close
1.

図書

図書
Alexander Mamishev, Sean Williams
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xvii, 243 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
In this Chapter / 1.1:
Our Audience / 1.2:
A few horror stories / 1.2.1:
Some history / 1.2.2:
The Need For a Good "Writing System" / 1.3:
Introducing Stream Tools / 1.4:
What is STREAM Tools? / 1.4.1:
Why use STREAM Tools? / 1.4.2:
The software of STREAM Tools / 1.4.3:
Recommended packages / 1.4.3.1:
A brief comparison of Microsoft Word vs. LaTeX: history and myths / 1.4.3.2:
How to Use this Book / 1.5:
Exercises / 1.6:
Quick Start Guide For Stream Tools / Chapter 2:
A General Overview of the Writing Process / 2.1:
Introduction to Writing Quality Tools: The Stream Tools Editorial Mark-Up Table / 2.3:
Introduction to Document Design Tools / 2.4:
Important fundamental concepts / 2.4.1:
Step 1: Use template files to create your new manuscripts / 2.4.1.1:
Step 2: Copy existing elements and paste them into a new location / 2.4.1.2:
Step 3: Edit the element / 2.4.1.3:
Step 4: Cross-referencing elements / 2.4.1.4:
Creating Elements in a Document / 2.4.2:
Headings / 2.4.2.1:
Equations / 2.4.2.2:
Figures / 2.4.2.3:
Tables / 2.4.2.4:
References (literature citations) / 2.4.2.5:
Introduction to File Management: Optimizing Your Workflow / 2.5:
General principles / 2.5.1:
Using a wiki for file management / 2.5.2:
Version control / 2.5.3:
Conclusions / 2.6:
Document Design / 2.7:
Creating Templates / 3.1:
How to create and cross-reference a heading template / 3.2.1:
How to alter a heading template / 3.2.1.2:
Common formatting mistakes in headings / 3.2.1.3:
Common stylistic mistakes for headings / 3.2.1.4:
Tips and tricks / 3.2.1.5:
How to create and cross-reference an equation template / 3.2.2:
How to alter an equation template / 3.2.2.2:
Common formatting mistakes for equations / 3.2.2.3:
Common stylistic mistakes for equations / 3.2.2.4:
How to create and cross-reference a figure template / 3.2.2.5:
How to alter a figure template / 3.2.3.2:
Common formatting mistakes in figures / 3.2.3.3:
Common stylistic mistakes in figures / 3.2.3.4:
Tips and tricks for figures / 3.2.3.5:
How to create and cross-reference a table template / 3.2.4:
How to alter a table template / 3.2.4.2:
Common typesetting mistakes / 3.2.4.3:
Common stylistic mistakes in tables / 3.2.4.4:
Tips and tricks for tables / 3.2.4.5:
Front matter / 3.2.5:
Controlling page numbers / 3.2.5.1:
Table of contents / 3.2.5.2:
Back matter / 3.2.6:
Appendices / 3.2.6.1:
Indices / 3.2.6.2:
Using Multiple Templates / 3.3:
Controlling styles / 3.3.1:
Switching between single-column and double-column formats / 3.3.2:
Master documents / 3.3.3:
Practice Problems / 3.4:
Additional Resources / 3.4.1:
Using Bibliographic Databases / 3.6:
Why Use a Bibliographic Database? / 4.1:
Choice of Software / 4.3:
Using Endnote / 4.4:
Setting up the interface / 4.4.1:
Adding references / 4.4.2:
Citing references / 4.4.3:
Sharing a Database / 4.5:
Numbering the database entries / 4.5.1:
Compatibility with BiBTeX / 4.5.2:
Formatting References / 4.6:
Planning, Drafting, and Editing Documents / 4.7:
Definition Stage / 5.1:
Select your team members / 5.2.1:
Hold a kick-off meeting / 5.2.2:
Analyze the audience / 5.2.3:
Formulate the purpose / 5.2.4:
Persuasion / 5.2.4.1:
Exposition / 5.2.4.2:
Instruction / 5.2.4.3:
Select the optimum combination of STREAM Tools / 5.2.5:
Preparation Stage / 5.3:
Evaluate historical documents / 5.3.1:
Journal articles / 5.3.1.1:
Proceedings/papers / 5.3.1.2:
Theses and dissertations / 5.3.1.3:
Proposals / 5.3.1.4:
Reports / 5.3.1.5:
Populate the file repository / 5.3.2:
Create a comprehensive outline of the document / 5.3.3:
Using deductive structures / 5.3.3.1:
Using Microsoft Word's Outline feature / 5.3.3.2:
Populate all sections with "yellow text" / 5.3.4:
Distribute writing tasks among team members / 5.3.5:
Choose a drafting strategy / 5.3.5.1:
Synchronize writing styles / 5.3.5.2:
Writing Stage / 5.4:
Enter content / 5.4.1:
Legacy content / 5.4.1.1:
New content / 5.4.1.2:
Control versions of shared files / 5.4.1.3:
Request that team members submit their drafts / 5.4.2:
Verify that each section is headed in the right direction / 5.4.3:
Construct the whole document / 5.4.4:
Revise for content and distribute additional writing tasks / 5.4.5:
Comprehensive editing / 5.4.5.1:
STREAM Tools Editorial Mark-up table (STEM Table) / 5.4.5.2:
Strategies for editing electronic copy using Microsoft Word--an overview of Microsoft Word's commenting, reviewing, and proofing features / 5.4.5.3:
Distribute additional writing tasks / 5.4.6:
Completion Stage / 5.5:
Copy edit the document / 5.5.1:
Send out for a final review of content and clarity / 5.5.2:
Proofread the document / 5.5.3:
Submit the document / 5.5.4:
Conduct the final process-improvement review session / 5.5.5:
Building High Quality Writing Teams / 5.6:
Understanding the Benefits and Challenges of Teamwork / 6.1:
The payoff of teamwork / 6.2.1:
Some principle challenges of teamwork / 6.2.2:
Identifying Team Goals and Assigning Member Roles / 6.3:
Define roles and procedures clearly / 6.3.1:
Define team roles / 6.3.1.1:
Define team procedures / 6.3.1.2:
Managing Teamwork at a Distance / 6.4:
Building trust in virtual teams / 6.4.1:
Demonstrating sensitivity to cultural differences / 6.4.2:
Selecting Communication Tools To Support Teamwork / 6.5:
Wikis / 6.5.1:
Creating a wiki / 6.5.1.1:
Editing / 6.5.1.2:
Organizing / 6.5.1.3:
Monitoring edits / 6.5.1.4:
Other suggestions for wiki use / 6.5.1.5:
SharePoint / 6.5.2:
Lists / 6.5.2.1:
Web pages / 6.5.2.2:
Alerts and site management / 6.5.2.3:
Assuring Quality Writing / 6.6:
Choosing the Best Words 278 / 7.1:
Choose strong words / 7.2.1:
Use strong nouns and verbs / 7.2.1.1:
Choose words with the right level of formality / 7.2.1.2:
Avoid weak words / 7.2.2:
Check for confusing or frequently misused words / 7.2.2.1:
Avoid double negatives, and change negatives to affirmatives / 7.2.2.2:
Avoid changing verbs to nouns / 7.2.2.3:
Delete meaningless words and modifiers / 7.2.2.4:
Steer clear of jargon / 7.2.2.5:
Avoid sexist or discriminatory language / 7.2.2.6:
Writing Strong Sentences / 7.3:
Write economically / 7.3.1:
Include a variety of sentence types / 7.3.2:
Avoiding Weak Sentence Construction / 7.4:
Comma splices / 7.4.1.1:
Fragments / 7.4.1.2:
Fused or run-on sentences / 7.4.1.3:
Misplaced, dangling, or two-way modifiers / 7.4.1.4:
Faulty parallelism / 7.4.1.5:
Punctuating For Clarity / 7.5:
End punctuation / 7.5.1:
Periods / 7.5.1.1:
Question marks / 7.5.1.2:
Exclamation points / 7.5.1.3:
Commas / 7.5.2:
Semicolons / 7.5.3:
Colons / 7.5.4:
Apostrophes / 7.5.5:
Dashes and hyphens / 7.5.6:
Final Considerations / 7.6:
Abbreviations and acronyms / 7.6.1:
Capitalization / 7.6.2:
Numbers / 7.6.3:
Dates / 7.6.4:
Fractions and percentages / 7.6.5:
Units of measure / 7.6.6:
A Final Note on Grammar / 7.7:
Concluding Remarks / 7.8:
Business Case / 8.1:
Frequently Asked Questions / 8.3:
Success Stories / 8.4:
Additional Reading / 8.5:
Useful books and articles / 8.5.1:
Useful weblinks / 8.5.2:
EXERCISES / 8.6:
Preface
Acknowledgments
Introduction / Chapter 1:
2.

