close
1.

図書

図書
edited by Xin-bo Zhang
出版情報: Weinheim : Wiley-VCH, c2018  xiv, 417 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
Sodium-O2 Battery / 1.2:
References
Stabilization of Lithium-Metal Anode in Rechargeable Lithium-Air Batteries / Bin Liu and Wu Xu and Ji-Guang Zhang2:
Introduction / 2.1:
Recent Progresses in Li Metal Protection for Li-O2 Batteries / 2.2:
Design of Composite Protective Layers / 2.2.1:
New Insights on the Use of Electrolyte / 2.2.2:
Functional Separators / 2.2.3:
Solid-State Electrolytes / 2.2.4:
Alternative Anodes / 2.2.5:
Challenges and Perspectives / 2.3:
Acknowledgment
Li-Air Batteries: Discharge Products / Xuanxuan Bi and Rongyue Wang and Jun Lu3:
Discharge Products in Aprotic Li-O2 Batteries / 3.1:
Peroxide-based Li-O2 Batteries / 3.2.1:
Electrochemical Reactions / 3.2.1.1:
Crystalline and Electronic Band Structure of Li2O2 / 3.2.1.2:
Reaction Mechanism and the Coexistence of Li2O2 and LiO2 / 3.2.1.3:
Super oxide-based Li-02 Batteries / 3.2.2:
Problems and Challenges in Aprotic Li-O2 Batteries / 3.2.3:
Decomposition of the Electrolyte / 3.2.3.1:
Degradation of the Carbon Cathode / 3.2.3.2:
Discharge Products in Li-Air Batteries / 3.3:
Challenges to Exchanging O2 to Air / 3.3.1:
Effect of Water on Discharge Products / 3.3.2:
Effect of Small Amount of Water / 3.3.2.1:
Aqueous Li-O2 Batteries / 3.3.2.2:
Effect of C02 on Discharge Products / 3.3.3:
Current Li-Air Batteries and Perspectives / 3.3.4:
Electrolytes for Li-O2 Batteries / Alex R. Neale and Peter Goodrich and Christopher Hardacre and Johan Jacquemin4:
General Li-O2 Battery Electrolyte Requirements and Considerations / 4.1:
Electrolyte Salts / 4.1.1:
Ethers and Glymes / 4.1.2:
Dimethyl Sulfoxide (DMSO) and Sulfones / 4.1.3:
Nitriles / 4.1.4:
Amides / 4.1.5:
Ionic Liquids / 4.1.6:
Future Outlook / 4.1.7:
Li-Oxygen Battery: Parasitic Reactions / Xiahui Yao and Qi Dong and Qingmei Cheng and Dunwei Wang5:
The Desired and Parasitic Chemical Reactions for Li-Oxygen Batteries / 5.1:
Parasitic Reactions of the Electrolyte / 5.2:
Nucleophilic Attack / 5.2.1:
Autoxidation Reaction / 5.2.2:
Acid-Base Reaction / 5.2.3:
Proton-mediated Parasitic Reaction / 5.2.4:
Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction / 5.2.5:
Parasitic Reactions at the Cathode / 5.3:
The Corrosion of Carbon in the Discharge Process / 5.3.1:
The Corrosion of Carbon in the Recharge Process / 5.3.2:
Catalyst-induced Parasitic Chemical Reactions / 5.3.3:
Alternative Cathode Materials and Corresponding Parasitic Chemistries / 5.3.4:
Additives and Binders / 5.3.5:
Contaminations / 5.3.6:
Parasitic Reactions on the Anode / 5.4:
Corrosion of the Li Metal / 5.4.1:
SEI in the Oxygenated Atmosphere / 5.4.2:
Alternative Anodes and Associated Parasitic Chemistries / 5.4.3:
New Opportunities from the Parasitic Reactions / 5.5:
Summary and Outlook / 5.6:
Li-Air Battery: Electrocatalysts / 6:
Types of ELectrocatalyst / 6.1:
Carbonaceous Materials / 6.2.1:
Commercial Carbon Powders / 6.2.1.1:
Carbon Nanotubes (CNTs) / 6.2.1.2:
Graphene / 6.2.1.3:
Doped Carbonaceous Material / 6.2.1.4:
Noble Metal and Metal Oxides / 6.2.2:
Transition Metal Oxides / 6.2.3:
Perovskite Catalyst / 6.2.3.1:
Redox Mediator / 6.2.3.2:
Research of Catalyst / 6.3:
Reaction Mechanism / 6.4:
Summary / 6.5:
Lithium-Air Battery Mediator / Zhuojion Liang and Guangtao Cong and Yu Wang and Yi-Chun Lu7:
Redox Mediators in Lithium Batteries / 7.1:
Redox Mediators in Li-Air Batteries / 7.1.1:
Redox Mediators in Li-ion and Lithium-flow Batteries / 7.1.2:
Overcharge Protection in Li-ion Batteries / 7.1.2.1:
Redox Targeting Reactions in Lithium-flow Batteries / 7.1.2.2:
Selection Criteria and Evaluation of Redox Mediators for Li-O2 Batteries / 7.2:
Redox Potential / 7.2.1:
Stability / 7.2.2:
Reaction Kinetics and Mass Transport Properties / 7.2.3:
Catalytic Shuttle vs Parasitic Shuttle / 7.2.4:
Charge Mediators / 7.3:
Lil (Lithium Iodide) / 7.3.1:
LiBr (Lithium Bromide) / 7.3.2:
Nitroxides: TEMPO (2,2,6,6-TetramethyIpiperidinyioxyl) and Others / 7.3.3:
TTF (Tetrathiafulvalene) / 7.3.4:
Tris[4-(diethylamino)phenyl]amine (TDPA) / 7.3.5:
Comparison of the Reported Charge Mediators / 7.3.6:
Discharge Mediator / 7.4:
Iron Phthalocyanine (FePc) / 7.4.1:
2,5-Di-tert'butyl-l,4-benzoquinone (DBBQ) / 7.4.2:
Conclusion and Perspective / 7.5:
Spatiotemporal Operando X-ray Diffraction Study on Li-Air Battery / Di-Jia Liu and Jiang-Lan Shui8:
Microfocused X-ray Diffraction (¿-XRD) and Li-O2 Cell Experimental Setup / 8.1:
Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB / 8.2:
Study on Separator: Impact of Precipitates to LAB Performance / 8.3:
Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox Reaction / 8.4:
Metal-Air Battery: In Situ Spectroelectrochemical Techniquesx / lain M. Aldous and Laurence J. Hardwick and Richard J. Nichols and J. Padmanabhan Vivek9:
Raman Spectroscopy / 9.1:
In Situ Raman Spectroscopy for Metal-O2 Batteries / 9.1.1:
Background Theory / 9.1.2:
Practical Considerations / 9.1.3:
Electrochemical Roughening / 9.1.3.1:
Addressing Inhomogeneous SERS Enhancement / 9.1.3.2:
In Situ Raman Setup / 9.1.4:
Determination of Oxygen Reduction and Evolution Reaction Mechanisms Within Metal-O2 Batteries / 9.1.5:
Infrared Spectroscopy / 9.2:
Background / 9.2.1:
IR Studies of Electrochemical Interfaces / 9.2.2:
Infrared Spectroscopy for Metal-O2 Battery Studies / 9.2.3:
UV/Visible Spectroscopic Studies / 9.3:
UV/Vis Spectroscopy / 9.3.1:
UV/Vis Spectroscopy for Metal-O2 Battery Studies / 9.3.2:
Electron Spin Resonance / 9.4:
Cell Setup / 9.4.1:
Deployment of Electrochemical ESR in Battery Research / 9.4.2:
Zn-Air Batteries / Tong wen Yu and Rui Cai and Zhongwei Chen9.5:
Zinc Electrode / 10.1:
Electrolyte / 10.3:
Separator / 10.4:
Air Electrode / 10.5:
Structure of Air Electrode / 10.5.1:
Oxygen Reduction Reaction / 10.5.2:
Oxygen Evolution Reaction / 10.5.3:
Electrocatalyst / 10.5.4:
Noble Metals and Alloys / 10.5.4.1:
Inorganic-Organic Hybrid Materials / 10.5.4.2:
Meta-free Materials / 10.5.4.4:
Conclusions and Outlook / 10.6:
Experimental and Computational investigation of Nonaqueous Mg/O2 Batteries / Jeffrey G. Smith and Güiin Vardar and Charles W. Monroe and Donald J. Siegel11:
Experimental Studies of Magnesium/Air Batteries and Electrolytes / 11.1:
Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries / 11.2.1:
Modified Grignard Electrolytes for Mg/O2 Batteries / 11.2.2:
All-inorganic Electrolytes for Mg/O2 Batteries / 11.2.3:
Electrochemical Impedance Spectroscopy / 11.2.4:
Computational Studies of Mg/O2 Batteries / 11.3:
Calculation of Thermodynamic Overpotentials / 11.3.1:
Charge Transport in Mg/O2 Discharge Products / 11.3.2:
Concluding Remarks / 11.4:
Novel Methodologies to Model Charge Transport In Metal-Air Batteries / Nicoiai Rask Mathiesen and Marko Melander and Mikael Kuisma and Pablo García-Fernandez and Juan Maria García Lastra12:
Modeling Electrochemical Systems with GPAW / 12.1:
Density Functional Theory / 12.2.1:
Conductivity from DFT Data / 12.2.2:
The GPAW Code / 12.2.3:
Charge Transfer Rates with Constrained DFT / 12.2.4:
Marcus Theory of Charge Transfer / 12.2.4.1:
Constrained DFT / 12.2.4.2:
Polaronic Charge Transport at the Cathode / 12.2.4.3:
Electrochemistry at Solid-Liquid Interfaces / 12.2.5:
Modeling the Electrochemical Interface / 12.2.5.1:
Implicit Solvation at the Electrochemical Interface / 12.2.5.2:
Generalized Poisson-Boltzmann Equation for the Electric Double Layer / 12.2.5.3:
A Electrode Potential Within the Poisson-Boltzmann Model
Calculations at Constant Electrode Potential / 12.2.6:
The Need for a Constant Potential Presentation / 12.2.6.1:
Grand Canonical Ensemble for Electrons / 12.2.6.2:
Fictitious Charge Dynamics / 12.2.6.3:
Model in Practice / 12.2.6.4:
Conclusions / 12.2.7:
Second Principles for Material Modeling / 12.3:
The Energy in SP-DET / 12.3.1:
The Lattice Term (E(0)) / 12.3.2:
Electronic Degrees of Freedom / 12.3.3:
Model Construction / 12.3.4:
Perspectives on SP-DFT / 12.3.5:
Acknowledgments
Flexible Metal-Air Batteries / Huisheng Peng and Yifan Xu and Jian Pan and Yang Zhao and Lie Wang and Xiang Shi13:
Flexible Electrolytes / 13.1:
Aqueous Electrolytes / 13.2.1:
PAA-based Gel Polymer Electrolyte / 13.2.1.1:
PEO-based Gel Polymer Electrolyte / 13.2.1.2:
PVA-based Gel Polymer Electrolyte / 13.2.1.3:
Nonaqueous Electrolytes / 13.2.2:
PEO-based Polymer Electrolyte / 13.2.2.1:
PVDF-HFP-based Polymer Electrolyte / 13.2.2.2:
Ionic Liquid Electrolyte / 13.2.2.3:
Flexible Anodes / 13.3:
Flexible Cathodes / 13.4:
Modified Stainless Steel Mesh / 13.4.1:
Modified Carbon Textile / 13.4.2:
Carbon Nanotube / 13.4.3:
Graphene-based Cathode / 13.4.4:
Other Composite Electrode / 13.4.5:
Prototype Devices / 13.5:
Sandwich Structure / 13.5.1:
Fiber Structure / 13.5.2:
Perspectives on the Development of Metal-Air Batteries / 13.6:
Lithium Anode / 14.1:
Cathode / 14.1.2:
The Reaction Mechanisms / 14.1.4:
The Development of Solid-state Li-O2 Battery / 14.1.5:
The Development of Flexible Li-O2 Battery / 14.1.6:
Na-O2 Battery / 14.2:
Zn-air Battery / 14.3:
Index
Preface
Introduction to Metal-Air Batteries: Theory and Basic Principles / Zhiwen Chang and Xin-bo Zhang1:
Li-O2 Battery / 1.1:
2.

