close
1.

図書

図書
Ulrich Schubert, Nicola Hüsing
出版情報: Weinheim : Wiley-VCH, c2019  xviii, 404 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgements
Abbreviations
Introduction / 1:
Solid-State Reactions / 2:
Reactions Between Solid Compounds / 2.1:
Ceramic Method / 2.1.1:
General Aspects of Solid-State Reactions / 2.1.1.1:
Facilitating Solid-State Reactions / 2.1.1.2:
Mechanochemical Synthesis / 2.1.2:
Carbothermal Reduction / 2.1.3:
Combustion Synthesis / 2.1.4:
Solution Combustion Synthesis / 2.1.4.1:
Solid-Gas Reactions / 2.2:
Ceramics Processing / 2.3:
Sintering / 2.3.1:
Intercalation Reactions / 2.4:
Mechanistic Aspects / 2.4.1:
Preparative Methods / 2.4.2:
Intercalation of Polymers in Layered Systems / 2.4.3:
Pillaring of Layered Compounds / 2.4.4:
Further Reading
Formation of Solids from the Gas Phase / 3:
Chemical Vapour Transport / 3.1:
Halogen Lamps / 3.1.1:
Transport Reactions / 3.1.2:
Chemical Vapour Deposition / 3.2:
General Aspects / 3.2.1:
Techniques / 3.2.2:
Metal CVD / 3.2.3:
Silicon and Aluminium / 3.2.3.1:
Tungsten / 3.2.3.2:
Copper / 3.2.3.3:
CVD of Carbon / 3.2.4:
CVD of Binary and Multinary Compounds / 3.2.5:
Metal Oxides / 3.2.5.1:
Metal Nitrides / 3.2.5.2:
Metal Chalcogenides and Pnictides / 3.2.5.3:
Aerosol-Assisted CVD / 3.2.6:
Chemical Vapour Infiltration / 3.2.7:
Gas-Phase Powder Syntheses / 3.3:
Formation of Solids from Solutions and Melts / 4:
Glass / 4.1:
The Structural Theory of Glass Formation / 4.1.1:
Crystallization Versus Glass Formation / 4.1.2:
Glass Melting / 4.1.3:
Phase Separation / 4.1.4:
Metallic Glasses / 4.1.5:
Crystallization from Solution / 4.2:
Monodispersity / 4.2.1:
Shape Control of Crystals / 4.2.2:
Non-classical Crystallization / 4.2.3:
Biomineralization / 4.2.4:
Biogenic Materials / 4.2.4.1:
Bioinspired Materials Chemistry / 4.2.4.2:
Electrodeposition / 4.3:
Colloids / 4.3.1:
Electrodeposition of Ceramics / 4.3.2:
Solvothermal Processes / 4.4:
Fundamentals / 4.4.1:
Growing Single Crystals / 4.4.2:
Solvothermal Synthesis / 4.4.3:
Synthetic Calcium Phosphate Biomaterials / 4.4.3.1:
Zeolites / 4.4.3.3:
Sol-Gel Processes / 4.5:
The Chemistry of Alkoxide Precursors / 4.5.1:
Hydrolysis and Condensation / 4.5.2:
Silica-Based Materials / 4.5.2.1:
Metal Oxide-Based Materials / 4.5.2.2:
The Sol-Gel Transition (Gelation) / 4.5.3:
Aging and Drying / 4.5.4:
Nonhydrolytic Sol-Gel Processes / 4.5.5:
Inorganic-Organic Hybrid Materials / 4.5.6:
Aerogels / 4.5.7:
Preparation and Modification of Inorganic Polymers / 5:
Synthesis and Crosslinking / 5.1:
Copolymers / 5.1.2:
Polysiloxanes (Silicones) / 5.2:
Properties and Applications / 5.2.1:
Structure / 5.2.2:
Preparation / 5.2.3:
Curing ('Vulcanizing') / 5.2.4:
Polyphosphazenes / 5.3:
Preparation and Modification / 5.3.1:
Polysilanes / 5.4:
Polycarbosilanes / 5.4.1:
Polysilazanes and Related Polymers / 5.6:
Polymers with B-N Backbones / 5.7:
Other Inorganic Polymers / 5.8:
Other Phosphorus-Containing Polymers / 5.8.1:
Polymers with S-N Backbones / 5.8.2:
Metallopolymers / 5.8.3:
Polymer-to-Ceramic Transformation / 5.9:
Self-Assembly / 6:
Self-Assembled Monolayers / 6.1:
Metal-Organic Frameworks / 6.2:
Modularity of the Structures / 6.2.1:
Synthesis and Modification / 6.2.2:
Supramolecular Arrangements of Surfactants and Block Copolymers / 6.3:
Layer-by-Layer Assembly / 6.4:
Templating / 7:
Introduction to Porosity and High Surface Area Materials / 7.1:
Infiltration and Coating of Templates / 7.2:
Replica Technique / 7.2.1:
Sacrificial Templates / 7.2.2:
Colloidal Crystals / 7.2.2.1:
Hollow Particles / 7.2.2.2:
Direct Foaming / 7.2.3:
Nanocasting / 7.2.4:
In Situ Formation of Templates / 7.3:
Breath Figures / 7.3.1:
Freeze Casting / 7.3.2:
Supramolecular Assemblies of Amphiphiles / 7.3.3:
Synthesis of Periodic Mesoporous Silicas / 7.3.3.1:
Evaporation-Induced Self-Assembly / 7.3.3.2:
Incorporation of Organic Groups / 7.3.3.3:
Reorganization and Transformation Processes / 7.4:
Pseudomorphic Transformation / 7.4.1:
Kirkendall Effect / 7.4.2:
Galvanic Replacement / 7.4.3:
Phase Separation and Leaching / 7.4.4:
Nanomaterials / 8:
Properties of Nanomaterials / 8.1:
Properties Due to Surface Effects / 8.1.1:
Properties of Nanocrystalline Materials / 8.1.2:
Catalytic Properties / 8.1.3:
Optical Properties / 8.1.4:
Electrical Properties / 8.1.5:
Magnetic Properties / 8.1.6:
Syntheses of Nanoparticles / 8.2:
Severe Plastic Deformation / 8.2.1:
Formation from Vapours / 8.2.2:
Formation from Solution / 8.2.3:
Surface Modification with Organic Groups / 8.2.4:
One-Dimensional Nanostructures / 8.3:
Nanowires and Nanorods / 8.3.1:
Nanotubes / 8.3.2:
Carbon Nanotubes / 8.3.2.1:
Titania Nanotubes / 8.3.2.2:
Two-Dimensional Nanomaterials / 8.4:
Graphene / 8.4.1:
Other 2D Nanomaterials / 8.4.2:
Heterostructures and Composites / 8.5:
Core-Shell Nanoparticles / 8.5.1:
Vertical 2D Heterostructures / 8.5.2:
Polymer-Matrix Nanocomposites / 8.5.3:
Supported Metal Nanoparticles / 8.5.4:
Glossary
Index
Preface
Acknowledgements
Abbreviations
2.

電子ブック

EB
出版情報: IEEE Electronic Library (IEL) Conference Proceedings , IEEE, 2019
所蔵情報: loading…
3.

電子ブック

EB
Dagmar Bruss, Gerd Leuchs
出版情報: Wiley Online Library - AutoHoldings Books , John Wiley & Sons, Inc., 2019
所蔵情報: loading…
4.

