close
1.

図書

図書
Alexander Mamishev, Sean Williams
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xvii, 243 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
In this Chapter / 1.1:
Our Audience / 1.2:
A few horror stories / 1.2.1:
Some history / 1.2.2:
The Need For a Good "Writing System" / 1.3:
Introducing Stream Tools / 1.4:
What is STREAM Tools? / 1.4.1:
Why use STREAM Tools? / 1.4.2:
The software of STREAM Tools / 1.4.3:
Recommended packages / 1.4.3.1:
A brief comparison of Microsoft Word vs. LaTeX: history and myths / 1.4.3.2:
How to Use this Book / 1.5:
Exercises / 1.6:
Quick Start Guide For Stream Tools / Chapter 2:
A General Overview of the Writing Process / 2.1:
Introduction to Writing Quality Tools: The Stream Tools Editorial Mark-Up Table / 2.3:
Introduction to Document Design Tools / 2.4:
Important fundamental concepts / 2.4.1:
Step 1: Use template files to create your new manuscripts / 2.4.1.1:
Step 2: Copy existing elements and paste them into a new location / 2.4.1.2:
Step 3: Edit the element / 2.4.1.3:
Step 4: Cross-referencing elements / 2.4.1.4:
Creating Elements in a Document / 2.4.2:
Headings / 2.4.2.1:
Equations / 2.4.2.2:
Figures / 2.4.2.3:
Tables / 2.4.2.4:
References (literature citations) / 2.4.2.5:
Introduction to File Management: Optimizing Your Workflow / 2.5:
General principles / 2.5.1:
Using a wiki for file management / 2.5.2:
Version control / 2.5.3:
Conclusions / 2.6:
Document Design / 2.7:
Creating Templates / 3.1:
How to create and cross-reference a heading template / 3.2.1:
How to alter a heading template / 3.2.1.2:
Common formatting mistakes in headings / 3.2.1.3:
Common stylistic mistakes for headings / 3.2.1.4:
Tips and tricks / 3.2.1.5:
How to create and cross-reference an equation template / 3.2.2:
How to alter an equation template / 3.2.2.2:
Common formatting mistakes for equations / 3.2.2.3:
Common stylistic mistakes for equations / 3.2.2.4:
How to create and cross-reference a figure template / 3.2.2.5:
How to alter a figure template / 3.2.3.2:
Common formatting mistakes in figures / 3.2.3.3:
Common stylistic mistakes in figures / 3.2.3.4:
Tips and tricks for figures / 3.2.3.5:
How to create and cross-reference a table template / 3.2.4:
How to alter a table template / 3.2.4.2:
Common typesetting mistakes / 3.2.4.3:
Common stylistic mistakes in tables / 3.2.4.4:
Tips and tricks for tables / 3.2.4.5:
Front matter / 3.2.5:
Controlling page numbers / 3.2.5.1:
Table of contents / 3.2.5.2:
Back matter / 3.2.6:
Appendices / 3.2.6.1:
Indices / 3.2.6.2:
Using Multiple Templates / 3.3:
Controlling styles / 3.3.1:
Switching between single-column and double-column formats / 3.3.2:
Master documents / 3.3.3:
Practice Problems / 3.4:
Additional Resources / 3.4.1:
Using Bibliographic Databases / 3.6:
Why Use a Bibliographic Database? / 4.1:
Choice of Software / 4.3:
Using Endnote / 4.4:
Setting up the interface / 4.4.1:
Adding references / 4.4.2:
Citing references / 4.4.3:
Sharing a Database / 4.5:
Numbering the database entries / 4.5.1:
Compatibility with BiBTeX / 4.5.2:
Formatting References / 4.6:
Planning, Drafting, and Editing Documents / 4.7:
Definition Stage / 5.1:
Select your team members / 5.2.1:
Hold a kick-off meeting / 5.2.2:
Analyze the audience / 5.2.3:
Formulate the purpose / 5.2.4:
Persuasion / 5.2.4.1:
Exposition / 5.2.4.2:
Instruction / 5.2.4.3:
Select the optimum combination of STREAM Tools / 5.2.5:
Preparation Stage / 5.3:
Evaluate historical documents / 5.3.1:
Journal articles / 5.3.1.1:
Proceedings/papers / 5.3.1.2:
Theses and dissertations / 5.3.1.3:
Proposals / 5.3.1.4:
Reports / 5.3.1.5:
Populate the file repository / 5.3.2:
Create a comprehensive outline of the document / 5.3.3:
Using deductive structures / 5.3.3.1:
Using Microsoft Word's Outline feature / 5.3.3.2:
Populate all sections with "yellow text" / 5.3.4:
Distribute writing tasks among team members / 5.3.5:
Choose a drafting strategy / 5.3.5.1:
Synchronize writing styles / 5.3.5.2:
Writing Stage / 5.4:
Enter content / 5.4.1:
Legacy content / 5.4.1.1:
New content / 5.4.1.2:
Control versions of shared files / 5.4.1.3:
Request that team members submit their drafts / 5.4.2:
Verify that each section is headed in the right direction / 5.4.3:
Construct the whole document / 5.4.4:
Revise for content and distribute additional writing tasks / 5.4.5:
Comprehensive editing / 5.4.5.1:
STREAM Tools Editorial Mark-up table (STEM Table) / 5.4.5.2:
Strategies for editing electronic copy using Microsoft Word--an overview of Microsoft Word's commenting, reviewing, and proofing features / 5.4.5.3:
Distribute additional writing tasks / 5.4.6:
Completion Stage / 5.5:
Copy edit the document / 5.5.1:
Send out for a final review of content and clarity / 5.5.2:
Proofread the document / 5.5.3:
Submit the document / 5.5.4:
Conduct the final process-improvement review session / 5.5.5:
Building High Quality Writing Teams / 5.6:
Understanding the Benefits and Challenges of Teamwork / 6.1:
The payoff of teamwork / 6.2.1:
Some principle challenges of teamwork / 6.2.2:
Identifying Team Goals and Assigning Member Roles / 6.3:
Define roles and procedures clearly / 6.3.1:
Define team roles / 6.3.1.1:
Define team procedures / 6.3.1.2:
Managing Teamwork at a Distance / 6.4:
Building trust in virtual teams / 6.4.1:
Demonstrating sensitivity to cultural differences / 6.4.2:
Selecting Communication Tools To Support Teamwork / 6.5:
Wikis / 6.5.1:
Creating a wiki / 6.5.1.1:
Editing / 6.5.1.2:
Organizing / 6.5.1.3:
Monitoring edits / 6.5.1.4:
Other suggestions for wiki use / 6.5.1.5:
SharePoint / 6.5.2:
Lists / 6.5.2.1:
Web pages / 6.5.2.2:
Alerts and site management / 6.5.2.3:
Assuring Quality Writing / 6.6:
Choosing the Best Words 278 / 7.1:
Choose strong words / 7.2.1:
Use strong nouns and verbs / 7.2.1.1:
Choose words with the right level of formality / 7.2.1.2:
Avoid weak words / 7.2.2:
Check for confusing or frequently misused words / 7.2.2.1:
Avoid double negatives, and change negatives to affirmatives / 7.2.2.2:
Avoid changing verbs to nouns / 7.2.2.3:
Delete meaningless words and modifiers / 7.2.2.4:
Steer clear of jargon / 7.2.2.5:
Avoid sexist or discriminatory language / 7.2.2.6:
Writing Strong Sentences / 7.3:
Write economically / 7.3.1:
Include a variety of sentence types / 7.3.2:
Avoiding Weak Sentence Construction / 7.4:
Comma splices / 7.4.1.1:
Fragments / 7.4.1.2:
Fused or run-on sentences / 7.4.1.3:
Misplaced, dangling, or two-way modifiers / 7.4.1.4:
Faulty parallelism / 7.4.1.5:
Punctuating For Clarity / 7.5:
End punctuation / 7.5.1:
Periods / 7.5.1.1:
Question marks / 7.5.1.2:
Exclamation points / 7.5.1.3:
Commas / 7.5.2:
Semicolons / 7.5.3:
Colons / 7.5.4:
Apostrophes / 7.5.5:
Dashes and hyphens / 7.5.6:
Final Considerations / 7.6:
Abbreviations and acronyms / 7.6.1:
Capitalization / 7.6.2:
Numbers / 7.6.3:
Dates / 7.6.4:
Fractions and percentages / 7.6.5:
Units of measure / 7.6.6:
A Final Note on Grammar / 7.7:
Concluding Remarks / 7.8:
Business Case / 8.1:
Frequently Asked Questions / 8.3:
Success Stories / 8.4:
Additional Reading / 8.5:
Useful books and articles / 8.5.1:
Useful weblinks / 8.5.2:
EXERCISES / 8.6:
Preface
Acknowledgments
Introduction / Chapter 1:
2.

図書

図書
Edward Bellinger and David C. Sigee
出版情報: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley-Blackwell, 2010  viii, 271 p ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
Algae as primary producers / 1.1.2:
Freshwater environments / 1.1.3:
Planktonic and benthic algae / 1.1.4:
Size and shape / 1.1.5:
Taxonomic variation / 1.2:
Microscopical appearance / 1.2.1:
Biochemistry / 1.2.2:
Molecular characteristics and identification / 1.2.3:
Blue-green algae / 1.3:
Cytology / 1.3.1:
Morphological and taxonomic diversity / 1.3.2:
Ecology / 1.3.3:
Blue-green algae as bioindicators / 1.3.4:
Green algae / 1.4:
Morphological diversity / 1.4.1:
Green algae as bioindicators / 1.4.3:
Euglenoids / 1.5:
Euglenoids as bioindicators / 1.5.1:
Yellow-green algae / 1.6:
Yellow-green algae as bioindicators / 1.6.1:
Dinoflagellates / 1.7:
Cryptomonads / 1.7.1:
Comparison with euglenoid algae / 1.8.1:
Biodiversity / 1.8.3:
Cryptomonads as bioindicators / 1.8.4:
Chrysophytes / 1.9:
Chrysophytes as bioindicators / 1.9.1:
Diatoms / 1.10:
Diatoms as bioindicators / 1.10.1:
Red algae / 1.11:
Brown algae / 1.12:
Sampling, biomass estimation and counts of freshwater algae A Planktonic algae / 2:
Protocol for collection / 2.1:
Standing water phytoplankton / 2.1.1:
River phytoplankton
Mode of collection / 2.2:
Phytoplankton trawl net / 2.2.1:
Volume samplers / 2.2.2:
Integrated sampling / 2.2.3:
Sediment traps / 2.2.4:
Phytoplankton biomass / 2.3:
Turbidity / 2.3.1:
Dry weight and ash-free dry weight / 2.3.2:
Pigment concentrations / 2.3.3:
Flow cytometry / 2.4:
Microscope counts of species populations / 2.5:
Sample preservation and processing / 2.5.1:
Species counts / 2.5.2:
Conversion of species counts to biovolumes / 2.5.3:
Chemical cleaning of diatoms / 2.5.4:
Diversity within species populations / 2.6:
Molecular analysis / 2.6.1:
Analytical microscopical techniques B Non-planktonic algae / 2.6.2:
Deep water benthic algae / 2.7:
Benthic-pelagic coupling / 2.7.1:
Benthic algae and sediment stability / 2.7.2:
Invertebrate grazing of benthic algae / 2.7.3:
Shallow water communities / 2.8:
Substrate / 2.8.1:
Algal communities / 2.8.2:
Algal biofilms / 2.9:
Mucialginous biofilms / 2.9.1:
Biomass / 2.9.2:
Taxonomic composition / 2.9.3:
Matrix structure / 2.9.4:
Periphyton? algal mats / 2.10:
Inorganic substratum / 2.10.1:
Plant surfaces / 2.10.2:
Algae as bioindicators / 3:
Bioindicators and water quality / 3.1:
Biomarkers and bioindicators / 3.1.1:
Characteristics of bioindicators / 3.1.2:
Biological monitoring versus chemical measurements / 3.1.3:
Monitoring water quality: objectives / 3.1.4:
Lakes / 3.2:
Contemporary planktonic and attached algae as bioindicators / 3.2.1:
Fossil algae as bioindicators: lake sediment analysis / 3.2.2:
Water quality parameters / 3.2.3:
Wetlands / 3.3:
Rivers / 3.4:
The periphyton community / 3.4.1:
River diatoms / 3.4.2:
Evaluation of the diatom community / 3.4.3:
Human impacts and diatom indices / 3.4.4:
Calculation of diatom indices / 3.4.5:
Practical applications of diatom indices / 3.4.6:
Estuaries / 3.5:
Ecosystem complexity / 3.5.1:
Algae as estuarine bioindicators / 3.5.2:
A key to the more frequently occurring freshwater algae / 4:
Introduction to the key / 4.1:
Using the key / 4.1.1:
Morphological groupings / 4.1.2:
Key to the main genera and species / 4.2:
List of algae included and their occurrence in the key / 4.3:
Algal identification: bibliography / 4.4:
Glossary
References
Index
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
3.

