close
1.

電子ブック

EB
Mike Allerhand
出版情報: SpringerLink Books - AutoHoldings , Springer Berlin Heidelberg, 2011
所蔵情報: loading…
目次情報: 続きを見る
Introduction to R / 1:
Why Command Lines and Scripts? / 1.1:
The R Console / 1.1.1:
Variables / 1.1.2:
Functions / 1.1.3:
Finding Functions and Getting Help / 1.2:
Libraries / 1.2.1:
Packages / 1.2.2:
Finding Functions / 1.2.3:
Getting Help / 1.2.4:
R Projects / 1.3:
Saving Your Session / 1.3.1:
Scripts / 1.3.2:
Data Structures / 2:
Vectors, Matrices, and Arrays / 2.1:
Data Frames and Lists / 2.1.2:
Creating Data / 2.1.3:
Sampling Data / 2.1.4:
Reading Data / 2.1.5:
Operations on Vectors and Matrices / 2.2:
Arithmetic Functions / 2.2.1:
Descriptive Functions / 2.2.2:
Operators and Expressions / 2.2.3:
Factors / 2.3:
Making Factors / 2.3.1:
Operations on Factors / 2.3.2:
Re-ordering and Re-labelling / 2.3.3:
Indexing / 2.4:
Indexing by Name / 2.4.1:
Indexing by Number / 2.4.2:
Inserting and Deleting Rows or Columns / 2.4.3:
Indexing with Factors / 2.4.4:
Conditional Indexing / 2.4.5:
Sorting / 2.4.6:
Reshaping / 2.5:
Stacking and Unstacking? / 2.5.1:
Reshaping: Wide and Long / 2.5.2:
Merging / 2.5.3:
Missing Values / 2.6:
Recoding Missing Values / 2.6.1:
Operations with Missing Values / 2.6.2:
Counting and Sorting Missing Values / 2.6.3:
Handling Missing Values / 2.6.4:
Mapping Functions / 2.7:
Repeated Evaluation / 2.7.1:
Applying Functions / 2.7.2:
Writing Functions / 2.8:
Anonymous Functions / 2.8.1:
Optional Arguments / 2.8.2:
Tables and Graphs / 3:
Tables / 3.1:
Frequency Tables / 3.1.1:
Tables of Cell Means and Other Summaries / 3.1.2:
Saving Tables / 3.1.3:
Graphs / 3.2:
Base Graphics / 3.2.1:
Lattice Graphics / 3.2.2:
Multiple Plot Layout / 3.2.3:
Saving Graphics / 3.2.4:
Hypothesis Tests / 4:
Probability Distributions / 4.1:
How to Run a t test / 4.2:
Linear Models / 5:
Model Formulas / 5.1:
Formula and Data Frame / 5.1.1:
Updating Model Fits / 5.1.2:
General Linear Models / 5.2:
Regression Diagnostics / 5.2.1:
Testing the Regression Coefficients / 5.2.2:
Prediction / 5.2.3:
Stepwise Regression / 5.2.4:
Extracting Information from the Fit Object / 5.2.5:
Residualizing / 5.2.6:
ANOVA / 5.3:
ANOVA Tables / 5.3.1:
Comparisons / 5.3.2:
Learning R / 5.4:
Index
Introduction to R / 1:
Why Command Lines and Scripts? / 1.1:
The R Console / 1.1.1:
2.

電子ブック

EB
H?l?ne; Lattanzi, Alessandra; Dalpozzo, Renato Pellissier, Renato Dalpozzo, Alessandra Lattanzi
出版情報: Wiley Online Library - AutoHoldings Books , Wiley-VCH, 2017
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Abbreviations
Asymmetric Cyclopropanation / 1:
Introduction / 1.1:
Simmons-Smith Cyclopropanation / 1.2:
Chiral Substrates / 1.2.1:
Chiral Allylic Alcohols / 1.2.1.1:
Chiral Allylic Amines / 1.2.1.2:
Chiral Acetal-Directed Cyclopropanations / 1.2.1.3:
Simple Chiral Alkenes / 1.2.1.4:
Chiral Auxiliaries / 1.2.2:
Chiral Catalysts / 1.2.3:
Charette's Ligand / 1.2.3.1:
Other Stoichiometric Ligands / 1.2.3.2:
Walsh' Procedure / 1.2.3.3:
True Catalytic Procedures / 1.2.3.4:
Transition-Metal-Catalyzed Decomposition of Diazoalkanes / 1.3:
Intermolecular Cyclopropanation / 1.3.1:
Chiral Catalysts: Cobalt / 1.3.1.1:
Chiral Catalysts: Copper / 1.3.1.3:
Chiral Catalysts: Rhodium / 1.3.1.4:
Chiral Catalysts: Ruthenium / 1.3.1.5:
Chiral Catalyst: Other Metals / 1.3.1.6:
Intramolecular Cyclopropanation / 1.3.2:
Chiral Auxiliaries and Chiral Compounds / 1.3.2.1:
Chiral Stoichiometric Carbenes / 1.3.2.2:
Michael-Initiated and Other Ring Closures / 1.4:
Chiral Michael Acceptors / 1.4.1:
Chiral Nucleophiles / 1.4.2.2:
Organocatalysis / 1.4.3:
Ylides / 1.4.3.1:
Nitrocyclopropanation / 1.4.3.2:
Halocarbonyl Compounds / 1.4.3.3:
Metal Catalysis / 1.4.4:
Other Ring Closures / 1.4.5:
Miscellaneous Reactions / 1.5:
Rearrangement of Chiral Oxiranes / 1.5.1:
Cycloisomerization of 1,n-Enynes / 1.5.2:
Denitrogenation of Chiral Pyrazolines / 1.5.3:
C-H Insertion / 1.5.4:
Addition to Cyclopropenes / 1.5.5:
Other Methods / 1.5.6:
Conclusions / 1.6:
References
Asymmetric Aziridination / 2:
Aziridination Based on the Use of Chiral Substrates / 2.1:
Addition to Alkenes / 2.2.1:
Aziridination via Nitrene Transfer to Alkenes / 2.2.1.1:
Aziridination via Addition-Elimination Processes / 2.2.1.2:
Addition to Imines / 2.2.1.3:
Methylidation of Imines / 2.2.2.1:
Aza-Darzens and Analogous Reactions / 2.2.2.2:
Addition/Elimination Processes / 2.2.2.3:
Addition to Azirines / 2.2.2.4:
Aziridination via Intramolecular Substitution / 2.2.4:
From 1,2-Amino Alcohols / 2.2.4.1:
From 1,2-Amino Halides / 2.2.4.2:
From 1,2-Azido Alcohols / 2.2.4.3:
From 1,2-Amino Sulfides and 1,2-Amino Selenides / 2.2.4.4:
From Epoxides / 2.2.4.5:
Aziridination Based on the Use of Chiral Catalysts / 2.2.5:
Cu-Catalyzed Aziridination / 2.3.1:
Rh-Catalyzed Aziridination / 2.3.1.2:
Ru-Catalyzed Aziridination / 2.3.1.3:
Catalysis by Other Metals / 2.3.1.4:
Organocatalyzed Aziridination / 2.3.1.5:
Aziridination via Carbene Transfer to Imines / 2.3.2:
Carbene Methodology / 2.3.2.1:
Sulfur-Ylide-Mediated Aziridination / 2.3.2.2:
Kinetic Resolutions of Aziridines / 2.3.3:
Asymmetric Epoxidation / 2.4:
Asymmetric Epoxidations Based on the Use of Chiral Auxiliaries / 3.1:
Asymmetric Metal-Catalyzed Epoxidations / 3.3:
Ti-, Zr-, Hf-Catalyzed Epoxidations / 3.3.1:
V-, Nb-, Ta-Catalyzed Epoxidations / 3.3.2:
Cr-, Mo-, W-Catalyzed Epoxidations / 3.3.3:
Mn-, Re-, Fe-, Ru-Catalyzed Epoxidations / 3.3.4:
Pt-, Zn-, Lanthanoid-Catalyzed Epoxidations / 3.3.5:
Asymmetric Organocatalyzed Epoxidations / 3.4:
Phase-Transfer Catalyst / 3.4.1:
Polyamino Acids and Aspartate-Derived Peracids / 3.4.2:
Chiral Dioxiranes, Iminium Salts, and Alkyl Hydroperoxides / 3.4.3:
Chiral Amines / 3.4.4:
Kinetic Resolution of Racemic Epoxides / 3.5:
Asymmetric Sulfur-Ylide-Mediated Epoxidations / 3.6:
Asymmetric Darzens-Type Epoxidations / 3.7:
Chiral Auxiliary- and Reagent-Mediated Darzens Reactions / 3.7.1:
Catalytic Asymmetric Darzens Reactions / 3.7.2:
Other Ylide-Mediated Epoxidations / 3.8:
Asymmetric Biocatalyzed Synthesis of Epoxides / 3.9:
Asymmetric Oxaziridination / 3.10:
Oxaziridination Using Chiral Substrates / 4.1:
Oxaziridination Using Chiral Catalysts / 4.3:
Kinetic Resolutions / 4.4:
Asymmetric Azirination and Thiirination / 4.5:
Asymmetric Azirination / 5.1:
Neber Approaches / 5.2.1:
Elimination Approaches / 5.2.2:
Other Approaches / 5.2.3:
Asymmetric Thiirination / 5.3:
Conversion of Epoxides / 5.3.1:
Condensation of Sulfur-Stabilized Carbanions to Carbonyl Compounds / 5.3.2:
Intramolecular Nucleophilic Substitution / 5.3.3:
Index / 5.3.4:
Preface
List of Abbreviations
Asymmetric Cyclopropanation / 1:
3.

