close
1.

図書

東工大
目次DB

図書
東工大
目次DB
戸田不二緒 [ほか] 著
出版情報: 東京 : 講談社, 1988.4  vii, 147p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
   序文 iii
1 生体物質
   1.1 アミノ酸 1
   1.1.1 α-アミノ酸 1
   1.1.2 その他のアミノ酸 5
   1.2 タンパク質 7
   1.2.1 ペプチド結合 7
   1.2.2 タンパク質の分類と機能 8
   1.2.3 タンパク質の構造 9
   1.3 糖 11
   1.3.1 糖質 12
   1.3.2 単糖類 14
   1.3.3 オリゴ糖類 16
   1.3.4 多糖類 16
   1.3.5 配糖体 17
   1.4 核酸-遺伝情報 17
   1.4.1 遺伝情報と核酸 17
   1.4.2 DNAの複製 23
   1.4.3 DNAの転写 25
   1.4.4 遺伝コードと翻訳 26
   1.4.5 遺伝子の構成と制御 28
   1.5 機能性タンパク質 29
   1.5.1 機能性タンパク質の分類 30
   1.5.2 酵素 31
   1.5.3 輸送タンパク質 45
   1.5.4 その他の機能性タンパク質 52
   問題 53
2 生体エネルギー論
   2.1 自由エネルギー 55
   2.2 代謝回路 56
   2.2.1 エネルギー変換 56
   2.2.2 解糖と発酵 58
   2.2.3 クエン酸回路 61
   2.2.4 電子伝達系 64
   2.2.5 プロトンポンプ機構 66a
   2.3 光合成 67
   2.3.1 光合成における物質の流れ 68
   2.3.2 植物のCO2の固定 70
   2.3.3 C4植物 71
   2.3.4 電子・エネルギーの流れ 74
   2.3.5 光合成器官 75
   2.3.6 光合成色素 77
   2.3.7 光合成単位 78
   2.3.8 高等植物の2つの光化学系 78
   2.3.9 光合成細菌 81
   問題 83
3 細胞
   3.1 細胞の形態と構造 84
   3.1.1 細胞の組織 84
   3.1.2 細胞をはかる 86
   3.1.3 細胞を見る 87
   3.2 細胞膜の構造と機能 90
   3.2.1 細胞膜の組成 90
   3.2.2 膜の流動性 92
   3.2.3 細菌の細胞壁 93
   3.2.4 細胞膜の輸送現象 95
   3.3 細胞の増殖 97
   3.3.1 細胞の周期 97
   3.3.2 動植物細胞の培養 99
   3.3.3 微生物の培養 99
   3.4 細胞間情報伝達 100
   3.4.1 細胞間信号伝達 100
   問題 103
4 バイオプロセスによる物質生産
   4.1 有用物質 104
   4.1.1 発酵・醸造食品 104
   4.1.2 精密化学品 113
   4.2 ニューバイオテクノロジー 123
   4.2.1 遺伝子工学 123
   4.2.2 細胞工学 127
   4.3 生産と分離 130
   4.3.1 バイオリアクター 130
   4.3.2 分離・精製 139
   参考書 143
   索引 144
   序文 iii
1 生体物質
   1.1 アミノ酸 1
2.

図書

東工大
目次DB

図書
東工大
目次DB
日本分光学会編
出版情報: 東京 : 講談社, 2009.4  ix, 161p, 図版 [4] p ; 21cm
シリーズ名: 分光測定入門シリーズ / 日本分光学会編 ; 2
所蔵情報: loading…
目次情報: 続きを見る
1 光学の基礎 1
   1.1 光の基本的性質 1
    1.1.1 光とは? 1
    1.1.2 平面波と球面波 5
    1.1.3 偏光 9
    1.1.4 回折 12
    1.1.5 干渉 16
   1.2 物質中を進む光 20
    1.2.1 吸収と分散 20
    1.2.2 境界面での反射と屈折 23
    1.2.3 異方性物質中の光 30
   1.3 光線の進み方 33
    1.3.1 光は最短時間の経路を進む 33
    1.3.2 レンズの働き 34
    1.3.3 反射鏡 45
    1.3.4 光線伝送行列 45
    1.3.5 光学的に安定な共振器 48
   1.4 ガウスビーム光学 50
    1.4.1 ガウスビームとは? 50
    1.4.2 ガウスビームの伝搬 52
    1.4.3 共振器内のガウスビームと共振周波数 57
   付録 複素数表示 58
   参考文献 61
2 代表的な光学素子の選び方・基本的な使い方 63
   2.1 基本的な光学機器の構成 63
   2.2 ミラーによる基本的な光路調整方法 67
   2.3 ミラーの選び方 70
    2.3.1 ミラーの仕様 70
    2.3.2 短パルスレーザー用ミラーについて 71
   2.4 レンズの選び方・使い方 72
    2.4.1 レンズの種類 72
    2.4.2 レンズの基本的な使用方法 72
    2.4.3 倍率について 75
    2.4.4 レンズの使い方の具体例 76
    2.4.5 収差 80
    2.4.6 レンズの選び方 91
    2.4.7 作図による厚レンズの光線追跡 92
   2.5 プリズムの選び方・使い方 94
    2.5.1 光路を変化させるプリズム 95
    2.5.2 分光するためのプリズム(分散プリズム) 97
   2.6 ビームスプリッターの選び方・使い方 98
   2.7 光ファイバーの選び方・使い方 100
    2.7.1 光ファイバーの構造・種類 100
    2.7.2 光ファイバーヘのカップリングの方法 103
   2.8 光学材料 106
   2.9 光学素子のクリーニング 108
   参考文献 112
3 光源と検出器の選び方・使い方 113
   3.1 光エネルギーを測る 113
    3.1.1 フォトダイオード 113
    3.1.2 光電子増倍管 125
    3.1.3 熱的検出器 131
   3.2 画像を撮る 132
   3.3 光源選びの決め手 134
    3.3.1 熱的光源 134
    3.3.2 スペクトルランプ 135
    3.3.3 LED 138
   参考文献 138
4 光学装置の実際 139
   4.1 回折格子分光計 139
    4.1.1 分光計 139
    4.1.2 回折格子の回折条件 140
    4.1.3 回折格子のスペクトル分解能 141
    4.1.4 回折格子分光器のスリット幅,Fナンバー 146
    4.1.5 実際の回折格子分光器と使い方 148
   4.2 レーザー分光計 149
    4.2.1 分光光源としてのレーザー 149
    4.2.2 飽和吸収分光 149
    4.2.3 各素子の働き 151
   参考文献 156
索引 157
1 光学の基礎 1
   1.1 光の基本的性質 1
    1.1.1 光とは? 1
3.

