close
1.

図書

図書
Shaoguang Li, Dongguang Li
出版情報: Hackensack, N.J. : World Scientific, c2008  xi, 118 p. ; 24 cm
目次情報: 続きを見る
Preface
Introduction of Authors
DNA Microarray Technology / Chapter 1:
Experimental Procedure / 1.1:
Experimental Design / 1.2:
Quality Control / 1.3:
Interpretation of DNA Microarray Data / 1.4:
Advantages and Disadvantages / 1.5:
Applications of DNA Microarray Technology in Cancer Research / Chapter 2:
Solid Tumors / 2.1:
Blood Cancers / 2.2:
Our DNA Microarray Study Using Mouse Model of BCR-ABL-Induced Leukemia / 2.3:
Leukemia mouse model study / 2.3.1:
Cell line study / 2.3.2:
Current Analytical Methods of DNA Microarray Data / Chapter 3:
Method / 3.1:
Robust multi-chip averaging (RMA) / 3.2.1:
iterPLIER / 3.2.2:
Quality Control Diagnostics / 3.3:
Saturation / 3.3.1:
Transformed intensities across arrays / 3.3.2:
Normalized intensities across arrays / 3.3.3:
Scatterplot of normalized intensities / 3.3.4:
Average MA plot of normalized intensities / 3.3.5:
Statistical Analysis / 3.4:
Analysis of variance (ANOVA) model / 3.4.1:
Contrasts / 3.4.2:
Coefficient of Variation Analysis / 3.5:
A Novel Method for DNA Microarray Data Analysis: SDL Global Optimization Method / Chapter 4:
Research Subjects / 4.1:
Rationale / 4.2:
Fold Change Analysis / 4.3:
More Information on SDL Global Optimization / 4.4:
Genetic algorithms (GAs) / 4.4.1:
SDL global optimization algorithms / 4.4.2:
Applications of the SDL Global Optimization Method in DNA Microarray Data Analysis / Chapter 5:
Leukemia Cell Line Study / 5.1:
Introduction / 5.1.1:
Datasets / 5.1.2:
Analysis strategies / 5.1.3:
Discussion and conclusion / 5.1.4:
Analyses of Publicly Available Human Microarray Data / 5.2:
Overall Methodology / 5.2.1:
Orthogonal arrays (OAs) and sampling procedure / 5.3.1:
Objective function / 5.3.2:
Search space reduction for global search / 5.3.3:
Mathematical form of SDL optimization / 5.3.4:
Multi-subset class predictor / 5.3.5:
Validation (predicting through a voting mechanism) / 5.3.6:
Experimental Results / 5.4:
Discussion / 5.5:
Conclusion / 5.6:
General Discussion and Future Directions / Chapter 6:
References
Index
Preface
Introduction of Authors
DNA Microarray Technology / Chapter 1:
2.