電子ブック

EB
出版情報: AIP Conference Proceedings (American Institute of Physics) , AIP Publishing, 2018
所蔵情報: loading…
3.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Conference Proceedings , IEEE, 2018
所蔵情報: loading…
4.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Conference Proceedings , IEEE, 2018
所蔵情報: loading…
5.

電子ブック

EB
Yves Jannot, Alain Degiovanni
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2018
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nomenclature
Modeling of Heat Transfer / Chapter 1:
The different modes of heat transfer / 1.1:
Introduction and definitions / 1.1.1:
Conduction / 1.1.2:
Convection / 1.1.3:
Radiation / 1.1.4:
Heat storage / 1.1.5:
Modeling heat transfer by conduction / 1.2:
The heat equation / 1.2.1:
Steady-state conduction / 1.2.2:
Conduction in unsteady state / 1.2.3:
The quadrupole method / 1.2.4:
The thermal properties of a material / 1.3:
Thermal conductivity / 1.3.1:
Thermal diffusivity / 1.3.2:
Volumetric heat capacity / 1.3.3:
Thermal effusivity / 1.3.4:
Conclusion / 1.3.5:
Tools and Methods for Thermal Characterization / Chapter 2:
Measurement of temperature / 2.1:
Liquid column thermometer / 2.1.1:
Thermocouple / 2.1.2:
Thermistor / 2.1.3:
Platinum resistance / 2.1.4:
IR detector / 2.1.5:
IR camera / 2.1.6:
Choice of a measurement method / 2.1.7:
Data filtering / 2.1.8:
Tools for parameter estimation / 2.2:
Introduction / 2.2.1:
Quadrupole modeling / 2.2.2:
Dimensional analysis / 2.2.3:
Study of reduced sensitivity / 2.2.4:
Method for estimating parameters / 2.2.5:
Evaluation of the estimation error due La the measurement noise / 2.2.6:
Other sources of error / 2.2.7:
Validity domain of a model and estimation time interval / 2.2.8:
Choice of the temperature's origin / 2.2.9:
Steady-state Methods / 2.2.10:
Guarded hot plate / 3.1:
Principle / 3.2.1:
Hypotheses and model / 3.2.2:
Experimental design / 3.2.3:
Practice of the measurement / 3.2.4:
Center hot plate / 3.3:
Experimental set-up / 3.3.1:
Hot strip / 3.3.4:
Hot rube / 3.4.1:
Cut bar / 3.5.1:
Flux/Temperature Transient Methods / 3.6.1:
Infinite hot plate / 4.1:
Asymmetric setup / 4.2.1:
Asymmetric hot plate / 4.3:
Measuring temperature / 4.3.1:
Measurement of two temperatures / 4.3.2:
Hot wire / 4.4:
Experimental setup / 4.4.1:
Flash ID / 4.4.4:
Hypotheses and models / 4.5.1:
Methods for the estimation of diffusivity / 4.5.3:
Experimental setups / 4.5.4:
Flash 3D / 4.6:
Principle and history / 4.6.1:
Identification method / 4.6.2:
Example of an experimental setup / 4.6.4:
Hot disc / 4.6.5:
Experimental study / 4.7.1:
3ω Method / 4.8:
Calorimetry / 4.9.1:
Differentia! calorimeter / 4.10.1:
Drop calorimeter / 4.10.2:
Transient Temperature/Temperature Methods / Chapter 5:
Planar three-layer / 5.1:
Practice of the method / 5.2.1:
Cylindrical three-layer / 5.3:
Experimental practice / 5.3.1:
Transient fin method / 5.4:
Choice of an Adapted Method / 5.4.1:
Measurement advice / 6.1:
How many measurements? / 6.1.1:
Steady-state or transient mode? / 6.1.2:
What if the material is wet? / 6.1.3:
What if the material is semi-transparent? / 6.1.4:
Choice of method / 6.2:
Consolidated solid / 6.2.1:
Liquids / 6.2.2:
Powders / 6.2.3:
Thin films / 6.2.4:
Analogies Between Different Transfers / Chapter 7:
Diffusion of heat by conduction / 7.1:
Diffusion of water vapor / 7.2:
Flow of a gas in a porous medium / 7.3:
Analogy between the different transfers / 7.4:
Example of adaptation of a thermal method to another domain / 7.5:
Appendices
Physical Properties of Some Materials / Appendix 1:
Physical Properties of Air and Water / Appendix 2:
Transfer Coefficients in Natural Convection / Appendix 3:
Main Integral Transformations: Laplace, Fourier and Hankel / Appendix 4:
Inverse Laplace Transformation / Appendix 5:
Value of the Function ERF / Appendix 6:
Quadrupole Matrices for Different Configurations / Appendix 7:
Bessel Equations and Functions / Appendix 8:
Influence of Radiation on Temperature Measurement / Appendix 9:
Case Study / Appendix 10:
Bibliography
Index
Preface
Nomenclature
Modeling of Heat Transfer / Chapter 1:
6.