図書

図書
Detlev Möller
出版情報: Berlin : Walter de Gruyter, c2019  xxviii, 619 p. ; 25 cm
シリーズ名: Chemistry of the climate system ; v. 1
所蔵情報: loading…
目次情報: 続きを見る
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
Prologue
List of principal symbols
Introduction / 1:
Chemistry and the climate system / 1.1:
Air and atmosphere: a multiphase and multicomponent system / 1.2:
Principles of chemistry in the climate system / 1.3:
Substances in climate system / 1.4:
Fundamentals of physics in the climate system / 2:
Meteorological basics / 2.1:
Scaling and structure of the atmosphere / 2.1.1:
Meteorological elements / 2.1.2:
Air pressure / 2.1.2.1:
Air temperature / 2.1.2.2:
Air humidity / 2.1.2.3:
Hydrometeors / 2.1.3:
Clouds / 2.1.3.1:
Fog, mist, and haze / 2.1.3.2:
Precipitation / 2.1.3.3:
Dew, frost, rime, and interception / 2.1.4:
Clirnatologtcai basics / 2.2:
Climate / 2.2.1:
Climate system / 2.2.2:
Chemical climate / 2.2.3:
Optics of the atmosphere: Radiation / 2.3:
Solar radiation / 2.3.1:
The Sun and its radiation output / 2.3.1.1:
Solar radiation transfer through the atmosphere / 2.3.1.2:
Absorption and emission of light / 2.3.2:
Absorption (Lambert-Beer law) / 2.3.2.1:
Emission (Planck's law and Stefan-Boltzmann law) / 2.3.2.2:
Terrestrial radiation and radiation budget / 2.3.3:
Atmospheric dynamics / 2.4:
Fluid characteristics / 2.4.1:
Effective atmospheric forces / 2.4.1.1:
Atmospheric flow: Laminar and turbulent / 2.4.1.2:
Fluid characteristics: Wind speed and direction / 2.4.1.3:
Properties of gases: The ideal gas / 2.5:
Gas laws / 2.5.1:
Mean free path and number of collisions between molecules / 2.5.2:
Viscosity / 2.5.3:
Diffusion / 2.5.4:
Atmospheric removal: Deposition processes / 2.6:
Dry deposition / 2.6.1:
Wet deposition / 2.6.2:
Characteristic times; Residence time, lifetime, and turnover time / 2.7:
Fundamentals of physicochemistry in the climate system / 3:
Chemical thermodynamics / 3.1:
First law of thermodynamics and its applications / 3.1.1:
Internal energy / 3.1.1.1:
Molar heat capacity / 3.1.1.2:
Thermochemistry: Heat of chemical reaction / 3.1.1.3:
Second law of thermodynamics and its applications / 3.1.2:
Entropy and reversibility / 3.1.2.1:
Thermodynamic potential: Gibbs-Helmholtz equation / 3.1.2.2:
Chemical potential / 3.1.2.3:
Chemical potential in real mixtures: Activity / 3.1.2.4:
Equilibrium / 3.2:
Chemical equilibrium: The mass action law / 3.2.1:
Phase equilibrium / 3.2.2:
Gas-liquid equilibrium: Evaporation and condensation / 3.2.2.1:
Gas-liquid equilibrium: Special case of droplets (Kelvin equation) / 3.2.2.2:
Absorption of gases in water: Henry's law / 3.2.2.3:
Solubility equilibrium: Solid-aqueous equilibrium / 3.2.2.4:
Adsorption and desorption / 3.2.2.5:
Steady state / 3.3:
Water: Physical and chemical properties / 3.4:
Water structure: Hydrogen bond / 3.4.1:
Water as solvent / 3.4.2:
Water vapor / 3.4.3:
Water properties in relation to the climate system / 3.4.4:
Properties of solutions and droplets / 3.5:
Surface tension and surface-active substances / 3.5.1:
Vapor pressure lowering: Raoult's law / 3.5.2:
Freezing point depression / 3.5.3:
Diffusion in solution / 3.5.4:
Heterogeneous processes: Multiphase chemistry in the climate system / 3.6:
Aerosols, clouds, and precipitation: The climate multiphase system / 3.6.1:
Gas-to-particle formation: Homogeneous formation of CCNs / 3.6.2:
Classical nucleation theory / 3.6.2.1:
Formation of secondary organic aerosols / 3.6.2.2:
Atmospheric aerosols and the properties of aerosol particles / 3.6.3:
Formation of cloud droplets: Heterogeneous nucleation / 3.6.4:
Scavenging: Acommodation, adsorption, and reaction (mass transfer) / 3.6.5:
Mass transfer: General remarks / 3.6.5.1:
Adsorption / 3.6.5.2:
Surface chemistry: Kinetics of heterogeneous chemical reactions / 3.6.5.3:
Mass transfer into droplets with chemical reaction / 3.6.5.4:
Fundamentals of chemistry in the climate system / 4:
State of matter / 4.1:
Atoms, elements, molecules, compounds, and substances / 4.1.1:
Pure substances and mixtures / 4.1.2:
Radicals, groups, and nomenclature / 4.1.3:
Units for chemical abundance: Concentrations and mixing ratios / 4.1.4:
Theory of chemical reactions / 4.2:
Chemical bonding / 4.2.1:
Types of chemical reactions / 4.2.2:
Chemical kinetics: Reaction rate constant / 4.2.3:
Catalysis / 4.3:
Electrochemistry / 4.4:
Electrolytic dissociation / 4.4.1:
Acids, bases, and the ionic product of water / 4.4.1.1:
pH value / 4.4.1.2:
Hydrolysis of salts and oxides / 4.4.1.3:
Buffer solutions / 4.4.1.4:
Complex ions / 4.4.1.5:
The CO2-carbonate system / 4.4.1.6:
Oxidation-reduction reaction (redox process) / 4.4.2:
Hydrated electron: A fundamental species / 4.4.3:
Photochemistry / 4.5:
Photoexcitation: Electronic states / 4.5.1:
Photodissociation: Photolysis rate coefficient / 4.5.2:
Photocatalysis: Photosensitization and autoxidation / 4.5.3:
Environmental relevance of acidity / 4.6:
Atmospheric acidity / 4.6.1:
pH averaging / 4.6.2:
Isotopes in atmospheric chemistry and geochemistry / 4.7:
Substaces and chemical reactions in the climate system / 5:
Hydrogen / 5.1:
Natural occurrence / 5.1.1:
Compounds of hydrogen / 5.1.2:
Chemistry / 5.1.3:
Oxygen / 5.2:
Oxygen, dioxygen, and ozone: O, O2, and O3 / 5.2.1:
Reactive oxygen species I: OH, HO2, and H2O2 (HxOy species) / 5.2.3:
Atmosphere, free of trace species / 5.2.3.1:
Atmosphere with trace species / 5.2.3.2:
Reactive oxygen species II: RO, RO2, and ROOH / 5.2.4:
Aqueous-phase oxygen chemistry / 5.2.5:
Water chemistry / 5.2.5.1:
Dioxygen and superoxide ion chemistry / 5.2.5.2:
Hydrogen peroxide chemistry / 5.2.5.3:
Ozone and hydroxyl radical chemistry / 5.2.5.4:
Hydrogen polyoxides / 5.2.5.5:
Multiphase oxygen chemistry / 5.2.6:
Hydrogen peroxide / 5.2.6.1:
Ozone / 5.2.6.2:
Stratospheric oxygen chemistry / 5.2.7:
Nitrogen / 5.3:
Natural occurrence and sources / 5.3.1:
Thermal dissociation of dinitrogen (N2) / 5.3.2:
Ammonia (NH3) / 5.3.3:
Dinitrogen oxide (N2O) / 5.3.4:
Inorganic nitrogen oxides and oxoacids (NOy) / 5.3.5:
Gas-phase chemistry / 5.3.3.1:
Aqueous and interfacial chemistry / 5.3.5.2:
Organic nitrogen compounds / 5.3.6:
Amines, amides, and nitriles / 5.3.6.1:
Organic NOx compounds / 5.3.6.2:
Sulfur / 5.4:
Reduced sulfur: H2S, COS, CS2, and DMS / 5.4.1:
Oxides and oxoacids: SO2, H2SO3, SO3, and H2SO4 / 5.4.3:
Gas-phase SO2 oxidation / 5.4.3.1:
Aqueous-phase sulfur chemistry / 5.4.3.2:
Multiphase sulfur chemistry / 5.4.4:
Phosphorus / 5.5:
Carbon / 5.6:
Organic carbon and chemistry / 5.6.1:
Elemental carbon and soot / 5.6.2:
Inorganic C1 chemistry: CO, CO2, and H2CO3 / 5.6.3:
Aqueous chemistry / 5.6.3.1:
Hydrocarbon oxidation and organic radicals / 5.6.4:
Organic C1 chemistry: CH4, CH3OH, HCHO, HCOOH / 5.6.5:
C2 chemistry: C2H6, CH3CHO, C2H5OH, CH3COOH, and (COOH)2
Alkenes, atkynes, and ketones / 5.6.6.1:
Aromatic compounds / 5.6.8:
Is the atmospheric fate of complex organic compounds predictable? / 5.6.9:
Halogens (Cl, Br, F, and I) / 5.7:
Chlorine in the environment / 5.7.1:
Formation of sea salt and chlorine degassing / 5.7.2:
Metals and metalloids / 5.7.3:
General remarks / 5.8.1:
Alkali and alkaline earth metals: Na, K, Mg, and Ca / 5.8.2:
Iron: Fe / 5.8.3:
Mercury: Hg / 5.8.4:
Cadmium: Cd / 5.8.5:
Lead: Pb / 5.8.6:
Arsenic: As / 5.8.7:
Silicon (Si) and aluminum (Al) / 5.8.8:
Biogeochemistry and global cycling / 6:
The hydrosphere and the global water cycle / 6.1:
The hydrological cycle and the climate system / 6.1.1:
Soil water and groundwater; Chemical weathering / 6.1.2:
Surface water: Rivers and lakes / 6.1.3:
The oceans / 6.1.4:
Atmospheric waters (hydrometeors): Chemical composition / 6.1.5:
Fog / 6.1.5.1:
Rain (precipitation) / 6.1.5.3:
Biogeochemical cycling / 6.2:
Photosynthesis: Nonequilibrium redox processes / 6.2.1:
Primary production of carbon / 6.2.2:
Nitrogen cycling / 6.2.3:
Sulfur cycling / 6.2.4:
Natural sources of atmospheric substances / 6.3:
Source characteristics / 6.3.1:
Biological processes / 6.3.2:
Continental / 6.3.2.1:
Oceanic / 6.3.2.2:
Geogenic processes / 6.3.3:
Soil dust / 6.3.3.1:
Sea salt / 6.3.3.2:
Volcanism / 6.3.3.3:
Chemical processes / 6.3.4:
Lightning / 6.3.4.1:
Secondary atmospheric processes / 6.3.4.2:
List of acronyms and abbreviations used in this volume / A:
Quantities, units, and some useful numerical values / B:
References
Name Index
Subject Index
Preface to the first edition
Author's preface to the third edition
Author's preface to the second edition
5.

