close
1.

図書

図書
Matthew Gandy and Sandra Jasper [eds.]
出版情報: Berlin : Jovis, c2020  323 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
The city as a botanical field / Matthew Gandy and Sandra Jasper
Histories and taxonomies / Part 1:
Signs of life: interview with Herbert Sukopp
The metabolic city and the city of biotopes: Paul Duvigneaud and Herbert Sukopp / Jens Lachmund
Urban granaries, planetary thresholds / Nigel Clark
The flora of bombed areas (an allegorical key) / Seth Denizen
Vegetation as testimony: botanical traces of the urban past / Moritz von der Lippe
The curious disappearance of the Ennore Creek / Bhavani Raman
Phoenix canariensis in Lisbon's new ecologies: a post-phenomenological tracing of a palm tree in a disused gasworks / Daniel Paiva
Urban plants and colonial durabilities / Henrik Ernstson
Ailanthus altissima, or the botanical afterlives of European power / Bettina Stoetzer
Seeing, surveying, and sorting urban trees: the 1970s street tree project in Dresden / Sonja Dümpelmann
Vertical ecologies: the balcony biotopes of Berlin / Dorothee Brantz
Drying greens, commons, and the possibilities of the botanical (in one quiet corner of London) / Marcus Nyman
Botanizing the asphalt / Part 2:
The flight of seeds / Mara Polgovsky Ezcurra
Dandelions at work: a street comer tale of ecosystem services / Alexandra R. Toland
Plants in the urban night / Bergit Arends
Toxic tour: Houston's environmental apartheid and institutional liberation / T. J. Demos
Queering the transect / Matthew Gandy
Walking with plants: disrupting the material logics of degrado at the banks of Turin's Stura river / Lucilla Barchetta
Following mosquitoes into an urban forest / Nida Rehman
Rhizome city: tracing knotweed through the soils of Brussels / Livia Cahn
The art of urban flora / Lois Weinberger and Zheng Bo and Mona Caron and Yan Wang Preston and Uriel OrlowPart 3:
Experiments in non-design / Part 4:
Framing urban landscapes: interview with Susanne Hauser
Acoustic botany: listening to nature in a former airfield / Sandra Jasper
There's life in dead wood: tracing a more-than-human urbanity in the sponteneous nature of Gothenburg / Mathilda Rosengren
From undead commodities to lively labourers: (re)valuing vegetal life, reclaiming the power to design-with plants / Marion Ernwein
Tracing the urban pastoral in Tallinn: Leo Marx, Kari Marx, and urban political aesthetics / Maroš Knvý
Tokyo ecology: the Akabane Nature Observation Park / Kumiko Kiuchi
Red leaves / Suili Xiao
Cartographic imaginations / Part 5:
Urban plants: a window on how ecology becomes evolution / Peter Del Tredici
Discovering and mapping urban plants / Mark Spencer
Mapping the urban flora of Berlin / Birgit Seitz
Nature is for everyone: investigating attitudes to urban biodiversity / Leonie Fischer
Urban cemeteries in Berlin and beyond: life in the grounds of the dead / Ingo Kowarik
Contributors
Acknowledgments
The city as a botanical field / Matthew Gandy and Sandra Jasper
Histories and taxonomies / Part 1:
Signs of life: interview with Herbert Sukopp
2.