電子ブック

EB
Yves Croissant, Giovanni Millo
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2018
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
About the Companion Website
Introduction / 1:
Panel Data Econometrics: A Gentle Introduction / 1.1:
Eliminating Unobserved Components / 1.1.1:
Differencing Methods / 1.1.1.1:
LSDV Methods / 1.1.1.2:
Fixed Effects Methods / 1.1.1.3:
R for Econometric Computing / 1.2:
The Modus Operandi of R / 1.2.1:
Data Management / 1.2.2:
Outsourcing to Other Software / 1.2.2.1:
Data Management Through Formulae / 1.2.2.2:
plm for the Casual R User / 1.3:
R for the Matrix Language User / 1.3.1:
R for the User of Econometric Packages / 1.3.2:
plm for the Proficient R User / 1.4:
Reproducible Econometric Work / 1.4.1:
Object-orientation for the User / 1.4.2:
plm for the R Developer / 1.5:
Object-orientation for Development / 1.5.1:
Notations / 1.6:
General Notation / 1.6.1:
Maximum Likelihood Notations / 1.6.2:
Index / 1.6.3:
The Two-way Error Component Model / 1.6.4:
Transformation for the One-way Error Component Model / 1.6.5:
Transformation for the Two-ways Error Component Model / 1.6.6:
Groups and Nested Models / 1.6.7:
Instrumental Variables / 1.6.8:
Systems of Equations / 1.6.9:
Time Series / 1.6.10:
Limited Dependent and Count Variables / 1.6.11:
Spatial Panels / 1.6.12:
The Error Component Model / 2:
Notations and Hypotheses / 2.1:
Some Useful Transformations / 2.11:
Hypotheses Concerning the Errors / 2.1.3:
Ordinary Least Squares Estimators / 2.2:
Ordinary Least Squares on the Raw Data: The Pooling Model / 2.2.1:
The between Estimator / 2.2.2:
The within Estimator / 2.2.3:
The Generalized Least Squares Estimator / 2.3:
Presentation of the GLS Estimator / 2.3.1:
Estimation of the Variances of the Components of the Error / 2.3.2:
Comparison of the Estimators / 2.4:
Relations between the Estimators / 2.4.1:
Comparison of the Variances / 2.4.2:
Fixed vs Random Effects / 2.4.3:
Some Simple Linear Model Examples / 2.4.4:
The Two-ways Error Components Model / 2.5:
Error Components in the Two-ways Model / 2.5.1:
Fixed and Random Effects Models / 2.5.2:
Estimation of a Wage Equation / 2.6:
Advanced Error Components Models / 3:
Unbalanced Panels / 3.1:
Individual Effects Model / 3.1.1:
Two-ways Error Component Model / 3.1.2:
Fixed Effects Model / 3.1.2.1:
Random Effects Model / 3.1.2.2:
Estimation of the Components of the Error Variance / 3.1.3:
Seemingly Unrelated Regression / 3.2:
Constrained Least Squares / 3.2.1:
Inter-equations Correlation / 3.2.3:
Sur With Panel Data / 3.2.4:
The Maximum Likelihood Estimator / 3.3:
Derivation of the Likelihood Function / 3.3.1:
Computation of the Estimator / 3.3.2:
The Nested Error Components Model / 3.4:
Presentation of the Model / 3.4.1:
Estimation of the Variance of the Error Components / 3.4.2:
Tests on Error Component Models / 4:
Tests on Individual and/or Time Effects / 4.1:
F Tests / 4.1.1:
Breusch-Pagan Tests / 4.1.2:
Tests for Correlated Effects / 4.2:
The Mundlak Approach / 4.2.1:
Hausman Test / 4.2.2:
Chamberlain's Approach / 4.2.3:
Unconstrained Estimator / 4.2.3.1:
Constrained Estimator / 4.2.3.2:
Fixed Effects Models / 4.2.3.3:
Tests for Serial Correlation / 4.3:
Unobserved Effects Test / 4.3.1:
Score Test of Serial Correlation and/or Individual Effects / 4.3.2:
Likelihood Ratio Tests for AR(1) and Individual Effects / 4.3.3:
Applying Traditional Serial Correlation Tests to Panel Data / 4.3.4:
Wald Tests for Serial Correlation using within and First-differenced Estimators / 4.3.5:
Wooldridge's within-based Test / 4.3.5.1:
Wooldridge's First-difference-based Test / 4.3.5.2:
Tests for Cross-sectional Dependence / 4.4:
Pairwise Correlation Coefficients / 4.4.1:
CD-type Tests for Cross-sectional Dependence / 4.4.2:
Testing Cross-sectional Dependence in a pseries / 4.4.3:
Robust Inference and Estimation for Non-spherical Errors / 5:
Robust Inference / 5.1:
Robust Covariance Estimators / 5.1.1:
Cluster-robust Estimation in a Panel Setting / 5.1.1.1:
Double Clustering / 5.1.1.2:
Panel Newey-west and SCC / 5.1.1.3:
Generic Sandwich Estimators and Panel Models / 5.1.2:
Panel Corrected Standard Errors / 5.1.2.1:
Robust Testing of Linear Hypotheses / 5.1.3:
An Application: Robust Hausman Testing / 5.1.3.1:
Unrestricted Generalized Least Squares / 5.2:
General Feasible Generalized Least Squares / 5.2.1:
Pooled GGLS / 5.2.11:
Fixed Effects GLS / 5.2.12:
First Difference GLS / 5.2.13:
Applied Examples / 5.2.2:
Endogeneity / 6:
The Instrumental Variables Estimator / 6.1:
Generalities about the Instrumental Variables Estimator / 6.2.1:
The within Instrumental Variables Estimator / 6.2.2:
Error Components Instrumental Variables Estimator / 6.3:
The General Model / 6.3.1:
Special Cases of the General Model / 6.3.2:
The within Model / 6.3.2.1:
Error Components Two Stage Least Squares / 6.3.2.2:
The Hausman and Taylor Model / 6.3.2.3:
The Amemiya-Macurdy Estimator / 6.3.2.4:
The Breusch, Mizon and Schmidt's Estimator / 6.3.2.5:
Balestra and Varadharajan-Krishnakumar Estimator / 6.3.2.6:
Estimation of a System of Equations / 6.4:
The Three Stage Least Squares Estimator / 6.4.1:
The Error Components Three Stage Least Squares Estimator / 6.4.2:
More Empirical Examples / 6.5:
Estimation of a Dynamic Model / 7:
Dynamic Model and Endogeneity / 7.1:
The Bias of the OLS Estimator / 7.1.1:
Consistent Estimation Methods for Dynamic Models / 7.1.2:
GMM Estimation of the Differenced Model / 7.2:
Instrumental Variables and Generalized Method of Moments / 7.2.1:
One-step Estimator / 7.2.2:
Two-steps Estimator / 7.2.3:
The Proliferation of Instruments in the Generalized Method of Moments Difference Estimator / 7.2.4:
Generalized Method of Moments Estimator in Differences and Levels / 7.3:
Weak Instruments / 7.3.1:
Moment Conditions on the Levels Model / 7.3.2:
The System GMM Estimator / 7.3.3:
Inference / 7.4:
Robust Estimation of the Coefficients' Covariance / 7.4.1:
Overidentification Tests / 7.4.2:
Error Serial Correlation Test / 7.4.3:
Panel Time Series / 7.5:
Heterogeneous Coefficients / 8.1:
Fixed Coefficients / 8.2.1:
Random Coefficients / 8.2.2:
The Swamy Estimator / 8.2.2.1:
The Mean Groups Estimator / 8.2.2.2:
Testing for Poolability / 8.2.3:
Cross-sectional Dependence and Common Factors / 8.3:
The Common Factor Model / 8.3.1:
Common Correlated Effects Augmentation / 8.3.2:
CCE Mean Groups vs. CCE Pooled / 8.3.2.1:
Computing the CCEP Variance / 8.3.2.2:
Nonstationarity and Cointegration / 8.4:
Unit Root Testing: Generalities / 8.4.1:
First Generation Unit Root Testing / 8.4.2:
Preliminary Results / 8.4.2.1:
Levin-Lin-Chu Test / 8.4.2.2:
Im, Pesaran and Shin Test / 8.4.2.3:
The Maddala and Wu Test / 8.4.2.4:
Second Generation Unit Root Testing / 8.4.3:
Count Data and Limited Dependent Variables / 9:
Binomial and Ordinal Models / 9.1:
The Binomial Model / 9.1.1:
Ordered Models / 9.1.1.2:
The Random Effects Model / 9.1.2:
The Conditional Logit Model / 9.1.2.1:
Censored or Truncated Dependent Variable / 9.2:
The Ordinary Least Squares Estimator / 9.2.1:
The Symmetrical Trimmed Estimator / 9.2.3:
Truncated Sample / 9.2.3.1:
Censored Sample / 9.2.3.2:
Count Data / 9.2.4:
The Poisson Model / 9.3.1:
The NegBin Model / 9.3.1.2:
Negbin Model / 9.3.2:
Random Effects Models / 9.3.3:
Spatial Correlation / 9.3.3.1:
Visual Assessment / 10.1.1:
Testing for Spatial Dependence / 10.1.2:
CD P Tests for Local Cross-sectional Dependence / 10.1.2.1:
The Randomized W Test / 10.1.2.2:
Spatial Lags / 10.2:
Spatially Lagged Regressors / 10.2.1:
Spatially Lagged Dependent Variables / 10.2.2:
Spatial OLS / 10.2.2.1:
ML Estimation of the SAR Model / 10.2.2.2:
Spatially Correlated Errors / 10.2.3:
Individual Heterogeneity in Spatial Panels / 10.3:
Random versus Fixed Effects / 10.3.1:
Spatial Panel Models with Error Components / 10.3.2:
Spatial Panels with Independent Random Effects / 10.3.2.1:
Spatially Correlated Random Effects / 10.3.2.2:
Estimation / 10.3.3:
Spatial Models with a General Error Covariance / 10.3.3.1:
General Maximum Likelihood Framework / 10.3.3.2:
Generalized Moments Estimation / 10.3.3.3:
Testing / 10.3.4:
LM Tests for Random Effects and Spatial Errors / 10.3.4.1:
Testing for Spatial Lag vs Error / 10.3.4.2:
Serial and Spatial Correlation / 10.4:
Maximum Likelihood Estimation / 10.4.1:
Serial and Spatial Correlation in the Random Effects Model / 10.4.1.1:
Serial and Spatial Correlation with KKP-Type Effects / 10.4.1.2:
Tests for Random Effects, Spatial, and Serial Error Correlation / 10.4.2:
Spatial Lag vs Error in the Serially Correlated Model / 10.4.2.2:
Bibliography
Preface
Acknowledgments
About the Companion Website
7.