電子ブック

EB
Igor Bernik
出版情報: Wiley Online Library - AutoHoldings Books , Hoboken : Wiley-ISTE, 2014
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Acknowledgement
Cybercrime / Chapter 1:
The perpetrators of cybercrime / 1.1:
Motives of the perpetrators of cybercrime / 1.1.1:
Types of offenders / 1.1.2:
Organization of perpetrators / 1.1.3:
Tools for implementing attacks / 1.2:
System protection against attacks / 1.3:
Fear of cybercrime / 1.4:
Investigation of cybercrime / 1.5:
Cost of cybercrime / 1.6:
Measuring the cost of cybercrime model / 1.6.1:
Cost framework for cybercrime model / 1.6.2:
Laws and legal bodies / 1.7:
The Council of Europe Convention on Cybercrime / 1.7.1:
Agreement on Trade-Related Aspects of Intellectual Property Rights / 1.7.2:
Digital Millennium Copyright Act / 1.7.3:
United Nations Charter / 1.7.4:
Cybercrime conclusion / 1.8:
Cyberwarfare / Chapter 2:
Information and cyberspace / 2.1:
Cyberspace and ICT / 2.1.1:
Information power and information conflict / 2.1.2:
Understanding cyberwarfare / 2.2:
The nature of cyberwarfare / 2.2.1:
Types and techniques of cyberwarfare / 2.2.2:
Perpetrators and victims of cyberwarfare / 2.3:
Committing cyberwarfare / 2.4:
Espionage / 2.4.1:
Active warfare / 2.4.2:
Information operations / 2.4.3:
Propaganda activity / 2.4.4:
Organizations and cyberwarfare / 2.5:
Industrial espionage / 2.5.1:
Politically and ideologically motivated groups - perpetrators of cyberwarfare / 2.5.2:
The role of countries in cyberwarfare / 2.6:
The United States / 2.6.1:
China / 2.6.2:
Russia / 2.6.3:
India / 2.6.4:
Iran / 2.6.5:
Israel / 2.6.6:
North Korea / 2.6.7:
Efforts against cyberwarfare: international and national legislation / 2.7:
Defense against cyberwarfare / 2.8:
Cyberwarfare conclusion / 2.9:
Conclusion
Bibliography
Index
Introduction
Acknowledgement
Cybercrime / Chapter 1:
4.