図書

図書
Gerhard Schlemmer ... [et al.]
出版情報: Berlin : De Gruyter, c2019  xii, 402 p. ; 24 cm
シリーズ名: De Gruyter graduate
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / 1:
Analytical parameters / 1.1:
Define what is to be measured? / 1.1.1:
How important is this analysis? / 1.1.2:
What is the sample, how is it sampled and how does it get to the lab? / 1.1.3:
Accuracy / 1.1.4:
Precision / 1.1.5:
Sensitivity / 1.1.6:
Limit of detection / 1.1.7:
Time of analysis / 1.1.8:
Importance of the results / 1.1.9:
What spectrometric technique is to be used? / 1.1.10:
What sample preparation is required? / 1.1.11:
Available resources / 1.1.12:
Reporting and post-analysis actions / 1.1.13:
Reference materials / 1.2:
Validation / 1.3:
Atomic absorption spectrometry and atomic fluorescence spectrometry / Gerhard Schlemmer2:
Basic principles of atomic absorption spectrometry and atomic fluorescence spectrometry / 2.1:
Interaction of photons with electrons / 2.1.1:
Line width of absorbing atoms / 2.1.2:
Line width of emitting atoms in the source / 2.1.3:
Absorption process / 2.1.4:
Flame optical emission spectroscopy / 2.1.5:
Atomic fluorescence / 2.1.6:
Technical means to facilitate AAS and AFS / 2.2:
General layout / 2.2.1:
Radiation source / 2.2.2:
Photometer and spectrometer / 2.2.3:
Counting photons and transfer to electrical information: Principle way of operation and criteria for optimal use / 2.2.4:
Zero absorption: technical means to define the baseline / 2.2.5:
Separation of specific and nonspecific absorption / 2.2.6:
Sample introduction and principles of atom generation in AAS / 2.2.7:
Physicochemistry outside and inside the atomizer / 2.3:
Flames / 2.3.1:
Graphite furnace / 2.3.2:
Chemical vapor generation / 2.3.3:
Mastering the spectrometer and its accessories / 2.3.4:
Figures of merit / 2.4.1:
Mastering the application; instrument suitability; method development; estimation on expected working range, basics of method optimization for flame, furnace, CVG, cold vapor, cold vapor fluorescence. Special applications: coupling of methods. Analytical quality versus sample and element throughput / 2.5:
Instrument performance verification / 2.5.1:
Estimate of the expected working range / 2.5.2:
Is the instrument suitable for the application? / 2.5.3:
Typical applications in AAS and AFS / 2.6:
Contaminated soils: An easy standard flame AAS application / 2.6.1:
Geochemistry: The determination of refractory elements in refractory matrix / 2.6.2:
Determinations in ultrapure materials: An unusual challenge / 2.6.3:
Between liquid and solid: the direct analysis of clinical samples in GF-AAS / 2.6.4:
Plants and other biological tissue: The way to fast GF-AAS determinations / 2.6.5:
Element-matrix separation: The determination of As and Sb in water samples / 2.6.6:
CVG with analyte trapping for ultra, ultra-traces / 2.6.7:
The determination of mercury with the cold vapor technique and AFS / 2.6.8:
References
Inductively coupled plasma and microwave-induced plasma optical emission spectroscopy / José Luis Todolí3:
Introduction to inductively coupled plasma optical emission spectroscopy / 3.1:
Plasma generation and fundamental parameters / 3.2:
Characteristics of the ICP / 3.2.1:
Mixed gas plasmas / 3.2.2:
Generators / 3.2.3:
Sample introduction systems / 3.3:
Conventional liquid sample introduction system / 3.3.1:
Drawbacks of conventional liquid sample introduction system / 3.3.2:
Efficient nebulizers or spray chambers / 3.3.3:
High solid nebulizers / 3.3.4:
Cooled spray chambers / 3.3.5:
Desolvation systems / 3.3.6:
Low sample consumption systems / 3.3.7:
Electrothermal vaporization / 3.3.8:
Torch configuration / 3.4:
General characteristics / 3.4.1:
Low argon consumption torches / 3.4.2:
Plasma viewing mode / 3.4.3:
Optical system / 3.5:
Dispersive system / 3.5.1:
Detectors / 3.5.2:
General configurations / 3.6:
Interferences in ICP-OES / 3.7:
Spectroscopic interferences in ICP-OES / 3.7.1:
Non-spectroscopic interferences (matrix effects) in ICP-OES / 3.7.2:
Comparing spectroscopic and non-spectroscopic interferences / 3.7.3:
Effect of the analyte chemical form / 3.8:
Optimizing an ICP-OES system / 3.9:
Optimization from the point of view of analytical figures of merit / 3.9.1:
Optimization from the point of view of accuracy / 3.9.2:
Methods for analyte quantification through ICP-OES / 3.10:
Troubleshooting and maintenance in ICP-OES / 3.11:
Microwave plasma optical emission spectroscopy / 3.12:
Instrumentation in MWP-OES / 3.12.1:
Matrix effects in MWP-OES / 3.12.2:
Optimization in MWP-OES / 3.12.3:
Comparison of ICP-OES, MIP-OES with other spectrochemical techniques / 3.13:
Selected applications / 3.14:
Bibliography
Inductively coupled plasma-mass spectrometry / Lieve Balcaen4:
Introduction and brief history / 4.1:
Instrumentation and principle of operation / 4.2:
Sample introduction system / 4.2.1:
Inductively coupled plasma ion source / 4.2.2:
Extraction system / 4.2.3:
Mass spectrometer / 4.2.4:
Alternative sample introduction systems / 4.2.5:
Spectral interferences / 4.3:
Types of interferences / 4.3.1:
Methods to tackle the problem of spectral interferences / 4.3.2:
Nonspectral interferences / 4.4:
Description of nonspectral interferences / 4.4.1:
Methods to tackle the problem of nonspectral interferences / 4.4.2:
Analytical performance / 4.5:
Hyphenated ICP-MS / 4.6:
Examples of typical applications / 4.7:
(Ultra-)trace element determination / 4.7.1:
Isotopic analysis / 4.7.2:
Speciation analysis by means of LC-ICP-MS / 4.7.3:
Spatially resolved analysis by means of LA-ICP-MS / 4.7.4:
X-ray fluorescence spectrometry / Michael W. Hinds5:
Overview / 5.1:
What is X-ray fluorescence (XRF) spectrometry? / 5.1.1:
What distinguishes XRF from other atomic spectrometric techniques? / 5.1.2:
Types: Wavelength Dispersive XRF and Energy Dispersive XRF / 5.1.3:
Physics of X-rays / 5.2:
Characteristic fluorescence lines / 5.2.1:
Absorption and fluorescence / 5.2.3:
Generation of X-rays within the X-ray tube / 5.2.4:
Production of fluorescence X-rays within the sample / 5.2.5:
Infinite thickness and analysis depth / 5.2.6:
Fluorescence yield / 5.2.7:
WDXRF spectrometer and components / 5.3:
X-ray tube / 5.3.1:
Primary beam fitters / 5.3.2:
Atmosphere / 5.3.3:
Sample cups and aperture / 5.3.4:
Mask / 5.3.5:
Collimators / 5.3.6:
Crystals or analyzer crystals / 5.3.7:
Goniometer / 5.3.8:
Pulse height selection / 5.3.9:
Auxiliary services / 5.3.11:
Optimization of parameters / 5.3.12:
EDXRF spectrometer and components / 5.4:
X-ray sources / 5.4.1:
Primary beam filters / 5.4.2:
Multichannel analyzer / 5.4.4:
Handheld EDXRF spectrometer / 5.4.7:
Total reflection XRF / 5.4.9:
Comparison between EDXRF and WDXRF / 5.4.10:
Obtaining optimized net intensities and counting times / 5.5:
Background corrected peaks WDXRF / 5.5.1:
Background correction EDXRF / 5.5.2:
Peak overlap corrections / 5.5.3:
Measurement time / 5.5.4:
Matrix effects specific to XRF / 5.6:
Absorption / 5.6.1:
Enhancement / 5.6.2:
Particle size effects / 5.6.3:
Mineralogical effects / 5.6.4:
Chemical state effects / 5.6.5:
Calibration and mathematical correction models / 5.7:
Matrix correction algorithms / 5.7.1:
Calibration / 5.7.3:
Drift correction / 5.7.4:
Universal calibration XRF analysis / 5.8:
How it works / 5.8.1:
Applications / 5.8.2:
Advantages and disadvantages / 5.8.3:
Sample preparation / 5.9:
Air sample preparation / 5.9.1:
Liquid sample preparation / 5.9.2:
Solid sample preparation / 5.9.3:
Examples applications / 5.10:
EDXRF - determination of Ag, As and Zn in lead concentrate / 5.10.1:
WDXRF - Determination of Ag, Cu, and P in Sterling Silver / 5.10.2:
Different applications and current trends in XRF / 5.11:
Combination WDXRF and EDXRF in one instrument / 5.11.1:
Microfocusing optics and element concentration mapping / 5.11.2:
Layer thickness / 5.11.3:
Vendor method packages / 5.11.4:
Advances in EDXRF / 5.11.5:
Concluding remarks / 5.12:
Appendix / 5.13:
Appendix 1: Table of photon energies of the principle K and L X-ray spectral lines / 5.13.1:
Appendix 2: Table of K, L, and M X-ray excitation potentials of the elements / 5.13.2:
Appendix 3: Table of mass attenuation coefficients for K¿ line energies of selected elements / 5.13.3:
Index
Preface
Introduction / 1:
Analytical parameters / 1.1:
3.