図書

東工大
目次DB

図書
東工大
目次DB
相澤益男 [ほか] 著
出版情報: 東京 : 講談社, 1995.3  ix, 191p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
まえがき iii
1.生体高分子の構造 1
   1.1 生体を構成する高分子 1
   1.2 タンパク質 1
   1.2.1 アミノ酸の構造と側鎖の性質 2
   1.2.2 タンパク質の一次構造 4
   1.2.3 タンパク質の二次構造 9
   1.2.4 タンパク質の三次構造 15
   1.3 核酸 22
   1.3.1 核酸の化学構造 23
   1.3.2 核酸の立体構造 26
   1.4 多糖類 28
   1.4.1 単糖類 29
   1.4.2 多糖類 31
2.生体高分子の分子量 33
   2.1 化学構造からの分子量の計算 34
   2.2 質量分析(マススペクトル)による分子量の決定 35
   2.3 ゲル濾過 37
   2.4 その他の古典的方法 39
   2.4.1 浸透圧 39
   2.4.2 粘度 39
   2.4.3 沈降 40
   2.4.4 光散乱 42
3.生体高分子の電気化学的性質 45
   3.1 酸化還元 45
   3.1.1 酸化還元電位 45
   3.1.2 呼吸鎖および光合成の電子伝達系 47
   3.1.3 酵素および補酵素の電気化学反応 49
   3.2 酸塩基平衡 51
   3.2.1 酸解離定数 51
   3.2.2 アミノ酸の酸解離 52
   3.2.3 タンパク質の荷電 54
   3.2.4 緩衝液 55
   3.3 電気泳動 57
   3.3.1 電気泳動の種類 57
   3.3.2 電気泳動法の原理 59
   3.3.3 ディスク電気泳動 60
   3.3.4 等電点電気泳動法 60
   3.3.5 等速電気泳動法 60
4.生体高分子の分光学的性質 62
   4.1 分子分光学序論 62
   4.1.1 光子と波動 62
   4.1.2 分子の電子状態 65
   4.2 電子スペクトル 67
   4.2.1 光と分子の相互作用 67
   4.2.2 遷移双極子モーメント 68
   4.2.3 ランベルト-ベール(Lambert-Beer)の法則 71
   4.2.4 吸収スペクトルの形 72
   4.2.5 電子スピン 74
   4.2.6 円偏光二色性 75
   4.2.7 励起子キラリティ則 77
   4.3 蛍光スペクトル 79
   4.3.1 励起状態の性質と蛍光,りん光スペクトル 79
   4.3.2 蛍光減衰曲線 81
   4.3.3 蛍光量子収率 82
   4.4 励起状態の相互作用 83
   4.4.1 励起状態の分子間相互作用 83
   4.4.2 励起エネルギー移動 85
   4.4.3 光異性化反応 87
   4.4.4 光誘起電子移動 88
   4.5 赤外分光法 93
   4.5.1 赤外吸収の選択則 93
   4.5.2 分子の固有振動数 95
   4.5.3 吸収強度 96
   4.5.4 赤外吸収スペクトル 97
   4.5.5 赤外吸収とラマン散乱 98
   4.6 核磁気共鳴スペクトル 99
   4.6.1 プロトン核スピンと常磁性共鳴スペクトル測定の原理 99
   4.6.2 化学シフトとスピン-スピン結合 102
   4.6.3 2次元NMRスペクトル 106
5.機能性タンパク質 107
   5.1 生体分子の熱力学的性質 107
   5.1.1 熱力学第一法則 107
   5.1.2 熱力学第二法則とエントロピー 109
   5.1.3 自由エネルギーと化学平衡 110
   5.2 生体エネルギー 111
   5.2.1 解糖と発酵 112
   5.2.2 クエン酸回路 115
   5.2.3 電子伝達系 116
   5.2.4 光合成 116
   5.2.5 明反応と暗反応 117
   5.3 タンパク質の機能 118
   5.3.1 酵素 120
   5.3.2 酵素および輸送タンパク質に含まれる金属の役割 126
   5.4 酵素反応とその機構 136
   5.4.1 酵素反応速度論 136
   5.4.2 阻害機構 140
   5.4.3 高速反応測定法 144
6.生体分子系の分子間相互作用 153
   6.1 分子間相互作用力 153
   6.1.1 静電相互作用 153
   6.1.2 水素結合 154
   6.1.3 分散力 154
   6.1.4 電荷移動相互作用 155
   6.1.5 疎水結合 155
   6.2 脂質分子の会合 155
   6.2.1 脂質 水系の構造 155
   6.2.2 ミセル 157
   6.2.3 リポソーム 158
   6.2.4 ラングミュア ブロジェット(LB)膜 159
   6.3 超分子の化学へ 161
   6.3.1 ホスト ゲストの分子会合 161
   6.3.2 クラウンエーテル類 161
   6.3.3 シクロデキストリン 163
   6.4 酵素および抗体の分子認識 164
   6.4.1 酵素の分子認識 164
   6.4.2 抗体の分子認識 166
7.生体界面の性質 168
   7.1 生体膜透過 168
   7.1.1 膜構造 168
   7.1.2 膜輸送 169
   7.2 膜電位 172
   7.2.1 界面電位と拡散電位 172
   7.2.2 神経細胞の興奮 173
   7.3 生体膜の流動性 175
   7.3.1 脂質の流動性 175
   7.3.2 生体膜のタンパク質の拡散 177
   7.4 細胞 178
   7.4.1 細胞の荷電 178
   7.4.2 細胞融合 180
付表1 基本物理定数 183
付表2 エネルギー単位換算表 183
付表3 標準生成エンタルピーおよび標準生成自由エネルギー 183
索引 189
まえがき iii
1.生体高分子の構造 1
   1.1 生体を構成する高分子 1
4.