図書

図書
edited by Caitlin H. Bell ... [et al.]
出版情報: Boca Raton : CRC Press, c2019  xxix, 439 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
List of Figures
List of Tables
Foreword
Acknowledgments
Editors
Contributors
Introduction to Emerging Contaminants / Chapter 1:
Introduction / 1.1:
Who Identifies Emerging Contaminants? / 1.2:
United States Environmental Protection Agency / 1.2.1:
United States Department of Defense / 1.2.2:
United States Geologic Survey / 1.2.3:
State Agencies in the United States / 1.2.4:
Stockholm Convention on Persistent Organic Pollutants / 1.2.5:
European Union / 1.2.6:
Australian National Environment Protection Council / 1.2.7:
What is the Life Cycle of an Emerging Contaminant? / 1.3:
What are the Key Challenges Associated with Emerging Contaminants? / 1.4:
The Need for Balance / 1.5:
This Book / 1.6:
Acronyms
1,4-Dioxane / Chapter 2:
Basic Information / 2.1:
Toxicity and Risk Assessment / 2.3:
Potential Noncancer Effects / 2.3.1:
Potential Cancer Effects / 2.3.2:
Regulatory Status / 2.4:
Site Characterization / 2.5:
Investigation Approaches / 2.5.1:
Analytical Methods / 2.5.2:
Advanced Investigation Techniques / 2.5.3:
Soil Treatment / 2.6:
Groundwater Treatment / 2.7:
In Situ Treatment / 2.7.1:
In Situ Chemical Oxidation / 2.7.1.1:
Bioremediation / 2.7.1.2:
Phytoremediation / 2.7.1.3:
Thermal Treatment / 2.7.1.4:
Ex Situ Treatment and Dynamic Groundwater Recirculation / 2.7.2:
Natural Attenuation / 2.7.3:
Drinking Water and Wastewater Treatment / 2.8:
Point-of-Use and Point-of-Entry Treatment / 2.8.1:
1.4-Dioxane Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 2.9:
Advanced Oxidation Processes / 2.9.1:
Bioreaetors / 2.9.2:
Granular Activated Carbon and Other Sorbenl Media / 2.9.3:
Electrochemical Oxidation / 2.9.4:
Conclusion / 2.10:
Per- and Polyfluoroalkyl Substances / Chapter 3:
PFASs Chemistry / 3.1:
Ionic State / 3.2.1:
Linear and Branched Isomers / 3.2.2:
Perfluoroalkyl Substances / 3.2.3:
Perfluoroalkyl Sulfonic Acids / 3.2.3.1:
Perfluoroalkyl Carboxylic Acids / 3.2.3.2:
Perfluoroalkyl Phosphonic and Phosphinic Acids / 3.2.3.3:
Perfluoroalkyl Ether Carboxylates and Perfluoroalkyl Ether Sulfonates / 3.2.3.4:
Polyfluoroalkyl Substances / 3.2.4:
ECF-Derived Polyfluoroalkyl Substances / 3.2.4.1:
Fluorotelomerizat ion-Derived Polyfluoroalkyl Substances / 3.2.4.2:
Long- and Short-Chain PFASs / 3.2.5:
Polymeric PFASs / 3.2.6:
Replacement PFASs / 3.2.7:
Chemistry of PFASs in Class B Firefighting Foams / 3.2.8:
Physical, Chemical, and Biological Properties / 3.3:
Biological Activity Towards PFASs / 3.3.1:
Transformation of Polyfluoroalkyl Substances / 3.3.2:
Abiotic Transformation / 3.3.2.1:
Biotic Transformation / 3.3.2.2:
PFASs Production and Use / 3.4:
Manufacturing Processes and Uses / 3.4.1:
Electrochemical Fluorination / 3.4.2:
Fluorotelomerization / 3.4.3:
Oligomerization / 3.4.4:
Uses / 3.4.5:
Use as Surfactants / 3.4.5.1:
Use as Surface Coatings / 3.4.5.2:
Other Uses / 3.4.5.3:
Sampling and Analysis / 3.5:
General Sampling Guidelines / 3.5.1:
Soil and Sediment Sampling / 3.5.1.1:
Surface Water and Groundwater Sampling / 3.5.1.2:
Storage and Hold Times / 3.5.1.3:
Chemical Analysis Methods / 3.5.2:
Overview of Standard Methods / 3.5.2.1:
Advanced Analytical Techniques / 3.5.2.2:
Health Considerations / 3.6:
Exposure Routes / 3.6.1:
Distribution in Tissue / 3.6.2:
Bioaccumulation / 3.6.3:
Elimination / 3.6.4:
Toxicologic and Epidemiological Studies / 3.6.5:
Acute Toxicity / 3.6.5.1:
(Sub)Chronic Toxicity / 3.6.5.2:
Epidemiological Studies / 3.6.5.3:
Polyfluoroalkyl Substance Toxicity / 3.6.5.4:
Derivation of Reference Doses/Tolerable Daily Intakes / 3.6.5.5:
Carcinogenic Effects / 3.6.5.6:
Regulation / 3.7:
Regulation of PFASs / 3.7.1:
Global Treaties and Conventions / 3.7.1.1:
United States of America / 3.7.1.2:
Europe / 3.7.1.3:
Australia / 3.7.1.4:
Regulation of Perfluoroalkyl Ethers / 3.7.2:
Fate and Transport / 3.8:
PFAS Distribution in Environmental Matrices / 3.8.1:
PFASs in Soils / 3.8.1.1:
Leaching / 3.8.1.2:
Transport and Retardation in Groundwater / 3.8.1.3:
Surface Waters and Sediments / 3.8.1.4:
Vapor Migration / 3.8.1.5:
Atmospheric Deposition / 3.8.1.6:
Detections and Background Levels in the Environment / 3.8.2:
Sites of Concern / 3.8.3:
CSM for Industrial Facilities / 3.8.3.1:
CSM for Fire Training Areas and Class B Fire Response Areas / 3.8.3.2:
CSM for WWTPs and Biosolid Application Areas / 3.8.3.3:
CSM for Landfills / 3.8.3.4:
PFAS-Relevant Treatment Technologies / 3.9:
Biological Treatment / 3.9.1:
Soil and Sediment Treatment / 3.9.2:
Incineration / 3.9.2.1:
Stabilization/Solidification / 3.9.2.2:
Vapor Energy Generator Technology / 3.9.2.3:
Soil/Sediment Washing / 3.9.2.4:
High-Energy Electron Beam / 3.9.2.5:
Mechanochemical Destruction / 3.9.2.6:
Water Treatment / 3.9.3:
Mature Water Treatment Technologies / 3.9.3.1:
Developing Treatment Technologies / 3.9.3.2:
Experimental Treatment Technologies / 3.9.3.3:
Conclusions / 3.10:
Hexavalent Chromium / Chapter 4:
Geochemistry of Chromium / 4.1:
Sources of Cr(VI) / 4.1.2:
U.S. Federal Regulations / 4.2:
U.S. State Regulations / 4.3.2:
California / 4.3.2.1:
North Carolina / 4.3.2.2:
New Jersey / 4.3.2.3:
Other Countries / 4.3.3:
Occurrence of Cr(VI) / 4.4:
Naturally Occurring (Background) Cr(VI) in Groundwater / 4.4.1:
Cr(VI) in Drinking Water / 4.4.2:
Investigation of Cr(VI) in Groundwater / 4.5:
Chromium Isotopes / 4.5.2:
Mineralogical Analyses / 4.5.3.2:
In Situ Reduction / 4.6:
In Situ Chemical Reduction / 4.6.1.1:
In Situ Biological Reduction / 4.6.1.2:
Permeable Reactive Barriers / 4.6.1.3:
Reoxidation of Cr(III) Formed by In Situ Reduction / 4.6.1.4:
Ex Situ Treatment / 4.6.2:
Dynamic Groundwater Recirculation
Tier I / 4.6.4:
Tier II / 4.6.4.2:
Tier III / 4.6.4.3:
Tier IV / 4.6.4.4:
Drinking Water Treatment / 4.7:
Point-of-Entry and Point-of-Use Treatment / 4.7.1:
Cr(VI) Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 4.8:
Reduction/Coagulation/Filtration with Ferrous Iron / 4.8.1:
Ion Exchange / 4.8.2:
Weak Base Anion Resins / 4.8.2.1:
Strong Base Anion Resins / 4.8.2.2:
Reverse Osmosis / 4.8.3:
Bioreactors / 4.8.4:
Phytostabilization / 4.8.4.1:
Iron Media / 4.8.4.2:
Reduction/Filtration via Stannous Chloride (RF-Sn[II]) / 4.8.5:
1,2,3-Trichloropropane / 4.9:
International Guidance / 5.1:
Investigation / 5.4:
Groundwater Remediation Technologies / 5.4.2:
In Situ Hydrolysis / 5.5.1:
In Situ Biological Treatment / 5.5.1.2:
TCP Treatment Technologies for Drinking Water Treatment and Ex Situ Groundwater Remediation / 5.5.1.3:
Granular Activated Carbon / 5.7.1:
Air Stripping / 5.7.2:
Other Processes / 5.7.4:
Considerations for Future Contaminants of Emerging Concern / 5.8:
Categorizing Future Emerging Contaminants / 6.1:
The Challenges Posed in Emerging Contaminant Management / 6.3:
Challenges Associated with Release to the Environment / 6.3.1:
Challenges Associated with Assessing Toxicological Risk / 6.3.2:
Challenges Associated with Regulation / 6.3.3:
Challenges Associated with Characterization and Analysis / 6.3.4:
Challenges Associated with Treatment / 6.3.5:
The Future of Emerging Contaminants / 6.4:
Appendices
USEPA Candidate Contaminant List / Appendix A:
REACH Candidate List / Appendix B:
Emerging Contaminants and Their Physical and Chemical Properties / Appendix C:
NGI Preliminary List of Substances That Could Be Considered to Meet the PMT or vPvM Criteria / Appendix D:
Summary of PFAS Environmental Standards: Soil / Appendix E.1:
Summary of PFAS Environmental Standards: Groundwater / Appendix E.2:
Summary of PFAS Environmental Standards: Surface Water / Appendix E.3:
Summary of PFAS Environmental Standards: Drinking Water / Appendix E.4:
Notes / Appendix E.5:
Index
List of Figures
List of Tables
Foreword
6.

