close
1.

図書

図書
Maxim Ryadnov
出版情報: Cambridge : RSC Publishing, c2009  ix, 238 p. ; 24 cm
シリーズ名: RSC nanoscience & nanotechnology ; no.7
所蔵情報: loading…
目次情報: 続きを見る
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
Starting Lowest / 1.3:
Picturing Biological / 1.4:
References
Recycling Hereditary / Chapter 2:
Coding Dual / 2.1:
Deoxyribonucleic / 2.1.1:
Building up in Two / 2.1.1.1:
Keeping in Shape / 2.1.1.2:
Priming Topological / 2.1.2:
Resequencing Basic / 2.1.2.1:
Choosing the Fittest / 2.1.2.1.1:
Evolving Diverse / 2.1.2.1.2:
Primary Motifs / 2.1.2.2:
Gluing Universal / 2.1.2.2.1:
Alienating Axial / 2.1.2.2.2:
Fixing Spatial / 2.2:
Hinting Geometric: Secondary Motifs / 2.2.1:
Crossing Double / 2.2.1.1:
Reporting Visible / 2.2.1.1.1:
Translating Symmetrical / 2.2.1.1.2:
Extending Cohesive / 2.2.1.2:
Sharing Mutual / 2.2.1.2.1:
Multiplying Traversal / 2.2.1.2.2:
Tiling Square / 2.2.1.2.3:
Scaffolding Algorithmic / 2.3:
Pursuing Autonomous / 2.3.1:
Lengthening to Shorten / 2.3.1.1:
Gathering to Limit / 2.3.1.2:
Assigning Arbitrary / 2.3.2:
Synchronising Local / 2.3.2.1:
Prescribing General / 2.3.2.2:
Adding up to Third / 2.3.3:
Wrapping to Shut / 2.3.3.1:
Framing to Classify / 2.3.3.2:
Outlook / 2.4:
Recaging Within / Chapter 3:
Enclosing to Deliver / 3.1:
Transporting Foreign / 3.1.1:
Fitting Flat and Straight / 3.1.1.1:
Spiralling Along / 3.1.1.2:
Packing Out and In / 3.1.2:
Spooling Around / 3.1.2.1:
Tunnelling Through
Escaping Walled / 3.1.3:
Capturing On and Off / 3.1.3.1:
Storing Exchangeable / 3.1.3.2:
Reacting Nano / 3.2:
Clustering Spherical / 3.2.1:
Contriving Consistent / 3.2.1.1:
Scaling Hosting / 3.2.1.2:
Following Linear / 3.2.2:
Channelling Inner
Converting Outer
Repairing from Inside / 3.3:
Uninviting Levy / 3.3.1:
Necessitating Exterior / 3.3.2:
Antagonising Dressing / 3.3.2.1:
Renting Occasional / 3.3.2.1.2:
Phasing West / 3.3.2.2:
Facing Concentric / 3.3.2.2.1:
Encircling Between / 3.3.2.2.2:
Singling Out Unique / 3.3.2.2.3:
Sharing the Balance / 3.3.3:
Driving Symmetrical / 3.3.3.1:
Sealing Annular / 3.3.3.2:
Reassembling Multiple / 3.4:
Keeping All in Touch / 4.1:
Unravelling the Essential / 4.1.1:
Winding Three in One / 4.1.1.1:
Aligning Stagger / 4.1.1.2:
Tapering Polar / 4.1.1.3:
Branching and Stretching / 4.1.1.4:
Replicating Apparent / 4.1.2:
Scraping Refusal / 4.1.2.1:
Tempting Compatible / 4.1.2.2:
Likening Synthetic / 4.1.2.3:
Recovering Intelligent / 4.1.2.4:
Restoring Available / 4.2:
Prompting Longitudinal / 4.2.1:
Invoking Granted / 4.2.1.1:
Reposing Modular / 4.3:
Displacing Coil / 4.3.1:
Settling Lateral / 4.3.2:
Bundling Exclusive / 4.3.2.1:
Permitting Distinctive / 4.3.2.2:
Inviting Captive / 4.3.2.3:
Clearing Limiting / 4.3.3:
Equilibrating Transitional / 4.3.3.1:
Extracting Minimal / 4.3.3.2:
Gambling Beyond / 4.4:
Guiding Proliferative / 4.4.1:
Feeding Proximate / 4.4.1.1:
Rooting Renewal / 4.4.1.2:
Accepting Inescapable / 4.4.2:
Patterning Positional / 4.4.2.1:
Relating Interfacial / 4.4.2.2:
Grafting Integral / 4.4.2.3:
Concluding Remarks / 4.5:
Learning Fluent / 5.1:
Parsing Semantic / 5.2:
Drawing Pragmatic / 5.3:
Revealing Contributory / Chapter 6:
Subject Index
Introductory Notes / Chapter 1:
Inspiring Hierarchical / 1.1:
Encoding Instructive / 1.2:
2.