図書

図書
Richard J. Brown
出版情報: Oxford : Oxford University Press, 2018  xvi, 408 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
Maps / 1.1.2:
Symbolic Dynamics / 1.1.3:
Billiards / 1.1.4:
Higher-Order Recursions / 1.1.5:
The Viewpoint / 1.2:
Simple Dynamics / 2:
Preliminaries / 2.1:
A Simple System / 2.1.1:
The Time-t Map / 2.1.2:
Metrics on Sets / 2.1.3:
Lipschitz Continuity / 2.1.4:
The Contraction Principle / 2.2:
Contractions on Intervals / 2.2.1:
Contractions in Several Variables / 2.2.2:
Application: The Newton-Raphson Method / 2.2.3:
Application: Existence and Uniqueness of ODE Solutions / 2.2.4:
Application: Heron of Alexandria / 2.2.5:
Interval Maps / 2.3:
Cobwebbing / 2.3.1:
Fixed-Point Stability / 2.3.2:
Monotonic Maps / 2.3.3:
Homochnic/Heteroclinic Points / 2.3.4:
Bifurcations of Interval Maps / 2.4:
Saddle-Node Bifurcation / 2.4.1:
Transcritical Bifurcation / 2.4.2:
Pitchfork Bifurcation / 2.4.3:
First Return Maps / 2.5:
A Quadratic Interval Map; The Logistic Map / 2.6:
The Objects of Dynamics / 3:
Topology on Sets / 3.1:
More on Metrics / 3.2:
More on Lipschitz Continuity / 3.2.1:
Metric Equivalence / 3.2.2:
Fixed-Point Theorems / 3.2.3:
Some Non-Euclidean Metric Spaces / 3.3:
The n-Sphere / 3.3.1:
The Unit Circle / 3.3.2:
The Cylinder / 3.3.3:
The 2-Torus / 3.3.4:
A Cantor Set / 3.4:
The Koch Curve / 3.4.1:
Sierpinski Carpet / 3.4.2:
The Sponges / 3.4.3:
Flows and Maps of Euclidean Space / 4:
Linear, First-order ODE Systems in the Plane / 4.1:
General Homogeneous, Linear Systems in Euclidean Space / 4.1.1:
Autonomous Linear Systems / 4.1.2:
The Matrix Exponential / 4.1.3:
Two-Dimensional Classification / 4.1.4:
Bifurcations in Linear Planar Systems / 4.2:
Linearized Poincaré-Andronov-Hopf Bifurcation / 4.2.1:
Linear Planar Maps / 4.2.2:
Nodes: Sinks and Sources / 4.3.1:
Star or Proper Nodes / 4.3.2:
Degenerate or Improper Nodes / 4.3.3:
Spirals and Centers / 4.3.4:
Saddle Points / 4.3.5:
Linear Flows versus Linear Maps / 4.4:
Local Linearization and Stability of Equilibria / 4.5:
Isolated Periodic Orbit Stability / 4.6:
The Poincaré-Bendixson Theorem / 4.6.1:
Limit Sets of Flows / 4.6.2:
Flows in the Plane / 4.6.3:
Application: The van der Pol Oscillator / 4.6.4:
The Poincaré-Andronov-Hopf Bifurcation / 4.6.5:
Application: Competing Species / 4.7:
The Fixed Points / 4.7.1:
Type and Stability / 4.7.2:
Recurrence / 5:
Rotations of the circle / 5.1:
Continued Fraction Representation / 5.1.1:
Equidistribution and Weyl's Theorem / 5.2:
Application: Periodic Function Reconstruction via Sampling / 5.2.1:
Linear Flows on the Torus / 5.3:
Application: Lissajous Figures / 5.3.1:
Application: A Polygonal Billiard / 5.3.2:
Toral Translations / 5.4:
Invertible Circle Maps / 5.5:
Phase Volume Preservation / 6:
In compressibility / 6.1:
Newtonian Systems of Classical Mechanics / 6.2:
Generating Flows from Functions: Lagrange / 6.2.1:
Generating Flows from Functions: Hamilton / 6.2.2:
Exact Differential Equations / 6.2.3:
Application: The Planar Pendulum / 6.2.4:
First Integrals / 6.2.5:
Application: The Spherical Pendulum / 6.2.6:
Poincaré Recurrence / 6.3:
Non-Wandering Points / 6.3.1:
The Poincaré Recurrence Theorem / 6.3.2:
Circular Billiards / 6.4:
Elliptic Billiards / 6.4.2:
General Convex Billiards / 6.4.3:
Poincaré's Last Geometric Theorem / 6.4.4:
Application: Pitcher Problems / 6.4.5:
Complicated Orbit Structure / 7:
Counting Periodic Orbits / 7.1:
The Quadratic Map: Beyond 4 / 7.1.1:
Hyperbolic Toral Automorphisms / 7.1.2:
Application: Image Restoration / 7.1.3:
Inverse Limit Spaces / 7.1.4:
Shift Spaces / 7.1.5:
Markov Partitions / 7.1.6:
Application: The Baker's Transformation / 7.1.7:
Two-Dimensional Markov Partitions: Arnol'd's Cat Map / 7.2:
Chaos and Mixing / 7.3:
Sensitive Dependence on Initial Conditions / 7.4:
Quadratic Maps: The Final interval / 7.5:
Period-Doubling Bifurcation / 7.5.1:
Trie Schwarzian Derivative / 7.5.2:
Sharkovskii's Theorem / 7.5.3:
Two More Examples of Complicated Dynamical Systems / 7.6:
Complex Dynamics / 7.6.1:
Smale Horseshoe / 7.6.2:
Dynamical Invariants / 8:
Topological Conjugacy / 8.1:
Conjugate Maps / 8.1.1:
Conjugate Hows / 8.1.2:
Conjugacy as Classification / 8.1.3:
Topological Entropy / 8.2:
Lyapunov Exponents / 8.2.1:
Capacity / 8.2.2:
Box Dimension / 8.2.3:
Bowen-Dinaburg (Metric) Topological Entropy / 8.2.4:
Bibliography
Index
What Is a Dynamical System? / 1:
Definitions / 1.1:
Ordinary Differential Equations (ODEs) / 1.1.1:
8.