図書

図書
edited by Tito Trindade, Ana L. Daniel da Silva
出版情報: Singapore : Pan Stanford Publishing, c2011  xxii, 289, 4 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
From Nanoparticles to Nanocomposites: A Brief Overview / 1:
Nanoscience and Nanotechnology: An introduction / 1.1:
Nanoparticles' Diversity / 1.2:
Quantum dots / 1.2.1:
Iron oxides / 1.2.2:
Metal nanoparticles / 1.2.3:
Surface Modification of Nanoparticles / 1.3:
Ligand exchange reactions / 1.3.1:
Inorganic nanocoating / 1.3.2:
Encapsulation in polymers / 1.3.3:
Designing Biointerfaces over Nanoparticles / 1.4:
Challenges for the Future... Nanosafety for Today / 1.5:
Polymers for Biomedical Applications: Chemical Modification and Biofunctionalization / 2:
Drug Delivery Systems / 2.1:
Hydrogels / 2.2:
Application of hydrogels / 2.2.1:
Types of hydrogels / 2.2.2:
Bioadhesives / 2.3:
Surface Modification / 2.4:
Surface modification by ultra-violet radiation / 2.4.1:
Plasma treatment / 2.4.2:
Plasma generation / 2.4.2.1:
Plasma polymerization and surface modification of polymers / 2.4.2.2:
Concluding Remarks / 2.5:
Nanocapsules as Carriers for the Transport and Targeted Delivery of Bioactive Molecules / 3:
Introduction / 3.1:
Polymeric Nanocapsules: Production and Characterization / 3.2:
Nanocapsules made of synthetic polymers / 3.2.1:
Polyacrylate nanocapsules / 3.2.1.1:
Polyester nanocapsules / 3.2.1.2:
Nanocapsules made of natural polymers / 3.2.2:
Lipid nanocapsules / 3.2.3:
Therapeutical Applications of Nanocapsules / 3.3:
Nanocapsules for oral drug delivery / 3.3.1:
Nanocapsules for oral peptide delivery / 3.3.1.1:
Nanocapsules for oral delivery of lipophilic low molecular weight drugs / 3.3.1.2:
Nanocapsules as nasal drug carriers / 3.3.2:
Nanocapsules as ocular drug carriers / 3.3.3:
Nanocapsules in cancer therapy / 3.3.4:
Nanocapsules as carriers for gene therapy / 3.3.5:
Conclusions / 3.4:
Inorganic Nanoparticles Biofunctionalization / 4:
Bioeonjugation of Nanoparticles / 4.1:
Nanoparticles and Their Surface Properties / 4.2:
Surface capping of nanoparticles / 4.2.1:
Semiconductor quantum dots and metallic nanoparticles / 4.2.2:
Silica nanoparticles and silica encapsulation / 4.2.3:
Attachment Schemes / 4.3:
Covalent attachment / 4.3.1:
Non-covalent attachment / 4.3.2:
Affinity binding / 4.3.3:
Specific Cases / 4.4:
Proteins / 4.4.1:
DNA / 4.4.2:
Avidin / 4.4.3:
Phospholipid encapsulation and functionalization / 4.4.4:
Applications / 4.5:
Cellular imaging / 4.5.1:
Drug delivery / 4.5.2:
Bioluminescence resonance energy transfer / 4.5.3:
Hyperthermia / 4.5.4:
Conclusion / 4.6:
Silica-Based Materials: Bioprocesses and Nanocomposites / 5:
Natural Silica Nanocomposites / 5.1:
Diatom biosilica / 5.1.1:
Sponge biosilica / 5.1.3:
(Bio)-technological applications of biosilica / 5.1.4:
Biomimetic Silica Nanocomposites / 5.2:
Silica nanocomposites based on natural templates / 5.2.1:
Silica nanocomposites based on model templates / 5.2.3:
Synthetic peptides / 5.2.3.1:
Synthetic polyamines / 5.2.3.2:
Biological templates / 5.2.3.3:
Biomimetism: How far can we go? / 5.2.4:
Bio-Inspired Silica Nanocomposites / 5.3:
Biotechnological and medical applications / 5.3.1:
Perspectives / 5.3.3:
Synthetic Strategies for Polymer-Based Nanocomposite Particles / 6:
Surfaces and Interfaces: Chemical Modification of Nanoparticles / 6.1:
In situ Synthetic Strategies for Polymer-Based Colloidal Nanocomposites / 6.3:
In situ preparation of the fillers / 6.3.1:
Sol-gel methods / 6.3.1.1:
In situ polymerization of the matrix / 6.3.2:
Organic solvent-based methods: Dispersion polymerization / 6.3.2.1:
Water-based methods: Emulsion and miniemulsion polymerization / 6.3.2.2:
Controlled polymerization: Surface initiated polymerization(SIP) / 6.3.3:
Atom Transfer Radical Polymerization Atrp / 6.3.3.1:
Reversible Addition Fragmentation chain transfer (Raft) polymerization / 6.3.3.2:
Combined controlled polymerization mechanisms / 6.3.3.3:
Functionalization of Polymer-Based Nanocomposites for Bio-Applications / 6.4:
Final Remarks / 6.5:
Synthesis of Nanocomposite Particles Using Supercritical Fluids: A Bridge with Bio-applications / 7:
Supercritical Fluids: Definition and Current use in, Bio-Applications / 7.1:
Definition / 7.2.1:
Scps in biomedical applications / 7.2.2:
Development of drug delivery systems / 7.2.2.1:
scC02 for purification and sterilization / 7.2.2.2:
Can Scfs be Used to Introduce Inorganic NPs into Polymers? / 7.3:
Formation of hybrid organic-inorganic NPs in Scps(route 1) / 7.3.1:
Encapsulation of inorganic NPs into a polymer shell (route 2) / 7.3.2:
Polymer swelling and in situ growth of inorganic NPs (route 3) / 7.3.3:
Polymer swelling by scC02 / 7.3.3.1:
Chemical transformation of impregnated metal precursor / 7.3.3.2:
Biocomposites Containing Magnetic Nanoparticles / 7.4:
Magnetic Properties / 8.1:
Magnetism at nanoscale level: Concepts and main phenomena / 8.2.1:
Basic concepts / 8.2.1.1:
Systems with interactions between magnetic centers / 8.2.1.2:
Superparamagnetism / 8.2.1.3:
Magnetism concepts subjacent to bio-applicatons / 8.2.2:
Magnetic separation and drug delivery / 8.2.2.1:
Magnetic resonance imaging (Mri) / 8.2.2.2:
Magnetic hyperthermia / 8.2.2.3:
Magnetic Nanoparticles for Bio-Applications / 8.3:
Iron oxide nanoparticles / 8.3.1:
Metallic nanoparticles / 8.3.2:
Metal alloy nanoparticles / 8.3.3:
Bimagnetic nanoparticles / 8.3.4:
Strategies of Synthesis of Magnetic Biocomposite Nanoparticles / 8.4:
In situ formation of magnetic nanoparticles / 8.4.1:
Other magnetic nanoparticles / 8.4.1.1:
Encapsulation of magnetic nanoparticles within biopolymers / 8.4.2:
Conclusions and Future Outlook / 8.5:
Multifunctional Nanoeomposite Particles for Biomedical Applications / 9:
Types of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.1:
Main Approaches to the Preparation of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.3:
Silica coated magnetic-fluorescent nanoparticles / 9.3.1:
Organic polymer coated magnetic cores treated with fluorescent entities / 9.3.2:
Ionic assemblies of magnetic cores and fluorescent entities / 9.3.3:
Fluoreseently-labeled lipid coated magnetic nanoparticles / 9.3.4:
Magnetic core directly linked to fluorescent entity via a molecular spacer / 9.3.5:
Magnetic cores coated by fluorescent semiconducting shells / 9.3.6:
Magnetically-doped Qds / 9.3.7:
Magnetic nanoparticles and Qds embedded within a polymer or silica matrix / 9.3.8:
Biomedical Applications / 9.4:
Bio-imaging probes / 9.4.1:
Cell tracking, sorting and bioseparation / 9.4.2:
Applications in nanomedicine / 9.4.3:
Bio-Applications of Functionalized Magnetic Nanoparticles and Their Nanocomposites / 9.5:
Fundaments of Nanomagnetism / 10.1:
Single-domain particles / 10.2.1:
Magnetic anisotropy energy / 10.2.2:
Fundaments of Colloidal Stability / 10.2.3:
Bio-Applications of Magnetic Nanoparticles / 10.4:
Magnetic separation / 10.4.1:
Nuclear magnetic resonance imaging (Mri) / 10.4.2:
Contrast agents based on superparamagnetic nanomagnets / 10.4.3.1:
Magnetobiosensors / 10.4.4:
Magnetobiosensors based on magnetorelaxometry / 10.4.4.1:
Magnetobiosensors based on magnetoresistance / 10.4.4.2:
Magnetosensors based on Hall effect / 10.4.4.3:
Magnetoplasmonics / 10.4.4.4:
Summary and Outlook / 10.4.5:
Anti-Microbial Polymer Nanocomposites / 11:
Packaging / 11.1:
Textiles / 11.1.2:
Coatings / 11.1.3:
Antimicrobial coatings / 11.1.3.1:
Medicine, pathology and surgical implants/ biomedical coatings / 11.1.3.2:
Anti-Microbial Polymer-Based Nanocomposites / 11.2:
Mechanisms of Antibacterial Action / 11.3:
Detection of microbes / 11.3.1:
Control of microbial growth / 11.3.2:
Environmental and Health Concerns / 11.4:
Biosensing Applications Using Nanoparticles / 12:
Biosensors: A Definition / 12.1:
Uses of Gold Nanoparticles / 12.2:
Tailoring biointerfaces over gold nanoparticles / 12.2.1:
Biosensing applications of gold nanoparticles / 12.2.2:
Crosslinking-based biosensing / 12.2.2.1:
Non-crosslmking-based biosensing / 12.2.2.2:
Semiconductor Quantum Dots / 12.3:
Properties of quantum dots / 12.3.1:
Biosensing with quantum dots / 12.3.2:
Immunosensing / 12.3.2.1:
Dna assays / 12.3.2.2:
Resonance energy transfer-based assays / 12.3.2.3:
Outlook Remarks / 12.4:
Index
List of Figures
List of Tables
Preface
4.

