close
1.

図書

図書
Roel Prins ... [et al]
出版情報: Hackensack, New Jersey : World Scientific, c2022  xviii, 392 p. ; 24 cm
シリーズ名: Advanced textbooks in chemistry
所蔵情報: loading…
目次情報: 続きを見る
Preface
About the Authors
Introduction / 1:
Catalysis and Catalysts / 1.1:
Heterogeneous and Homogeneous Catalysis / 1.2:
Production of Ammonia / 1.3:
Kinetics and Thermodynamics / 1.3.1:
Activity, Selectivity and Stability / 1.3.2:
H2 Production / 1.3.3:
Ammonia Synthesis / 1.3.4:
Relevance of Catalysis / 1.4:
References
Questions
Catalyst Preparation and Characterisation / 2:
Supported Catalysts / 2.1:
Crystal Structures / 2.2:
Crystal Lattices / 2.2.1:
X-ray Diffraction / 2.2.2:
Aluminas / 2.3:
Aluminium Hydroxides and Oxyhydroxides / 2.3.1:
Transition Aluminas / 2.3.2:
¿-Al2O3 / 2.3.3:
Surface of ¿-Al2O3 / 2.3.4:
Lewis acid sites / 2.3.5.1:
Brønsted acid sites / 2.3.5.2:
Surface reconstruction / 2.3.5.3:
Silica / 2.4:
Preparation of Supported Catalysts / 2.5:
Adsorption / 3:
Physisorption / 3.1:
Adsorption on Surfaces / 3.1.1:
Langmuir Adsorption Isotherm / 3.1.2:
Multilayer Adsorption, BET / 3.1.3:
Surface Diffusion / 3.2:
Chemisorption / 3.3:
Chemical Bonding / 3.3.1:
Dissociative Chemisorption / 3.3.2:
Kinetics / 4:
Langmuir-Hinshelwood Model / 4.1:
Monomolecular Reaction / 4.1.1:
Surface reaction is rate-determining / 4.1.1.1:
Adsorption of the reactant or product is rate-determining / 4.1.1.2:
Bimolecular Reaction / 4.1.2:
Influence of Diffusion / 4.2:
Bifunctional Catalysis / 4.3:
Metal Surfaces / 5:
Surface Structures / 5.1:
Surface Analysis / 5.2:
X-ray Photoelectron Spectroscopy / 5.2.1:
Auger Electron Spectroscopy / 5.2.2:
Surface Sensitivity / 5.2.3:
Surface Enrichment / 5.3:
Metal Binding / 5.4:
Metal Catalysis / 6:
Dissociation of H2 / 6.1:
Hydrogenation of Ethene / 6.2:
Synthesis of CO and H2 / 6.3:
Hydrogenation of CO / 6.4:
CO Hydrogenation to Hydrocarbons / 6.4.1:
CO dissociation / 6.4.1.1:
Methanation / 6.4.1.2:
Fischer-Tropsch reaction / 6.4.1.3:
Hydrogenation of CO and CO2 to Methanol / 6.4.2:
CO hydrogenation to methanol / 6.4.2.1:
CO2 hydrogenation to methanol / 6.4.2.2:
Hydrogenation of N2 to Ammonia / 6.5:
Fe Catalyst / 6.5.1:
Ru Catalyst / 6.5.2:
Volcano Curves / 6.6:
Catalysis by Solid Acids / 7:
Solid Acid Catalysts / 7.1:
Zeolites / 7.1.1:
Amorphous Silica-Alumina / 7.1.2:
Reactions of Hydrocarbons / 7.2:
Reactions of Alkenes and Alkanes / 7.2.1:
Isomerisation of Pentane, Hexane and Butene / 7.2.2:
Alcohols from Alkenes / 7.3:
Alkylation of Aromatics / 7.4:
Ethylation and Propylation of Benzene / 7.4.1:
Methylation of Toluene / 7.4.2:
Isomerisation, Disproportionation, Transalkylation / 7.4.3:
Gasoline Production / 7.5:
Fluid Catalytic Cracking and Hydrocracking / 7.5.1:
Methanol to Hydrocarbons / 7.5.2:
Reforming of Hydrocarbons by Bifunctional Catalysis / 7.5.3:
Cleaning of Fuels by Hydrotreating / 8:
Hydrotreating / 8.1:
Hydrotreating Catalysts / 8.2:
Metal Sulfides / 8.2.1:
Structure of sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 / 8.2.1.1:
Active sites / 8.2.1.2:
Metal Phosphides / 8.2.2:
Reaction Mechanisms / 8.3:
Hydro desulfurisation / 8.3.1:
Hydrodenitrogenation / 8.3.2:
Hydrodeoxygenation / 8.3.3:
Hydrotreating of Mixtures / 8.3.4:
Hydrotreating Processes / 8.4:
Hydrodesulfurisation of Naphtha / 8.4.1:
Hydrotreating of Diesel / 8.4.2:
Residue Hydro conversion / 8.4.3:
Oxidation Catalysis / 9:
CO Oxidation / 9.1:
Mechanism / 9.1.1:
Three-way Catalysis / 9.1.2:
Production of Sulfuric and Nitric Acid / 9.2:
Sulfuric Acid / 9.2.1:
Nitric Acid / 9.2.2:
Selective Catalytic Reduction / 9.2.3:
Oxidation of Hydrocarbons / 9.3:
Oxidation by Oxygen / 9.3.1:
Oxidation by Hydroperoxide / 9.3.2:
Selective Partial Oxidation of Hydrocarbons / 9.3.3:
Oxidation of propene to acrylic acid and acrylonitrile / 9.3.3.1:
Oxidation of C4 and C6 molecules / 9.3.3.2:
Platform Chemicals / 9.4:
Electrocatalysis / 10:
Fundamental Aspects / 10.1:
Electrochemical Cells / 10.2.1:
Cell and Electrode Potentials / 10.2.2:
The Nernst Equation / 10.2.3:
Overpotential / 10.2.4:
Electrode Kinetics / 10.2.5:
Experimental Methods and Techniques / 10.3:
Three-Electrode Cell Configuration / 10.3.1:
Techniques for Electrocatalyst Evaluation / 10.3.2:
Linear Sweep Voltammetry and Cyclic Voltammetry / 10.3.3:
Electrochemical Impedance Spectroscopy / 10.3.4:
Rotating Disc Electrode / 10.3.5:
The Electro chemically Active Surface Area / 10.3.6:
Electrocatalysis for the Production of Sustainable Fuels and Chemicals / 10.4:
Development of Electrocatalysts / 10.4.1:
Hydrogen Evolution Reaction / 10.4.2:
Oxygen Evolution Reaction / 10.4.3:
CO2 Electroreduction / 10.4.4:
Other Electrochemical Processes / 10.4.5:
Answers
Index
Preface
About the Authors
Introduction / 1:
2.