図書

図書
Shiping Liu, Gang (Sheng) Chen
出版情報: Hoboken, NJ : Wiley, 2019  xii, 254 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
Contact Perception in Virtual Environment / 1.2:
Organization of This Book / 1.3:
References
Fundamentals of Robot Dynamics and Control / 2:
Robot Kinematics / 2.1:
Matrix Description of Robot Kinematics / 2.1.1:
Homogeneous Transformation Matrices / 2.1.2:
Forward Kinematics / 2.1.3:
Inverse Kinematics / 2.1.4:
Velocity Kinematics / 2.1.5:
Robot Dynamics / 2.2:
Robot Control / 2.3:
Trajectory Control / 2.3.1:
Point-to-point Control / 2.3.2.1:
Trajectories for Paths Specified by Points / 2.3.2.2:
Interaction Control / 2.3.3:
Impedance Control / 2.3.3.1:
Hybrid Force-Position Control 38 References / 2.3.3.2:
Friction and Contact of Solid Interfaces / 3:
Contact Between Two Solid Surfaces / 3.1:
Description of Surfaces / 3.2.1:
Contact Mechanics of Two Solid Surfaces / 3.2.2:
Friction Between Two Solid Surfaces / 3.3:
Adhesion / 3.3.1:
Dry Friction / 3.3.2:
Friction Mechanisms / 3.3.2.1:
Friction Transitions and Wear / 3.3.2.2:
Static Friction, Hysteresis, Time, and Displacement Dependence / 3.3.2.3:
Effects of Environmental and Operational Condition on Friction / 3.3.2.4:
Liquid Mediated Friction / 3.3.3:
Stribeck Curve / 3.3.3.1:
Unsteady Liquid-Mediated Friction / 3.3.3.2:
Negative Slope of Friction-Velocity Curve / 3.3.3.3:
Friction Models / 3.3.4:
Friction Dynamics of Manipulators / 4:
Friction Models of Robot Manipulator Joints / 4.1:
Modeling Friction with Varied Effects / 4.2:
The Motion Equations of Dynamics of Robot Manipulators with Friction / 4.3:
The General Motion Equation of Robot Manipulators / 4.3.1:
The Motion Equation of Two-Link Robot Manipulators / 4.3.2:
Nonlinear Dynamics and Chaos of Manipulators / 4.4:
Parameters Identification / 4.5:
Identification of Dynamic Parameters / 4.5.1:
Identification of Parameters of Friction Models / 4.5.2:
Uncertainty Analysis / 4.5.3:
Friction Compensation and Control of Robot Manipulator Dynamics / 4.6:
Force Feedback and Haptic Rendering / 5:
Overview of Robot Force Feedback / 5.1:
Generating Methods of Feedback Force / 5.2:
Serial Mechanism / 5.2.1:
Kinematics / 5.2.1.1:
Dynamics / 5.2.1.2:
Parallel Mechanism / 5.2.2:
Kinematics Model / 5.2.2.1:
Dynamics Based on Virtual Work / 5.2.2.2:
Friction Compensation / 5.2.3:
Calculation of Virtual Force / 5.3:
Collision Detection / 5.3.1:
The Construction of the Bounding Box / 5.3.1.1:
Calculation of Distance between Bounding Boxes / 5.3.1.2:
Calculating the Model of Virtual Force / 5.3.2:
1-DoF Interaction / 5.3.2.1:
2-DoF Interaction / 5.3.2.2:
3-DoF Interaction / 5.3.2.3:
6-DoF Interaction / 5.3.2.4:
Haptic Display Based on Point Haptic Device / 5.4:
Human Tactile Perception / 5.4.1:
Haptic Texture Display Methods / 5.4.2:
Virtual Simulation of Robot Control / 6:
Overview of Robot Simulation / 6.1:
3D Graphic Environment / 6.2:
Virtual Reality-Based Robot Control / 6.3:
Overview of Virtual Reality / 6.3.1:
Overview of Teleoperation / 6.3.2:
Virtual Reality-Based Teleoperation / 6.3.3:
Augmented Reality-Based Tele operation / 6.4:
Overview of Augmented Reality / 6.4.1:
Augmented Reality-Based Teleoperation / 6.4.2:
Task Planning Methods in Virtual Environment / 6.5:
Overview / 6.5.1:
Interactive Graphic Mode / 6.5.2:
Index
Preface
Introduction / 1:
Robot Joint Friction Modeling and Parameter Identification / 1.1:
7.