電子ブック

EB
Guozheng; Kan, Qianhua Kang, Qianhua Kan
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2017
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Monotonic Elastoplastic Deformation / 1.1:
Cyclic Elastoplastic Deformation / 1.2:
Cyclic Softening/Hardening Features / 1.2.1:
Mean Stress Relaxation / 1.2.2:
Ratchetting / 1.2.3:
Contents of This Book / 1.3:
References
Fundamentals of Inelastic Constitutive Models / 1:
Fundamentals of Continuum Mechanics
Kinematics / 1.1.1:
Definitions of Stress Tensors / 1.1.2:
Frame-Indifference and Objective Rates / 1.1.3:
Thermodynamics / 1.1.4:
The First Thermodynamic Principle / 1.1.4.1:
The Second Thermodynamic Principle / 1.1.4.2:
Constitutive Theory of Solid Continua / 1.1.5:
Constitutive Theory of Elastic Solids / 1.1.5.1:
Constitutive Theory of Elastoplastic Solids / 1.1.5.2:
Classical Inelastic Constitutive Models
J2 Plasticity Model
Unified Visco-plasticity Model
Fundamentals of Crystal Plasticity
Single Crystal Version / 1.3.1:
Polycrystalline Version / 1.3.2:
Fundamentals of Meso-mechanics for Composite Materials / 1.4:
Eshelby's Inclusion Theory / 1.4.1:
Mori-Tanaka's Homogenization Approach / 1.4.2:
Cyclic Plasticity of Metals: I. Macroscopic and Microscopic Observations and Analysis of Micro-mechanism / 2:
Macroscopic Experimental Observations / 2.1:
Cyclic Softening/Hardening Features in More Details / 2.1.1:
Uniaxial Cases / 2.1.1.1:
Multiaxial Cases / 2.1.1.2:
Ratchetting Behaviors / 2.1.2:
Thermal Ratchetting / 2.1.2.1:
Microscopic Observations of Dislocation Patterns and Their Evolutions / 2.2:
FCC Metals / 2.2.1:
Uniaxial Case / 2.2.1.1:
Multiaxial Case / 2.2.1.2:
BCC Metals / 2.2.2:
Micro-mechanism of Ratchetting / 2.2.2.1:
Uniaxial Ratchetting / 2.3.1:
Multiaxial Ratchetting / 2.3.1.2:
Summary / 2.3.2:
Cyclic Plasticity of Metals: II. Constitutive Models / 3:
Macroscopic Phenomenological Constitutive Models / 3.1:
Framework of Cyclic Plasticity Models / 3.1.1:
Governing Equations / 3.1.1.1:
Brief Review on Kinematic Hardening Rules / 3.1.1.2:
Combined Kinematic and Isotropic Hardening Rules / 3.1.1.3:
Viscoplastic Constitutive Model for Ratchetting at Elevated Temperatures / 3.1.2:
Nonlinear Kinematic Hardening Rules / 3.1.2.1:
Nonlinear Isotropic Hardening Rule / 3.1.2.2:
Verification and Discussion / 3.1.2.3:
Constitutive Models for Time-Dependent Ratchetting / 3.1.3:
Separated Version / 3.1.3.1:
Unified Version / 3.1.3.2:
Evaluation of Thermal Ratchetting / 3.1.4:
Physical Nature-Based Constitutive Models / 3.2:
Crystal Plasticity-Based Constitutive Models / 3.2.1:
Application to Polycrystalline Metals / 3.2.1.1:
Dislocation-Based Crystal Plasticity Model / 3.2.2:
Multi-mechanism Constitutive Model / 3.2.2.1:
2M1C Model / 3.2.3.1:
2M2C Model / 3.2.3.2:
Two Applications of Cyclic Plasticity Models / 3.3:
Rolling Contact Fatigue Analysis of Rail Head / 3.3.1:
Experimental and Theoretical Evaluation to the Ratchetting of Rail Steels / 3.3.1.1:
Finite Element Simulations / 3.3.1.2:
Bending Fretting Fatigue Analysis of Axles in Railway Vehicles / 3.3.2:
Equivalent Two-Dimensional Finite Element Model / 3.3.2.1:
Finite Element Simulation to Bending Fretting Process / 3.3.2.2:
Predictions to Crack Initiation Location and Fretting Fatigue Life / 3.3.2.3:
Thermomechanically Coupled Cyclic Plasticity of Metallic Materials at Finite Strain / 3.4:
Cyclic Plasticity Model at Finite Strain / 4.1:
Framework of Finite Elastoplastic Constitutive Model / 4.1.1:
Equations of Kinematics / 4.1.1.1:
Constitutive Equations / 4.1.1.2:
Kinematic and Isotropic Hardening Rules / 4.1.1.3:
Logarithmic Stress Rate / 4.1.1.4:
Finite Element Implementation of the Proposed Model / 4.1.2:
Discretization Equations of the Proposed Model / 4.1.2.1:
Implicit Stress Integration Algorithm / 4.1.2.2:
Consistent Tangent Modulus / 4.1.2.3:
Verification of the Proposed Model / 4.1.3:
Determination of Material Parameters / 4.1.3.1:
Simulation of Monotonic Simple Shear Deformation / 4.1.3.2:
Simulation of Cyclic Free-End Torsion and Tension-Torsion Deformations / 4.1.3.3:
Simulation of Uniaxial Ratchetting at Finite Strain / 4.1.3.4:
Thermomechanically Coupled Cyclic Plasticity Model at Finite Strain / 4.2:
Framework of Thermodynamics / 4.2.1:
Kinematics and Logarithmic Stress Rate / 4.2.1.1:
Thermodynamic Laws / 4.2.1.2:
Generalized Constitutive Equations / 4.2.1.3:
Restrictions on Specific Heat and Stress Response Function / 4.2.1.4:
Specific Constitutive Model / 4.2.2:
Nonlinear Kinematic Hardening Rule / 4.2.2.1:
Simulations and Discussions / 4.2.2.2:
Cyclic Viscoelasticity-Viscoplasticity of Polymers / 4.3:
Experimental Observations / 5.1:
Uniaxial Strain-Controlled Cyclic Tests / 5.1.1:
Multiaxial Strain-Controlled Cyclic Tests / 5.1.1.2:
Cyclic Viscoelastic Constitutive Model / 5.1.2:
Original Schapery's Model / 5.2.1:
Main Equations of Schapery's Viscoelastic Model / 5.2.1.1:
Simulations and Discussion / 5.2.1.2:
Extended Schapery's Model / 5.2.2:
Main Modification / 5.2.2.1:
Cyclic Viscoelastic-Viscoplastic Constitutive Model / 5.2.2.2:
Main Equations / 5.3.1:
Viscoelasticity / 5.3.1.1:
Viscoplasticity / 5.3.1.2:
Cyclic Plasticity of Particle-Reinforced Metal Matrix Composites / 5.3.2:
Uniaxial Ratchetting at Room Temperature / 6.1:
Uniaxial Ratchetting at 573K / 6.1.2.2:
Time-Independent Cyclic Plasticity / 6.2:
Main Equations of the Time-Independent Cyclic Plasticity Model / 6.2.1.1:
Basic Finite Element Model and Simulations / 6.2.1.2:
Effect of Interfacial Bonding / 6.2.1.3:
Results with 3D Multiparticle Finite Element Model / 6.2.1.4:
Time-Dependent Cyclic Plasticity / 6.2.2:
Finite Element Model / 6.2.2.1:
Meso-mechanical Time-Independent Plasticity Adodel / 6.2.2.2:
Framework of the Model / 6.3.1:
Time-Independent Cyclic Plasticity Model for the Matrix / 6.3.1.1:
Extension of the Mori-Tanaka Homogenization Approach / 6.3.1.2:
Numerical Implementation of the Model / 6.3.2:
Under the Strain-Controlled Loading Condition / 6.3.2.1:
Under the Stress-Controlled Loading Condition / 6.3.2.2:
Continuum and Algorithmic Consistent Tangent Operators / 6.3.2.3:
Meso-mechanical Time-Dependent Plasticity Model / 6.3.3:
Time-Dependent Cyclic Plasticity Model for the Matrix / 6.4.1:
Mori-Tanaka Homogenization Approach / 6.4.1.2:
Generalized Incrementally Affine Linearization Formulation / 6.4.2:
Extension of Mori-Tanaka's Model / 6.4.2.2:
Algorithmic Consistent Tangent Operator and Its Regularization / 6.4.2.3:
Numerical Integration of the Viscoplasticity Model / 6.4.2.4:
Under Monotonic Tension / 6.4.3:
Under Strain-Controlled Cyclic Loading Conditions / 6.4.3.2:
Time-Dependent Uniaxial Ratchetting / 6.4.3.3:
Thermomechanical Cyclic Deformation of Shape-Memory Alloys / 6.5:
Degeneration of Super-Elasticity and Transformation Ratchetting / 7.1:
Thermomechanical Cyclic Deformation Under Strain-Controlled Loading Conditions / 7.1.1.1:
Thermomechanical Cyclic Deformation Under Uniaxial Stress-Controlled Loading Conditions / 7.1.1.2:
Thermomechanical Cyclic Deformation Under Multiaxial Stress-Controlled Loading Conditions / 7.1.1.3:
Rate-Dependent Cyclic Deformation of Super-Elastic NiTi SMAs / 7.1.2:
Thermomechanical Cyclic Deformation Under Stress-Controlled Loading Conditions / 7.1.2.1:
Thermomechanical Cyclic Deformation of Shape-Memory NiTi SMAs / 7.1.3:
Pure Mechanical Cyclic Deformation under Stress-Controlled Loading Conditions / 7.1.3.1:
Thermomechanical Cyclic Deformation with Thermal Cycling and Axial Stress / 7.1.3.2:
Phenomenological Constitutive Models / 7.2:
Pure Mechanical Version / 7.2.1:
Thermodynamic Equations and Internal Variables / 7.2.1.1:
Main Equations of Constitutive Model / 7.2.1.2:
Predictions and Discussions / 7.2.1.3:
Thermomechanical Version / 7.2.2:
Strain Definitions / 7.2.2.1:
Evolution Rules of Transformation and Transformation-Induced Plastic Strains / 7.2.2.2:
Simplified Temperature Field / 7.2.2.3:
Evolution Rules of Internal Variables / 7.2.2.4:
Explicit Scale Transition Rule / 7.3.1.3:
Verifications and Discussions / 7.3.1.4:
Thermomechanical Coupled Analysis for Temperature Field / 7.3.2:
Index / 7.3.2.4:
Introduction
Monotonic Elastoplastic Deformation / 1.1:
Cyclic Elastoplastic Deformation / 1.2:
5.

電子ブック

EB
Samuel Szoniecky
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2018
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Use of the Ecosystem Concept on the Web / Chapter 1:
For marketing / 1.1:
For personal data / 1.2:
For services and applications / 1.3:
For dynamic interactivity / 1.4:
For pictorial analogies / 1.5:
For the information and communication sciences / 1.6:
Ecosystem Modeling: A Generic Method of Analysis / Chapter 2:
Hypertextual gardening fertilized by the chaos of John Cage / 2.1:
An entrepreneurial experience / 2.2:
Objectives / 2.2.1:
Principle of the game / 2.2.2:
Motivations / 2.2.3:
Why model a cognitive ecology? / 2.2.3.1:
The relevance of the garden analogy / 2.2.3.2:
Strategic interests and potential benefits / 2.2.4:
The maturation of a research project / 2.3:
Evaluating index activity / 2.3.1:
Folksonomies explorer / 2.3.2:
Tweet Palette: Semantic mapping / 2.3.3:
Fundamental Principles for Modeling an Existence / Chapter 3:
Key concepts for thinking about knowledge ecosystems / 3.1:
The noosphere / 3.1.1:
Enaction / 3.1.2:
Complexity / 3.1.3:
Trajective reason / 3.1.4:
Agency / 3.1.5:
Spinozist principles for an ethical ontology / 3.2:
Spinoza: ethical ontology / 3.2.1:
Limitations of Spinozism / 3.2.2:
Three dimensions of existence and three kinds of knowledge / 3.2.3:
Spinozist symbol politics / 3.2.4:
Spinozist ethics for the Web / 3.2.5:
The ontological principles of Descola / 3.2.6:
Principles of ontological matrices / 3.2.7:
The Web as analogist ontology / 3.2.8:
Principles of computer models / 3.2.9:
From Zeno to Turing via Spinoza / 3.2.10:
The search for the perfect language / 3.2.11:
Semantic knowledge management / 3.3:
The boundaries of ontologies / 3.3.1:
The semantic sphere IEML / 3.3.2:
Graphical Specifications for Modeling Existences / Chapter 4:
Principles of graphical modeling / 4.1:
Unified modeling language / 4.1.1:
Graphic partitions and diagrams / 4.1.2:
Fixed image versus dynamic diagram / 4.1.3:
Semantic maps / 4.2:
Maps of physical spaces / 4.2.1:
Time maps / 4.2.2:
Maps of conceptual spaces / 4.2.3:
Interpretation maps / 4.2.4:
Graphical modeling rules / 4.3:
Physical dimensions / 4.3.1:
Actors / 4.3.2:
Concepts / 4.3.3:
Relations / 4.3.4:
Calculating the complexity of an ecosystem / 4.3.5:
Web Platform Specifications for Knowledge Ecosystems / Chapter 5:
The generic management of resources / 5.1:
Non-digital resources / 5.1.1:
Digital resources / 5.1.2:
Management of digital resources / 5.1.3:
Principles for developing a Web ecosystem platform / 5.2:
Databases as a model of the ecosystem / 5.2.1:
Algorithmic platform to manage the ecosystem / 5.2.2:
Editorial platform for controlling collaborative practices / 5.2.3:
Client applications to explore ecosystem views / 5.2.4:
From technical specification to the organization of collective intelligence / 5.2.5:
Conclusion
Appendix
Bibliography
Index
Introduction
Use of the Ecosystem Concept on the Web / Chapter 1:
For marketing / 1.1:
6.