図書

図書
Jesse M. Kinder and Philip Nelson
出版情報: Princeton : Princeton University Press, c2021  xiii, 223 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
Algorithmic thinking / 1.1.1:
States / 1.1.2:
What does a = a + 1 mean? / 1.1.3:
Symbolic versus numerical / 1.1.4:
Launch Python / 1.2:
IPython console / 1.2.1:
Error messages / 1.2.2:
Sources of help / 1.2.3:
Good practice: Keep a log / 1.2.4:
Python modules / 1.3:
Import / 1.3.1:
From … import / 1.3.2:
NumPy and PyPlot / 1.3.3:
Python expressions / 1.4:
Numbers / 1.4.1:
Arithmetic operations and predefined functions / 1.4.2:
Good practice: Variable names / 1.4.3:
More about functions / 1.4.4:
Organizing Data / 2:
Objects and their methods / 2.1:
Lists, tuples, and arrays / 2.2:
Creating a list or tuple / 2.2.1:
NumPy arrays / 2.2.2:
Filling an array with values / 2.2.3:
Concatenation of arrays / 2.2.4:
Accessing array elements / 2.2.5:
Arrays and assignments / 2.2.6:
Slicing / 2.2.7:
Flattening an array / 2.2.8:
Reshaping an array / 2.2.9:
T2 Lists and arrays as indices / 2.2.10:
Strings / 2.3:
Raw strings / 2.3.1:
Formatting strings with the format () method / 2.3.2:
T2 Formatting strings with % / 2.3.3:
Structure and Control / 3:
Loops / 3.1:
For loops / 3.1.1:
While loops / 3.1.2:
Very long loops / 3.1.3:
Infinite loops / 3.1.4:
Array operations / 3.2:
Vectorizing math / 3.2.1:
Matrix math / 3.2.2:
Reducing an array / 3.2.3:
Scripts / 3.3:
The Editor / 3.3.1:
T2 Other editors / 3.3.2:
First steps to debugging / 3.3.3:
Good practice: Commenting / 3.3.4:
Good practice: Using named parameters / 3.3.5:
Good practice: Units / 3.3.6:
Contingent behavior: Branching / 3.4:
The if statement / 3.4.1:
Testing equality of floats / 3.4.2:
Nesting / 3.5:
Data In, Results Out / 4:
Importing data / 4.1:
Obtaining data / 4.1.1:
Bringing data into Python / 4.1.2:
Exporting data / 4.2:
Data files / 4.2.1:
Visualizing data / 4.3:
The plot command and its relatives / 4.3.1:
Log axes / 4.3.2:
Manipulate and embellish / 4.3.3:
Replacing curves / 4.3.4:
T2 More about figures and their axes / 4.3.5:
T2 Error bars / 4.3.6:
3D graphs / 4.3.7:
Multiple plots / 4.3.8:
Subplots / 4.3.9:
Saving figures / 4.3.10:
T2 Using figures in other applications / 4.3.11:
First Computer Lab / 5:
HIV example / 5.1:
Explore the model / 5.1.1:
Fit experimental data / 5.1.2:
Bacterial example / 5.2:
Random Number Generation and Numerical Methods / 5.2.1:
Writing your own functions / 6.1:
Defining functions in Python / 6.1.1:
Updating functions / 6.1.2:
Arguments, keywords, and defaults / 6.1.3:
Return values / 6.1.4:
Functional programming / 6.1.5:
Random numbers and simulation / 6.2:
Simulating coin flips / 6.2.1:
Generating trajectories / 6.2.2:
Histograms and bar graphs / 6.3:
Creating histograms / 6.3.1:
Finer control / 6.3.2:
Contour plots, surface plots, and heat maps / 6.4:
Generating a grid of points / 6.4.1:
Contour plots / 6.4.2:
Surface plots / 6.4.3:
Heat maps / 6.4.4:
Numerical solution of nonlinear equations / 6.5:
General real functions / 6.5.1:
Complex roots of polynomials / 6.5.2:
Solving systems of linear equations / 6.6:
Numerical integration / 6.7:
Integrating a predefined function / 6.7.1:
Integrating your own function / 6.7.2:
Oscillatory integrands / 6.7.3:
T2 Parameter dependence / 6.7.4:
Numerical solution of differential equations / 6.8:
Reformulating the problem / 6.8.1:
Solving an ODE / 6.8.2:
Other ODE solvers / 6.8.3:
Vector fields and streamlines / 6.9:
Vector fields / 6.9.1:
Streamlines / 6.9.2:
Second Computer Lab / 7:
Generating and plotting trajectories / 7.1:
Plotting the displacement distribution / 7.2:
Rare events / 7.3:
The Poisson distribution / 7.3.1:
Waiting times / 7.3.2:
Images and Animation / 8:
Image processing / 8.1:
Images as NumPy arrays / 8.1.1:
Saving and displaying images / 8.1.2:
Manipulating images / 8.1.3:
Displaying data as an image / 8.2:
Animation / 8.3:
Creating animations / 8.3.1:
Saving animations / 8.3.2:
HTML movies
T2 Using an encoder
Conclusion / 8.3.3:
Third Computer Lab / 9:
Convolution / 9.1:
Python tools for image processing / 9.1.1:
Averaging / 9.1.2:
Smoothing with a Gaussian / 9.1.3:
Denoising an image / 9.2:
Emphasizing features / 9.3:
T2 Image files and arrays / 9.4:
Advanced Techniques / 10:
Dictionaries and generators / 10.1:
Dictionaries / 10.1.1:
Special function arguments / 10.1.2:
List comprehensions and generators / 10.1.3:
Tools for data science / 10.2:
Series and data frames with pandas / 10.2.1:
Machine learning with scikit-learn / 10.2.2:
Next steps / 10.2.3:
Symbolic computing / 10.3:
Wolfram Alpha / 10.3.1:
The SymPy library / 10.3.2:
Other alternatives / 10.3.3:
First passage revisited / 10.3.4:
Writing your own classes / 10.4:
A random walk class / 10.4.1:
When to use classes / 10.4.2:
Get Going
Installing Python / A:
Install Python and Spyder / A.1:
Graphical installation / A.1.1:
Command line installation / A.1.2:
Setting up Spyder / A.2:
Working directory / A.2.1:
Interactive graphics / A.2.2:
Script template / A.2.3:
Restart / A.2.4:
Keeping up to date / A.3:
Installing FFmpeg / A.4:
Installing ImageMagick / A.5:
Command Line Tools / B:
The command line / B.1:
Navigating your file system / B.1.1:
Creating, renaming, moving, and removing files / B.1.2:
Creating and removing directories / B.1.3:
Python and Conda / B.1.4:
Text editors / B.2:
Version control / B.3:
How Git works / B.3.1:
Installing and using Git / B.3.2:
Tracking changes and synchronizing repositories / B.3.3:
Summary of useful workflows / B.3.4:
Troubleshooting / B.3.5:
Jupyter Notebooks / B.4:
Getting started / C.1:
Launch Jupyter Notebooks / C.1.1:
Open a notebook / C.1.2:
Multiple notebooks / C.1.3:
Quitting Jupyter / C.1.4:
T2 Setting the default directory / C.1.5:
Cells / C.2:
Code cells / C.2.1:
Graphics / C.2.2:
Markdown cells / C.2.3:
Edit mode and command mode / C.2.4:
Sharing / C.3:
More details / C.4:
Pros and cons / C.5:
Errors and Error Messages / D:
Python errors in general / D.1:
Some common errors / D.2:
Python 2 versus Python 3 / E:
Division / E.1:
Print command / E.2:
User input / E.3:
More assistance / E.4:
Under the Hood / F:
Assignment statements / F.1:
Memory management / F.2:
Functions / F.3:
Scope / F.4:
Name collisions / F.4.1:
Variables passed as arguments / F.4.2:
Summary / F.5:
Answers to "Your Turn" Questions / G:
Acknowledgments
Recommended Reading
Index
Let's Go
Getting Started with Python / 1:
Algorithms and algorithmic thinking / 1.1:
3.