図書

東工大
目次DB

図書
東工大
目次DB
大村恒雄, 石村巽, 藤井義明編
出版情報: 東京 : 講談社, 2003.10  vii, 255p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1.シトクロムP450概説
1.1 P450の発見と初期の研究 2
1.2 P450の分子的性質、命名と分類 4
1.3 P450が触媒する反応 6
1.4 P450酵素系の活性調節 8
1.5 P450の生理的機能 10
1.6 P450研究の展望 13
   文献 14
2.P450の分子的性質と反応機構
2.1 P450の分子的性質 15
   2.1.1 精製法の開発 : 分子的性質を解析するための基礎 15
   2.1.2 一次構造に見られる分子的特徴 16
   2.1.3 分光学的性質など物資的手段で明らかにされた分子的性質 24
   文献 34
2.2 P450の分子構造:X線結晶構造解析を中心に 34
   2.2.1 全体構造 34
   2.2.2 基質および配粒子結合部位 36
   2.2.3 Iへリックスとプロトン供給系 40
   2.2.4 酸素化型および反応中間体の構造解析 41
   2.2.5 タンパク質表面の電荷分布 42
   2.2.6 脱結合型P450 42
   2.2.7 P450の耐熱性 43
   文献 43
2.3 P450の還元系および還元系とP450の相互作用 44
   2.3.1 P450の還元はなぜ必要か?どのような還元系が知られているか? 45
   2.3.2 小胞体のP450還元系 47
   2.3.3 NAD(P)H-ISP系によるP450の還元 52
   2.3.4 P450とその還元系の相互作用 54
   2.3.5 還元系とP450の融合タンパク質 56
   文献 57
2.4 P450による酸素活性化機構と基質の酸素化機構 58
   2.4.1 P450による酸素分子活性化の分子構造 59
   2.4.2 ヘム酸素におけるcompound I 生成機構とP450 62
   2.4.3 なぜP450だけが酸素添加反応を行えるのか 64
   2.4.4 compound I 以外の酸化活性種の可能性 66
   文献 66
2.5 他のヘム‐チオレートタンパク質の構造と機能 67
   2.5.1 NO 合成酸素 67
   2.5.2 シスタチオニン β-合成酸素 71
   2.5.3 クロロペルオキシターゼ 72
   2.5.4 CooA 72
   文献 73
3.P450遺伝子:構造と発現調節
3.1 P450遺伝子の構造 74
   3.1.1 生物による P450 遺伝子数の違い 74
   3.1.2 P450 遺伝子の分類と命名 75
   3.1.3 ゲノム配列上のP450遺伝子の同定 76
   3.1.4 ヒトP450遺伝子と偽遺伝子 77
   3.1.5 選択的プロモーターと選択的スプライシング 79
   3.1.6 ヒトと魚のP450遺伝子構造の比較 79
   3.1.7 生物種による遺伝子構造の特徴 81
   3.1.8 遺伝子構造の進化 81
   文献 84
3.2 Ah レセプターによる P450 遺伝子の発現制御 85
   3.2.1 CYP1A1 遺伝子の発現制御に関与するシスエレメント 86
   3.2.2 AhR による CYP1A2 、1B1の発現制御 89
   3.2.3 AhR の構造と機能ドメイン 89
   3.2.4 AhR の多型と CYP1A1 誘導性 91
   文献 92
3.3 核内オーファンレセプターによるP450遺伝子の発現調節 93
   3.3.1 P450遺伝子発現の背景 93
   3.3.2 核内オーファンレセプターの背景 94
   3.3.3 P450遺伝子発想に関与するオーファンレセプター 96
   3.3.4 CAR とフェノバルビタール誘導 99
   3.3.5 核内レセプター間のクロストーク 102
   3.3.6 核内レセプターとP450の生物学的、薬理学的、毒性学的意義および今後の展望 103
   文献 104
4.動物のP450酵素系
4.1 コレステロール生合成 105
   4.1.1 CYP51 - 生物界に保存されているステロール14α-脱メチル化酵素 105
   4.1.2 CYP51 の性質 107
   4.1.3 CYP51 遺伝子の構造と発現調節 108
   4.1.4 哺乳類 CYP51 の生理機能に見られる多様性 109
   4.1.5 アゾール坑真菌剤の標的酵素としての CYP51 110
   文献 110
4.2 胆汁酸の生合成 111
   4.2.1 胆汁酸合成系の生理的意義 111
   4.2.2 胆汁酸の代謝経路、古典的経路と酸性経路 112
   4.2.3 胆汁酸合成経路の各 P450 113
   文献 118
4.3 ステロイドホルモンとビタミンD 118
   4.3.1 ステロイドホルモンの生合成系 118
   4.3.2 ビタミンD の代謝系 128
   文献 132
4.4 脂肪酸とエイコサノイドの代謝 133
   4.4.1 CYP4 ファミリーとのω水酸化酸素 133
   4.4.2 プロスタサイクリンとトロンボキサン合成酸素 140
   文献 142
4.5 薬物、異物の代謝 144
   4.5.1 P450 の再構成系の構築 145
   4.5.2 異種細胞に発現した P450 による外来性異物の代謝分析 146
   4.5.3 P450 の異物代謝における役割 148
   4.5.4 各群(ファミリー)ごとの P450 の特徴 150
   4.5.5 臨床的に重要な P450 の知識 : 薬物相互作用 153
   4.5.6 臨床的に重要な P450 の知識 : 遺伝的多型 154
   文献 156
4.6 発癌性化学物質や薬物の代謝的活性化 157
   4.6.1 癌原性物質の活性化 157
   4.6.2 医薬品の代謝的活性化 161
   4.6.3 内因性物資の代謝的活性化 165
   4.6.4 代謝的活性化反応と関与酵素について 166
   文献 167
4.7 魚類のP450酵素系 167
   4.7.1 魚類P450分子種(ファミリー、サブファミリー) 167
   4.7.2 魚類P450発現 ・ 活性に影響を与える外的・生理的要因 173
   4.7.3 水圏生態系の環境汚染の指標酸素としての魚類P450 175
   文献 182
4.8 昆虫のP450酵素系 183
   4.8.1 発育・行動調節に関与する P450 183
   4.8.2 外来性物質の代謝に関与する P450 186
   文献 188
5.植物のP450酵素系
5.1 植物の二次代謝産物の生合成に関与するP450分子種 189
   5.1.1二次代謝に関与する P450 分子種 190
   5.1.2 除草剤の代謝に関与する P450 分子種 195
   文献 196
5.2 植物の生長分化制御に関与するP450 197
   5.2.1 シベリレンの生合成に関与する P450 分子種 198
   5.2.2 ブラシノステロイドの生合成に関与するP450 201
   5.2.3 オーキシンの生合成に関与する P450 204
   5.2.4 アブシジン酸の代謝に関与する P450 205
   5.2.5 サイトカイイニンの生合成に関与する P450 206
   5.2.6 ジャスモン酸の生合成に関与する P450 206
   5.2.7 その他の生長に影響をおよぼす P450 207
   文献 208
6.微生物のP450酵素系
6.1 酵母のP450 209
   6.1.1 エルゴステロール合成系の P450 209
   6.1.2 アルカン資化性酵素の P450 211
   文献 217
6.2 カビのP450 218
   6.2.1 カビのP450 218
   6.2.2 真菌の脱窒と P450nor(CYP55) 219
   6.2.3 P450foxy(CYP505) 220
   6.2.4 カビの植物病原性に関与する P450(CYP57) 221
   6.2.5 芳香族化合物分解系と白色腐朽菌のゲノム解析 221
   6.2.6 カビ毒素の生合成 222
   6.2.7 クロロペルオキシダーゼ 222
   文献 223
6.3 細菌のP450 224
   6.3.1 細菌(原核生物)の P450 224
   6.3.2 P450cam(CYP101) 225
   6.3.3 P450BM3(CYP102) 227
   6.3.4 結核菌の P450 228
   6.3.5 放線菌の P450 229
   6.3.6 古細菌の P450 229
   6.3.7 P450のペルオキシゲナーゼ反応 231
   文献 232
7.P450についての研究資料のデータベース検索
7.1 遺伝子・タンパク質機能情報データベースからのP450情報の検索 235
   7.1.1 PROSTIE 235
   7.1.2 BLOCKS 235
   7.1.3 Pfam 235
   7.1.4 KBCGのパスウェイデータベース 236
   7.1.5 OMIM 236
   7.1.6 LocusLink 236
   7.1.7 Unigene 236
   7.1.8 Protein Data Bank (PDB) 236
7.2 Human Cytochrome P450(CYP)Allele Nomenclature Committee (P450のSNPsデータ) 237
7.3 ゲノムごとのP450遺伝子データベース 237
   7.3.1 シロイヌナズナの P450 データベース 238
   7.3.2 ショウジョウバエの P450 データベース 238
   7.3.3 線虫の P450 データベース 239
7.4 統合P450遺伝子データベース 239
   7.4.1 Cytochrome P450 Homepage(Dr.Nelson サイト) 239
   7.4.2 Cytochrome P450 database(CPD) 240
   7.4.3 Kirill データベース 241
   7.4.4 P450 および薬物代謝酵素データベース 241
   文献 243
付表1 P450 ファミリーの分類 244
付表1 ヒト、ラット、マウスのP450 遺伝子リスト 245
索引 249
1.シトクロムP450概説
1.1 P450の発見と初期の研究 2
1.2 P450の分子的性質、命名と分類 4
5.