図書

図書
Hans Bisswanger
出版情報: Weinheim : WILEY-VCH, c2008  xviii, 301 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
Introduction and Definitions
References
Multiple Equilibria / 1:
Diffusion / 1.1:
Interaction between Macromolecules and Ligands / 1.2:
Binding Constants / 1.2.1:
Macromolecules with One Binding Site / 1.2.2:
Macromolecules with Identical Independent Binding Sites / 1.3:
General Binding Equation / 1.3.1:
Graphic Representations of the Binding Equation / 1.3.2:
Direct and Linear Diagrams / 1.3.2.1:
Analysis of Binding Data from Spectroscopic Titrations / 1.3.2.2:
Binding of Different Ligands, Competition / 1.3.3:
Non-competitive Binding / 1.3.4:
Macromolecules with Non-identical, Independent Binding Sites / 1.4:
Macromolecules with Identical, Interacting Binding Sites, Cooperativity / 1.5:
The Hill Equation / 1.5.1:
The Adair Equation / 1.5.2:
The Pauling Model / 1.5.3:
Allosteric Enzymes / 1.5.4:
The Symmetry or Concerted Model / 1.5.5:
The Sequential Model and Negative Cooperativity / 1.5.6:
Analysis of Cooperativity / 1.5.7:
Physiological Aspects of Cooperativity / 1.5.8:
Examples of Allosteric Enzymes / 1.5.9:
Hemoglobin / 1.5.9.1:
Aspartate Transcarbamoylase / 1.5.9.2:
Aspartokinase / 1.5.9.3:
Phosphofructokinase / 1.5.9.4:
Allosteric Regulation of the Glycogen Metabolism / 1.5.9.5:
Membrane Bound Enzymes and Receptors / 1.5.9.6:
Non-identical, Interacting Binding Sites / 1.6:
Enzyme Kinetics / 2:
Reaction Order / 2.1:
First Order Reactions / 2.1.1:
Second Order Reactions / 2.1.2:
Zero Order Reactions / 2.1.3:
Steady-State Kinetics and the Michaelis-Menten Equation / 2.2:
Derivation of the Michaelis-Menten Equation / 2.2.1:
Analysis of Enzyme Kinetic Data / 2.3:
Graphical Representations of the Michaelis-Menten Equation / 2.3.1:
Direct and Semi-logarithmic Representations / 2.3.1.1:
Direct Linear Plots / 2.3.1.2:
Linearization Methods / 2.3.1.3:
Analysis of Progress Curves / 2.3.2:
Integrated Michaelis-Menten Equation / 2.3.2.1:
Determination of Reaction Rates / 2.3.2.2:
Graphic Methods for Rate Determination / 2.3.2.3:
Graphic Determination of True Initial Rates / 2.3.2.4:
Reversible Enzyme Reactions / 2.4:
Rate Equation for Reversible Enzyme Reactions / 2.4.1:
The Haldane Relationship / 2.4.2:
Product Inhibition / 2.4.3:
Enzyme Inhibition / 2.5:
Unspecific Enzyme Inhibition / 2.5.1:
Irreversible Enzyme Inhibition / 2.5.2:
General Features of Irreversible Enzyme Inhibition / 2.5.2.1:
Suicide Substrates / 2.5.2.2:
Transition State Analogs / 2.5.2.3:
Analysis of Irreversible Inhibitions / 2.5.2.4:
Reversible Enzyme Inhibition / 2.5.3:
General Rate Equation / 2.5.3.1:
Non-Competitive Inhibition and Graphic Representation of Inhibition Data / 2.5.3.2:
Competitive Inhibition / 2.5.3.3:
Uncompetitive Inhibition / 2.5.3.4:
Partially Non-competitive Inhibition / 2.5.3.5:
Partially Uncompetitive Inhibition / 2.5.3.6:
Partially Competitive Inhibition / 2.5.3.7:
Noncompetitive and Uncompetitive Product Inhibition / 2.5.3.8:
Substrate Inhibition / 2.5.3.9:
Enzyme Reactions with Two Competing Substrates / 2.5.4:
Different Enzymes Catalyzing the Same Reaction / 2.5.5:
Multi-substrate Reactions / 2.6:
Nomenclature / 2.6.1:
Random Mechanism / 2.6.2:
Ordered Mechanism / 2.6.3:
Ping-pong Mechanism / 2.6.4:
Product Inhibition in Multi-substrate Reactions / 2.6.5:
Haldane Relationships in Multi-substrate Reactions / 2.6.6:
Mechanisms with more than Two Substrates / 2.6.7:
Other Nomenclatures for Multi-substrate Reactions / 2.6.8:
Derivation of Rate Equations of Complex Enzyme Mechanisms / 2.7:
King-Altmann Method / 2.7.1:
Simplified Derivations Applying Graph Theory / 2.7.2:
Combination of Equilibrium and Steady State Approach / 2.7.3:
Kinetic Treatment of Allosteric Enzymes / 2.8:
Hysteretic Enzymes / 2.8.1:
Kinetic Cooperativity, the Slow Transition Model / 2.8.2:
pH and Temperature Dependence of Enzymes / 2.9:
pH Optimum and Determination of pK Values / 2.9.1:
pH Stability / 2.9.2:
Temperature Dependence / 2.9.3:
Isotope Exchange / 2.10:
Isotope Exchange Kinetics / 2.10.1:
Isotope Effects / 2.10.2:
Primary Kinetic Isotope Effect / 2.10.2.1:
Influence of the Kinetic Isotope Effect on V and Km / 2.10.2.2:
Other Isotope Effects / 2.10.2.3:
Special Enzyme Mechanisms / 2.11:
Ribozymes / 2.11.1:
Polymer Substrates / 2.11.2:
Kinetics of Immobilized Enzymes / 2.11.3:
External Diffusion Limitation / 2.11.3.1:
Internal Diffusion Limitation / 2.11.3.2:
Inhibition of Immobilized Enzymes / 2.11.3.3:
pH and Temperature Behavior of Immobilized Enzymes / 2.11.3.4:
Transport Processes / 2.11.4:
Enzyme Reactions at Membrane Interfaces / 2.11.5:
Application of Statistical Methods in Enzyme Kinetics / 2.12:
General Remarks / 2.12.1:
Statistical Terms Used in Enzyme Kinetics / 2.12.2:
Methods / 3:
Methods for Investigation of Multiple Equilibria / 3.1:
Equilibrium Dialysis and General Aspects of Binding Measurements / 3.1.1:
Equilibrium Dialysis / 3.1.1.1:
Control Experiments and Sources of Error / 3.1.1.2:
Continuous Equilibrium Dialysis / 3.1.1.3:
Ultrafiltration / 3.1.2:
Gel Filtration / 3.1.3:
Batch Method / 3.1.3.1:
The Method of Hummel and Dreyer / 3.1.3.2:
Other Gel Filtration Methods / 3.1.3.3:
Ultracentrifugation / 3.1.4:
Fixed Angle Ultracentrifugation Methods / 3.1.4.1:
Sucrose Gradient Centrifugation / 3.1.4.2:
Surface Plasmon Resonance / 3.1.5:
Electrochemical Methods / 3.2:
The Oxygen Electrode / 3.2.1:
The CO2 Electrode / 3.2.2:
Potentiometry, Redox Potentials / 3.2.3:
The pH-stat / 3.2.4:
Polarography / 3.2.5:
Calorimetry / 3.3:
Spectroscopic Methods / 3.4:
Absorption Spectroscopy / 3.4.1:
The Lambert-Beer Law / 3.4.1.1:
Spectral Properties of Enzymes and Ligands / 3.4.1.2:
Structure of Spectrophotometers / 3.4.1.3:
Double Beam Spectrophotometer / 3.4.1.4:
Difference Spectroscopy / 3.4.1.5:
The Dual Wavelength Spectrophotometer / 3.4.1.6:
Photochemical Action Spectra / 3.4.1.7:
Bioluminescence / 3.4.2:
Fluorescence / 3.4.3:
Quantum Yield / 3.4.3.1:
Structure of Spectrofluorimeters / 3.4.3.2:
Perturbations of Fluorescence Measurements / 3.4.3.3:
Fluorescent Compounds (Fluorophores) / 3.4.3.4:
Radiationless Energy Transfer / 3.4.3.5:
Fluorescence Polarization / 3.4.3.6:
Pulse Fluorimetry / 3.4.3.7:
Circular Dichroism and Optical Rotation Dispersion / 3.4.4:
Infrared and Raman Spectroscopy / 3.4.5:
IR Spectroscopy / 3.4.5.1:
Raman Spectroscopy / 3.4.5.2:
Applications / 3.4.5.3:
Electron Paramagnetic Resonance Spectroscopy / 3.4.6:
Measurement of Fast Reactions / 3.5:
Flow Methods / 3.5.1:
The Continuous Flow Method / 3.5.1.1:
The Stopped-flow Method / 3.5.1.2:
Measurement of Enzyme Reactions by Flow Methods / 3.5.1.3:
Determination of the Dead Time / 3.5.1.4:
Relaxation Methods / 3.5.2:
The Temperature Jump Method / 3.5.2.1:
The Pressure Jump Method / 3.5.2.2:
The Electric Field Method / 3.5.2.3:
Flash Photolysis, Pico- and Femto-second Spectroscopy / 3.5.3:
Evaluation of Rapid Kinetic Reactions (Transient Kinetics) / 3.5.4:
Subject Index
Preface to the Second English Edition
Preface to the First English Edition
Symbols and Abbreviations
3.