図書

図書
Rosette M. Roat-Malone
出版情報: Hoboken, N.J. : John Wiley & Sons, c2020  xxii, 328 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Biography
About the Companion Page
Inorganic Chemistry And Biochemistry Essentials / 1:
Introduction / 1.1:
Essential Chemical Elements / 1.2:
Inorganic Chemistry Basics / 1.3:
Electronic and Geometric Structures of Metals in Biological Systems / 1.4:
Thermodynamics and Kinetics / 1.5:
Bioorganometallic Chemistry / 1.6:
Inorganic Chemistry Conclusions / 1.7:
Introduction to Biochemistry / 1.8:
Proteins / 1.9:
Amino Acid Building Blocks / 1.9.1:
Protein Structure / 1.9.2:
Protein Function, Enzymes, and Enzyme Kinetics / 1.9.3:
DNA and RNA Building Blocks / 1.10:
DNA and RNA Molecular Structures / 1.10.1:
Transmission of Genetic Information / 1.10.2:
Genetic Mutations and Site-Directed Mutagenesis / 1.10.3:
Genes and Cloning / 1.10.4:
Genomics and the Human Genome / 1.10.5:
CRISPR / 1.10.6:
A Descriptive Example: Electron Transport Through DNA / 1.11:
Cyclic Voltammetry / 1.11.1:
Summary and Conclusions / 1.12:
Questions and Thought Problems / 1.13:
References
Computer Hardware, Software, Computational Chemistry Methods / 2:
Introduction to Computer-Based Methods / 2.1:
Computer Hardware / 2.2:
Computer Software for Chemistry / 2.3:
Chemical Drawing Programs / 2.3.1:
Visualization Programs / 2.3.2:
Computational Chemistry Software / 2.3.3:
Molecular Dynamics (MD) Software / 2.3.3.1:
Mathematical and Graphing Software / 2.3.3.2:
Molecular Mechanics (MM), Molecular Modeling, and Molecular Dynamics (MD) / 2.4:
Quantum Mechanics-Based Computational Methods / 2.5:
Ab-Initio Methods / 2.5.1:
Semiempirical Methods / 2.5.2:
Density Functional Theory and Examples / 2.5.3:
Starting with Schrödinger / 2.5.3.1:
Density Functional Theory (DFT) / 2.5.3.2:
Basis Sets / 2.5.3.3:
DFT Applications / 2.5.3.4:
Quantum Mechanics/Molecular Mechanics (QM/MM) Methods / 2.5.4:
Conclusions on Hardware, Software, and Computational Chemistry / 2.6:
Databases, Visualization Tools, Nomenclature, and other Online Resources / 2.7:
Important Metal Centers In Proteins / 2.8:
Iron Centers in Myoglobin and Hemoglobin / 3.1:
Structure and Function as Determined by X-ray Crystallography and Nuclear Magnetic Resonance / 3.1.1:
Cryo-Electron Microscopy and Hemoglobin Structure/Function / 3.1.3:
Cryo-Electron Microscopy Techniques / 3.1.3.1:
Structures Determined Using Cryo-Electron Microscopy / 3.1.3.3:
Model Compounds / 3.1.4:
Blood Substitutes / 3.1.5:
Iron Centers in Cytochromes / 3.2:
Cytochrome c Oxidase / 3.2.1:
Cytochrome c Oxidase (CcO) Structural Studies / 3.2.2:
Cytochrome c Oxidase (CcO) Catalytic Cycle and Energy Considerations / 3.2.3:
Proton Channels in Cytochrome c Oxidase / 3.2.4:
Cytochrome c Oxidase Model Compounds / 3.2.5:
Iron-Sulfur Clusters in Nitrogenase / 3.3:
Nitrogenase Structure and Catalytic Mechanism / 3.3.1:
Mechanism of Dinitrogen (N2) Reduction / 3.3.3:
Substrate Pathways into Nitrogenase / 3.3.4:
Nitrogenase Model Compounds / 3.3.5:
Functional Nitrogenase Models / 3.3.5.1:
Structural Nitrogenase Models / 3.3.5.2:
Copper and Zinc in Superoxide Dismutase / 3.4:
Superoxide Dismutase Structure and Mechanism of Catalytic Activity / 3.4.1:
A Copper Zinc Superoxide Dismutase Model Compound / 3.4.3:
Methane Monooxygenase / 3.5:
Soluble Methane Monooxygenase / 3.5.1:
Particulate Methane Monooxygenase / 3.5.3:
Hydrogenases, Carbonic Anhydrases, Nitrogen Cycle Enzymes / 3.6:
Hydrogenases / 4.1:
[NiFe]-hydrogenases / 4.2.1:
[NiFe]-hydrogenase Model Compounds / 4.2.2.1:
[FeFe]-hydrogenases / 4.2.3:
[FeFe]-Hydrogenase Model Compounds / 4.2.3.1:
[Fe]-hydrogenases / 4.2.4:
[Fe]-Hydrogenase Model Compounds / 4.2.4.1:
Carbonic Anhydrases / 4.3:
Carbonic Anhydrase Inhibitors / 4.3.1:
Nitrogen Cycle Enzymes / 4.4:
Nitric Oxide synthase / 4.4.1:
Nitric Oxide Synthase Structure / 4.4.2.1:
Nitric Oxide Synthase Inhibitors / 4.4.2.3:
Nitrite Reductase / 4.4.3:
Reduction of Nitrite Ion to Ammonium Ion / 4.4.3.1:
Reduction of Nitrite Ion to Nitric Oxide / 4.4.3.3:
Nanobioinorganic Chemistry / 4.5:
Introduction to Nanomaterials / 5.1:
Analytical Methods / 5.2:
Microscopy / 5.2.1:
Scanning Electron Microscopy (SEM) / 5.2.1.1:
Transmission Electron Microscopy (TEM) / 5.2.1.2:
Scanning Transmission Electron Microscopy (STEM) / 5.2.1.3:
Cryo-Electron Microscopy / 5.2.1.4:
Scanning Probe Microscopy (SPM) / 5.2.1.5:
Atomic Force Microscopy (AFM) / 5.2.1.6:
Super-Resolution Microscopy and DNA-PAINT / 5.2.1.7:
Förster Resonance Energy Transfer (FRET) / 5.2.2:
DNA Origami / 5.3:
Metallized DNA Nanomaterials / 5.4:
DNA-Coated Metal Electrodes / 5.4.1:
Plasmonics and DNA / 5.4.3:
Bioimaging with Nanomaterials, Nanomedicine, and Cytotoxicity / 5.5:
Imaging with Nanomaterials / 5.5.1:
Bioimaging using Quantum Dots (QD) / 5.5.3:
Nanoparticles in Therapeutic Nanomedicine / 5.5.4:
Clinical Nanomedicine / 5.5.4.1:
Some Drugs Formulated into Nanomaterials for Cancer Treatment: Cisplatinum, Platinum(IV) Prodrugs, and Doxorubicin / 5.5.4.2:
Theranostics / 5.6:
Nanoparticle Toxicity / 5.7:
Metals In Medicine, Disease States, Drug Development / 5.8:
Platinum Anticancer Agents / 6.1:
Cisplatin / 6.1.1:
Cisplatin Toxicity / 6.1.1.1:
Mechanism of Cisplatin Activity / 6.1.1.2:
Carboplatin (Paraplatin) / 6.1.2:
Oxaliplatin / 6.1.3:
Other cis-Platinum(II) Compounds / 6.1.4:
Nedaplatin / 6.1.4.1:
Lobaplatin / 6.1.4.2:
Heptaplatin / 6.1.4.3:
Antitumor Active Trans Platinum compounds / 6.1.5:
Platinum Drug Resistance / 6.1.6:
Combination Therapies: Platinum-Containing Drugs with Other Antitumor Compounds / 6.1.7:
Platinum(IV) Antitumor Drugs / 6.1.8:
Satraplatin / 6.1.8.1:
Ormaplatin / 6.1.8.2:
Iproplatin, JM9, CHIP / 6.1.8.3:
Platinum(TV) Prodrugs / 6.1.9:
Multitargeted Platinum(IV) Prodrugs / 6.1.9.1:
Platinum(IV) Prodrugs Delivered via Nanoparticles / 6.1.9.2:
Ruthenium Compounds as Anticancer Agents / 6.2:
Ruthenium(III) Anticancer Agents / 6.2.1:
Ruthenium(II) Anticancer Agents / 6.2.2:
Mechanism of Ruthenium(II) Anticancer Agent Activity / 6.2.3:
Ruthenium Compounds Tested for Antitumor Activity / 6.2.4:
Iridium and Osmium Antitumor Agents / 6.3:
Other Antitumor Agents / 6.4:
Gold Complexes / 6.4.1:
Titanium Complexes / 6.4.2:
Copper Complexes / 6.4.3:
Bismuth Derivatives as Antibacterials / 6.5:
Disease States, Drug Discovery, and Treatments / 6.6:
Superoxide Dismutases (SOD) in Disease States / 6.6.1:
Amyotrophic Lateral Sclerosis / 6.6.2:
Wilson's and Menkes Disease / 6.6.3:
Alzheimer's disease / 6.6.4:
Role of Amyloid ß Protein / 6.6.4.1:
Interactions of Aß Peptides with Metals / 6.6.4.2:
Alzheimer's Disease Treatments / 6.6.4.3:
Other Disease States Involving Metals / 6.7:
Copper and Zinc Ions and Cataract Formation / 6.7.1:
As2O3, used in the Treatment of Acute Promyelocytic Leukemia (APL) / 6.7.2:
Vanadium-based Type 2 Diabetes Drugs / 6.7.3:
Index / 6.8:
Preface
Acknowledgments
Biography
4.

図書

図書
Svetlana Katok...[et al.]
出版情報: Hackensack, NJ : World Scientific Publishing Co. Pte. Ltd., c2024  lxxv, 1309-2540 p. ; 26 cm
所蔵情報: loading…
目次情報:
Cohomology and Geometric Rigidity
Measure Rigidity
Cohomology and Geometric Rigidity
Measure Rigidity
5.