図書

図書
Deborah D.L. Chung
出版情報: Singapore : World Scientific, c2019  xiii, 367 p. ; 24 cm
シリーズ名: Engineering materials for technological needs ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
Graphite / 1.1.1:
Diamond / 1.1.2:
Fullerene / 1.1.3:
The graphite family / 1.2:
Graphite and turbostratic carbon / 1.2.1:
Carbon fibers and nanofibers / 1.2.2:
Carbon nanotubes / 1.2.3:
Intercalated graphite / 1.2.4:
Graphite oxide / 1.2.5:
Exfoliated graphite / 1.2.6:
Flexible graphite / 1.2.7:
Graphene / 1.2.8:
Activated carbon / 1.2.9:
Carbon black / 1.2.10:
Carbon-carbon composites / 1.2.11:
The diamond family / 1.3:
Diamond-like carbon / 1.3.1:
Graphane
The fullerene family / 1.4:
References
Structure of graphite and carbon in the graphite family / 2:
Fabrication of graphite / 2.2:
Polycrytalline graphite / 2.2.1:
Graphite flakes / 2.2.2:
Pyrolytic graphite / 2.2.3:
Properties of graphite / 2.3:
Reciprocal lattice / 2.4:
Electronic energy bands / 2.5:
Magnetic energy levels / 2.6:
Electrical properties / 2.7:
Lattice vibrations / 2.8:
Graphite intercalation compounds / 2.9:
Classification of graphite intercalation compounds / 2.9.1:
Covalent intercalation compounds / 2.9.2:
Graphite oxide (graphitic acid) / 2.9.2.1:
Carbon monofluoride (graphite monofluoride) / 2.9.2.2:
Tetracarbon monofluoride / 2.9.2.3:
Ionic intercalation compounds / 2.9.3:
Graphite-halogens / 2.9.3.1:
Graphite-alkali metals / 2.9.3.2:
Graphite-acid compounds / 2.9.3.3:
Graphite-halide compounds / 2.9.3.4:
Intercalated graphite fibers / 2.9.4:
Structure and formation / 2.10:
Viscoelastic and elastomeric properties / 2.10.2:
Dielectric properties / 2.10.3:
Thermal and electrical conductivities / 2.10.4:
Adsorption and filtration behavior / 2.10.5:
Electronic structure of graphene / 2.11:
Optical behavior / 3.3:
Defects in graphene / 3.4:
Mechanical behavior / 3.5:
Preparation of graphene / 3.6:
Preparation of graphene by the cleavage of graphite / 3.6.1:
Preparation of graphene by the mechanical disintegration of intercalated graphite / 3.6.2:
Preparation of graphene by the chemical reduction of graphene oxide / 3.6.3:
Preparation of graphene by nonoxidizing liquid exfoliation / 3.6.4:
Preparation of graphene by chemical vapor deposition / 3.6.5:
Graphene yarns / 3.7:
Graphene paper / 3.8:
Graphene foam / 3.9:
Graphene ink / 3.10:
Graphene quantum dots / 3.11:
Doping of graphene / 3.12:
Hybrids of graphene and carbon nanotubes / 3.13:
Hybrids of graphene and carbon fibers / 3.14:
Hybrids of graphene and electrochemical electrode materials / 3.15:
Fabrication / 4:
Structure / 4.3:
Squish ability and compaction / 4.4:
Application in thermal interface materials / 4.5:
Application as an electrically conductive additive / 4.6:
Dielectric behavior / 4.7:
Viscoelastic behavior / 4.8:
Nanoindentation behavior / 4.8.1:
Dynamic mechanical properties / 4.8.2:
Carbon black composites / 4.9:
Competing materials / 4.10:
Market and applications / 4.11:
Structure of activated carbon / 5:
Adsorption / 5.2:
Forms of activated carbon / 5.3:
Granular activated carbon / 5.3.1:
Powdered activated carbon / 5.3.2:
Extruded activated carbon / 5.3.3:
Bead activated carbon / 5.3.4:
Activated carbon assemblies / 5.4:
Honeycomb carbon filters / 5.4.1:
Activated carbon blocks with hollow channels / 5.4.2:
Activated carbon foam / 5.4.3:
Activated carbon foam assemblies / 5.4.4:
Activated carbon fiber fabric / 5.4.5:
Activated carbon composites / 5.4.6:
Fabrication of activated carbon / 5.5:
Steam activation / 5.5.1:
Gas activation / 5.5.2:
Chemical activation / 5.5.3:
Regeneration of activated carbon / 5.6:
Processing-structure-properly relationships of activated carbon / 5.7:
Applications of activated carbon / 5.8:
Water purification / 5.8.1:
Air purification / 5.8.2:
Gas purification / 5.8.3:
Waste treatment / 5.8.4:
Carbon dioxide capture / 5.8.5:
Heat pumps and refrigeration / 5.8.6:
Electrochemical components / 5.8.7:
Catalyst support / 5.8.8:
Market of activated carbon / 5.9:
Carbon fibers / 6:
Applications and market / 6.1:
Continuous fiber assemblies / 6.3:
Discontinuous fibers / 6.4:
Microstructure / 6.5:
Continuous carbon fibers vs. other materials / 6.6:
Carbon fiber composites / 6.8:
Carbon nanofibers and nanotubes / 7:
Structure of carbon nanofibers and nanotubes / 7.1:
Properties of carbon nanofibers and nanotubes / 7.3:
Mats and yams of CNFs/CNTs / 7.4:
Mats / 7.4.1:
Fabrication of mats / 7.4.1.1:
Electrical and electromagnetic behavior of mats / 7.4.1.2:
Mechanical behavior of mats / 7.4.1.3:
Electrochemical behavior of mats / 7.4.1.4:
Yarns / 7.4.2:
Fabrication of yarns / 7.4.2.1:
Mechanical behavior of yarns / 7.4.2.2:
Assemblies involving CNTs/CNFs / 7.5:
Vertically aligned CNTs / 7.5.1:
CMF/CNT with filled core channel / 7.5.2:
CNFs/CNTs grown on carbon fibers / 7.5.3:
CNTs grown on carbon black / 7.5.4:
CNTs grown on graphene, reduced graphene oxide or exfoliated graphite / 7.5.5:
Carbon deposited on CNTs / 7.5.6:
CNTs grown on alumina / 7.5.7:
CNTs grown on silica fibers / 7.5.8:
CNFs grown on cordierite / 7.5.9:
CNTs grown on metals / 7.5.10:
CNTs attached to polymers / 7.5.11:
CNFs/CNTs mixed with electrochemical electrode material / 7.5.12:
Fabrication of carbon nanofibers and nanotubes / 7.6:
Fabrication of carbon nanofibers/nanotubes from carbonaceous gases / 7.6.1:
Fabrication of carbon nanofibers from electro spun polymer nanofibers / 7.6.2:
Graphitization of carbon nanofibers / 7.6.4:
Index / 7.7:
Preface
Introduction to carbon materials / 1:
Introduction / 1.1:
8.

図書

図書
Brian R. Martin, G. Shaw
出版情報: Hoboken, NJ : Wiley, 2019  xiv, 499 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Notes
Basic concepts / 1:
History / 1.1:
The origins of nuclear physics / 1.1.1:
The emergence of particle physics: hadrons and quarks / 1.1.2:
The standard model of particle physics / 1.1.3:
Relativity and antiporticles / 1.2:
Space-time symmetries and conservation laws / 1.3:
Parity / 1.3.1:
Charge conjugation / 1.3.2:
Time reversal / 1.3.3:
Interactions and Feynman diagrams / 1.4:
Interactions / 1.4.1:
Feynman diagrams / 1.4.2:
Particle exchange: forces and potentials / 1.5:
Range of forces / 1.5.1:
The Yukawa potential / 1.5.2:
Observable quantities: cross-sections and decay rates / 1.6:
Amplitudes / 1.6.1:
Cross-sections / 1.6.2:
The basic scattering formulas / 1.6.3:
Unstable states / 1.6.4:
Units / 1.7:
Problems 1
Nuclear phenomenology / 2:
Mass spectroscopy / 2.1:
Deflection spectrometers / 2.1.1:
Kinematic analysis / 2.1.2:
Penning trap measurements / 2.1.3:
Nuclear shapes and sizes / 2.2:
Charge distribution / 2.2.1:
Matter distribution / 2.2.2:
Semi-empirical mass formula: the liquid drop model / 2.3:
Binding energies / 2.3.1:
Semi-empirical mass formula / 2.3.2:
Nuclear instability / 2.4:
Decay chains / 2.5:
ß decay phenomenology / 2.6:
Odd-mass nuclei / 2.6.1:
Even-mass nuclei / 2.6.2:
Fission / 2.7:
¿ decays / 2.8:
Nuclear reactions / 2.9:
Problems 2
Particle phenomenology / 3:
Leptons / 3.1:
Lepton multiplets and lepton numbers / 3.1.1:
Universal lepton interactions; the number of neutrinos / 3.1.2:
Neutrinos / 3.1.3:
Neutrino mixing and oscillations / 3.1.4:
Oscillation experiments / 3.1.5:
Neutrino masses and mixing angles / 3.1.0:
Lepton numbers revisited / 3.1.7:
Quarks / 3.2:
Evidence for quarks / 3.2.1:
Quark generations and quark numbers / 3.2.2:
Hadrons / 3.3:
Flavour independence and charge multiplets / 3.3.1:
The simple quark model / 3.3.2:
Hadron decays and lifetimes / 3.3.3:
Hadron magnetic moments and masses / 3.3.4:
Heavy quarkonia / 3.3.5:
Allowed and exotic quantum numbers / 3.3.6:
Problems 3
Experimental methods / 4:
Overview / 4.1:
Accelerators and beams / 4.2:
DC accelerators / 4.2.1:
AC accelerators / 4.2.2:
Neutral and unstable particle beams / 4.2.3:
Particle interactions with matter / 4.3:
Short-range interactions with nuclei / 4.3.1:
Ionisation energy losses / 4.3.2:
Radiation energy losses / 4.3.3:
Interactions of photons in matter
Ranges and interaction lengths
Particle detectors / 4.4:
Gaseous ionisation detectors / 4.4.1:
Scintillation counters / 4.4.2:
Semiconductor detectors / 4.4.3:
Cerenkov counters and transition radiation / 4.4.4:
Calorimeters / 4.4.5:
Detector Systems / 4.5:
Problems 4
Quark dynamics: the strong interaction / 5:
Colour / 5.1:
Quantum chromodynamics (QCD) / 5.2:
The strong coupling constant / 5.2.1:
Screening, antiscreening and asymptotic freedom / 5.2.2:
New forms of matter / 5.3:
Exotic hadrons / 5.3.1:
The quark-gluon plasma / 5.3.2:
Jets and gluons / 5.4:
Colour counting / 5.4.1:
Deep inelastic scattering and nucleoli structure / 5.5:
Scaling / 5.5.1:
The quark-par ton model / 5.5.2:
Scaling violations and parton distributions / 5.5.3:
Inelastic neutrino scattering / 5.5.4:
Other processes / 5.0:
Jets / 5.0.1:
Lepton pair production / 5.0.2:
Current and constituent quarks / 5.7:
Problems 5
Weak interactions and electroweak unification / 6:
Charged and neutral currents / 6.1:
Charged current reactions / 6.2:
W-lepton interactions / 6.2.1:
Lepton-quark symmetry and mixing / 6.2.2:
W-boson decays / 6.2.3:
Charged current selection rules / 6.2.4:
The third generation / 6.3:
More quark mixing / 6.3.1:
Properties of the top quark / 6.3.2:
Neutral currents and the unified theory / 6.4:
Electroweak unification / 0.4.1:
The Z° vertices and electroweak reactions / 6.4.2:
Gauge invariance and the Higgs boson / 6.5:
Unification and the gauge principle / 6.5.1:
Particle masses and the Higgs held / 6.5.2:
Properties of the Higgs boson / 6.5.3:
Discovery of the Higgs boson / 6.5.4:
Problems 0
Symmetry breaking in the weak interaction / 7:
P violation, C violation, and CP conservation / 7.1:
Muon decay symmetries / 7.1.1:
Parity violation in electro weak processes / 7.1.2:
Spin structure of the weak interactions / 7.2:
Left-handed neutrinos and right-handed antineutrinos / 7.2.1:
Particles with mass: chirality / 7.2.2:
Neutral kaons: particle-antiparticle mixing and CP violation / 7.3:
CP invariance and neutral kaons / 7.3.1:
CP violation in K0L decay / 7.3.2:
Flavour oscillations and CPT invariance / 7.3.3:
CP violation and flavour oscillations in B decays / 7.4:
Direct CP violation in decay rates / 7.4.1:
B0-B0 mixing / 7.4.2:
CP violation in interference / 7.4.3:
CP violation in the standard model / 7.5:
Problems 7
Models and theories of nuclear physics / 8:
The nucleon-nucleon potential / 8.1:
Fermi gas model / 8.2:
Shell model / 8.3:
Shell structure of atoms / 8.3.1:
Nuclear shell structure and magic numbers / 8.3.2:
Spins, parities, and magnetic dipole moments
Excited states
Nonspbcrical nuclei / 8.4:
Electric quadrupole moments / 8.4.1:
Collective model / 8.4.2:
Summary of nuclear structure models / 8.5:
¿ decay / 8.6:
ß decay / 8.7:
V - A theory / 8.7.1:
Electron and positron momentum distributions / 8.7.2:
Selection rules / 8.7.3:
Applications of Fermi theory / 8.7.4:
Transition rates / 8.8:
Problems 8
Applications of nuclear and particle physics / 9:
Induced fission and chain reactions / 9.1:
Thermal fission reactors / 9.1.2:
Radioactive waste / 9.1.3:
Power from ADS systems / 9.1.4:
Fusion / 9.2:
Coulomb barrier / 9.2.1:
Fusion reaction rates / 9.2.2:
Nucleosynthesis and stellar evolution / 9.2.3:
Fusion reactors / 9.2.4:
Nuclear weapons / 9.3:
Fission devices / 9.3.1:
Fission/fusion devices / 9.3.2:
Biomedical applications / 9.4:
Radiation and living matter / 9.4.1:
Radiation therapy / 9.4.2:
Medical imaging using ionising radiation / 9.4.3:
Magnetic resonance imaging / 9.4.4:
Further applications / 9.5:
Computing and data analysis / 9.5.1:
Archaeology and geophysics / 9.5.2:
Accelerators and detectors / 9.5.3:
Industrial applications / 9.5.4:
Problems 9
Some outstanding questions and future prospects / 10:
Hadrons and nuclei / 10.1:
Hadron structure and the nuclear environment / 10.2.1:
Nuclear structure / 10.2.2:
Unification schemes / 10.3:
Grand unification / 10.3.1:
Supersymmetry / 10.3.2:
Strings and things / 10.3.3:
The nature of the neutrino / 10.4:
Neutrinoless double beta decay / 10.4.1:
Particle astrophysics / 10.5:
Neutrino astrophysics / 10.5.1:
Cosmology and dark matter / 10.5.2:
Matter antimatter asymmetry / 10.5.3:
Axioms and the strong CP problem / 10.5.4:
Some results in quantum mechanics / A:
Barrier penetration / A.1:
Density of states / A.2:
Perturbation theory and the Second Golden Rule / A.3:
Isospin formalism / A.4:
Isospin operators and quark states / A.4.1:
Hadron states / A.4.2:
Problems A
Relativistic kinematics / B:
Loreutz transformations and four-vectors / B.1:
Frames of reference / B.2:
Invariants / B.3:
Problems B
Rutherford scattering / C:
Classical physios / C.1:
Quantum mechanics / C.2:
Problems C
Gauge theories / D:
Gauge invariance and the standard model / D.1:
Electromagnetism and the gauge principle / D.1.1:
The standard model / D.1.2:
Problems D / D.2:
Short answers to selected problems / E:
References
Index
Inside Rear Cover: Table of constants and conversion factors
Preface
Notes
Basic concepts / 1:
9.