図書

図書
Alexander Mamishev, Sean Williams
出版情報: Hoboken, N.J. : John Wiley & Sons, c2010  xvii, 243 p. ; 24 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Introduction / Chapter 1:
In this Chapter / 1.1:
Our Audience / 1.2:
A few horror stories / 1.2.1:
Some history / 1.2.2:
The Need For a Good "Writing System" / 1.3:
Introducing Stream Tools / 1.4:
What is STREAM Tools? / 1.4.1:
Why use STREAM Tools? / 1.4.2:
The software of STREAM Tools / 1.4.3:
Recommended packages / 1.4.3.1:
A brief comparison of Microsoft Word vs. LaTeX: history and myths / 1.4.3.2:
How to Use this Book / 1.5:
Exercises / 1.6:
Quick Start Guide For Stream Tools / Chapter 2:
A General Overview of the Writing Process / 2.1:
Introduction to Writing Quality Tools: The Stream Tools Editorial Mark-Up Table / 2.3:
Introduction to Document Design Tools / 2.4:
Important fundamental concepts / 2.4.1:
Step 1: Use template files to create your new manuscripts / 2.4.1.1:
Step 2: Copy existing elements and paste them into a new location / 2.4.1.2:
Step 3: Edit the element / 2.4.1.3:
Step 4: Cross-referencing elements / 2.4.1.4:
Creating Elements in a Document / 2.4.2:
Headings / 2.4.2.1:
Equations / 2.4.2.2:
Figures / 2.4.2.3:
Tables / 2.4.2.4:
References (literature citations) / 2.4.2.5:
Introduction to File Management: Optimizing Your Workflow / 2.5:
General principles / 2.5.1:
Using a wiki for file management / 2.5.2:
Version control / 2.5.3:
Conclusions / 2.6:
Document Design / 2.7:
Creating Templates / 3.1:
How to create and cross-reference a heading template / 3.2.1:
How to alter a heading template / 3.2.1.2:
Common formatting mistakes in headings / 3.2.1.3:
Common stylistic mistakes for headings / 3.2.1.4:
Tips and tricks / 3.2.1.5:
How to create and cross-reference an equation template / 3.2.2:
How to alter an equation template / 3.2.2.2:
Common formatting mistakes for equations / 3.2.2.3:
Common stylistic mistakes for equations / 3.2.2.4:
How to create and cross-reference a figure template / 3.2.2.5:
How to alter a figure template / 3.2.3.2:
Common formatting mistakes in figures / 3.2.3.3:
Common stylistic mistakes in figures / 3.2.3.4:
Tips and tricks for figures / 3.2.3.5:
How to create and cross-reference a table template / 3.2.4:
How to alter a table template / 3.2.4.2:
Common typesetting mistakes / 3.2.4.3:
Common stylistic mistakes in tables / 3.2.4.4:
Tips and tricks for tables / 3.2.4.5:
Front matter / 3.2.5:
Controlling page numbers / 3.2.5.1:
Table of contents / 3.2.5.2:
Back matter / 3.2.6:
Appendices / 3.2.6.1:
Indices / 3.2.6.2:
Using Multiple Templates / 3.3:
Controlling styles / 3.3.1:
Switching between single-column and double-column formats / 3.3.2:
Master documents / 3.3.3:
Practice Problems / 3.4:
Additional Resources / 3.4.1:
Using Bibliographic Databases / 3.6:
Why Use a Bibliographic Database? / 4.1:
Choice of Software / 4.3:
Using Endnote / 4.4:
Setting up the interface / 4.4.1:
Adding references / 4.4.2:
Citing references / 4.4.3:
Sharing a Database / 4.5:
Numbering the database entries / 4.5.1:
Compatibility with BiBTeX / 4.5.2:
Formatting References / 4.6:
Planning, Drafting, and Editing Documents / 4.7:
Definition Stage / 5.1:
Select your team members / 5.2.1:
Hold a kick-off meeting / 5.2.2:
Analyze the audience / 5.2.3:
Formulate the purpose / 5.2.4:
Persuasion / 5.2.4.1:
Exposition / 5.2.4.2:
Instruction / 5.2.4.3:
Select the optimum combination of STREAM Tools / 5.2.5:
Preparation Stage / 5.3:
Evaluate historical documents / 5.3.1:
Journal articles / 5.3.1.1:
Proceedings/papers / 5.3.1.2:
Theses and dissertations / 5.3.1.3:
Proposals / 5.3.1.4:
Reports / 5.3.1.5:
Populate the file repository / 5.3.2:
Create a comprehensive outline of the document / 5.3.3:
Using deductive structures / 5.3.3.1:
Using Microsoft Word's Outline feature / 5.3.3.2:
Populate all sections with "yellow text" / 5.3.4:
Distribute writing tasks among team members / 5.3.5:
Choose a drafting strategy / 5.3.5.1:
Synchronize writing styles / 5.3.5.2:
Writing Stage / 5.4:
Enter content / 5.4.1:
Legacy content / 5.4.1.1:
New content / 5.4.1.2:
Control versions of shared files / 5.4.1.3:
Request that team members submit their drafts / 5.4.2:
Verify that each section is headed in the right direction / 5.4.3:
Construct the whole document / 5.4.4:
Revise for content and distribute additional writing tasks / 5.4.5:
Comprehensive editing / 5.4.5.1:
STREAM Tools Editorial Mark-up table (STEM Table) / 5.4.5.2:
Strategies for editing electronic copy using Microsoft Word--an overview of Microsoft Word's commenting, reviewing, and proofing features / 5.4.5.3:
Distribute additional writing tasks / 5.4.6:
Completion Stage / 5.5:
Copy edit the document / 5.5.1:
Send out for a final review of content and clarity / 5.5.2:
Proofread the document / 5.5.3:
Submit the document / 5.5.4:
Conduct the final process-improvement review session / 5.5.5:
Building High Quality Writing Teams / 5.6:
Understanding the Benefits and Challenges of Teamwork / 6.1:
The payoff of teamwork / 6.2.1:
Some principle challenges of teamwork / 6.2.2:
Identifying Team Goals and Assigning Member Roles / 6.3:
Define roles and procedures clearly / 6.3.1:
Define team roles / 6.3.1.1:
Define team procedures / 6.3.1.2:
Managing Teamwork at a Distance / 6.4:
Building trust in virtual teams / 6.4.1:
Demonstrating sensitivity to cultural differences / 6.4.2:
Selecting Communication Tools To Support Teamwork / 6.5:
Wikis / 6.5.1:
Creating a wiki / 6.5.1.1:
Editing / 6.5.1.2:
Organizing / 6.5.1.3:
Monitoring edits / 6.5.1.4:
Other suggestions for wiki use / 6.5.1.5:
SharePoint / 6.5.2:
Lists / 6.5.2.1:
Web pages / 6.5.2.2:
Alerts and site management / 6.5.2.3:
Assuring Quality Writing / 6.6:
Choosing the Best Words 278 / 7.1:
Choose strong words / 7.2.1:
Use strong nouns and verbs / 7.2.1.1:
Choose words with the right level of formality / 7.2.1.2:
Avoid weak words / 7.2.2:
Check for confusing or frequently misused words / 7.2.2.1:
Avoid double negatives, and change negatives to affirmatives / 7.2.2.2:
Avoid changing verbs to nouns / 7.2.2.3:
Delete meaningless words and modifiers / 7.2.2.4:
Steer clear of jargon / 7.2.2.5:
Avoid sexist or discriminatory language / 7.2.2.6:
Writing Strong Sentences / 7.3:
Write economically / 7.3.1:
Include a variety of sentence types / 7.3.2:
Avoiding Weak Sentence Construction / 7.4:
Comma splices / 7.4.1.1:
Fragments / 7.4.1.2:
Fused or run-on sentences / 7.4.1.3:
Misplaced, dangling, or two-way modifiers / 7.4.1.4:
Faulty parallelism / 7.4.1.5:
Punctuating For Clarity / 7.5:
End punctuation / 7.5.1:
Periods / 7.5.1.1:
Question marks / 7.5.1.2:
Exclamation points / 7.5.1.3:
Commas / 7.5.2:
Semicolons / 7.5.3:
Colons / 7.5.4:
Apostrophes / 7.5.5:
Dashes and hyphens / 7.5.6:
Final Considerations / 7.6:
Abbreviations and acronyms / 7.6.1:
Capitalization / 7.6.2:
Numbers / 7.6.3:
Dates / 7.6.4:
Fractions and percentages / 7.6.5:
Units of measure / 7.6.6:
A Final Note on Grammar / 7.7:
Concluding Remarks / 7.8:
Business Case / 8.1:
Frequently Asked Questions / 8.3:
Success Stories / 8.4:
Additional Reading / 8.5:
Useful books and articles / 8.5.1:
Useful weblinks / 8.5.2:
EXERCISES / 8.6:
Preface
Acknowledgments
Introduction / Chapter 1:
4.