図書

図書
Robert W. Boyd
出版情報: London : Academic Press, c2020  xxiii, 609 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Fourth Edition
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
The Nonlinear Optical Susceptibility / Chapter 1:
Introduction to Nonlinear Optics / 1.1:
Descriptions of Nonlinear Optical Processes / 1.2:
Second-Harmonic Generation / 1.2.1:
Sum- and Difference-Frequency Generation / 1.2.2:
Sum-Frequency Generation / 1.2.3:
Difference-Frequency Generation / 1.2.4:
Optical Parametric Oscillation / 1.2.5:
Third-Order Nonlinear Optical Processes / 1.2.6:
Third-Harmonic Generation / 1.2.7:
Intensity-Dependent Refractive Index / 1.2.8:
Third-Order Interactions (General Case) / 1.2.9:
Parametric versus Nonparametric Processes / 1.2.10:
Saturable Absorption / 1.2.11:
Two-Photon Absorption / 1.2.12:
Stimulated Raman Scattering / 1.2.13:
Formal Definition of the Nonlinear Susceptibility / 1.3:
Nonlinear Susceptibility of a Classical Anharmonic Oscillator / 1.4:
Noncentrosymmetric Media / 1.4.1:
Miller's Rule / 1.4.2:
Centrosymmetric Media / 1.4.3:
Properties of the Nonlinear Susceptibility / 1.5:
Reality of the Fields / 1.5.1:
Intrinsic Permutation Symmetry / 1.5.2:
Symmetries for Lossless Media / 1.5.3:
Field Energy Density for a Nonlinear Medium / 1.5.4:
Kleinman's Symmetry / 1.5.5:
Contracted Notation / 1.5.6:
Effective Value of d (deff) / 1.5.7:
Spatial Symmetry of the Nonlinear Medium / 1.5.8:
Influence of Spatial Symmetry on the Linear Optical Properties of a Material Medium / 1.5.9:
Influence of Inversion Symmetry on the Second-Order Nonlinear Response / 1.5.10:
Influence of Spatial Symmetry on the Second-Order Susceptibility / 1.5.11:
Number of Independent Elements of X2ijk(¿3, ¿2, ¿1) / 1.5.12:
Distinction between Noncentrosymmetric and Cubic Crystal Classes / 1.5.13:
Distinction between Noncentrosymmetric and Polar Crystal Classes / 1.5.14:
Influence of Spatial Symmetry on the Third-Order Nonlinear Response / 1.5.15:
Time-Domain Description of Optical Nonlinearities / 1.6:
Kramers-Kronig Relations in Linear and Nonlinear Optics / 1.7:
Kramers-Kronig Relations in Linear Optics / 1.7.1:
Kramers-Kronig Relations in Nonlinear Optics / 1.7.2:
Problems
References
Wave-Equation Description of Nonlinear Optical interactions / Chapter 2:
The Wave Equation for Nonlinear Optical Media / 2.1:
The Coupled-Wave Equations for Sum-Frequency Generation / 2.2:
Phase-Matching Considerations / 2.2.1:
Phase Matching / 2.3:
Quasi-Phase-Matching (QPM) / 2.4:
The Manley-Rowe Relations / 2.5:
Applications of Second-Harmonic Generation / 2.6:
Difference-Frequency Generation and Parametric Amplification / 2.8:
Optical Parametric Oscillators / 2.9:
Influence of Cavity Mode Structure on OPO Tuning / 2.9.1:
Nonlinear Optical Interactions with Focused Gaussian Beams / 2.10:
Paraxial Wave Equation / 2.10.1:
Gaussian Beams / 2.10.2:
Harmonic Generation Using Focused Gaussian Beams / 2.10.3:
Nonlinear Optics at an Interface / 2.11:
Advanced Phase Matching Methods / 2.12:
Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility / Chapter 3:
Introduction / 3.1:
Schrödinger Equation Calculation of the Nonlinear Optical Susceptibility / 3.2:
Energy Eigenstates / 3.2.1:
Perturbation Solution to Schrödinger's Equation / 3.2.2:
Linear Susceptibility / 3.2.3:
Second-Order Susceptibility / 3.2.4:
Third-Order Susceptibility / 3.2.5:
Third-Harmonic Generation in Alkali Metal Vapors / 3.2.6:
Density Matrix Formulation of Quantum Mechanics / 3.3:
Example: Two-Level Atom / 3.3.1:
Perturbation Solution of the Density Matrix Equation of Motion / 3.4:
Density Matrix Calculation of the Linear Susceptibility / 3.5:
Linear Response Theory / 3.5.1:
Density Matrix Calculation of the Second-Order Susceptibility / 3.6:
¿(2) in the Limit of Nonresonant Excitation / 3.6.1:
Density Matrix Calculation of the Third-Order Susceptibility / 3.7:
Electromagnetically Induced Transparency / 3.8:
Local-Field Effects in the Nonlinear Optics / 3.9:
Local-Field Effects in Linear Optics / 3.9.1:
Local-Field Effects in Nonlinear Optics / 3.9.2:
The Intensity-Dependent Refractive Index / Chapter 4:
Descriptions of the Intensity-Dependent Refractive Index / 4.1:
Tensor Nature of the Third-Order Susceptibility / 4.2:
Propagation through Isotropic Nonlinear Media / 4.2.1:
Nonresonant Electronic Nonlinearities / 4.3:
Classical, Anharmonic Oscillator Model of Electronic Nonlinearities / 4.3.1:
Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities / 4.3.2:
¿(3) in the Low-Frequency Limit / 4.3.3:
Nonlinearities Due to Molecular Orientation / 4.4:
Tensor Properties of ¿(3) for the Molecular Orientation Effect / 4.4.1:
Thermal Nonlinear Optical Effects / 4.5:
Thermal Nonlinearities with Continuous-Wave Laser Beams / 4.5.1:
Thermal Nonlinearities with Pulsed Laser Beams / 4.5.2:
Semiconductor Nonlinearities / 4.6:
Nonlinearities Resulting from Band-to-Band Transitions / 4.6.1:
Nonlinearities Involving Virtual Transitions / 4.6.2:
Concluding Remarks / 4.7:
Molecular Origin of the Nonlinear Optical Response / Chapter 5:
Nonlinear Susceptibilities Calculated Using Time-Independent Perturbation Theory / 5.1:
Hydrogen Atom / 5.1.1:
General Expression for the Nonlinear Susceptibility in the Quasi-Static Limit / 5.1.2:
Semiempirical Models of the Nonlinear Optical Susceptibility / 5.2:
Model of Boling, Glass, and Owyoung
Nonlinear Optical Properties of Conjugated Polymers / 5.3:
Bond-Charge Model of Nonlinear Optical Properties / 5.4:
Nonlinear Optics of Chiral Media / 5.5:
Nonlinear Optics of Liquid Crystals / 5.6:
Nonlinear Optics in the Two-Level Approximation / Chapter 6:
Density Matrix Equations of Motion for a Two-Level Atom / 6.1:
Closed Two-Level Atom / 6.2.1:
Open Two-Level Atom / 6.2.2:
Two-Level Atom with a Non-Radiatively Coupled Third Level / 6.2.3:
Steady-State Response of a Two-Level Atom to a Monochromatic Field / 6.3:
Optical Bloch Equations / 6.4:
Harmonic Oscillator Form of the Density Matrix Equations / 6.4.1:
Adiabatic-Following Limit / 6.4.2:
Rabi Oscillations and Dressed Atomic States / 6.5:
Rabi Solution of the Schrodinger Equation / 6.5.1:
Solution for an Atom Initially in the Ground State / 6.5.2:
Dressed States / 6.5.3:
Inclusion of Relaxation Phenomena / 6.5.4:
Optical Wave Mixing in Two-Level Systems / 6.6:
Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of Pump and Probe Fields / 6.6.1:
Nonlinear Susceptibility and Coupled-Amplitude Equations / 6.6.2:
Processes Resulting from the Intensity-Dependent Refractive Index / Chapter 7:
Self-Focusing of Light and Other Self-Action Effects / 7.1:
Self-Trapping of Light / 7.1.1:
Mathematical Description of Self-Action Effects / 7.1.2:
Laser Beam Breakup into Many Filaments / 7.1.3:
Self-Action Effects with Pulsed Laser Beams / 7.1.4:
Optical Phase Conjugation / 7.2:
Aberration Correction by Phase Conjugation / 7.2.1:
Phase Conjugation by Degenerate Four-Wave Mixing / 7.2.2:
Polarization Properties of Phase Conjugation / 7.2.3:
Optical Bistability and Optical Switching / 7.3:
Absorptive Bistability / 7.3.1:
Refractive Bistability / 7.3.2:
Optical Switching / 7.3.3:
Two-Beam Coupling / 7.4:
Pulse Propagation and Temporal Solitons / 7.5:
Self-Phase Modulation / 7.5.1:
Pulse Propagation Equation / 7.5.2:
Temporal Optical Solitons / 7.5.3:
Spontaneous Light Scattering and Acoustooptics / Chapter 8:
Features of Spontaneous Light Scattering / 8.1:
Fluctuations as the Origin of Light Scattering / 8.1.1:
Scattering Coefficient / 8.1.2:
Scattering Cross Section / 8.1.3:
Microscopic Theory of Light Scattering / 8.2:
Thermodynamic Theory of Scalar Light Scattering / 8.3:
Ideal Gas / 8.3.1:
Spectrum of the Scattered Light / 8.3.2:
Brillouin Scattering / 8.3.3:
Stokes Scattering (First Term in Eq. (8.3.36)) / 8.3.4:
Anti-Stokes Scattering (Second Term in Eq. (8.3.36)) / 8.3.5:
Rayleigh Center Scattering / 8.3.6:
Acoustooptics / 8.4:
Bragg Scattering of Light by Sound Waves / 8.4.1:
Raman-Nath Effect / 8.4.2:
Stimulated Brillouin and Stimulated Rayleigh Scattering / Chapter 9:
Stimulated Scattering Processes / 9.1:
Electrostriction / 9.2:
Stimulated Brillouin Scattering (Induced by Electrostriction) / 9.3:
Pump Depletion Effects in SBS / 9.3.1:
SBS Generator / 9.3.2:
Transient and Dynamical Features of SBS / 9.3.3:
Phase Conjugation by Stimulated Brillouin Scattering / 9.4:
Stimulated Brillouin Scattering in Gases / 9.5:
General Theory of Stimulated Brillouin and Stimulated Rayleigh Scattering / 9.6:
Appendix: Definition of the Viscosity Coefficients / 9.6.1:
Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering / Chapter 10:
The Spontaneous Raman Effect / 10.1:
Spontaneous versus Stimulated Raman Scattering / 10.2:
Stimulated Raman Scattering Described by the Nonlinear Polarization / 10.3:
Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering / 10.4:
Dispersionless, Nonlinear Medium without Gain or Loss / 10.4.1:
Medium without a Nonlinearity / 10.4.2:
Coherent Anti-Stokes Raman Scattering / 10.4.3:
Stimulated Rayleigh-Wing Scattering / 10.6:
Polarization Properties of Stimulated Rayleigh-Wing Scattering / 10.6.1:
The Electrooptic and Photorefractive Effects / Chapter 11:
Introduction to the Electrooptic Effect / 11.1:
Linear Electrooptic Effect / 11.2:
Electrooptic Modulators / 11.3:
Introduction to the Photorefractive Effect / 11.4:
Photorefractive Equations of Kukhtarev et al / 11.5:
Two-Beam Coupling in Photorefractive Materials / 11.6:
Four-Wave Mixing in Photorefractive Materials / 11.7:
Externally Self-Pumped Phase-Conjugate Mirror / 11.7.1:
Internally Self-Pumped Phase-Conjugate Mirror / 11.7.2:
Double Phase-Conjugate Mirror / 11.7.3:
Other Applications of Photorefractive Nonlinear Optics / 11.7.4:
Optically Induced Damage and Multiphoton Absorption / Chapter 12:
Introduction to Optical Damage / 12.1:
Avalanche-Breakdown Model / 12.2:
Influence of Laser Pulse Duration / 12.3:
Direct Photoionization / 12.4:
Multiphoton Absorption and Multiphoton Ionization / 12.5:
Theory of Single- and Multiphoton Absorption and Fermi's Golden Rule / 12.5.1:
Linear (One-Photon) Absorption / 12.5.2:
Multiphoton Absorption / 12.5.3:
Ultra fast and Intense-Field Nonlinear Optics / Chapter 13:
Ultrashort-Pulse Propagation Equation / 13.1:
Interpretation of the Ultrashort-Pulse Propagation Equation / 13.3:
Self-Steepening / 13.3.1:
Space-Time Coupling / 13.3.2:
Supercontinuum Generation / 13.3.3:
Intense-Field Nonlinear Optics / 13.4:
Motion of a Free Electron in a Laser Field / 13.5:
High-Harmonic Generation / 13.6:
Tunnel Ionization and the Keldysh Model / 13.7:
Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics / 13.8:
Nonlinear Quantum Electrodynamics / 13.9:
Problem
Nonlinear Optics of Plasmonic Systems / Chapter 14:
Introduction to Plasmonics / 14.1:
Simple Derivation of the Plasma Frequency / 14.2:
The Drude Model / 14.3:
Optical Properties of Gold / 14.4:
Surface Plasmon Polaritons / 14.5:
Electric Field Enhancement in Plasmonic Systems / 14.6:
Appendices
The SI System of Units / Appendix A:
Energy Relations and Poynting's Theorem / A.1:
The Wave Equation / A.2:
Boundary Conditions / A.3:
The Gaussian System of Units / Appendix B:
Systems of Units in Nonlinear Optics / Appendix C:
Conversion between the Systems / C.1:
Relationship between Intensity and Field Strength / Appendix D:
Physical Constants / Appendix E:
Index
Preface to the Fourth Edition
Preface to the Third Edition
Preface to the Second Edition
6.