図書

図書
Detlev Möller
出版情報: Berlin : Walter de Gruyter, c2019  xxviii, 619 p. ; 25 cm
シリーズ名: Chemistry of the climate system ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
Prologue
List of principal symbols
Introduction / 1:
Chemistry and the climate system / 1.1:
Air and atmosphere: a multiphase and multicomponent system / 1.2:
Principles of chemistry in the climate system / 1.3:
Substances in climate system / 1.4:
Fundamentals of physics in the climate system / 2:
Meteorological basics / 2.1:
Scaling and structure of the atmosphere / 2.1.1:
Meteorological elements / 2.1.2:
Air pressure / 2.1.2.1:
Air temperature / 2.1.2.2:
Air humidity / 2.1.2.3:
Hydrometeors / 2.1.3:
Clouds / 2.1.3.1:
Fog, mist, and haze / 2.1.3.2:
Precipitation / 2.1.3.3:
Dew, frost, rime, and interception / 2.1.4:
Clirnatologtcai basics / 2.2:
Climate / 2.2.1:
Climate system / 2.2.2:
Chemical climate / 2.2.3:
Optics of the atmosphere: Radiation / 2.3:
Solar radiation / 2.3.1:
The Sun and its radiation output / 2.3.1.1:
Solar radiation transfer through the atmosphere / 2.3.1.2:
Absorption and emission of light / 2.3.2:
Absorption (Lambert-Beer law) / 2.3.2.1:
Emission (Planck's law and Stefan-Boltzmann law) / 2.3.2.2:
Terrestrial radiation and radiation budget / 2.3.3:
Atmospheric dynamics / 2.4:
Fluid characteristics / 2.4.1:
Effective atmospheric forces / 2.4.1.1:
Atmospheric flow: Laminar and turbulent / 2.4.1.2:
Fluid characteristics: Wind speed and direction / 2.4.1.3:
Properties of gases: The ideal gas / 2.5:
Gas laws / 2.5.1:
Mean free path and number of collisions between molecules / 2.5.2:
Viscosity / 2.5.3:
Diffusion / 2.5.4:
Atmospheric removal: Deposition processes / 2.6:
Dry deposition / 2.6.1:
Wet deposition / 2.6.2:
Characteristic times; Residence time, lifetime, and turnover time / 2.7:
Fundamentals of physicochemistry in the climate system / 3:
Chemical thermodynamics / 3.1:
First law of thermodynamics and its applications / 3.1.1:
Internal energy / 3.1.1.1:
Molar heat capacity / 3.1.1.2:
Thermochemistry: Heat of chemical reaction / 3.1.1.3:
Second law of thermodynamics and its applications / 3.1.2:
Entropy and reversibility / 3.1.2.1:
Thermodynamic potential: Gibbs-Helmholtz equation / 3.1.2.2:
Chemical potential / 3.1.2.3:
Chemical potential in real mixtures: Activity / 3.1.2.4:
Equilibrium / 3.2:
Chemical equilibrium: The mass action law / 3.2.1:
Phase equilibrium / 3.2.2:
Gas-liquid equilibrium: Evaporation and condensation / 3.2.2.1:
Gas-liquid equilibrium: Special case of droplets (Kelvin equation) / 3.2.2.2:
Absorption of gases in water: Henry's law / 3.2.2.3:
Solubility equilibrium: Solid-aqueous equilibrium / 3.2.2.4:
Adsorption and desorption / 3.2.2.5:
Steady state / 3.3:
Water: Physical and chemical properties / 3.4:
Water structure: Hydrogen bond / 3.4.1:
Water as solvent / 3.4.2:
Water vapor / 3.4.3:
Water properties in relation to the climate system / 3.4.4:
Properties of solutions and droplets / 3.5:
Surface tension and surface-active substances / 3.5.1:
Vapor pressure lowering: Raoult's law / 3.5.2:
Freezing point depression / 3.5.3:
Diffusion in solution / 3.5.4:
Heterogeneous processes: Multiphase chemistry in the climate system / 3.6:
Aerosols, clouds, and precipitation: The climate multiphase system / 3.6.1:
Gas-to-particle formation: Homogeneous formation of CCNs / 3.6.2:
Classical nucleation theory / 3.6.2.1:
Formation of secondary organic aerosols / 3.6.2.2:
Atmospheric aerosols and the properties of aerosol particles / 3.6.3:
Formation of cloud droplets: Heterogeneous nucleation / 3.6.4:
Scavenging: Acommodation, adsorption, and reaction (mass transfer) / 3.6.5:
Mass transfer: General remarks / 3.6.5.1:
Adsorption / 3.6.5.2:
Surface chemistry: Kinetics of heterogeneous chemical reactions / 3.6.5.3:
Mass transfer into droplets with chemical reaction / 3.6.5.4:
Fundamentals of chemistry in the climate system / 4:
State of matter / 4.1:
Atoms, elements, molecules, compounds, and substances / 4.1.1:
Pure substances and mixtures / 4.1.2:
Radicals, groups, and nomenclature / 4.1.3:
Units for chemical abundance: Concentrations and mixing ratios / 4.1.4:
Theory of chemical reactions / 4.2:
Chemical bonding / 4.2.1:
Types of chemical reactions / 4.2.2:
Chemical kinetics: Reaction rate constant / 4.2.3:
Catalysis / 4.3:
Electrochemistry / 4.4:
Electrolytic dissociation / 4.4.1:
Acids, bases, and the ionic product of water / 4.4.1.1:
pH value / 4.4.1.2:
Hydrolysis of salts and oxides / 4.4.1.3:
Buffer solutions / 4.4.1.4:
Complex ions / 4.4.1.5:
The CO2-carbonate system / 4.4.1.6:
Oxidation-reduction reaction (redox process) / 4.4.2:
Hydrated electron: A fundamental species / 4.4.3:
Photochemistry / 4.5:
Photoexcitation: Electronic states / 4.5.1:
Photodissociation: Photolysis rate coefficient / 4.5.2:
Photocatalysis: Photosensitization and autoxidation / 4.5.3:
Environmental relevance of acidity / 4.6:
Atmospheric acidity / 4.6.1:
pH averaging / 4.6.2:
Isotopes in atmospheric chemistry and geochemistry / 4.7:
Substaces and chemical reactions in the climate system / 5:
Hydrogen / 5.1:
Natural occurrence / 5.1.1:
Compounds of hydrogen / 5.1.2:
Chemistry / 5.1.3:
Oxygen / 5.2:
Oxygen, dioxygen, and ozone: O, O2, and O3 / 5.2.1:
Reactive oxygen species I: OH, HO2, and H2O2 (HxOy species) / 5.2.3:
Atmosphere, free of trace species / 5.2.3.1:
Atmosphere with trace species / 5.2.3.2:
Reactive oxygen species II: RO, RO2, and ROOH / 5.2.4:
Aqueous-phase oxygen chemistry / 5.2.5:
Water chemistry / 5.2.5.1:
Dioxygen and superoxide ion chemistry / 5.2.5.2:
Hydrogen peroxide chemistry / 5.2.5.3:
Ozone and hydroxyl radical chemistry / 5.2.5.4:
Hydrogen polyoxides / 5.2.5.5:
Multiphase oxygen chemistry / 5.2.6:
Hydrogen peroxide / 5.2.6.1:
Ozone / 5.2.6.2:
Stratospheric oxygen chemistry / 5.2.7:
Nitrogen / 5.3:
Natural occurrence and sources / 5.3.1:
Thermal dissociation of dinitrogen (N2) / 5.3.2:
Ammonia (NH3) / 5.3.3:
Dinitrogen oxide (N2O) / 5.3.4:
Inorganic nitrogen oxides and oxoacids (NOy) / 5.3.5:
Gas-phase chemistry / 5.3.3.1:
Aqueous and interfacial chemistry / 5.3.5.2:
Organic nitrogen compounds / 5.3.6:
Amines, amides, and nitriles / 5.3.6.1:
Organic NOx compounds / 5.3.6.2:
Sulfur / 5.4:
Reduced sulfur: H2S, COS, CS2, and DMS / 5.4.1:
Oxides and oxoacids: SO2, H2SO3, SO3, and H2SO4 / 5.4.3:
Gas-phase SO2 oxidation / 5.4.3.1:
Aqueous-phase sulfur chemistry / 5.4.3.2:
Multiphase sulfur chemistry / 5.4.4:
Phosphorus / 5.5:
Carbon / 5.6:
Organic carbon and chemistry / 5.6.1:
Elemental carbon and soot / 5.6.2:
Inorganic C1 chemistry: CO, CO2, and H2CO3 / 5.6.3:
Aqueous chemistry / 5.6.3.1:
Hydrocarbon oxidation and organic radicals / 5.6.4:
Organic C1 chemistry: CH4, CH3OH, HCHO, HCOOH / 5.6.5:
C2 chemistry: C2H6, CH3CHO, C2H5OH, CH3COOH, and (COOH)2
Alkenes, atkynes, and ketones / 5.6.6.1:
Aromatic compounds / 5.6.8:
Is the atmospheric fate of complex organic compounds predictable? / 5.6.9:
Halogens (Cl, Br, F, and I) / 5.7:
Chlorine in the environment / 5.7.1:
Formation of sea salt and chlorine degassing / 5.7.2:
Metals and metalloids / 5.7.3:
General remarks / 5.8.1:
Alkali and alkaline earth metals: Na, K, Mg, and Ca / 5.8.2:
Iron: Fe / 5.8.3:
Mercury: Hg / 5.8.4:
Cadmium: Cd / 5.8.5:
Lead: Pb / 5.8.6:
Arsenic: As / 5.8.7:
Silicon (Si) and aluminum (Al) / 5.8.8:
Biogeochemistry and global cycling / 6:
The hydrosphere and the global water cycle / 6.1:
The hydrological cycle and the climate system / 6.1.1:
Soil water and groundwater; Chemical weathering / 6.1.2:
Surface water: Rivers and lakes / 6.1.3:
The oceans / 6.1.4:
Atmospheric waters (hydrometeors): Chemical composition / 6.1.5:
Fog / 6.1.5.1:
Rain (precipitation) / 6.1.5.3:
Biogeochemical cycling / 6.2:
Photosynthesis: Nonequilibrium redox processes / 6.2.1:
Primary production of carbon / 6.2.2:
Nitrogen cycling / 6.2.3:
Sulfur cycling / 6.2.4:
Natural sources of atmospheric substances / 6.3:
Source characteristics / 6.3.1:
Biological processes / 6.3.2:
Continental / 6.3.2.1:
Oceanic / 6.3.2.2:
Geogenic processes / 6.3.3:
Soil dust / 6.3.3.1:
Sea salt / 6.3.3.2:
Volcanism / 6.3.3.3:
Chemical processes / 6.3.4:
Lightning / 6.3.4.1:
Secondary atmospheric processes / 6.3.4.2:
List of acronyms and abbreviations used in this volume / A:
Quantities, units, and some useful numerical values / B:
References
Name Index
Subject Index
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
5.

