close
1.

図書

図書
edited by Robert M Glaeser, Eva Nogales, Wah Chiu
出版情報: Bristol : IOP Publishing, c2021  1 v. ; 27 cm
シリーズ名: Biophysical Society-IOP series
所蔵情報: loading…
目次情報: 続きを見る
Editor biographies
Section authors
Introduction and overview / 1:
Visualizing biological molecules to understand life's principles / 1.1:
A brief historical perspective on scattering-based structural biology methods / 1.1.1:
Unique capabilities of cryo-EM: polymers and viruses / 1.1.2:
Unique capabilities of cryo-EM: integral membrane proteins / 1.1.3:
Unique capabilities of cryo-EM: large assemblies / 1.1.4:
Unique capabilities of cryo-EM: scarce samples / 1.1.5:
Unique capabilities of cryo-EM: compositionally heterogeneous samples / 1.1.6:
Unique capabilities of cryo-EM: conformationally complex samples / 1.1.7:
Current limits of cryo-EM and things yet to come / 1.1.8:
Recovery of 3D structures from images of weak-phase objects / 1.2:
The signal that we care about is attributed to elastic scattering of electrons / 1.2.1:
The electron accumulates information as it passes through a specimen / 1.2.2:
The image wave function, and thus the image intensity, suffers from imperfections in the microscope optics / 1.2.3:
Intermediate summary: the image intensity is linear in the projected Coulomb potential of the object / 1.2.4:
Structure-factor phases, as well as amplitudes, are retained in the computed Fourier transforms of image intensities / 1.2.5:
The projection theorem: the Fourier transform of an image corresponds to a 2D 'central' section within the 3D Fourier transform of the object / 1.2.6:
The 3D object can be reconstructed from multiple projections / 1.2.7:
Similarities and differences between sub-tomogram averaging and single-particle cryo-EM / 1.2.8:
References
Sample preparation / 2:
Overview / 2.1:
Initial screening of samples in negative stain / 2.2:
Introduction / 2.2.1:
Negative staining for TEM / 2.2.2:
Purpose of negative staining when starting a project / 2.2.3:
Techniques for the preparation of negatively stained samples / 2.2.4:
Use of data processing to provide feedback to optimize samples for cryo-EM / 2.2.5:
Standard method of making grids for cryo-EM / 2.3:
Grids and support films / 2.3.1:
Plasma cleaning or 'glow discharging' grids / 2.3.2:
Types of apparatus used for plunge freezing / 2.3.3:
Blotting and plunging the grid using plunge freezers / 2.3.4:
Common issues faced in making grids for cryo-EM imaging / 2.3.5:
Requirement to make very thin specimens for cryo-EM / 2.4:
Inelastic electron scattering causes the image quality to deteriorate with increasing sample thickness values / 2.4.1:
The projection approximation may fail if the sample is too thick / 2.4.2:
Areas of a grid where the sample is obviously too thick can, and should be, avoided during data collection / 2.4.3:
Areas where the sample is much too thin, perhaps even air-dried, can sometimes be avoided just on the basis of their subjective appearance / 2.4.4:
Current strategies for optimizing preparation of cryo-grids / 2.5:
Behavior of particles in the thin film environment / 2.5.1:
Approaches to alter particle behavior in the thin film / 2.5.2:
New technologies for sample preparation / 2.5.3:
Data collection / 3:
Radiation damage in cryo-EM / 3.1:
Interaction cross sections, elastic, and inelastic interactions / 3.2.1:
Cryoprotection and primary, secondary, and tertiary radiation damage / 3.2.3:
Radiation damage dependence on electron energy / 3.2.4:
Practical implications of radiation damage: image averaging in cryo-EM / 3.2.5:
Resolution dependence and exposure weighting / 3.2.6:
Radiation damage versus beam-induced motion and charging / 3.2.7:
Low-dose protocols for recording images / 3.3:
Automated low-dose imaging / 3.3.1:
Improving throughput / 3.3.2:
Electron exposure levels used during high-resolution data collection / 3.3.3:
Practical considerations: defocus. stigmation, coma-free illumination, and phase plates / 3.4:
Why do we need to defocus the microscope? / 3.4.1:
Effects of defocus on the image and its information content / 3.4.2:
Defocus variation is necessary to obtain uniform information coverage in reciprocal space / 3.4.3:
Optical correction of astigmatism and coma aberrations / 3.4.4:
Use of phase plates to improve image contrast and the expected benefits / 3.4.5:
Practical considerations: movie-mode data acquisition / 3.5:
Magnification and resolution / 3.5.1:
Dose rate / 3.5.2:
Strategies for motion correction / 3.5.3:
Total dose or exposure time / 3.5.4:
File size of movie datasets / 3.5.5:
Summary / 3.5.6:
Data processing / 4:
Automated extraction of particles / 4.1:
From micrographs to particles / 4.2.1:
Manual selection / 4.2.2:
Unbiased automated approaches / 4.2.3:
Particle extraction / 4.2.4:
Cleaning up the results through classification / 4.2.5:
CTF estimation and image correction (restoration) / 4.3:
CTF estimation / 4.3.1:
Image correction / 4.3.2:
Magnification distortion / 4.3.3:
Concluding remarks / 4.3.4:
Merging data from structurally homogeneous subsets / 4.4:
How many particle images are needed for a 3D reconstruction? / 4.4.1:
Obtaining a 3D reconstruction / 4.4.2:
Acknowledgments
3D classification of structurally heterogeneous particles / 4.5:
Global 3D classification / 4.5.1:
Masked 3D classification / 4.5.3:
3D classification of particles with pseudo-symmetry / 4.5.4:
Dealing with continuous motions / 4.5.5:
Conclusion / 4.5.6:
Preferred orientation: how to recognize and deal with adverse effects / 4.6:
Protein interaction with the air-water interface / 4.6.1:
Preferred orientation and its effects in cryo-EM / 4.6.2:
Quantifying preferred orientation and its effects on cryo-EM reconstructions / 4.6.3:
Overcoming the effects of preferred orientation / 4.6.4:
Areas of research / 4.6.5:
B factors and map sharpening / 4.7:
An ideal 3D reconstruction has a predictable radial amplitude spectrum / 4.7.1:
Actual 3D reconstructions feature dampened amplitudes at high frequencies / 4.7.2:
Several factors contribute to signal decay at high frequencies / 4.7.3:
Gaussian falloff, parametrized by a B factor, is a useful model of signal loss / 4.7.4:
Estimating B factors / 4.7.5:
Sharpening a map / 4.7.6:
A single inverse Gaussian filter using a global B factor does not always lead to the optimal map / 4.7.7:
Optical aberrations and Ewald sphere curvature / 4.8:
Further considerations on the aberration function ¿(s) / 4.8.1:
Common types of aberrations / 4.8.2:
Practical considerations for aberration correction / 4.8.3:
Thick objects and the Ewald sphere / 4.8.4:
Ewald sphere correction / 4.8.5:
Map validation / 5:
Measures of resolution: FSC and local resolution / 5.1:
The 'gold-standard' FSC / 5.2.1:
Resolution thresholds / 5.2.2:
FSC artifacts due to masking, filtration, and CTF / 5.2.3:
Local resolution / 5.2.4:
Resolution anisotropy / 5.2.5:
Recognizing the effect of bias and over-fitting / 5.3:
Introduction and nature of the problem arising from iterative refinement / 5.3.1:
Assessing the consistency of maps with projection data / 5.3.2:
Detecting over-fitting at high resolution in maps and effect on the FSC / 5.3.3:
Local over-fitting / 5.3.4:
Estimates of alignment accuracy / 5.3.5:
Correlation and the signal-to-noise ratio (SNR) / 5.4.1:
Analysis of alignment accuracy with synthetic data / 5.4.2:
The relationship between alignment accuracy and resolution / 5.4.3:
Estimating alignment accuracy from tilt pairs / 5.4.4:
Estimating alignment accuracy from the reconstructed map / 5.4.5:
Estimating alignment accuracy from projection-matching results / 5.4.6:
Discussion / 5.5:
Acknowledgements
Model building and validation / 6:
Using known components or homologs: model building / 6.1:
Identifying known/modeled structures of individual subunits / 6.2.1:
Rigid-body fitting / 6.2.2:
Flexible fitting / 6.2.3:
Building atomistic models in cryo-EM density maps / 6.3:
Building models into cryo-EM density maps / 6.3.1:
Model refinement / 6.3.3:
Model validation / 6.3.4:
Model uncertainty / 6.3.5:
Model deposition / 6.3.6:
Revisiting the cryo-EM model challenge / 6.3.7:
Toward the future / 6.3.8:
Conclusions / 6.3.9:
Quality evaluation of cryo-EM map-derived models / 6.4:
Map-model metrics / 6.4.1:
Model-only metrics / 6.4.3:
Summary and conclusions / 6.4.4:
Acknowledgment
How algorithms from crystallography are helping electron cryo-microscopy / 6.5:
Map improvement / 6.5.1:
Map interpretation and model building / 6.5.3:
Model optimization / 6.5.4:
Validation / 6.5.5:
Validation-guided corrections / 6.5.6:
Archiving structures and data / 6.5.7:
Single-particle cryo-EM structure deposition / 6.6.1:
Preparing files for deposition / 6.6.3:
Data validation / 6.6.4:
Sample sequence and ligands / 6.6.5:
Deposition using OneDep / 6.6.6:
Post-deposition: what happens next? / 6.6.7:
Accessing cryo-EM structure data / 6.6.8:
Editor biographies
Section authors
Introduction and overview / 1:
2.