電子ブック

EB
Khemais Saanouni, K. Saanouni
出版情報: Wiley Online Library - AutoHoldings Books , Wiley-ISTE, 2012
所蔵情報: loading…
目次情報: 続きを見る
Preface
Principle of Mathematical Notations
Elements of Continuum Mechanics and Thermodynamics / Chapter 1:
Elements of kinematics and dynamics of materially simple continua / 1.1:
Homogeneous transformation and gradient of transformation / 1.1.1:
Homogeneous transformation / 1.1.1.1:
Gradient of transformation and its inverse / 1.1.1.2:
Polar decomposition of the transformation gradient / 1.1.1.3:
Transformation of elementary vectors, surfaces and volumes / 1.1.2:
Transformation of an elementary vector / 1.1.2.1:
Transformation of an elementary volume: the volume dilatation / 1.1.2.2:
Transformation of an oriented elementary surface / 1.1.2.3:
Various definitions of stretch, strain and strain rates / 1.1.3:
On some definitions of stretches / 1.1.3.1:
On some definitions of the strain tensors / 1.1.3.2:
Strain rates and rotation rates (spin) tensors / 1.1.3.3:
Volumic dilatation rate, relative extension rate and angular sliding rate / 1.1.3.4:
Various stress measures / 1.1.4:
Conjugate strain and stress measures / 1.1.5:
Change of referential or configuration and the concept of objectivity / 1.1.6:
Impact on strain and strain rates / 1.1.6.1:
Impact on stress and stress rates / 1.1.6.2:
Impact on the constitutive equations / 1.1.6.3:
Strain decomposition into reversible and irreversible parts / 1.1.7:
On the conservation laws for the materially simple continua / 1.2:
Conservation of mass: continuity equation / 1.2.1:
Principle of virtual power: balance equations / 1.2.2:
Energy conservation. First law of thermodynamics / 1.2.3:
Inequality of the entropy. Second law of thermodynamics / 1.2.4:
Fundamental inequalities of thermodynamics / 1.2.5:
Heat equation deducted from energy balance / 1.2.6:
Materially simple continuum thermodynamics and the necessity of constitutive equations / 1.3:
Necessity of constitutive equations / 1.3.1:
Some fundamental properties of constitutive equations / 1.3.2:
Principle of determinism or causality axiom / 1.3.2.1:
Principle of local action / 1.3.2.2:
Principle of objectivity or material indifference / 1.3.2.3:
Principle of material symmetry / 1.3.2.4:
Principle of consistency / 1.3.2.5:
Thermodynamic admissibility / 1.3.2.6:
Thermodynamics of irreversible processes. The local state method / 1.3.3:
A presentation of the local state method / 1.3.3.1:
Internal constraints / 1.3.3.2:
Mechanics of generalized continua. Micromorphic theory / 1.4:
Principle of virtual power for micromorphic continua / 1.4.1:
Thermodynamics of micromorphic continua / 1.4.2:
Thermomechanically-Consistent Modeling of the Metals Behavior with Ductile Damage / Chapter 2:
On the main schemes for modeling the behavior of materially simple continuous media / 2.1:
Behavior and fracture of metals and alloys: some physical and phenomenological aspects / 2.2:
On the microstructure of metals and alloys / 2.2.1:
Phenomenology of the thermomechanical behavior of polycrystals / 2.2.2:
Linear elastic behavior / 2.2.2.1:
Inelastic behavior / 2.2.2.2:
Inelastic behavior sensitive to the loading rate / 2.2.2.3:
Initial and induced anisotropies / 2.2.2.4:
Other phenomena linked to the shape of the loading paths / 2.2.2.5:
Phenomenology of the inelastic fracture of metals and alloys / 2.2.3:
Micro-defects nucleation / 2.2.3.1:
Micro-defects growth / 2.2.3.2:
Micro-defects coalescence and final fracture of the RVE / 2.2.3.3:
A first definition of the damage variable / 2.2.3.4:
From ductile damage at a material point to the total fracture of a structure by propagation of macroscopic cracks / 2.2.3.5:
Summary of the principal phenomena to be modeled / 2.2.4:
Theoretical framework of modeling and main hypotheses / 2.3:
The main kinematic hypotheses / 2.3.1:
Choice of kinematics and compliance with the principle of objectivity / 2.3.1.1:
Decomposition of strain rates / 2.3.1.2:
On some rotating frame choices / 2.3.1.3:
Implementation of the local state method and main mechanical hypotheses / 2.3.2:
Choice of state variables associated with phenomena being modeled / 2.3.2.1:
Definition of effective variables: damage effect functions / 2.3.2.2:
State potential: state relations / 2.4:
State potential in case of damage anisotropy / 2.4.1:
Formulation in strain space: Helmholtz free energy / 2.4.1.1:
Formulation in stress space: Gibbs free enthalpy / 2.4.1.2:
State potential in the case of damage isotropy / 2.4.2:
Microcracks closure: quasi-unilateral effect / 2.4.2.1:
Concept of micro-defect closure: deactivation of damage effects / 2.4.3.1:
State potential with quasi-unilateral effect / 2.4.3.2:
Dissipation analysis: evolution equations / 2.5:
Thermal dissipation analysis: generalized heat equation / 2.5.1:
Heat flux vector: Fourier linear conduction model / 2.5.1.1:
Generalized heat equation / 2.5.1.2:
Intrinsic dissipation analysis: case of time-independent plasticity / 2.5.2:
Damageable plastic dissipation: anisotropic damage with two yield surfaces / 2.5.2.1:
Damageable plastic dissipation: anisotropic damage with a single yield surface / 2.5.2.2:
Incompressible and damageable plastic dissipation: isotropic damage with two yield surfaces / 2.5.2.3:
Incompressible and damageable plastic dissipation: single yield surface / 2.5.2.4:
Intrinsic dissipation analysis: time-dependent plasticity or viscoplasticity / 2.5.3:
Damageable viscoplastic dissipation without restoration: anisotropic damage with two viscoplastic potentials / 2.5.3.1:
Viscoplastic dissipation with damage: isotropic damage with a single viscoplastic potential and restoration / 2.5.3.2:
Some remarks on the choice of rotating frames / 2.5.4:
Modeling some specific effects linked to metallic material behavior / 2.5.5:
Effects on non-proportional loading paths on strain hardening evolution / 2.5.5.1:
Strain hardening memory effects / 2.5.5.2:
Cumulative strains or ratchet effect / 2.5.5.3:
Yield surface and/or inelastic potential distortion / 2.5.5.4:
Viscosity-hardening coupling: the Piobert-Lüders peak / 2.5.5.5:
Accounting for the material microstructure / 2.5.5.6:
Some specific effects on ductile fracture / 2.5.5.7:
Modeling of the damage-induced volume variation / 2.6:
On the compressibility induced by isotropic ductile damage / 2.6.1:
Concept of volume damage / 2.6.1.1:
State coupling and state relations / 2.6.1.2:
Dissipation coupling and evolution equations / 2.6.1.3:
Modeling of the contact and friction between deformable solids / 2.7:
Kinematics and contact conditions between solids / 2.7.1:
Impenetrability condition / 2.7.1.1:
Equilibrium condition of contact interface / 2.7.1.2:
Contact surface non-adhesion condition / 2.7.1.3:
Contact unilaterality condition / 2.7.1.4:
On the modeling of friction between solids in contact / 2.7.2:
Time-independent friction model / 2.7.2.1:
Nonlocal modeling of damageable behavior of micromorphic continua / 2.8:
Principle of virtual power for a micromorphic medium: balance equations / 2.8.1:
State potential and state relations for a micromorphic solid / 2.8.2:
Dissipation analysis: evolution equations for a micromorphic solid / 2.8.3:
Continuous tangent operators and thermodynamic admissibility for a micromorphic solid / 2.8.4:
Transformation of micromorphic balance equations / 2.8.5:
On the micro-macro modeling of inelastic flow with ductile damage / 2.9:
Principle of the proposed meso-macro modeling scheme / 2.9.1:
Definition of the initial RVE / 2.9.2:
Localization stages / 2.9.3:
Constitutive equations at different scales / 2.9.4:
State potential and state relations / 2.9.4.1:
Intrinsic dissipation analysis: evolution equations / 2.9.4.2:
Homogenization and the mean values of fields at the aggregate scale / 2.9.5:
Summary of the meso-macro polycrystalline model / 2.9.6:
Numerical Methods for Solving Metal Forming Problems / Chapter 3:
Initial and boundary value problem associated with virtual metal forming processes / 3.1:
Strong forms of the initial and boundary value problem / 3.1.1:
Posting a fully coupled problem / 3.1.1.1:
Some remarks on thermal conditions at contact interfaces / 3.1.1.2:
Weak forms of the initial and boundary value problem / 3.1.2:
On the various weak forms of the IBVP / 3.1.2.1:
Weak form associated with equilibrium equations / 3.1.2.2:
Weak form associated with heat equation / 3.1.2.3:
Weak form associated with micromorphic damage balance equation / 3.1.2.4:
Summary of the fully coupled evolution problem / 3.1.2.5:
Temporal and spatial discretization of the IBVP / 3.2:
Time discretization of the IBVP / 3.2.1:
Spatial discretization of the IBVP by finite elements / 3.2.2:
Spatial semi-discretization of the weak forms of the IBVP / 3.2.2.1:
Examples of isoparametric finite elements / 3.2.2.2:
On some global resolution scheme of the IBVP / 3.3:
Implicit static global resolution scheme / 3.3.1:
Newton-Raphson scheme for the solution of the fully coupled IBVP / 3.3.1.1:
On some convergence criteria / 3.3.1.2:
Calculation of the various terms of the tangent matrix / 3.3.1.3:
The purely mechanical consistent Jacobian matrix / 3.3.1.4:
Implicit global resolution scheme of the coupled IBVP / 3.3.1.5:
Dynamic explicit global resolution scheme / 3.3.2:
Solution of the mechanical problem / 3.3.2.1:
Solution of thermal (parabolic) problem / 3.3.2.2:
Solution of micromorphic damage problem / 3.3.2.3:
Sequential scheme of explicit global resolution of the IBVP / 3.3.2.4:
Numerical handling of contact-friction conditions / 3.3.3:
Lagrange multiplier method / 3.3.3.1:
Penalty method / 3.3.3.2:
On the search for contact nodes / 3.3.3.3:
On the numerical handling of the incompressibility condition / 3.3.3.4:
Local integration scheme: state variables computation / 3.4:
On numerical integration using the Gauss method / 3.4.1:
Local integration of constitutive equations: computation of the stress tensor and the state variables / 3.4.2:
On the numerical integration of first-order ODEs / 3.4.2.1:
Choice of constitutive equations to integrate / 3.4.2.2:
Integration of time-independent plastic constitutive equations: the case of a von Mises isotropic yield criterion / 3.4.2.3:
Integration of time-independent plastic constitutive equations: the case of a Hill quadratic anisotropic yield criterion / 3.4.2.4:
Integration of the constitutive equation in the case of viscoplastic flow / 3.4.2.5:
Calculation of the rotation tensor: incremental objectivity / 3.4.2.6:
Remarks on the integration of the micromorphic damage equation / 3.4.2.7:
On the local integration of friction equations / 3.4.3:
Adaptive analysis of damageable elasto-inelastic structures / 3.5:
Adaptation of time steps / 3.5.1:
Adaptation of spatial discretization or mesh adaptation / 3.5.2:
On other spatial discretization methods / 3.6:
An outline of non-mesh methods / 3.6.1:
On the FEM-meshless methods coupling / 3.6.2:
Application to Virtual Metal Forming / Chapter 4:
Why use virtual metal forming? / 4.1:
Model identification methodology / 4.2:
Parametrical study of specific models / 4.2.1:
Choosing typical constitutive equations / 4.2.1.1:
Isothermal uniaxial tension (compression) load without damage / 4.2.1.2:
Accounting for ductile damage effect / 4.2.1.3:
Accounting for initial anisotropy in inelastic flow / 4.2.1.4:
Identification methodologies / 4.2.2:
Some general remarks on the issue of identification / 4.2.2.1:
Recommended identification methodology / 4.2.2.2:
Illustration of the identification methodology / 4.2.2.3:
Using a nonlocal model / 4.2.2.4:
Some applications / 4.3:
Sheet metal forming / 4.3.1:
Some deep drawing processes of thin sheets / 4.3.1.1:
Some hydro-bulging test of thin sheets and tubes / 4.3.1.2:
Cutting processes of thin sheets / 4.3.1.3:
Bulk metal forming processes / 4.3.2:
Classical bulk metal forming processes / 4.3.2.1:
Bulk metal forming processes under severe conditions / 4.3.2.2:
Toward the optimization of forming and machining processes / 4.4:
Appendix: Legendre-Fenchel Transformation
Bibliography
Index
Preface
Principle of Mathematical Notations
Elements of Continuum Mechanics and Thermodynamics / Chapter 1:
7.