図書

図書
Jeremy W. Dale and Simon F. Park
出版情報: Chichester, West Sussex : Wiley-Blackwell, 2010  xii, 388 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
DNA / 1.1.1:
RNA / 1.1.2:
Hydrophobic interactions / 1.1.3:
Different forms of the double helix / 1.1.4:
Supercoiling / 1.1.5:
Denaturation and hybridization / 1.1.6:
Orientation of nucleic acid strands / 1.1.7:
Replication of DNA / 1.2:
Unwinding and rewinding / 1.2.1:
Fidelity of replication; proofreading / 1.2.2:
Chromosome replication and cell division / 1.3:
DNA repair / 1.4:
Mismatch repair / 1.4.1:
Excision repair / 1.4.2:
Recombination (post-replication) repair / 1.4.3:
SOS repair / 1.4.4:
Gene expression / 1.5:
Transcription / 1.5.1:
Translation / 1.5.2:
Post-translational events / 1.5.3:
Gene organization / 1.6:
Mutation and Variation / 2:
Variation and evolution / 2.1:
Fluctuation test / 2.1.1:
Replica plating / 2.1.2:
Directed mutation in bacteria? / 2.1.3:
Types of mutation / 2.2:
Point mutations / 2.2.1:
Conditional mutants / 2.2.2:
Variation due to larger-scale DNA alterations / 2.2.3:
Extrachromosomal agents and horizontal gene transfer / 2.2.4:
Recombination / 2.3:
A model of the general (homologous) recombination process / 2.3.1:
Enzymes involved in recombination / 2.3.2:
Phenotypes / 2.4:
Restoration of phenotype / 2.4.1:
Mechanisms of mutation / 2.5:
Spontaneous mutation / 2.5.1:
Chemical mutagens / 2.5.2:
Ultraviolet irradiation / 2.5.3:
Isolation and identification of mutants / 2.6:
Mutation and selection / 2.6.1:
Isolation of other mutants / 2.6.2:
Molecular methods / 2.6.4:
Regulation of Gene Expression / 3:
Gene copy number / 3.1:
Transcriptional control / 3.2:
Promoters / 3.2.1:
Terminators, attenuators and anti-terminators / 3.2.2:
Induction and repression: regulatory proteins / 3.2.3:
Two-component regulatory systems / 3.2.4:
Global regulatory systems / 3.2.5:
Quorum sensing / 3.2.6:
Translational control / 3.3:
Ribosome binding / 3.3.1:
Codon usage / 3.3.2:
Stringent response / 3.3.3:
Regulatory RNA / 3.3.4:
Phase variation / 3.4:
Genetics of Bacteriophages / 4:
Bacteriophage structure / 4.1:
Single-strand DNA bacteriophages / 4.2:
ΦX174 / 4.2.1:
M13 / 4.2.2:
RNA-containing phages: MS2 / 4.3:
Double-stranded DNA phages / 4.4:
Bacteriophage T4 / 4.4.1:
Bacteriophage λ / 4.4.2:
Lytic and lysogenic regulation of bacteriophage λ / 4.4.3:
Restriction and modification / 4.5:
Bacterial resistance to phage attack / 4.6:
Complementation and recombination / 4.7:
Why are bacteriophages important? / 4.8:
Phage typing / 4.8.1:
Phage therapy / 4.8.2:
Phage display / 4.8.3:
Phages in the natural environment / 4.8.4:
Bacterial virulence and phage conversion / 4.8.5:
Plasmids / 5:
Some bacterial characteristics are determined by plasmids / 5.1:
Antibiotic resistance / 5.1.1:
Colicins and bacteriocins / 5.1.2:
Virulence determinants / 5.1.3:
Plasmids in plant-associated bacteria / 5.1.4:
Metabolic activities / 5.1.5:
Molecular properties of plasmids / 5.2:
Plasmid replication and control / 5.2.1:
Partitioning / 5.2.2:
Host range / 5.2.3:
Plasmid incompatibility / 5.2.4:
Plasmid stability / 5.3:
Plasmid integrity / 5.3.1:
Differential growth rate / 5.3.2:
Associating a plasmid with a phenotype / 5.4:
Gene Transfer / 6:
Transformation / 6.1:
Conjugation / 6.2:
Mechanism of conjugation / 6.2.1:
The F plasmid / 6.2.2:
Conjugation in other bacteria / 6.2.3:
Transduction / 6.3:
Specialized transduction / 6.3.1:
Consequences of recombination / 6.4:
Site-specific and non-homologous (illegitimate) recombination / 6.4.2:
Mosaic genes and chromosome plasticity / 6.5:
Genomic Plasticity: Movable Genes and Phase Variation / 7:
Insertion sequences / 7.1:
Structure of insertion sequences / 7.1.1:
Occurrence of insertion sequences / 7.1.2:
Transposons / 7.2:
Structure of transposons / 7.2.1:
Integrons / 7.2.2:
ISCR elements / 7.2.3:
Mechanisms of transposition / 7.3:
Replicative transposition / 7.3.1:
Non-replicative (conservative) transposition / 7.3.2:
Regulation of transposition / 7.3.3:
Activation of genes by transposable elements / 7.3.4:
Mu: A transposable bacteriophage / 7.3.5:
Conjugative transposons / 7.3.6:
Variation mediated by simple DNA inversion / 7.4:
Variation mediated by nested DNA inversion / 7.4.2:
Antigenic variation in the gonococcus / 7.4.3:
Phase variation by slipped-strand mispairing / 7.4.4:
Phase variation mediated by differential DNA methylation / 7.4.5:
Clustered regularly interspersed short palindromic repeats / 7.5:
Genetic Modification: Exploiting the Potential of Bacteria / 8:
Strain development / 8.1:
Generation of variation / 8.1.1:
Selection of desired variants / 8.1.2:
Overproduction of primary metabolites / 8.2:
Simple pathways / 8.2.1:
Branched pathways / 8.2.2:
Overproduction of secondary metabolites / 8.3:
Gene cloning / 8.4:
Cutting and joining DNA / 8.4.1:
Plasmid vectors / 8.4.2:
Bacteriophage λ vectors / 8.4.3:
Cloning larger fragments / 8.4.4:
Bacteriophage M13 vectors / 8.4.5:
Gene libraries / 8.5:
Construction of genomic libraries / 8.5.1:
Screening a gene library / 8.5.2:
Cloning PCR products / 8.5.3:
Construction of a cDNA library / 8.5.4:
Products from cloned genes / 8.6:
Expression vectors / 8.6.1:
Making new genes / 8.6.2:
Other bacterial hosts / 8.6.3:
Novel vaccines / 8.6.4:
Other uses of gene technology / 8.7:
Genetic Methods for Investigating Bacteria / 9:
Metabolic pathways / 9.1:
Complementation / 9.1.1:
Cross-feeding / 9.1.2:
Microbial physiology / 9.2:
Reporter genes / 9.2.1:
Chromatin immunoprecipitation / 9.2.2:
Cell division / 9.2.3:
Motility and chemotaxis / 9.2.4:
Cell differentiation / 9.2.5:
Bacterial virulence / 9.3:
Wide-range mechanisms of bacterial pathogenesis / 9.3.1:
Detection of virulence genes / 9.3.2:
Specific mutagenesis / 9.4:
Gene replacement / 9.4.1:
Antisense RNA / 9.4.2:
Taxonomy, evolution and epidemiology / 9.5:
Molecular taxonomy / 9.5.1:
GC content / 9.5.2:
16 S rRNA / 9.5.3:
Denaturing-gradient gel electrophoresis and temperature-gradient gel electrophoresis / 9.5.4:
Diagnostic use of PCR / 9.5.5:
Molecular epidemiology / 9.5.6:
Gene Mapping to Genomics and Beyond / 10:
Gene mapping / 10.1:
Conjugational analysis / 10.1.1:
Restriction mapping and pulsed-field gel electrophoresis / 10.1.2:
DNA sequence determination / 10.2:
Sanger sequencing / 10.2.1:
Dye terminator sequencing / 10.2.2:
Pyrosequencing / 10.2.3:
Massively parallel sequencing / 10.2.4:
Genome sequencing / 10.3:
Genome-sequencing strategies / 10.3.1:
Relating sequence to function / 10.3.2:
Metagenomics / 10.3.3:
Comparative genomics / 10.4:
Microarrays / 10.4.1:
Analysis of gene expression / 10.5:
Transcriptional analysis / 10.5.1:
Translational analysis / 10.5.2:
Metabolomics / 10.6:
Systems biology and synthetic genomics / 10.7:
Systems biology / 10.7.1:
Synthetic genomics / 10.7.2:
Conclusion / 10.8:
Further Reading / Appendix A:
Abbreviations Used / Appendix B:
Glossary / Appendix C:
Enzymes and other Proteins / Appendix D:
Genes / Appendix E:
Standard Genetic Code / Appendix F:
Bacterial Species / Appendix G:
Index
?X174
Bacteriophage ?
Lytic and lysogenic regulation of bacteriophage ?
Bacteriophage ? vectors
Preface
Nucleic Acid Structure and Function / 1:
Structure of nucleic acids / 1.1:
6.

