Optimization of the Cabling Process / 2.3.5:
Effects of Joints / 2.4:
Splices and Connectors / 2.4.1:
Exact Electromagnetic Model of a Connector / 2.4.2:
Linear Model of a Connector / 2.4.3:
Matricial Approach to the Study of Cascaded Fibers / 2.4.4:
Power Loss of a Connector between Two Unperturbed Fibers / 2.4.5:
Power Loss of a Connector between Two Perturbed Fibers / 2.4.6:
Outline of Connector Time Dispersion Properties / 2.4.7:
Transducers / 3:
Optical Sources / 3.1:
Collimated Beam Lasers / 3.1.1:
Top Emitting LEDs / 3.1.2:
Edge Emitting LEDs / 3.1.3:
Laser Diodes / 3.1.4:
Some Imperfections of the Laser Emission / 3.1.5:
Laser Structures / 3.1.6:
Spectral Properties of LEDs and Laser Diodes / 3.1.7:
Modulation Properties of LEDs and Laser Diodes / 3.1.8:
Photodetectors / 3.2:
Review of the Existing Photodetectors / 3.2.1:
Solar Cells and PIN Photodiodes / 3.2.2:
Avalanche Photodiodes (APD) / 3.2.3:
Some Considerations about the Noise of Photodiodes / 3.2.4:
Spectral Properties of Photodiodes / 3.2.5:
Modulation Properties of Photodiodes / 3.2.6:
Transmission Systems / 4:
Transmission Systems Based on Intensity Modulation / 4.1:
LED and Laser Drivers / 4.1.1:
Types of Front Ends / 4.1.2:
Analog Receivers / 4.1.3:
Digital Receivers / 4.1.4:
Equalization / 4.1.5:
Ultimate Limits of Transmission Capacity and Repeater Spacing for Intensity Modulation Systems / 4.1.6:
Coherent Transmission Systems / 4.2:
Advantages of Coherent Systems over Traditional Systems / 4.2.1:
Main Problems of Practical Coherent Transmissions / 4.2.2:
Scanning Masurements / 5:
Scanning Measurements on Fibers / 5.1:
Defraction Limit / 5.1.1:
Optical Arrangements / 5.1.2:
Differential Mode Attenuation Measurements / 5.1.3:
Differential Mode Delay Measurements / 5.1.4:
Indirect Tests for Investigating Mode Coupling Effects / 5.1.5:
Advantages of Domain (r[subscript 1], theta[subscript 1]) / 5.1.6:
Scanning Measurements on Transducers / 5.2:
Scanning Measurements on LEDs and Laser Diodes / 5.2.1:
Scanning Measurements on Photodiodes / 5.2.2:
Measurements on Transducers / 6:
Integrated Measurements / 6.1:
Electric Characterization of LEDs and Laser Diodes / 6.1.1:
Measurement of the Electro-Optical Transduction and Its Baseband Response / 6.1.2:
Electric Characterization of Photodiodes / 6.1.3:
Measurements of the Responsivity and Its Baseband Response / 6.1.4:
Reliability Tests on Laser Diodes / 6.1.5:
Differential Measurements / 6.2:
Measurement of the Spectral Distribution of the Emitted Power in LEDs and Laser Diodes / 6.2.1:
Measurements of Near and Far Field Patterns in LEDs and Laser Diodes / 6.2.2:
Measurements of Spatial Relative Delays of Emission in LEDs / 6.2.3:
Theoretical Model of Radiation Confinement and Spatial Relative Delays of Emission / 6.2.4:
Combined Spectral and Geometrical Differential Measurements in LEDs and Laser Diodes / 6.2.5:
Tests on the Spectral and Geometrical Dependence of the Responsivity / 6.2.6:
Index Profile Measurements / 7:
Fiber Profiling / 7.1:
Near Field Scanning Technique / 7.1.1:
Refracted Near Field Technique / 7.1.2:
Slice Interferometry / 7.1.3:
Reflection Method / 7.1.4:
Transverse Interferometry / 7.1.5:
Transverse Focusing Technique / 7.1.6:
Brief Review of Other Techniques / 7.1.7:
Comparative Discussion / 7.1.8:
Preform Profiling / 7.2:
Techniques Also Employed for Fiber Profiling / 7.2.1:
Ray Tracing Method / 7.2.2:
Comparison between the Fiber and Its Parent Preform / 7.2.3:
Geometrical Measurements / 8:
Measurements on the Fiber Cross Section / 8.1:
Direct Fiber End Face Inspection / 8.1.1:
Near Field Techniques / 8.1.2:
Outer Diameter Measurements / 8.1.3:
Measurements of the Ellipticity of the Fiber Outer Surface / 8.1.4:
Measurements of NA / 8.1.5:
Fiber Length Measurements / 8.2:
Fiber Length Measurement by Backscattering / 8.2.1:
Fiber Length Measurement by a Lock-in Amplifier / 8.2.2:
Attenuation Measurements / 9:
Review of the Existing Techniques / 9.1:
The Cut-Back Technique / 9.1.1:
The Backscattering Technique (OTDR) / 9.1.2:
Technological Measurements / 9.1.3:
Measurements of Total Loss by Lateral Scattering Detection / 9.1.4:
The Insertion Loss Measurement / 9.1.5:
Joint Loss Measurements / 9.1.6:
On-Line Tests during Fiber Fabrication / 9.1.7:
Discussion on Cutback / 9.2:
Beam Launchers and Mode Scramblers / 9.2.1:
Accuracy of Cutback Measurements / 9.2.2:
Spectral Loss Measurements / 9.2.3:
Measurements Performed by Varying the Launching Condition / 9.2.4:
Discussion on Backscattering / 9.3:
Launching Techniques / 9.3.1:
Ray Distribution of the Backscattered Power / 9.3.2:
Effects of Fluctuations in the Fiber Parameters / 9.3.3:
Measurements of Local Additional Losses / 9.3.4:
Analysis of All Noise Sources in Backscattering Measurements / 9.3.5:
Dynamic Range Limitations / 9.3.6:
Accuracy of Backscattering Measurements / 9.3.7:
Outline of Optical Frequency Domain Reflectometry (OFDR) / 9.3.8:
DMA Measurements of Step Index Fibers / 9.4:
DMA Measurements of Graded Index Fibers / 9.4.2:
Discussion of the Accuracy of DMA Measurements / 9.4.3:
Time Dispersion Measurements / 10:
Extrapolation of the Experimental Results of Time Dispersion Measurements / 10.1:
Measurements in the Time Domain / 10.1.2:
Measurements in the Frequency Domain / 10.1.3:
Measurements of Intermodal Time Dispersion / 10.1.4:
Material Dispersion Measurements / 10.1.5:
Experimental Evaluation of Profile Dispersion / 10.1.6:
Discussion of the Measurements in the Time Domain / 10.2:
Main Causes of Uncertainty in Time Domain Measurements / 10.2.1:
Use of a Lock-in Amplifier to Improve the SNR / 10.2.2:
Use of Pick-Up Procedure to Reduce the Overall Uncertainty / 10.2.3:
Evaluation of the Effective Input Pulse / 10.2.4:
Discussion on the Measurements in the Frequency Domain / 10.3:
The Fiber Transfer Function / 10.3.1:
Main Causes of Uncertainty in Frequency Domain Measurements / 10.3.2:
A Method for Improving the Maximum Dynamic Range / 10.3.3:
Evaluation of the Phase Response via a Hilbert Transform / 10.3.4:
Direct Measurement of the Phase Response / 10.3.5:
Overall Accuracy of Frequency Domain Measurements / 10.3.6:
Purposes of a DMD Measurement / 10.4:
DMD Measurements on Step Index Fibers / 10.4.2:
DMD Measurements on Graded Index Fibers / 10.4.3:
Discussion of DMD Measurement Accuracy / 10.4.4:
Indirect Tests on Mode Coupling Effects / 11:
Tests Based on Amplitude Mode Power Distributions / 11.1:
Measurements of Amplitude Mode Power Distributions under a Selective Excitation / 11.1.1:
Measurement of Amplitude Mode Power Distributions at the Steady-State / 11.1.2:
Tests Based on Amplitude and Delay Mode Power Distributions / 11.2:
Theorectial Model for the Measurement of the Mode-Dependent Attenuation and the Coupling Coefficient / 11.2.1:
Measurement of Mode-Dependent Attenuation and Coupling Coefficient / 11.2.2:
Theoretical Model for an Indirect Evaluation of the Fiber Baseband Response in the Presence of Mode Coupling / 11.2.3:
Measurement of the Fiber Baseband Response through an Indirect Test, in the Presence of Mode Coupling / 11.2.4:
Measurements of Monomode Fibers / 12:
Index Profile and Geometrical Measurements on Monomode Fibers / 12.1:
Index Profiling in Monomode Fibers / 12.1.1:
Cutoff Wavelength Measurement / 12.1.2:
Fundamental Mode Spot Size Measurement / 12.1.3:
Equivalent Step Index Profile Determination / 12.1.4:
Measurements of Core-Cladding Concentricity and Core Ellipticity in Monomode Fibers / 12.1.5:
Measurements of NA in Monomode Fibers / 12.1.6:
Transmission Measurements of Monomode Fibers / 12.2:
Attenuation Measurements in Monomode Fibers / 12.2.1:
Time Dispersion Measurements in Monomode Fibers / 12.2.2:
Optical Instruments Frequently Used in Optical Fiber Measurements / A1:
Monochromators / 1.a:
Light Modulators / 1.b:
Microscope Objectives / 1.c:
Optical Directional Couplers / 1.d:
Electric Instruments Frequently Used in Optical Fiber Measurements / A2:
Lock-in Amplifier and Light-Chopper / 2.a:
Boxcar Integrator / 2.b:
Fiber end Preparation / A3:
Fiber Cleaving Technique / 3.a:
Fiber Break Angle Inspection Procedures / 3.b:
Light Propagation in Ideal Multimode Fibers / 1:
Outline of the Electromagnetic Model / 1.1:
General Considerations / 1.1.1:
7.