図書

図書
Ulrich Schubert, Nicola Hüsing
出版情報: Weinheim : Wiley-VCH, c2019  xviii, 404 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Abbreviations
Introduction / 1:
Solid-State Reactions / 2:
Reactions Between Solid Compounds / 2.1:
Ceramic Method / 2.1.1:
General Aspects of Solid-State Reactions / 2.1.1.1:
Facilitating Solid-State Reactions / 2.1.1.2:
Mechanochemical Synthesis / 2.1.2:
Carbothermal Reduction / 2.1.3:
Combustion Synthesis / 2.1.4:
Solution Combustion Synthesis / 2.1.4.1:
Solid-Gas Reactions / 2.2:
Ceramics Processing / 2.3:
Sintering / 2.3.1:
Intercalation Reactions / 2.4:
Mechanistic Aspects / 2.4.1:
Preparative Methods / 2.4.2:
Intercalation of Polymers in Layered Systems / 2.4.3:
Pillaring of Layered Compounds / 2.4.4:
Further Reading
Formation of Solids from the Gas Phase / 3:
Chemical Vapour Transport / 3.1:
Halogen Lamps / 3.1.1:
Transport Reactions / 3.1.2:
Chemical Vapour Deposition / 3.2:
General Aspects / 3.2.1:
Techniques / 3.2.2:
Metal CVD / 3.2.3:
Silicon and Aluminium / 3.2.3.1:
Tungsten / 3.2.3.2:
Copper / 3.2.3.3:
CVD of Carbon / 3.2.4:
CVD of Binary and Multinary Compounds / 3.2.5:
Metal Oxides / 3.2.5.1:
Metal Nitrides / 3.2.5.2:
Metal Chalcogenides and Pnictides / 3.2.5.3:
Aerosol-Assisted CVD / 3.2.6:
Chemical Vapour Infiltration / 3.2.7:
Gas-Phase Powder Syntheses / 3.3:
Formation of Solids from Solutions and Melts / 4:
Glass / 4.1:
The Structural Theory of Glass Formation / 4.1.1:
Crystallization Versus Glass Formation / 4.1.2:
Glass Melting / 4.1.3:
Phase Separation / 4.1.4:
Metallic Glasses / 4.1.5:
Crystallization from Solution / 4.2:
Monodispersity / 4.2.1:
Shape Control of Crystals / 4.2.2:
Non-classical Crystallization / 4.2.3:
Biomineralization / 4.2.4:
Biogenic Materials / 4.2.4.1:
Bioinspired Materials Chemistry / 4.2.4.2:
Electrodeposition / 4.3:
Colloids / 4.3.1:
Electrodeposition of Ceramics / 4.3.2:
Solvothermal Processes / 4.4:
Fundamentals / 4.4.1:
Growing Single Crystals / 4.4.2:
Solvothermal Synthesis / 4.4.3:
Synthetic Calcium Phosphate Biomaterials / 4.4.3.1:
Zeolites / 4.4.3.3:
Sol-Gel Processes / 4.5:
The Chemistry of Alkoxide Precursors / 4.5.1:
Hydrolysis and Condensation / 4.5.2:
Silica-Based Materials / 4.5.2.1:
Metal Oxide-Based Materials / 4.5.2.2:
The Sol-Gel Transition (Gelation) / 4.5.3:
Aging and Drying / 4.5.4:
Nonhydrolytic Sol-Gel Processes / 4.5.5:
Inorganic-Organic Hybrid Materials / 4.5.6:
Aerogels / 4.5.7:
Preparation and Modification of Inorganic Polymers / 5:
Synthesis and Crosslinking / 5.1:
Copolymers / 5.1.2:
Polysiloxanes (Silicones) / 5.2:
Properties and Applications / 5.2.1:
Structure / 5.2.2:
Preparation / 5.2.3:
Curing ('Vulcanizing') / 5.2.4:
Polyphosphazenes / 5.3:
Preparation and Modification / 5.3.1:
Polysilanes / 5.4:
Polycarbosilanes / 5.4.1:
Polysilazanes and Related Polymers / 5.6:
Polymers with B-N Backbones / 5.7:
Other Inorganic Polymers / 5.8:
Other Phosphorus-Containing Polymers / 5.8.1:
Polymers with S-N Backbones / 5.8.2:
Metallopolymers / 5.8.3:
Polymer-to-Ceramic Transformation / 5.9:
Self-Assembly / 6:
Self-Assembled Monolayers / 6.1:
Metal-Organic Frameworks / 6.2:
Modularity of the Structures / 6.2.1:
Synthesis and Modification / 6.2.2:
Supramolecular Arrangements of Surfactants and Block Copolymers / 6.3:
Layer-by-Layer Assembly / 6.4:
Templating / 7:
Introduction to Porosity and High Surface Area Materials / 7.1:
Infiltration and Coating of Templates / 7.2:
Replica Technique / 7.2.1:
Sacrificial Templates / 7.2.2:
Colloidal Crystals / 7.2.2.1:
Hollow Particles / 7.2.2.2:
Direct Foaming / 7.2.3:
Nanocasting / 7.2.4:
In Situ Formation of Templates / 7.3:
Breath Figures / 7.3.1:
Freeze Casting / 7.3.2:
Supramolecular Assemblies of Amphiphiles / 7.3.3:
Synthesis of Periodic Mesoporous Silicas / 7.3.3.1:
Evaporation-Induced Self-Assembly / 7.3.3.2:
Incorporation of Organic Groups / 7.3.3.3:
Reorganization and Transformation Processes / 7.4:
Pseudomorphic Transformation / 7.4.1:
Kirkendall Effect / 7.4.2:
Galvanic Replacement / 7.4.3:
Phase Separation and Leaching / 7.4.4:
Nanomaterials / 8:
Properties of Nanomaterials / 8.1:
Properties Due to Surface Effects / 8.1.1:
Properties of Nanocrystalline Materials / 8.1.2:
Catalytic Properties / 8.1.3:
Optical Properties / 8.1.4:
Electrical Properties / 8.1.5:
Magnetic Properties / 8.1.6:
Syntheses of Nanoparticles / 8.2:
Severe Plastic Deformation / 8.2.1:
Formation from Vapours / 8.2.2:
Formation from Solution / 8.2.3:
Surface Modification with Organic Groups / 8.2.4:
One-Dimensional Nanostructures / 8.3:
Nanowires and Nanorods / 8.3.1:
Nanotubes / 8.3.2:
Carbon Nanotubes / 8.3.2.1:
Titania Nanotubes / 8.3.2.2:
Two-Dimensional Nanomaterials / 8.4:
Graphene / 8.4.1:
Other 2D Nanomaterials / 8.4.2:
Heterostructures and Composites / 8.5:
Core-Shell Nanoparticles / 8.5.1:
Vertical 2D Heterostructures / 8.5.2:
Polymer-Matrix Nanocomposites / 8.5.3:
Supported Metal Nanoparticles / 8.5.4:
Glossary
Index
Preface
Acknowledgements
Abbreviations
3.

図書

図書
Edward Bellinger and David C. Sigee
出版情報: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley-Blackwell, 2010  viii, 271 p ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
Algae as primary producers / 1.1.2:
Freshwater environments / 1.1.3:
Planktonic and benthic algae / 1.1.4:
Size and shape / 1.1.5:
Taxonomic variation / 1.2:
Microscopical appearance / 1.2.1:
Biochemistry / 1.2.2:
Molecular characteristics and identification / 1.2.3:
Blue-green algae / 1.3:
Cytology / 1.3.1:
Morphological and taxonomic diversity / 1.3.2:
Ecology / 1.3.3:
Blue-green algae as bioindicators / 1.3.4:
Green algae / 1.4:
Morphological diversity / 1.4.1:
Green algae as bioindicators / 1.4.3:
Euglenoids / 1.5:
Euglenoids as bioindicators / 1.5.1:
Yellow-green algae / 1.6:
Yellow-green algae as bioindicators / 1.6.1:
Dinoflagellates / 1.7:
Cryptomonads / 1.7.1:
Comparison with euglenoid algae / 1.8.1:
Biodiversity / 1.8.3:
Cryptomonads as bioindicators / 1.8.4:
Chrysophytes / 1.9:
Chrysophytes as bioindicators / 1.9.1:
Diatoms / 1.10:
Diatoms as bioindicators / 1.10.1:
Red algae / 1.11:
Brown algae / 1.12:
Sampling, biomass estimation and counts of freshwater algae A Planktonic algae / 2:
Protocol for collection / 2.1:
Standing water phytoplankton / 2.1.1:
River phytoplankton
Mode of collection / 2.2:
Phytoplankton trawl net / 2.2.1:
Volume samplers / 2.2.2:
Integrated sampling / 2.2.3:
Sediment traps / 2.2.4:
Phytoplankton biomass / 2.3:
Turbidity / 2.3.1:
Dry weight and ash-free dry weight / 2.3.2:
Pigment concentrations / 2.3.3:
Flow cytometry / 2.4:
Microscope counts of species populations / 2.5:
Sample preservation and processing / 2.5.1:
Species counts / 2.5.2:
Conversion of species counts to biovolumes / 2.5.3:
Chemical cleaning of diatoms / 2.5.4:
Diversity within species populations / 2.6:
Molecular analysis / 2.6.1:
Analytical microscopical techniques B Non-planktonic algae / 2.6.2:
Deep water benthic algae / 2.7:
Benthic-pelagic coupling / 2.7.1:
Benthic algae and sediment stability / 2.7.2:
Invertebrate grazing of benthic algae / 2.7.3:
Shallow water communities / 2.8:
Substrate / 2.8.1:
Algal communities / 2.8.2:
Algal biofilms / 2.9:
Mucialginous biofilms / 2.9.1:
Biomass / 2.9.2:
Taxonomic composition / 2.9.3:
Matrix structure / 2.9.4:
Periphyton? algal mats / 2.10:
Inorganic substratum / 2.10.1:
Plant surfaces / 2.10.2:
Algae as bioindicators / 3:
Bioindicators and water quality / 3.1:
Biomarkers and bioindicators / 3.1.1:
Characteristics of bioindicators / 3.1.2:
Biological monitoring versus chemical measurements / 3.1.3:
Monitoring water quality: objectives / 3.1.4:
Lakes / 3.2:
Contemporary planktonic and attached algae as bioindicators / 3.2.1:
Fossil algae as bioindicators: lake sediment analysis / 3.2.2:
Water quality parameters / 3.2.3:
Wetlands / 3.3:
Rivers / 3.4:
The periphyton community / 3.4.1:
River diatoms / 3.4.2:
Evaluation of the diatom community / 3.4.3:
Human impacts and diatom indices / 3.4.4:
Calculation of diatom indices / 3.4.5:
Practical applications of diatom indices / 3.4.6:
Estuaries / 3.5:
Ecosystem complexity / 3.5.1:
Algae as estuarine bioindicators / 3.5.2:
A key to the more frequently occurring freshwater algae / 4:
Introduction to the key / 4.1:
Using the key / 4.1.1:
Morphological groupings / 4.1.2:
Key to the main genera and species / 4.2:
List of algae included and their occurrence in the key / 4.3:
Algal identification: bibliography / 4.4:
Glossary
References
Index
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
4.