電子ブック

EB
Joseph C. Akunna
出版情報: Taylor & Francis Group, 2018  1 online resource (137 p. ; 24 cm)
所蔵情報: loading…
目次情報: 続きを見る
Preface
Abbreviations
Author
Biological Treatment Processes / 1:
Process Fundamentals / 1.1:
Anaerobic Processes / 1.2:
Process Description / 1.2.1:
Biomass Production / 1.2.2:
Factors Affecting Process Efficiency / 1.2.3:
Start-Up Inoculum / 1.2.3.1:
Waste Organic Content and Biodegradability / 1.2.3.2:
Nutrient Availability / 1.2.3.3:
pH and Alkalinity / 1.2.3.4:
Temperature / 1.2.3.5:
Solids and Hydraulic Retention Times / 1.2.3.6:
Organic Loading Rate / 1.2.3.7:
Toxic Compounds / 1.2.3.8:
Treatment Configuration: Single- and Multi-Stage Systems / 1.2.3.9:
Applications, Benefits, and Drawbacks / 1.2.4:
Aerobic Processes / 1.3:
Wastewater Treatment / 1.3.1:
Aerobic Digestion or Composting / 1.3.3:
Aerobic versus Anaerobic Processes / 1.3.4:
Anoxic Processes / 1.4:
Anaerobic Wastewater Treatment / 2:
Applications and Limitations / 2.1:
Wastewater Biodegradability / 2.2:
Wastewater Pretreatment / 2.3:
Flow Equalization / 2.3.1:
pH Correction / 2.3.2:
Nutrient Balance / 2.3.3:
Temperature Control / 2.3.4:
Solids Reduction / 2.3.5:
Reduction of Toxic Compounds / 2.3.6:
Process Variations / 2.4:
System Configuration / 2.5:
Process Design and Operational Control / 2.6:
Hydraulic Retention Time (HRT) / 2.6.1:
Solids Retention Time (SRT) / 2.6.2:
Hydraulic Loading Rate (HLR) / 2.6.3:
Organic Loading Rate (OLR) / 2.6.4:
Food/Microorganism Ratio / 2.6.5:
Specific Biogas Yield / 2.6.6:
Specific Biogas Production Rate (BPR) / 2.6.7:
Treatment Efficiency / 2.6.8:
Performance and Process Monitoring Indicators / 2.6.9:
Foaming and Control / 2.8:
Anaerobic Digestion (AD) of Organic Solid Residues and Biosolids / 3:
Applications, Benefits, and Challenges / 3.1:
Mono- and Co-Digestion / 3.2:
Standard Rate Digestion / 3.3:
High-Rate Digestion / 3.3.2:
Low-Solids Digestion / 3.3.3:
High-Solids (or "Dry") Digestion / 3.3.4:
Combined Anaerobic-Aerobic System / 3.3.5:
Process Design, Performance, and Operational Control / 3.4:
Feedstock C/N Ratio / 3.4.1:
Retention Time (RT) / 3.4.2:
Solids Loading Rate (SLR) / 3.4.3:
Biogas Production and Operational Criteria / 3.5:
Modes of Operation / 3.6:
Batch Operation / 3.6.1:
Semi-Continuous Operation / 3.6.2:
Continuous Operation / 3.6.3:
Pretreatment in Anaerobic Treatment / 4:
Need for Pretreatment / 4.1:
Mechanical Pretreatment / 4.2:
Collection and Segregation / 4.2.1:
Size Reduction / 4.2.2:
Ultrasound (US) / 4.2.3:
Biological Pretreatment / 4.3:
Aerobic Composting or Digestion / 4.3.1:
Fungi / 4.3.3:
Enzymatic Hydrolysis / 4.3.4:
Bio-Augmentation / 4.3.5:
Bio-Supplementation / 4.3.6:
Chemical Pretreatment / 4.4:
Acid and Alkaline / 4.4.1:
Ozonation / 4.4.2:
Thermal / 4.5:
High Temperature / 4.5.1:
Wet Air Oxidation / 4.5.2:
Pyrolysis / 4.5.3:
Microwave (MW) Irradiation / 4.5.4:
Combined Processes / 4.6:
Thermochemical Pretreatment / 4.6.1:
Thermomechanical Pretreatment / 4.6.2:
Extrusion / 4.6.3:
Summary of Common Pretreatments / 4.7:
Assessing the Effects of Pretreatment / 4.8:
Chemical Analysis / 4.8.1:
Biochemical Methane Potential / 4.8.2:
Posttreatment, Reuse, and Management of Co-Products / 5:
Biogas / 5.1:
Biogas Utilization / 5.1.1:
Biogas Treatment / 5.1.2:
Moisture and Particulates Reduction / 5.1.2.1:
Biogas Upgrading / 5.1.2.2:
Hydrogen Sulfide Removal / 5.1.2.3:
Simultaneous Removal of CO2 and H2S / 5.1.2.4:
Siloxanes Occurrence and Removal / 5.1.2.5:
Health and Safety Considerations / 5.1.3:
Liquid Effluents / 5.2:
Digestate Management and Disposal / 5.3:
Characteristics and Management Options / 5.3.1:
Aerobic Composting / 5.3.2:
Disinfection / 5.3.3:
Applications in Warm Climates and Developing Countries / 6:
Characteristics of Warm Climatic Conditions / 6.1:
Characteristics of Developing Countries / 6.2:
Waste and Wastewater Characteristics / 6.3:
Large-Scale Systems / 6.4:
Micro-Scale Systems / 6.4.2:
Waste Stabilization Ponds / 6.4.3:
Solid Wastes and Slurries Treatment / 6.5:
Case Studies / 7:
Brewery Wastewater Treatment Using the Granular Bed Anaerobic Baffled Reactor (GRABBR) / 7.1:
Seaweed Anaerobic Digestion / 7.2:
Seaweed Anaerobic Co-Digestion / 7.3:
Worked Examples on Anaerobic Wastewater Treatment / Appendix A:
Worked Examples on Anaerobic Digestion of Solid Wastes and Biosolids / Appendix B:
References and Further Reading
Subject Index
Preface
Abbreviations
Author
9.