図書

図書
Don J. Torrieri
出版情報: Dedham, MA : Artech House, c1985  xii, 453 p. ; 24 cm
シリーズ名: Artech House communication and electronic defense library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Errata
Modulation and Coding / Chapter 1:
Elementary Security Measures / 1.1:
Power and Propagation / 1.2:
Analog Communications / 1.3:
AM Systems / 1.3.1:
PM Systems / 1.3.2:
FM Systems / 1.3.3:
Frequency-Shift-Keying Systems / 1.4:
Noncoherent Binary FSK Systems / 1.4.1:
Noncoherent MFSK System / 1.4.2:
Coherent Binary FSK Systems / 1.4.3:
Continuous Phase Modulation / 1.5:
Error Control / 1.6:
Block Codes / 1.7:
Convolutional Codes / 1.8:
Chernoff Bound / 1.8.1:
Noncoherent MFSK / 1.8.2:
Trellis-Coded Modulation / 1.8.3:
Concatenated Codes / 1.9:
Pulsed Interference / 1.10:
Interleavers / 1.10.1:
Protection Against Pulsed Interference or Jamming / 1.10.2:
Frame Synchronization and Pulsed Interference / 1.10.3:
Direct-Sequence Spread-Spectrum Systems / Chapter 2:
Fundamental Concepts / 2.1:
Pseudonoise Sequences / 2.2:
Binary Arithmetic / 2.2.1:
Polynomials over the Binary Field / 2.2.2:
Autocorrelation of Spreading Waveform / 2.2.3:
Concealment of Direct-Sequence Waveforms / 2.3:
Binary Direct-Sequence System with Coherent PSK and Long Sequence / 2.4:
Tone Interference / 2.4.1:
Tone Interference at Carrier Frequency / 2.4.2:
Gaussian Interference / 2.4.3:
Error-Correcting Codes / 2.4.4:
Quaternary Direct-Sequence Systems / 2.5:
Code-Division Multiple-Access Networks / 2.6:
Binary Direct-Sequence Systems with Long Sequences / 2.6.1:
Multipath Interference / 2.6.2:
Quadriphase Direct-Sequence Systems with Long Sequences / 2.6.3:
Code Acquisition with Matched Filter / 2.7:
Serial-Search Acquistion / 2.8:
Code Tracking / 2.9:
Simple Systems with Matched Filters / 2.10:
Multipath-Resistant Coherent System with Matched Filter / 2.11:
Recirculation Loop / 2.11.1:
Coherent Decision-Directed Demodulator / 2.11.2:
Burst-Communication Systems / 2.12:
Supplementary Interference Rejection / 2.13:
Transform-Domain Processing / 2.13.1:
Adaptive Filtering / 2.13.2:
Frequency Hopping / Chapter 3:
Frequency Synthesizers / 3.1:
Digital Frequency Synthesizer / 3.2.1:
Direct Frequency Synthesizer / 3.2.2:
Indirect Frequency Synthesizer / 3.2.3:
Frequency Hopping with MFSK and Hard-Decision Decoding / 3.3:
Binary FSK / 3.3.1:
Frequency Hopping with MFSK and Soft-Decision Decoding / 3.3.2:
Single-Channel Modulation / 3.5:
Frequency-Hopping Multiple-Access Networks / 3.6:
Deployment Statistics / 3.6.1:
Examples / 3.6.2:
Close Interferers / 3.6.3:
Serial-Search Acquisition / 3.7:
Comparison and Combination of Direct-Sequence and Frequency-Hopping Systems / 3.9:
Repeater Jamming / 3.11:
Frequency-Shift Keying with Independent Synthesizers / 3.11.1:
Symbol Error Probability / 3.11.2:
Frequency Estimation / 3.11.3:
Direction-of-Arrival Sorting / 3.11.4:
Time-of-Arrival Sorting / 3.11.5:
Limitations on Hopping Rate / 3.11.6:
Interception / Chapter 4:
Introduction / 4.1:
Detection / 4.2:
Radiometer / 4.3:
Channelized Radiometer / 4.3.1:
Cross Correlator / 4.4:
Channelized Frequency Estimators / 4.5:
Filter Bank / 4.6.1:
Acousto-Optic Spectrum Analyzer / 4.6.2:
Spectrum Analysis Using the Discrete Fourier Transform / 4.7:
Instantaneous Frequency Measurement / 4.8:
Scanning Receivers / 4.9:
Scanning Superheterodyne Receiver / 4.9.1:
Compressive Receiver / 4.9.2:
Direction Finding by Energy Comparison / 4.10:
Multibeam System / 4.10.1:
Rotating Beams / 4.10.2:
Direction Finding with Interferometers / 4.11:
Phase Interferometer / 4.11.1:
Arrival-Time Interferometer / 4.11.2:
Other Direction-Finding Systems / 4.12:
Passive Location Systems / 4.13:
Adaptive Antenna Systems / Chapter 5:
Sidelobe Canceller / 5.1:
Steady-State Operation / 5.2.1:
Adaptive Null Steering / 5.2.2:
Potential Performance of Two-Element Adaptive Array / 5.3:
Adaptive Filters / 5.4:
Optimal Weights / 5.5:
Mean-Square-Error Criterion / 5.5.1:
SINR Criterion / 5.5.2:
Constrained Minimum-Power Criterion / 5.5.3:
Weighted Least-Squares Criterion / 5.5.4:
Widrow LMS Algorithm / 5.6:
Convergence of Mean / 5.6.1:
Misadjustment / 5.6.2:
Generation of Reference Signal / 5.6.3:
Howells-Appelbaum Algorithm / 5.7:
Frost Algorithm / 5.7.1:
Sample-Matrix-Inversion Algorithms / 5.8.1:
Recursive Algorithms / 5.10:
Adaptive Noise Canceller / 5.11:
Gram-Schmidt Preprocessor / 5.12:
QR Decomposition Algorithms / 5.13:
Givens Transformation / 5.13.1:
Recursive QR Algorithm / 5.13.2:
McWhirter Algorithm / 5.13.3:
Perturbation Algorithms / 5.14:
Adaptive Polarization Discrimination / 5.15:
Special Types of Interference / 5.16:
Adaptive Antenna Systems and Frequency Hopping / 5.17:
Cryptographic Communications / Chapter 6:
Digital Ciphers and Cryptanalysis / 6.1:
Block Ciphers / 6.1.1:
Synchronous Ciphers / 6.1.2:
Auto-Key Ciphers / 6.1.3:
Cipher-Block Chaining / 6.1.4:
Data Encryption Standard / 6.2:
Error Probability Bounds and Ensemble Averages / 6.3:
Stream Ciphers / 6.3.1:
Cryptographic Degradation / 6.3.2:
Error Correction / 6.4:
Synchronization and Interference / 6.5:
Security and Networks / 6.6:
Public-Key Cryptography / 6.7:
Results from Number Theory / 6.7.1:
Rivest-Shamir-Adleman Algorithm / 6.7.2:
Diffie-Hellman Algorithm / 6.7.3:
Scramblers / 6.8:
Signal Representations / Appendix A:
Cramer-Rao Inequality and Its Applications / Appendix B:
Matrix Analysis / Appendix C:
Mathematical Relations / Appendix D:
Index
Preface
Errata
Modulation and Coding / Chapter 1:
8.

