close
1.

学位論文

学位
Satoshi Hori
出版情報: 東京 : 東京工業大学, 2016  1 online resource
所蔵情報: loading…
2.

電子ブック

EB
出版情報: AIP Conference Proceedings (American Institute of Physics) , AIP Publishing, 2016
所蔵情報: loading…
3.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
4.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
5.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
6.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
7.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
8.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Standards , IEEE, 2016
所蔵情報: loading…
9.

図書

図書
Mahmood Aliofkhazraei, editor
出版情報: Cham : Springer, c2016  2 v. (1439 p.) ; 25 cm
シリーズ名: Springer reference
所蔵情報: loading…
10.

図書

図書
edited by Fei Huang, Hin-Lap Yip, Yong Cao
出版情報: Cambridge : Royal Society of Chemistry, c2016  xv, 406 p. ; 24 cm
シリーズ名: RSC polymer chemistry series ; 17
所蔵情報: loading…
目次情報: 続きを見る
New Chemistry for Organic Photovoltaic Materials / Cuihong Li ; Zhishan BoChapter 1:
Introduction / 1.1:
Stille Polycondensation / 1.2:
History and Mechanism of the Stille Coupling Reaction / 1.2.1:
The Reaction Catalyst, Ligand and Solvent / 1.2.2:
Monomers / 1.2.3:
Advantages of the Stille Polycondensation / 1.2.4:
Disadvantages of the Stille Polycondensation / 1.2.5:
Examples of Synthesis of D-A Conjugated Polymers by Stille Coupling / 1.2.6:
Suzuki Polycondensation / 1.3:
History and Mechanism of the Suzuki Coupling Reaction / 1.3.1:
Mechanism of the Suzuki Coupling Reaction / 1.3.2:
Catalyst, Ligand and Solvents / 1.3.3:
Advantages of the Suzuki Coupling Reaction / 1.3.4:
Drawbacks of the Suzuki Coupling Reaction / 1.3.6:
Examples of the Suzuki Coupling Reaction / 1.3.7:
C-H Activation/Direct Arylation Polycondensation / 1.4:
History and Mechanism of the C-H Activation Polycondensation / 1.4.1:
Mechanistic Insight / 1.4.2:
Catalysts, Additive and Solvents / 1.4.3:
Advantages of the Direct Arylation Polycondensation / 1.4.4:
Drawbacks of the Direct Arylation Polycondensation / 1.4.6:
Examples of the Direct Arylation Polycondensation / 1.4.7:
References
New Polymer Donors for Polymer Solar Cells / Long Ye ; Sunsun Li ; Jianhui HouChapter 2:
Design Requirements and Strategies for Highly Efficient Polymer Donors / 2.1:
Design Requirements for Highly Efficient Polymer Donors / 2.2.1:
Design Strategies for Highly Efficient Polymer Donors / 2.2.2:
Novel D-A Copolymers for Polymer Solar Cells / 2.3:
Design Considerations for D-A Polymer Donors / 2.3.1:
D-A Copolymers Based on Thiophene Units / 2.3.2:
D-A Copolymers Based on Bridged Biphenyl Derivatives / 2.3.3:
D-A Copolymers Based on Bridged Bithiophene Derivatives / 2.3.4:
D-A Copolymers Based on Benzodithiophene Analogues / 2.3.5:
D-A Copolymers Based on Indacenodithiophene Analogues / 2.3.6:
Novel Terpolymer Donors for Polymer Solar Cells / 2.4:
Design Considerations for Terpolymer Donors / 2.4.1:
Novel Terpolymers Based on One Donor Unit / 2.4.2:
Novel Terpolymers Based on Two Donor Units / 2.4.3:
Summary and Outlook / 2.5:
Fullerene Derivatives as Electron Acceptors in Polymer Solar Cells / Yutaka MatsuoChapter 3:
Design Concepts of Fullerene Acceptors / 3.1:
PCBM / 3.2:
Synthesis of PCBM / 3.2.1:
Fundamental Properties of PCBMs / 3.2.2:
PCBM Derivatives in Photovoltaic Applications / 3.2.3:
[70]PCBM / 3.2.4:
Mix-PCBM / 3.2.5:
1,4-Di(organo)fullerene / 3.3:
Silylmethylfullerene (SIMEF) / 3.3.1:
1,4-Di(aryl)fullerene / 3.3.2:
Diphenylmethanofullerene (DPM) / 3.4:
Synthesis of Diphenylmethanofullerene / 3.4.1:
Photovoltaic Application / 3.4.2:
Fulleropyrrolidine / 3.5:
Synthesis of Fulleropyrrolidine / 3.5.1:
Photovoltaic Applications / 3.5.2:
56π-Electron Conjugated Fullerene Derivatives / 3.6:
Diels-Alder Reactions / 3.6.1:
Indene-C60 Bis-Adducts (ICBA) and Related Compounds / 3.6.2:
Dihydromethanofullerene / 3.7:
Synthesis of Dihydromethanofullerene / 3.7.1:
56π-Dihydromethanofullerene / 3.7.2:
Summary / 3.8:
Acknowledgements
Polymer Acceptors for All-Polymer Solar Cells / He Yan ; Christopher R. McNeill ; Cheng MuChapter 4:
Materials Aspects for All-Polymer Solar Cells / 4.1:
All-PSCs Based on Large Bandgap (2-2.5 eV) Donor Polymers / 4.2.1:
All-PSCs Based on Polythiophene Donor Polymers / 4.2.2:
All-PSCs Based on Medium or Low Bandgap Polymers / 4.2.3:
Morphology of Polymer: Polymer Blends / 4.3:
Solution Deposition / 4.3.1:
Molecular Weight / 4.3.2:
Crystallinity / 4.3.3:
Side Chains / 4.3.4:
Mini-Summary / 4.3.5:
Conclusions / 4.4:
Design and Synthesis of Small Molecule Donors for High Efficiency Solution Processed Organic Solar Cells / Seth McAfee ; Gregory C. Welch ; Corey V. HovenChapter 5:
Device Operation / 5.1:
Small Molecule Donor Design / 5.3:
Historical Perspective / 5.4:
Dye Based Molecules (BODIPY, Squaraine, and Merocyanine) / 5.5:
Dye Based Molecules - Diketopyrrolopyrrole / 5.6:
Dye Based Molecules - Isoindigo / 5.7:
Porphyrins / 5.8:
Oligothiophenes (Donor-Acceptor-Donor-Acceptor-Donor) / 5.9:
Oligothiophenes (Acceptor-Donor-Acceptor) / 5.10:
Comments on Device Optimization / 5.11:
Conclusions and Future Outlook / 5.12:
Interface Engineering of Polymer Solar Cells / Kai Zhang ; Chunhui Duan ; Fei Huang ; Yong CaoChapter 6:
Functions and Design Criteria of the Interfacial Layer / 6.1:
Functions of Interfacial Materials / 6.2.1:
Design Criteria for Interfacial Materials / 6.2.2:
Interfacial Materials for Conventional Polymer Solar Cells / 6.3:
Anode Contact / 6.3.1:
Cathode Contact / 6.3.2:
Interfacial Materials for Inverted Polymer Solar Cells / 6.4:
Solution Processed Metal Oxides and Hybrid Metal Oxides as Efficient Carrier Transport Layers of Organic Optoelectronic Devices / Wallace C. H. Choy6.4.1:
Solution-Processed Metal Oxides as Electron Transport Layer (ETL) / 7.1:
Zinc Oxide (ZnO) / 7.2.1:
Titanium Oxide (TiOx) / 7.2.2:
CS2CO3 / 7.2.3:
Other Metal Oxide Based ETLs / 7.2.4:
Doped and Hybrid Metal Oxides for Enhanced Electron Transport of ETL / 7.3:
Doped and Hybrid TiOx / 7.3.1:
Doped and Hybrid ZnO / 7.3.2:
Solution-Processed Metal Oxides Functioning as Hole Transport Layers (HTLs) / 7.4:
Solution-Processed Molybdenum Oxide (MoOx) as HTLs / 7.4.1:
Solution-Processed Vanadium Oxide (V2Ox)as HTL / 7.4.2:
Solution-Processed Tungsten Oxide (WOx) as HTL / 7.4.3:
Doped and Hybrid Metal Oxides as HTL / 7.4.4:
Acknowledgments / 7.5:
New Science and New Technology in Semiconducting Polymers / L. Kaake ; D. Moses ; C. Luo ; A. K. K. Kyaw ; L. A. Perez ; S. Patel ; M. Wang ; B. Grimm ; Y. Sun ; G. C. Bazan ; E.J. Kramer ; Alan J. HeegerChapter 8:
Coherence and Uncertainty in Nanostructured Organic Photovoltaic Materials / 8.1:
The Mechanism for Ultrafast Electron Transfer / 8.1.1:
Ultrafast Experimental Results / 8.1.2:
High Mobility Thin-Film Transistors (TFTs) Fabricated from Semiconducting Polymers / 8.2:
Conclusion / 8.3:
Morphology of Bulk Heterojunction Polymer Solar Cells / Feng Liu ; Yao Liu ; Thomas P. RussellChapter 9:
Characterization Methods / 9.1:
Lateral Morphology Characterizations / 9.2.1:
Vertical Morphology Characterizations / 9.2.2:
Surface Morphology Characterization / 9.2.3:
Crystalline Structure Characterization / 9.2.4:
Important Morphology Observations / 9.3:
PPV Polymers and Solvent Effect / 9.3.1:
P3HT and Thermal Annealing / 9.3.2:
PCPDTBT and Chemical Additives / 9.3.3:
PTB7 and Hierarchical Structure / 9.3.4:
Charge Generation, Recombination and Transport in Organic Solar Cells / Chengmei Zhong9.4:
The Charge Generation Process in Organic Solar Cells / 10.1:
The Exciton Theory of Charge Generation / 10.2.1:
The CT State, Charge Generation and Gemmate Recombination / 10.2.2:
The Ultrafast Charge Generation Theory / 10.2.3:
Charge Recombination in Organic Solar Cells / 10.3:
Charge Transport in Organic Solar Cells / 10.4:
Multi-junction Polymer Solar Cells / Alice Furlan ; Rene A. J. Janssen10.5:
Principles of Multi-Junction Polymer Solar Cells / 11.1:
Early Developments / 11.1.2:
Outline / 11.1.3:
Optimization and Characterization of Multi-Junction Polymer Solar Cells / 11.2:
Electrical and Optical Modeling / 11.2.1:
Characterization of Tandem Cells / 11.2.2:
Photoactive Layers / 11.3:
Fullerenes / 11.3.1:
Wide Bandgap Donors / 11.3.2:
Small Bandgap Donors / 11.3.3:
Recombination Layers / 11.4:
Regular Configuration / 11.4.1:
Inverted Configuration / 11.4.2:
Loss-Less Contacts / 11.4.3:
Advancing the Efficiency of Solution Processed Multi-Junction Cells / 11.5:
Polymer Tandem Cells / 11.5.1:
Small Molecule Tandem Cells / 11.5.2:
Polymer Multi-Junction Cells / 11.5.3:
Special Device Configurations / 11.6:
Processing Issues for Multi-Junction Polymer Solar Cells / 11.7:
Laboratory Scale Devices / 11.7.1:
Large Area and Printed Multi-Junction Cells / 11.7.2:
Semi-Transparent Polymer Solar Cells for Power Generating Window Applications / Hin-Lap Yip ; Alex K.-Y. Jen11.8:
Optical Assessment / 12.1:
Color Rendering Properties / 12.2.1:
Optical Simulations / 12.2.2:
Transparent Electrodes for ST-OPV / 12.3:
Transparent Conductive Oxides / 12.3.1:
Conducting Polymers / 12.3.2:
Ultrathin Metal Films / 12.3.3:
Metal Nanowires / 12.3.4:
Low Bandgap Polymers / 12.4:
Semitransparent Tandem Solar Cells / 12.5:
Photonic Crystal-Enhanced ST-OPV / 12.6:
Solution Processed Organic Photovoltaics (OPVs) / Hongseok Youn ; L. Jay Guo12.7:
Material Cost Issues in OPVs / 13.1:
Fabrication Technologies Toward Low-Cost and Scalable OPVs / 13.3:
Slot-Die Coating Process / 13.3.1:
Inkjet Printing Process / 13.3.2:
Traditional Roll-to-Roll Printing Process / 13.3.3:
Materials for Functional Layers / 13.4:
Flexible Substrates / 13.4.1:
Silver Back Electrode / 13.4.2:
Active Layer and Coating Issues / 13.4.3:
Interfacial Layer (PEO, PEIE) / 13.4.4:
Hole Transport Layer (HTL)/Electron Transport Layer (ETL) / 13.4.5:
Issues in Scalable OPVs / 13.5:
Effect of Device Size / 13.5.1:
Isolation of Defects / 13.5.2:
Subject Index / 13.6:
New Chemistry for Organic Photovoltaic Materials / Cuihong Li ; Zhishan BoChapter 1:
Introduction / 1.1:
Stille Polycondensation / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