図書

東工大
目次DB

図書
東工大
目次DB
土戸哲明 [ほか] 著
出版情報: 東京 : 講談社, 2002.11  xi, 162p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
はじめに iii
序章 微生物制御とその用語 1
1章 微生物細胞のしくみ 5
   1.1 微生物の発見 6
   1.2 微生物の分類学的位置 7
   1.3 微生物の構造と機能 9
   1.3.1 細菌 9
   1.3.2 真菌 17
2章 微生物の生活 18
   2.1 生育相 18
   2.2 生育の環境因子 20
   2.2.1 栄養素 20
   2.2.2 温度 21
   2.2.3 pH 22
   2.2.4 酸素 24
   2.2.5 酸化還元電位 24
   2.2.6 水分活性 25
   2.2.7 圧力 26
   2.3 細胞の生態学的挙動
   2.3.1 運動 27
   2.3.2 細胞間相互作用 28
   2.3.3 表面付着 29
   2.3.4 バイオフィルム形成 30
3章 微生物の生き残り戦略 31
   3.1 特殊環境適応 31
   3.1.1 温度 31
   3.1.2 pH 31
   3.1.3 浸透圧と超高圧 32
   3.2 ストレス応答 32
   3.2.1 熱ストレス 33
   3.2.2 低温ストレス 35
   3.2.3 紫外線ストレス 35
   3.2.4 酸・アルカリストレス 36
   3.2.5 浸透圧ストレス 36
   3.2.6 活性酸素ストレス 37
   3.2.7 嫌気ストレス 39
   3.2.8 一般ストレス応答 39
   3.2.9 トレランスと交差保護 39
   3.3 損傷菌 40
   3.3.1 損傷菌の概念 40
   3.3.2 各ストレスによる損傷とその回復 40
   3.4 胞子形成 41
   3.5 培養不能生存菌と貧栄養細菌 42
   3.6 薬剤耐性化 42
4章 微生物制御法の原理と科学 44
   4.1 物理的方法 44
   4.1.1 温度制御 44
   4.1.2 機械的制御 48
   4.1.3 電気的制御 50
   4.1.4 磁場制御 52
   4.1.5 電磁波制御 53
   4.1.6 超高圧制御 55
   4.2 物理化学的方法 55
   4.2.1 水分制御 55
   4.2.2 酸素・酸化還元電位制御 57
   4.2.3 pH制御 58
   4.3 化学的方法 59
   4.3.1 化学薬剤による微生物制御 59
   4.3.2 化学薬剤の作用特性 62
   4.3.3 抗菌剤の作用機構 69
   4.4 生物学的方法 71
   4.5 微生物制御の数理 72
   4.5.1 微生物制御の対象 73
   4.5.2 外延量と内包量 73
   4.5.3 微生物制御の真の対象 74
   4.5.4 微生物の増殖速度の微分方程式表現 75
   4.5.5 増殖の停止 77
5章 微生物制御における測定・評価法 82
   5.1 抗菌剤の効力指標と評価原理 82
   5.2 試験菌の選定 83
   5.3 試験菌の前培養 83
   5.4 微生物制御の処理方法 84
   5.5 マトリクスの選定 85
   5.6 増菌法による制御効果の評価 85
   5.6.1 増殖阻害効果の測定 85
   5.6.2 平板法(集落計数法)による生存数測定 86
   5.6.3 増殖遅延時間の解析による生存率測定 86
   5.6.4 薬剤のMIC試験法(1)―寒天培地希釈法 87
   5.6.5 薬剤のMIC試験法(2)―液体培地希釈法 88
   5.6.6 薬剤のMBC試験法 88
   5.6.7 フェノール(石炭酸)係数 89
   5.7 非増菌法による制御効果の評価 89
   5.7.1 細胞成長の顕微計測法 89
   5.7.2 細胞膜の色素分子透過性を指標とする方法 90
   5.7.3 細胞膜の透過性と細胞内エステラーゼ活性を指標とする方法 91
   5.7.4 栄養基質取り込み活性を指標とする方法 91
   5.7.5 細胞の還元力を指標とする方法 92
   5.7.6 細胞の呼吸活性を指標とする方法 93
   5.7.7 ATP定量測定 93
   5.8 測定法のバリデーション 94
   5.9 無菌試験法と滅菌インジケーター 94
6章 微生物制御・管理のためのシステム 96
   6.1 食品における微生物制御 96
   6.2 適正製造基準 97
   6.3 医薬品の製造と医療用具におけるバリデーションと滅菌保証 97
   6.4 危害分析重要管理点システム 98
   6.5 予測微生物学 100
   6.5.1 予測微生物学の理論 101
   6.5.2 増殖と腐敗,保存中の生残,加熱処理における死滅の予測とコンピューターソフトウェア 106
   6.5.3 増殖と腐敗,保存中の生残,加熱処理における死滅の予測モデルの限界と効用 110
   6.6 微生物危害におけるリスクアセスメント 110
7章 殺菌,静菌,除菌,遮断の技術 112
   7.1 殺菌技術 112
   7.1.1 加熱殺菌技術 112
   7.1.2 電磁波殺菌技術 117
   7.1.3 薬剤殺菌技術 118
   7.1.4 超高圧殺菌技術 125
   7.2 静菌技術 125
   7.2.1 低温処理 125
   7.2.2 乾燥,濃縮,溶質添加 126
   7.2.3 酸性化 126
   7.2.4 雰囲気調節 126
   7.2.5 静菌剤添加 127
   7.3 除菌・遮断技術 128
   7.4 併用技術 128
8章 微生物の保存 130
   8.1 微生物株の入手 130
   8.2 保存用細胞の調製 133
   8.3 凍結保存法 133
   8.4 凍結乾燥法 134
   8.5 乾燥法 135
   8.6 微生物保存株の生存性の確認 135
   8.7 微生物の生存性以外の特性,活性の保存 135
9章 微生物培養における制御 137
   9.1 微生物による微生物増殖の制御 137
   9.2 微生物の増殖を制御する培養方法 140
   9.2.1 連続培養 140
   9.2.2 流加培養 144
10章 将来の展望 148
   10.1 微生物制御における基本的な問題点とその対策 148
   10.2 微生物制御の新しい概念 149
   10.3 微生物制御法とその周辺技術の開発の展望 151
参考書 153
索引 157
はじめに iii
序章 微生物制御とその用語 1
1章 微生物細胞のしくみ 5
6.