図書

図書
Ulf Leonhardt
出版情報: Cambridge : Cambridge University Press, 2010  xii, 277 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
Quantum theory / 1.2:
Axioms / 1.2.1:
Quantum statistics / 1.2.2:
Schrödinger and Heisenberg pictures / 1.2.3:
On the questions and homework problems / 1.3:
Further reading / 1.4:
Quantum field theory of light / 2:
Light in media / 2.1:
Maxwell's equations / 2.1.1:
Quantum commutator / 2.1.2:
Light modes / 2.2:
Modes and their scalar product / 2.2.1:
Bose commutation relations / 2.2.2:
Interference / 2.2.3:
Monochromatic modes / 2.2.4:
Zero-point energy and Casimir force / 2.3:
An attractive cavity / 2.3.1:
Reflections / 2.3.2:
Questions / 2.4:
Homework problem / 2.5:
Simple quantum states of light / 2.6:
The electromagnetic oscillator / 3.1:
Single-mode states / 3.2:
Quadrature states / 3.2.1:
Fock states / 3.2.2:
Thermal states / 3.2.3:
Coherent states / 3.2.4:
Uncertainty and squeezing / 3.3:
Quasiprobability distributions / 3.4:
Wigner representation / 4.1:
Wigner's formula / 4.1.1:
Basic properties / 4.1.2:
Examples / 4.1.3:
Other quasiprobability distributions / 4.2:
Q function / 4.2.1:
P function / 4.2.2:
s-parameterized quasiprobability distributions / 4.2.3:
Simple optical instruments / 4.3:
Beam splitter / 5.1:
Heisenberg picture / 5.1.1:
Schrödinger picture / 5.1.2:
Fock representation and wave-particle dualism / 5.1.3:
Detection / 5.2:
Photodetector / 5.2.1:
Balanced homodyne detection / 5.2.2:
Quantum tomography / 5.2.3:
Simultaneous measurement of conjugate variables / 5.2.4:
Irrevesible processes / 5.3:
Lindblad's theorem / 6.1:
Irreversibility / 6.1.1:
Reversible dynamics / 6.1.2:
Irreversible dynamics / 6.1.3:
Loss and gain / 6.2:
Absorption and amplification / 6.2.1:
Absorber / 6.2.2:
Amplifier / 6.2.3:
Eavesdropper / 6.2.4:
Continuous quantum measurements / 6.3:
Entanglement / 6.4:
Parametric amplifier / 7.1:
Einstein-Podolski-Rosen state / 7.1.1:
Quantum teleportation / 7.1.4:
Polarization correlations / 7.2:
Singlet state / 7.2.1:
Polarization / 7.2.2:
Bell's theorem / 7.2.3:
Horizons / 7.3:
Minkowski space / 8.1:
Locality and relativity / 8.1.1:
Space-time geometry / 8.1.2:
Light / 8.1.3:
Accelerated observers / 8.2:
Rindler coordinates / 8.2.1:
Accelerated modes / 8.2.2:
Unruh effect / 8.2.3:
Moving media / 8.3:
Motivation / 8.3.1:
Trans-Planckian problem / 8.3.2:
Light in moving media / 8.3.3:
Geometry of light / 8.3.4:
Hawking radiation / 8.3.5:
Stress of the quantum vacuum / 8.4:
State reconstruction in quantum mechanics / Appendix B:
References
Index
Irreversible processes
Appendixes
Acknowledgements
Introduction / 1:
A note to the reader / 1.1:
5.

図書

図書
Gregory Falkovich
出版情報: Cambridge : Cambridge University Press, 2011  xii, 167 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Prologue
Basic equations and steady flows / 1:
Definitions and basic equations / 1.1:
Definitions / 1.1.1:
Equations of motion for an ideal fluid / 1.1.2:
Hydrostatics / 1.1.3:
Isentropic motion / 1.1.4:
Conservation laws and potential flows / 1.2:
Kinematics / 1.2.1:
Kelvin's theorem / 1.2.2:
Energy and momentum fluxes / 1.2.3:
Irrotational and incompressible flows / 1.2.4:
Flow past a body / 1.3:
Incompressible potential flow past a body / 1.3.1:
Moving sphere / 1.3.2:
Moving body of an arbitrary shape / 1.3.3:
Quasi-momentum and induced mass / 1.3.4:
Viscosity / 1.4:
Reversibility paradox / 1.4.1:
Viscous stress tensor / 1.4.2:
Navier-Stokes equation / 1.4.3:
Law of similarity / 1.4.4:
Stokes flow and the wake / 1.5:
Slow motion / 1.5.1:
The boundary layer and the separation phenomenon / 1.5.2:
Flow transformations / 1.5.3:
Drag and lift with a wake / 1.5.4:
Exercises
Unsteady flows / 2:
Instabilities / 2.1:
Kelvin-Helmholtz instability / 2.1.1:
Energetic estimate of the stability threshold / 2.1.2:
Landau's law / 2.1.3:
Turbulence / 2.2:
Cascade / 2.2.1:
Turbulent river and wake / 2.2.2:
Acoustics / 2.3:
Sound / 2.3.1:
Riemann wave / 2.3.2:
Burgers equation / 2.3.3:
Acoustic turbulence / 2.3.4:
Mach number / 2.3.5:
Dispersive waves / 3:
Linear waves / 3.1:
Surface gravity waves / 3.1.1:
Viscous dissipation / 3.1.2:
Capillary waves / 3.1.3:
Phase and group velocity / 3.1.4:
Weakly non-linear waves / 3.2:
Hamiltonian description / 3.2.1:
Hamiltonian normal forms / 3.2.2:
Wave instabilities / 3.2.3:
Non-linear Schrödinger equation (NSE) / 3.3:
Derivation of NSE / 3.3.1:
Modulational instability / 3.3.2:
Soliton, collapse and turbulence / 3.3.3:
Korteveg-de-Vries (KdV) equation / 3.4:
Waves in shallow water / 3.4.1:
The KdV equation and the soliton / 3.4.2:
Inverse scattering transform / 3.4.3:
Solutions to exercises / 4:
Chapter 1
Chapter 2
Chapter 3
Epilogue
Notes
References
Index
Preface
Prologue
Basic equations and steady flows / 1:
6.