図書

図書
Gerald D. Mahan
出版情報: New York : Plenum Press, c1981  xiv, 1003 p. ; 24 cm
シリーズ名: Physics of solids and liquids
所蔵情報: loading…
目次情報: 続きを見る
Introductory Material / 1.:
Harmonic Oscillators and Phonons / 1.1.:
Second Quantization for Particles / 1.2.:
Electron-Phonon Interactions / 1.3.:
Interaction Hamiltonian / 1.3.1.:
Localized Electron / 1.3.2.:
Deformation Potential / 1.3.3.:
Piezoelectric Interaction / 1.3.4.:
Polar Coupling / 1.3.5.:
Spin Hamiltonians / 1.4.:
Homogeneous Spin Systems / 1.4.1.:
Impurity Spin Models / 1.4.2.:
Photons / 1.5.:
Gauges / 1.5.1.:
Lagrangian / 1.5.2.:
Hamiltonian / 1.5.3.:
Pair Distribution Function / 1.6.:
Problems
Green's Functions at Zero Temperature / 2.:
Interaction Representation / 2.1.:
Schrodinger / 2.1.1.:
Heisenberg / 2.1.2.:
Interaction / 2.1.3.:
S Matrix / 2.2.:
Green's Functions / 2.3.:
Wick's Theorem / 2.4.:
Feynman Diagrams / 2.5.:
Vacuum Polarization Graphs / 2.6.:
Dyson's Equation / 2.7.:
Rules for Constructing Diagrams / 2.8.:
Time-Loop S Matrix / 2.9.:
Six Green's Functions / 2.9.1.:
Photon Green's Functions / 2.9.2.:
Nonzero Temperatures / 3.:
Introduction / 3.1.:
Matsubara Green's Functions / 3.2.:
Retarded and Advanced Green's Functions / 3.3.:
Frequency Summations / 3.4.:
Linked Cluster Expansions / 3.6.:
Thermodynamic Potential / 3.6.1.:
Real-Time Green's Functions / 3.6.2.:
Wigner Distribution Function / 3.7.1.:
Kubo Formula for Electrical Conductivity / 3.8.:
Transverse Fields, Zero Temperature / 3.8.1.:
Zero Frequency / 3.8.2.:
Photon Self-Energy / 3.8.4.:
Other Kubo Formulas / 3.9.:
Pauli Paramagnetic Susceptibility / 3.9.1.:
Thermal Currents and Onsager Relations / 3.9.2.:
Correlation Functions / 3.9.3.:
Exactly Solvable Models / 4.:
Potential Scattering / 4.1.:
Reaction Matrix / 4.1.1.:
T Matrix / 4.1.2.:
Friedel's Theorem / 4.1.3.:
Impurity Scattering / 4.1.4.:
Ground State Energy / 4.1.5.:
Localized State in the Continuum / 4.2.:
Independent Boson Models / 4.3.:
Solution by Canonical Transformation / 4.3.1.:
Feynman Disentangling of Operators / 4.3.2.:
Einstein Model / 4.3.3.:
Optical Absorption and Emission / 4.3.4.:
Sudden Switching / 4.3.5.:
Linked Cluster Expansion / 4.3.6.:
Bethe Lattice / 4.4.:
Electron Green's Function / 4.4.1.:
Ising Model / 4.4.2.:
Tomonaga Model / 4.5.:
Spin Waves / 4.5.1.:
Luttinger Model / 4.5.3.:
Single-Particle Properties / 4.5.4.:
Interacting System of Spinless Fermions / 4.5.5.:
Polaritons / 4.6.:
Semiclassical Discussion / 4.6.1.:
Phonon-Photon Coupling / 4.6.2.:
Exciton-Photon Coupling / 4.6.3.:
Homogeneous Electron Gas / 5.:
Exchange and Correlation / 5.1.:
Kinetic Energy / 5.1.1.:
Hartree / 5.1.2.:
Exchange / 5.1.3.:
Seitz's Theorem / 5.1.4.:
[Sigma superscript (2a)] / 5.1.5.:
[Sigma superscript (2b)] / 5.1.6.:
[Sigma superscript (2c)] / 5.1.7.:
High-Density Limit / 5.1.8.:
Wigner Lattice / 5.1.9.:
Metallic Hydrogen / 5.3.:
Linear Screening / 5.4.:
Model Dielectric Functions / 5.5.:
Thomas-Fermi / 5.5.1.:
Lindhard, or RPA / 5.5.2.:
Hubbard / 5.5.3.:
Singwi-Sjolander / 5.5.4.:
Local Field Corrections / 5.5.5.:
Vertex Corrections / 5.5.6.:
Properties of the Electron Gas / 5.6.:
Screening Charge / 5.6.1.:
Correlation Energies / 5.6.3.:
Compressibility / 5.6.4.:
Sum Rules / 5.6.5.:
One-Electron Properties / 5.8.:
Renormalization Constant Z[subscript F] / 5.8.1.:
Effective Mass / 5.8.2.:
Mean-Free-Path / 5.8.3.:
Strong Correlations / 6.:
Kondo Model / 6.1.:
High-Temperature Scattering / 6.1.1.:
Low-Temperature State / 6.1.2.:
Kondo Temperature / 6.1.3.:
Kondo Resonance / 6.1.4.:
Single-Site Anderson Model / 6.2.:
No Hybridization / 6.2.1.:
With Hybridization / 6.2.2.:
Self-Energy of Electrons / 6.2.3.:
Hubbard Model / 6.3.:
Spin and Charge Separation / 6.3.1.:
Exchange Graphs / 6.3.2.:
Hubbard Model: Magnetic Phases / 6.4.:
Ferromagnetism / 6.4.1.:
Antiferromagnetism / 6.4.2.:
An Example / 6.4.3.:
Electron-Phonon Interaction / 6.4.4.:
Frohlich Hamiltonian / 7.1.:
Brillouin-Wigner Perturbation Theory / 7.1.1.:
Rayleigh-Schrodinger Perturbation Theory / 7.1.2.:
Strong Coupling Theory / 7.1.3.:
Linked Cluster Theory / 7.1.4.:
Small Polaron Theory / 7.2.:
Large Polarons / 7.2.1.:
Small Polarons / 7.2.2.:
Diagonal Transitions / 7.2.3.:
Nondiagonal Transitions / 7.2.4.:
Kubo Formula / 7.2.5.:
Heavily Doped Semiconductors / 7.3.:
Screened Interaction / 7.3.1.:
Experimental Verifications / 7.3.2.:
Electron Self-Energies / 7.3.3.:
Metals / 7.4.:
Phonons in Metals / 7.4.1.:
dc Conductivities / 7.4.2.:
Electron Scattering by Impurities / 8.1.:
Boltzmann Equation / 8.1.1.:
Kubo Formula: Approximate Solution / 8.1.2.:
Ward Identities / 8.1.3.:
Mobility of Frohlich Polarons / 8.2.:
Electron-Phonon Relaxation Times / 8.3.:
Semiconductors / 8.3.1.:
Temperature Relaxation / 8.3.3.:
Electron-Phonon Interactions in Metals / 8.4.:
Force-Force Correlation Function / 8.4.1.:
Mass Enhancement / 8.4.2.:
Thermoelectric Power / 8.4.4.:
Quantum Boltzmann Equation / 8.5.:
Derivation of the QBE / 8.5.1.:
Gradient Expansion / 8.5.2.:
Quantum Dot Tunneling / 8.5.3.:
Electron Tunneling / 8.6.1.:
Quantum Dots / 8.6.2.:
Rate Equations / 8.6.3.:
Quantum Conductance / 8.6.4.:
Optical Properties of Solids / 9.:
Nearly Free-Electron Systems / 9.1.:
General Properties / 9.1.1.:
Force-Force Correlation Functions / 9.1.2.:
Frohlich Polarons / 9.1.3.:
Interband Transitions / 9.1.4.:
Phonons / 9.1.5.:
Wannier Excitons / 9.2.:
The Model / 9.2.1.:
Solution by Green's Functions / 9.2.2.:
Core-Level Spectra / 9.2.3.:
X-ray Spectra in Metals / 9.3.:
Physical Model / 9.3.1.:
Edge Singularities / 9.3.2.:
Orthogonality Catastrophe / 9.3.3.:
MND Theory / 9.3.4.:
XPS Spectra / 9.3.5.:
Superconductivity / 10.:
Cooper Instability / 10.1.:
BCS Theory / 10.1.1.:
Superconducting Tunneling / 10.2.:
Normal-Superconductor / 10.2.1.:
Two Superconductors / 10.2.2.:
Josephson Tunneling / 10.2.3.:
Infrared Absorption / 10.2.4.:
Transition Temperature / 10.3.:
Superfluids / 11.:
Liquid [superscript 4]He / 11.1.:
Hartree and Exchange / 11.1.1.:
Bogoliubov Theory of [superscript 4]He / 11.1.2.:
Off-Diagonal Long-Range Order / 11.1.3.:
Correlated Basis Functions / 11.1.4.:
Experiments on n[subscript k] / 11.1.5.:
Bijl-Feynman Theory / 11.1.6.:
Improved Excitation Spectra / 11.1.7.:
Superfluidity / 11.1.8.:
Liquid [superscript 3]He / 11.2.:
Fermi Liquid Theory / 11.2.1.:
Experiments and Microscopic Theories / 11.2.2.:
Interaction Between Quasiparticles: Excitations / 11.2.3.:
Quasiparticle Transport / 11.2.4.:
Superfluid [superscript 3]He / 11.2.5.:
Quantum Hall Effects / 11.3.:
Landau Levels / 11.3.1.:
Classical Hall Effect / 11.3.2.:
Quantum Hall Effect / 11.3.3.:
Fixed Density / 11.3.3.1.:
Fixed Chemical Potential / 11.3.3.2.:
Impurity Dominated / 11.3.3.3.:
Laughlin Wave Function / 11.3.4.:
Collective Excitations / 11.3.5.:
Magnetorotons / 11.3.5.1.:
Quasiholes / 11.3.5.2.:
References
Author Index
Subject Index
Introductory Material / 1.:
Harmonic Oscillators and Phonons / 1.1.:
Second Quantization for Particles / 1.2.:
9.

図書

図書
editors, Peter R. Buseck, John M. Cowley, Leroy Eyring
出版情報: New York : Oxford University Press, 1988  xix, 645 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Recommended Symbols, Sign Conventions, and Acronyms
Contributors
Imaging / 1.:
Introduction / 1.1:
Electron-scattering and -imaging geometry / 1.1.1:
Electron-microscopy specimens / 1.1.2:
The imaging process / 1.2:
Image formation / 1.2.1:
Aberrations / 1.2.2:
Phase contrast / 1.3:
Thin specimens as phase objects / 1.3.1:
The weak-phase-object approximation / 1.3.2:
Imaging of weak phase objects / 1.3.3:
The effects of partial coherence / 1.3.4:
Images of periodic objects / 1.4:
Dark-field images / 1.5:
Scanning transmission electron microscopy (STEM) / 1.6:
Resolution / 1.7:
Imaging Theory / 2.:
Waves and Scattering / 2.1:
Scattering approximations / 2.1.1:
Transmission of electron waves through matter / 2.1.2:
Abbe theory / 2.2:
Imaging of phase objects / 2.2.2:
Imaging with partial coherence / 2.2.4:
Imaging of periodic objects / 2.3:
Dark-field imaging / 2.4:
Scanning transmission electron microscopy / 2.5:
Conclusion / 2.6:
Elastic Scattering of Electrons by Crystals / 3.:
General dynamical scattering / 3.1:
Kinematical scattering / 3.2:
Kinematical diffraction from crystals: geometry / 3.2.1:
Convergent-beam diffraction / 3.2.2:
Kinematical diffraction from crystals: intensities / 3.2.3:
Intensities for amorphous or microcrystalline specimens / 3.2.4:
Limitations of the simple approximations / 3.3:
Kinematical-approximation limitations / 3.3.1:
Phase-object-approximation limitation / 3.3.2:
Dynamical diffraction / 3.4:
The Bloch-wave formulation / 3.4.1:
The two-beam approximation / 3.4.2:
The multislice formulation / 3.4.3:
Dynamical-diffraction symmetries / 3.5:
Detection of symmetry elements / 3.5.1:
The imaging of crystals / 3.6:
Imaging in the two-beam approximation / 3.6.1:
Axial imaging of simple crystals / 3.6.2:
Diffraction and imaging of crystal defects and disorder / 3.7:
The column approximation / 3.7.1:
Local atom displacements: thermal vibrations / 3.7.2:
Atomic disorder in crystals / 3.7.3:
Stacking faults and twins: extended defects / 3.7.4:
Elastic-Scattering Theory / 4.:
Dynamical scattering / 4.1:
The kinematical approximation / 4.2:
Diffraction by crystals / 4.2.1:
Kinematical-diffraction intensities / 4.2.2:
Formulations for dynamical diffraction / 4.3:
Bethe theory / 4.3.1:
Progression of a wave through a crystal / 4.3.2:
Basis for the multislice method / 4.3.3:
Images of crystals / 4.4:
Inelastic Electron Scattering: Part I / 5.:
Kinematics, single-event inelastic scattering, and the dielectric-response function / 5.1:
Plasmons, phonons, and single-electron excitations / 5.3:
Dynamical inelastic scattering / 5.4:
Inelastic Electron Scattering: Part II / 6.:
Localization in inelastic scattering / 6.1:
Inelastic electron imaging / 6.2:
Absorption effects and parameters in HRTEM / 6.3:
Multiple energy-loss effects and their removal / 6.4:
Radiation damage in HRTEM / 6.5:
Techniques Closely Related to High-Resolution Electron Microscopy / 7.:
Extended electron-loss fine structure (EXELFS) / 7.1:
Electron-loss, near-edge structure (ELNES) / 7.3:
Orientation effects in EELS / 7.4:
ALCHEMI / 7.5:
Cathodoluminescence in STEM / 7.6:
Microdiffraction / 7.7:
Specimen preparation / 7.8:
Real-time image acquisition and videorecording in HRTEM / 7.9:
Calculation of Diffraction Patterns and Images for Fast Electrons / 8.:
Calculation of diffracted amplitudes and phases using multislice / 8.1:
The transmission function / 8.2.1:
The propagation function / 8.2.2:
Multislice iteration / 8.2.3:
Consistency tests / 8.2.4:
Special systems / 8.3:
Higher-order Laue zones / 8.3.1:
Periodic continuation / 8.3.2:
CBED and STEM / 8.3.3:
HRTEM imaging / 8.4:
Linear imaging / 8.4.1:
Nonlinear imaging / 8.4.2:
Limitations of the envelope functions / 8.4.3:
Display techniques / 8.4.4:
HRTEM-image processing / 8.4.5:
The fast Fourier transform / Appendix A:
Mineralogy / 9.:
Reaction mechanisms / 9.1:
Biopyriboles / 9.2.1:
Graphite crystallization / 9.2.3:
Cordierite transformation / 9.2.4:
Biotite-chlorite reaction / 9.2.5:
Stacking disorder and polytypism / 9.3:
Micas / 9.3.1:
Chlorites / 9.3.3:
Pyroxenes / 9.3.4:
Pyrosmalite / 9.3.5:
Other polytypic minerals / 9.3.6:
Intergrowth disorder and nonstoichiometry / 9.4:
Sheet silicates / 9.4.1:
Pyroxenoids / 9.4.3:
Bastnaesite-synchysite / 9.4.4:
Humites and leucophoenicite / 9.4.5:
Oxysulfides / 9.4.6:
Oxyborates and chemical twinning / 9.4.7:
Modulated structures and nonstoichiometry / 9.5:
Antigorite and pyrrhotite / 9.5.1:
Feldspars / 9.5.3:
Other minerals / 9.5.4:
Characterization of minerals and structure determination / 9.6:
Manganese oxides: fine-grained minerals / 9.6.1:
Carlosturanite: a new type of chain silicate / 9.6.3:
Other minerals (sursassite, takeuchiite, etc.) / 9.6.4:
Mineral definition and nomenclature / 9.7:
Structural disorder and intergrowth structures / 9.7.1:
Ordered structures / 9.7.3:
Phases / 9.7.4:
Experimental techniques / 9.8:
Special imaging to improve resolution (pyrrhotite) / 9.8.1:
Radiation damage (biopyriboles, serpentines, and zeolites) / 9.8.3:
"Controlled" heating by the electron beam (Cu-Fe sulfides) / 9.8.4:
ALCHEMI and chemical disorder in minerals / 9.8.5:
Imaging artifacts and the role of calculations / 9.9:
Solid-State Chemistry / 10.:
Solid-state chemistry / 10.1:
Historical aside / 10.1.2:
Application of HRTEM to solid-state chemistry / 10.2:
The role of HRTEM in solid-state synthesis / 10.2.1:
High-resolution microscopical analysis / 10.2.2:
Nonstoichiometry and solid-state reactions / 10.2.3:
Recommended Symbols, Sign Conventions, and Acronyms
Contributors
Imaging / 1.:
10.