図書

図書
Ilkka Havukkala
出版情報: Singapore : World Scientific, c2010  xv, 307 p. ; 24 cm
シリーズ名: Science, engineering, and biology informatics ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgement
About the Author
Introduction to Modern Molecular Biology / 1:
Cells store large amounts of information in DNA / 1.1:
Cells process complex information / 1.2:
Cellular life is chemically complex and somewhat stochastic / 1.3:
Challenges in analyzing complex biodata / 1.4:
References
Biodata Explosion / 2:
Primary sequence and structure data / 2.1:
DNA sequence databases / 2.1.1:
Protein sequence databases / 2.1.2:
Molecular structure databases / 2.1.3:
Secondary annotation data / 2.2:
Motif annotations / 2.2.1:
Gene function annotations / 2.2.2:
Genomic annotations / 2.2.3:
Inter-species phylogeny and gene family annotations / 2.2.4:
Experimental and personalized data / 2.3:
DNA expression profiles / 2.3.1:
Proteomics data and degradomics / 2.3.2:
Protein expression profiles, 2D gel and protein interaction data / 2.3.3:
Metabolomics and metabolic pathway databases / 2.3.4:
Personalized data / 2.3.5:
Semantic and processed text data / 2.4:
Ontologies / 2.4.1:
Text-mined annotation data / 2.4.2:
Integrated and federated databases / 2.5:
Local Pattern Discovery and Comparing Genes and Proteins / 3:
DNA/RNA motif discovery / 3.1:
Single motif models: MEME, AlignAce etc. / 3.1.1:
Multiple motif models: LOGOS and MotifRegressor / 3.1.2:
Informative k-mers approach / 3.1.3:
Protein motif discovery / 3.2:
InterProScan and other traditional methods / 3.2.1:
Protein k-mer and other string based methods / 3.2.2:
Genetic algorithms, particle swarms and ant colonies / 3.3:
Genetic algorithms / 3.3.1:
Particle swarm optimization / 3.3.2:
Ant colony optimization / 3.3.3:
Sequence visualization / 3.4:
Global Pattern Discovery and Comparing Genomes / 4:
Alignment-based methods / 4.1:
Pairwise genome-wide search algorithms: LAGAN, AVID etc. / 4.1.1:
Multiple alignment methods: MLAGAN, MAVID, MULTIZ etc. / 4.1.2:
Dotplots / 4.1.3:
Visualization of genome comparisons / 4.1.4:
Global motif maps / 4.1.5:
Alignmentless methods / 4.2:
K-mer based methods / 4.2.1:
Average common substring and compressibility based methods / 4.2.2:
2D portraits of genomes / 4.2.3:
Genome scale non-sequence data analysis / 4.3:
DNA physical structure based methods / 4.3.1:
Secondary structure based comparisons / 4.3.2:
Molecule Structure Based Searching and Comparison / 5:
Molecule structures as graphs or strings / 5.1:
3D to 1D transformations / 5.1.1:
Graph matching methods / 5.1.2:
Graph visualization / 5.1.3:
Graph grammars / 5.1.4:
RNA structure comparison and prediction / 5.2:
Image comparison based methods / 5.3:
Gabor filter based methods / 5.3.1:
Image symmetry set based methods / 5.3.2:
Other graph topology based methods / 5.3.3:
Function Annotation and Ontology Based Searching and Classification / 6:
Annotation ontologies / 6.1:
Gene Ontology based mining / 6.2:
Sequence similarity based function prediction / 6.3:
Cellular location prediction / 6.4:
New integrative methods: Utilizing networks / 6.5:
Text mining bioliterature for automated annotation / 6.6:
Natural language processing (NLP) / 6.6.1:
Semantic profiling / 6.6.2:
Matrix factorization methods / 6.6.3:
New Methods for Genomics Data: SVM and Others / 7:
SVM kernels / 7.1:
SVM trees / 7.2:
Methods for microarray data / 7.3:
Gene selection algorithms / 7.3.1:
Gene selection by consistency methods / 7.3.2:
Genome as a time series and discrete wavelet transform / 7.4:
Parameterless clustering for gene expression / 7.5:
Transductive confidence machines, conformal predictors and ROC isometrics / 7.6:
Text compression methods for biodata analysis / 7.7:
Integration of Multimodal Data: Toward Systems Biology / 8:
Comparative genome annotation systems / 8.1:
Phylogenetics methods / 8.2:
Network inference from interaction and coexpression data / 8.3:
Bayesian inference, association rule mining and Petri nets / 8.4:
Future Challenges / 9:
Network analysis methods / 9.1:
Unsupervised and supervised clustering / 9.2:
Neural networks and evolutionary methods / 9.3:
Semantic web and ontologization of biology / 9.4:
Biological data fusion / 9.5:
Rise of the GPU machines / 9.6:
Index
Preface
Acknowledgement
About the Author
7.

図書

図書
Guozhong Cao, Ying Wang
出版情報: Singapore : World Scientific, c2011  xiii, 581 p. ; 23 cm
シリーズ名: World scientific series in nanoscience and nanotechnology ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
Bottom-Up and Top-Down Approaches / 1.3:
Challenges in Nanotechnology / 1.4:
Scope of the Book / 1.5:
References
Physical Chemistry of Solid Surfaces / Chapter 2:
Surface Energy / 2.1:
Chemical Potential as a Function of Surface Curvature / 2.3:
Electrostatic Stabilization / 2.4:
Surface charge density / 2.4.1:
Electric potential at the proximity of solid surface / 2.4.2:
Van der Waals attraction potential / 2.4.3:
Interactions between two particles: DLVO theory / 2.4.4:
Steric Stabilization / 2.5:
Solvent and polymer / 2.5.1:
Interactions between polymer layers / 2.5.2:
Mixed steric and electric interactions / 2.5.3:
Summary / 2.6:
Zero-Dimensional Nanostructures: Nanoparticles / Chapter 3:
Nanoparticles Through Homogeneous Nucleation / 3.1:
Fundamentals of homogeneous nucleation / 3.2.1:
Subsequent growth of nuclei / 3.2.2:
Growth controlled by diffusion / 3.2.2.1:
Growth controlled by surface process / 3.2.2.2:
Synthesis of metallic nanoparticles / 3.2.3:
Influences of reduction reagents / 3.2.3.1:
Influences by other factors / 3.2.3.2:
Influences of polymer stabilizer / 3.2.3.3:
Synthesis of semiconductor nanoparticles / 3.2.4:
Synthesis of oxide nanoparticles / 3.2.5:
Introduction to sol-gel processing / 3.2.5.1:
Forced hydrolysis / 3.2.5.2:
Controlled release of ions / 3.2.5.3:
Vapor phase reactions / 3.2.6:
Solid-state phase segregation / 3.2.7:
Nanoparticles Through Heterogeneous Nucleation / 3.3:
Fundamentals of heterogeneous nucleation / 3.3.1:
Synthesis of nanoparticles / 3.3.2:
Kinetically Confined Synthesis of Nanoparticles / 3.4:
Synthesis inside micelles or using microemulsions / 3.4.1:
Aerosol synthesis / 3.4.2:
Growth termination / 3.4.3:
Spray pyrolysis / 3.4.4:
Template-based synthesis / 3.4.5:
Epitaxial Core-Shell Nanoparticles / 3.5:
One-Dimensional Nanostructures: Nanowires and Nanorods / 3.6:
Spontaneous Growth / 4.1:
Evaporation (dissolution)-condensation growth / 4.2.1:
Fundamentals of evaporation (dissolution)-condensation growth / 4.2.1.1:
Evaporation-condensation growth / 4.2.1.2:
Dissolution-condensation growth / 4.2.1.3:
Vapor (or solution)-liquid-solid (VLS or SLS) growth / 4.2.2:
Fundamental aspects of VLS and SLS growth / 4.2.2.1:
VLS growth of various nanowires / 4.2.2.2:
Control of the size of nanowires / 4.2.2.3:
Precursors and catalysts / 4.2.2.4:
Solution-liquid-solid growth / 4.2.2.5:
Stress-induced recrystallization / 4.2.3:
Template-Based Synthesis / 4.3:
Electrochemical deposition / 4.3.1:
Electrophoretic deposition / 4.3.2:
Template filling / 4.3.3:
Colloidal dispersion filling / 4.3.3.1:
Melt and solution filling / 4.3.3.2:
Chemical vapor deposition / 4.3.3.3:
Deposition by centrifugation / 4.3.3.4:
Converting through chemical reactions / 4.3.4:
Electrospinning / 4.4:
Lithography / 4.5:
Two-Dimensional Nanostructures: Thin Films / 4.6:
Fundamentals of Film Growth / 5.1:
Vacuum Science / 5.3:
Physical Vapor Deposition (PVD) / 5.4:
Evaporation / 5.4.1:
Molecular beam epitaxy (MBE) / 5.4.2:
Sputtering / 5.4.3:
Comparison of evaporation and sputtering / 5.4.4:
Chemical Vapor Deposition (CVD) / 5.5:
Typical chemical reactions / 5.5.1:
Reaction kinetics / 5.5.2:
Transport phenomena / 5.5.3:
CVD methods / 5.5.4:
Diamond films by CVD / 5.5.5:
Atomic Layer Deposition / 5.6:
Superlattices / 5.7:
Self-Assembly / 5.8:
Monolayers of organosilicon or alkylsilane derivatives / 5.8.1:
Monolayers of alkanethiols and sulfides / 5.8.2:
Monolayers of carboxylic acids, amines, and alcohols / 5.8.3:
Langmuir-Blodgett Films / 5.9:
Electrochemical Deposition / 5.10:
Sol-Gel Films / 5.11:
Special Nanomaterials / 5.12:
Carbon Fullerenes and Nanotubes / 6.1:
Carbon fullerenes / 6.2.1:
Fullerene-derived crystals / 6.2.2:
Carbon nanotubes / 6.2.3:
Micro and Mesoporous Materials / 6.3:
Ordered mesoporous structures / 6.3.1:
Random mesoporous structures / 6.3.2:
Crystalline microporous materials: Zeolites / 6.3.3:
Core-Shell Structures / 6.4:
Metal-oxide structures / 6.4.1:
Metal-polymer structures / 6.4.2:
Oxide-polymer nanostructures / 6.4.3:
Organic-Inorganic Hybrids / 6.5:
Class 1 hybrids / 6.5.1:
Class 2 hybrids / 6.5.2:
Intercalation Compounds / 6.6:
Nanocomposites and Nanograined Materials / 6.7:
Inverse Opals / 6.8:
Bio-Induced Nanomaterials / 6.9:
Nanostructures Fabricated by Physical Techniques / 6.10:
Photolithography / 7.1:
Phase-shifting photolithography / 7.2.2:
Electron beam lithography / 7.2.3:
X-ray lithography / 7.2.4:
Focused ion beam (FIB) lithography / 7.2.5:
Neutral atomic beam lithography / 7.2.6:
Nanomanipulation and Nanolithography / 7.3:
Scanning tunneling microscopy (STM) / 7.3.1:
Atomic force microscopy (AFM) / 7.3.2:
Near-field scanning optical microscopy (NSOM) / 7.3.3:
Nanomanipulation / 7.3.4:
Nanolithography / 7.3.5:
Soft Lithography / 7.4:
Microcontact printing / 7.4.1:
Molding / 7.4.2:
Nanoimprint / 7.4.3:
Dip-pen nanolithography / 7.4.4:
Assembly of Nanoparticles and Nanowires / 7.5:
Capillary forces / 7.5.1:
Dispersion interactions / 7.5.2:
Shear-force-assisted assembly / 7.5.3:
Electric-field-assisted assembly / 7.5.4:
Covalently linked assembly / 7.5.5:
Gravitational-field-assisted assembly / 7.5.6:
Template-assisted assembly / 7.5.7:
Other Methods for Microfabrication / 7.6:
Characterization and Properties of Nanomaterials / 7.7:
Structural Characterization / 8.1:
X-ray diffraction (XRD) / 8.2.1:
Small angle X-ray scattering (SAXS) / 8.2.2:
Scanning electron microscopy (SEM) / 8.2.3:
Transmission electron microscopy (TEM) / 8.2.4:
Scanning probe microscopy (SPM) / 8.2.5:
Gas adsorption / 8.2.6:
Chemical Characterization / 8.3:
Optical spectroscopy / 8.3.1:
Electron spectroscopy / 8.3.2:
Ion spectrometry / 8.3.3:
Physical Properties of Nanomaterials / 8.4:
Melting points and lattice constants / 8.4.1:
Mechanical properties / 8.4.2:
Optical properties / 8.4.3:
Surface plasmon resonance / 8.4.3.1:
Quantum size effects / 8.4.3.2:
Electrical conductivity / 8.4.4:
Surface scattering / 8.4.4.1:
Change of electronic structure / 8.4.4.2:
Quantum transport / 8.4.4.3:
Effect of microstructure / 8.4.4.4:
Ferroelectrics and dielectrics / 8.4.5:
Superparamagnetism / 8.4.6:
Applications of Nanomaterials / 8.5:
Molecular Electronics and Nanoelectronics / 9.1:
Nanobots / 9.3:
Biological Applications of Nanoparticles / 9.4:
Catalysis by Gold Nanoparticles / 9.5:
Bandgap Engineered Quantum Devices / 9.6:
Quantum well devices / 9.6.1:
Quantum dot devices / 9.6.2:
Nanomechanics / 9.7:
Carbon Nanotube Emitters / 9.8:
Energy Applications of Nanomaterials / 9.9:
Photoelectrochemical cells / 9.9.1:
Lithium-ion rechargeable batteries / 9.9.2:
Hydrogen storage / 9.9.3:
Thermoelectrics / 9.9.4:
Environmental Applications of Nanomaterials / 9.10:
Photonic Crystals and Plasmon Waveguides / 9.11:
Photonic crystals / 9.11.1:
Plasmon waveguides / 9.11.2:
Appendices / 9.12:
Index
Preface to the Second Edition
Introduction / Chapter 1:
Emergence of Nanotechnology / 1.1:
8.