図書

図書
by Henri Sauvageot
出版情報: Boston : Artech House, c1991  xii, 366 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
The Sensor / 1.2:
Noncoherent Pulse Radar / 1.2.1:
Pulsed Doppler Radar / 1.2.2:
Display of the Data / 1.2.3:
Sensitivity of the Receiver / 1.2.4:
Antenna / 1.2.5:
Resolution / 1.2.6:
Refraction / 1.2.7:
Attenuation / 1.2.8:
The Radar Equation: General Forms / 1.3:
Single Scatterer / 1.3.1:
Distributed Target / 1.3.2:
Calibration and Setting Up / 1.4:
Meteorological Signals / 1.5:
Meteorological Targets / 1.5.1:
Signal Statistics / 1.5.2:
Decorrelation Time: Independent Samples / 1.5.3:
Sample Time Averaging: Reducing the Variance of the Mean / 1.5.4:
Reducing the Integration Time / 1.5.5:
Detecting Weak Signals / 1.5.6:
Sampling and Demultiplexing / 1.5.7:
Hydrological Measurements / Chapter 2:
Clouds and Precipitation / 2.1:
Physical Processes of Formation / 2.2.1:
Hydrometeor Size Distributions: General Forms / 2.2.2:
Integral Parameters / 2.2.3:
Clouds / 2.2.4:
Precipitation / 2.2.5:
Terminal Fall Velocity of Hydrometeors / 2.2.6:
The Shape of Hydrometeors / 2.2.7:
Scattering and Attenuation Cross Sections / 2.3:
Homogeneous Spherical Particles / 2.3.1:
Nonhomogeneous Particles / 2.3.2:
Nonspherical Particles / 2.3.3:
Atmospheric Attenuation / 2.4:
Attenuation by Gases / 2.4.1:
Attenuation by Clouds / 2.4.2:
Attenuation by Precipitation / 2.4.3:
Backscattering by Clouds and Precipitation / 2.5:
Radar Reflectivity Factor / 2.5.1:
Z and X Relations / 2.5.2:
Polarization Measurements / 2.5.3:
Hail Precipitation Detection / 2.5.4:
Lightning Detection / 2.5.5:
Artifacts / 2.5.6:
Particular Meteorological Forms of the Radar Equation / 2.5.7:
Precipitation Measurements / 2.6:
Single-Wavelength Reflectivity / 2.6.1:
Radar and Rain Gauge / 2.6.3:
Single-Wavelength Attenuation Measurements / 2.6.4:
Dual-Wavelength a-R Method / 2.6.5:
Dual-Wavelength N(D) Method / 2.6.6:
Dual Polarization / 2.6.7:
Area Integral Methods for Convective Rainfall / 2.6.8:
Radar Networks / 2.7:
Short-Term Forecasting / 2.8:
Radars and Satellites / 2.9:
Technical Aspects / 2.9.1:
Estimation of Precipitation with Visible and Infrared Data / 2.9.2:
Rain Estimation by Passive Microwave Methods / 2.9.3:
Orbital Radars / 2.9.4:
Velocity Measurements / Chapter 3:
The Doppler Spectrum / 3.1:
Spectral Parameters / 3.1.1:
Discrete-Fourier Transform / 3.1.2:
Estimators of Spectral Moments / 3.1.3:
Factors Affecting the Width of the Doppler Spectrum / 3.1.4:
Ground Clutter Suppression / 3.1.5:
Doppler Spectra at Vertical Incidence / 3.2:
Size Distribution of Precipitation / 3.2.1:
Vertical Air Velocity / 3.2.2:
Measurement of the Velocity Fields with a Single Doppler Radar / 3.3:
Analysis of the Mean Field by the VAD Method / 3.3.1:
The VVP Method / 3.3.2:
Display of the Radial Velocity / 3.3.3:
Measurement of Turbulence / 3.4:
The Inertial Domain / 3.4.1:
Measurement of Rate of Dissipation of Turbulent Kinetic Energy / 3.4.2:
The Turbulence Field / 3.4.3:
Measurement of the Velocity Fields with Several Doppler Radars / 3.5:
Retrieval of the Thermodynamic and Microphysical Fields / 3.6:
Airborne Radar / 3.7:
Observation of Clear Air / Chapter 4:
Scattering of Electromagnetic Waves by a Turbulent Medium / 4.1:
General Relations / 4.2.1:
Reflectivity in the Inertial Domain / 4.2.2:
Relationship Between Radar Reflectivity and the Average Atmospheric Field / 4.2.3:
ST Radar / 4.3:
Influence of the Wavelength / 4.3.1:
Wind Measurements / 4.3.2:
Reflectivity / 4.3.3:
Networks of ST Radar / 4.3.4:
Rass / 4.4:
Insects / 4.5:
General Characteristics / 4.5.1:
Insects and Birds / 4.5.2:
Observations / 4.5.3:
Artificial Tracers / 4.6:
General Properties / 4.6.1:
Applications to Atmospheric Observation / 4.6.2:
Introduction to the Study of Some Meteorological Structures by Radar / Chapter 5:
Diversity of Meteorological Structures / 5.1:
Movements of the Atmosphere / 5.1.2:
The Area of Radar Application / 5.1.3:
Convection in the Planetary Boundary Layer / 5.2:
The Convective Boundary Layer / 5.2.1:
Observation of the Convective Field / 5.2.2:
The Aerobiological Field / 5.2.3:
Pollution and Plumes / 5.2.4:
Deep Convection and Thunderstorms / 5.3:
The Convective Cells / 5.3.1:
Convective Storm Structure / 5.3.2:
Squall Lines / 5.3.3:
Microbursts / 5.3.4:
Hail / 5.3.5:
Electrical Activity of Storms / 5.3.6:
Tornadoes and Vortexes / 5.4:
Identification of Vortexes by Radar / 5.4.1:
Application to Warning Systems / 5.4.3:
Extratropical Cyclone Disturbances and Stratiform Clouds / 5.5:
Structure of Extratropical Cyclone Disturbances / 5.5.1:
Stratiform Precipitation / 5.5.2:
Tropical Cyclones / 5.6:
Turbulent Stratifications and Shear Instability / 5.7:
Experimental Modification of Clouds and Precipitation / 5.8:
Bibliographical Note / Appendix 1:
Units and Symbols / Appendix 2:
List of Constants / Appendix 3:
Definitions and Various Numerical Values / Appendix 4:
References
Index
Preface
Basic Concepts of Radar / Chapter 1:
Introduction / 1.1:
5.

図書

図書
Edward Bellinger and David C. Sigee
出版情報: Chichester, West Sussex, UK ; Hoboken, N.J. : Wiley-Blackwell, 2010  viii, 271 p ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
Algae as primary producers / 1.1.2:
Freshwater environments / 1.1.3:
Planktonic and benthic algae / 1.1.4:
Size and shape / 1.1.5:
Taxonomic variation / 1.2:
Microscopical appearance / 1.2.1:
Biochemistry / 1.2.2:
Molecular characteristics and identification / 1.2.3:
Blue-green algae / 1.3:
Cytology / 1.3.1:
Morphological and taxonomic diversity / 1.3.2:
Ecology / 1.3.3:
Blue-green algae as bioindicators / 1.3.4:
Green algae / 1.4:
Morphological diversity / 1.4.1:
Green algae as bioindicators / 1.4.3:
Euglenoids / 1.5:
Euglenoids as bioindicators / 1.5.1:
Yellow-green algae / 1.6:
Yellow-green algae as bioindicators / 1.6.1:
Dinoflagellates / 1.7:
Cryptomonads / 1.7.1:
Comparison with euglenoid algae / 1.8.1:
Biodiversity / 1.8.3:
Cryptomonads as bioindicators / 1.8.4:
Chrysophytes / 1.9:
Chrysophytes as bioindicators / 1.9.1:
Diatoms / 1.10:
Diatoms as bioindicators / 1.10.1:
Red algae / 1.11:
Brown algae / 1.12:
Sampling, biomass estimation and counts of freshwater algae A Planktonic algae / 2:
Protocol for collection / 2.1:
Standing water phytoplankton / 2.1.1:
River phytoplankton
Mode of collection / 2.2:
Phytoplankton trawl net / 2.2.1:
Volume samplers / 2.2.2:
Integrated sampling / 2.2.3:
Sediment traps / 2.2.4:
Phytoplankton biomass / 2.3:
Turbidity / 2.3.1:
Dry weight and ash-free dry weight / 2.3.2:
Pigment concentrations / 2.3.3:
Flow cytometry / 2.4:
Microscope counts of species populations / 2.5:
Sample preservation and processing / 2.5.1:
Species counts / 2.5.2:
Conversion of species counts to biovolumes / 2.5.3:
Chemical cleaning of diatoms / 2.5.4:
Diversity within species populations / 2.6:
Molecular analysis / 2.6.1:
Analytical microscopical techniques B Non-planktonic algae / 2.6.2:
Deep water benthic algae / 2.7:
Benthic-pelagic coupling / 2.7.1:
Benthic algae and sediment stability / 2.7.2:
Invertebrate grazing of benthic algae / 2.7.3:
Shallow water communities / 2.8:
Substrate / 2.8.1:
Algal communities / 2.8.2:
Algal biofilms / 2.9:
Mucialginous biofilms / 2.9.1:
Biomass / 2.9.2:
Taxonomic composition / 2.9.3:
Matrix structure / 2.9.4:
Periphyton? algal mats / 2.10:
Inorganic substratum / 2.10.1:
Plant surfaces / 2.10.2:
Algae as bioindicators / 3:
Bioindicators and water quality / 3.1:
Biomarkers and bioindicators / 3.1.1:
Characteristics of bioindicators / 3.1.2:
Biological monitoring versus chemical measurements / 3.1.3:
Monitoring water quality: objectives / 3.1.4:
Lakes / 3.2:
Contemporary planktonic and attached algae as bioindicators / 3.2.1:
Fossil algae as bioindicators: lake sediment analysis / 3.2.2:
Water quality parameters / 3.2.3:
Wetlands / 3.3:
Rivers / 3.4:
The periphyton community / 3.4.1:
River diatoms / 3.4.2:
Evaluation of the diatom community / 3.4.3:
Human impacts and diatom indices / 3.4.4:
Calculation of diatom indices / 3.4.5:
Practical applications of diatom indices / 3.4.6:
Estuaries / 3.5:
Ecosystem complexity / 3.5.1:
Algae as estuarine bioindicators / 3.5.2:
A key to the more frequently occurring freshwater algae / 4:
Introduction to the key / 4.1:
Using the key / 4.1.1:
Morphological groupings / 4.1.2:
Key to the main genera and species / 4.2:
List of algae included and their occurrence in the key / 4.3:
Algal identification: bibliography / 4.4:
Glossary
References
Index
Introduction to freshwater algae / 1:
General introduction / 1.1:
Algae / 1.1.1:
6.