図書

図書
edited by Xin-bo Zhang
出版情報: Weinheim : Wiley-VCH, c2018  xiv, 417 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
Sodium-O2 Battery / 1.2:
References
Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries / Bin Liu and Wu Xu and Ji-Guang Zhang2:
Introduction / 2.1:
Recent Progresses in Li Metal Protection for Li-O2 Batteries / 2.2:
Design of Composite Protective Layers / 2.2.1:
New Insights on the Use of Electrolyte / 2.2.2:
Functional Separators / 2.2.3:
Solid-State Electrolytes / 2.2.4:
Alternative Anodes / 2.2.5:
Challenges and Perspectives / 2.3:
Acknowledgment
Li-Air Batteries: Discharge Products / Xuanxuan Bi and Rongyue Wang and Jun Lu3:
Discharge Products in Aprotic Li-O2 Batteries / 3.1:
Peroxide-based Li-O2 Batteries / 3.2.1:
Electrochemical Reactions / 3.2.1.1:
Crystalline and Electronic Band Structure of Li2O2 / 3.2.1.2:
Reaction Mechanism and the Coexistence of Li2O2 and LiO2 / 3.2.1.3:
Super oxide-based Li-02 Batteries / 3.2.2:
Problems and Challenges in Aprotic Li-O2 Batteries / 3.2.3:
Decomposition of the Electrolyte / 3.2.3.1:
Degradation of the Carbon Cathode / 3.2.3.2:
Discharge Products in Li-Air Batteries / 3.3:
Challenges to Exchanging O2 to Air / 3.3.1:
Effect of Water on Discharge Products / 3.3.2:
Effect of Small Amount of Water / 3.3.2.1:
Aqueous Li-O2 Batteries / 3.3.2.2:
Effect of C02 on Discharge Products / 3.3.3:
Current Li-Air Batteries and Perspectives / 3.3.4:
Electrolytes for Li-O2 Batteries / Alex R. Neale and Peter Goodrich and Christopher Hardacre and Johan Jacquemin4:
General Li-O2 Battery Electrolyte Requirements and Considerations / 4.1:
Electrolyte Salts / 4.1.1:
Ethers and Glymes / 4.1.2:
Dimethyl Sulfoxide (DMSO) and Sulfones / 4.1.3:
Nitriles / 4.1.4:
Amides / 4.1.5:
Ionic Liquids / 4.1.6:
Future Outlook / 4.1.7:
Li-Oxygen Battery: Parasitic Reactions / Xiahui Yao and Qi Dong and Qingmei Cheng and Dunwei Wang5:
The Desired and Parasitic Chemical Reactions for Li-Oxygen Batteries / 5.1:
Parasitic Reactions of the Electrolyte / 5.2:
Nucleophilic Attack / 5.2.1:
Autoxidation Reaction / 5.2.2:
Acid-Base Reaction / 5.2.3:
Proton-mediated Parasitic Reaction / 5.2.4:
Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction / 5.2.5:
Parasitic Reactions at the Cathode / 5.3:
The Corrosion of Carbon in the Discharge Process / 5.3.1:
The Corrosion of Carbon in the Recharge Process / 5.3.2:
Catalyst-induced Parasitic Chemical Reactions / 5.3.3:
Alternative Cathode Materials and Corresponding Parasitic Chemistries / 5.3.4:
Additives and Binders / 5.3.5:
Contaminations / 5.3.6:
Parasitic Reactions on the Anode / 5.4:
Corrosion of the Li Metal / 5.4.1:
SEI in the Oxygenated Atmosphere / 5.4.2:
Alternative Anodes and Associated Parasitic Chemistries / 5.4.3:
New Opportunities from the Parasitic Reactions / 5.5:
Summary and Outlook / 5.6:
Li-Air Battery: Electrocatalysts / 6:
Types of ELectrocatalyst / 6.1:
Carbonaceous Materials / 6.2.1:
Commercial Carbon Powders / 6.2.1.1:
Carbon Nanotubes (CNTs) / 6.2.1.2:
Graphene / 6.2.1.3:
Doped Carbonaceous Material / 6.2.1.4:
Noble Metal and Metal Oxides / 6.2.2:
Transition Metal Oxides / 6.2.3:
Perovskite Catalyst / 6.2.3.1:
Redox Mediator / 6.2.3.2:
Research of Catalyst / 6.3:
Reaction Mechanism / 6.4:
Summary / 6.5:
Lithium-Air Battery Mediator / Zhuojion Liang and Guangtao Cong and Yu Wang and Yi-Chun Lu7:
Redox Mediators in Lithium Batteries / 7.1:
Redox Mediators in Li-Air Batteries / 7.1.1:
Redox Mediators in Li-ion and Lithium-flow Batteries / 7.1.2:
Overcharge Protection in Li-ion Batteries / 7.1.2.1:
Redox Targeting Reactions in Lithium-flow Batteries / 7.1.2.2:
Selection Criteria and Evaluation of Redox Mediators for Li-O2 Batteries / 7.2:
Redox Potential / 7.2.1:
Stability / 7.2.2:
Reaction Kinetics and Mass Transport Properties / 7.2.3:
Catalytic Shuttle vs Parasitic Shuttle / 7.2.4:
Charge Mediators / 7.3:
Lil (Lithium Iodide) / 7.3.1:
LiBr (Lithium Bromide) / 7.3.2:
Nitroxides: TEMPO (2,2,6,6-TetramethyIpiperidinyioxyl) and Others / 7.3.3:
TTF (Tetrathiafulvalene) / 7.3.4:
Tris[4-(diethylamino)phenyl]amine (TDPA) / 7.3.5:
Comparison of the Reported Charge Mediators / 7.3.6:
Discharge Mediator / 7.4:
Iron Phthalocyanine (FePc) / 7.4.1:
2,5-Di-tert'butyl-l,4-benzoquinone (DBBQ) / 7.4.2:
Conclusion and Perspective / 7.5:
Spatiotemporal Operando X-ray Diffraction Study on Li-Air Battery / Di-Jia Liu and Jiang-Lan Shui8:
Microfocused X-ray Diffraction (¿-XRD) and Li-O2 Cell Experimental Setup / 8.1:
Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB / 8.2:
Study on Separator: Impact of Precipitates to LAB Performance / 8.3:
Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox Reaction / 8.4:
Metal-Air Battery: In Situ Spectroelectrochemical Techniquesx / lain M. Aldous and Laurence J. Hardwick and Richard J. Nichols and J. Padmanabhan Vivek9:
Raman Spectroscopy / 9.1:
In Situ Raman Spectroscopy for Metal-O2 Batteries / 9.1.1:
Background Theory / 9.1.2:
Practical Considerations / 9.1.3:
Electrochemical Roughening / 9.1.3.1:
Addressing Inhomogeneous SERS Enhancement / 9.1.3.2:
In Situ Raman Setup / 9.1.4:
Determination of Oxygen Reduction and Evolution Reaction Mechanisms Within Metal-O2 Batteries / 9.1.5:
Infrared Spectroscopy / 9.2:
Background / 9.2.1:
IR Studies of Electrochemical Interfaces / 9.2.2:
Infrared Spectroscopy for Metal-O2 Battery Studies / 9.2.3:
UV/Visible Spectroscopic Studies / 9.3:
UV/Vis Spectroscopy / 9.3.1:
UV/Vis Spectroscopy for Metal-O2 Battery Studies / 9.3.2:
Electron Spin Resonance / 9.4:
Cell Setup / 9.4.1:
Deployment of Electrochemical ESR in Battery Research / 9.4.2:
Zn-Air Batteries / Tong wen Yu and Rui Cai and Zhongwei Chen9.5:
Zinc Electrode / 10.1:
Electrolyte / 10.3:
Separator / 10.4:
Air Electrode / 10.5:
Structure of Air Electrode / 10.5.1:
Oxygen Reduction Reaction / 10.5.2:
Oxygen Evolution Reaction / 10.5.3:
Electrocatalyst / 10.5.4:
Noble Metals and Alloys / 10.5.4.1:
Inorganic-Organic Hybrid Materials / 10.5.4.2:
Meta-free Materials / 10.5.4.4:
Conclusions and Outlook / 10.6:
Experimental and Computational investigation of Nonaqueous Mg/O2 Batteries / Jeffrey G. Smith and Güiin Vardar and Charles W. Monroe and Donald J. Siegel11:
Experimental Studies of Magnesium/Air Batteries and Electrolytes / 11.1:
Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries / 11.2.1:
Modified Grignard Electrolytes for Mg/O2 Batteries / 11.2.2:
All-inorganic Electrolytes for Mg/O2 Batteries / 11.2.3:
Electrochemical Impedance Spectroscopy / 11.2.4:
Computational Studies of Mg/O2 Batteries / 11.3:
Calculation of Thermodynamic Overpotentials / 11.3.1:
Charge Transport in Mg/O2 Discharge Products / 11.3.2:
Concluding Remarks / 11.4:
Novel Methodologies to Model Charge Transport In Metal-Air Batteries / Nicoiai Rask Mathiesen and Marko Melander and Mikael Kuisma and Pablo García-Fernandez and Juan Maria García Lastra12:
Modeling Electrochemical Systems with GPAW / 12.1:
Density Functional Theory / 12.2.1:
Conductivity from DFT Data / 12.2.2:
The GPAW Code / 12.2.3:
Charge Transfer Rates with Constrained DFT / 12.2.4:
Marcus Theory of Charge Transfer / 12.2.4.1:
Constrained DFT / 12.2.4.2:
Polaronic Charge Transport at the Cathode / 12.2.4.3:
Electrochemistry at Solid-Liquid Interfaces / 12.2.5:
Modeling the Electrochemical Interface / 12.2.5.1:
Implicit Solvation at the Electrochemical Interface / 12.2.5.2:
Generalized Poisson-Boltzmann Equation for the Electric Double Layer / 12.2.5.3:
A Electrode Potential Within the Poisson-Boltzmann Model
Calculations at Constant Electrode Potential / 12.2.6:
The Need for a Constant Potential Presentation / 12.2.6.1:
Grand Canonical Ensemble for Electrons / 12.2.6.2:
Fictitious Charge Dynamics / 12.2.6.3:
Model in Practice / 12.2.6.4:
Conclusions / 12.2.7:
Second Principles for Material Modeling / 12.3:
The Energy in SP-DET / 12.3.1:
The Lattice Term (E(0)) / 12.3.2:
Electronic Degrees of Freedom / 12.3.3:
Model Construction / 12.3.4:
Perspectives on SP-DFT / 12.3.5:
Acknowledgments
Flexible Metal-Air Batteries / Huisheng Peng and Yifan Xu and Jian Pan and Yang Zhao and Lie Wang and Xiang Shi13:
Flexible Electrolytes / 13.1:
Aqueous Electrolytes / 13.2.1:
PAA-based Gel Polymer Electrolyte / 13.2.1.1:
PEO-based Gel Polymer Electrolyte / 13.2.1.2:
PVA-based Gel Polymer Electrolyte / 13.2.1.3:
Nonaqueous Electrolytes / 13.2.2:
PEO-based Polymer Electrolyte / 13.2.2.1:
PVDF-HFP-based Polymer Electrolyte / 13.2.2.2:
Ionic Liquid Electrolyte / 13.2.2.3:
Flexible Anodes / 13.3:
Flexible Cathodes / 13.4:
Modified Stainless Steel Mesh / 13.4.1:
Modified Carbon Textile / 13.4.2:
Carbon Nanotube / 13.4.3:
Graphene-based Cathode / 13.4.4:
Other Composite Electrode / 13.4.5:
Prototype Devices / 13.5:
Sandwich Structure / 13.5.1:
Fiber Structure / 13.5.2:
Perspectives on the Development of Metal-Air Batteries / 13.6:
Lithium Anode / 14.1:
Cathode / 14.1.2:
The Reaction Mechanisms / 14.1.4:
The Development of Solid-state Li-O2 Battery / 14.1.5:
The Development of Flexible Li-O2 Battery / 14.1.6:
Na-O2 Battery / 14.2:
Zn-air Battery / 14.3:
Index
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
7.