図書

図書
Kiyoko F. Aoki-Kinoshita
出版情報: Boca Raton : CRC Press, c2010  xvii, 244 p. ; 25 cm
シリーズ名: Chapman and Hall/CRC mathematical & computational biology series / series editors Alison M. Etheridge ... [et al.] ; 28
所蔵情報: loading…
目次情報: 続きを見る
List of Tables
List of Figures
About the Author
Introduction to Glycobiology / 1:
Roles of carbohydrates / 1.1:
Glycan structures / 1.2:
Glycan classes / 1.3:
Glycan biosynthesis / 1.4:
N-linked glycans / 1.4.1:
O-linked glycans / 1.4.2:
Glycosaminoglycans (GAGs) / 1.4.3:
Glycosphingolipids (GSLs) / 1.4.4:
GPI anchors / 1.4.5:
LPS / 1.4.6:
Glycan motifs / 1.5:
Potential for drug discovery / 1.6:
Background / 2:
Glycan nomenclature / 2.1:
InChIÖ / 2.1.1:
(Extended) IUPAC format / 2.1.2:
CarbBank format / 2.1.3:
KCF format / 2.1.4:
LINUCS format / 2.1.5:
BCSDB format / 2.1.6:
Linear Code" / 2.1.7:
GlycoCT format / 2.1.8:
XML representations / 2.1.9:
Lectin-glycan interactions / 2.2:
Families and types of lectins / 2.2.1:
Carbohydrate-binding mechanism of lectins / 2.2.2:
Carbohydrate-carbohydrate interactions / 2.3:
Databases / 3:
Glycan structure databases / 3.1:
KEGG GLYCAN / 3.1.1:
GLYCOSCIENCES.de / 3.1.2:
CFG / 3.1.3:
BCSDB / 3.1.4:
GLYCO3D / 3.1.5:
MonoSaccharideDB / 3.1.6:
GlycomeDB / 3.1.7:
Glyco-gene databases / 3.2:
KEGG BRITE / 3.2.1:
GGDB / 3.2.2:
CAZy / 3.2.4:
Lipid databases / 3.3:
SphingoMAP© / 3.3.1:
LipidBank / 3.3.2:
LMSD / 3.3.3:
Lectin databases / 3.4:
Lectines / 3.4.1:
Animal Lectin DB / 3.4.2:
Others / 3.5:
GlycoEpitopeDB / 3.5.1:
ECODAB / 3.5.2:
SugarBindDB / 3.5.3:
Glycome Informatics / 4:
Terminology and notations / 4.1:
Algorithmic techniques / 4.2:
Tree structure alignment / 4.2.1:
Linkage analysis using score matrices / 4.2.2:
Glycan variation map / 4.2.3:
Bioinformatic methods / 4.3:
Glycan structure prediction from glycogene microarrays / 4.3.1:
Glyco-gene sequence and structure analysis / 4.3.2:
Glyco-related pathway analysis / 4.3.3:
Mass spectral data annotation / 4.3.4:
Data mining techniques / 4.4:
Kernel methods / 4.4.1:
Frequent subtree mining / 4.4.2:
Probabilistic models / 4.4.3:
Glycomics tools / 4.5:
Visualization tools / 4.5.1:
Pathway analysis tools / 4.5.2:
PDB data analysis / 4.5.3:
3D analysis tools / 4.5.4:
Molecular dynamics / 4.5.5:
Spectroscopic tools / 4.5.6:
NMR tools / 4.5.7:
Potential Research Projects / 5:
Sequence and structural analyses / 5.1:
Glycan score matrix / 5.1.1:
Visualization / 5.1.2:
Databases and techniques to integrate heterogeneous data sets / 5.2:
Automated characterization of glycans from MS data / 5.3:
Prediction of glycans from data other than MS / 5.4:
Biomarker prediction / 5.5:
Systems analyses / 5.6:
Drug discovery / 5.7:
Sequence Analysis Methods / A:
Pairwise sequence alignment (dynamic programming) / A.1:
Dynamic programming / A.1.1:
Sequence alignment / A.1.2:
BLOSUM (BLOcks Substitution Matrix) / A.2:
Machine Learning Methods / B:
Kernel methods and SVMs / B.1:
Hidden Markov models / B.2:
The three problems of interest for HMMs / B.2.1:
Expectation-Maximization (EM) algorithm / B.2.2:
Hidden tree Markov models / B.2.3:
Profile Hidden Markov models (profile HMMs) / B.2.4:
Glycomics Technologies / C:
Mass spectrometry (MS) / C.1:
MALDI-MS / C.1.l:
FT-ICR / C.1.2:
LC-MS (HPLC) / C.1.3:
Tandem MS / C.1.4:
Nuclear magnetic resonance (NMR) / C.2:
References
Index
List of Tables
List of Figures
About the Author
9.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2010  xix, 431 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
Introduction / 1.1:
Biocompatible Coatings / 1.2:
Protein-Repellant Coatings / 1.2.1:
Pegylated Thin Films / 1.2.1.1:
Non-Pegylated Hydrophilic Thin Films / 1.2.1.2:
Thin Films of Hyperbranched Polymers / 1.2.1.3:
Multilayer Thin Films / 1.2.1.4:
Antithrombogenic Coatings / 1.2.2:
Surface Chemistry and Blood Compatibility / 1.2.2.1:
Membrane-Mimetic Thin Films / 1.2.2.2:
Heparin-Mimetic Thin Films / 1.2.2.3:
Clot-Lyzing Thin Films / 1.2.2.4:
Polyelectrolyte Multilayer Thin Films / 1.2.2.5:
Polyurethane Coatings / 1.2.2.6:
Vapor-Deposited Thin Films / 1.2.2.7:
Antimicrobial Coatings / 1.2.3:
Cationic Polymers / 1.2.3.1:
Nanocomposite Polymer Thin Films Incorporating Inorganic Biocides / 1.2.3.2:
Antibiotic-Conjugated Polymer Thin Films / 1.2.3.3:
Biomimetic Antibacterial Coatings / 1.2.3.4:
Thin Films Resistant to the Adhesion of Viable Bacteria" / 1.2.3.5:
Coatings for Tissue Engineering Substrates / 1.3:
Zwitterionic Thin Films / 1.3.1:
Polysaccharide-Based Thin Films / 1.3.3:
Temperature-Responsive Polymer Coatings / 1.3.6:
Electroactive Thin Films / 1.3.8:
Other Functional Polymer Coatings / 1.3.9:
Multilayer Thin Films for Cell Encapsulation / 1.3.10:
Patterned Thin Films / 1.3.11:
Polymer Thin Films for Drug Delivery / 1.4:
Polymer Thin Films for Gene Delivery / 1.5:
Conclusions / 1.6:
References
Biofunctionalization of Polymeric Thin Films and Surfaces / Holger Schönherr2:
Introduction: The Case of Biofunctionalized Surfaces and Interfaces / 2.1:
Polymer-Based Biointerfaces / 2.2:
Requirements for Biofunctionalized Polymer Surfaces / 2.2.1:
Surface Modification Using Functional Polymers and Polymer-Based Approaches / 2.2.2:
Grafting of Polymers to Surfaces / 2.2.2.1:
Polymer Brushes by Surface-Initiated Polymerization / 2.2.2.2:
Physisorbed Multifunctional Polymers / 2.2.2.3:
Multipotent Covalent Coatings / 2.2.2.4:
Plasma Polymerization and Chemical Vapor Deposition (CVD) Approaches / 2.2.2.5:
Surface Modification of Polymer Surfaces, and Selected Examples / 2.2.3:
Coupling and Bioconjugation Strategies / 2.2.3.1:
Interaction with Cells / 2.2.3.2:
Patterned Polymeric Thin Films in Biosensor Applications / 2.2.3.3:
Summary and Future Perspectives / 2.3:
Stimuli-Responsive Polymer Nanocoatings / Ana L. Cordeiro3:
Stimuli-Responsive Polymers / 3.1:
Polymers Responsive to Temperature / 3.2.1:
Polymers Responsive to pH / 3.2.2:
Dual Responsive/Multiresponsive Polymers / 3.2.3:
Intelligent Bioconjugates / 3.2.4:
Responsive Biopolymers / 3.2.5:
Polymer Films and Interfacial Analysis / 3.3:
Applications / 3.4:
Release Matrices / 3.4.1:
Cell Sheet Engineering / 3.4.2:
Biofilm Control / 3.4.3:
Cell Sorting / 3.4.4:
Stimuli-Modulated Membranes / 3.4.5:
Chromatography / 3.4.6:
Microfluidics and Laboratory-on-a-Chip / 3.4.7:
Acknowledgments / 3.5:
Ceramic Nanocoatings and Their Applications in the Life Sciences / Eng San Thian4:
Magnetron Sputtering / 4.1:
Physical and Chemical Properties of SiHA Coatings / 4.3:
Biological Properties of SiHA Coatings / 4.4:
In Vitro Acellular Testing / 4.4.1:
In Vitro Cellular Testing / 4.4.2:
Future Perspectives / 4.5:
Gold Nanofilrns: Synthesis, Characterization, and Potential Biomedical Applications / Shiho Tokonami ; Hiroshi Shiigi ; Tsutomu Nagaoka4.6:
Preparation of Various AuNPs / 5.1:
Functionalization of AuNPs and their Applications through Aggregation / 5.3:
AuNP Assemblies and Arrays / 5.4:
AuNP Assemblies Structured on Substrates / 5.4.1:
AuNP Assembly on Biotemplates / 5.4.2:
AuNP Arrays for Gas Sensing / 5.4.3:
AuNP Arrays for Biosensing / 5.4.4:
Thin Films on Titania, and Their Applications in the Life Sciences / Izabella Brand ; Martina Nullmeier5.5:
Titanium in Contact with a Biomaterial / 6.1:
Lipid Bilayers at the Titania Surface / 6.3:
Formation of Lipid Bilayers on the Titania Surface / 6.3.1:
Spreading of Vesicles on a TiO2 Surface: Comparison to a SiO2 Surface / 6.3.1.1:
Interactions: lipid Molecule-Titania Surface / 6.3.2:
Structure and Conformation of lipid Molecules in the Bilayer on the Titania Surface / 6.3.3:
Structure of Phosphatidylcholine on the Titania Surface / 6.3.3.1:
Characteristics of Extracellular Matrix Proteins on the Titania Surface / 6.4:
Collagen Adsorption on Titania Surfaces / 6.4.1:
Morphology of Collagen Adsorbed on an Oxidized Titanium Surface / 6.4.1.1:
Adsorption of Collagen on a Hydroxylated Titania Surface / 6.4.1.2:
Morphology and Structure of Collagen Adsorbed on a Calcified Titania Surface / 6.4.1.3:
Structure of Collagen on the Titania Surface: Theoretical Predictions / 6.4.1.4:
Fibronectin Adsorption on the Titania Surface / 6.4.2:
Morphology of Fibronectin Adsorbed on the Titania Surface / 6.4.2.1:
Fibronectin-Titania Interactions / 6.4.2.2:
Structure of Fibronectin Adsorbed onto the Titania Surface / 6.4.2.3:
Atomic-Scale Picture of Fibronectin Adsorbed on the Titania Surface: Theoretical Predictions / 6.4.2.4:
Preparation, Characterization, and Potential Biomedical Applications of Nanostructured Zirconia Coatings and Films / Xuanyong Liu ; Ying Xu ; Paul K. Chu6.4.2.5:
Preparation and Characterization of Nano-ZrO2 Films / 7.1:
Cathodic Arc Plasma Deposition / 7.2.1:
Plasma Spraying / 7.2.2:
Sol-Gel Methods / 7.2.3:
Electrochemical Deposition / 7.2.4:
Anodic Oxidation and Micro-Arc Oxidation / 7.2.5:
Bioactivity of Nano-ZrO2 Coatings and Films / 7.2.6:
Cell Behavior on Nano-ZrO2 Coatings and Films / 7.4:
Applications of Nano-ZrO2 Films to Biosensors / 7.5:
Free-Standing Nanostructured Thin Films / Izumi Ichinose8:
The Roles of Free-Standing Thin Films / 8.1:
Films as Partitions / 8.2.1:
Nanoseparation Membranes / 8.2.2:
Biomembranes / 8.2.3:
Free-Standing Thin Films with Bilayer Structures / 8.3:
Supported Lipid Bilayers and "Black Lipid Membranes" / 8.3.1:
Foam Films and Newton Black Films / 8.3.2:
Dried Foam Film / 8.3.3:
Foam Films of Ionic Liquids / 8-3.4:
Free-Standing Thin Films Prepared with Solid Surfaces / 8.4:
Free-Standing Thin Films of Nanoparticles / 8.5:
Nanofibrous Free-Standing Thin Films / 8.6:
Electrospinning and Filtration Methods / 8.6.1:
Metal Hydroxide Nanostrands / 8.6.2:
Nanofibrous Composite Films / 8:6.3:
Dip-Pen Nanolithography of Nanostructured Thin Films for the Life Sciences / Euiseok Kim ; Yuan-Shin Lee ; Ravi Aggarwal ; Roger J. Narayan8.6.4:
Dip-Pen Nanolithography / 9.1:
Important Parameters / 9.2.1:
Applications of DPN / 9.2.2:
Direct and Indirect Patterning of Biomaterials Using DPN / 9.3:
Background / 9.3.1:
Direct Patterning / 9.3.2:
Indirect Patterning / 9.3.3:
Applications of DPN for Medical Diagnostics and Drug Development / 9.4:
General Methods of Nano/Micro Bioarray Patterning / 9.4.1:
Virus Array Generation and Detection Tests / 9.4.2:
Diagnosis of Allergic Disease / 9.4.3:
Cancer Detection Using Nano/Micro Protein Arrays / 9.4.4:
Drug Development / 9.4.5:
Lab-on-a-Chip Using Microarrays / 9.4.6:
Summary and Future Directions / 9.5:
Understanding and Controlling Wetting Phenomena at the Micro-and Nanoscales / Zuankai Wang ; Nikhil Koratkar10:
Wetting and Contact Angle / 10.1:
Design and Creation of Superhydrophobic Surfaces / 10.3:
Design Parameters for a Robust Composite Interface / 10.3.1:
Creation of Superhydrophobic Surfaces / 10.3.2:
Superhydrophobic Surfaces with Unitary Roughness / 10.3.3:
Superhydrophobic Surfaces with Two-Scale Roughness / 10.3.4:
Superhydrophobic Surfaces with Reentrant Structure / 10.3.5:
Impact Dynamics of Water on Superhydrophobic Surfaces / 10.4:
Impact Dynamics on Nanostructured MWNT Surfaces / 10.4.1:
Impact Dynamics on Micropattemed Surfaces / 10.4.2:
Electrically Controlled Wettability Switching on Superhydrophobic Surfaces / 10.5:
Reversible Control of Wettability Using Electrostatic Methods / 10.5.1:
Electrowetting on Superhydrophobic Surfaces / 10.5.2:
Novel Strategies for Reversible Electrowetting on Rough Surfaces / 10.5.3:
Electrochemically Controlled Wetting of Superhydrophobic Surfaces / 10.6:
Polarity-Dependent Wetting of Nanotube Membranes / 10.6.1:
Mechanism of Polarity-Dependent Wetting and Transport / 10.6.2:
Potential Applications of Electrochemically Controlled Wetting and Transport / 10.6.3:
Imaging of Thin Films, and Its Application in the Life Sciences / Silvia Mittler10.7:
Thin Film Preparation Methods / 11.1:
Dip-Coating / 11.2.1:
Spin-Coating / 11.2.2:
Langmuir-Blodgett (LB) Films
Self-Assembled Monolayers / 11.2.4:
Layer-by-Layer Assembly / 11.2.5:
Polymer Brushes: The "Grafting-From" Approach / 11.2.6:
Structuring: The Micro- and Nanostructuring of Thin Films / 11.3:
Photolithography / 11.3.1:
Ion Lithography and FIB Lithography / 11.3.2:
Electron lithography / 11.3.3:
Micro-Contact Printing and Nanoimprinting (NIL) / 11.3.4:
Near-Field Scanning Methods / 11.3.5:
Other Methods / 11.3.6:
Imaging Technologies / 11.4:
The Concept of Total Internal Reflection / 11.4.1:
The Concept of Waveguiding / 11.4.2:
Brewster Angle Microscopy (BAM) / 11.4.3:
Resonant Evanescent Methods / 11.4.4:
Surface Plasmon Resonance Microscopy / 11.4.4.1:
Waveguide Resonance Microscopy / 11.4.4.2:
Surface Plasmon Enhanced Fluorescence Microscopy / 11.4.4.3:
Waveguide Resonance Microscopy with Electro-Optical Response / 11.4.4.4:
Nonresonant Evanescent Methods / 11.4.5:
Total Internal Reflection Fluorescence (TIRF) Microscopy / 11.4.5.1:
Waveguide Scattering Microscopy / 11.4.5.2:
Waveguide Evanescent Field Fluorescence Microscopy (WEFFM) / 11.4.5.3:
Confocal Raman Microscopy and One- and Two-Photon Fluorescence Confocal Microscopy / 11.4.5.4:
Application of Thin Films in the Life Sciences / 11.5:
Sensors / 11.5.1:
Surface Functionalization for Biocompatibility / 11.5.2:
Drug Delivery / 11.5.3:
Bioreactors / 11.5.4:
Cell-Surface Mimicking / 11.5.5:
Summary / 11.6:
Structural Characterization Techniques of Molecular Aggregates, Polymer, and Nanoparticle Films / Takeshi Hasegawa12:
Characterization of Ultrathin Films of Soft Materials / 12.1:
X-Ray Diffraction Analysis / 12.2.1:
Infrared Transmission and Reflection Spectroscopy / 12.2.2:
Multiple-Angle Incidence Resolution Spectrometry (MAIRS) / 12.2.3:
Theoretical Background of MAIRS / 12.2.3.1:
Molecular Orientation Analysis in Polymer Thin Films by IR-MAIRS / 12.2.3.2:
Analysis of Metal Thin Films / 12.2.3.3:
Index
Preface
List of Contributors
Polymer Thin Films for Biomedical Applications / Venkat K. Vendra ; Lin Wu ; Sitaraman Krishnan1:
10.

