close
1.

図書

図書
editor, Raul Rojas
出版情報: New York : Elsevier , Red Hook, NY : Printed from e-media with permission by Curran Associates, 2016  271 p. ; 27 cm
シリーズ名: IFAC PapersOnline ; v. 49, issue 15
2.

図書

図書
editors, Miroslav Kulich, Karel Kosnar, Libor Preucil
出版情報: Oxford : Elsevier , Red Hook, NY : Printed with permission by Curran Associates, 2022  157 p. ; 28 cm
シリーズ名: IFAC PapersOnline ; v. 55, issue 14
3.

図書

図書
editors, Bogdan Wiszniewski, Zdzislaw Kowalczuk, Mariusz Domzalski
出版情報: Oxford : Elsevier , Red Hook, NY : Printed from e-media with permission by Curran Associates, 2020, c2019  473 p. ; 28 cm
シリーズ名: IFAC PapersOnline ; v. 52, issue 8
4.

図書

図書
Ronald C. Arkin
出版情報: Cambridge, Mass. ; London, England : MIT Press, c1998  xiv, 491 p. ; 24 cm
シリーズ名: Intelligent robotics and autonomous agents
目次情報: 続きを見る
Foreword
Preface
Whence Behavior? / Chapter 1:
Toward Intelligent Robots / 1.1:
Precursors / 1.2:
Cybernetics / 1.2.1:
Artificial Intelligence / 1.2.2:
Robotics / 1.2.3:
The Spectrum Of Robot Control / 1.3:
Deliberative/Hierarchical Control / 1.3.1:
Reactive Systems / 1.3.2:
Related Issues / 1.4:
What's Ahead / 1.5:
Animal Behavior / Chapter 2:
What Does Animal Behavior Offer Robotics? / 2.1:
Neuroscientific Basis For Behavior / 2.2:
Neural Circuity / 2.2.1:
Brain Structure and Function / 2.2.2:
Abstract Neuroscientific Models / 2.2.3:
Schema-Theoretic Methods / 2.2.3.1:
Neural Networks / 2.2.3.2:
Psychological Basis For Behavior / 2.3:
Ethological Basis For Behavior / 2.4:
Representative Examples Of Bio-Robots / 2.5:
Ant Chemotaxis / 2.5.1:
Fly Vision / 2.5.2:
Cockroach Locomotion / 2.5.3:
Primate Brachiation / 2.5.4:
Robotic Honeybee / 2.5.5:
Chapter Summary / 2.6:
Robot Behavior / Chapter 3:
What Are Robotic Behaviors? / 3.1:
A Navigational Example / 3.1.1:
Basis for Robotic Behavior / 3.1.3:
Expression Of Behaviors / 3.2:
Stimulus-Response Diagrams / 3.2.1:
Functional Notation / 3.2.2:
Finite State Acceptor Diagrams / 3.2.3:
Formal Methods / 3.2.4:
RS / 3.2.4.1:
Situated Automata / 3.2.4.2:
Behavioral Encoding / 3.3:
Discrete Encoding / 3.3.1:
Continuous Functional Encoding / 3.3.2:
Assembling Behaviors / 3.4:
Emergent Behavior / 3.4.1:
Notation / 3.4.2:
Behavioral Coordination / 3.4.3:
Competitive Methods / 3.4.3.1:
Cooperative Methods / 3.4.3.2:
Behavioral Assemblages / 3.4.4:
Behavior-Based Architectures / 3.5:
What Is A Robotic Architecture? / 4.1:
Definitions / 4.1.1:
Computability / 4.1.2:
Evaluation Criteria / 4.1.3:
Organizing Principles / 4.1.4:
A Foraging Example / 4.2:
Subsumption Architecture / 4.3:
Behaviors in Subsumption / 4.3.1:
Coordination in Subsumption / 4.3.2:
Design in Subsumption-Based Reactive Systems / 4.3.3:
Foraging Example / 4.3.4:
Evaluation / 4.3.5:
Subsumption Robots / 4.3.6:
Motor Schemas / 4.4:
Schema-Based Behaviors / 4.4.1:
Schema-Based Coordination / 4.4.2:
Design in Motor Schema-Based Systems / 4.4.3:
Schema-Based Robots / 4.4.4:
Other Architectures / 4.5:
Circuit Architecture / 4.5.1:
Colony Architecture / 4.5.3:
Animate Agent Architecture / 4.5.4:
DAMN / 4.5.5:
Skill Network Architecture / 4.5.6:
Other Efforts / 4.5.7:
Architectural Design Issues / 4.6:
Representational Issues for Behavioral Systems / 4.7:
Representational Knowledge / 5.1:
What Is Knowledge? / 5.1.1:
Characteristics of Knowledge / 5.1.2:
Representational Knowledge For Behavior-Based Systems / 5.2:
Short-Term Behavioral Memory / 5.2.1:
Long-Term Memory Maps / 5.2.2:
Sensor-Derived Cognitive Maps / 5.2.2.1:
A Priori Map-Derived Representations / 5.2.2.2:
Perceptual Representations / 5.3:
Hybrid Deliberative/Reactive Architectures / 5.4:
Why Hybridize? / 6.1:
Biological Evidence In Support Of Hybrid Systems / 6.2:
Traditional Deliberative Planners / 6.3:
Deliberation: To Plan Or Not To Plan? / 6.4:
Layering / 6.5:
Representative Hybrid Architectures / 6.6:
AuRa / 6.6.1:
Atlantis / 6.6.2:
Planner-Reactor Architecture / 6.6.3:
The Procedural Reasoning System / 6.6.4:
Other Hybrid Architectures / 6.6.5:
Perceptual Basis for Behavior-Based Control / 6.7:
A Break From Tradition / 7.1:
What Does Biology Say? / 7.2:
The Nature of Perceptual Stimuli / 7.2.1:
Neuroscientific Evidence / 7.2.2:
Psychological Insights / 7.2.3:
Affordances / 7.2.3.1:
A Modified Action-Perception Cycle / 7.2.3.2:
Perception as Communication-An Ethological Stance / 7.2.4:
A Brief Survey Of Robotic Sensors / 7.3:
Dead Reckoning / 7.3.1:
Ultrasound / 7.3.2:
Computer Vision / 7.3.3:
Laser Scanners / 7.3.4:
Modular Perception / 7.4:
Perceptual Schemas / 7.4.1:
Visual Routines / 7.4.2:
Perceptual Classes / 7.4.3:
Lightweight Vision / 7.4.4:
Action And Perception / 7.5:
Action-Oriented Perception / 7.5.1:
Active Perception / 7.5.2:
The Role of Attention in Human Visual Processing / 7.5.5.1:
Hardware Methods for Focus of Attention / 7.5.5.2:
Knowledge-Based Focus-of-Attention Methods / 7.5.5.3:
Perceptual Sequencing / 7.5.6:
Sensor Fusion for Behavior-Based Systems / 7.5.7:
Representative Examples Of Behavior-Based Perception / 7.6:
Road Following / 7.6.1:
Visual Tracking / 7.6.2:
Adaptive Behavior / 7.7:
Why Should Robots Learn? / 8.1:
Opportunities For Learning In Behavior-Based Robotics / 8.2:
Reinforcement Learning / 8.3:
Learning to Walk / 8.3.1:
The Learning Algorithm / 8.3.1.1:
Robotic Results / 8.3.1.2:
Learning to Push / 8.3.2:
Learning to Shoot / 8.3.2.1:
Learning In Neural Networks / 8.3.3.1:
Classical Conditioning / 8.4.1:
Adaptive Heuristic Critic Learning / 8.4.2:
Learning New Behaviors Using an Associative Memory / 8.4.3:
Genetic Algorithms / 8.5:
What Are Genetic Algorithms? / 8.5.1:
Genetic Algorithms for Learning Behavioral Control / 8.5.2:
Classifier Systems / 8.5.3:
On-Line Evolution / 8.5.4:
Evolving Form Concurrently with Control / 8.5.5:
Hybrid Genetic/Neural Learning and Control / 8.5.6:
Fuzzy Behavioral Control / 8.6:
What Is Fuzzy Control? / 8.6.1:
Fuzzy Behavior-Based Robotic Systems / 8.6.2:
Flakey / 8.6.2.1:
Marge / 8.6.2.2:
Learning Fuzzy Rules / 8.6.3:
Other Types Of Learning / 8.7:
Case-Based Learning / 8.7.1:
Memory-based Learning / 8.7.2:
Explanation-Based Learning / 8.7.3:
Social Behavior / 8.8:
Are Two (Or N) Robots Better Than One? / 9.1:
Ethological Considerations / 9.2:
Characterization Of Social Behavior / 9.3:
Reliability / 9.3.1:
Social Organization / 9.3.2:
Communication / 9.3.3:
Spatial Distribution / 9.3.4:
Congregation / 9.3.5:
Performance / 9.3.6:
What Makes A Robotic Team? / 9.4:
Social Organization And Structure / 9.5:
The Nerd Herd / 9.5.1:
Alliance Architecture / 9.5.2:
Stagnation Behaviors / 9.5.3:
Societal Agents / 9.5.4:
Army Ant Project / 9.5.5:
Interrobot Communication / 9.6:
The Need for Communication / 9.6.1:
Communication Range / 9.6.2:
Communication Content / 9.6.3:
Guaranteeing Communication / 9.6.4:
Distributed Perception / 9.7:
Social Learning / 9.8:
L-Alliance / 9.8.1:
Tropism System Cognitive Architecture / 9.8.3:
Learning by Imitation / 9.8.4:
Case Study: Ugv Demo II / 9.9:
Formation Behaviors / 9.9.1:
Multiagent Mission Specification / 9.9.2:
Team Teleautonomy / 9.9.3:
Fringe Robotics: Beyond Behavior / 9.10:
Issues Of The Robot Mind / 10.1:
On Computational Thought / 10.1.1:
On Consciousness / 10.1.2:
On Emotions / 10.1.3:
On Imagination / 10.1.4:
Issues Of The Robot Body / 10.2:
Hormones and Homeostasis / 10.2.1:
The Homeostat / 10.2.1.1:
Subsumption-Based Hormonal Control / 10.2.1.3:
Immune Systems / 10.2.2:
Nanotechnology / 10.2.3:
On Equivalence (Or Better) / 10.3:
Opportunities / 10.4:
References / 10.5:
Name Index
Subject Index
Foreword
Preface
Whence Behavior? / Chapter 1:
5.