図書

図書
edited by Tito Trindade, Ana L. Daniel da Silva
出版情報: Singapore : Pan Stanford Publishing, c2011  xxii, 289, 4 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
From Nanoparticles to Nanocomposites: A Brief Overview / 1:
Nanoscience and Nanotechnology: An introduction / 1.1:
Nanoparticles' Diversity / 1.2:
Quantum dots / 1.2.1:
Iron oxides / 1.2.2:
Metal nanoparticles / 1.2.3:
Surface Modification of Nanoparticles / 1.3:
Ligand exchange reactions / 1.3.1:
Inorganic nanocoating / 1.3.2:
Encapsulation in polymers / 1.3.3:
Designing Biointerfaces over Nanoparticles / 1.4:
Challenges for the Future... Nanosafety for Today / 1.5:
Polymers for Biomedical Applications: Chemical Modification and Biofunctionalization / 2:
Drug Delivery Systems / 2.1:
Hydrogels / 2.2:
Application of hydrogels / 2.2.1:
Types of hydrogels / 2.2.2:
Bioadhesives / 2.3:
Surface Modification / 2.4:
Surface modification by ultra-violet radiation / 2.4.1:
Plasma treatment / 2.4.2:
Plasma generation / 2.4.2.1:
Plasma polymerization and surface modification of polymers / 2.4.2.2:
Concluding Remarks / 2.5:
Nanocapsules as Carriers for the Transport and Targeted Delivery of Bioactive Molecules / 3:
Introduction / 3.1:
Polymeric Nanocapsules: Production and Characterization / 3.2:
Nanocapsules made of synthetic polymers / 3.2.1:
Polyacrylate nanocapsules / 3.2.1.1:
Polyester nanocapsules / 3.2.1.2:
Nanocapsules made of natural polymers / 3.2.2:
Lipid nanocapsules / 3.2.3:
Therapeutical Applications of Nanocapsules / 3.3:
Nanocapsules for oral drug delivery / 3.3.1:
Nanocapsules for oral peptide delivery / 3.3.1.1:
Nanocapsules for oral delivery of lipophilic low molecular weight drugs / 3.3.1.2:
Nanocapsules as nasal drug carriers / 3.3.2:
Nanocapsules as ocular drug carriers / 3.3.3:
Nanocapsules in cancer therapy / 3.3.4:
Nanocapsules as carriers for gene therapy / 3.3.5:
Conclusions / 3.4:
Inorganic Nanoparticles Biofunctionalization / 4:
Bioeonjugation of Nanoparticles / 4.1:
Nanoparticles and Their Surface Properties / 4.2:
Surface capping of nanoparticles / 4.2.1:
Semiconductor quantum dots and metallic nanoparticles / 4.2.2:
Silica nanoparticles and silica encapsulation / 4.2.3:
Attachment Schemes / 4.3:
Covalent attachment / 4.3.1:
Non-covalent attachment / 4.3.2:
Affinity binding / 4.3.3:
Specific Cases / 4.4:
Proteins / 4.4.1:
DNA / 4.4.2:
Avidin / 4.4.3:
Phospholipid encapsulation and functionalization / 4.4.4:
Applications / 4.5:
Cellular imaging / 4.5.1:
Drug delivery / 4.5.2:
Bioluminescence resonance energy transfer / 4.5.3:
Hyperthermia / 4.5.4:
Conclusion / 4.6:
Silica-Based Materials: Bioprocesses and Nanocomposites / 5:
Natural Silica Nanocomposites / 5.1:
Diatom biosilica / 5.1.1:
Sponge biosilica / 5.1.3:
(Bio)-technological applications of biosilica / 5.1.4:
Biomimetic Silica Nanocomposites / 5.2:
Silica nanocomposites based on natural templates / 5.2.1:
Silica nanocomposites based on model templates / 5.2.3:
Synthetic peptides / 5.2.3.1:
Synthetic polyamines / 5.2.3.2:
Biological templates / 5.2.3.3:
Biomimetism: How far can we go? / 5.2.4:
Bio-Inspired Silica Nanocomposites / 5.3:
Biotechnological and medical applications / 5.3.1:
Perspectives / 5.3.3:
Synthetic Strategies for Polymer-Based Nanocomposite Particles / 6:
Surfaces and Interfaces: Chemical Modification of Nanoparticles / 6.1:
In situ Synthetic Strategies for Polymer-Based Colloidal Nanocomposites / 6.3:
In situ preparation of the fillers / 6.3.1:
Sol-gel methods / 6.3.1.1:
In situ polymerization of the matrix / 6.3.2:
Organic solvent-based methods: Dispersion polymerization / 6.3.2.1:
Water-based methods: Emulsion and miniemulsion polymerization / 6.3.2.2:
Controlled polymerization: Surface initiated polymerization(SIP) / 6.3.3:
Atom Transfer Radical Polymerization Atrp / 6.3.3.1:
Reversible Addition Fragmentation chain transfer (Raft) polymerization / 6.3.3.2:
Combined controlled polymerization mechanisms / 6.3.3.3:
Functionalization of Polymer-Based Nanocomposites for Bio-Applications / 6.4:
Final Remarks / 6.5:
Synthesis of Nanocomposite Particles Using Supercritical Fluids: A Bridge with Bio-applications / 7:
Supercritical Fluids: Definition and Current use in, Bio-Applications / 7.1:
Definition / 7.2.1:
Scps in biomedical applications / 7.2.2:
Development of drug delivery systems / 7.2.2.1:
scC02 for purification and sterilization / 7.2.2.2:
Can Scfs be Used to Introduce Inorganic NPs into Polymers? / 7.3:
Formation of hybrid organic-inorganic NPs in Scps(route 1) / 7.3.1:
Encapsulation of inorganic NPs into a polymer shell (route 2) / 7.3.2:
Polymer swelling and in situ growth of inorganic NPs (route 3) / 7.3.3:
Polymer swelling by scC02 / 7.3.3.1:
Chemical transformation of impregnated metal precursor / 7.3.3.2:
Biocomposites Containing Magnetic Nanoparticles / 7.4:
Magnetic Properties / 8.1:
Magnetism at nanoscale level: Concepts and main phenomena / 8.2.1:
Basic concepts / 8.2.1.1:
Systems with interactions between magnetic centers / 8.2.1.2:
Superparamagnetism / 8.2.1.3:
Magnetism concepts subjacent to bio-applicatons / 8.2.2:
Magnetic separation and drug delivery / 8.2.2.1:
Magnetic resonance imaging (Mri) / 8.2.2.2:
Magnetic hyperthermia / 8.2.2.3:
Magnetic Nanoparticles for Bio-Applications / 8.3:
Iron oxide nanoparticles / 8.3.1:
Metallic nanoparticles / 8.3.2:
Metal alloy nanoparticles / 8.3.3:
Bimagnetic nanoparticles / 8.3.4:
Strategies of Synthesis of Magnetic Biocomposite Nanoparticles / 8.4:
In situ formation of magnetic nanoparticles / 8.4.1:
Other magnetic nanoparticles / 8.4.1.1:
Encapsulation of magnetic nanoparticles within biopolymers / 8.4.2:
Conclusions and Future Outlook / 8.5:
Multifunctional Nanoeomposite Particles for Biomedical Applications / 9:
Types of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.1:
Main Approaches to the Preparation of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.3:
Silica coated magnetic-fluorescent nanoparticles / 9.3.1:
Organic polymer coated magnetic cores treated with fluorescent entities / 9.3.2:
Ionic assemblies of magnetic cores and fluorescent entities / 9.3.3:
Fluoreseently-labeled lipid coated magnetic nanoparticles / 9.3.4:
Magnetic core directly linked to fluorescent entity via a molecular spacer / 9.3.5:
Magnetic cores coated by fluorescent semiconducting shells / 9.3.6:
Magnetically-doped Qds / 9.3.7:
Magnetic nanoparticles and Qds embedded within a polymer or silica matrix / 9.3.8:
Biomedical Applications / 9.4:
Bio-imaging probes / 9.4.1:
Cell tracking, sorting and bioseparation / 9.4.2:
Applications in nanomedicine / 9.4.3:
Bio-Applications of Functionalized Magnetic Nanoparticles and Their Nanocomposites / 9.5:
Fundaments of Nanomagnetism / 10.1:
Single-domain particles / 10.2.1:
Magnetic anisotropy energy / 10.2.2:
Fundaments of Colloidal Stability / 10.2.3:
Bio-Applications of Magnetic Nanoparticles / 10.4:
Magnetic separation / 10.4.1:
Nuclear magnetic resonance imaging (Mri) / 10.4.2:
Contrast agents based on superparamagnetic nanomagnets / 10.4.3.1:
Magnetobiosensors / 10.4.4:
Magnetobiosensors based on magnetorelaxometry / 10.4.4.1:
Magnetobiosensors based on magnetoresistance / 10.4.4.2:
Magnetosensors based on Hall effect / 10.4.4.3:
Magnetoplasmonics / 10.4.4.4:
Summary and Outlook / 10.4.5:
Anti-Microbial Polymer Nanocomposites / 11:
Packaging / 11.1:
Textiles / 11.1.2:
Coatings / 11.1.3:
Antimicrobial coatings / 11.1.3.1:
Medicine, pathology and surgical implants/ biomedical coatings / 11.1.3.2:
Anti-Microbial Polymer-Based Nanocomposites / 11.2:
Mechanisms of Antibacterial Action / 11.3:
Detection of microbes / 11.3.1:
Control of microbial growth / 11.3.2:
Environmental and Health Concerns / 11.4:
Biosensing Applications Using Nanoparticles / 12:
Biosensors: A Definition / 12.1:
Uses of Gold Nanoparticles / 12.2:
Tailoring biointerfaces over gold nanoparticles / 12.2.1:
Biosensing applications of gold nanoparticles / 12.2.2:
Crosslinking-based biosensing / 12.2.2.1:
Non-crosslmking-based biosensing / 12.2.2.2:
Semiconductor Quantum Dots / 12.3:
Properties of quantum dots / 12.3.1:
Biosensing with quantum dots / 12.3.2:
Immunosensing / 12.3.2.1:
Dna assays / 12.3.2.2:
Resonance energy transfer-based assays / 12.3.2.3:
Outlook Remarks / 12.4:
Index
List of Figures
List of Tables
Preface
8.