図書

図書
Isaac S. Kohane, Alvin T. Kho, and Atul J. Butte
出版情報: Cambridge, Mass. ; London : MIT Press, c2003  xviii, 306 p ; 24 cm
シリーズ名: Computational molecular biology
目次情報: 続きを見る
Foreword
Preface
Acknowledgments
Introduction / 1:
The Future Is So Bright... / 1.1:
Functional Genomics / 1.2:
Informatics and advances in enabling technology / 1.2.1:
Why do we need new techniques? / 1.2.2:
Missing the Forest for the Dendrograms / 1.3:
Sociology of a functional genomics pipeline / 1.3.1:
Functional Genomics, Not Genetics / 1.4:
In silico analysis will never substitute for in vitro and in vivo / 1.4.1:
Basic Biology / 1.5:
Biological caveats in mRNA measurements / 1.5.1:
Sequence-level genomics / 1.5.2:
Proteomics / 1.5.3:
Experimental Design / 2:
The Safe Conception of a Functional Genomic Experiment / 2.1:
Experiment design space / 2.1.1:
Expression space / 2.1.2:
Exercising the expression space / 2.1.3:
Discarding data and low-hanging fruit / 2.1.4:
Gene-Clustering Dogma / 2.2:
Supervised versus unsupervised learning / 2.2.1:
Figure of merit: The elusive gold standard in functional genomics / 2.2.2:
Microarray Measurements to Analyses / 3:
Generic Features of Microarray Technologies / 3.1:
Robotically spotted microarrays / 3.1.1:
Oligonucleotide microarrays / 3.1.2:
Replicate Experiments, Reproducibility, and Noise / 3.2:
What is a replicate experiment? A reproducible experimental outcome? / 3.2.1:
Reproducibility across repeated microarray experiments: Absolute expression level and fold difference / 3.2.2:
Cross-platform (technology) reproducibility / 3.2.3:
Pooling sample probes and PCR for replicate experiments / 3.2.4:
What is noise? / 3.2.5:
Sources and examples of noise in the generic microarray experiment / 3.2.6:
Biological variation as noise: The Human Genome Project and irreproducibility of expression measurements / 3.2.7:
Managing noise / 3.2.8:
Prototypical Objectives and Questions / 3.3:
Two examples: Inter-array and intra-array / 3.3.1:
Preprocessing: Filters and Normalization / 3.4:
Normalization / 3.4.1:
Background on Fold / 3.5:
Fold calculation and significance / 3.5.1:
Fold change may not mean the same thing in different expression measurement technologies / 3.5.2:
Dissimilarity and Similarity Measures / 3.6:
Linear correlation / 3.6.1:
Entropy and mutual information / 3.6.2:
Dynamics / 3.6.3:
Genomic Data-Mining Techniques / 4:
What Can Be Clustered in Functional Genomics? / 4.1:
What Does it Mean to Cluster? / 4.3:
Hierarchy of Bioinformatics Algorithms / 4.4:
Data Reduction and Filtering / 4.5:
Variation filter / 4.5.1:
Low entropy filter / 4.5.2:
Minimum expression level filter / 4.5.3:
Target ambiguity filter / 4.5.4:
Self-Organizing Maps / 4.6:
K-means clustering / 4.6.1:
Finding Genes That Split Sets / 4.7:
Phylogenetic-Type Trees / 4.8:
Two-dimensional dendrograms / 4.8.1:
Relevance Networks / 4.9:
Other Methods / 4.10:
Which Technique Should I Use? / 4.11:
Determining the Significance of Findings / 4.12:
Permutation testing / 4.12.1:
Testing and training sets / 4.12.2:
Performance metrics / 4.12.3:
Receiver operating characteristic curves / 4.12.4:
Genetic Networks / 4.13:
What is a genetic network? / 4.13.1:
Reverse-engineering and modeling a genetic network using limited data / 4.13.2:
Bayesian networks for functional genomics / 4.13.3:
Bio-Ontologies, Data Models, Nomenclature / 5:
Ontologies / 5.1:
Bio-ontology projects / 5.1.1:
Advanced knowledge representation systems for bio-ontology / 5.1.2:
Expressivity versus Computability / 5.2:
Ontology versus Data Model versus Nomenclature / 5.3:
Exploiting the explicit and implicit ontologies of the biomedical literature / 5.3.1:
Data Model Introduction / 5.4:
Nomenclature / 5.5:
The unique gene identifier / 5.5.1:
Postanalysis Challenges / 5.6:
Linking to downstream biological validation / 5.6.1:
Problems in determining the results / 5.6.2:
From Functional Genomics to Clinical Relevance / 6:
Electronic Medical Records / 6.1:
Standardized Vocabularies for Clinical Phenotypes / 6.2:
Privacy of Clinical Data / 6.3:
Anonymization / 6.3.1:
Privacy rules / 6.3.2:
Costs of Clinical Data Acquisition / 6.4:
The Near Future / 7:
New Methods for Gene Expression Profiling / 7.1:
Electronic positioning of molecules: Nanogen / 7.1.1:
Ink-jet spotting of arrays: Agilent / 7.1.2:
Coded microbeads bound to oligonucleotides: Illumina / 7.1.3:
Serial Analysis of Gene Expression (SAGE) / 7.1.4:
Parallel signature sequencing on microbead arrays: Lynx / 7.1.5:
Gel pad technology: Motorola / 7.1.6:
Respecting the Older Generation / 7.2:
The generation gap / 7.2.1:
Separating the wheat from the chaff / 7.2.2:
A persistent problem / 7.2.3:
Selecting Software / 7.3:
Investing in the Future of the Genomic Enterprise / 7.4:
Glossary
Foreword
Preface
Acknowledgments
3.

