Preface |
Introduction / 1: |
The Microarray: Key to Functional Genomics and Systems Biology / 1.1: |
Applications of Microarray / 1.2: |
Gene Expression Profiles in Different Tissues / 1.2.1: |
Developmental Genetics / 1.2.2: |
Gene Expression Patterns in Model Systems / 1.2.3: |
Differential Gene Expression Patterns in Diseases / 1.2.4: |
Gene Expression Patterns in Pathogens / 1.2.5: |
Gene Expression in Response to Drug Treatments / 1.2.6: |
Genotypic Analysis / 1.2.7: |
Mutation Screening of Disease Genes / 1.2.8: |
Framework of Microarray Data Analysis / 1.3: |
Summary / 1.4: |
Basic Concepts of Molecular Biology / 2: |
Cells / 2.1: |
Proteins / 2.3: |
Nucleic Acids / 2.4: |
DNA / 2.4.1: |
RNA / 2.4.2: |
Central Dogma of Molecular Biology / 2.5: |
Genes and the Genetic Code / 2.5.1: |
Transcription and Gene Expression / 2.5.2: |
Translation and Protein Synthesis / 2.5.3: |
Genotype and Phenotype / 2.6: |
Overview of Microarray Experiments / 2.7: |
Microarray Chip Manufacture / 3.1: |
Deposition-Based Manufacture / 3.2.1: |
In Situ Manufacture / 3.2.2: |
The Affymetrix GeneChip / 3.2.2.1: |
Steps of Microarray Experiments / 3.3: |
Sample Preparation and Labeling / 3.3.1: |
Hybridization / 3.3.2: |
Image Scanning / 3.3.3: |
Image Processing / 3.4: |
Microarray Data Cleaning and Preprocessing / 3.5: |
Data Transformation / 3.5.1: |
Missing Value Estimation / 3.5.2: |
Data Normalization / 3.6: |
Global Normalization Approaches / 3.6.1: |
Standardization / 3.6.1.1: |
Iterative linear regression / 3.6.1.2: |
Intensity-Dependent Normalization / 3.6.2: |
LOWESS: Locally weighted linear regression / 3.6.2.1: |
Distribution normalization / 3.6.2.2: |
Analysis of Differentially-Expressed Genes / 3.7: |
Basic Concepts in Statistics / 4.1: |
Statistical Inference / 4.2.1: |
Hypothesis Test / 4.2.2: |
Fold Change Methods / 4.3: |
k-fold Change / 4.3.1: |
Unusual Ratios / 4.3.2: |
Model-Based Methods / 4.3.3: |
Parametric Tests / 4.4: |
Paired t-Test / 4.4.1: |
Unpaired t-Test / 4.4.2: |
Variants of t-Test / 4.4.3: |
Non-Parametric Tests / 4.5: |
Classical Non-Parametric Statistics / 4.5.1: |
Other Non-Parametric Statistics / 4.5.2: |
Bootstrap Analysis / 4.5.3: |
Multiple Testing / 4.6: |
Family-Wise Error Rate / 4.6.1: |
Sidak correction and Bonferroni correction / 4.6.1.1: |
Holm's step-wise correction / 4.6.1.2: |
False Discovery Rate / 4.6.2: |
Permutation Correction / 4.6.3: |
SAM: Significance Analysis of Microarrays / 4.6.4: |
ANOVA: Analysis of Variance / 4.7: |
One-Way ANOVA / 4.7.1: |
Two-Way ANOVA / 4.7.2: |
Gene-Based Analysis / 4.8: |
Proximity Measurement for Gene Expression Data / 5.1: |
Euclidean Distance / 5.2.1: |
Correlation Coefficient / 5.2.2: |
Pearson's correlation coefficient / 5.2.2.1: |
Jackknife correlation / 5.2.2.2: |
Spearman's rank-order correlation / 5.2.2.3: |
Kullback-Leibler Divergence / 5.2.3: |
Partition-Based Approaches / 5.3: |
K-means and its Variations / 5.3.1: |
SOM and its Extensions / 5.3.2: |
Graph-Theoretical Approaches / 5.3.3: |
HCS and CLICK / 5.3.3.1: |
CAST: Cluster affinity search technique / 5.3.3.2: |
Model-Based Clustering / 5.3.4: |
Hierarchical Approaches / 5.4: |
Agglomerative Algorithms / 5.4.1: |
Divisive Algorithms / 5.4.2: |
DAA: Deterministic annealing algorithm / 5.4.2.1: |
SPC: Super-paramagnetic clustering / 5.4.2.2: |
Density-Based Approaches / 5.5: |
DBSCAN / 5.5.1: |
OPTICS / 5.5.2: |
DENCLUE / 5.5.3: |
GPX: Gene Pattern eXplorer / 5.6: |
The Attraction Tree / 5.6.1: |
The distance measure / 5.6.1.1: |
The density definition / 5.6.1.2: |
The attraction tree / 5.6.1.3: |
An example of attraction tree / 5.6.1.4: |
Interactive Exploration of Coherent Patterns / 5.6.2: |
Generating the index list / 5.6.2.1: |
The coherent pattern index and its graph / 5.6.2.2: |
Drilling down to subgroups / 5.6.2.3: |
Experimental Results / 5.6.3: |