図書

図書
Claudia Thesenfitz
出版情報: Berlin : Ullstein, 2015  268 p. ; 19 cm
所蔵情報: loading…
4.

図書

図書
Jean-Pierre Jaspart, Klaus Weynand
出版情報: [Brussels] : ECCS , Berlin : Ernst & Sohn [seller], 2016  xxii, 388 p. ; 24 cm
シリーズ名: ECCS eurocode design manuals
所蔵情報: loading…
5.

図書

図書
Ahmed Al-Samaneh
出版情報: Norderstedt : Books on Demand, 2014  iv, 203 p. ; 21 cm
所蔵情報: loading…
6.

図書

図書
Noam Eliaz and Eliezer Gileadi
出版情報: Weinheim : Wiley-VCH, c2019  xxvii, 452 p ; 25 cm
所蔵情報: loading…
7.

図書

図書
Rainer Pöttgen, Dirk Johrendt
出版情報: Berlin : Walter de Gruyter, c2019  x, 314 p. ; 24 cm
シリーズ名: De Gruyter Stem
所蔵情報: loading…
8.

図書

図書
Yuanzhi Xu, Jia Yao
出版情報: Berlin : De Gruyter, c2019 , [Beijing] : Tsinghua University Press  xiii, 450 p. ; 24 cm
シリーズ名: De Gruyter graduate
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Author's Preface
Introduction / 1:
Origin of EMR / 1.1:
Experimental apparatus / 1.2:
Microwave source / 1.2.1:
Resonant cavity and coupling system / 1.2.2:
Magnet / 1.2.3:
Detection system / 1.2.4:
Data treatment system / 1.2.5:
Target of research / 1.3:
Prospects for future / 1.4:
References
Theoretical basics / 2:
Phenomenal description of EMR / 2.1:
Angular momentum and magnetic moment / 2.2:
Orbital motion of electron and its magnetic moment / 2.2.1:
Eigen motion of electrons and its magnetic moment / 2.2.2:
Spin angular momentum and magnetic moment of atomic nucleus / 2.2.3:
Electric quadrupole moment of atomic nucleus / 2.2.4:
Unit of magnetic field / 2.3:
The interaction between external fields and magnetic moment / 2.4:
Interaction of magnetic moment with electromagnetic field in the external magnetic field / 2.5:
Interaction of nuclear magnetic moment with electron magnetic moment in the external magnetic field / 2.6:
Further reading
g-Tensor theory / 3:
Landé factor / 3.1:
Matrix presentation of g-tensor / 3.2:
Tensor of colour center (cubic symmetry and uniaxial symmetry system) / 3.2.1:
The g-tensor of nonaxisymmetric (lower than uniaxial symmetry) system / 3.2.2:
g-Tensor of irregular orientation system / 3.3:
g-Tensor of axisymmetric system / 3.3.1:
g-Tensor of nonaxisymmetric system / 3.3.2:
Isotropic hyperfine structure / 4:
Theoretical exploration of hyperfine interaction / 4.1:
Dipole-dipole interaction / 4.1.1:
Fermi contact interaction / 4.1.2:
Energy operator of isotropic hyperfine interaction / 4.2:
Spin operator and hamiltonians / 4.2.1:
Zeeman interaction of electrons and nuclei / 4.2.2:
Spin hamiltonian of isotropic hyperfine interaction / 4.2.3:
Spectral isotropic hyperfine structure / 4.3:
System with one magnetic nucleus and one unpaired electron / 4.3.1:
Multimagnetic nuclei with one unpaired electron system / 4.3.2:
Hyperfine splitting arising from other magnetic nuclei / 4.3.3:
Encountered problems in isotropic radical spectra / 4.3.4:
Hyperfine structure of organic ¿-free radical spectrum / 4.4:
Hyperfine coupling constant of organic ¿-radical / 4.4.1:
McConnell semiempirical formula / 4.4.2:
Hückel molecular orbital (HMO) theory / 4.4.3:
Calculation of probability density distribution of unpaired electron / 4.4.4:
The Q value of the radical with fully symmetrical structure / 4.4.5:
Hyperfine coupling constant a value of the even alternant hydrocarbons / 4.4.6:
Hyperfine coupling constant a value of the even alternant heterocyclic hydrocarbons / 4.4.7:
Hyperfine coupling constant a value of the odd alternant and nonalternant hydrocarbons / 4.4.8:
Mechanism of hyperfine splitting in the spectrum of conjugated systems / 4.5:
"Electronic correlation" effect / 4.5.1:
The sign of proton hyperfine splitting constant / 4.5.2:
Negative spin density / 4.5.3:
About the Q value problem / 4.5.4:
Hyperfine splitting and hyperconjugation effect of methyl protons / 4.5.5:
Hyperfine splitting of other (non-proton) nuclei / 4.6:
Hyperfine splitting of 13C nucleus / 4.6.1:
Hyperfine splitting of 14N nucleus / 4.6.2:
Hyperfine splitting of 19F nucleus / 4.6.3:
Hyperfine splittings of 17O and 33S nuclei / 4.6.4:
Further readings
An isotropic hyperfine structure / 5:
Anisotropic hyperfine interaction / 5.1:
Matrix interpretation of anisotropic hyperfine interaction / 5.2:
Example demonstration / 5.3:
Anisotropic hyperfine coupling tensor and structure of radical / 5.4:
Hyperfine coupling tensor of central atom / 5.4.1:
Hyperfine coupling tensor of ¿-hydrogen atom / 5.4.2:
Hyperfine coupling tensor of ß-hydrogen atom / 5.4.3:
Hyperfine coupling tensor of ¿-type organic radicals / 5.4.4:
Anisotropy of the combination of g-tensor and A-tensor / 5.5:
Anisotropy of A tensor in the irregular orientation system / 5.6:
Fine structure / 6:
Zero-field splitting / 6.1:
Spin hamiltonian of two-electron interaction / 6.2:
Exchange interaction of electron spin / 6.2.1:
Dipoie interaction of electron-electron / 6.2.2:
The triplet molecule (S = 1) system / 6.3:
Energy levels and wave functions of triplet molecules under the action of external magnetic field / 6.3.1:
Examples of triplet state excited by light / 6.3.2:
Examples of thermal excitation triplet state / 6.3.3:
Examples of other excited triplet / 6.3.4:
Examples of ground triplet state / 6.3.5:
Triplet system of irregular orientation / 6.4:
Biradical / 6.5:
Relaxation and line shape and linewidth / 7:
Model of spin relaxation / 7.1:
Spin temperature and boltzmann distribution / 7.1.1:
Spin particle transition dynamics / 7.1.2:
Mechanism of the effect of relaxation time ¿1 on linewidth / 7.1.3:
Magnetization in static magnetic field / 7.1.4:
Bloch equation in the static magnetic field / 7.1.5:
Bloch equation in the static magnetic field coupled with the oscillating magnetic field / 7.1.6:
Stationary solutions of bloch equation / 7.1.7:
Shape, width, and intensity of spectral line / 7.2:
Line shape function / 7.2.1:
Linewidth / 7.2.2:
Line broadening / 7.2.3:
Line intensity / 7.2.4:
Dynamic effects of line shape / 7.3:
Generalized bloch equation / 7.3.1:
Chemical exchange broadening mechanism / 7.3.2:
Mechanism of the spectral lines broadening caused by physical motion / 7.3.3:
Saturation transfer of spectra / 7.4:
Intensity of signal dependent on time / 7.5:
Free radical concentration changes with time / 7.5.1:
Chemical-induced dynamic electron polarization (CIDEP) / 7.5.2:
Quantitative determination / 8:
Main factors of influence for quantitative determination / 8.1:
Factors of instrument / 8.1.1:
Influence of operating factors / 8.1.2:
Selection and preparation of standard samples / 8.2:
Key parameters and its effect on the intensity of EMR signal / 8.3:
Achievable accuracy of quantitative determination / 8.4:
Paramagnetic gases and inorganic radicals / 9:
Spectra of paramagnetic gases / 9.1:
Monoatomic paramagnetic gases / 9.1.1:
Diatomic paramagnetic gas / 9.1.2:
Gaseous molecules of triatom and polyatom / 9.1.3:
Expanding of EMR technique for study on paramagnetic gas / 9.2:
Laser electronic magnetic resonance / 9.2.1:
Magnetic resonance induced by electron / 9.2.2:
Inorganic radicals / 9.3:
Point defects in solid states / 9.4:
Spectra of conductor and semiconductor / 9.5:
Structure of a molecule structure of a molecule estimated from the data of EMR / 9.6:
Ions of transition elements and their complexes / 10:
Electron ground state of transition element ion / 10.1:
Orbital degeneracy is rescinded in ligand field / 10.2:
Electric potential of ligand field / 10.3:
Energy-level splitting of transition metal ion in ligand field / 10.4:
P-state ion in octahedron Field (L = 1) / 10.4.1:
D-state ion / 10.4.2:
About F-state ion / 10.4.3:
Spin-orbit coupling and spin hamiltonian / 10.5:
Ground-state ion with orbital nondegeneracy / 10.6:
D-state ions of ground-state orbital nondegenerate / 10.6.1:
F-state ions of ground-state orbital nondegenerate / 10.6.2:
S-state ions of the ground-state orbital nondegenerate / 10.6.3:
Ground-state ions with orbital degeneracy / 10.7:
D-state ions / 10.7.1:
F-state ions / 10.7.2:
Jahn-Teller distortion / 10.7.3:
The palladium group (4d) and platinum group (5d) ions / 10.7.4:
EMR spectra of rare earth Ions / 10.8:
Lanthanide ion / 10.8.1:
Actinide ions / 10.8.2:
EMR spectra of transition metal complexes / 10.9:
Extension and expansion of EMR / Appendix 1:
Mathematical preparation / Appendix 2:
Angular momentum and stable-state perturbation theory in quantum mechanics / Appendix 3:
Fundamental constants and useful conversion actors / Appendix 4:
The natural abundance, nuclear spin, nuclear magnetogyric ratio of some magnetic nuclei and their hyperfine coupling parameters / Appendix 5:
Index
Foreword
Author's Preface
Introduction / 1:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