電子ブック

EB
Mengfei; Hua, Gengxin; Feng, Yanjun; Gong, Jian; Yang, Mengfei Yang, Yanjun Feng, Jian Gong, Gengxin Hua, Mengfei Yang
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Incorporated, 2017
所蔵情報: loading…
目次情報: 続きを見る
Brief Introduction
Preface
Introduction / 1:
Fundamental Concepts and Principles of Fault-tolerance Techniques / 1.1:
Fundamental Concepts / 1.1.1:
Reliability Principles / 1.1.2:
Reliability Metrics / 1.1.2.1:
Reliability Model / 1.1.2.2:
The Space Environment and Its Hazards for the Spacecraft Control Computer / 1.2:
Introduction to Space Environment / 1.2.1:
Solar Radiation / 1.2.1.1:
Galactic Cosmic Rays (GCRs) / 1.2.1.2:
Van Allen Radiation Belt / 1.2.1.3:
Secondary Radiation / 1.2.1.4:
Space Surface Charging and Internal Charging / 1.2.1.5:
Summary of Radiation Environment / 1.2.1.6:
Other Space Environments / 1.2.1.7:
Analysis of Damage Caused by the Space Environment / 1.2.2:
Total Ionization Dose (TID) / 1.2.2.1:
Single Event Effect (SEE) / 1.2.2.2:
Internal/surface Charging Damage Effect / 1.2.2.3:
Displacement Damage Effect / 1.2.2.4:
Other Damage Effect / 1.2.2.5:
Development Status and Prospects of Fault Tolerance Techniques / 1.3:
References
Fault-Tolerance Architectures and Key Techniques / 2:
Fault-tolerance Architecture / 2.1:
Module-level Redundancy Structures / 2.1.1:
Backup Fault-tolerance Structures / 2.1.2:
Cold-backup Fault-tolerance Structures / 2.1.2.1:
Hot-backup Fault-tolerance Structures / 2.1.2.2:
Triple-modular Redundancy (TMR) Fault-tolerance Structures / 2.1.3:
Other Fault-tolerance Structures / 2.1.4:
Synchronization Techniques / 2.2:
Clock Synchronization System / 2.2.1:
Basic Concepts and Fault Modes of the Clock Synchronization System / 2.2.1.1:
Clock Synchronization Algorithm / 2.2.1.2:
System Synchronization Method / 2.2.2:
The Real-time Multi-computer System Synchronization Method / 2.2.2.1:
System Synchronization Method with Interruption / 2.2.2.2:
Fault-tolerance Design with Hardware Redundancy / 2.3:
Universal Logic Model and Flow in Redundancy Design / 2.3.1:
Scheme Argumentation of Redundancy / 2.3.2:
Determination of Redundancy Scheme / 2.3.2.1:
Rules Obeyed in the Scheme Argumentation of Redundancy / 2.3.2.2:
Redundancy Design and Implementation / 2.3.3:
Basic Requirements / 2.3.3.1:
FDMU-Design / 2.3.3.2:
CSSU Design / 2.3.3.3:
IPU Design / 2.3.3.4:
Power Supply Isolation Protection / 2.3.3.5:
Testability Design / 2.3.3.6:
Others / 2.3.3.7:
Validation of Redundancy by Analysis / 2.3.4:
Hardware FMEA / 2.3.4.1:
Redundancy Switching Analysis (RSA) / 2.3.4.2:
Analysis of the Common Cause of Failure / 2.3.4.3:
Reliability Analysis and Checking of the Redundancy Power / 2.3.4.4:
Analysis of the Sneak Circuit in the Redundancy Management Circuit / 2.3.4.5:
Validation of Redundancy by Testing / 2.3.5:
Testing by Failure Injection / 2.3.5.1:
Specific Test for the Power of the Redundancy Circuit / 2.3.5.2:
Other Things to Note / 2.3.5.3:
Fault Detection Techniques / 3:
Fault Model / 3.1:
Fault Model Classified by Time / 3.1.1:
Fault Model Classified by Space / 3.1.2:
Fault Detection Methods for CPLTs / 3.2:
Fault Detection Methods Used for CPUs / 3.2.2.1:
Example of CPU Fault Detection / 3.2.2.2:
Fault Detection Methods for Memory / 3.2.3:
Fault Detection Method for ROM / 3.2.3.1:
Fault Detection Methods for RAM / 3.2.3.2:
Fault Detection Methods for I/Os / 3.2.4:
Bus Techniques / 4:
Introduction to Space-borne Bus / 4.1:
Fundamental Terminologies / 44.1:
The MIL-STD-1553B Bus / 4.2:
Fault Model of the Bus System / 4.21:
Bus-level Faults / 4.2.1.1:
Terminal Level Faults / 4.2.1.2:
Redundancy Fault-tolerance Mechanism of the Bus System / 4.2.2:
The Bus-level Fault-tolerance Mechanism / 4.2.2.1:
The Bus Controller Fault- tolerance Mechanism / 4.2.2.2:
Fault-tolerance Mechanism of Remote Terminals / 4.2.2.3:
The CAN Bus / 4.3:
The Bus Protocol / 4.3.1:
Physical Layer Protocol and Fault-tolerance / 4.3.2:
Node Structure / 4.3.2.1:
Bus Voltage / 4.3.2.2:
Transceiver and Controller / 4.3.2.3:
Physical Fault-tolerant Features / 4.3.2.4:
Data Link Layer Protocol and Fault-tolerance / 4.3.3:
Communication Process / 4.3.34:
Message Sending / 4.3.3.2:
The President Mechanism of Bus Access / 4.3.3.3:
Coding / 4.3.3.4:
Data Frame / 4.3.3.5:
Error Detection / 4.3.3.6:
The Space-Wire Bus / 4.4:
Connector / 4.4.1:
Cable / 4.4.1.2:
Low Voltage Differential Signal / 4.4.1.3:
Data Filter (DS) Coding / 4.4.1.4:
Packet Character / 4.4.2:
Packet Parity Check Strategy / 4.4.2.2:
Packet Structure / 4.4.2.3:
Communication Link Control / 4.4.2.4:
Networking and Routing / 4.4.3:
Major Technique used by the SpaceWire Network / 4.4.3.1:
SpaceWire Router / 4.4.3.2:
Fault-tolerance Mechanism / 4.4.4:
Other Buses / 4.5:
The IEEE 1394 Bus / 4.5.1:
Ethernet / 4.5.2:
The I2C Bus / 4.5.3:
Software Fault-Tolerance Techniques / 5:
Software Fault-tolerance Concepts and Principles / 5.1:
Software Faults / 5.1.1:
Software Fault-tolerance / 5.1.2:
Software Fault Detection and Voting / 5.1.3:
Software Fault Isolation / 5.1.4:
Software Fault Recovery / 5.1.5:
Classification of Software Fault-tolerance Techniques / 5.1.6:
Single-version Software Fault-tolerance Techniques / 5.2:
Checkpoint and Restart / 5.2.1:
Software-implemented Hardware Fault-tolerance / 5.2.2:
Control Flow Checking by Software Signatures (CFCSS) / 5.2.2.1:
Error Detection by Duplicated Instructions (EDDI) / 5.2.2.2:
Software Crash Trap / 5.2.3:
Multiple-version Software Fault-tolerance Techniques / 5.3:
Recovery Blocks (RcB) / 5.3.1:
N-version Programming (NVP) / 5.3.2:
Distributed Recovery Blocks (DRB) / 5.3.3:
N Self-checking Programming (NSCP) / 5.3.4:
Consensus Recovery Block (CRB) / 5.3.5:
Acceptance Voting (AV) / 5.3.6:
Advantage and Disadvantage of Multiple-version Software / 5.3.7:
Data Diversity Based Software Fault-tolerance Techniques / 5.4:
Data Re-expression Algorithm (DRA) / 5.4.1:
Retry Blocks (RtB) / 5.4.2:
N copy Programming (NCP) / 5.4.3:
Two-pass Adjudicators (TPA) / 5.4.4:
Fault-Tolerance Techniques for FPGA / 6:
Effect of the Space Environment on FPGAs / 6.1:
Single Event Transient Effect (SET) / 6.1.1:
Single Event Upset (SEU) / 6.1.2:
Single Event Latch-up (SEL) / 6.1.3:
Single Event Burnout (SEB) / 6.1.4:
Single Event Gate Rupture (SEGR) / 6.1.5:
Single Event Functional Interrupt (SEFI) / 6.1.6:
Fault Modes of SRAM-based FPGAs / 6.2:
Structure of a SRAM-based FPGA / 6.2.1:
Faults Classification and Fault Modes Analysis of SRAM-based FPGAs / 6.2.2:
Faults Classification / 6.2.2.1:
Fault Modes Analysis / 6.2.2.2:
Fault-tolerance Techniques for SRAM-based FPGAs / 6.3:
SRAM-based FPGA Mitigation Techniques / 6.3.1:
The Triple Modular Redundancy (TMR) Design Technique / 6.3.1.1:
The Inside RAM Protection Technique / 6.3.1.2:
The Inside Register Protection Technique / 6.3.1.3:
EDAC Encoding and Decoding Technique / 6.3.1.4:
Fault Detection Technique Based on DMR and Fault Isolation Technique Based on Tristate Gate / 6.3.1.5:
SRAM-based FPGA Reconfiguration Techniques / 6.3.2:
Single Fault Detection and Recovery Technique Based on ICAP+FrameECC / 6.3.2.1:
Multi-fault Detection and Recovery Technique Based on ICAP Configuration Read-back+RS Coding / 6.3.2.2:
Dynamic Reconfiguration Technique Based on EAPR / 6.3.2.3:
Fault Recovery Technique Based on Hardware Checkpoint / 6.3.2.4:
Summary of Reconfiguration Fault-tolerance Techniques / 6.3.2.5:
Typical Fault-tolerance Design of SRAM-based FPGA / 6.4:
Fault-tolerance Techniques of Anti-fuse Based FPGA / 6.5:
Fault-Injection Techniques / 7:
Basic Concepts / 7.1:
Experimenter / 7.1.1:
Establishing the Fault Model / 7.1.2:
Conducting Fault-injection / 7.1.3:
Target System for Fault-injection / 7.1.4:
Observing the System's Behavior / 7.1.5:
Analyzing Experimental Findings / 7.1.6:
Classification of Fault-injection Techniques / 7.2:
Simulated Fault-injection / 7.2.1:
Transistor Switch Level Simulated Fault-injection / 7.2.1.1:
Logic Level Simulated Fault-injection / 7.2.1.2:
Functional Level Simulated Fault-injection / 7.2.1.3:
Hardware Fault-injection / 7.2.2:
Software Fault-injection / 7.2.3:
Injection During Compiling / 7.2.3.1:
Injection During Operation / 7.2.3.2:
Physical Fault-injection / 7.2.4:
Mixed Fault-injection / 7.2.5:
Fault-injection System Evaluation and Application / 7.3:
Injection Controllability / 7.3.1:
Injection Observability / 7.3.2:
Injection Validity / 7.3.3:
Fault-injection Application / 7.3.4:
Verifying the Fault Detection Mechanism / 7.3.4.1:
Fault Effect Domain Analysis / 7.3.4.2:
Fault Restoration / 7.3.4.3:
Coverage Estimation / 7.3.4.4:
'Delay Time / 7.3.4.5:
Generating Fault Dictionary / 7.3.4.6:
Software Testing / 7.3.4.7:
Fault-injection Platform and Tools / 7.4:
Fault-injection Platform in Electronic Design Automation (EDA) Environment / 7.4.1:
Computer Bus-based Fault-injection Platform / 7.4.2:
Serial Accelerator Based Fault-injection Case / 7.4.3:
Future Development of Fault-injection Technology / 7.4.4:
Intelligent Fault-Tolerance Techniques / 8:
Evolvable Hardware Fault-tolerance / 8.1:
Fundamental Concepts and Principles / 8.1.1:
Evolutionary Algorithm / 8.1.2:
Encoding Methods / 8.1.2.1:
Fitness Function Designing / 8.1.2.2:
Genetic Operators / 8.1.2.3:
Convergence of Genetic Algorithm / 8.1.2.4:
Programmable Devices / 8.1.3:
ROM / 8.1.3.1:
PAL and GAL / 8.1.3.2:
FPGA / 8.1.3.3:
VRC / 8.1.3.4:
Evolvable Hardware Fault-tolerance Implementation Methods / 8.1.4:
Modeling and Organization of Hardware Evolutionary Systems / 8.1.4.1:
Reconfiguration and Its Classification / 8.1.4.2:
Evolutionary Fault-tolerance Architectures and Methods / 8.1.4.3:
Evolutionary Fault-tolerance Methods at Various Layers of the Hardware / 8.1.4.4:
Method Example / 8.1.4.5:
Artificial Immune Hardware Fault-tolerance / 8.2:
Biological Immune System and its Mechanism / 8.2.1:
Adaptive Immunity / 8.2.1.2:
Artificial Immune Systems / 8.2.1.3:
Fault-tolerance Principle of Immune Systems / 8.2.1.4:
Fault-tolerance Methods with Artificial Immune System / 8.2.2:
Artificial Immune Fault-tolerance System Architecture / 8.2.2.1:
Immune Object / 8.2.2.2:
Immune Control System / 8.2.2.3:
Working Process of Artificial Immune Fault-tolerance System / 8.2.2.4:
Implementation of Artificial Immune Fault-tolerance / 8.2.3:
Hardware / 8.2.3.1:
Software / 8.2.3.2:
Acronyms
Index
Brief Introduction
Preface
Introduction / 1:
8.