図書

図書
edited by Erich Pauer & Regine Mathias
出版情報: Folkestone : Renaissance Books, 2022  vi p., p. 189-459 ; 23 cm
所蔵情報: loading…
7.

図書

図書
Olav Kallenberg
出版情報: Cham : Springer, c2021  p. 487-946, xii ; 25 cm
シリーズ名: Probability theory and stochastic modelling ; v. 99
所蔵情報: loading…
8.

図書

図書
Yuen-Ron Shen
出版情報: Singapore : World Scientific, c2023  xiii, 386 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Linear and Nonlinear Optical Responses from Materials / 1.1:
Material Characterization by Sum Frequency Generation / 1.2:
Modern Surface Science and Surface Probes / 1.3:
Sum Frequency Spectroscopy for Surfaces and Interfaces / 1.4:
Early Development of Second Harmonic and Sum Frequency Generation as Viable Surface Analytical Tools / 1.5:
References
Basic Theory of Sum Frequency Generation / 2:
Sum Frequency Generation from a Semi-infinite Medium / 2.1:
Electric-Quadrupole Nonlinear Response of a Medium / 2.2:
Symmetry and Characteristics of Surface Nonlinear Susceptibility / 2.3:
Surface Sum Frequency Spectroscopy / 2.4:
Information Content of Surface Nonlinear Susceptibility / 2.5:
Signal Strength of Sum Frequency Generation from a Surface Layer / 2.6:
Summary / 2.7:
Experimental Considerations on Sum Frequency Spectroscopy / 3:
General Considerations / 3.1:
Narrowband Scheme / 3.2:
Broadband Scheme / 3.3:
Spectral Analysis / 3.4:
Phase-Sensitive Sum Frequency Spectroscopy / 3.5:
Time-Resolved Sum Frequency Spectroscopy / 3.6:
Summary and Prospects / 3.7:
Sum Frequency Spectroscopy for Bulk Characterization / 4:
Probing Bulk Structure and Phase Transition by Second Harmonic Generation / 4.1:
Probing Antiferromagnetism by Second Harmonic Generation / 4.2:
Detection of Charge Current, Spin Current, and Spin-Polarized Current by Second Harmonic Generation / 4.3:
Bulk Characterization by Second Harmonic and Sum Frequency Spectroscopy / 4.4:
Sum Frequency Chiral Spectroscopy / 4.5:
Circular Dichroism Spectroscopy versus Sum Frequency Spectroscopy / 5.1:
Basic Theory of Chiral Sum Frequency Spectroscopy / 5.2:
Experimental Considerations / 5.3:
Chiral Sum Frequency Electronic Spectroscopy / 5.4:
Chiral Sum Frequency Vibrational Spectroscopy / 5.5:
Second Harmonic Generation as a Chiral Probe / 5.6:
Sum Frequency Vibrational Spectroscopy for Surface Chirality / 5.7:
Chiral Sum Frequency Microscopy / 5.8:
Molecular Adsorption at Surfaces and Interfaces / 5.9:
General Description on Reflection-Absorption Spectroscopy and SFG Spectroscopy / 6.1:
Spectroscopic Detection of Adsorbates / 6.2:
Determination of Molecular Orientation at an Interface / 6.3:
Adsorption Isotherm / 6.4:
Competitive Adsorption and Co-adsorption / 6.5:
Surfactant Monolayers / 6.6:
Surface Reactions / 6.7:
Inter facial Structures of Bulk Materials / 6.8:
Interfaces of Crystalline Solids / 7.1:
Surfaces in Ultrahigh vacuum / 7.2.1:
Surface phonons / 7.2.2:
Complement to X-ray determination of surface structures / 7.2.3:
Interfaces of heterostructures / 7.2.4:
Miscellaneous / 7.2.5:
Interfacial Structures of Liquids / 7.3:
Polar liquids / 7.3.1:
Nonpolar liquids / 7.3.2:
Surface freezing / 7.3.3:
Liquid Crystals / 7.4:
Ionic Liquids / 7.5:
Interfaces of Water and Ice / 7.6:
Neat Water/Air Interfaces / 8.1:
Ions Emerging from Solutions at Water/Vapor Interfaces / 8.3:
Is the Pure Water/Vapor Interface Acidic or Basic? / 8.4:
Water Exposed to Insoluble Gas Atmosphere / 8.5:
Ions Emerging at Water Interfaces under Nonionic Surfactant Monolayears / 8.6:
Water Interfaces under Charged Surfactant Monolayers / 8.7:
Water/Liquid Interfaces / 8.8:
Water/Oxide Interfaces / 8.9:
Electrochemical Interfaces of Water / 8.10:
Ice Interfaces / 8.11:
Reflected SF vibrational spectra from ice interfaces / 8.11.1:
Surface melting of ice / 8.11.2:
Ferroelectric Ice Films / 8.12:
Polymer Interfaces / 8.13:
Polymer-Air Interfaces / 9.1:
Polymer-Water Interfaces / 9.3:
Polymer/Solid Interfaces / 9.4:
Surface Treatment of Polymers / 9.5:
Wet etching / 9.5.1:
Plasma treatment / 9.5.2:
UV irradiation / 9.5.3:
Mechanical rubbing / 9.5.4:
Biological Interfaces / 9.6:
Biomolecules at Interfaces / 10.1:
Biomembranes (Lipid Bilayers) / 10.3:
Interfaces of Colloidal Particles / 10.4:
Ultrafast Surface Dynamics / 11.2:
SHG/SFG Microscopy / 11.3:
Device Probing / 11.4:
Prospects / 12:
Index
Preface
Introduction / 1:
Linear and Nonlinear Optical Responses from Materials / 1.1:
9.