図書

東工大
目次DB

図書
東工大
目次DB
日本分光学会編
出版情報: 東京 : 講談社, 2009.7  ix, 155p, 図版 [6] p ; 21cm
シリーズ名: 分光測定入門シリーズ / 日本分光学会編 ; 10
所蔵情報: loading…
目次情報: 続きを見る
1 顕微分光法の基礎 1
   1.1 顕微分光法で何が見えるか 1
   1.2 光学顕微鏡の原理 2
    1.2.1 光の伝搬 2
    1.2.2 光の回折 7
    1.2.3 アッベの結像理論 15
    1.2.4 光学的伝達関数 17
    1.2.5 位相物体の結像 19
    1.2.6 位相差顕微鏡 20
    1.2.7 微分干渉顕微鏡 22
    1.2.8 ケラー照明系 23
   1.3 レーザー走査顕微鏡 23
   1.4 共焦点レーザー走査光学顕微鏡による3次元分解能 26
   1.5 3次元結像理論 28
    1.5.1 厚い試料の結像理論 28
    1.5.2 共焦点レーザー走査蛍光顕微鏡の3次元結像特性 30
   1.6 まとめ 31
   参考文献 31
2 蛍光顕微分光法 33
   2.1 蛍光顕微分光法で何が見えるか 33
    2.1.1 励起スペクトル 35
    2.1.2 蛍光スペクトル 35
    2.1.3 蛍光寿命 35
   2.2 蛍光顕微鏡の光学系 37
   2.3 対物レンズの種類と利用方法 40
    2.3.1 有限系および無限系 40
    2.3.2 開口数,倍率,作動距離 41
    2.3.3 乾燥対物レンズと油浸対物レンズ,水浸対物レンズ 41
    2.3.4 色収差 42
    2.3.5 ザイデルの5収差と試料の深い位置を観察することにより生じる球面収差 43
   2.4 蛍光顕微鏡の応用 47
    2.4.1 プラスチックシンチレーター用の蛍光体の観察 47
    2.4.2 全反射蛍光顕微鏡による単一分子計測 48
    2.4.3 蛍光寿命測定による温度分布の3次元測定 49
   2.5 まとめ 54
   参考文献 54
3 赤外・ラマン顕微分光法 55
   3.1 赤外・ラマン顕微分光法で何が見えるか 55
    3.1.1 赤外・ラマン分光法とは 55
    3.1.2 ラマン散乱分光法 57
    3.1.3 赤外吸収分光法 58
   3.2 赤外・ラマン顕微鏡の基礎と装置の構成 58
    3.2.1 ラマン顕微鏡 58
    3.2.2 赤外顕微鏡 65
   3.3 赤外・ラマン顕微鏡の応用 71
   3.4 まとめ 75
   参考文献 76
4 熱レンズ顕微分光法 77
   4.1 熱レンズ顕微分光法で何が見えるか 77
   4.2 熱レンズ顕微鏡の基礎と装置の構成 78
    4.2.1 熱レンズ顕微鏡の原理 78
    4.2.2 装置の構成と測定法 80
   4.3 熱レンズ顕微鏡の応用 84
    4.3.1 熱レンズ顕微鏡による非蛍光性分子の超微量分析 84
    4.3.2 走査型熱レンズ顕微鏡による高感度画像化 85
    4.3.3 非走査型光熱変換顕微鏡 87
   4.4 まとめ 90
   参考文献 90
5 非線形光学顕微分光法 93
   5.1 非線形光学顕微分光法で何が見えるか 93
   5.2 2光子励起蛍光顕微鏡 94
    5.2.1 2光子励起過程における光と物質との相互作用 95
    5.2.2 2光子励起蛍光顕微鏡の光学系と特徴 98
    5.2.3 2光子励起蛍光顕微鏡の応用 102
   5.3 SHG顕微鏡 107
    5.3.1 SHGの原理 107
    5.3.2 SHG顕微鏡の特徴と装置の構成 109
   5.4 CARS顕微鏡 110
    5.5.4 4π共焦点蛍光顕微鏡 112
   5.6 まとめ 114
   参考文献 114
6 近接場光学顕微分光法 117
   6.1 近接場光学の基礎 117
    6.1.1 エバネッセント光 117
    6.1.2 微小構造による光の散乱 120
   6.2 局在プラズモン 122
    6.2.1 プラズモン 122
    6.2.2 表面増強ラマン散乱 125
   6.3 近接場光学顕微鏡の原理と装置の構成 126
    6.3.1 近接場光学顕微鏡の原理 126
    6.3.2 近接場プローブ 127
    6.3.3 装置の構成 134
    6.3.4 近接場イメージング特性 135
   6.4 近接場光学顕微分光・イメージング 136
    6.4.1 フォトルミネッセンス 136
    6.4.2 ラマン分光・イメージング 137
    6.4.3 近接場赤外分光 147
   6.5 まとめと今後 151
   参考文献 151
索引 153
1 顕微分光法の基礎 1
   1.1 顕微分光法で何が見えるか 1
   1.2 光学顕微鏡の原理 2
7.

図書

東工大
目次DB

図書
東工大
目次DB
海野肇 [ほか] 著
出版情報: 東京 : 講談社, 2004.1  ix, 252p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
   はじめに iii
1. バイオプロセスとその構成 1
   1.1 バイオプロセスと生物化学工学 1
   1.1.1 バイオプロセス 1
   1.1.2 生物化学工学 2
   1.1.3 バイオプロセスと生物化学工学の役割 2
   1.2 バイオプロセスの構成 18
   1.2.1 上流プロセス 18
   1.2.2 プロダクションプロセス 19
   1.2.3 下流プロセス 19
   1.3 遣伝子組換え細胞利用プロセス 21
   演習問題 23
2. 生体触媒の特性 25
   2.1 酵素の特性 25
   2.1.1 酵素の分類と名称 25
   2.1.2 酵素活性 26
   2.1.3 酵素活性に必須な要件 27
   2.1.4 補酵素 27
   2.2 微生物の特性 33