図書

図書
Michael Beetz
出版情報: Berlin ; Tokyo : Springer, c2002  xi, 191 p. ; 24 cm
シリーズ名: Lecture notes in computer science ; 2554 . Lecture notes in artificial intelligence
目次情報: 続きを見る
Introduction / 1:
The Challenges of Controlling Robot Office Couriers / 1.1:
The Control Problem / 1.2:
The Computational Model / 1.3:
An Adaptive Robotic Office Courier / 1.4:
Previous Work / 1.5:
Descriptive Models of Everyday Activity / 1.5.1:
Computational Models of Everyday Activity / 1.5.2:
Contributions / 1.6:
Overview / 1.7:
Overview of the Control System / 2:
Abstract Models of Robotic Agents / 2.1:
The Dynamic System Model / 2.1.1:
Autonomous Robots as Rational Agents / 2.1.2:
The BDI Model of Rational Agents / 2.1.3:
Discussion of Our Robotic Agent Model / 2.1.4:
The Environment Maps / 2.2:
The Computational Structure of the Control System / 2.3:
The Functional Layer / 2.3.1:
The "Robotic Agent" Abstract Machine / 2.3.2:
The Structured Reactive Controller / 2.3.3:
Plan Representation for Robotic Agents / 3:
Low -Level Integration of Mechanisms / 3.1:
Navigation / 3.1.1:
Communication Mechanisms / 3.1.2:
Execution Time Planning / 3.1.3:
Image Processing / 3.1.4:
Summary of Low -Level Integration / 3.1.5:
Low -Level Plans / 3.2:
Low -Level Navigation Plans / 3.2.1:
Low -Level Image Processing Plans / 3.2.2:
Low -Level Conversational Plans / 3.2.3:
Task-Specific Low -Level Plans / 3.2.4:
Summary of Low -Level Plans / 3.2.5:
Structured Reactive Plans / 3.3:
Properties of SRCs and Their Sub-plans / 3.3.1:
High-Level Navigation Plans / 3.3.2:
Structured Reactive Plans for Other Mechanisms / 3.3.3:
The Plan Adaptation Framew ork / 3.4:
Properties of Revision Rules and Revisable Plans / 3.4.1:
Revision Rules / 3.4.2:
Related Work on Plan Representation / 3.5:
Discussion / 3.6:
Probabilistic Hybrid Action Models / 4:
Projecting Delivery Tour Plans / 4.1:
Modeling Reactive Control Processes and Continuous Change / 4.2:
Probabilistic, Totally-Ordered Temporal Projection / 4.3:
Probabilistic Temporal Rules for PHAMs / 4.3.1:
Properties of PHAMs / 4.3.2:
The Implementation of PHAMs / 4.4:
Projection with Adaptive Causal Models / 4.4.1:
Endogenous Event Scheduler / 4.4.2:
Projecting Exogenous Events, Passive Sensors, and Obstacle Avoidance / 4.4.3:
Probabilistic Sampling-Based Projection / 4.4.4:
Evaluation / 4.5:
Generality / 4.5.1:
Scaling Up / 4.5.2:
Qualitatively Accurate Predictions / 4.5.3:
Related Work on Temporal Projection / 4.6:
LearningStructured Reactive Navigation Plans / 4.7:
Navigation Planning as a Markov Decision Problem / 5.1:
An Overviewon XfrmLearn / 5.2:
Structured Reactive Navigation Plans / 5.3:
XfrmLearn in Detail / 5.4:
The "Analyze" Step / 5.4.1:
The "Revise" Step / 5.4.2:
The "Test" Step / 5.4.3:
Experimental Results / 5.5:
The First Learning Experiment / 5.5.1:
The Second Learning Experiment / 5.5.2:
Discussion of the Experiments / 5.5.3:
Related Work on Learning Robot Plans / 5.6:
Plan-Based Robotic Agents / 5.7:
A Robot Office Courier / 6.1:
The Plans of the Robot Courier / 6.1.1:
Plan Adaptors of the Robot Courier / 6.1.2:
Probabilistic Prediction-Based Schedule Debugging / 6.1.3:
Demonstrations and Experiments / 6.1.4:
Prediction-Based Plan Management / 6.1.5:
A Robot Museums Tourguide / 6.2:
The Plans of the Tourguide Robot / 6.2.1:
Learning Tours and Tour Management / 6.2.2:
Demonstrations of the Tourguide Robot / 6.2.3:
A Robot Party Butler / 6.3:
Demonstrations of Integrated Mechanisms / 6.4:
Communication / 6.4.1:
Resource-Adaptive Search / 6.4.2:
Active Localization / 6.4.4:
Related Work on Plan-Based Robotic Agents / 6.5:
XAVIER / 6.5.1:
CHIP / 6.5.2:
Flakey / 6.5.3:
An Architecture for Autonomy / 6.5.4:
Remote Agent / 6.5.5:
Conclusions / 6.6:
Bibliography
Introduction / 1:
The Challenges of Controlling Robot Office Couriers / 1.1:
The Control Problem / 1.2:
6.

図書

図書
edited by H. Asama and H. Inoue
出版情報: Oxford : Published for the International Federation of Automatic Control by Pergamon, 2002  viii, 411 p. ; 30 cm
7.

図書

図書
edited by J. Santos-Victor and M. I. Ribeiro
出版情報: Oxford : Published for the International Federation of Automatic Control by Elsevier, 2005  2 v. (xv, 967 p.) ; 30 cm
8.

図書

図書
editors, Ljubo Vlacic, Stefan Jakubek, Giovanni Indiveri
出版情報: Oxford, UK : Elsevier , Red Hook, NY : Printed from e-media with permission by Curran Associates, 2013  297 p. ; 27 cm
9.

図書

図書
editors, Giovanni Indiveri, António M. Pascoal
出版情報: Oxford, UK : Elsevier, c2010  628 p. ; 27 cm
10.

図書

図書
editor,
出版情報: Oxford, UK : Elsevier, c2010  565 p. ; 27 cm
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