図書

図書
Joseph B. Lambert, Eugene P. Mazzola, Clark D. Ridge
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xxii, 456 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to First Edition
Acknowledgments
Preface to Second Edition
Solutions
Symbols
Abbreviations
Introduction / 1:
Magnetic Properties of Nuclei / 1.1:
The Chemical Shift / 1.2:
Excitation and Relaxation / 1.3:
Pulsed Experiments / 1.4:
The Coupling Constant / 1.5:
Quantitation and Complex Splitting / 1.6:
Commonly Studied Nuclides / 1.7:
Dynamic Effects / 1.8:
Spectra of Solids / 1.9:
Problems
Tips on Solving NMR Problems
References
Further Reading
Introductory Experimental Methods / 2:
The Spectrometer / 2.1:
Sample Preparation / 2.2:
Optimizing the Signal / 2.3:
Sample Tube Placement / 2.3.1:
Probe Tuning / 2.3.2:
Field/Frequency Locking / 2.3.3:
Spectrometer Shimming / 2.3.4:
Determination of NMR Spectral-Acquisition Parameters / 2.4:
Number of Data Points / 2.4.1:
Spectral Width / 2.4.2:
Filter Bandwidth / 2.4.3:
Acquisition Time / 2.4.4:
Transmitter Offset / 2.4.5:
Flip Angle / 2.4.6:
Receiver Gain / 2.4.7:
Number of Scans / 2.4.8:
Steady-State Scans / 2.4.9:
Oversampling and Digital Filtration / 2.4.10:
Decoupling for X Nuclei / 2.4.11:
Typical NMR Experiments / 2.4.12:
Determination of NMR Spectral-Processing Parameters / 2.5:
Exponential Weighting / 2.5.1:
Zero Filling / 2.5.2:
FID Truncation and Spectral Artifacts / 2.5.3:
Resolution / 2.5.4:
Determination of NMR Spectra: Spectral Presentation / 2.6:
Signal Phasing and Baseline Correction / 2.6.1:
Zero Referencing / 2.6.2:
Determination of Certain NMR Parameters / 2.6.3:
Chemical Shifts and Coupling Constants / 2.6.3.1:
1H Integration / 2.6.3.2:
Calibrations / 2.7:
Pulse Width (Flip Angle) / 2.7.1:
Decoupler Field Strength / 2.7.2:
Factors That Influence Proton Shifts / 3:
Local Fields / 3.1.1:
Nonlocal Fields / 3.1.2:
Proton Chemical Shifts and Structure / 3.2:
Saturated Aliphatics / 3.2.1:
Alkanes / 3.2.1.1:
Functionalized Alkanes / 3.2.1.2:
Unsaturated Aliphatics / 3.2.2:
Alkynes / 3.2.2.1:
Alkenes / 3.2.2.2:
Aldehydes / 3.2.2.3:
Aromatics / 3.2.3:
Protons on Oxygen and Nitrogen / 3.2.4:
Programs for Empirical Calculations / 3.2.5:
Medium and Isotope Effects / 3.3:
Medium Effects / 3.3.1:
Isotope Effects / 3.3.2:
Factors That Influence Carbon Shifts / 3.4:
Carbon Chemical Shifts and Structure / 3.5:
Acyclic Alkanes / 3.5.1:
Cyclic Alkanes / 3.5.1.2:
Unsaturated Compounds / 3.5.1.3:
Alkynes and Nitriles / 3.5.2.1:
Carbonyl Groups / 3.5.2.3:
Tables of Chemical Shifts / 3.5.4:
Further Tips on Solving NMR Problems
First- and Second-order Spectra / 4:
Chemical and Magnetic Equivalence / 4.2:
Signs and Mechanisms of Coupling / 4.3:
Couplings over One Bond / 4.4:
Geminal Couplings / 4.5:
Vicinal Couplings / 4.6:
Long-range Couplings / 4.7:
¿- ¿ Overlap / 4.7.1:
Zigzag Pathways / 4.7.2:
Through-Space Coupling / 4.7.3:
Spectral Analysis / 4.8:
Second-order Spectra / 4.9:
Deceptive Simplicity / 4.9.1:
Virtual Coupling / 4.9.2:
Shift Reagents / 4.9.3:
Isotope Satellites / 4.9.4:
Tables of Coupling Constants / 4.10:
Further Topics in One-Dimensional NMR Spectroscopy / 5:
Spin-Lattice and Spin-Spin Relaxation / 5.1:
Causes of Relaxation / 5.1.1:
Measurement of Relaxation Time / 5.1.2:
Transverse Relaxation / 5.1.3:
Structural Ramifications / 5.1.4:
Anisotropic Motion / 5.1.5:
Segmental Motion / 5.1.6:
Partially Relaxed Spectra / 5.1.7:
Quadrupolar Relaxation / 5.1.8:
Reactions on the NMR Time Scale / 5.2:
Hindered Rotation / 5.2.1:
Ring Reversal / 5.2.2:
Atomic Inversion / 5.2.3:
Valence Tautomerizations and Bond Shifts / 5.2.4:
Quantification / 5.2.5:
Magnetization Transfer and Spin Locking / 5.2.6:
Multiple Resonance / 5.3:
Spin Decoupling / 5.3.1:
Difference Decoupling / 5.3.2:
Classes of Multiple Resonance Experiments / 5.3.3:
Off-resonance Decoupling / 5.3.4:
The Nuclear Overhauser Effect / 5.4:
Origin / 5.4.1:
Observation / 5.4.2:
Difference NOE / 5.4.3:
Applications / 5.4.4:
Limitations / 5.4.5:
Spectral Editing / 5.5:
The Spin-Echo Experiment / 5.5.1:
The Attached Proton Test / 5.5.2:
The DEPT Sequence / 5.5.3:
Sensitivity Enhancement / 5.6:
The INEPT sequence / 5.6.1:
Refocused INEPT / 5.6.2:
Spectral Editing with Refocused INEPT / 5.6.3:
DEPT Revisited / 5.6.4:
Carbon Connectivity / 5.7:
Phase Cycling, Composite Pulses, and Shaped Pulses / 5.8:
Phase Cycling / 5.8.1:
Composite Pulses / 5.8.2:
Shaped Pulses / 5.8.3:
Two-Dimensional NMR Spectroscooy / 6:
Proton-Proton Correlation Through/Coupling / 6.1:
COSY45 / 6.1.1:
Long-Range COSY (LRCOSY or Delayed COSY) / 6.1.2:
Phase-Sensitive COSY (¿-COSY) / 6.1.3:
Multiple Quantum Filtration / 6.1.4:
TOtal Correlation SpectroscopY (TOCSY) / 6.1.5:
Relayed COSY / 6.1.6:
J-Resolved Spectroscopy / 6.1.7:
COSY for Other Nuclides / 6.1.8:
Proton-Heteronucleus Correlation / 6.2:
HETCOR / 6.2.1:
HMQC / 6.2.2:
BIRD-HMQC / 6.2.3:
HSQC / 6.2.4:
COLOC / 6.2.5:
HMBC / 6.2.6:
Heteronuclear Relay Coherence Transfer / 6.2.7:
Proton-Proton Correlation Through Space or Chemical Exchange / 6.3:
Carbon-Carbon Correlation / 6.4:
Higher Dimensions / 6.5:
Pulsed Field Gradients / 6.6:
Diffusion-Ordered Spectroscopy / 6.7:
Summary of 2D Methods / 6.8:
Advanced Experimental Methods / 7:
Part A: One-Dimensional Techniques / 7.1:
T1 Measurements / 7.1.1:
13C Spectral Editing Experiments / 7.1.2:
The APT Experiment / 7.1.2.1:
The DEPT Experiment / 7.1.2.2:
NOE Experiments / 7.1.3:
The NOE Difference Experiment / 7.1.3.1:
The Double-Pulse, Field-Gradient, Spin-Echo NOE Experiment / 7.1.3.2:
Part B: Two-Dimensional Techniques / 7.2:
Two-Dimensional NMR Data-Acquisition Parameters / 7.2.1:
Number of Time Increments / 7.2.1.1:
Spectral Widths / 7.2.1.3:
Relaxation Delay / 7.2.1.4:
Number of Scans per Time Increment / 7.2.1.8:
Two-Dimensional NMR Data-Processing Parameters / 7.2.1.10:
Weighting Functions / 7.2.2.1:
Digital Resolution / 7.2.2.2:
Linear Prediction / 7.2.2.4:
Two-Dimensional NMR Data Display / 7.2.3:
Phasing and Zero Referencing / 7.2.3.1:
Symmetrization / 7.2.3.2:
Use of Cross Sections in Analysis / 7.2.3.3:
Part C: Two-Dimensional Techniques: The Experiments / 7.3:
Homonuclear Chemical-Shift Correlation Experiments via Scalar / 7.3.1:
Coupling
The COSY Family: COSY-90°, COSY-45°, Long-Range COSY, and DQF-COSY / 7.3.1.1:
The TOCSY Experiment / 7.3.1.2:
Direct Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.2:
The HMQC Experiment / 7.3.2.1:
The HSQC Experiment / 7.3.2.2:
The HETCOR Experiment / 7.3.2.3:
Indirect Heteronuclear Chemical-Shift Correlation via Scalar Coupling / 7.3.3:
The HMBC Experiment / 7.3.3.1:
The FLOCK Experiment / 7.3.3.2:
The HSQC-TOCSY Experiment / 7.3.3.3:
Homonuclear Chemical-Shift Correlation via Dipolar Coupling / 7.3.4:
The NOESY Experiment / 7.3.4.1:
The ROESY Experiment / 7.3.4.2:
1D and Advanced 2D Experiments / 7.3.5:
The 1D TOCSY Experiment / 7.3.5.1:
The 1D NOESY and ROESY Experiments / 7.3.5.2:
The Multiplicity-Edited HSQC Experiment / 7.3.5.3:
The H2BC Experiment / 7.3.5.4:
Nonuniform Sampling / 7.3.5.5:
Pure Shift NMR / 7.3.5.6:
Covariance NMR / 7.3.5.7:
Pure Shift-Covariance NMR / 7.3.6:
Structural Elucidation: Two Methods / 8:
Part A: Spectral Analysis / 8.1:
1H NMR Data / 8.1.1:
13C NMR Data / 8.1.2:
The COSY Experiment / 8.13:
General Molecular Assembly Strategy / 8.1.6:
A Specific Molecular Assembly Procedure / 8.1.8:
Part B: Computer-Assisted Structure Elucidation / 8.1.9:
CASE Procedures / 8.2.1:
T-2 Toxin / 8.2.2:
Derivation of the NMR Equation / Appendix A:
The Bloch Equations / Appendix B:
Reference
Quantum Mechanical Treatment of the Two-Spin System / Appendix C:
Analysis of Second-Order. Three- and Four-Spin Systems by Inspection / Appendix D:
Relaxation / Appendix E:
Product-Operator Formalism and Coherence-Level Diagrams / Appendix F:
Stereochemical Considerations / Appendix G:
Homotopics Groups / G.1:
Enantiotopic Groups / G.2:
Diastereotopic Groups / G.3:
Index
Preface to First Edition
Acknowledgments
Preface to Second Edition
10.