   2.2.1 微生物の分類 33
   2.2.2 微生物の化学組成 36
   2.2.3 微生物の物理的性質 36
   2.2.4 微生物の環境と生理特性 37
   2.2.5 微生物の培養 38
   2.3 動物細胞の特性 39
   2.4 植物細胞の特性 41
   2.5 昆虫細胞の特性 43
   2.6 分子育種 44
   2.6.1 分子育種の手法 45
   2.6.2 発現系の選択 47
   2.6.3 組換え体遺伝子の安定性 49
   2.7 代謝 52
   2.7.1 生体内代謝反応の相互関係 52
   2.7.2 物質基準の収率因子 55
   2.7.3 増殖の生物化学量論 58
   2.7.4 反応熱 59
   2.7.5 エネルギー基準の収率因子 60
   2.7.6 ATP生成基準の収率因子 61
   2.7.7 代謝工学 63
   演習問題 65
3. 生体触媒の反応速度論 68
   3.1 酵素反応速度論 68
   3.1.1 初速度 68
   3.1.2 Michaelis-Menten式 69
   3.1.3 動力学定数の算出法 72
   3.1.4 可逆的阻害剤が存在する場合速度式 73
   3.1.5 不可逆阻害剤が存在する場合の速度式 78
   3.1.6 基質阻害が存在する場合の速度式 78
   3.1.7 アロステリック酵素に対する速度式 80
   3.1.8 二基質反応の速度論 81
   3.2 酸素反応の経時変化 84
   3.2.1 生成物阻害の無視できる不可逆反応に対する反応の経時変化 84
   3.2.2 生成物阻害が無視できない場合 87
   3.2.3 二基質反応の場合 88
   3.3 酵素の失活速度 89
   3.4 反応速度のpH依存性 90
   3.5 細胞が関連する生化学反応速度 91
   3.5.1 増殖モデル 92
   3.5.2 増殖速度 92
   3.5.3 基質消費速度 94
   3.5.4 代謝産物生成速度 94
   3.6 固定化生体触媒の速度論 97
   3.6.1 生体触媒の固定化法 98
   3.6.2 固定化生体触媒の性能に及ぼす諸因子 102
   3.6.3 固定化酵素の失活速度に及ぼす諸因子 108
   演習問題 111
4. バイオリアクターの設計と操作 115
   4.1 バイオリアクターの形式と操作 115
   4.2 バイオリアクター設計の基礎 119
   4.2.1 槽型バイオリアクターの一般的な設計方程式 120
   4.2.2 管型バイオリアクターの一般的な設計方程式 121
   4.3 酵素を用いるバイオリアクター 123
   4.3.1 遊離酵素を用いるバイオリアクター 123
   4.3.2 固定化酵素を用いるバイオリアクター 124
   4.3.3 滞留時間分布 129
   4.3.4 固定化酸素バイオリアクターの安定性 132
   4.4 微生物を用いるバイオリアクター 134
   4.4.1 回分培養 134
   4.4.2 流加培養 138
   4.4.3 連続培養操作 140
   4.5 物質移動の影響 144
   4.5.1 酸素移動の影響 145
   4.5.2 菌体ペレットの場合酸素移動の影響 146
   4.6 遺伝子組換え菌の培養工学 146
   4.7 動植物細胞の培養工学 147
   4.8 スケールアップ,スケールダウン 149
   4.9 バイオリアクターの計測ならびに動特性と制御 152
   4.9.1 バイオプロセスにおける計測と制御の役割 152
   4.9.2 バイオリアクターの状態変数とその計測 152
   4.9.3 バイオリアクターの制御方式と動特性および制御のためのアルゴリズム 155
   演習問題 159
5. バイオプロセスの操作要素 163
   5.1 バイオプロセスを構成する基本操作 163
   5.2 レオロジー特性 164
   5.2.1 ニュートン流体と非ニュートン流体 164
   5.2.2 培養液のレオロジー特性 166
   5.3 滅菌操作 168
   5.3.1 加熱滅菌 168
   5.3.2 フィルター滅菌 173
   5.3.3 高圧滅菌 174
   5.4 撹拌操作 175
   5.4.1 撹拌装置 176
   5.4.2 撹拌槽内の流れ 177
   5.4.3 撹拌に必要な動力 177
   5.5 通気操作 179
   5.5.1 細胞の酸素摂取速度 179
   5.5.2 バイオリアクター内での酸素移動 180
   5.5.3 バイオリアクター内での気泡の挙動 183
   5.5.4 酸素移動容量係数に及ぼす因子 185
   5.5.5 酸素移動容量係数の測定法 185
   5.6 分離精製を目的とした操作 186
   5.6.1 遠心分離操作 187
   5.6.2 ろ過操作 190
   5.6.3 細胞破砕操作 193
   5.6.4 膜分離操作 196
   演習問題 199
6. バイオプロセスの実際 204
   6.1 固定化酵素プロセス 204
   6.2 固定化細胞の利用 209
   6.2.1 能動的固定化 210
   6.2.2 受動的固定化 214
   6.3 動物細胞利用プロセス 216
   6.4 生物機能を利用する廃水処理 221
   6.5 バイオプロセス技術のこれから 224
   演習問題 225
   付録A 解糖系,TCAサイクル,酸化的リン酸化 227
   付録B King-Altmanの図解法 232
   演習問題の略解とヒント 235
   参考書 244
   索引 247
   topies
   進化分子工学 32
   養子免疫療法 51
   有機溶媒中で生体触媒を用いる反応 97
   タンパク質以外の酵素 110
   酵素固定化研究の行方 133
   マイクロパイオリアクター 145
   ダウンストリームとアップストリーム融合 187
   はじめに iii
1. バイオプロセスとその構成 1
   1.1 バイオプロセスと生物化学工学 1
8.