図書

図書
Brian W. Pfennig
出版情報: Hoboken, NJ : Wiley, 2022  xvi, 804 p. ; 28 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Acknowledgments
About the Companion Website
The Structure of Matter / Chapter 1:
Science as an Art Form / 1.1:
Atomism / 1.2:
The Anatomy of an Atom / 1.3:
The Periodic Table of the Elements / 1.4:
The Nucleus / 1.5:
Nuclear Reactions / 1.6:
Radioactive Decay and the Band of Stability / 1.7:
The Shelf Model of the Nucleus / 1.8:
The Origin of the Elements / 1.9:
The Big Bang / 1.9.1:
Big Bang Nucleosynthesis / 1.9.2:
Stellar Nucleosynthesis / 1.9.3:
The s-Process and the r-Process / 1.9.4:
Exercises
Bibliography
The Structure of the Atom / Chapter 2:
The Wave-Like Properties of Light / 2.1:
The Electromagnetic Spectrum / 2.2:
The Interference of Waves / 2.3:
The Line Spectrum of Hydrogen / 2.4:
Energy Levels in Atoms / 2.5:
The Bohr Model of the Atom / 2.6:
In-Depth: Derivation of the Bohr Model of the Atom / 2.6.1:
The Wave-Like Properties of Matter / 2.7:
Circular Standing Waves and the Quantization of Angular Momentum / 2.8:
The Classical Wave Equation / 2.9:
The Particle in a Box Model / 2.10:
In-Depth: The Quantum Mechanical Behavior of Nanoparticles / 2.10.1:
The Heisenberg Uncertainty Principle / 2.11:
The Schrödinger Equation / 2.12:
The Hydrogen Atom / 2.13:
The Radial Wave Functions / 2.13.1:
The Angular Wave Functions / 2.13.2:
The Spin Quantum Number / 2.14:
The Topological Atom / 2.15:
In-Depth: Atomic Units / 2.15.1:
The Periodicity of the Elements / Chapter 3:
Introduction / 3.1:
Hydrogenic Orbitals in Polyelectronic Atoms / 3.2:
In-Depth: The Helium Atom / 3.2.1:
The Quantum Structure of the Periodic Table / 3.3:
Electron Configurations / 3.4:
Shielding and Effective Nuclear Charges / 3.5:
Ionization Energy / 3.6:
Electron Affinity / 3.7:
Theoretical Radii / 3.8:
In-Depth: How the Radius Affects Other Properties / 3.8.1:
Polarizability / 3.9:
The Metal-Nonmetal Staircase / 3.10:
Global Hardness / 3.11:
Electronegativity / 3.12:
The Uniqueness Principle / 3.13:
Diagonal Properties / 3.14:
Relativistic Effects / 3.15:
The Inert-Pair Effect / 3.16:
An Introduction to Chemical Bonding / Chapter 4:
The Definition of a Chemical Bond / 4.1:
The Thermodynamic Driving Force for Bond Formation / 4.2:
Lewis Structures and Formal Charges / 4.3:
Rules for Drawing Lewis Structures / 4.3.1:
Covalent Bond Lengths and Bond Dissociation Energies / 4.4:
Resonance / 4.5:
Electronegativity and Polar Covalent Bonding / 4.6:
Types of Chemical Bonds-The Triangle of Bonding / 4.7:
Atoms in Molecules / 4.8:
Molecular Geometry / Chapter 5:
X-Ray Crystallography and the Determination of Molecular Geometry / 5.1:
Linnett'S Double Quartet Theory / 5.2:
Valence-Shell Electron Pair Repulsion Theory / 5.3:
Rules for Determining the Geometry of a Molecule Using VSEPD Theory / 5.3.1:
The Ligand Close-Packing Model / 5.4:
A Comparison of the VSEPR and LCP Models / 5.5:
Symmetry Elements and Symmetry Operations / Chapter 6:
Identity, E / 6.1:
Proper Rotation, Cn / 6.1.2:
Reflection, ¿ / 6.1.3:
Inversion, i / 6.1.4:
Improper Rotation, Sn / 6.1.5:
Symmetry Groups / 6.2:
Molecular Point Groups / 6.3:
In-Depth: Dipole Moments / 6.3.1:
Representations of Symmetry Operations / 6.4:
Character Tables / 6.5:
Irreducible Representations and Characters / 6.5.1:
Degenerate Representations / 6.5.2:
Rules Regarding Irreducible Representations / 6.5.3:
Conjugate Matrices and Classes / 6.5.4:
Mulliken Symbols / 6.5.5:
Direct Products / 6.6:
Reducible Representations and the Great Orthogonality Theorem / 6.7:
Molecular Spectroscopy and the Selection Rules / 6.8:
Infrared Spectroscopy / 6.8.1:
Raman Spectroscopy / 6.8.2:
A Summary of the Selection Rules for Vibrational Spectroscopy / 6.8.3:
In-Depth: Resonance Raman Spectroscopy / 6.8.4:
Determining the Symmetries of the Normal Modes of Vibration / 6.9:
Determining a Molecule's Likely Geometry from Its Spectroscopy / 6.10:
Generating Symmetry Coordinates Using the Projection Operator Method / 6.11:
Structure and Bonding in Molecules / Chapter 7:
Molecules as Unique Entities / 7.1:
Valence Bond Theory / 7.2:
Diatomic Molecules / 7.2.1:
In-Depth: A Mathematical Treatment of VBT / 7.2.2:
Polyatomic Atoms and Hybridization / 7.2.3:
Variable Hybridization / 7.2.4:
Bent's Rule / 7.2.5:
Hypervalent Molecules / 7.2.6:
Sigma and pi Bonding / 7.2.7:
Transition Metal Compounds / 7.2.8:
Limitations of Valence Bond Theory / 7.2.9:
Molecular Orbital Theory / 7.3:
Homonuclear Diatomics / 7.3.1:
In-Depth; A Mathematical Treatment of MOT / 7.3.2:
Mixing / 7.3.3:
Heteronuclear Diatomics / 7.3.4:
The Covalent to Ionic Transition in MOT / 7.3.5:
Polyatomic Molecules: H3- and H3+ / 7.3.6:
Correlation Diagrams and the Prediction of Molecular Geometry / 7.3.7:
A Brief Introduction to the Jahn-Teller Effect / 7.3.8:
AHn Molecules and Walsh Diagrams / 7.3.9:
In-Depth: Pearson's Symmetry Rules for Predicting the Structures of AHn Molecules / 7.3.10:
Polyatomic Molecules Having pi Orbitals / 7.3.11:
In-Depth: Pearson's Symmetry Rules for Predicting the Structures of AXn Molecules / 7.3.12:
pi Molecular Orbitals and Hückel Theory / 7.3.13:
Combining VB Concepts into MO Diagrams / 7.3.14:
Hypercoordinated Molecules / 7.3.15:
MO Diagrams for Transition Metal Compounds / 7.3.16:
Metal-Metal Bonding / 7.3.17:
Three-Centered, Two-Electron Bonding in Diborane / 7.3.18:
The Complementarity of VBT and MOT / 7.4:
Structure and Bonding in Solids / Chapter 8:
Crystal Structures / 8.1:
The 14 Bravais Lattices / 8.1.1:
Closest-Packed Structures / 8.1.2:
The 32 Crystallographic Point Groups and 230 Space Groups / 8.1.3:
The Determination of Crystal Structures / 8.1.4:
The Bragg Diffraction Law / 8.1.5:
Miller Planes and Indexing Powder Patterns / 8.1.6:
In-Depth: Quasicrystals / 8.1.7:
Metallic Bonding / 8.2:
The Free Electron Mode! of Metallic Bonding / 8.2.1:
Band Theory of Solids / 8.2.2:
Conductivity in Solids / 8.2.3:
In-Depth: the p-n Junction and n-p-n Bipolar Junction Transistor / 8.2.4:
Ionic Bonding / 8.3:
In-Depth: High-Temperature Superconductors / 8.3.1:
Lattice Enthalpies and the Born-Haber Cycle / 8.3.2:
Ionic Radii and Pauling's Rules / 8.3.3:
In-Depth: the Silicates / 8.3.4:
Defects in Crystals / 8.3.5:
Types of Crystalline Solids / 8.4:
Intermediate Types of Bonding in Solids / 8.4.1:
Chemical Structure and Reactivity / Chapter 9:
Acid-Base Chemistry / 9.1:
Definitions of Acids and Bases / 9.1.1:
Measuring the Strengths of Acids and Bases / 9.1.2:
Factors Affecting the Strengths of Acids and Bases / 9.1.3:
Pearson's Hard-Soft Acid-Base Theory / 9.1.4:
The Relationship Between HSAB Theory and FMO Theory / 9.1.5:
Redox Chemistry / 9.2:
The Relationship Between Acid-Base and Redox Chemistry / 9.2.1:
Rationalizing Trends in Standard Reduction Potentials / 9.2.2:
Quantum Structure Property Relationships / 9.2.3:
The Drago-Wayland Parameters / 9.2.4:
A Generalized View of Chemical Reactivity / 9.3:
Coordination Chemistry / Chapter 10:
An Overview of Coordination Chemistry / 10.1:
The Historical Development of Coordination Chemistry / 10.1.1:
Types of Ligands and Proper Nomenclature / 10.1.2:
Stability Constants / 10.1.3:
Isomers / 10.1.4:
Common Coordination Geometries / 10.1.5:
In-Depth: Five-Coordinate Compounds / 10.1.6:
The Shapes of the d-Orbitals / 10.1.7:
Models of Bonding in Coordination Compounds / 10.2:
Crystal Field Theory / 10.2.1:
Ligand Field Theory / 10.2.2:
Quantitative Measures of LF Strength / 10.2.3:
Electronic Spectroscopy of Coordination Compounds / 10.3:
Term Symbols / 10.3.1:
Tanabe-Sugano Diagrams / 10.3.2:
Electronic Absorptions and the Selection Rules / 10.3.3:
Using Tanabe-Sugano Diagrams to Interpret or Predict Electronic Spectra / 10.3.4:
The Effect of Reduced Symmetry on Electronic Transitions / 10.3.5:
The Jahn-Teller Effect / 10.3.6:
Charge Transfer Transitions / 10.3.7:
Magnetic Properties of Coordination Compounds / 10.3.8:
Diamagnetism / 10.3.9:
Paramagnetism / 10.3.10:
Antiferromagnetism / 10.3.11:
Ferromagnetism / 10.3.12:
Ferrimagnetism / 10.3.13:
Reactions of Coordination Compounds / Chapter 11:
An Introduction to Kinetics and Reaction Coordinate Diagrams / 11.1:
Zero-Order Reactions / 11.1.1:
First-Order Reactions (Irreversible) / 11.1.2:
First-Order Reactions (Reversible and Coming to Equilibrium) / 11.1.3:
Simple Second-Order Reactions (irreversible) / 11.1.4:
Complex Second-Order Reactions (Reversible and Coming to Equilibrium) / 11.1.5:
Complex Second-Order Reactions (Irreversible) / 11.1.6:
Pseudo First-Order Reactions / 11.1.7:
Consecutive First-Order Reactions and the Steady-State Approximation / 11.1.8:
Competing Mechanisms / 11.1.9:
Summary of the Common Rate Laws / 11.1.10:
The Arrhenius Equation / 11.1.11:
Activation Parameters / 11.1.12:
Octahedral Substitution Reactions / 11.2:
Associative (A) Mechanisms / 11.2.1:
Interchange (I) Mechanisms / 11.2.2:
Dissociative (D) Mechanisms / 11.2.3:
Acid and Base Catalysis / 11.2.4:
Ligand Field Activation Energies / 11.2.5:
Square Planar Substitution Reactions / 11.3:
The Trans Effect / 11.3.1:
The Effects of the Leaving Group and the Nucleophile / 11.3.2:
MOT and Square Planar Substitution / 11.3.3:
Electron Transfer Reactions / 11.4:
Outer-Sphere Electron Transfer / 11.4.1:
The Franck-Condon Principle / 11.4.2:
Marcus Theory / 11.4.3:
Inner-Sphere Electron Transfer / 11.4.4:
Mixed-Valence Compounds / 11.4.5:
Organometallic Chemistry / Chapter 12:
Introduction to Organometallic Chemistry / 12.1:
Electron Counting and the 18-Electron Rule / 12.2:
Carbonyl Ligands / 12.3:
Nitrosyi Ligands / 12.4:
Hydride and Dihydrogen Ligands / 12.5:
Phosphine Ligands / 12.6:
Ethylene and Related Ligands / 12.7:
Cyclopentadiene and Related Ligands / 12.8:
Carbenes, Carbynes, and Carbidos / 12.9:
Reactions of Organometallic Compounds / Chapter 13:
Some General Principles / 13.1:
Organometallic Reactions Involving Changes at the Metal / 13.2:
Ligand Substitution Reactions / 13.2.1:
Oxidative Addition and Reductive Elimination / 13.2.2:
Organometallic Reactions Involving Changes at the Ligand / 13.3:
Insertion and Elimination Reactions / 13.3.1:
Nucleophilic Attack on the Ligands / 13.3.2:
Electrophilic Attack on the Ligands / 13.3.3:
Metathesis Reactions / 13.4:
¿-Bond Metathesis / 13.4.1:
Ziegler-Natta Polymerization of Alkenes / 13.4.2:
A Summary of Organometallic Reaction Mechanisms / 13.4.3:
Organometallic Catalytic Cycles / 13.6:
Catalytic Hydrogenation / 13.6.1:
Hydroformylation / 13.6.2:
The Wacker-Smidt Process / 13.6.3:
The Monsanto Acetic Acid Process / 13.6.4:
Palladium-Catalyzed Cross-Coupling Mechanisms / 13.6.5:
The Isolobal Analogy and the Relationship to Main Group Chemistry / 13.7:
Closing Remarks / 13.8:
Derivation of the Classical Wave Equation / Appendix: A:
Derivation of the Schrödinger Equation / Appendix: B:
Postulates of Quantum Mechanics / Appendix: C:
Atomic Term Symbols and Spin-Orbit Coupling / Appendix: D:
Extracting Term Symbols Using Russell-Saunders Coupling
Extracting Term Symbols Using jj Coupling
Correlation Between RS (LS) Coupling and jj Coupling
Direct Product Tables / Appendix: E:
Reducing Representations by the Process of Diagonalization / Appendix: G:
Appendix: H
The Harmonic Oscillator Model / Appendix: I:
Molecular Term Symbols / Appendix: J:
The 230 Space Groups / Appendix: K:
Index
Preface to the Second Edition
Acknowledgments
About the Companion Website
3.