図書

図書
Daniel Minoli
出版情報: Boca Raton, Fla. : CRC Press, c2011  xiv, 302 p., [24] p. of plates ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
The Author
Introduction / Chapter 1:
Overview / 1.1:
Background and Opportunities / 1.2:
Course of Investigation / 1.3:
References
Bibliography
Some Basic Fundamentals of Visual Science / Chapter 2:
Stereo Vision Concepts / 2.1:
Stereoscopy / 2.1.1:
Binocular Depth Perception and Convergence / 2.1.2:
Cyclopean Image / 2.1.3:
Accommodation / 2.1.4:
Parallax Concepts / 2.2:
Parallax / 2.2.1:
Parallax Barrier and Lenticular Lenses / 2.2.2:
Other Concepts / 2.3:
Polarization / 2.3.1:
Chromostereopsis / 2.3.2:
3D Imaging / 2.3.3:
Occlusion and Scene Reconstruction / 2.3.4:
Conclusion / 2.4:
Analytical 3D Aspects of the Human Visual System / Appendix 2A:
Theory of Stereo Reproduction / 2A.1:
Analytics / 2A.2:
Depth Perception / 2A.2.1:
Geometry of Stereoscopic 3D Displays / 2A.2.2:
Geometry of Stereo Capturing / 2A.2.3:
Stereoscopic 3D Distortions / 2A.2.4:
Workflow of Conventional Stereo Production / 2A.3:
Basic Rules and Production Grammar / 2A.3.1:
Example / 2A.3.2:
Application of Visual Science Fundamentals to 3DTV / Chapter 3:
Application of the Science to 3D Projection/3DTV / 3.1:
Common Video Treatment Approaches / 3.1.1:
Projections Methods for Presenting Stereopairs / 3.1.2:
Polarization, Synchronization, and Colorimetrics / 3.1.3:
Autostereoscopic Viewing / 3.2:
Lenticular Lenses / 3.2.1:
Parallax Barriers / 3.2.2:
Other Longer-Term Systems / 3.3:
Multi-Viewpoint 3D Systems / 3.3.1:
Integral Imaging/Holoscopic Imaging / 3.3.2:
Holographic Approaches / 3.3.3:
Volumetric Displays/Hybrid Holographic / 3.3.4:
Viewer Physiological Issues with 3D Content / 3.4:
The Accommodation Problem / 3.4.1:
Infinity Separation / 3.4.2:
Conclusion and Requirements of Future 3DTV / 3.5:
Basic 3DTV Approaches for Content Capture and Mastering / Chapter 4:
General Capture, Mastering, and Distribution Process / 4.1:
3D Capture, Mastering, and Distribution Process / 4.2:
Content Acquisition / 4.2.1:
3D Mastering / 4.2.2:
Spatial Compression / 4.2.2.1:
Temporal Multiplexing / 4.2.2.2:
2D in Conjunction with Metadata (2D+M) / 4.2.2.3:
Color Encoding / 4.2.2.4:
Overview of Network Transport Approaches / 4.3:
MPEG Standardization Efforts / 4.4:
Additional Details on 3D Video Formats / Appendix 4A:
Conventional Stereo Video (CSV) / 4A.1:
Video plus Depth (V+D) / 4A.2:
Multiview Video plus Depth (MV+D) / 4A.3:
Layered Depth Video (LDV) / 4A.4:
3D Basic 3DTV Approaches and Technologies for In-Home Display of Content / Chapter 5:
Connecting the In-Home Source to the Display / 5.1:
3DTV Display Technology / 5.2:
Commercial Displays Based on Projection / 5.2.1:
Commercial Displays Based on LCD and PDP Technologies / 5.2.2:
LCD 3DTV Polarized Display / 5.2.3:
Summary of 3DTV Polarized Displays / 5.2.4:
Glasses Accessories / 5.2.5:
Other Display Technologies / 5.3:
Autostereoscopic Systems with Parallax Support in the Vertical and Horizontal Axes / 5.3.1:
Autostereoscopic Systems for PDAs / 5.3.2:
Primer on Cables/Connectivity for High-End Video / 5.4:
In-Home Connectivity Using Cables / 5A.1:
Digital Visual Interface (DVI) / 5A.1.1:
High-Definition Multimedia Interface" (HDMI") / 5A.1.2:
DisplayPort / 5A.1.3:
In-Home Connectivity Using Wireless Technology / 5A.2:
Wireless Gigabit Alliance / 5A.2.1:
WirelessHD / 5A.2.2:
Other Wireless / 5A.2.3:
3DTV Advocacy and System-Level Research Initiatives / Chapter 6:
3D Consortium (3DC) / 6.1:
3D@Home Consortium / 6.2:
3D Media Cluster / 6.3:
3DTV / 6.4:
Challenges and Players in the 3DTV Universe / 6.5:
European Information Society Technologies (IST) Project "Advanced Three-Dimensional Television System Technologies" (ATTEST) / 6.5.1:
3D Content Creation / 6.5.1.1:
3D Video Coding / 6.5.1.2:
Transmission / 6.5.1.3:
Virtual-View Generation and 3D Display / 6.5.1.4:
3DPhone / 6.5.2:
Mobile3DTV / 6.5.3:
Real3D / 6.5.4:
HELIUM3D (High Efficiency Laser Based Multi User Multi Modal 3D Display) / 6.5.5:
The MultiUser 3D Television Display (MUTED) / 6.5.6:
3D4YOU / 6.5.7:
3DPresence / 6.5.8:
Audio-Visual Content Search and Retrieval in a Distributed P2P Repository (Victory) / 6.5.9:
Victory in Automotive Industry / 6.5.9.1:
Victory in Game Industry / 6.5.9.2:
2020 3D Media / 6.5.10:
i3DPost / 6.5.11:
Glossary
Index
Preface
The Author
Introduction / Chapter 1:
9.