図書

図書
鈴木潔編
出版情報: 東京 : 講談社, 1981-1985  3冊 ; 22cm
所蔵情報: loading…
9.

図書

東工大
目次DB

図書
東工大
目次DB
日本分光学会編
出版情報: 東京 : 講談社, 2009.7  xi, 187p ; 21cm
シリーズ名: 分光測定入門シリーズ / 日本分光学会編 ; 8
所蔵情報: loading…
目次情報: 続きを見る
   注 : [3]Jの[3]は上つき文字
   注 : [13]Cの[13]は上つき文字
   
1 NMRの原理 1
   1.1 はじめに-NMR発展の歴史とノーベル賞- 1
   1.2 NMRの原理 2
    1.2.1 核スピンとは 2
    1.2.2 NMRで観測可能な核種 3
    1.2.3 NMRの原理の古典的モデルによる説明 -巨視的磁化は小さな自転する棒磁石- 4
    1.2.4 NMR測定の感度が悪いのはなぜか : スピン数 5
   1.3 パルスFT-NMR装置 7
    1.3.1 原理 7
    1.3.2 ハードウェアの構成 9
    1.3.3 超伝導磁石 9
    1.3.4 プローブ 10
    1.3.5 分光計 11
   1.4 溶液NMR測定の流れ 11
    1.4.1 サンプルの調製 11
    1.4.2 サンプルの装置への導入 12
    1.4.3 装置のパラメータの設定と調整 12
    1.4.4 測定スタート 13
    1.4.5 データの保存と管理 13
   1.5 FIDの観測およびデータ処理方法 14
    1.5.1 デジタルサンプリング 14
    1.5.2 ゼロフィリング処理とウィンドウ数 14
    1.5.3 位相補正とベースライン補正 16
    1.5.4 化学シフトの補正 16
    1.5.5 シグナルの積分による定量 16
   1.6 NMRで何がわかるか-NMRが与える情報- 16
    1.6.1 化学シフト 16
    1.6.2 カップリング定数とスピンカップリング 20
   1.7 直積演算子 21
    1.7.1 この項目を読むときの注意 21
    1.7.2 核スピンの量子力学的モデルと密度行列 21
    1.7.3 直積演算子 22
   1.8 磁化移動とコヒーレンス 24
   1.9 NMRのパルスシーケンスーパルスシーンスの読み方- 25
   1.10 よく使われる二次元NMRの原理の紹介 27
    1.10.1 二次元NMRとは 27
    1.10.2 COSY/TOCSY 29
    1.10.3 HMQC/HSQC/HMBC 30
    1.10.4 交差緩和とNOE,NOESY,ROESY 30
   1.11 おわりに 31
   参考文献 31
2 多次元NMRと測定時間を短縮するアプローチ 33
   2.1 二次元NMRの原理 33
    2.1.1 HSQCの原理 34
    2.1.2 位相回しによるコヒーレンス選択 36
    2.1.3 パルス・フィールド・グラデイエントによるコヒーレンス選択 37
    2.1.4 コヒーレンス選択以外のパルス・フィールド・グラディエントの利用 38
    2.1.5 間接観測軸の位相検出 39
    2.1.6 sensitivity improvement法 41
    2.1.7 スペクトル幅(折り返し)の最適化 42
   2.2 三次元,四次元NMR 43
    2.2.1 三次元,四次元NMRの概念 44
    2.2.2 スペクトルの分解能の向上 45
   2.3 短時間で測定する多次元NMRの原理 45
    2.3.1 SOPAST-HMQC 46
    2.3.2 非線形サンプリング法 47
    2.3.3 projection reconstruction 51
    2.3.4 迅速な多次元NMRの今後 54
   2.4 まとめ 54
   参考文献 54
3 タンパク質のNMR 57
   3.1 NMR向けタンパク質試料の調製 57
    3.1.1 遺伝子組み換え大腸菌による発現 58
    3.1.2 無細胞タンパク質発現系 59
    3.1.3 安定同位体による部位特異的標識 60
   3.2 主鎖と側鎖の連鎖帰属 61
    3.2.1 主鎖の帰属 62
    3.2.2 側鎖の帰属 64
   3.3 高分子量試料のNMRにおける難しさ 66
   3.4 立体構造を決めるための情報収集 67
    3.4.1 NOEから得られる距離情報 67
    3.4.2 [3]Jカップリング定数から得られる二面角情報 69
    3.4.3 化学シフト値から得られる二面角情報 70
    3.4.4 残余双極子相互作用値から得られる方向情報 71
   3.5 コンピュータによる立体構造計算 73
    3.5.1 二面角系動力学 75
    3.5.2 直交座標系動力学 76
   3.6 より高分子量な試料へのアプローチ 77
    3.6.1 TROSY 77
    3.6.2 高磁場化 79
    3.6.3 極低温検出コイルを用いた高感度プローブ 80
   3.7 水のシグナルを消すテクニック 81
   3.8 特殊なパルス 84
    3.8.1 複合デカップリング 84
    3.8.2 選択励起 86
    3.8.3 位相変調 88
    3.8.4 断熱パルス 89
   3.9 他分子との相互作用の観察 91
    3.9.1 分子間NOE 91
    3.9.2 化学シフト摂動法 93
    3.9.3 飽和転移法 95
   3.10 化学交換や動きの観察 96
   3.11 まとめ 98
   参考文献 98
4 核酸のNMR 99
   4.1 NMR解析のための核酸試料の調製 99
    4.1.1 解析用配列のデザイン 99
    4.1.2 化学合成と酵素合成 100
    4.1.3 安定同位体標識 102
    4.1.4 核酸の精製 102
    4.1.5 溶媒および緩衝液 103
    4.1.6 残余双極子相互作用測定のためのPf1ファージの調製 104
    4.1.7 核酸を取り扱う際の注意 104
   4.2 ヌクレオチドの化学構造と核酸の化学シフト 105
   4.3 コンホメーション解析 109
    4.3.1 C2'-endo形とC3'-endo形 110
    4.3.2 グリコシド結合の周りのコンホメーション : syn形とanti形 111
   4.4 NMRスペクトルの測定とシグナルの帰属 111
    4.4.1 イミノプロトンの測定とシグナルの帰属 111
    4.4.2 非易動性プロトンシグナルの測定 113
    4.4.3 非易動性プロトンシグナルの連鎖帰属 114
    4.4.4 多重共鳴スペクトルの測定 116
    4.4.5 残余双極子相互作用の解析 120
   4.5 立体構造計算 122
   4.6 構造解析の例 126
    4.6.1 RNAへアピンの立体構造解析例 126
    4.6.2 大きなRNAの構造解析例 128
    4.6.3 RNA-タンパク質の相互作用解析例 129
   4.7 まとめ 131
   参考文献 131
5 糖鎖のNMR 133
   5.1 糖鎖の有機合成反応とNMR 133
   5.2 糖鎖のNMR解析の難しさ 137
   5.3 糖鎖のNMRスペクトルの測定と解析 138
    5.3.1 一次元NMRスペクトル 138
    5.3.2 同種核二次元NMRスペクトル 140
    5.3.3 異種核二次元NMRスペクトル 145
   5.4 選択励起法によるスペクトルの単純化 148
    5.4.1 一次元選択励起TOCSY 148
    5.4.2 選択励起TOCSYを応用した二次元NMR 150
   5.5 グリコシド結合様式の推定 154
    5.5.1 HMBCによるグリコシド結合周りのロングレンジ相関の測定 154
    5.5.2 [13]C-NMRスペクトルにおけるグリコシドシフトの観察 155
    5.5.3 水酸基由来のシグナルを利用した方法 155
   5.6 まとめ 156
   参考文献 157
6 固体NMR 159
   6.1 核スピン相互作用 159
    6.1.1 双極子相互作用 160
    6.1.2 化学シフト異方性 161
    6.1.3 核四極子相互作用 162
   6.2 固体高分解能NMRスペクトル 163
    6.2.1 MAS法 164
    6.2.2 MAS角の調整 166
    6.2.3 高出力デカップリング 166
    6.2.4 CP法 168
    6.2.5 CPの調整 169
    6.2.6 アバンダントスピン系の高分解能スペクトル 171
    6.2.7 CPMAS法 172
   6.3 リカップリング技術 173
   6.4 固体高分解能NMRスペクトルを得るための注意事項 175
    6.4.1 干渉 175
    6.4.2 温度補正 175
   6.5 固体NMRの応用例 175
    6.5.1 合成高分子への応用 175
    6.5.2 生体高分子への応用 179
   6.6 おわりに 182
   参考文献 182
索引 184
   注 : [3]Jの[3]は上つき文字
   注 : [13]Cの[13]は上つき文字
   