電子ブック

EB
Rene Van den Braembussche
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2019
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
List of Symbols
Introduction / 1:
Application of Centrifugal Compressors / 1.1:
Achievable Efficiency / 1.2:
Diabatic Flows / 1.3:
Transformation of Energy in Radial Compressors / 1.4:
Performance Map / 1.5:
Theoretical Performance Curve / 1.5.1:
Finite Number of Blades / 1.5.2:
Real Performance Curve / 1.5.3:
Degree of Reaction / 1.6:
Operating Conditions / 1.7:
Compressor Inlets / 2:
Inlet Guide Vanes / 2.1:
Influence of Prerotation on Pressure Ratio / 2.1.1:
Design of IGVs / 2.1.2:
The Inducer / 2.2:
Calculation of the Inlet / 2.2.1:
Determination of the Inducer Shroud Radius / 2.2.1.1:
Optimum Incidence Angle / 2.2.2:
Inducer Choking Mass Flow / 2.2.3:
Radial Impeller Flow Calculation / 3:
Inviscid Impeller Flow Calculation / 3.1:
Meridional Velocity Calculation / 3.1.1:
Blade to Blade Velocity Calculation / 3.1.2:
Optimal Velocity Distribution / 3.1.3:
3D Impeller Flow / 3.2:
3D Inviscid Flow / 3.2.1:
Boundary Layers / 3.2.2:
Secondary Flows / 3.2.3:
Shrouded-unshrouded / 3.2.3.1:
Full 3D Geometries / 3.2.4:
Performance Predictions / 3.3:
Flow in Divergent Channels / 3.3.1:
Impeller Diffusion Model / 3.3.2:
Two-zone Flow Model / 3.3.3:
Calculation of Average Flow Conditions / 3.3.4:
Influence of the Wake/let Velocity Ratio v on Impeller Performance / 3.3.5:
Slip Factor / 3.4:
Disk Friction / 3.5:
The Diffuser / 4:
Vaneless Diffusers / 4.1:
One-dimensional Calculation / 4.1.1:
Circumferential Distortion / 4.1.2:
Three-dimensional Flow Calculation / 4.1.3:
Vaned Diffusers / 4.2:
Curved Vane Diffusers / 4.2.1:
Channel Diffusers / 4.2.2:
The Vaneless and Semi-vaneless Space / 4.2.3:
The Diffuser Channel / 4.2.4:
Detailed Geometry Design / 5:
Inverse Design Methods / 5.1:
Analytical Inverse Design Methods / 5.1.1:
Inverse Design by CFD / 5.1.2:
Optimization Systems / 5.2:
Parameterized Definition of the Impeller Geometry / 5.2.1:
Search Mechanisms / 5.2.2:
Gradient Methods / 5.2.2.1:
Zero-order Search Mechanisms / 5.2.2.2:
Evolutionary Methods / 5.2.2.3:
Metamodel Assisted Optimization / 5.2.3:
Muitiobjective and Constraint Optimization / 5.2.4:
Muitiobjective Ranking / 5.2.4.1:
Constraints / 5.2.4.2:
Muitiobjective Design of Centrifugal Impellers / 5.2.4.3:
Multipoint Optimization / 5.2.5:
Design of a Low Solidity Diffuser / 5.2.5.1:
Multipoint Impeller Design / 5.2.5.2:
Robust Optimization / 5.2.6:
Volutes / 6:
Inlet Volutes / 6.1:
Inlet Bends / 6.1.1:
Vaned Inlet Volutes / 6.1.2:
Tangential Inlet Volute / 6.1.4:
Outlet Volutes / 6.2:
Volute Flow Model / 6.2.1:
Main Geometrical Parameters / 6.2.2:
Detailed 3D Flow Structure in Volutes / 6.2.3:
Design Mass Flow Operation / 6.2.3.1:
Lower than Design Mass Flow / 6.2.3.2:
Higher than Design Mass Flow / 6.2.3.3:
Central Elliptic Volutes / 6.2.4:
High Mass Flow Measurements / 6.2.4.1:
Medium and Low Mass Flow Measurements / 6.2.4.2:
Volute Outlet Measurements / 6.2.4.3:
Internal Rectangular Volutes / 6.2.5:
Medium Mass Flow Measurements / 6.2.5.1:
Low Mass Flow Measurements / 6.2.5.3:
Volute Cross Sectional Shape / 6.2.6:
Volute Performance / 6.2.7:
Experimental Results / 6.2.7.1:
Detailed Evaluation of Volute Loss Model / 6.2.7.2:
3D analysis of Volute Flow / 6.2.8:
Volute-diffuser Optimization / 6.3:
Non-axisymmetric Diffuser / 6.3.1:
Increased Diffuser Exit Width / 6.3.2:
Impeller Response to Outlet Distortion / 7:
Experimental Observations / 7.1:
Theoretical Predictions / 7.2:
1D Model / 7.2.1:
CFD- Mixing Plane Approach / 7.2.2:
3D Unsteady Flow Calculations / 7.2.3:
Impeller with 20 Full Blades / 7.2.3.1:
Impeller with Splitter Vanes / 7.2.3.2:
Inlet and Outlet Flow Distortion / 7.2.4:
Parametric Study / 7.2.4.1:
Frozen Rotor Approach / 7.2.5:
Radial Forces / 7.3:
Computation of Radial Forces / 7.3.1:
Off-design Performance Prediction / 7.4:
Impeller Response Model / 7.4.1:
Diffuser Response Model / 7.4.2:
Volute Flow Calculation / 7.4.3:
Impeller Outlet Pressure Distribution / 7.4.4:
Evaluation and Conclusion / 7.4.5:
Stability and Range / 8:
Distinction Between Different Types of Rotating Stall / 8.1:
Vaneless Diffuser Rotating Stall / 8.2:
Theoretical Stability Calculation / 8.2.1:
Comparison with Experiments / 8.2.2:
Influence of the Diffuser Inlet Shape and Pinching / 8.2.3:
Abrupt Impeller Rotating Stall / 8.3:
Theoretical Prediction Models / 8.3.1:
Comparison with Experimental Results / 8.3.2:
Progressive Impeller Rotating Stall / 8.4:
Vaned Diffuser Rotating Stall / 8.4.1:
Return Channel Rotating Stall / 8.5.1:
Surge / 8.6:
Lumped Parameter Surge Model / 8.6.1:
Mild Versus Deep Surge / 8.6.2:
An Alternative Surge Prediction Model / 8.6.3:
Operating Range / 9:
Active Surge Control / 9.1:
Throttle Valve Control / 9.1.1:
Variable Plenum Control / 9.1.2:
Active Magnetic Bearings / 9.1.3:
Close-coupled Resistance / 9.1.4:
Bypass Valves / 9.2:
Increased Impeller Stability / 9.3:
Dual Entry Compressors / 9.3.1:
Casing Treatment / 9.3.2:
Enhanced Vaned Diffuser Stability / 9.4:
Impeller-diffuser Matching / 9.5:
Enhanced Vaneless Diffuser Stability / 9.6:
Low Solidity Vaned Diffusers / 9.6.1:
Half-height Vanes / 9.6.2:
Rotating Vaneless Diffusers / 9.6.3:
Bibliography
Index
Preface
Acknowledgements
List of Symbols
9.