図書

図書
edited by Thomas Wirth
出版情報: Weinheim : Wiley-VCH, c2012  xiv, 448 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
General Introduction / 1.1:
Synthesis of Electrophilic Selenium Reagents / 1.1.1:
Reactivity and Properties / 1.1.2:
Addition Reactions to Double Bonds / 1.2:
Addition Reaction Involving Oxygen Centered Nucleophiles / 1.2.1:
Addition Reaction Involving Nitrogen Centered Nucleophiles / 1.2.2:
Addition Reactions Involving Carbon Centered Nucleophiles / 1.2.3:
Addition Reaction Involving Chiral Nucleophiles or Chiral Substrates / 1.2.4:
Selenocyclizations / 1.3:
Oxygen Nucleophiles / 1.3.1:
Nitrogen Nucleophiles / 1.3.2:
Competition between Oxygen and Nitrogen Nucleophiles / 1.3.3:
Carbon Nucleophiles / 1.3.4:
Double Cyclization Reactions / 1.3.5:
References
Nucleophilic Selenium / Michio Iwaoka2:
Introduction / 2.1:
Development of Nucleophilic Selenium Reagents / 2.1.1:
Examples of Recent Applications / 2.1.2:
Properties of Selenols and Selenolates / 2.2:
Electronegativity of Selenium / 2.2.1:
Tautomerism of Selenols / 2.2.2:
Nudeophilicity of Selenolates / 2.2.3:
Inorganic Nucleophilic Selenium Reagents / 2.3:
Conventional Reagents / 2.3.1:
New Reagents / 2.3.2:
Organic Nucleophilic Selenium Reagents / 2.4:
Preparation / 2.4.1:
Structure / 2.4.2:
Ammonium Selenolates (NH4+) / 2.4.3:
Selenolates of Group 1 Elements (Li, Na, K, and Cs) / 2.4.4:
Selenolates of Group 2 Elements (Mg, Ca, and Ba) / 2.4.5:
Selenolates of Group 3 Elements (Sm, Ce, Pr, Nb, and U) / 2.4.6:
Selenolates of Group 4 Elements (Ti, Zr, and Hf) / 2.4.7:
Selenolates of Group 5 Elements (V, Nb, and Ta) / 2.4.8:
Selenolates of Group 6 Elements (Mo and W) / 2.4.9:
Selenolates of Group 7 Elements (Mn and Re) / 2.4.10:
Selenolates of Group 8 Elements (Fe,Ru, and Os) / 2.4.11:
Selenolates of Group 9 Elements (Co, Rh, and Ir) / 2.4.12:
Selenolates of Group 10 Elements (Ni,Pd, and Pt) / 2.4.13:
Selenolates of Group 11 Elements (Cu, Ag, and Au) / 2.4.14:
Selenolates of Group 12 Elements (Zn, Cd, and Hg) / 2.4.15:
Selenolates of Group 13 Elements (B, Al, Ga, and In) / 2.4.16:
Selenolates of Group 14 Elements (Si, Ge, Sn, and Pb) / 2.4.17:
Selenolates of Group 15 Elements (P, As, Sb, and Bi) / 2.4.18:
Selenium Compounds in Radical Reactions / W. Russell Bowman3:
Homolytic Substitution at Selenium to Generate Radical Precursors / 3.1:
Bimolecular SH2 Reactions: Synthetic Considerations / 3.1.1:
Radical Reagents / 3.1.1.1:
Alkyl Radicals from Selenide Precursors / 3.1.2:
Acyl Radicals from Acyl Selenide Precursors / 3.1.3:
Imidoyl Radicals from Imidoyl Selenides / 3.1.4:
Other Radicals from Selenide Precursors / 3.1.5:
Selenide Building Blocks / 3.2:
Solid Phase Synthesis / 3.3:
Selenide Precursors in Radical Domino Reactions / 3.4:
Homolytic Substitution at Selenium for the Synthesis of Se Containing Products / 3.5:
Intermolecular SH2 onto Se / 3.5.1:
Intramolecular SH2: Cyclization onto Se / 3.5.2:
Seleno Group Transfer onto Alkenes and Alkynes / 3.6:
Seleno Selenation / 3.6.1:
Seleno Sulfonation / 3.6.2:
Seleno Alkylation / 3.6.3:
PhSeH in Radical Reactions / 3.7:
Radical Clock Reactions / 3.7.1:
Problem of Unwanted Trapping of Intermediate Radicals / 3.7.2:
Catalysis of Starrnane-Mediated Reactions / 3.7.3:
Selenium Radical Anions, SRN1 Substitutions / 3.8:
Selenium Stabilized Carbanions / Joao V. Comasseto ; Alcindo A. Dos Santos ; Edison P. Wendler4:
Preparation of Selenium-Stabilized Carbanions / 4.1:
Deprotonation of Selenides / 4.2.1:
Element Lithium Exchange / 4.2.2:
Conjugate Addition of Organometallics to Vinyl and Alkynylselenides / 4.2.3:
Reactivity of the Selenium-Stabilized Carbanions with Electrophiles and Synthetic Transformations of the Products / 4.3:
Reaction of Selernum Stabilized Carbanions with Electrophiles / 4.3.1:
Selenium Based Transformations on the Reaction Products of Selenium Stabilized Carbanions with Electrophiles / 4.3.2:
Stereochemical Aspects / 4.4:
Cyclic Selenium Stabilized Carbanions / 4.4.1:
Acyclic Selenium Stabilized Carbanions / 4.4.2:
Application of Selenium Stabilized Carbanions in Total Synthesis / 4.5:
Examples Using Alkylation Reactions of Selenium Stabilized Carbanions / 4.5.1:
Examples Using the Addition of Selenium-Stabilized Carbanions to Carbonyl Compounds / 4.5.2:
Examples Using 1,4 Addition of Selenium-Stabihzed Carbanions to a,p-Unsaturated Carbonyl Compounds / 4.5.3:
Conclusion / 4.6:
Selenium Compounds with Valency Higher than Two / Jozef Drabowicz ; Jarosiaw Lewkowski ; Jacek Scianowski5:
Trivalent, Dicoordinated Selenonium Salts / 5.1:
Trivalent, Tricoordinated Derivatives / 5.3:
Tetravalent, Dicoordinated Derivatives / 5.4:
Tetravalent, Tricoordinated Derivatives / 5.5:
Pentavalent Derivatives / 5.6:
Hexavalent, Tetracoordinated Derivatives / 5.7:
Hypervalent Derivatives / 5.8:
Selenuranes / 5.8.1:
Selenurane Oxides / 5.8.2:
Perselenuranes / 5.8.3:
Acknowledgment
Selenocarbonyls / Toshiaki Murai6:
Overview / 6.1:
Theoretical Aspects of Selenocarbonyls / 6.2:
Molecular Structure of Selenocarbonyls / 6.3:
Synthetic Procedures of Selenocarbonyls / 6.4:
Manipulation of Selenocarbonyls / 6.5:
Metal Complexes of Selenocarbonyls / 6.6:
Future Aspects / 6.7:
Selenoxide Elimination and [2,3]-Sigmatropic Rearrangement / Yoshiaki Nishibayashi ; Sakae Uemura7:
Preparation and Properties of Chiral Selenoxides / 7.1:
Selenoxide Elimination / 7.3:
Enantioselective Selenoxide Elimination Producing Chiral Allenes and Unsaturated Ketones / 7.3.1:
Diastereoselective Selenoxide Elimination Producing Chiral Allenecarboxylic Esters / 7.3.2:
2,3-Sigmatropic Rearrangement via Allylic Selenoxides / 7.4:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.1:
Diastereoselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Alcohols / 7.4.2:
2,3-Sigmatropic Rearrangement via Allylic Selenimides / 7.5:
Preparation and Properties of Chiral Selenimides / 7.5.1:
Enanrioselective [2,3]-Sigmatropic Rearrangement Producing Chiral Allylic Amines / 7.5.2:
Diastereoselective [2,3]-Sigmatropic Rearrangements Producing Chiral Allylic Amines / 7.5.3:
2,3-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6:
Preparation and Properties of Optically Active Selenium Ylides / 7.6.1:
Enantioselective [2,3]-Sigmatropic Rearrangements via Allylic Selenium Ylides / 7.6.2:
Diastereoselective [2,3]-Sigmatropic Rearrangement via Allylic Selenium Ylides / 7.6.3:
Summary / 7.7:
Selenium Compounds as Ligands and Catalysts / Fateh V. Singh ; Thomas Wirth8:
Selenium-Catalyzed Reactions / 8.1:
Stereoselective Addition of Diorganozinc Reagents to Aldehydes / 8.2.1:
Diethylzinc Addition / 8.2.1.1:
Diphenylzinc Addition / 8.2.1.2:
Selenium-Ligated Transition Metal-Catalyzed Reactions / 8.2.2:
Selenium-Ligated Stereoselective Hydrosilylation of Ketones / 8.2.2.1:
Selenium-Ligated Copper-Catalyzed Addition of Organometallic Reagents to Enones / 8.2.2.2:
Selenium-Ligated Palladium-Catalyzed Asymmetric Allylic Alkylation / 8.2.2.3:
Selenium-Ligands in Palladium-Catalyzed Mizoroki-Heck Reactions / 8.2.2.4:
Selenium-Ligands in Palladium-Catalyzed Phenylselenenylation of Organohalides / 8.2.2.5:
Selenium-Ligands in Palladium-Catalyzed Substitution Reactions / 8.2.2.6:
Selenium-Ligands in the Palladium-Catalyzed Allylation of Aldehydes / 8.2.2.7:
Selenium-Ligands in Palladium-Catalyzed Condensation Reactions / 8.2.2.8:
Ruthenium-Catalyzed Substitution Reactions / 8.2.2.9:
Selenium-Ligands in Zinc-Catalyzed Intramolecular Hydroaminations / 8.2.2.10:
Selenium-Ligands in Organocatalytic Asymmetric Aldol Reactions / 8.2.3:
Selenium-Ligands in Stereoselective Darzens Reactions / 8.2.4:
Selenium-Catalyzed Carbonylation Reactions / 8.2.5:
Selective Reduction of a,p-Unsaturated Carbonyl Compounds / 8.2.6:
Selenium-Catalyzed Halogenations and Halocyclizations / 8.2.7:
Selenium-Catalyzed Staudinger-Vilarrasa Reaction / 8.2.8:
Selenium-Catalyzed Elimination Reactions of Diols / 8.2.9:
Selenium-Catalyzed Hydrostannylation of Alkenes / 8.2.10:
Selenium-Catalyzed Radical Chain Reactions / 8.2.11:
Selenium-Catalyzed Oxidation Reactions / 8.2.12:
Selenium-Catalyzed Epoxidation of Alkenes / 8.2.12.1:
Selenium-Catalyzed Dihydroxylation of Alkenes / 8.2.12.2:
Selenium-Catalyzed Oxidation of Alcohols / 8.2.12.3:
Baeyer-Villiger Oxidation / 8.2.12.4:
Selenium-Catalyzed Allylic Oxidation of Alkenes / 8.2.12.5:
Selenium-Catalyzed Oxidation of ArylAlkyl Ketones / 8.2.12.6:
Selenium-Catalyzed Oxidation of Primary Aromatic Amines / 8.2.12.7:
Selenium-Catalyzed Oxidation of Alkynes / 8.2.12.8:
Selenium-Catalyzed Oxidation of Halide Anions / 8.2.12.9:
Stereoselective Catalytic Selenenylation-Elimination Reactions / 8.2.13:
Selenium-Catalyzed Diels-Alder Reactions / 8.2.14:
Selenium-Catalyzed Synthesis of Thioacetals / 8.2.15:
Selenium-Catalyzed Baylis-Hillman Reaction / 8.2.16:
Biological and Biochemical Aspects of Selenium Compounds / Bhaskar J. Bhuyan ; Govindasamy Mugesh9:
Biological Importance of Selenium / 9.1:
Selenocysteine: The 21st Amino Acid / 9.3:
Biosynthesis of Selenocysteine / 9.4:
Chemical Synthesis of Selenocysteine / 9.5:
Chemical Synthesis of Sec-Containing Proteins and Peptides / 9.6:
Selenoenzymes / 9.7:
Glutathione Peroxidases / 9.7.1:
Iodothyronine Deiodinase / 9.7.2:
Synthetic Mimics of IDs / 9.7.3:
Thioredoxirn Reductase / 9.7.4:
öSe NMR Values / 9.8:
Index
Preface
List of Contributor
Electrophilic Selenium / Claudio Santi ; Stefano Santoro1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