図書

図書
F. Grossmann
出版情報: Berlin : Springer, c2008  xiii, 214 p. ; 24 cm
シリーズ名: Springer series on atomic, optical, and plasma physics ; 48
所蔵情報: loading…
目次情報: 続きを見る
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
Fundamentals of the Laser / 1.2:
Elementary Laser Theory / 1.2.1:
Realization of the Laser Principle / 1.2.2:
Pulsed Lasers / 1.3:
Frequency Comb / 1.3.1:
Carrier Envelope Phase / 1.3.2:
Husimi Representation of Laser Pulses / 1.3.3:
Some Gaussian Integrals / 1.A:
References
Time-Dependent Quantum Theory / 2:
The Time-Dependent Schrodinger Equation / 2.1:
Introduction / 2.1.1:
Time-Evolution Operator / 2.1.2:
Spectral Information / 2.1.3:
Analytical Solutions for Wavepackets / 2.1.4:
Analytical Approaches / 2.2:
Feynman's Path Integral / 2.2.1:
Semiclassical Approximation / 2.2.2:
Time-Dependent Perturbation Theory / 2.2.3:
Magnus Expansion / 2.2.4:
Time-Dependent Hartree Method / 2.2.5:
Quantum-Classical Methods / 2.2.6:
Floquet Theory / 2.2.7:
Numerical Methods / 2.3:
Orthogonal Basis Expansion / 2.3.1:
Split-Operator FFT Method / 2.3.2:
Alternative Methods of Time-Evolution / 2.3.3:
Semiclassical Initial Value Representations / 2.3.4:
The Royal Road to the Path Integral / 2.A:
Variational Calculus / 2.B:
Stability Matrix / 2.C:
From the HK- to the VVG-Propagator / 2.D:
Applications / Part II:
Field Matter Coupling and Two-Level Systems / 3:
Light Matter Interaction / 3.1:
Minimal Coupling / 3.1.1:
Length Gauge / 3.1.2:
Kramers-Henneberger Transformation / 3.1.3:
Volkov Wavepacket / 3.1.4:
Analytically Solvable Two-Level Problems / 3.2:
Dipole Matrix Element / 3.2.1:
Rabi Oscillations Induced by a Constant Perturbation / 3.2.2:
Time-Dependent Perturbations / 3.2.3:
Exactly Solvable Time-Dependent Cases / 3.2.4:
Generalized Parity Transformation / 3.A:
Two-Level System in an Incoherent Field / 3.B:
Single Electron Atoms in Strong Laser Fields / 4:
The Hydrogen Atom / 4.1:
Hydrogen in Three Dimensions / 4.1.1:
The One-Dimensional Coulomb Problem / 4.1.2:
Field Induced Ionization / 4.2:
Tunnel Ionization / 4.2.1:
Multiphoton Ionization / 4.2.2:
ATI in the Coulomb Potential / 4.2.3:
Stabilization in Very Strong Fields / 4.2.4:
Atoms Driven by HCP / 4.2.5:
High Harmonic Generation / 4.3:
Three-Step Model / 4.3.1:
Odd Harmonics Rule / 4.3.2:
Semiclassical Explanation of the Plateau / 4.3.3:
Cutoff and Odd Harmonics Revisited / 4.3.4:
More on Atomic Units / 4.A:
Molecules in Strong Laser Fields / 5:
The Molecular Ion H[superscript + subscript 2] / 5.1:
Electronic Potential Energy Surfaces / 5.1.1:
The Morse Potential / 5.1.2:
H[superscript + subscript 2] in a Laser Field / 5.2:
Frozen Nuclei / 5.2.1:
Nuclei in Motion / 5.2.2:
Adiabatic and Nonadiabatic Nuclear Dynamics / 5.3:
Born-Oppenheimer Approximation / 5.3.1:
Dissociation in a Morse Potential / 5.3.2:
Coupled Potential Surfaces / 5.3.3:
Femtosecond Spectroscopy / 5.3.4:
Control of Molecular Dynamics / 5.4:
Control of Tunneling / 5.4.1:
Control of Population Transfer / 5.4.2:
Optimal Control Theory / 5.4.3:
Genetic Algorithms / 5.4.4:
Toward Quantum Computing with Molecules / 5.4.5:
Relative and Center of Mass Coordinates for H[superscript + subscript 2] / 5.A:
Perturbation Theory for Two Coupled Surfaces / 5.B:
Reflection Principle of Photodissociation / 5.C:
The Undriven Double Well Problem / 5.D:
The Quantum Mechanical Adiabatic Theorem / 5.E:
Index
Prerequisites / Part I:
A Short Introduction to Laser Physics / 1:
The Einstein Coefficients / 1.1:
7.

図書

図書
George Wolberg
出版情報: Los Alamitos, Calif. ; Tokyo : IEEE Computer Society Press, c1990  xvi, 318 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
Spatial Transformations / 1.2.1:
Sampling Theory / 1.2.2:
Resampling / 1.2.3:
Aliasing / 1.2.4:
Scanline Algorithms / 1.2.5:
Conceptual Layout / 1.3:
Preliminaries / Chapter 2:
Fundamentals / 2.1:
Signals and Images / 2.1.1:
Filters / 2.1.2:
Impulse Response / 2.1.3:
Convolution / 2.1.4:
Frequency Analysis / 2.1.5:
An Analogy to Audio Signals / 2.1.5.1:
Fourier Transforms / 2.1.5.2:
Discrete Fourier Transforms / 2.1.5.3:
Image Acquisition / 2.2:
Imaging Systems / 2.3:
Electronic Scanners / 2.3.1:
Vidicon Systems / 2.3.1.1:
Image Dissectors / 2.3.1.2:
Solid-State Sensors / 2.3.2:
CCD Cameras / 2.3.2.1:
CID Cameras / 2.3.2.2:
Mechanical Scanners / 2.3.3:
Video Digitizers / 2.4:
Digitized Imagery / 2.5:
Summary / 2.6:
Definitions / Chapter 3:
Forward Mapping / 3.1.1:
Inverse Mapping / 3.1.2:
General Transformation Matrix / 3.2:
Homogeneous Coordinates / 3.2.1:
Affine Transformations / 3.3:
Translation / 3.3.1:
Rotation / 3.3.2:
Scale / 3.3.3:
Shear / 3.3.4:
Composite Transformations / 3.3.5:
Inverse / 3.3.6:
Inferring Affine Transformations / 3.3.7:
Perspective Transformations / 3.4:
Inferring Perspective Transformations / 3.4.1:
Case 1: Square-to-Quadrilateral / 3.4.2.1:
Case 2: Quadrilateral-to-Square / 3.4.2.2:
Case 3: Quadrilateral-to-Quadrilateral / 3.4.2.3:
Bilinear Transformations / 3.5:
Bilinear Interpolation / 3.5.1:
Separability / 3.5.2:
Interpolation Grid / 3.5.3:
Polynomial Transformations / 3.6:
Inferring Polynomial Coefficients / 3.6.1:
Pseudoinverse Solution / 3.6.2:
Least-Squares With Ordinary Polynomials / 3.6.3:
Least-Squares With Orthogonal Polynomials / 3.6.4:
Weighted Least-Squares / 3.6.5:
Piecewise Polynomial Transformations / 3.7:
A Surface Fitting Paradigm for Geometric Correction / 3.7.1:
Procedure / 3.7.2:
Triangulation / 3.7.3:
Linear Triangular Patches / 3.7.4:
Cubic Triangular Patches / 3.7.5:
Global Splines / 3.8:
Basis Functions / 3.8.1:
Regularization / 3.8.2:
Grimson, 1981 / 3.8.2.1:
Terzopoulos, 1984 / 3.8.2.2:
Discontinuity Detection / 3.8.2.3:
Boult and Kender, 1986 / 3.8.2.4:
A Definition of Smoothness / 3.8.2.5:
Sampling / 3.9:
Reconstruction / 4.3:
Reconstruction Conditions / 4.3.1:
Ideal Low-Pass Filter / 4.3.2:
Sinc Function / 4.3.3:
Nonideal Reconstruction / 4.4:
Antialiasing / 4.5:
Image Resampling / 4.7:
Ideal Image Resampling / 5.1:
Interpolation / 5.3:
Interpolation Kernels / 5.4:
Nearest Neighbor / 5.4.1:
Linear Interpolation / 5.4.2:
Cubic Convolution / 5.4.3:
Two-Parameter Cubic Filters / 5.4.4:
Cubic Splines / 5.4.5:
B-Splines / 5.4.5.1:
Interpolating B-Splines / 5.4.5.2:
Windowed Sinc Function / 5.4.6:
Hann and Hamming Windows / 5.4.6.1:
Blackman Window / 5.4.6.2:
Kaiser Window / 5.4.6.3:
Lanczos Window / 5.4.6.4:
Gaussian Window / 5.4.6.5:
Exponential Filters / 5.4.7:
Comparison of Interpolation Methods / 5.5:
Implementation / 5.6:
Interpolation with Coefficient Bins / 5.6.1:
Fant's Resampling Algorithm / 5.6.2:
Discussion / 5.7:
Point Sampling / Chapter 6:
Area Sampling / 6.1.2:
Space-Invariant Filtering / 6.1.3:
Space-Variant Filtering / 6.1.4:
Regular Sampling / 6.2:
Supersampling / 6.2.1:
Adaptive Supersampling / 6.2.2:
Reconstruction from Regular Samples / 6.2.3:
Irregular Sampling / 6.3:
Stochastic Sampling / 6.3.1:
Poisson Sampling / 6.3.2:
Jittered Sampling / 6.3.3:
Point-Diffusion Sampling / 6.3.4:
Adaptive Stochastic Sampling / 6.3.5:
Reconstruction from Irregular Samples / 6.3.6:
Direct Convolution / 6.4:
Catmull, 1974 / 6.4.1:
Blinn and Newell, 1976 / 6.4.2:
Feibush, Levoy, and Cook, 1980 / 6.4.3:
Gangnet, Perny, and Coueignoux, 1982 / 6.4.4:
Greene and Heckbert, 1986 / 6.4.5:
Prefiltering / 6.5:
Pyramids / 6.5.1:
Summed-Area Tables / 6.5.2:
Frequency Clamping / 6.6:
Antialiased Lines and Text / 6.7:
Separable Mapping / 6.8:
Incremental Algorithms / 7.2:
Texture Mapping / 7.2.1:
Gouraud Shading / 7.2.2:
Incremental Texture Mapping / 7.2.3:
Incremental Perspective Transformations / 7.2.4:
Approximation / 7.2.5:
Quadratic Interpolation / 7.2.6:
Cubic Interpolation / 7.2.7:
Braccini and Marino, 1980 / 7.3:
Weiman, 1980 / 7.3.2:
Catmull and Smith, 1980 / 7.3.3:
Paeth, 1986/ Tanaka, et. al., 1986 / 7.3.4:
Cordic Algorithm / 7.3.5:
2-Pass Transforms / 7.4:
First Pass / 7.4.1:
Second Pass / 7.4.1.2:
2-Pass Algorithm / 7.4.1.3:
An Example: Rotation / 7.4.1.4:
Another Example: Perspective / 7.4.1.5:
Bottleneck Problem / 7.4.1.6:
Foldover Problem / 7.4.1.7:
Fraser, Schowengerdt, and Briggs, 1985 / 7.4.2:
Smith, 1987
2-Pass Mesh Warping / 7.5:
Special Effects / 7.5.1:
Description of the Algorithm / 7.5.2:
Examples / 7.5.2.1:
Source Code / 7.5.4:
More Separable Mappings / 7.6:
Perspective Projection: Robertson, 1987 / 7.6.1:
Warping Among Arbitrary Planar Shapes: Wolberg, 1988 / 7.6.2:
Spatial Lookup Tables: Wolberg and Boult, 1989 / 7.6.3:
Separable Image Warping / 7.7:
Spatial Lookup Tables / 7.7.1:
Intensity Resampling / 7.7.2:
Coordinate Resampling / 7.7.3:
Distortions and Errors / 7.7.4:
Filtering Errors / 7.7.4.1:
Perspective / 7.7.4.2:
Distortion Measures / 7.7.4.4:
Bottleneck Distortion / 7.7.4.6:
Representing Foldovers / 7.7.5:
Tracking Foldovers / 7.7.5.2:
Storing Information From Foldovers / 7.7.5.3:
Intensity Resampling with Foldovers / 7.7.5.4:
Compositor / 7.7.6:
Epilogue / 7.7.7:
Fast Fourier Transforms / Appendix 1:
Discrete Fourier Transform / A1.1:
Danielson-Lanczos Lemma / A1.2:
Butterfly Flow Graph / A1.2.1:
Putting It All Together / A1.2.2:
Recursive FFT Algorithm / A1.2.3:
Cost of Computation / A1.2.4:
Cooley-Tukey Algorithm / A1.3:
Computational Cost / A1.3.1:
Cooley-Sande Algorithm / A1.4:
Cooley-Tukey FFT Algorithm / A1.5:
Interpolating Cubic Splines / Appendix 2:
Definition / A2.1:
Constraints / A2.2:
Solving for the Spline Coefficients / A2.3:
Derivation of A[subscript 2] / A2.3.1:
Derivation of A[subscript 3] / A2.3.2:
Derivation of A[subscript 1] and A[subscript 3] / A2.3.3:
Evaluting the Unknown Derivatives / A2.4:
First Derivatives / A2.4.1:
Second Derivatives / A2.4.2:
Boundary Conditions / A2.4.3:
Ispline / A2.5:
Ispline_gen / A2.5.2:
Forward Difference Method / Appendix 3:
References
Index
Introduction / Chapter 1:
Background / 1.1:
Overview / 1.2:
8.