図書

図書
Detlev Möller
出版情報: Berlin : Walter de Gruyter, c2019  xxviii, 619 p. ; 25 cm
シリーズ名: Chemistry of the climate system ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
Prologue
List of principal symbols
Introduction / 1:
Chemistry and the climate system / 1.1:
Air and atmosphere: a multiphase and multicomponent system / 1.2:
Principles of chemistry in the climate system / 1.3:
Substances in climate system / 1.4:
Fundamentals of physics in the climate system / 2:
Meteorological basics / 2.1:
Scaling and structure of the atmosphere / 2.1.1:
Meteorological elements / 2.1.2:
Air pressure / 2.1.2.1:
Air temperature / 2.1.2.2:
Air humidity / 2.1.2.3:
Hydrometeors / 2.1.3:
Clouds / 2.1.3.1:
Fog, mist, and haze / 2.1.3.2:
Precipitation / 2.1.3.3:
Dew, frost, rime, and interception / 2.1.4:
Clirnatologtcai basics / 2.2:
Climate / 2.2.1:
Climate system / 2.2.2:
Chemical climate / 2.2.3:
Optics of the atmosphere: Radiation / 2.3:
Solar radiation / 2.3.1:
The Sun and its radiation output / 2.3.1.1:
Solar radiation transfer through the atmosphere / 2.3.1.2:
Absorption and emission of light / 2.3.2:
Absorption (Lambert-Beer law) / 2.3.2.1:
Emission (Planck's law and Stefan-Boltzmann law) / 2.3.2.2:
Terrestrial radiation and radiation budget / 2.3.3:
Atmospheric dynamics / 2.4:
Fluid characteristics / 2.4.1:
Effective atmospheric forces / 2.4.1.1:
Atmospheric flow: Laminar and turbulent / 2.4.1.2:
Fluid characteristics: Wind speed and direction / 2.4.1.3:
Properties of gases: The ideal gas / 2.5:
Gas laws / 2.5.1:
Mean free path and number of collisions between molecules / 2.5.2:
Viscosity / 2.5.3:
Diffusion / 2.5.4:
Atmospheric removal: Deposition processes / 2.6:
Dry deposition / 2.6.1:
Wet deposition / 2.6.2:
Characteristic times; Residence time, lifetime, and turnover time / 2.7:
Fundamentals of physicochemistry in the climate system / 3:
Chemical thermodynamics / 3.1:
First law of thermodynamics and its applications / 3.1.1:
Internal energy / 3.1.1.1:
Molar heat capacity / 3.1.1.2:
Thermochemistry: Heat of chemical reaction / 3.1.1.3:
Second law of thermodynamics and its applications / 3.1.2:
Entropy and reversibility / 3.1.2.1:
Thermodynamic potential: Gibbs-Helmholtz equation / 3.1.2.2:
Chemical potential / 3.1.2.3:
Chemical potential in real mixtures: Activity / 3.1.2.4:
Equilibrium / 3.2:
Chemical equilibrium: The mass action law / 3.2.1:
Phase equilibrium / 3.2.2:
Gas-liquid equilibrium: Evaporation and condensation / 3.2.2.1:
Gas-liquid equilibrium: Special case of droplets (Kelvin equation) / 3.2.2.2:
Absorption of gases in water: Henry's law / 3.2.2.3:
Solubility equilibrium: Solid-aqueous equilibrium / 3.2.2.4:
Adsorption and desorption / 3.2.2.5:
Steady state / 3.3:
Water: Physical and chemical properties / 3.4:
Water structure: Hydrogen bond / 3.4.1:
Water as solvent / 3.4.2:
Water vapor / 3.4.3:
Water properties in relation to the climate system / 3.4.4:
Properties of solutions and droplets / 3.5:
Surface tension and surface-active substances / 3.5.1:
Vapor pressure lowering: Raoult's law / 3.5.2:
Freezing point depression / 3.5.3:
Diffusion in solution / 3.5.4:
Heterogeneous processes: Multiphase chemistry in the climate system / 3.6:
Aerosols, clouds, and precipitation: The climate multiphase system / 3.6.1:
Gas-to-particle formation: Homogeneous formation of CCNs / 3.6.2:
Classical nucleation theory / 3.6.2.1:
Formation of secondary organic aerosols / 3.6.2.2:
Atmospheric aerosols and the properties of aerosol particles / 3.6.3:
Formation of cloud droplets: Heterogeneous nucleation / 3.6.4:
Scavenging: Acommodation, adsorption, and reaction (mass transfer) / 3.6.5:
Mass transfer: General remarks / 3.6.5.1:
Adsorption / 3.6.5.2:
Surface chemistry: Kinetics of heterogeneous chemical reactions / 3.6.5.3:
Mass transfer into droplets with chemical reaction / 3.6.5.4:
Fundamentals of chemistry in the climate system / 4:
State of matter / 4.1:
Atoms, elements, molecules, compounds, and substances / 4.1.1:
Pure substances and mixtures / 4.1.2:
Radicals, groups, and nomenclature / 4.1.3:
Units for chemical abundance: Concentrations and mixing ratios / 4.1.4:
Theory of chemical reactions / 4.2:
Chemical bonding / 4.2.1:
Types of chemical reactions / 4.2.2:
Chemical kinetics: Reaction rate constant / 4.2.3:
Catalysis / 4.3:
Electrochemistry / 4.4:
Electrolytic dissociation / 4.4.1:
Acids, bases, and the ionic product of water / 4.4.1.1:
pH value / 4.4.1.2:
Hydrolysis of salts and oxides / 4.4.1.3:
Buffer solutions / 4.4.1.4:
Complex ions / 4.4.1.5:
The CO2-carbonate system / 4.4.1.6:
Oxidation-reduction reaction (redox process) / 4.4.2:
Hydrated electron: A fundamental species / 4.4.3:
Photochemistry / 4.5:
Photoexcitation: Electronic states / 4.5.1:
Photodissociation: Photolysis rate coefficient / 4.5.2:
Photocatalysis: Photosensitization and autoxidation / 4.5.3:
Environmental relevance of acidity / 4.6:
Atmospheric acidity / 4.6.1:
pH averaging / 4.6.2:
Isotopes in atmospheric chemistry and geochemistry / 4.7:
Substaces and chemical reactions in the climate system / 5:
Hydrogen / 5.1:
Natural occurrence / 5.1.1:
Compounds of hydrogen / 5.1.2:
Chemistry / 5.1.3:
Oxygen / 5.2:
Oxygen, dioxygen, and ozone: O, O2, and O3 / 5.2.1:
Reactive oxygen species I: OH, HO2, and H2O2 (HxOy species) / 5.2.3:
Atmosphere, free of trace species / 5.2.3.1:
Atmosphere with trace species / 5.2.3.2:
Reactive oxygen species II: RO, RO2, and ROOH / 5.2.4:
Aqueous-phase oxygen chemistry / 5.2.5:
Water chemistry / 5.2.5.1:
Dioxygen and superoxide ion chemistry / 5.2.5.2:
Hydrogen peroxide chemistry / 5.2.5.3:
Ozone and hydroxyl radical chemistry / 5.2.5.4:
Hydrogen polyoxides / 5.2.5.5:
Multiphase oxygen chemistry / 5.2.6:
Hydrogen peroxide / 5.2.6.1:
Ozone / 5.2.6.2:
Stratospheric oxygen chemistry / 5.2.7:
Nitrogen / 5.3:
Natural occurrence and sources / 5.3.1:
Thermal dissociation of dinitrogen (N2) / 5.3.2:
Ammonia (NH3) / 5.3.3:
Dinitrogen oxide (N2O) / 5.3.4:
Inorganic nitrogen oxides and oxoacids (NOy) / 5.3.5:
Gas-phase chemistry / 5.3.3.1:
Aqueous and interfacial chemistry / 5.3.5.2:
Organic nitrogen compounds / 5.3.6:
Amines, amides, and nitriles / 5.3.6.1:
Organic NOx compounds / 5.3.6.2:
Sulfur / 5.4:
Reduced sulfur: H2S, COS, CS2, and DMS / 5.4.1:
Oxides and oxoacids: SO2, H2SO3, SO3, and H2SO4 / 5.4.3:
Gas-phase SO2 oxidation / 5.4.3.1:
Aqueous-phase sulfur chemistry / 5.4.3.2:
Multiphase sulfur chemistry / 5.4.4:
Phosphorus / 5.5:
Carbon / 5.6:
Organic carbon and chemistry / 5.6.1:
Elemental carbon and soot / 5.6.2:
Inorganic C1 chemistry: CO, CO2, and H2CO3 / 5.6.3:
Aqueous chemistry / 5.6.3.1:
Hydrocarbon oxidation and organic radicals / 5.6.4:
Organic C1 chemistry: CH4, CH3OH, HCHO, HCOOH / 5.6.5:
C2 chemistry: C2H6, CH3CHO, C2H5OH, CH3COOH, and (COOH)2
Alkenes, atkynes, and ketones / 5.6.6.1:
Aromatic compounds / 5.6.8:
Is the atmospheric fate of complex organic compounds predictable? / 5.6.9:
Halogens (Cl, Br, F, and I) / 5.7:
Chlorine in the environment / 5.7.1:
Formation of sea salt and chlorine degassing / 5.7.2:
Metals and metalloids / 5.7.3:
General remarks / 5.8.1:
Alkali and alkaline earth metals: Na, K, Mg, and Ca / 5.8.2:
Iron: Fe / 5.8.3:
Mercury: Hg / 5.8.4:
Cadmium: Cd / 5.8.5:
Lead: Pb / 5.8.6:
Arsenic: As / 5.8.7:
Silicon (Si) and aluminum (Al) / 5.8.8:
Biogeochemistry and global cycling / 6:
The hydrosphere and the global water cycle / 6.1:
The hydrological cycle and the climate system / 6.1.1:
Soil water and groundwater; Chemical weathering / 6.1.2:
Surface water: Rivers and lakes / 6.1.3:
The oceans / 6.1.4:
Atmospheric waters (hydrometeors): Chemical composition / 6.1.5:
Fog / 6.1.5.1:
Rain (precipitation) / 6.1.5.3:
Biogeochemical cycling / 6.2:
Photosynthesis: Nonequilibrium redox processes / 6.2.1:
Primary production of carbon / 6.2.2:
Nitrogen cycling / 6.2.3:
Sulfur cycling / 6.2.4:
Natural sources of atmospheric substances / 6.3:
Source characteristics / 6.3.1:
Biological processes / 6.3.2:
Continental / 6.3.2.1:
Oceanic / 6.3.2.2:
Geogenic processes / 6.3.3:
Soil dust / 6.3.3.1:
Sea salt / 6.3.3.2:
Volcanism / 6.3.3.3:
Chemical processes / 6.3.4:
Lightning / 6.3.4.1:
Secondary atmospheric processes / 6.3.4.2:
List of acronyms and abbreviations used in this volume / A:
Quantities, units, and some useful numerical values / B:
References
Name Index
Subject Index
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
10.