図書

図書
editors, H. Suschitzky and E.F.V. Scriven
出版情報: Oxford ; New York, N.Y. : Pergamon Press, 1989-  v. ; 23-25 cm
所蔵情報: loading…
目次情報: 続きを見る
Chapter headings: Substituted Heterocyclic Compounds by Selective Control of Halogen-Dance Reactions / J. Frohlich
Heterocycles as Vehicles for Synthesis / A. Padwa
Three-Membered Ring Systems / S.S. Murphree
Four-Membered Ring Systems / J. Parrick ; L.K. Mehta
Five-Membered Ring Systems
Six-Membered Ring Systems
Seven-Membered Rings / M. Balasubramanian
Eight-Membered and Larger Rings / G.R. Newkome
Subject Index
Chapter headings: Polyfunctionalized Pyrroles and Pyrazoles from Conjugated Azoalkenes
Application of Diels-Alder Cycloaddition Chemistry for Heterocyclic Synthesis
Subject index
Foreword
Editorial Advisory Board Members
Recent Advances in the Synthesis of Heterocycles via Ring-Closing Metathesis / Michael A. WaltersChapter 1:
Chapter headings
The Junjappa-Ila JI)-heteroaromatic annulation / Chapter 2:
The synthesis of fused 7-azanorbornanes / James W. Pavlik
Three-membered ring systems
Four-membered ring systems
Photochemical Isomerizations of Some Five-Membered Heteroaromatic Azoles
Five-membered ring systems
Six-membered ring systems / Chapter 3:
Seven-membered rings / Gordon W. Gribble
Eight-membered and larger rings
Naturally Occurring Halogenated Pyrroles and Indoles
Three- and Four-Membered Ring Systems / Chapter 4:
Thiophenes & Se, Te Analogs / Albert Padwa ; Shaun Murphree ; Benito Alcaide ; Pedro Almendros ; Erin T. PelkeyPart 1.:
Pyrroles and Benzo Derivatives / Tomasz Janosik ; Jan Bergman
Furans and Benzofurans / Xue-Long Hou ; Zhen Yang ; Henry N. C. WongPart 3.:
With More than One N Atom / Larry YetPart 4.:
With N & S (Se) Atoms / David J. Wilkins ; Paul A. BradleyPart 5.:
With O & S (Se, Te) Atoms / R. Alan Aitken ; Stephen J. CostelloPart 6.:
With O & N Atoms / Stefano Cicchi ; Franca M. Cordero ; Donatella GiomiPart 7.:
Pyridines and Benzo Derivatives / D. Scott Coffey ; Stanley P. Kolis ; Scott A. MayChapter 6:
Diazines and Benzo Derivatives / Michael P. Groziak
Triazines, Tetrazines and Fused Ring Polyaza Systems / Carmen Ochoa ; Pilar Goya
With O and/or S Atoms / John D. Hepworth ; B. Mark Heron
Index / John D. Bremner ; George R. NewkomeChapter 7:
The Synthesis of Oxazoles from Diazocarbronyl Compounds / C.J. Moody ; K.J. Doyle
The Heterocyclic Chemistry Associated with the Herbicide Glyphosate / J.A. Sikorski
Five-Membered Ring Systems. Thiophenes & Se & Te analogs / J. B. Press ; E.T. Pelkey
Pyrroles and benzo derivatives / D.M. Ketcha
Furans and benzo derivatives / S. Reck ; W. Friedrichsen
With more than one N atom / M.A. Walters ; J.R. Vargas
With N & S Se) atoms / P.A. Bradley ; D.J. Wilkins
With O & SSe, Te) atoms / R.A. Aitken ; L. Hill
With O & N atoms / G.V. Boyd
Six-Membered Ring Systems. Pyridine and benzo derivatives / D.L. Comins ; S. O'Connor
Diazines and benzo derivatives / M.P. Groziak
Triazines, tetrazines and fused polyaza systems / D.T. Hurst
With O and/or S atoms / J.D. Hepworth ; B.M. Heron
Geminal Diazides of Heterocycles / D.J. Le Count ; Th. Kappe ; C.O. Kappe
Radical Methods the Synthesis of Heterocyclic Compounds / M.P. Sibi ; J. Ji
Thiophenes & Se & Te Analogs / R.K. Russell ; J.B. Press
Furans and Benzo Derivatives / R.J. Sundberg ; St. Reck
With N and S Se) Atoms / S.A. Lang, Jr ; V.J. Lee ; R. Tanaka
With O & S Se, Te) Atoms
Pyridine and Benzo Derivatives / J.E. Toomey ; R. Murugan
Extrusion of SO 2 from Heterocyclic Compounds, Part 2: Five-Membered Rings
Methyl 2-Benzoylamino-3-Dimethylaminopropenoate in the Synthesis of Heterocyclic Systems
The Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone and its derivatives / Heui-Yeon Kim ; Cheon-Gyu Cho
Overview of the Diels-Alder chemistry of 2-pyrone / 1.1:
3,5-Dibromo-2-pyrone / 1.2:
[4+2] Cycloadditions of 3.5-dibromo-2-pyrone / 1.2.1:
Synthesis and cycloadditions of substituted monobromo-2-pyrones / 1.2.2:
Intramolecular Diels-Alder cycloadditions of 2-pyrones / 1.2.3:
Conclusion / 1.3:
Acknowledgements / 1.4:
References / 1.5:
Recent developments in the chemistry of nucleosides / Jean-Luc Girardet ; Stanley A. Lang
Introduction / 2.1:
Sugar chemistry / 2.2:
Hydrogen and oxygen substitutions / 2.2.1:
Modifications at C-1' / 2.2.1.1:
Modifications at C-2' / 2.2.1.2:
Modifications at C-3' / 2.2.1.3:
Modifications at C-4' / 2.2.1.4:
Modifications at C-5' / 2.2.1.5:
Ring-oxygen substitution / 2.2.2:
Substitution with carbon / 2.2.2.1:
Substitution with sulfur / 2.2.2.2:
Substitution with nitrogen / 2.2.2.3:
Nucleosides with bicyclic sugars / 2.2.3:
Spiro nucleosides / 2.2.3.1:
Bicyclic nucleosides / 2.2.3.2:
Combinatorial approaches / 2.3:
2004 / 2.4:
Epoxides / 3.1.1:
Preparation of epoxides / 3.1.2.1:
Reactions of epoxides / 3.1.2.2:
Aziridines / 3.1.3:
Preparation of aziridines / 3.1.3.1:
Reactions of aziridines / 3.1.3.2:
2005 / Stephen C. Bergmeier ; Damon D. Reed3.1.4:
Azetidines and azetes / 3.2.1:
Monocyclic 2-azetidinones ([beta]-lactams) / 4.3:
Fused polycyclic [beta]-lactams / 4.4:
Oxetanes, dioxetanes, oxetes and 2-oxetanones ([beta]-lactones) / 4.5:
Thietanes, [beta]-sultams, and related systems / 4.6:
Silicon and phosphorus heterocycles. miscellaneous / 4.7:
Thiophenes and Se/Te Analogues / 4.8:
Thiophene ring synthesis / 5.1.1:
Reactions of thiophenes / 5.1.3:
Non-polymeric thiophene organic materials / 5.1.4:
Thiophene oligomers and polymers / 5.1.5:
Thiophene derivatives in medicinal chemistry / 5.1.6:
Selenophenes and tellurophenes / 5.1.7:
Synthesis of pyrroles / 5.1.8:
Intramolecular approaches / 5.2.2.1:
Intermolecular approaches / 5.2.2.2:
Transformation of other heterocycles / 5.2.2.3:
Reactions of pyrroles / 5.2.3:
Substitution at nitrogen / 5.2.3.1:
Substitution at carbon / 5.2.3.2:
Functionalization of the side-chain / 5.2.3.3:
Pyrrole natural products and materials / 5.2.4:
Natural products / 5.2.4.1:
Macrocycles and oligopyrroles / 5.2.4.2:
Non-oligomeric materials / 5.2.4.3:
Synthesis of indoles / 5.2.5:
Oxindoles, azaindoles, and carbazoles / 5.2.5.1:
Reactions of indoles / 5.2.6:
Substitution at C-2/C-3 / 5.2.6.1:
Functionalization of the benzene ring / 5.2.6.3:
Indole natural products / 5.2.6.4:
Furans and benzofurans / Kap-Sun Yeung5.2.7.1:
Reactions / 5.3.1:
Furans / 5.3.2.1:
Di- and tetrahydrofurans / 5.3.2.2:
Synthesis / 5.3.3:
Benzo[b]furans and related compounds / 5.3.3.1:
Benzo[c]furans and related compounds / 5.3.3.4:
With more than One N Atom / 5.3.4:
Pyrazoles and ring-fused derivatives / 5.4.1:
Imidazoles and ring-fused derivatives / 5.4.3:
1,2,3-Triazoles and ring-fused derivatives / 5.4.4:
1,2,4-Triazoles and ring-fused derivatives / 5.4.5:
Tetrazoles and ring-fused derivatives / 5.4.6:
With N and S (Se) atoms / Yong-Jin Wu ; Bingwei V. Yang5.4.7:
Thiazoles / 5.5.1:
Synthesis of thiazoles and fused derivatives / 5.5.2.1:
Synthesis of thiazolines / 5.5.2.2:
Synthesis of 2-imino-thiazolidine and thiazoline derivatives / 5.5.2.3:
Reactions of thiazoles and fused derivatives / 5.5.2.4:
Reactions of thiazolines / 5.5.2.5:
Thiazole intermediates in synthesis / 5.5.2.6:
Thiazolium-catalyzed and-mediated reactions / 5.5.2.7:
Thiazole-containing drug candidates / 5.5.2.9:
New thiazole-containing natural products / 5.5.2.10:
Isothiazoles / 5.5.3:
Synthesis of isothiazoles by ring-formation / 5.5.3.1:
Reactions of isothiazoles / 5.5.3.2:
Isothiazoles as auxiliaries in organic syntheses / 5.5.3.3:
Biologically interesting isothiazoles / 5.5.3.4:
Thiadiazoles and selenadiazoles / 5.5.4:
1,3-Selenazoles, 1,3-selenazolidines and 1,3-tellurazoles / 5.5.5:
With O and S (Se, Te) atoms / Lynn A. Power5.5.6 Acknowledgement:
1,3-Dioxoles and dioxolanes / 5.6.1:
1,3-Dithioles and dithiolanes / 5.6.2:
1,3-Oxathioles and oxathiolanes / 5.6.3:
1,2-Dioxolanes / 5.6.4:
1,2-Dithioles and dithiolanes / 5.6.5:
1,2-Oxathioles and oxathiolanes / 5.6.6:
Three heteroatoms / 5.6.7:
With O and N atoms / 5.6.8:
Isoxazoles / 5.7.1:
Isoxazolines / 5.7.2:
Isoxazolidines / 5.7.3:
Oxazoles / 5.7.4:
Oxazolines / 5.7.5:
Oxazolidines / 5.7.6:
Oxadiazoles / 5.7.7:
Pyridines and benzo derivatives / Heidi L. Fraser ; M. Brawner Floyd ; Darrin W. Hopper5.7.8:
Pyridines / 6.1.1:
Preparation of pyridines / 6.1.2.1:
Reactions of pyridines / 6.1.2.2:
Pyridine N-oxides and pyridinium Salts / 6.1.2.3:
Quinolines / 6.1.3:
Preparation of quinolines / 6.1.3.1:
Reactions of quinolines / 6.1.3.2:
Tsoquinolines / 6.1.4:
Preparation of isoquinolines / 6.1.4.1:
Reactions of isoquinolines / 6.1.4.2:
Piperidines / 6.1.5:
Preparations of piperidines / 6.1.5.1:
Triazines, tetrazines and fused ring polyaza systems / Cristina Gomez de la Oliva6.1.6:
Triazines / 6.3.1:
1,2,3-Triazines / 6.3.1.1:
1,2,4-Triazines / 6.3.1.2:
1,3,5-Triazines / 6.3.1.3:
Tetrazines / 6.3.2:
Fused [6]+[5] polyaza systems / 6.3.3:
Triazino and tetrazino [6+5] fused systems / 6.3.3.1:
Purines and related structures / 6.3.3.2:
Fused [6]+[6] polyaza systems / 6.3.4:
Miscellaneous fused polyaza systems / 6.3.5:
Heterocycles containing one oxygen atom / 6.3.6:
Pyrans / 6.4.2.1:
[1]Benzopyrans and dihydro[1]benzopyrans / 6.4.2.2:
[2]Benzopyrans and dihydro[2]benzopyrans / 6.4.2.3:
Pyrylium Salts / 6.4.2.4:
Pyranones / 6.4.2.5:
Coumarins / 6.4.2.6:
Chromones / 6.4.2.7:
Xanthones and xanthenes / 6.4.2.8:
Heterocycles containing one sulfur atom / 6.4.3:
Thiopyrans and analogues / 6.4.3.1:
Heterocycles containing two or more oxygen atoms / 6.4.4:
Dioxins and dioxanes / 6.4.4.1:
Trioxanes / 6.4.4.2:
Heterocycles containing two or more sulfur atoms / 6.4.5:
Dithianes and trithianes / 6.4.5.1:
Heterocycles containing both oxygen and sulfur in the same ring / 6.4.6:
Oxathianes / 6.4.6.1:
Seven-membered ring systems / John B. Bremner ; Siritron Samosorn6.4.7:
Seven-membered systems containing one heteroatom / 7.1:
Azepines and derivatives / 7.2.1:
Fused azepines and derivatives / 7.2.2:
Oxepines and fused derivatives / 7.2.3:
Thiepines and fused derivatives / 7.2.4:
Seven-membered systems containing two heteroatoms / 7.3:
Diazepines and fused derivatives / 7.3.1:
Dioxepines, dithiepines and fused derivatives / 7.3.2:
Miscellaneous derivatives with two heteroatoms / 7.3.3:
Seven-membered systems containing three or more heteroatoms / 7.4:
Systems with N, S and/or O / 7.4.1:
Seven-membered systems of pharmacological significance / 7.5:
Future directions / 7.6:
Carbon-oxygen rings / 7.7:
Carbon-nitrogen rings / 8.3:
Carbon-sulfur rings / 8.4:
Carbon-silicon rings / 8.5:
Carbon-selenium rings / 8.6:
Carbon-oxygen/carbon-nitrogen rings / 8.7:
Carbon-nitrogen-oxygen rings / 8.8:
Carbon-nitrogen-sulfur rings / 8.9:
Carbon-phosphorus-sulfur rings / 8.10:
Carbon-phosphorus-nitrogen rings / 8.11:
Carbon-selenium-nitrogen rings / 8.12:
Carbon-sulfur-oxygen rings / 8.13:
Carbon-nitrogen-sulfur-oxygen rings / 8.14:
Carbon-nitrogen-metal rings / 8.15:
Carbon-phosphorus-metal rings / 8.16:
Carbon-oxygen-nitrogen-metal rings / 8.17:
Carbon-sulfur-nitrogen-metal rings / 8.18:
Carbon-phosphorus-oxygen-metal rings / 8.19:
2-Indolylacyl radicals in the synthesis of indole compounds / M.-Lluisa Bennasar ; Tomas Roca8.20:
Radical reactions in synthesis: a short overview
2-Indolylacyl radicals: intermolecular and cascade reactions
Intermolecular addition reactions / 1.3.1:
Intermolecular addition-indole cyclisation cascade reactions / 1.3.2:
Intramolecular reactions of 2-indolylacyl radicals with alkenes
Cyclization of 5-hexenoyl radicals. Total synthesis of ([plus or minus])-guatambuine / 1.4.1:
Cyclization of 6-heptenoyl radicals / 1.4.2:
Cyclization of 7-octenoyl radicals / 1.4.3:
Intramolecular reactions of 2-indolylacyl radicals with aromatic and heteroaromatic systems
Cyclization upon benzenes / 1.5.1:
Cyclization upon pyridines / 1.5.2:
Cyclization upon quinolines. Synthesis of calothrixin B / 1.5.3:
Acknowledgments / 1.6:
Cascade reactions of carbonyl ylides for heterocyclic synthesis / 1.8:
Carbonyl ylide cycloadditions
Intramolecular carbenoid-carbonyl cyclization sequence
Application of the method toward complex tetrahydrofuranyl natural products
Isomunchnone cycloadditions
Intramolecular isomunchnone cycloadditions / 2.2.4:
Cyclization-cycloaddition-cationic [pi]-cyclization reactions / 2.2.5:
Cycloadditions across heteroaromatic [pi]-systems / 2.2.6:
Push-pull carbonyl ylide cycloadditions / 2.2.7:
Azetidines, 3-azetidinones, and diazetines / David J. Lapinsky3.1:
Fused and spirocyclic [beta]-lactams
Oxetanes, dioxetanes, oxetanediones and 2-oxetanones ([beta]-lactones)
Thiophenes and Se/Te analogs
Pyrroles and benzo analogs / Jonathon S. Russel
Intramolecular approaches to pyrroles
Intermolecular approaches to pyrroles
Transformations of heterocycles and carbocycles to pyrroles
Substitutions at pyrrole nitrogen
Substitution at pyrrole carbon
Transformations of pyrroles to other heterocycles / 5.2.3.4:
Pyrrole natural products
Pyrrole materials
Pericyclic transformations
Substitution and C-2/C-3
Carbazoles and azaindoles
Carbazole natural products and ring synthesis
Azaindole ring synthesis / 5.2.7.2:
Natural products isolation and characterization / 5.2.8.1:
Total synthesis: indole core and side-chain modifications / 5.2.8.2:
[beta]-Carbolines and tetrahydro-[beta]-carbolines / 5.2.8.3:
Oxindole and spirooxindole / 5.2.8.4:
Biochemical and medicinal chemistry / 5.2.9:
Synthesis of thiazoles / 5.2.10:
Synthesis of fused thiazoles
Thiazolium-catalyzed reactions
Synthesis of thiazole-containing natural products
Synthesis of isothiazoles / 5.5.2.8:
Isothiazoles as auxiliaries and reagents in organic syntheses
Pharmaceutically interesting isothiazoles
Thiadiazoles and selenodiazoles
1,3-Selenazoles, 1,3-selenadolidines and 1,3-tellurazoles
Pyridine N-oxides and pyridinium salts / Kristina M.K. Kutterer ; Jeremy J. Clemens ; Aimee L. Crombie5.5.6:
Isoquinolines
Reviews and general studies / Amelia Manlove6.2.1:
Pyridazines and benzo derivatives / 6.2.3:
Syntheses / 6.2.3.1:
Applications / 6.2.3.2:
Pyrimidines and benzo derivatives / 6.2.4:
Pyrazines and benzo derivatives / 6.2.4.1:
With O and/or S atoms (2006) / 6.2.5.1:
[1]Benzopyrans and dihydro[1]benzopyrans (chromenes and chromans)
[2]Benzopyrans and dihydro[2]benzopyrans (isochromenes and isochromans)
Tetraoxanes / 6.4.4.3:
With O and/or S atoms (2007)
Pyrylium salts
Benzoazepines and derivatives / Jason A. Smith ; John H. Ryan
Oxepine and fused derivatives
Thiepine and fused derivatives / 7.2.5:
Carbon-nitrogen-sulfur-metal rings
Carbon-phosphous-oxygen-metal rings
Carbon-nitrogen-phosphorus-sulfur-metal rings
Biocatalytic approaches to chiral heterocycles
Ring-expanded ('fat') purines and their nucleoside/nucleotide analogues as broad-spectrum therapeutics
Five-membered ring systems: Thiophenes and Se/Te analogues
Furans and benzofurans With more than one N atom
With O & S (Se, Te) atoms
Pyridine and benzo derivatives
Triazines, tetrazines and fused ring polyaza systems (2007)
Triazines, tetrazines and fused ring polyaza systems (2008)
Recent Advances in the C-2 Regioselective Direct Arylation of Indoles / Tanya C. Boorman ; Igor Larrosa1:
Cross-Coupling Reactions
Direct Arylation Reactions
Oxidative Coupling Reactions
Conclusions
Heterocyclic Dyes: Preparation, Properties, and Applications / S. Shaun Murphree2:
Five-Membered Rings Containing Oxygen: Furanoids
Six-Membered Rings Containing Oxygen: Pyranoids
Five-Membered Rings Containing Nitrogen
Six-Membered Rings Containing Nitrogen
Five-Membered Rings Containing Sulfur / 2.6:
Azetidines, Azetines, and Related Systems / 3:
Monocyclic 2-Azetidinones (β-Lactams)
Fused and Spirocyclic β-Lactams
Oxetanes, Dioxetanes, Dioxetanones and 2-Oxetanones (β-Lactones)
Thietanes, β-Sultams, and Related Systems
Silicon and Phosphorus Heterocycles: Miscellaneous
Five-Membered Ring Systems: Thiophenes and Se/Te Derivatives / Edward R. Biehl5.1:
Reviews, Accounts and Books on Thiophene Chemistry
Synthesis of Thiophenes
Elaboration of Thiophenes and Benzothiophenes
Synthesis of Thiophenes for Use in Material Science
Thiophenes Derivatives in Medicinal Chemistry
Selenophenes and Tellurophenes
Five-Membered Ring Systems: Pyrroles and Benzo Analogs / Jonathan S. Russel ; Sarah J. P. Yoon-Miller5.2:
Synthesis of Pyrroles
Reactions of Pyrroles
Synthesis of Indoles
Reactions of Indoles
Oxindoles and Spirooxindoles
Carbozoles
Azaindoles and Carboline Analogs
Indole Natural Products
Five-Membered Ring Systems: Furans and Benzofurans / Xiao-Shui Peng5.3:
Five Membered Ring Systems: With More than One N Atom / 5.4:
Pyrazoles and Ring-Fused Derivatives
Imidazoles and Ring-Fused Derivatives
1,2,3-Triazoles and Ring-Fused Derivatives
1,2,4- Triazoles and Ring-Fused Derivatives
Tetrazoles and Ring-Fused Derivatives
Five-Membered Ring Systems: With N and S (Se) Atoms / Y.-J. Wu5.5:
Thiadiazoles and Selenodiazoles
Selenazoles, 1,3-Selenadolidines and Telenazoles
Five-Membered Ring Systems: With O & S (Se, Te) Atoms / 5.6:
1,3-Dioxoles and Dioxolanes
1,3-Dithioles and Dithiolanes
1,3-Oxathioles and Oxathiolanes
1,2-Dithioles and Dithiolanes
1,2-Oxathioles and Oxathiolanes
Three Hetero Atoms
Five-Membered Ring Systems with O & N Atoms / 5.7:
Six-Membered Ring Systems: Pyridines and Benzo Derivatives / Philip E. Alford6.1:
Special Topic: Supramolecular Chemistry