図書

図書
edited by Mark Wild, Gregory J. Offer
出版情報: Hoboken, NJ : John Wiley & Sons, 2019  xiv, 335 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
Overview of a LiS cell / 1.1:
The Development of the Cell Voltage / 1.2:
Using the Electrochemical Potential / 1.2.1:
Electrochemical Reactions / 1.2.2:
The Electric Double Layer / 1.2.3:
Reaction Equilibrium / 1.2.4:
A Finite Electrolyte / 1.2.5:
The Need for a Second Electrode / 1.2.6:
Allowing a Current to Flow / 1.3:
The Reaction Overpotential / 1.3.1:
The Transport Overpotential / 1.3.2:
General Comments on the Over potentials / 1.3.3:
Additional Processes Which Define the Behavior of a LiS Cell / 1.4:
Multiple Electrochemical Reactions at One Surface / 1.4.1:
Chemical Reactions / 1.4.2:
Species Solubility and Indirect Reaction Effects / 1.4.3:
Transport Limitations in the Cathode / 1.4.4:
The Active Surface Area / 1.4.5:
Precipitate Accumulation / 1.4.6:
Electrolyte Viscosity, Conductivity, and Species Transport / 1.4.7:
Side Reactions and SEI Formation at the Anode / 1.4.8:
Anode Morphological Changes / 1.4.9:
Polysulfide Shuttle / 1.4.10:
Summary / 1.5:
References
Sulfur Cathodes / Holger Althues and Susanne Dörfler and Sören Thieme and Patrick Strubel and Stefan Kaskel2:
Cathode Design Criteria / 2.1:
Overview of Cathode Components and Composition / 2.1.1:
Cathode Design: Role of Electrolyte in Sulfur Cathode Chemistry / 2.1.2:
Cathode Design: Impact on Energy Density on Cell Level / 2.1.3:
Cathode Design: Impact on Cycle Life and Self-discharge / 2.1.4:
Cathode Design: Impact on Rate Capability / 2.1.5:
Cathode Materials / 2.2:
Properties of Sulfur / 2.2.1:
Porous and Nanostructured Carbons as Conductive Cathode Scaffolds / 2.2.2:
Graphite-Like Carbons / 2.2.2.1:
Synthesis of Graphite-like Carbons / 2.2.2.2:
Carbon Black / 2.2.2.3:
Activated Carbons / 2.2.2.4:
Carbide-Derived Carbon / 2.2.2.5:
Hard-Template-Assisted Carbon Synthesis / 2.2.2.6:
Carbon Surface Chemistry / 2.2.2.7:
Carbon/Sulfur Composite Cathodes / 2.2.3:
Microporous Carbons / 2.2.3.1:
Mesoporous Carbons / 2.2.3.2:
Macroporous Carbons and Nanotube-based Cathode Systems / 2.2.3.3:
Hierarchical Mesoporous Carbons / 2.2.3.4:
Hierarchical Microporous Carbons / 2.2.3.5:
Hollow Carbon Spheres / 2.2.3.6:
Graphene / 2.2.3.7:
Retention of LiPS by Surface Modifications and Coating / 2.2.4:
Metal Oxides as Adsorbents for Lithium Polysulfides / 2.2.4.1:
Cathode Processing / 2.3:
Methods for C/S Composite Preparation / 2.3.1:
Wet (Organic, Aqueous) and Dry Coating for Cathode Production / 2.3.2:
Alternative Cathode Support Concepts (Carbon Current Collectors, Binder-free Electrodes) / 2.3.3:
Processing Perspective for Carbons, Binders, and Additives / 2.3.4:
Conclusions / 2.4:
Electrolyte for Lithium-Sulfur Batteries / Marzieh Barghamadi and Mustafa Musameh and Thomas Rüther and Anand I. Bhatt and Anthony F. Hollenkamp and Adam S. Best3:
The Case for Better Batteries / 3.1:
Li-S Battery: Origins and Principles / 3.2:
Solubility of Species and Electrochemistry / 3.3:
Liquid Electrolyte Solutions / 3.4:
Modified Liquid Electrolyte Solutions / 3.5:
Variation in Electrolyte Salt Concentration / 3.5.1:
Mixed Organic-Ionic Liquid Electrolyte Solutions / 3.5.2:
Ionic Liquid Electrolyte Solutions / 3.5.3:
Solid and Solidified Electrolyte Configurations / 3.6:
Polymer Electrolytes / 3.6.1:
Absorbed Liquid/Gelled Electrolyte / 3.6.1.1:
Solid Polymer Electrolytes / 3.6.1.2:
Non-polymer Solid Electrolytes / 3.6.2:
Challenges of the Cathode and Solvent for Device Engineering / 3.7:
Tire Cathode Loading Challenge / 3.7.1:
Cathode Wetting Challenge / 3.7.2:
Concluding Remarks and Outlook / 3.8:
Anode-Electrolyte Interface / Mark Wild4:
Introduction / 4.1:
SEI Formation / 4.2:
Anode Morphology / 4.3:
Electrolyte Additives for Stable SEI Formation / 4.4:
Barrier Layers on the Anode / 4.6:
A Systemic Approach / 4.7:
Mechanisms / Part II:
Reference
Molecular Level Understanding of the Interactions Between Reaction Intermediates of Li-S Energy Storage Systems and Ether Solvents / Rajeev S. Assary and Larry A. Curtiss5:
Computational Details / 5.1:
Results and Discussions / 5.3:
Reactivity of Li-S Intermediates with Dimethoxy Ethane (DME) / 5.3.1:
Kinetic Stability of Ethers in the Presence of Lithium Polysulfide / 5.3.2:
Linear Fluorinated Ethers / 5.3.3:
Summary and Conclusions / 5.4:
Acknowledgments
Lithium Sulfide / Sylwia Walus6:
Li2S as the End Discharge Product / 6.1:
General / 6.2.1:
Discharge Product: Li2S or Li2S2/Li2S? / 6.2.2:
A Survey of Experimental and Theoretical Findings Involving Li2S and Li2S2 Formation and Proposed Reduction Pathways / 6.2.3:
Mechanistic Insight into Li2S/Li2S2 Nucleation and Growth / 6.2.4:
Strategies to Limit Li2S Precipitation and Enhance the Capacity / 6.2.5:
Charge Mechanism and its Difficulties / 6.2.6:
Li2S-Based Cathodes: Toward a Li Ion System / 6.3:
Initial Activation of Li2S - Mechanism of First Charge / 6.3.1:
Recent Developments in Li2S Cathodes for Improved Performances / 6.3.3:
Degradation in Lithium-Sulfur Batteries / Rajlakshmi Purkoyastha6.4:
Degradation Processes Within a Lithium- Sulfur Cell / 7.1:
Degradation at Cathode / 7.2.1:
Degradation at Anode / 7.2.2:
Degradation in Electrolyte / 7.2.3:
Degradation Due to Operating Conditions: Temperature, C-Rates, and Pressure / 7.2.4:
Degradation Due to Geometry: Scale-Up and Topology / 7.2.5:
Capacity Fade Models / 7.3:
Dendrite Models / 7.3.1:
Equivalent Circuit Network Models / 7.3.2:
Methods of Detecting and Measuring Degradation / 7.4:
Incremental Capacity Analysis / 7.4.1:
Differential Thermal Voltammetry / 7.4.2:
Electrochemical Impedance Spectroscopy / 7.4.3:
Resistance Curves / 7.4.4:
Macroscopic Indicators / 7.4.5:
Methods for Countering Degradation / 7.5:
Future Direction / 7.6:
Modeling / Part III:
Lithium-Sulfur Model Development / Teng Zhang and Monica Marinescu and Gregory J. Offer8:
Zero-Dimensional Model / 8.1:
Model Formulation / 8.2.1:
Shuttle and Precipitation / 8.2.1.1:
Time Evolution of Species / 8.2.1.3:
Model Implementation / 8.2.1.4:
Basic Charge/Discharge Behaviors / 8.2.2:
Modeling Voltage Loss in Li-S Cells / 8.3:
Electrolyte Resistance / 8.3.1:
Anode Potential / 8.3.2:
Surface Passivation / 8.3.3:
Transport Limitation / 8.3.4:
Higher Dimensional Models / 8.4:
One-Dimensional Models / 8.4.1:
Multi-Scale Models / 8.4.2:
Battery Management Systems - State Estimation for Lithium-Sulfur Batteries / Daniel J. Auger and Abbas Fotouhi and Karsten Propp and Stefano Longo8.5:
Motivation / 9.1:
Capacity / 9.1.1:
State of Charge (SoC) / 9.1.2:
State of Health (SoH) / 9.1.3:
Limitations of Existing Battery State Estimation Techniques / 9.1.4:
SoC Estimation from "Coulomb Counting" / 9.1.4.1:
SoC Estimation from Open-Circuit Voltage (OCV) / 9.1.4.2:
Direction of Current Work / 9.1.5:
Experimental Environment for Li-S Algorithm Development / 9.2:
Pulse Discharge Tests / 9.2.1:
Driving Cycle Tests / 9.2.2:
State Estimation Techniques from Control Theory / 9.3:
Electrochemical Models / 9.3.1:
Equivalent Circuit Network (ECN) Models / 9.3.2:
Kalman Filters and Their Derivatives / 9.3.3:
State Estimation Techniques from Computer Science / 9.4:
ANFIS as a Modeling Tool / 9.4.1:
Human Knowledge and Fuzzy Inference Systems (FIS) / 9.4.2:
Adaptive Neuro-Fuzzy Inference Systems / 9.4.3:
State-of-Charge Estimation Using ANFIS / 9.4.4:
Conclusions and Further Directions / 9.5:
Application / Part IV:
Commercial Markets for Li-S / Mark Crittenden10:
Technology Strengths Meet Market Needs / 10.1:
Weight / 10.1.1:
Safety / 10.1.2:
Cost / 10.1.3:
Temperature Tolerance / 10.1.4:
Shipment and Storage / 10.1.5:
Power Characteristics / 10.1.6:
Environmentally Friendly Technology (Clean Tech) / 10.1.7:
Pressure Tolerance / 10.1.8:
Control / 10.1.9:
Electric Aircraft / 10.2:
Satellites / 10.3:
Cars / 10.4:
Buses / 10.5:
Trucks / 10.6:
Electric Scooter and Electric Bikes / 10.7:
Marine / 10.8:
Energy Storage / 10.9:
Low-Temperature Applications / 10.10:
Defense / 10.11:
Looking Ahead / 10.12:
Conclusion / 10.13:
Battery Engineering / Gregory J. Offer11:
Mechanical Considerations / 11.1:
Thermal and Electrical Considerations / 11.2:
Case Study / Paul Brooks12:
A Potted History of Eternal Solar Flight / 12.1:
Why Has It Been So Difficult? / 12.3:
Objectives of HALE UAV / 12.4:
Stay Above the Cloud / 12.4.1:
Stay Above the Wind / 12.4.2:
Stay in the Sun / 12.4.3:
Year-Round Markets / 12.4.4:
Seasonal Markets / 12.4.5:
How Valuable Are These Markets and What Does That Mean for the Battery? / 12.4.6:
Worked Example - HALE UAV / 12.5:
Cells, Batteries, and Real Life / 12.6:
Cycle Life, Charge, and Discharge Rates / 12.6.1:
Payload / 12.6.2:
Avionics / 12.6.3:
Temperature / 12.6.4:
End-of-Life Performance / 12.6.5:
Protection / 12.6.6:
Balancing - Useful Capacity / 12.6.7:
Summary of Real-World Issues / 12.6.8:
A Quick Aside on Regenerative Fuel Cells / 12.7:
So What Do We Need from Our Battery Suppliers? / 12.8:
The Challenges for Battery Developers / 12.9:
The Answer to the Title / 12.10:
Index / 12.11:
Preface
Materials / Part I:
Electrochemical Theory and Physics / Geraint Minton1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