電子ブック

EB
Steffen, Michael Huth, Oliver Rüthing
出版情報: SpringerLink Books - AutoHoldings , Springer International Publishing, 2018
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Illustrative Examples and Typical Problems / 1.1:
Domain-Specific Languages and the Power of Representation / 1.2:
Thinking in Structures: A Pragmatic Approach to Learning / 1.3:
Learning Outcomes of the First Volume / 1.4:
Propositions and Sets / 2:
Propositions / 2.1:
Prepositional Logic / 2.1.1:
Predicate Logic / 2.1.2:
Approaches and Principles of Logical Proof / 2.1.3:
Sets / 2.2:
Set Relationships / 2.2.1:
Power Sets / 2.2.2:
Composing Sets / 2.2.3:
Cardinality of Finite Sets / 2.2.4:
Reflections: Exploring Covered Topics More Deeply / 2.3:
Propositional Logic / 2.3.1:
Axiomatic Proofs / 2.3.2:
Algebraic Thinking / 2.3.3:
Soundness and Completeness / 2.3.4:
Antinomies / 2.3.5:
Learning Outcomes / 2.4:
Exercises / 2.5:
Relations and Functions / 3:
Relations / 3.1:
Cartesian Product / 3.1.1:
n-ary Relations / 3.1.2:
Binary Relations / 3.1.3:
Functions / 3.2:
Properties of Functions / 3.2.1:
Invariants / 3.2.2:
Cardinality of Infinite Sets / 3.2.3:
Partial Functions / 3.2.4:
Equivalence Relations / 3.3:
Partitions / 3.3.1:
From Functions to Strategies / 3.4:
Finite Bitvectors / 3.4.2:
Limits of Countable Infinity and Computability / 3.4.3:
Hulls and Closures / 3.4.4:
Equivalence Relations in Object-Oriented Programming / 3.4.5:
Computing with Cardinal Numbers / 3.4.6:
Inductive Definitions / 3.5:
Natural Numbers / 4.1:
Peano Axioms / 4.1.1:
Operations over Natural Numbers / 4.1.2:
Inductively Defined Algorithms / 4.1.3:
Inductively Defined Sets / 4.2:
Applications of Inductive Definitions in Informatics / 4.2.1:
Representation and Meaning / 4.3:
Character Strings / 4.3.1:
Semantic Schemas / 4.3.2:
Backus-Naur Form / 4.3.3:
Inductive Schemas / 4.4:
Notations and Standards / 4.5:
Linear Lists in Functional Programming Languages / 4.5.2:
Unambiguous Representation / 4.5.3:
Some BNFs Are Better than Others / 4.5.4:
Inductive Proofs / 4.6:
Order Relations / 5.1:
Partial Orders / 5.1.1:
Preorders / 5.1.2:
Total Orders / 5.1.3:
Strict Orders / 5.1.4:
Orders and Substructures / 5.2:
Well-Founded Induction / 5.3:
Termination Proofs / 5.3.1:
Course of Values Induction / 5.4:
Structural Induction / 5.5:
Mathematical Induction / 5.6:
Strengthening of Induction Claims / 5.7:
Important Application: The Substitution Lemma / 5.7.2:
Formal Correctness Proofs / 5.7.3:
BNF-Based Induction / 5.7.4:
Additional Forms of Inductive Proof / 5.7.5:
Inductive Approach: Potential, Limitations, and Pragmatics / 5.8:
Potential / 6.1:
Dealing with Limitations / 6.2:
Pragmatics / 6.3:
References
Index
Introduction / 1:
Illustrative Examples and Typical Problems / 1.1:
Domain-Specific Languages and the Power of Representation / 1.2:
10.