図書

図書
Karl Fraser, Zidong Wang, Xiaohui Liu
出版情報: Boca Raton, FL : Chapman & Hall/CRC, c2010  xxiv, 311 p. ; 25 cm
シリーズ名: Series in computer science and data analysis
4.

図書

図書
Aidong Zhang
出版情報: Hackensack, NJ : World Scientific, c2006  xv, 339 p. ; 24 cm
目次情報: 続きを見る
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
Applications of Microarray / 1.2:
Gene Expression Profiles in Different Tissues / 1.2.1:
Developmental Genetics / 1.2.2:
Gene Expression Patterns in Model Systems / 1.2.3:
Differential Gene Expression Patterns in Diseases / 1.2.4:
Gene Expression Patterns in Pathogens / 1.2.5:
Gene Expression in Response to Drug Treatments / 1.2.6:
Genotypic Analysis / 1.2.7:
Mutation Screening of Disease Genes / 1.2.8:
Framework of Microarray Data Analysis / 1.3:
Summary / 1.4:
Basic Concepts of Molecular Biology / 2:
Cells / 2.1:
Proteins / 2.3:
Nucleic Acids / 2.4:
DNA / 2.4.1:
RNA / 2.4.2:
Central Dogma of Molecular Biology / 2.5:
Genes and the Genetic Code / 2.5.1:
Transcription and Gene Expression / 2.5.2:
Translation and Protein Synthesis / 2.5.3:
Genotype and Phenotype / 2.6:
Overview of Microarray Experiments / 2.7:
Microarray Chip Manufacture / 3.1:
Deposition-Based Manufacture / 3.2.1:
In Situ Manufacture / 3.2.2:
The Affymetrix GeneChip / 3.2.2.1:
Steps of Microarray Experiments / 3.3:
Sample Preparation and Labeling / 3.3.1:
Hybridization / 3.3.2:
Image Scanning / 3.3.3:
Image Processing / 3.4:
Microarray Data Cleaning and Preprocessing / 3.5:
Data Transformation / 3.5.1:
Missing Value Estimation / 3.5.2:
Data Normalization / 3.6:
Global Normalization Approaches / 3.6.1:
Standardization / 3.6.1.1:
Iterative linear regression / 3.6.1.2:
Intensity-Dependent Normalization / 3.6.2:
LOWESS: Locally weighted linear regression / 3.6.2.1:
Distribution normalization / 3.6.2.2:
Analysis of Differentially-Expressed Genes / 3.7:
Basic Concepts in Statistics / 4.1:
Statistical Inference / 4.2.1:
Hypothesis Test / 4.2.2:
Fold Change Methods / 4.3:
k-fold Change / 4.3.1:
Unusual Ratios / 4.3.2:
Model-Based Methods / 4.3.3:
Parametric Tests / 4.4:
Paired t-Test / 4.4.1:
Unpaired t-Test / 4.4.2:
Variants of t-Test / 4.4.3:
Non-Parametric Tests / 4.5:
Classical Non-Parametric Statistics / 4.5.1:
Other Non-Parametric Statistics / 4.5.2:
Bootstrap Analysis / 4.5.3:
Multiple Testing / 4.6:
Family-Wise Error Rate / 4.6.1:
Sidak correction and Bonferroni correction / 4.6.1.1:
Holm's step-wise correction / 4.6.1.2:
False Discovery Rate / 4.6.2:
Permutation Correction / 4.6.3:
SAM: Significance Analysis of Microarrays / 4.6.4:
ANOVA: Analysis of Variance / 4.7:
One-Way ANOVA / 4.7.1:
Two-Way ANOVA / 4.7.2:
Gene-Based Analysis / 4.8:
Proximity Measurement for Gene Expression Data / 5.1:
Euclidean Distance / 5.2.1:
Correlation Coefficient / 5.2.2:
Pearson's correlation coefficient / 5.2.2.1:
Jackknife correlation / 5.2.2.2:
Spearman's rank-order correlation / 5.2.2.3:
Kullback-Leibler Divergence / 5.2.3:
Partition-Based Approaches / 5.3:
K-means and its Variations / 5.3.1:
SOM and its Extensions / 5.3.2:
Graph-Theoretical Approaches / 5.3.3:
HCS and CLICK / 5.3.3.1:
CAST: Cluster affinity search technique / 5.3.3.2:
Model-Based Clustering / 5.3.4:
Hierarchical Approaches / 5.4:
Agglomerative Algorithms / 5.4.1:
Divisive Algorithms / 5.4.2:
DAA: Deterministic annealing algorithm / 5.4.2.1:
SPC: Super-paramagnetic clustering / 5.4.2.2:
Density-Based Approaches / 5.5:
DBSCAN / 5.5.1:
OPTICS / 5.5.2:
DENCLUE / 5.5.3:
GPX: Gene Pattern eXplorer / 5.6:
The Attraction Tree / 5.6.1:
The distance measure / 5.6.1.1:
The density definition / 5.6.1.2:
The attraction tree / 5.6.1.3:
An example of attraction tree / 5.6.1.4:
Interactive Exploration of Coherent Patterns / 5.6.2:
Generating the index list / 5.6.2.1:
The coherent pattern index and its graph / 5.6.2.2:
Drilling down to subgroups / 5.6.2.3:
Experimental Results / 5.6.3:
Interactive exploration of Iyer's data and Spellman's data / 5.6.3.1:
Comparison with other algorithms / 5.6.3.2:
Efficiency and Scalability / 5.6.4:
Cluster Validation / 5.7:
Homogeneity and Separation / 5.7.1:
Agreement with Reference Partition / 5.7.2:
Reliability of Clusters / 5.7.3:
P-value of a cluster / 5.7.3.1:
Prediction strength / 5.7.3.2:
Sample-Based Analysis / 5.8:
Selection of Informative Genes / 6.1:
Supervised Approaches / 6.2.1:
Differentially expressed genes / 6.2.1.1:
Gene pairs / 6.2.1.2:
Virtual genes / 6.2.1.3:
Genetic algorithms / 6.2.1.4:
Unsupervised Approaches / 6.2.2:
PCA: Principal component analysis / 6.2.2.1:
Gene shaving / 6.2.2.2:
Class Prediction / 6.3:
Linear Discriminant Analysis / 6.3.1:
Instance-Based Classification / 6.3.2:
KNN: k-Nearest Neighbor / 6.3.2.1:
Weighted voting / 6.3.2.2:
Decision Trees / 6.3.3:
Support Vector Machines / 6.3.4:
Class Discovery / 6.4:
Problem statement / 6.4.1:
CLIFF: CLustering via Iterative Feature Filtering / 6.4.2:
The sample-partition process / 6.4.2.1:
The gene-filtering process / 6.4.2.2:
ESPD: Empirical Sample Pattern Detection / 6.4.3:
Measurements for phenotype structure detection / 6.4.3.1:
Algorithms / 6.4.3.2:
Experimental results / 6.4.3.3:
Classification Validation / 6.5:
Prediction Accuracy / 6.5.1:
Prediction Reliability / 6.5.2:
Pattern-Based Analysis / 6.6:
Mining Association Rules / 7.1:
Concepts of Association-Rule Mining / 7.2.1:
The Apriori Algorithm / 7.2.2:
The FP-Growth Algorithm / 7.2.3:
The CARPENTER Algorithm / 7.2.4:
Generating Association Rules in Microarray Data / 7.2.5:
Rule filtering / 7.2.5.1:
Rule grouping / 7.2.5.2:
Mining Pattern-Based Clusters in Microarray Data / 7.3:
Heuristic Approaches / 7.3.1:
Coupled two-way clustering (CTWC) / 7.3.1.1:
Plaid model / 7.3.1.2:
Biclustering and 5-Clusters / 7.3.1.3:
Deterministic Approaches / 7.3.2:
[delta]-pCluster / 7.3.2.1:
OP-Cluster / 7.3.2.2:
Mining Gene-Sample-Time Microarray Data / 7.4:
Three-dimensional Microarray Data / 7.4.1:
Coherent Gene Clusters / 7.4.2:
Problem description / 7.4.2.1:
Maximal coherent sample sets / 7.4.2.2:
The mining algorithms / 7.4.2.3:
Tri-Clusters / 7.4.2.4:
The tri-cluster model / 7.4.3.1:
Properties of tri-clusters / 7.4.3.2:
Mining tri-clusters / 7.4.3.3:
Visualization of Microarray Data / 7.5:
Single-Array Visualization / 8.1:
Box Plot / 8.2.1:
Histogram / 8.2.2:
Scatter Plot / 8.2.3:
Gene Pies / 8.2.4:
Multi-Array Visualization / 8.3:
Global Visualizations / 8.3.1:
Optimal Visualizations / 8.3.2:
Projection Visualization / 8.3.3:
VizStruct / 8.4:
Fourier Harmonic Projections / 8.4.1:
Discrete-time signal paradigm / 8.4.1.1:
The Fourier harmonic projection algorithm / 8.4.1.2:
Properties of FHPs / 8.4.2:
Basic properties / 8.4.2.1:
Advanced properties / 8.4.2.2:
Harmonic equivalency / 8.4.2.3:
Effects of harmonic twiddle power index / 8.4.2.4:
Enhancements of Fourier Harmonic Projections / 8.4.3:
Exploratory Visualization of Gene Profiling / 8.4.4:
Microarray data sets for visualization / 8.4.4.1:
Identification of informative genes / 8.4.4.2:
Classifier construction and evaluation / 8.4.4.3:
Dimension arrangement / 8.4.4.4:
Visualization of various data sets / 8.4.4.5:
Comparison of FFHP to Sammon's mapping / 8.4.4.6:
Confirmative Visualization of Gene Time-series / 8.4.5:
Data sets for visualization / 8.4.5.1:
The harmonic projection approach / 8.4.5.2:
Rat kidney data set / 8.4.5.3:
Yeast-A data set / 8.4.5.4:
Yeast-B data set / 8.4.5.5:
New Trends in Mining Gene Expression Microarray Data / 8.5:
Meta-Analysis of Microarray Data / 9.1:
Meta-Analysis of Differential Genes / 9.2.1:
Meta-Analysis of Co-Expressed Genes / 9.2.2:
Semi-Supervised Clustering / 9.3:
General Semi-Supervised Clustering Algorithms / 9.3.1:
A Seed-Generation Approach / 9.3.2:
Seed-generation methods / 9.3.2.1:
Pattern-selection rules / 9.3.2.2:
The framework for the seed-generation approach / 9.3.2.3:
Integration of Gene Expression Data with Other Data / 9.4:
A Probabilistic Model for Joint Mining / 9.4.1:
A Graph-Based Model for Joint Mining / 9.4.2:
Conclusion / 9.5:
Bibliography
Index
Preface
Introduction / 1:
The Microarray: Key to Functional Genomics and Systems Biology / 1.1:
5.

図書

図書
Pierre Baldi and G. Wesley Hatfield
出版情報: Cambridge : Cambridge University Press, 2011  xvi, 213 p. ; 24 cm
目次情報: 続きを見る
Preface
A brief history of genomics / 1:
DNA array formats / 2:
DNA array readout methods / 3:
Gene expression profiling experiments: problems, pitfalls and solutions / 4:
Statistical analysis of array data: inferring changes / 5:
Statistical analysis of array data: dimensionality reduction, clustering, and regulatory regions / 6:
Survey of current DNA array applications / 7:
Systems biology: overview of regulatory, metabolic and signaling networks / 8:
Preface
A brief history of genomics / 1:
DNA array formats / 2:
6.

図書

図書
Pavel A. Pevzner
出版情報: Cambridge, Mass. : MIT Press, c2000  xviii, 314 p. ; 24 cm
シリーズ名: Computational molecular biology
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