図書

図書
Virginie Despentes
出版情報: New York : Farrar, Straus and Giroux, 2020  352 p. ; 19 cm
所蔵情報: loading…
4.

図書

図書
坂野永理作 ; 宇田川のり子絵
出版情報: 東京 : ジャパンタイムズ出版, 2023.3  14p ; 21cm
シリーズ名: げんき多読ブックス : 初級日本語よみもの ; Box1
所蔵情報: loading…
目次情報: 続きを見る
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
L2‐2 : 100えんショップ
L3‐1 : 今日は日曜日
L3‐2 : おかえりなさい
L4‐1 : たけしさんの週末
L4‐2 : ロバートさんのゴールデンウィーク
L5‐1 : 沖縄旅行
L5‐2 : 動物の島
L6‐1 : クラス旅行—奈良
L6‐2 : バザー
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
概要: 初級前半レベル。『げんき』L1‐L6対応。日本語学習の入門期から無理なく読める12冊。『げんき』のキャラクターと一緒に日本のいろいろな所へ出かけよう。
5.

図書

図書
AJオンラインテスト株式会社著
出版情報: 東京 : アルク, 2023.4  63p ; 26cm
所蔵情報: loading…
目次情報: 続きを見る
第1回 : 答え
採点表
聴解スクリプト
第2回 : 答え
第1回 : 答え
採点表
聴解スクリプト
概要: 独自のAI技術で、出題傾向を徹底分析!データに基づいたリアルな問題。全問題難易度付き。合格までの課題を見える化。
6.

図書

図書
田村隆明著
出版情報: 東京 : 南山堂, 2023.6  ix, 212p ; 26cm
所蔵情報: loading…
7.

図書

図書
妹島和世, 西沢立衛著
出版情報: 東京 : TOTO出版, 2021.12  271p ; 23×30cm
所蔵情報: loading…
目次情報: 続きを見る
KAZUYO SEJIMA RYUE NISHIZAWA SANAA 1987‐2005 : Vol.1)(Platform
建築の場所
K歯科のための家具 ほか
KAZUYO SEJIMA RYUE NISHIZAWA SANAA 2005‐2015 : Vol.2)(ルーヴル・ランス
Kazuyo Sejima+Ryue Nishizawa/SANAA展
Kazuyo Sejima+Ryue Nishizawa/SANAA &
Walter Niedermayr展 ほか
KAZUYO SEJIMA RYUE NISHIZAWA SANAA 2014‐2021 : Vol.3)(済寧市美術館
環境の建築
犬島「ランドスケーププロジェクト」犬島くらしの植物園 ほか
KAZUYO SEJIMA RYUE NISHIZAWA SANAA 1987‐2005 : Vol.1)(Platform
建築の場所
K歯科のための家具 ほか
8.

図書

図書
池田庸子作 ; 宇田川のり子絵
出版情報: 東京 : ジャパンタイムズ出版, 2023.3  18p ; 21cmm
シリーズ名: げんき多読ブックス : 初級日本語よみもの ; Box1
所蔵情報: loading…
目次情報: 続きを見る
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
L2‐2 : 100えんショップ
L3‐1 : 今日は日曜日
L3‐2 : おかえりなさい
L4‐1 : たけしさんの週末
L4‐2 : ロバートさんのゴールデンウィーク
L5‐1 : 沖縄旅行
L5‐2 : 動物の島
L6‐1 : クラス旅行—奈良
L6‐2 : バザー
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
概要: 初級前半レベル。『げんき』L1‐L6対応。日本語学習の入門期から無理なく読める12冊。『げんき』のキャラクターと一緒に日本のいろいろな所へ出かけよう。
9.

図書

図書
坂野永理作 ; 島津敦絵
出版情報: 東京 : ジャパンタイムズ出版, 2023.3  15p ; 21cm
シリーズ名: げんき多読ブックス : 初級日本語よみもの ; Box1
所蔵情報: loading…
目次情報: 続きを見る
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
L2‐2 : 100えんショップ
L3‐1 : 今日は日曜日
L3‐2 : おかえりなさい
L4‐1 : たけしさんの週末
L4‐2 : ロバートさんのゴールデンウィーク
L5‐1 : 沖縄旅行
L5‐2 : 動物の島
L6‐1 : クラス旅行—奈良
L6‐2 : バザー
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
概要: 初級前半レベル。『げんき』L1‐L6対応。日本語学習の入門期から無理なく読める12冊。『げんき』のキャラクターと一緒に日本のいろいろな所へ出かけよう。
10.

図書

図書
坂野永理作 ; ナコ絵
出版情報: 東京 : ジャパンタイムズ出版, 2023.3  20p ; 21cm
シリーズ名: げんき多読ブックス : 初級日本語よみもの ; Box1
所蔵情報: loading…
目次情報: 続きを見る
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
L2‐2 : 100えんショップ
L3‐1 : 今日は日曜日
L3‐2 : おかえりなさい
L4‐1 : たけしさんの週末
L4‐2 : ロバートさんのゴールデンウィーク
L5‐1 : 沖縄旅行
L5‐2 : 動物の島
L6‐1 : クラス旅行—奈良
L6‐2 : バザー
L1‐1 : メアリーさんのともだち
L1‐2 : はじめまして
L2‐1 : さくらだいがく
概要: 初級前半レベル。『げんき』L1‐L6対応。日本語学習の入門期から無理なく読める12冊。『げんき』のキャラクターと一緒に日本のいろいろな所へ出かけよう。
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