電子ブック

EB
Haitao Huang, James F. Scott
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2018
所蔵情報: loading…
目次情報: 続きを見る
Preface
Fundamentals of Ferroelectric Materials / Ling B. Kong and Haitao Huang and Sean Li1:
Introduction / 1.1:
Piezoelectric Mechanical Energy Harvesting / 1.2:
Piezoelectricity / 1.2.1:
Brief History of Modern Piezoelectric Ceramics / 1.2.2:
Principle of Piezoelectric Effect for Mechanical Energy Harvesting / 1.2.3:
Pyroelectric Thermal Energy Harvesting / 1.3:
Principle of Pyroelectric Effect / 1.3.1:
Pyroelectric Coefficient and Electrocaloric Coefficient / 1.3.2:
Primary and Secondary Pyroelectric Coefficient / 1.3.3:
Tertiary Pyroelectric Coefficient and Other Aspects / 1.3.4:
Pyroelectric Effect versus Phase Transition / 1.3.5:
Electrocaloric (EC) Effect of Ferroelectric Materials / 1.4:
Ferroelectric Photovoltaic Solar Energy Harvesting / 1.5:
Concluding Remarks / 1.6:
References
Piezoelectric Energy Generation / Hong G. Yeo and Susan Trolier-McKinstry2:
Kinetic Energy Harvesting / 2.1:
Theory of Kinetic Energy Harvesting / 2.1.1:
Kinetic Vibration Source in the Ambient / 2.1.2:
Transducers for Mechanical Energy Harvesting / 2.1.3:
Piezoelectric Vibration Harvesting / 2.2:
Theory of Piezoelectric Vibration Energy Harvesting / 2.2.1:
Choice of Materials for Energy Harvesting / 2.3:
Materials for Piezoelectric MEMS Harvesting / 2.3.1:
Effect of Stress Induced by Substrate / 2.3.2:
Design and Configuration of Piezoelectric Harvester / 2.4:
Option of Piezoelectric Configuration / 2.4.1:
Unimorph and Bimorph Structures / 2.4.2:
Linear Piezoelectric Energy Harvesters / 2.4.3:
Nonlinear Energy Harvesting / 2.4.4:
Review of Piezoelectric Thin Films on Metal Substrate (Foils) / 2.5:
Conclusions / 2.6:
Ferroelectric Photovoltaics / Akash Bhatnagar3:
Historical Background / 3.1:
Recent Studies / 3.2.1:
Modulation of the Effect / 3.3:
Polarization / 3.3.1:
Electrodes / 3.3.2:
Band Gap Engineering / 3.3.3:
Photo-mechanical Coupling / 3.3.4:
Summary and Outlook / 3.4:
Organic-Inorganic Hybrid Perovskites for Solar Energy Conversion / Peng You and Feng Yan4:
Fundamental Properties of Hybrid Perovskites / 4.1:
Crystal Structures / 4.2.1:
Optical Properties / 4.2.2:
Charge Transport Properties / 4.2.3:
Compositional Engineering and Bandgap Tuning / 4.2.4:
Synthesis of Hybrid Perovskite Crystals / 4.3:
Bulk Crystal Growth / 4.3.1:
Nanocrystal Synthesis / 4.3.2:
Deposition Methods of Perovskite Films / 4.4:
One-Step Solution Process / 4.4.1:
Two-Step Solution Process / 4.4.2:
Vapor-Phase Deposition / 4.4.3:
Efficiency Roadmap of Perovskite Solar Cells / 4.5:
Working Mechanism and Device Architectures of Perovskite Solar Cells / 4.6:
Key Challenges of Perovskite Solar Cells / 4.7:
Long-Term Stability / 4.7.1:
I-V Hysteresis / 4.7.2:
Toxicity of Raw Materials / 4.7.3:
Summary and Perspectives / 4.8:
Dielectric Ceramics and Films for Electrical Energy Storage / Xihong Hao5:
Principles of Dielectric Capacitors for Electrical Energy Storage / 5.1:
The Basic Knowledge on Capacitors / 5.2.1:
Some Important Parameters for Electrical Energy Storage / 5.2.2:
Energy-Storage Density / 5.2.2.1:
Energy Efficiency / 5.2.2.2:
Breakdown Strength (BDS) / 5.2.2.3:
Thermal Stability / 5.2.2.4:
Power Density / 5.2.2.5:
Service Life / 5.2.2.6:
Measurement Techniques of Energy Density / 5.2.3:
Polarization-Based Method / 5.2.3.1:
Indirect Calculated Method / 5.2.3.2:
Direct Charge-Discharge Method / 5.2.3.3:
The Energy-Storage Performance in Paraelectric-Like Metal Oxides / 5.3:
Simple Metal Oxides / 5.3.1:
TiO2 / 5.3.1.1:
ZrO2 / 5.3.1.2:
Al2O3 / 5.3.1.3:
Multi-metal Oxides / 5.3.2:
SrTiO3 / 5.3.2.1:
Bi1.5Zn0.9Nb1.5O6.9 / 5.3.2.2:
The Energy-Storage Performance in Antiferroelectrics / 5.4:
PbZrO3-Based Antiferroelectric / 5.4.1:
(Na0.5Bi0.5)TiO3-Based Antiferroelectric / 5.4.2:
AgNbO3-Based Antiferroelectric / 5.4.3:
HfO2-Based Antiferroelectric / 5.4.4:
Energy-Storage Performance in Glass-Ceramic Ferroelectrics / 5.5:
Glass-Ceramic Ferroelectrics Prepared by Compositing Method / 5.5.1:
Glass-ceramic Prepared by Body-crystallization Method / 5.5.2:
Lead-Containing Glass-ceramic / 5.5.2.1:
BaTiO3-Based Glass-ceramic / 5.5.2.2:
Nb-Containing Glass-ceramic / 5.5.2.3:
Interface Effect-Related Energy-Storage Performance / 5.5.3:
Energy-Storage Performance in Relaxor Ferroelectrics / 5.6:
PLZT Relaxor Ferroelectrics / 5.6.1:
BaTiO3-Based Relaxor Ferroelectrics / 5.6.2:
PbTiO3-Based Relaxor Ferroelectrics / 5.6.3:
BiFeO3-Based Relaxor Ferroelectrics / 5.6.4:
The General Future Prospects / 5.7:
Ferroelectric Polymer Materials for Electric Energy Storage / Zhi-Min Dang and Ming-Sheng Zheng and Jun-Wei Zha6:
Energy Storage Theory / 6.1:
Energy Storage of Ferroelectric Polymers / 6.3:
Energy Storage of Ferroelectric Polymer-Based Nanocomposites / 6.4:
Ferroelectric Polymer-Based Nanocomposites Using 0D Nanofillers / 6.4.1:
Surface-Modified OD Nanofillers / 6.4.1.1:
Core-Shell Structure OD Nanofillers / 6.4.1.2:
Multilevel Structure Nanocomposites / 6.4.1.3:
Ferroelectric Polymer-Based Nanocomposites Using 1D Nanofillers / 6.4.2:
Surface-Modified 1D Nanofillers / 6.4.2.1:
Core-Shell Structure 1D Nanofillers / 6.4.2.2:
Ferroelectric Polymer-Based Nanocomposites Using 2D Nanofillers / 6.4.2.3:
Summary / 6.5:
Pyroelectric Energy Harvesting: Materials and Applications / Chris R. Bowen and Mengying Xie and Yan Zhang and Vitaly Yu and Topolov and Chaoying Wan7:
Introduction to Pyroelectric Energy Harvesting / 7.1:
Nanostructured and Microscale Materials and Devices / 7.2:
Hybrid Pyroelectric Generators / 7.3:
I Hybrid Piezoelectric and Pyroelectric System
Hybrid Pyroelectric and Solar Systems / 7.3.2:
Pyroelectric Oscillator Systems / 7.4:
Pyroelectric Coupling with Electrochemical Systems / 7.5:
Porous Pyroelectric Materials / 7.6:
Manufacture of Isotropic Porous Pyroelectric Materials / 7.6.1:
Lost Wax Replication of a Coral Skeleton (Positive Template) / 7.61.1:
Polymeric Sponge (Positive Template) / 7.6.1.2:
Burned Out Plastic Spheres (BURPS) (Negative Template) / 7.6.1.3:
Direct Pore Forming / 7.6.1.4:
Gel Casting / 7.6.1.5:
Manufacture of Anisotropic Porous Pyroelectric Materials / 7.6.2:
Freeze Casting / 7.6.2.1:
3D Rapid Prototyping / 7.6.2.2:
Figures of Merit and Applications Concerned with Radiations / 7.7:
Acknowledgments / 7.8:
Ferroelectrics in Electrocaloric Cooling / Biaolin Peng and Qi Zhang8:
Fundamentals of Electrocaloric Effects / 8.1:
Maxwell Relations and Coupled Electrocaloric Effects / 8.1.1:
Electrocaloric Effect Derived from the Landau-Devonshire Phenomenological Theory / 8.1.2:
Physical Upper Bounds on the Electrocaloric Effect Derived from the Statistical Thermodynamics Theory / 8.1.3:
ECE Measurement Methods / 8.1.4:
Positive and Negative Electrocaloric Effects / 8.1.5:
Electrocaloric Devices / 8.2:
Electrocaloric Refrigerator Prototype / 8.2.1:
MLCC and MLPC EC Refrigerator Modules / 8.2.2:
Electrocaloric Materials / 8.3:
EC in Ferroelectric Ceramics / 8.3.1:
In Bulk Ceramics and Single Crystals / 8.3.1.1:
In Thin Films / 8.3.1.2:
EC in Ferroelectric Polymer Materials / 8.3.2:
In Normal Ferroelectric Polymers / 8.3.2.1:
In Relaxor Ferroelectric Terpolymers / 8.3.2.2:
EC in Other Materials / 8.3.3:
In Composites / 8.3.3.1:
In Liquid Crystals / 8.3.3.2:
In Fast Ion Conductors / 8.3.3.3:
Ferroelectrics in Photocatalysis / Liang Fang and Lu You and Jun-Ming Liu8.4:
Fundamental Principles of Semiconductor Photocatalysis / 9.1:
Advances in Understanding Ferroelectric Photo catalytic Mechanisms / 9.3:
Photochemistry of Ferroelectric Materials / 9.4:
Photocatalytic Degradation Using Ferroelectric Materials / 9.5:
Photocatalytic Water-splitting Using Ferroelectric Materials / 9.6:
Conclusion and Perspectives / 9.7:
Light Absorption / 9.7.1:
Carrier Separation and Transport / 9.7.2:
Carrier Collection/Reaction / 9.7.3:
First-Principles Calculations on Ferroelectrics for Energy Applications / Gelei Jiang and Weijin Chen and Yue Zheng10:
Methods / 10.1:
First-Principles Calculations / 10.2.1:
First-Principles-Derived Effective Hamiltonian Method / 10.2.2:
Energy Conversion / 10.3:
Piezoelectric and Flexoelectric Effect / 10.3.1:
Photovoltaic Effect / 10.3.2:
Pyroelectric and Electrocaloric Effect / 10.3.3:
Energy Storage / 10.4:
Future Perspectives / Haitao Huang11:
Enhanced Lithium Ion Transport in Polymer Electrolyte / 11.1:
Enhanced Polysulfide Trapping in Li-S Batteries / 11.2:
Enhanced Dissociation of Excitons / 11.3:
New Materials / 11.4:
New Applications / 11.5:
Index
Preface
Fundamentals of Ferroelectric Materials / Ling B. Kong and Haitao Huang and Sean Li1:
Introduction / 1.1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