図書

図書
Jean-Pierre Colinge, editor
出版情報: New York : Springer, c2008  xiii, 339 p. ; 24 cm
シリーズ名: Series on Integrated Circuits and Systems
所蔵情報: loading…
目次情報: 続きを見る
Preface
Table of Content
Contributors
The SOI MOSFET: from Single Gate to Multigate / 1:
MOSFET scaling and Moore's law / 1.1:
Short-Channel Effects / 1.2:
Gate Geometry and Electrostatic Integrity / 1.3:
A Brief History of Multiple-Gate MOSFETs / 1.4:
Single-gate SOI MOSFETs / 1.4.1:
Double-gate SOI MOSFETs / 1.4.2:
Triple-gate SOI MOSFETs / 1.4.3:
Surrounding-gate (quadruple-gate) SOI MOSFETs / 1.4.4:
Other multigate MOSFET structures / 1.4.5:
Multigate MOSFET memory devices / 1.4.6:
Multigate MOSFET Physics / 1.5:
Classical physics / 1.5.1:
Natural length and short-channel effects / 1.5.1.1:
Current drive / 1.5.1.2:
Corner effect / 1.5.1.3:
Quantum effects / 1.5.2:
Volume inversion / 1.5.2.1:
Mobility effects / 1.5.2.2:
Threshold voltage / 1.5.2.3:
Inter-subband scattering / 1.5.2.4:
References
Multigate MOSFET Technology / 2:
Introduction / 2.1:
Active Area: Fins / 2.2:
Fin Width / 2.2.1:
Fin Height and Fin Pitch / 2.2.2:
Fin Surface Crystal Orientation / 2.2.3:
Fin Surface Preparation / 2.2.4:
Fins on Bulk Silicon / 2.2.5:
Nano-wires and Self-Assembled Wires / 2.2.6:
Gate Stack / 2.3:
Gate Patterning / 2.3.1:
Threshold Voltage and Gate Workfunction Requirements / 2.3.2:
Polysilicon Gate / 2.3.2.1:
Metal Gate / 2.3.2.2:
Tunable Workfunction Metal Gate / 2.3.2.3:
Gate EWF and Gate Induced Drain Leakage (GIDL) / 2.3.3:
Independently Controlled Gates / 2.3.4:
Source/Drain Resistance and Capacitance / 2.4:
Doping the Thin Fins / 2.4.1:
Junction Depth / 2.4.2:
Parasitic Resistance/Capacitance and Raised Source and Drain Structure / 2.4.3:
Mobility and Strain Engineering / 2.5:
Wafer Bending Experiment / 2.5.1:
Nitride Stress Liners / 2.5.3:
Embedded SiGe and SiC Source and Drain / 2.5.4:
Local Strain from Gate Electrode / 2.5.5:
Substrate Strain: Strained Silicon on Insulator / 2.5.6:
Contacts to the Fins / 2.6:
Dumbbell source and drain contact / 2.6.1:
Saddle contact / 2.6.2:
Contact to merged fins / 2.6.3:
Acknowledgments
BSIM-CMG: A Compact Model for Multi-Gate Transistors / 3:
Framework for Multigate FET Modeling / 3.1:
Multigate Models: BSIM-CMG and BSIM-IMG / 3.3:
The BSIM-CMG Model / 3.3.1:
The BSIM-IMG Model / 3.3.2:
BSIM-CMG / 3.4:
Core Model / 3.4.1:
Surface Potential Model / 3.4.1.1:
I-V Model / 3.4.1.2:
C-V Model / 3.4.1.3:
Modeling Physical Effects of Real Devices / 3.4.2:
Quantum Mechanical Effects (QME) / 3.4.2.1:
Short-channel Effects (SCE) / 3.4.2.2:
Experimental Verification / 3.4.3:
Surface Potential of independent DG-FET / 3.5:
BSIM-IMG features / 3.5.2:
Summary / 3.6:
Physics of the Multigate MOS System / 4:
Device electrostatics / 4.1:
Double gate MOS system / 4.2:
Modeling assumptions / 4.2.1:
Gate voltage effect / 4.2.2:
Semiconductor thickness effect / 4.2.3:
Asymmetry effects / 4.2.4:
Oxide thickness effect / 4.2.5:
Electron tunnel current / 4.2.6:
Two-dimensional confinement / 4.3:
Mobility in Multigate MOSFETs / 5:
Double-Gate MOSFETs and FinFETs / 5.1:
Phonon-limited mobility / 5.2.1:
Confinement of acoustic phonons / 5.2.2:
Interface roughness scattering / 5.2.3:
Coulomb scattering / 5.2.4:
Temperature Dependence of Mobility / 5.2.5:
Symmetrical and Asymmetrical Operation of DGSOI FETs / 5.2.6:
Crystallographic orientation / 5.2.7:
High-k dielectrics / 5.2.8:
Strained DGSOI devices / 5.2.9:
Silicon multiple-gate nanowires / 5.2.10:
Electrostatic description of Si nanowires / 5.3.1:
Electron transport in Si nanowires / 5.3.3:
Surface roughness / 5.3.4:
Experimental results and conclusions / 5.3.5:
Radiation Effects in Advanced Single- and Multi-Gate SOI MOSFETs / 6:
A brief history of radiation effects in SOI / 6.1:
Total Ionizing Dose Effects / 6.2:
A brief overview of Total Ionizing Dose effects / 6.2.1:
Advanced Single-Gate FDSOI devices / 6.2.2:
Description of Advanced FDSOI Devices / 6.2.2.1:
Front-gate threshold voltage shift / 6.2.2.2:
Single-transistor latch / 6.2.2.3:
Advanced Multi-Gate devices / 6.2.3:
Devices and process description / 6.2.3.1:
Single-Event Effects / 6.2.3.2:
Background / 6.3.1:
Effect of ion track diameter in nanoscale devices / 6.3.2:
Transient measurements on single-gate and FinFET SOI transistors / 6.3.3:
Scaling effects / 6.3.4:
Multi-Gate MOSFET Circuit Design / 7:
Digital Circuit Design / 7.1:
Impact of device performance on digital circuit design / 7.2.1:
Large-scale digital circuits / 7.2.2:
Leakage-performance trade off and energy dissipation / 7.2.3:
Multi-V[subscript T] devices and mixed-V[subscript T] circuits / 7.2.4:
High-temperature circuit operation / 7.2.5:
SRAM design / 7.2.6:
Analog Circuit Design / 7.3:
Device figures of merit and technology related design issues / 7.3.1:
Transconductance / 7.3.1.1:
Intrinsic transistor gain / 7.3.1.2:
Matching behavior / 7.3.1.3:
Flicker noise / 7.3.1.4:
Transit and maximum oscillation frequency / 7.3.1.5:
Self-heating / 7.3.1.6:
Charge trapping in high-k dielectrics / 7.3.1.7:
Design of analog building blocks / 7.3.2:
V-[subscript T]-based current reference circuit / 7.3.2.1:
Bandgap voltage reference / 7.3.2.2:
Operational amplifier / 7.3.2.3:
Comparator / 7.3.2.4:
Mixed-signal aspects / 7.3.3:
Current steering DAC / 7.3.3.1:
Successive approximation ADC / 7.3.3.2:
RF circuit design / 7.3.4:
SoC Design and Technology Aspects / 7.4:
Index
Preface
Table of Content
Contributors
9.