図書

図書
edited by Dongzhi Chi, K.E. Johnson Goh, Andrew T.S. Wee
出版情報: Amsterdam : Elsevier, c2020  xiii, 323 p. ; 24 cm
シリーズ名: Materials today : connecting the materials community
所蔵情報: loading…
10.

図書

図書
M. Suhail Zubairy
出版情報: Oxford : Oxford University Press, 2020  xii, 291 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
What is this Book About? / 1:
From Classical to Quantum Mechanics / 1.1:
Outline of the Book / 1.2:
Introductory Topics / Part I:
Mathematical Background / 2:
Complex Numbers / 2.1:
Trigonometry / 2.2:
Vector and Scalar Quantities / 2.3:
Elements of Probability Theory / 2.4:
Particle Dynamics / 3:
Classical Trajectory / 3.1:
Linear Momentum / 3.2:
Kinetic and Potential Energy / 3.3:
Inelastic and Elastic Collisions / 3.4:
Angular Motion / 3.5:
Angular Momentum / 3.6:
Motion of an Electron in Electric and Magnetic Fields / 3.7:
Wave Theory / 4:
Wave Motion / 4.1:
Young's Double-slit Experiment / 4.2:
Diffraction / 4.3:
Rayleigh Criterion / 4.4:
Fundamentals of Quantum Mechanics / Part II:
Quantization of Energy / 5:
Wave-Particle Duality / 5.2:
End of Certainty-Probabilistic Description / 5.3:
Heisenberg Uncertainty Relations and Bohr's Principle of Complementarity / 5.4:
Coherent Superposition and Quantum Entanglement / 5.5:
Birth of Quantum Mechanics-Planck, Einstein, Bohr / 6:
Brief History of Light / 6.1:
Radiation Emitted by Heated Objects / 6.2:
Einstein and the Photoelectric Effect / 6.3:
History of the Atom till the Dawn of the Twentieth Century / 6.4:
The Rutherford Atom / 6.5:
The Hydrogen Spectrum / 6.6:
Quantum Theory of the Atom: Bohr's Model / 6.7:
De Broglie Waves: Are Electrons Waves or Particles? / 7:
De Broglie waves / 7.1:
Wave-Particle Duality-A Wavefunction Approach / 7.2:
Bose-Einstein Condensation / 7.3:
Heisenberg Microscope / 7.4:
Compton Scattering / 7.5:
Quantum Interference: Wave-Particle Duality / 8:
Young's Double-slit Experiment for Electrons / 8.1:
Einstein-Bohr Debate on Complementarity / 8.2:
Delayed Choice / 8.3:
Quantum Eraser / 8.4:
Simplest Quantum Devices: Polarizers and Beam Splitters / 9:
Polarization of Light / 9.1:
Malus' Law for a Single Photon-Dirac's ket-bra Notation / 9.2:
Input-Output Relation for a Classical Beam Splitter / 9.3:
Beam Splitter for a Single-photon State / 9.4:
Polarization Beam Splitter and Pockel Cell / 9.5:
Quantum Superposition and Entanglement / 10:
Coherent Superposition of States / 10.1:
Quantum Entanglement and the Bell Basis / 10.2:
Schrodinger's Cat Paradox / 10.3:
Quantum Teleportation / 10.4:
Entanglement Swapping / 10.5:
No-cloning Theorem and Quantum Copying / 11:
Cloning and Superluminal Communication / 11.1:
No-cloning Theorem / 11.2:
Quantum Copier / 11.3:
EPR and Bell Theorem / 12:
Hidden Variables / 12.1:
The Einstein-Podolsky-Rosen (EPR) Paradox / 12.2:
Bohr's Reply / 12.3:
Bell's Inequality / 12.4:
Quantum Mechanical Prediction / 12.5:
Experiments to Test Bell's Inequality / 12.6:
Bell-CHSH Inequality / 12.7:
Quantum Communication / Part III:
Quantum Secure Communication / 13:
Binary Numbers / 13.1:
Public Key Distribution, RSA / 13.2:
Bennett-Brassard 84 (BB-84) Protocol / 13.3:
Bennett-92 (B-92) Protocol / 13.4:
Quantum Money / 13.5:
Optical Communication with invisible Photons / 14:
Mach-Zehnder Interferometer / 14.1:
Interaction-free Measurement / 14.2:
An Array of N Mach-Zehnder Interferometers / 14.3:
Counterfactual Communication / 14.4:
Quantum Computing / Part IV:
Quantum Computing I / 15:
Introduction to Quantum Computing / 15.1:
Quantum Logic Gates / 15.2:
The Deutsch Problem / 15.3:
Quantum Teleportation Revisited / 15.4:
Quantum Dense Coding / 15.5:
Quantum Computing II / 16:
How to Factorize N? / 16.1:
Discrete Quantum Fourier Transform / 16.2:
Shor's Algorithm / 16.3:
Quantum Shell Game / 16.4:
Searching an Unsorted Database / 16.5:
The Schrödinger Equation / Part V:
The Schrödinger Equation in One Dimension / 17:
Kinematics in Classical and Quantum Mechanics-Newton vs. Schrödinger / 17.2:
Particle Inside a Box / 17.3:
Tunneling Through a Barrier / 17.4:
The Schrödinger Equation in Three Dimensions and the Hydrogen Atom / 17.5:
Index
What is this Book About? / 1:
From Classical to Quantum Mechanics / 1.1:
Outline of the Book / 1.2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