図書

図書
edited by Caitlin H. Bell ... [et al.]
出版情報: Boca Raton : CRC Press, c2019  xxix, 439 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Foreword
Acknowledgments
Editors
Contributors
Introduction to Emerging Contaminants / Chapter 1:
Introduction / 1.1:
Who Identifies Emerging Contaminants? / 1.2:
United States Environmental Protection Agency / 1.2.1:
United States Department of Defense / 1.2.2:
United States Geologic Survey / 1.2.3:
State Agencies in the United States / 1.2.4:
Stockholm Convention on Persistent Organic Pollutants / 1.2.5:
European Union / 1.2.6:
Australian National Environment Protection Council / 1.2.7:
What is the Life Cycle of an Emerging Contaminant? / 1.3:
What are the Key Challenges Associated with Emerging Contaminants? / 1.4:
The Need for Balance / 1.5:
This Book / 1.6:
Acronyms
1,4-Dioxane / Chapter 2:
Basic Information / 2.1:
Toxicity and Risk Assessment / 2.3:
Potential Noncancer Effects / 2.3.1:
Potential Cancer Effects / 2.3.2:
Regulatory Status / 2.4:
Site Characterization / 2.5:
Investigation Approaches / 2.5.1:
Analytical Methods / 2.5.2:
Advanced Investigation Techniques / 2.5.3:
Soil Treatment / 2.6:
Groundwater Treatment / 2.7:
In Situ Treatment / 2.7.1:
In Situ Chemical Oxidation / 2.7.1.1:
Bioremediation / 2.7.1.2:
Phytoremediation / 2.7.1.3:
Thermal Treatment / 2.7.1.4:
Ex Situ Treatment and Dynamic Groundwater Recirculation / 2.7.2:
Natural Attenuation / 2.7.3:
Drinking Water and Wastewater Treatment / 2.8:
Point-of-Use and Point-of-Entry Treatment / 2.8.1:
1.4-Dioxane Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 2.9:
Advanced Oxidation Processes / 2.9.1:
Bioreaetors / 2.9.2:
Granular Activated Carbon and Other Sorbenl Media / 2.9.3:
Electrochemical Oxidation / 2.9.4:
Conclusion / 2.10:
Per- and Polyfluoroalkyl Substances / Chapter 3:
PFASs Chemistry / 3.1:
Ionic State / 3.2.1:
Linear and Branched Isomers / 3.2.2:
Perfluoroalkyl Substances / 3.2.3:
Perfluoroalkyl Sulfonic Acids / 3.2.3.1:
Perfluoroalkyl Carboxylic Acids / 3.2.3.2:
Perfluoroalkyl Phosphonic and Phosphinic Acids / 3.2.3.3:
Perfluoroalkyl Ether Carboxylates and Perfluoroalkyl Ether Sulfonates / 3.2.3.4:
Polyfluoroalkyl Substances / 3.2.4:
ECF-Derived Polyfluoroalkyl Substances / 3.2.4.1:
Fluorotelomerizat ion-Derived Polyfluoroalkyl Substances / 3.2.4.2:
Long- and Short-Chain PFASs / 3.2.5:
Polymeric PFASs / 3.2.6:
Replacement PFASs / 3.2.7:
Chemistry of PFASs in Class B Firefighting Foams / 3.2.8:
Physical, Chemical, and Biological Properties / 3.3:
Biological Activity Towards PFASs / 3.3.1:
Transformation of Polyfluoroalkyl Substances / 3.3.2:
Abiotic Transformation / 3.3.2.1:
Biotic Transformation / 3.3.2.2:
PFASs Production and Use / 3.4:
Manufacturing Processes and Uses / 3.4.1:
Electrochemical Fluorination / 3.4.2:
Fluorotelomerization / 3.4.3:
Oligomerization / 3.4.4:
Uses / 3.4.5:
Use as Surfactants / 3.4.5.1:
Use as Surface Coatings / 3.4.5.2:
Other Uses / 3.4.5.3:
Sampling and Analysis / 3.5:
General Sampling Guidelines / 3.5.1:
Soil and Sediment Sampling / 3.5.1.1:
Surface Water and Groundwater Sampling / 3.5.1.2:
Storage and Hold Times / 3.5.1.3:
Chemical Analysis Methods / 3.5.2:
Overview of Standard Methods / 3.5.2.1:
Advanced Analytical Techniques / 3.5.2.2:
Health Considerations / 3.6:
Exposure Routes / 3.6.1:
Distribution in Tissue / 3.6.2:
Bioaccumulation / 3.6.3:
Elimination / 3.6.4:
Toxicologic and Epidemiological Studies / 3.6.5:
Acute Toxicity / 3.6.5.1:
(Sub)Chronic Toxicity / 3.6.5.2:
Epidemiological Studies / 3.6.5.3:
Polyfluoroalkyl Substance Toxicity / 3.6.5.4:
Derivation of Reference Doses/Tolerable Daily Intakes / 3.6.5.5:
Carcinogenic Effects / 3.6.5.6:
Regulation / 3.7:
Regulation of PFASs / 3.7.1:
Global Treaties and Conventions / 3.7.1.1:
United States of America / 3.7.1.2:
Europe / 3.7.1.3:
Australia / 3.7.1.4:
Regulation of Perfluoroalkyl Ethers / 3.7.2:
Fate and Transport / 3.8:
PFAS Distribution in Environmental Matrices / 3.8.1:
PFASs in Soils / 3.8.1.1:
Leaching / 3.8.1.2:
Transport and Retardation in Groundwater / 3.8.1.3:
Surface Waters and Sediments / 3.8.1.4:
Vapor Migration / 3.8.1.5:
Atmospheric Deposition / 3.8.1.6:
Detections and Background Levels in the Environment / 3.8.2:
Sites of Concern / 3.8.3:
CSM for Industrial Facilities / 3.8.3.1:
CSM for Fire Training Areas and Class B Fire Response Areas / 3.8.3.2:
CSM for WWTPs and Biosolid Application Areas / 3.8.3.3:
CSM for Landfills / 3.8.3.4:
PFAS-Relevant Treatment Technologies / 3.9:
Biological Treatment / 3.9.1:
Soil and Sediment Treatment / 3.9.2:
Incineration / 3.9.2.1:
Stabilization/Solidification / 3.9.2.2:
Vapor Energy Generator Technology / 3.9.2.3:
Soil/Sediment Washing / 3.9.2.4:
High-Energy Electron Beam / 3.9.2.5:
Mechanochemical Destruction / 3.9.2.6:
Water Treatment / 3.9.3:
Mature Water Treatment Technologies / 3.9.3.1:
Developing Treatment Technologies / 3.9.3.2:
Experimental Treatment Technologies / 3.9.3.3:
Conclusions / 3.10:
Hexavalent Chromium / Chapter 4:
Geochemistry of Chromium / 4.1:
Sources of Cr(VI) / 4.1.2:
U.S. Federal Regulations / 4.2:
U.S. State Regulations / 4.3.2:
California / 4.3.2.1:
North Carolina / 4.3.2.2:
New Jersey / 4.3.2.3:
Other Countries / 4.3.3:
Occurrence of Cr(VI) / 4.4:
Naturally Occurring (Background) Cr(VI) in Groundwater / 4.4.1:
Cr(VI) in Drinking Water / 4.4.2:
Investigation of Cr(VI) in Groundwater / 4.5:
Chromium Isotopes / 4.5.2:
Mineralogical Analyses / 4.5.3.2:
In Situ Reduction / 4.6:
In Situ Chemical Reduction / 4.6.1.1:
In Situ Biological Reduction / 4.6.1.2:
Permeable Reactive Barriers / 4.6.1.3:
Reoxidation of Cr(III) Formed by In Situ Reduction / 4.6.1.4:
Ex Situ Treatment / 4.6.2:
Dynamic Groundwater Recirculation
Tier I / 4.6.4:
Tier II / 4.6.4.2:
Tier III / 4.6.4.3:
Tier IV / 4.6.4.4:
Drinking Water Treatment / 4.7:
Point-of-Entry and Point-of-Use Treatment / 4.7.1:
Cr(VI) Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 4.8:
Reduction/Coagulation/Filtration with Ferrous Iron / 4.8.1:
Ion Exchange / 4.8.2:
Weak Base Anion Resins / 4.8.2.1:
Strong Base Anion Resins / 4.8.2.2:
Reverse Osmosis / 4.8.3:
Bioreactors / 4.8.4:
Phytostabilization / 4.8.4.1:
Iron Media / 4.8.4.2:
Reduction/Filtration via Stannous Chloride (RF-Sn[II]) / 4.8.5:
1,2,3-Trichloropropane / 4.9:
International Guidance / 5.1:
Investigation / 5.4:
Groundwater Remediation Technologies / 5.4.2:
In Situ Hydrolysis / 5.5.1:
In Situ Biological Treatment / 5.5.1.2:
TCP Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 5.5.1.3:
Granular Activated Carbon / 5.7.1:
Air Stripping / 5.7.2:
Other Processes / 5.7.4:
Considerations for Future Contaminants of Emerging Concern / 5.8:
Categorizing Future Emerging Contaminants / 6.1:
The Challenges Posed in Emerging Contaminant Management / 6.3:
Challenges Associated with Release to the Environment / 6.3.1:
Challenges Associated with Assessing Toxicological Risk / 6.3.2:
Challenges Associated with Regulation / 6.3.3:
Challenges Associated with Characterization and Analysis / 6.3.4:
Challenges Associated with Treatment / 6.3.5:
The Future of Emerging Contaminants / 6.4:
Appendices
USEPA Candidate Contaminant List / Appendix A:
REACH Candidate List / Appendix B:
Emerging Contaminants and Their Physical and Chemical Properties / Appendix C:
NGI Preliminary List of Substances That Could Be Considered to Meet the PMT or vPvM Criteria / Appendix D:
Summary of PFAS Environmental Standards: Soil / Appendix E.1:
Summary of PFAS Environmental Standards: Groundwater / Appendix E.2:
Summary of PFAS Environmental Standards: Surface Water / Appendix E.3:
Summary of PFAS Environmental Standards: Drinking Water / Appendix E.4:
Notes / Appendix E.5:
Index
List of Figures
List of Tables
Foreword
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