10.

図書

東工大
目次DB

図書
東工大
目次DB
稲森悠平編
出版情報: 東京 : 講談社, 2008.12  x, 340p ; 22cm
所蔵情報: loading…
目次情報: 続きを見る
   注 : [ろ]([ろ]はさんずいに戸)は、現物の表記と異なります
   
最新 環境浄化のための微生物学刊行の主旨 iii
序文 iv
1章 環境浄化に貢献する微生物の機能するバイオ・エコエンジニアリング 1
   1.1 バイオ・エコエンジニアリングの環境浄化技術の特徴と意義 1
   1.2 バイオ・エコエンジニアリングのベストミックス化環境浄化技術 2
   1.3 ベストミックス化技術において重要と考えられるサブユニットシステム 5
    1.3.1 高度処理浄化槽システム 5
    1.3.2 嫌気・土壌トレンチ高度処理システム 5
    1.3.3 水耕栽培・沈水植物浄化システムの開発 6
    1.3.4 脱リン浄化システム 6
    1.3.5 生ごみディスポーザ破砕物の高速水素・メタン発酵クリーンエネルギー化システム 6
    1.3.6 電気化学処理導入,高度効率的有害物質分解除去システム 7
    1.3.7 人工湿地浄化法による窒素・リン除去,温室効果ガス発生防止システム 7
   1.4 環境低負荷資源循環技術の構築において重要となる窒素・リンの負荷削減・回収・資源化 9
2章 環境浄化における微生物の役割 14
   2.1 微生物の特徴 14
    2.1.1 微生物の定義と命名 14
    2.1.2 微生物の種類と形態 15
    2.1.3 微生物の増殖 25
    2.1.4 微生物の相互作用 29
   2.2 微生物の代謝 31
    2.2.1 代謝による微生物の分類 31
    2.2.2 解糖系 33
    2.2.3 好気呼吸 35
    2.2.4 嫌気呼吸 38
    2.2.5 光合成 39
   2.3 水における自浄作用 43
    2.3.1 自浄作用と生態系 43
    2.3.2 自浄作用を応用した水質浄化 45
    2.3.3 指標生物 47
    2.3.4 水生生物保全環境基準の導入と保全の重要性 50
   2.4 土壌における自浄作用 52
    2.4.1 土壌に生息する生物 52
    2.4.2 土壌の自浄作用 54
   2.5 環境微生物の分子生物学的評価 55
    2.5.1 分子生物学的手法の必要性 55
    2.5.2 微生物の遺伝子と機能 57
    2.5.3 分子生物学的手法の原理と特徴 58
    2.5.4 自然環境への適用 64
    2.5.5 好気・嫌気生物処理への適用 65
    2.5.6 分子生物学的解析のこれからの展開 66
3章 富栄養化とその制御 70
   3.1 富栄養化 70
    3.1.1 富栄養化の影響 70
    3.1.2 富栄養化度の判定 73
   3.2 水の華 78
    3.2.1 水の華(アオコ・赤潮)とその構成生物 78
    3.2.2 水の華の発生の特色 79
    3.2.3 水の華の構成種の変遷 80
    3.2.4 水の華形成藻類によるカビ臭,毒性産生物質 81
   3.3 水域の富栄養化の制御 84
    3.3.1 栄養塩負荷の発生源 85
    3.3.2 水域の富栄養化防止の総合対策 87
    3.3.3 AGP試験による富栄養化対策の評価 95
    3.3.4 富栄養化防止対策の立案と展望 102
4章 湖沼マイクロコズムによる藻類制御と生態系の解析・評価 105
   4.1 湖沼生態系の解析・評価のためのマイクロコズムの意義 105
    4.1.1 マイクロコズムの原理と特徴 106
    4.1.2 フラスコマイクロコズム 106
    4.1.3 湖沼模擬大型マイクロコズム 109
   4.2 湖沼模擬大型マイクロコズム装置を活用した生物間相互作用の解析 111
    4.2.1 Microcystis属とOscillatoria属との競合関係の解析 111
    4.2.2 Microcystis属とその捕食者としての原生動物鞭毛虫類の動態解析 113
    4.2.3 マクロコズムを活用したアオコの増殖制御のための浄化システム導入解析 115
   4.3 マイクロコズムを活用したこれからの研究展開 117
5章 地球温暖化とその制御 120
   5.1 地球温暖化の現状とメタン,亜酸化窒素 120
   5.2 バイオエンジニアリングシステムによるメタン,亜酸化窒素の発生制御 123
   5.3 エコエンジニアリングシステムによるメタン,亜酸化窒素の発生制御 126
   5.4 廃棄物埋立最終処分地におけるメタン,亜酸化窒素の発生制御 128
   5.5 農業分野におけるメタン,亜酸化窒素の発生制御 128
   5.6 温室効果ガス発生防止のための評価 129
6章 有機汚染物質の微生物分解 133
   6.1 微生物分解の意義 133
   6.2 生分解 137
   6.3 生分解に関する試験法 138
    6.3.1 生分解性試験の概要 138
    6.3.2 生物分解区の調整 139
    6.3.3 生分解性試験公定法 140
   6.4 難分解性物質 142
    6.4.1 難分解性物質 142
    6.4.2 有機塩素化合物の微生物分解 143
    6.4.3 多環芳香族炭化水素類(PAHs)の微生物分解 146
    6.4.4 その他化合物 148
   6.5 有機化合物の化学構造と生分解性 149
    6.5.1 環状炭化水素の微生物分解 149
    6.5.2 脂肪族炭化水素の微生物分解 151
    6.5.3 ノニルフェノール 152
    6.5.4 フェノール 154
    6.5.5 医療系排水処理 154
   6.6 無機化合物汚染と生物処理 156
    6.6.1 微生物浄化 156
    6.6.2 フィトレメディエーション 159
7章 微生物による水処軌 164
   7.1 水処理 164
    7.1.1 汚水処理の種類と原理 164
    7.1.2 上水処理の種類と原理 169
   7.2 活性汚泥法における微生物とその制御 171
    7.2.1 活性汚泥法の操作因子 171
    7.2.2 活性汚泥の微生物 172
    7.2.3 活性汚泥の指標生物 174
    7.2.4 バルキング 175
   7.3 生物膜法における微生物とその制御 177
    7.3.1 生物膜の微生物 177
    7.3.2 生物膜の指標生物 181
   7.4 包括固定化法における微生物とその制御 183
   7.5 嫌気性アンモニア酸化法(アナモックス) 186
    7.5.1 硝化・脱窒法とアナモックス法 186
    7.5.2 アナモックス法 187
    7.5.3 アナモックス菌の特性 188
    7.5.4 アナモックス菌の固定化および活用方法 189
    7.5.5 アナモックスリアクターの運転方法 189
    7.5.6 亜硝酸型硝化 190
    7.5.7 アナモックスによる排水処理 191
   7.6 浄水生物膜処理における微生物とその制御 192
    7.6.1 浸漬[ろ]床方式 193
    7.6.2 回転円板方式 193
    7.6.3 生物接触[ろ]過方式 194
   7.7 嫌気性処理法における微生物とその制御 194
    7.7.1 メタン発酵法の基本的な操作条件 195
    7.7.2 各種の嫌気性処理法 196
   7.8 栄養塩類除去における微生物とその制御 197
    7.8.1 窒素の除去プロセス 198
    7.8.2 リンの除去プロセス 202
    7.8.3 窒素・リン同時除去プロセス 208
   7.9 生ごみディスポーザ活用排水処理における微生物とその制御 212
    7.9.1 ディスポーザ排水処理システムの微生物特性 213
    7.9.2 ディスポーザ排水処理システムの指標生物 215
   7.10 植栽・土壌浄化法におけるメタン,亜酸化窒素対策と微生物制御 217
    7.10.1 水生植物活用浄化システムの種類と特徴 217
    7.10.2 水生植物活用浄化システムにおける栄養塩除去・温室効果ガス発生機構 217
    7.10.3 水生植物植栽・土壌およびフロート式水耕栽培浄化法 219
    7.10.4 植栽・土壌浄化システムのメタン生成細菌,メタン酸化細菌の分布特性からみた温室効果ガス発生抑制機構の評価 221
   7.11 水生植物浄化法における微生物とその制御 230
    7.11.1 水生植物浄化システムの微生物の種類 230
    7.11.2 水生植物浄化システムの植物種と微生物との相互作用 232
8章 微生物による汚泥処理 243
   8.1 汚泥処理の意義 243
   8.2 嫌気性処理 244
    8.2.1 嫌気処理の特徴 245
    8.2.2 嫌気性菌の特性 245
    8.2.3 嫌気処理の原理 246
    8.2.4 嫌気処理の種類 247
    8.2.5 有機物利用脱窒素処理 250
    8.2.6 硫黄利用脱窒素処理 252
    8.2.7 水素・メタンクリーンエネルギー回収 253
   8.3 コンポスト化技術 257
    8.3.1 コンポスト化の原理 258
    8.3.2 コンポスト化微生物群 258
    8.3.3 コンポスト化の適正条件 262
    8.3.4 コンポストの病原微生物死滅化に対する効用 265
   8.4 原生・後生動物による処理 265
    8.4.1 汚泥処理に関する微小動物の増殖特性 267
    8.4.2 汚泥処理に関与する微小動物の収率 269
    8.4.3 汚泥処理に関与する微小動物と水質浄化能 271
    8.4.4 汚泥処理に関与する微小動物の異常増殖 272
   8.5 環形動物による処理 273
    8.5.1 貧毛類 274
    8.5.2 多毛類 280
   8.6 汚泥の減容化技術 285
    8.6.1 汚泥発生量と減容化の意義 285
    8.6.2 汚泥減容化技術の種類 286
9章 微生物反応の制御 300
   9.1 微生物増殖の動力学 300
    9.1.1 微生物の増殖 301
    9.1.2 微生物による有機物質の除去 302
   9.2 混合培養系 303
   9.3 微生物反応制御におけるモデルの目的と意義 305
    9.3.1 微生物反応系の数理モデルとその目的 305
    9.3.2 微生物反応系モデル作成の意義 306
   9.4 富栄養化モデル 307
    9.4.1 富栄養化モデルの特徴 307
    9.4.2 リン負荷モデル(Vollenweiderモデル) 308
    9.4.3 生態系モデル 312
   9.5 河川水質・生態系モデル 317
    9.5.1 河川モデルの特徴 317
    9.5.2 水質モデル(Streeter-Phelps式) 318
    9.5.3 生態系モデル 320
   9.6 生物学的排水処理のモデル 324
    9.6.1 生物学的排水処理モデルの考え方 324
    9.6.2 時系列解析モデル 327
    9.6.3 動力学モデル 329
索引 335
   注 : [ろ]([ろ]はさんずいに戸)は、現物の表記と異なります
   
最新 環境浄化のための微生物学刊行の主旨 iii
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