電子ブック

EB
Christian Rockenhäuser
出版情報: SpringerLink Books - AutoHoldings , Springer Fachmedien Wiesbaden, 2015
所蔵情報: loading…
10.

電子ブック

EB
Roland Scheer, Hans-Werner Schock
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2011
所蔵情報: loading…
目次情報: 続きを見る
Preface
Symbols and Acronyms
Introduction / 1:
History of Cu(In,Ga)(S,Se)2 Solar Cells / 1.1:
Milestones of Cu(In,Ga)(S,Se)2 Development / 1.1.1:
History of CdTe Solar Cells / 1.2:
Milestones of CdTe Development / 1.2.1:
Prospects of Chalcogenide Photovoltaics / 1.3:
Thin Film Heterostructures / 2:
Energies and Potentials / 2.1:
Charge Densities and Fluxes / 2.2:
Energy Band Diagrams / 2.3:
Rules and Conventions / 2.3.1:
Absorber/Window / 2.3.2:
Absorber/Buffer/Window / 2.3.3:
Interface States / 2.3.4:
Interface Dipoles / 2.3.5:
Deep Bulk States / 2.3.6:
Bandgap Gradients / 2.3.7:
Diode Currents / 2.4:
Superposition Principle and Shifting Approximation / 2.4.1:
Regions of Recombination / 2.4.2:
Radiative Recombination / 2.4.3:
Auger Recombination / 2.4.4:
Defect Related Recombination / 2.4.5:
SCR Recombination / 2.4.5.1:
QNR Recombination / 2.4.5.2:
Back Surface Recombination / 2.4.5.3:
Interface Recombination / 2.4.5.4:
Parallel Processes / 2.4.6:
SCR and QNR Recombination / 2.4.6.1:
SCR and IF Recombination / 2.4.6.2:
Barriers for Diode Current / 2.4.7:
Bias Dependence / 2.4.8:
Non-Homogeneities / 2.4.9:
Light Generated Currents / 2.5:
Generation Currents / 2.5.1:
Generation Function / 2.5.2:
Photo Current / 2.5.3:
Collection Function / 2.5.4:
Absorber Quasi Neutral Region / 2.5.4.1:
QNR with Graded Bandgap / 2.5.4.2:
QNR with Back Surface Field / 2.5.4.3:
Absorber Space Charge Region / 2.5.4.4:
Buffer Layer / 2.5.4.5:
Simulating the Collection Function / 2.5.4.6:
Quantum Efficiency and Charge Collection Efficiency / 2.5.5:
Barriers for Photo Current / 2.5.6:
Voltage Dependence of Photo Current / 2.5.7:
Width of SCR / 2.5.7.1:
Photo Current Barriers / 2.5.7.2:
Device Analysis and Parameters / 2.6:
Equivalent Circuits / 2.6.1:
DC Equivalent Circuit / 2.6.1.1:
AC Equivalent Circuit / 2.6.1.2:
Module Equivalent Circuit / 2.6.1.3:
Current-Voltage Analysis / 2.6.2:
External Collection Efficiency / 2.6.2.1:
Diode Parameters / 2.6.2.2:
Open Circuit Voltage / 2.6.2.3:
Fill Factor / 2.6.2.4:
Capacitance-Voltage Analysis / 2.6.3:
Admittance Spectroscopy / 2.6.4:
Design Rules for Heterostructure Solar Cells and Modules / 3:
Absorber Bandgap / 3.1:
Band Alignment / 3.2:
Emitter Doping and Doping Ratio / 3.3:
Fermi Level Pinning / 3.4:
Absorber Doping / 3.5:
Absorber Thickness / 3.6:
Grain Boundaries / 3.7:
Back Contact Barrier / 3.8:
Buffer Thickness / 3.9:
Front Surface Gradient / 3.10:
Back Surface Gradients / 3.11:
Monolithic Series Interconnection / 3.12:
Thin Film Material Properties / 4:
AII-BVI Absorbers / 4.1:
Physico-Chemical Properties / 4.1.1:
Lattice Dynamics / 4.1.2:
Electronic Properties / 4.1.3:
Practical Doping Limits / 4.1.3.1:
Defect Spectroscopy / 4.1.3.2:
Minority Carrier Lifetime / 4.1.3.3:
Optical Properties / 4.1.4:
CdTe / 4.1.4.1:
Multinary Phases / 4.1.4.2:
Surface Properties / 4.1.5:
Properties of Grain Boundaries / 4.1.6:
AI-BIII-C2VI Absorbers / 4.2:
Ternary Phase Diagrams / 4.2.1:
Diffusion Coefficients / 4.2.1.2:
Single Point Defects / 4.2.2:
Defect Complexes / 4.2.3.2:
Carrier Mobility / 4.2.3.3:
Minority Carrier lifetime / 4.2.3.6:
Ternary Semiconductors / 4.2.4:
Multinary Semiconductors / 4.2.4.2:
Surface Composition / 4.2.5:
Surface Electronics / 4.2.5.2:
Buffer Layers / 4.2.6:
Window Layers / 4.4:
Low Resistance Windows / 4.4.1:
High Resistance Windows / 4.4.2:
Interfaces / 4.5:
Thin Film Technology / 5:
CdTe Cells and Modules / 5.1:
Substrates / 5.1.1:
Window Layers for CdTe Cells / 5.1.2:
Buffer Layers for CdTe Cells / 5.1.3:
CdTe Absorber Layer / 5.1.4:
Activation by Chlorine Treatment / 5.1.5:
Influence of Oxygen / 5.1.6:
Influence of Copper / 5.1.7:
Back Contact / 5.1.8:
Surface Modification / 5.1.8.1:
Primary and Secondary Contacts / 5.1.8.2:
Module Fabrication and Life Cycle Analysis / 5.1.9:
Cu(In,Ga)(S,Se)2 Cells and Modules / 5.2:
Back Contacts / 5.2.1:
Cu(In,Ga)(S,Se)2 Absorber Layers / 5.2.3:
Co-evaporation / 5.2.3.1:
Deposition Reaction / 5.2.3.2:
Sputtering / 5.2.3.3:
Epitaxy, Chemical Vapor Deposition, and Vapor Transport Processes / 5.2.3.4:
Influence of Sodium / 5.2.4:
Influence of Gallium / 5.2.5:
Influence of Sulfur / 5.2.6:
Buffer Layers of CIGS / 5.2.7:
Chemical Bath Deposited CdS / 5.2.8.1:
Alternative Buffer Layers / 5.2.8.2:
Window Layers of CIGS / 5.2.9:
Module Fabrication / 5.2.10:
Photovoltaic Properties of Standard Devices / 6:
CdTe Device Properties / 6.1:
Solar Cell Parameters / 6.1.1:
Collection Functions / 6.1.2:
Device Anomalies / 6.1.4:
Transient Effects and Metastability / 6.1.5:
Device Model / 6.1.6:
Stability / 6.1.7:
AI-BIII-C2VI Device Properties / 6.2:
Relaxed State / 6.2.1:
Models for Relaxed State / 6.2.4.2:
Red light Effect / 6.2.4.3:
Forward Bias Effect / 6.2.4.4:
Blue Light Effect / 6.2.4.5:
White Light Effect / 6.2.4.6:
Reverse Bias Effect / 6.2.4.7:
Models for Metastability / 6.2.4.8:
Implications for Module Testing / 6.2.4.9:
Appendix A: Frequently Observed Anomalies / 6.2.5:
JV Curves / 7.1:
Roll Over Effect / 7.1.1:
Crossover / 7.1.2:
Kink in Light JV Curve / 7.1.3:
Violation of Shifting Approximation / 7.1.4:
Reduced Jsc but High Voc / 7.2:
Reduced Voc but High Jsc / 7.2.2:
High Jsc but Low FF / 7.2.3:
Diode Parameter A > 2 / 7.3:
Activation Energy Ea < Eg,a / 7.3.2:
Diode Quality Factor Illumination Dependent / 7.3.3:
Diode Quality Factor Temperature-Dependent / 7.3.4:
Quantum Efficiency / 7.4:
High Jsc but Low EQE / 7.4.1:
Low Jsc but High EQE / 7.4.2:
Low Blue Response in IQE / 7.4.3:
Low Red Response in IQE / 7.4.4:
Quantum Efficiency Low at All Wavelengths / 7.4.5:
Apparent Quantum Efficiency / 7.4.6:
Transient Effects / 7.5:
Voc Time-Dependent with dVoc/dt > 0 / 7.5.1:
Voc Time-Dependent with dVoc/dt < 0 / 7.5.2:
Appendix B: Tables / 8:
References
Index
Preface
Symbols and Acronyms
Introduction / 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