図書

図書
John F. Watts, John Wolstenholme
出版情報: Chichester : Wiley, c2003  x, 212 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
Electron Spectrometer Design
The Electron Spectrum: Qualitative and Quantitative Interpretation
Compositional Depth Profiling / 1.1:
Applications of Electron Spectroscopy in Materials Science
Analysis of Surfaces
Comparison of XPS and AES with Other Analytical Techniques
Glossary / 1.2:
Bibliography
Notation
Auger Electron Energies / Appendix 1:
Spectroscopists' notation / Appendix 2:
Table of Binding Energies Accessible with AIK& Radiation
Index / 1.2.2:
X-ray notation
X-ray Photoelectron Spectroscopy (XPS) / 1.3:
Auger Electron Spectroscopy (AES) / 1.4:
Scanning Auger Microscopy (SAM) / 1.5:
The Depth of Analysis in Electron Spectroscopy / 1.6:
Comparison of XPS and AES/SAM / 1.7:
The Availability of Surface Analytical Equipment / 1.8:
The Vacuum System / 2:
The Sample / 2.2:
X-ray Sources for XPS / 2.3:
The twin anode X-ray source / 2.3.1:
X-ray monochromators / 2.3.2:
Charge compensation / 2.3.3:
The Electron Gun for AES / 2.4:
Electron sources / 2.4.1:
Analysers for Electron Spectroscopy / 2.5:
The cylindrical mirror analyser / 2.5.1:
The hemispherical sector analyser / 2.5.2:
Detectors / 2.6:
Channel electron multipliers / 2.6.1:
Channel plates / 2.6.2:
Small Area XPS / 2.7:
Lens-defined small area XPS / 2.7.1:
Source-defined small area analysis / 2.7.2:
XPS Imaging and Mapping / 2.8:
Serial acquisition / 2.8.1:
Parallel acquisition / 2.8.2:
Lateral Resolution in Small Area XPS / 2.9:
Angle Resolved XPS / 2.10:
Qualitative Analysis / 3:
Unwanted features in electron spectra / 3.1.1:
Data acquisition / 3.1.2:
Chemical State Information / 3.2:
X-ray photoelectron spectroscopy / 3.2.1:
Electron induced Auger electron spectroscopy / 3.2.2:
The Auger parameter / 3.2.3:
Chemical state plots / 3.2.4:
Shake-up satellites / 3.2.5:
Multiplet splitting / 3.2.6:
Plasmons / 3.2.7:
Quantitative Analysis / 3.3:
Factors affecting the quantification of electron spectra / 3.3.1:
Quantification in XPS / 3.3.2:
Quantification in AES / 3.3.3:
Compositional Depth Profilin / 4:
Non-destructive Depth Profiling Methods / 4.1:
Angle resolved electron spectroscopy / 4.1.1:
Elastic scattering / 4.1.1.1:
Compositional depth profiles by ARXPS / 4.1.1.2:
Recent advances in ARXPS / 4.1.1.3:
Variation of analysis depth with electron kinetic energy / 4.1.2:
Depth Profiling by Erosion with Noble Gas Ions / 4.2:
The sputtering process / 4.2.1:
Experimental method / 4.2.2:
Sputter yield and etch rate / 4.2.3:
Factors affecting the etch rate / 4.2.4:
Factors affecting the depth resolution / 4.2.5:
Calibration / 4.2.6:
Ion gun design / 4.2.7:
Mechanical Sectioning / 4.3:
Angle lapping / 4.3.1:
Ball cratering / 4.3.2:
Conclusions / 4.4:
Introduction / 5:
Metallurgy / 5.2:
Grain-boundary segregation / 5.2.1:
Electronic structure of metallic alloys / 5.2.2:
Surface engineering / 5.2.3:
Corrosion Science / 5.3:
Ceramics and Catalysis / 5.4:
Microelectronics and Semiconductor Materials / 5.5:
Mapping semiconductor devices using AES / 5.5.1:
Depth profiling of semiconductor materials / 5.5.2:
Ultra-thin layers studied by ARXPS / 5.5.3:
Polymeric Materials / 5.6:
Adhesion Science / 5.7:
X-ray Analysis in the Electron Microscope / 6:
Electron Analysis in the Electron Microscope / 6.2:
Mass Spectrometry for Surface Analysis / 6.3:
Ion Scattering / 6.4:
Concluding Remarks / 6.5:
Appendices
Table of Binding Energies Accessible with AlKalpha Radiation
Preface
Acknowledgements
Electron Spectroscopy: Some Basic Concepts / 1:
10.