Six-Membered Ring Systems: Diazines and Benzo Derivatives / Michael M. Miller ; Albert J. DelMonte6.2:
Pyridazines and Benzo Derivatives
Pyrimidines and Benzo Derivatives
Pyrazines and Benzo Derivatives
Fused [6]+[5] Polyaza Systems / Dmitry N. Kozhevnikov ; Anton M. Prokhorov6.3:
Fused [6]+[6] Polyaza Systems
Six-Membered Ring Systems: With O and/or S Atoms / 6.4:
Heterocycles Containing One Oxygen Atom
Heterocycles Containing One Sulfur Atom
Heterocycles Containing Two or More Oxygen Atoms
Heterocycles Containing Two or More Sulfur Atoms
Heterocycles Containing Both Oxygen and Sulfur in the Same Ring
Seven-Membered Systems Containing One Heteroatom / Peter P. Molesworth ; Christopher J. T. Hyland7:
Seven-Membered Systems Containing Two Heteroatoms
Seven-Membered Systems Containing Three or More Heteroatoms
Seven-Membered Systems of Pharmacological Significance
Future Directions
Carbon-Oxygen Rings / 8:
Carbon-Nitrogen Rings
Carbon-Sulfur Rings
Carbon-Selenium Rings
Carbon-Nitrogen-Oxygen Rings
Carbon-Nitrogen-Sulfur Rings
Carbon-Sulfur-Oxygen Rings
Carbon-Oxygen-Silicon Rings
Carbon-Oxygen-Phosphorus Rings
Carbon-Nitrogen-Phosphorus Rings
Carbon-Nitrogen-Selenium Rings
Carbon-Nitrogen-Sulfur-Oxygen Rings
Carbon-Nitrogen-Phosphorus-Sulfur Rings
Carbon-Nitrogen-Metal Rings
Carbon-Nitrogen-Oxygen-Metal Rings
Carbon-Nitrogen-Sulfur/Phosphorus-Metal Rings
Recent Advances in the Synthesis of Aspidosperma-Jype Alkaloids / Justin M. Lopchuk
Aspidospermine and Aspidospermidine
Aspidofractinine
Tabersonine
Subincanadines
Meloscine
Miscellaneous Approaches to the General Aspidosperma Core
Vindoline, Vinblastine, and Vincristine
Aspidophytine and Haplophytine / 1.9:
Conophylline and Conophyliidine / 1.10:
Synthesis of Heterocycles by Palladium-Catalyzed Intramolecular Heteroarylation / Dmytro Tymoshenko ; Gyorgy Jeges ; Brian T. Gregg
Introduction and Scope of the Review
Annulation of Five-Membered Aza-Rings
Annulation of Six-Membered Aza-Rings
Annulation of Medium Size Aza-Rings
Macrocycles
Tandem Sequences, Cascades, and Miscellaneous Cyclizations
Monocyclic 2-azetidinones (β-lactams) / 2.7:
Fused and Spirocyclic β-lactams
Oxetanes, Dioxetanes, Dioxetanones, and 2-oxetanones (β-lactones)
Thietanes and Related Systems
Reviews, Accounts, and Books on Thiophene, Selenophene, and Tellurophene Chemistry
Synthesis of Thiophenes For Use in Material Science
Thiophene Derivatives in Medicinal Chemistry
Carbazoles / Jessica G. Greger
Carboline Analogs and Azaindoles
Five-Membered Ring Systems: With More than One N Atom / Jie Wu
Pyrazoles and Ring-fused Derivatives
Imidazoles and Ring-fused Derivatives
1,2,3-Triazoles and Ring-fused Derivatives
1,2,4-Triazoles and Ring-fused Derivatives
Tetrazoles and Ring-fused Derivatives
Selenazoles
Five-Membered Ring Systems: With O and S (Se, Te) Atoms
1,3-Dioxoles and 1,3-Dioxolanes
1,3-Dithioles and 1,3-Dithiolanes
1,3-Oxathioles and 1,3-Oxathiolanes
1,2-Dithioles and 1,2-Dithiolanes
1,2-Oxathioles and 1,2-Oxathiolanes
Three Heteroatoms
Five-Membered Ring Systems with O and N Atoms
Triazines, Tetrazines, and Fused Ring Polyaza Systems
Fused [6] + [5] Polyaza Systems
Fused [6] + [6] Polyaza Systems
Six-Membered Ring Systems: With 0 and/or S Atoms
Heterocydes Containing One Oxygen Atom
Heterocydes Containing One Sulfur Atom
Heterocydes Containing Two or More Oxygen Atoms
Heterocydes Containing Two or More Sulfur Atoms
Heterocydes Containing Both Oxygen and Sulfur in the Same Ring
Seven-membered Systems Containing Three or More Heteroatoms / Jarrod L. Green ; Christopher Hyland ; Charlotte C. Williams
Carbon-Silicon Rings
Carbon-Oxygen/Carbon-Nitrogen-Oxygen Rings
Carbon-Sulfur-Phosphorus/Arsenic/Antimony/Bismuth Rings
Carbon-Selenium-Iron Rings
Heterocycles and Medicine: A Survey of the Heterocyclic Drugs Approved by the U.S. FDA from 2000 to Present
Furan and Benzofuran
Thiophene
Pyrrole
Thiazole
Imidazole and Fused Imidazole
Triazole
Pyrazole
Oxadizole and Thiadiazole
Pyridine
Pyrimidine and Pyrimidinone / 1.11:
Pyrazine / 1.12:
Piperazine / 1.13:
Morpholine / 1.14:
Indole / 1.15:
Indazole / 1.16:
Oxindole / 1.17:
Quinoline and Dihydroquinoiine / 1.18:
Benzoazepines and Oxepine / 1.19:
Pyrrolopyrimidine and Pyrrolopyridine / 1.20:
Benzoisoxazoles and Benzoisothiazole / 1.21:
Quinazoline / 1.22:
Quinoxaline / 1.23:
Pteridine / 1.24:
Progress in Quinoxaline Synthesis (Part 1) / Vakhid A. Mamedov ; Nataliya A. Zhukova1.25:
Inttoduaion
Condensation of 1,2-Diaminobenzenes (1,2-DABs; ortho-Phenylenediamines) and Derivatives with Various Two-Carbon Unit Suppliers
Condensation of o-Benzoquinone Diimines and Diimides with Various Two-Carbon Unit Suppliers
Oxetanes, Dioxetanes, and 2-Oxetanones (β-Lactones)
Silicon and Phosphorus Heterocycles. Miscellaneous
Synthesis of Thiophenes, Se/Te for Use in Material Science
Thiophene, Se/Te Derivatives in Medicinal Chemistry
Isatins, Oxindoles, Indoxyls, and Spirooxindoles
Isoindoies
1,2,4-Triazoles and Ring-Fused Derivatives
Thiadiazoles
Five-Membered Ring Systems: With 0 and S (Se, Te) Atoms
Six-Membered Ring Systems: Pyridine and Benzo Derivatives / Tara L.S. Kishbaugh
Synthesis of Pyridine N-Oxides
Reactions of Pyridine N-Oxides
Isoquinolines and Quinolines
Carbon-Phosphorus Rings / Clementina M.M. Santos ; Artur M.S. Silva ; Adam G. Meyer ; JieXiang Yin
Carbon-Oxygen-Sulfur Rings
Carbon-Oxygen/Nitrogen-Phosphorus Rings
Carbon-Sulfur-Arsenic Rings
Carbon-Nitrogen-Oxygen-Sulfur Rings
Carbon-Nitrogen-Oxygen-Phosphorus Rings
Chapter headings: Substituted Heterocyclic Compounds by Selective Control of Halogen-Dance Reactions / J. Frohlich
Heterocycles as Vehicles for Synthesis / A. Padwa
Three-Membered Ring Systems / S.S. Murphree
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