図書

図書
edited by Tito Trindade, Ana L. Daniel da Silva
出版情報: Singapore : Pan Stanford Publishing, c2011  xxii, 289, 4 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Preface
From Nanoparticles to Nanocomposites: A Brief Overview / 1:
Nanoscience and Nanotechnology: An introduction / 1.1:
Nanoparticles' Diversity / 1.2:
Quantum dots / 1.2.1:
Iron oxides / 1.2.2:
Metal nanoparticles / 1.2.3:
Surface Modification of Nanoparticles / 1.3:
Ligand exchange reactions / 1.3.1:
Inorganic nanocoating / 1.3.2:
Encapsulation in polymers / 1.3.3:
Designing Biointerfaces over Nanoparticles / 1.4:
Challenges for the Future... Nanosafety for Today / 1.5:
Polymers for Biomedical Applications: Chemical Modification and Biofunctionalization / 2:
Drug Delivery Systems / 2.1:
Hydrogels / 2.2:
Application of hydrogels / 2.2.1:
Types of hydrogels / 2.2.2:
Bioadhesives / 2.3:
Surface Modification / 2.4:
Surface modification by ultra-violet radiation / 2.4.1:
Plasma treatment / 2.4.2:
Plasma generation / 2.4.2.1:
Plasma polymerization and surface modification of polymers / 2.4.2.2:
Concluding Remarks / 2.5:
Nanocapsules as Carriers for the Transport and Targeted Delivery of Bioactive Molecules / 3:
Introduction / 3.1:
Polymeric Nanocapsules: Production and Characterization / 3.2:
Nanocapsules made of synthetic polymers / 3.2.1:
Polyacrylate nanocapsules / 3.2.1.1:
Polyester nanocapsules / 3.2.1.2:
Nanocapsules made of natural polymers / 3.2.2:
Lipid nanocapsules / 3.2.3:
Therapeutical Applications of Nanocapsules / 3.3:
Nanocapsules for oral drug delivery / 3.3.1:
Nanocapsules for oral peptide delivery / 3.3.1.1:
Nanocapsules for oral delivery of lipophilic low molecular weight drugs / 3.3.1.2:
Nanocapsules as nasal drug carriers / 3.3.2:
Nanocapsules as ocular drug carriers / 3.3.3:
Nanocapsules in cancer therapy / 3.3.4:
Nanocapsules as carriers for gene therapy / 3.3.5:
Conclusions / 3.4:
Inorganic Nanoparticles Biofunctionalization / 4:
Bioeonjugation of Nanoparticles / 4.1:
Nanoparticles and Their Surface Properties / 4.2:
Surface capping of nanoparticles / 4.2.1:
Semiconductor quantum dots and metallic nanoparticles / 4.2.2:
Silica nanoparticles and silica encapsulation / 4.2.3:
Attachment Schemes / 4.3:
Covalent attachment / 4.3.1:
Non-covalent attachment / 4.3.2:
Affinity binding / 4.3.3:
Specific Cases / 4.4:
Proteins / 4.4.1:
DNA / 4.4.2:
Avidin / 4.4.3:
Phospholipid encapsulation and functionalization / 4.4.4:
Applications / 4.5:
Cellular imaging / 4.5.1:
Drug delivery / 4.5.2:
Bioluminescence resonance energy transfer / 4.5.3:
Hyperthermia / 4.5.4:
Conclusion / 4.6:
Silica-Based Materials: Bioprocesses and Nanocomposites / 5:
Natural Silica Nanocomposites / 5.1:
Diatom biosilica / 5.1.1:
Sponge biosilica / 5.1.3:
(Bio)-technological applications of biosilica / 5.1.4:
Biomimetic Silica Nanocomposites / 5.2:
Silica nanocomposites based on natural templates / 5.2.1:
Silica nanocomposites based on model templates / 5.2.3:
Synthetic peptides / 5.2.3.1:
Synthetic polyamines / 5.2.3.2:
Biological templates / 5.2.3.3:
Biomimetism: How far can we go? / 5.2.4:
Bio-Inspired Silica Nanocomposites / 5.3:
Biotechnological and medical applications / 5.3.1:
Perspectives / 5.3.3:
Synthetic Strategies for Polymer-Based Nanocomposite Particles / 6:
Surfaces and Interfaces: Chemical Modification of Nanoparticles / 6.1:
In situ Synthetic Strategies for Polymer-Based Colloidal Nanocomposites / 6.3:
In situ preparation of the fillers / 6.3.1:
Sol-gel methods / 6.3.1.1:
In situ polymerization of the matrix / 6.3.2:
Organic solvent-based methods: Dispersion polymerization / 6.3.2.1:
Water-based methods: Emulsion and miniemulsion polymerization / 6.3.2.2:
Controlled polymerization: Surface initiated polymerization(SIP) / 6.3.3:
Atom Transfer Radical Polymerization Atrp / 6.3.3.1:
Reversible Addition Fragmentation chain transfer (Raft) polymerization / 6.3.3.2:
Combined controlled polymerization mechanisms / 6.3.3.3:
Functionalization of Polymer-Based Nanocomposites for Bio-Applications / 6.4:
Final Remarks / 6.5:
Synthesis of Nanocomposite Particles Using Supercritical Fluids: A Bridge with Bio-applications / 7:
Supercritical Fluids: Definition and Current use in, Bio-Applications / 7.1:
Definition / 7.2.1:
Scps in biomedical applications / 7.2.2:
Development of drug delivery systems / 7.2.2.1:
scC02 for purification and sterilization / 7.2.2.2:
Can Scfs be Used to Introduce Inorganic NPs into Polymers? / 7.3:
Formation of hybrid organic-inorganic NPs in Scps(route 1) / 7.3.1:
Encapsulation of inorganic NPs into a polymer shell (route 2) / 7.3.2:
Polymer swelling and in situ growth of inorganic NPs (route 3) / 7.3.3:
Polymer swelling by scC02 / 7.3.3.1:
Chemical transformation of impregnated metal precursor / 7.3.3.2:
Biocomposites Containing Magnetic Nanoparticles / 7.4:
Magnetic Properties / 8.1:
Magnetism at nanoscale level: Concepts and main phenomena / 8.2.1:
Basic concepts / 8.2.1.1:
Systems with interactions between magnetic centers / 8.2.1.2:
Superparamagnetism / 8.2.1.3:
Magnetism concepts subjacent to bio-applicatons / 8.2.2:
Magnetic separation and drug delivery / 8.2.2.1:
Magnetic resonance imaging (Mri) / 8.2.2.2:
Magnetic hyperthermia / 8.2.2.3:
Magnetic Nanoparticles for Bio-Applications / 8.3:
Iron oxide nanoparticles / 8.3.1:
Metallic nanoparticles / 8.3.2:
Metal alloy nanoparticles / 8.3.3:
Bimagnetic nanoparticles / 8.3.4:
Strategies of Synthesis of Magnetic Biocomposite Nanoparticles / 8.4:
In situ formation of magnetic nanoparticles / 8.4.1:
Other magnetic nanoparticles / 8.4.1.1:
Encapsulation of magnetic nanoparticles within biopolymers / 8.4.2:
Conclusions and Future Outlook / 8.5:
Multifunctional Nanoeomposite Particles for Biomedical Applications / 9:
Types of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.1:
Main Approaches to the Preparation of Multifunctional Magnetic-Fluorescent Nanocomposites / 9.3:
Silica coated magnetic-fluorescent nanoparticles / 9.3.1:
Organic polymer coated magnetic cores treated with fluorescent entities / 9.3.2:
Ionic assemblies of magnetic cores and fluorescent entities / 9.3.3:
Fluoreseently-labeled lipid coated magnetic nanoparticles / 9.3.4:
Magnetic core directly linked to fluorescent entity via a molecular spacer / 9.3.5:
Magnetic cores coated by fluorescent semiconducting shells / 9.3.6:
Magnetically-doped Qds / 9.3.7:
Magnetic nanoparticles and Qds embedded within a polymer or silica matrix / 9.3.8:
Biomedical Applications / 9.4:
Bio-imaging probes / 9.4.1:
Cell tracking, sorting and bioseparation / 9.4.2:
Applications in nanomedicine / 9.4.3:
Bio-Applications of Functionalized Magnetic Nanoparticles and Their Nanocomposites / 9.5:
Fundaments of Nanomagnetism / 10.1:
Single-domain particles / 10.2.1:
Magnetic anisotropy energy / 10.2.2:
Fundaments of Colloidal Stability / 10.2.3:
Bio-Applications of Magnetic Nanoparticles / 10.4:
Magnetic separation / 10.4.1:
Nuclear magnetic resonance imaging (Mri) / 10.4.2:
Contrast agents based on superparamagnetic nanomagnets / 10.4.3.1:
Magnetobiosensors / 10.4.4:
Magnetobiosensors based on magnetorelaxometry / 10.4.4.1:
Magnetobiosensors based on magnetoresistance / 10.4.4.2:
Magnetosensors based on Hall effect / 10.4.4.3:
Magnetoplasmonics / 10.4.4.4:
Summary and Outlook / 10.4.5:
Anti-Microbial Polymer Nanocomposites / 11:
Packaging / 11.1:
Textiles / 11.1.2:
Coatings / 11.1.3:
Antimicrobial coatings / 11.1.3.1:
Medicine, pathology and surgical implants/ biomedical coatings / 11.1.3.2:
Anti-Microbial Polymer-Based Nanocomposites / 11.2:
Mechanisms of Antibacterial Action / 11.3:
Detection of microbes / 11.3.1:
Control of microbial growth / 11.3.2:
Environmental and Health Concerns / 11.4:
Biosensing Applications Using Nanoparticles / 12:
Biosensors: A Definition / 12.1:
Uses of Gold Nanoparticles / 12.2:
Tailoring biointerfaces over gold nanoparticles / 12.2.1:
Biosensing applications of gold nanoparticles / 12.2.2:
Crosslinking-based biosensing / 12.2.2.1:
Non-crosslmking-based biosensing / 12.2.2.2:
Semiconductor Quantum Dots / 12.3:
Properties of quantum dots / 12.3.1:
Biosensing with quantum dots / 12.3.2:
Immunosensing / 12.3.2.1:
Dna assays / 12.3.2.2:
Resonance energy transfer-based assays / 12.3.2.3:
Outlook Remarks / 12.4:
Index
List of Figures
List of Tables
Preface
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