Interactive exploration of Iyer's data and Spellman's data / 5.6.3.1: |
Comparison with other algorithms / 5.6.3.2: |
Efficiency and Scalability / 5.6.4: |
Cluster Validation / 5.7: |
Homogeneity and Separation / 5.7.1: |
Agreement with Reference Partition / 5.7.2: |
Reliability of Clusters / 5.7.3: |
P-value of a cluster / 5.7.3.1: |
Prediction strength / 5.7.3.2: |
Sample-Based Analysis / 5.8: |
Selection of Informative Genes / 6.1: |
Supervised Approaches / 6.2.1: |
Differentially expressed genes / 6.2.1.1: |
Gene pairs / 6.2.1.2: |
Virtual genes / 6.2.1.3: |
Genetic algorithms / 6.2.1.4: |
Unsupervised Approaches / 6.2.2: |
PCA: Principal component analysis / 6.2.2.1: |
Gene shaving / 6.2.2.2: |
Class Prediction / 6.3: |
Linear Discriminant Analysis / 6.3.1: |
Instance-Based Classification / 6.3.2: |
KNN: k-Nearest Neighbor / 6.3.2.1: |
Weighted voting / 6.3.2.2: |
Decision Trees / 6.3.3: |
Support Vector Machines / 6.3.4: |
Class Discovery / 6.4: |
Problem statement / 6.4.1: |
CLIFF: CLustering via Iterative Feature Filtering / 6.4.2: |
The sample-partition process / 6.4.2.1: |
The gene-filtering process / 6.4.2.2: |
ESPD: Empirical Sample Pattern Detection / 6.4.3: |
Measurements for phenotype structure detection / 6.4.3.1: |
Algorithms / 6.4.3.2: |
Experimental results / 6.4.3.3: |
Classification Validation / 6.5: |
Prediction Accuracy / 6.5.1: |
Prediction Reliability / 6.5.2: |
Pattern-Based Analysis / 6.6: |
Mining Association Rules / 7.1: |
Concepts of Association-Rule Mining / 7.2.1: |
The Apriori Algorithm / 7.2.2: |
The FP-Growth Algorithm / 7.2.3: |
The CARPENTER Algorithm / 7.2.4: |
Generating Association Rules in Microarray Data / 7.2.5: |
Rule filtering / 7.2.5.1: |
Rule grouping / 7.2.5.2: |
Mining Pattern-Based Clusters in Microarray Data / 7.3: |
Heuristic Approaches / 7.3.1: |
Coupled two-way clustering (CTWC) / 7.3.1.1: |
Plaid model / 7.3.1.2: |
Biclustering and 5-Clusters / 7.3.1.3: |
Deterministic Approaches / 7.3.2: |
[delta]-pCluster / 7.3.2.1: |
OP-Cluster / 7.3.2.2: |
Mining Gene-Sample-Time Microarray Data / 7.4: |
Three-dimensional Microarray Data / 7.4.1: |
Coherent Gene Clusters / 7.4.2: |
Problem description / 7.4.2.1: |
Maximal coherent sample sets / 7.4.2.2: |
The mining algorithms / 7.4.2.3: |
Tri-Clusters / 7.4.2.4: |
The tri-cluster model / 7.4.3.1: |
Properties of tri-clusters / 7.4.3.2: |
Mining tri-clusters / 7.4.3.3: |
Visualization of Microarray Data / 7.5: |
Single-Array Visualization / 8.1: |
Box Plot / 8.2.1: |
Histogram / 8.2.2: |
Scatter Plot / 8.2.3: |
Gene Pies / 8.2.4: |
Multi-Array Visualization / 8.3: |
Global Visualizations / 8.3.1: |
Optimal Visualizations / 8.3.2: |
Projection Visualization / 8.3.3: |
VizStruct / 8.4: |
Fourier Harmonic Projections / 8.4.1: |
Discrete-time signal paradigm / 8.4.1.1: |
The Fourier harmonic projection algorithm / 8.4.1.2: |
Properties of FHPs / 8.4.2: |
Basic properties / 8.4.2.1: |
Advanced properties / 8.4.2.2: |
Harmonic equivalency / 8.4.2.3: |
Effects of harmonic twiddle power index / 8.4.2.4: |
Enhancements of Fourier Harmonic Projections / 8.4.3: |
Exploratory Visualization of Gene Profiling / 8.4.4: |
Microarray data sets for visualization / 8.4.4.1: |
Identification of informative genes / 8.4.4.2: |
Classifier construction and evaluation / 8.4.4.3: |
Dimension arrangement / 8.4.4.4: |
Visualization of various data sets / 8.4.4.5: |
Comparison of FFHP to Sammon's mapping / 8.4.4.6: |
Confirmative Visualization of Gene Time-series / 8.4.5: |
Data sets for visualization / 8.4.5.1: |
The harmonic projection approach / 8.4.5.2: |
Rat kidney data set / 8.4.5.3: |
Yeast-A data set / 8.4.5.4: |
Yeast-B data set / 8.4.5.5: |
New Trends in Mining Gene Expression Microarray Data / 8.5: |
Meta-Analysis of Microarray Data / 9.1: |
Meta-Analysis of Differential Genes / 9.2.1: |
Meta-Analysis of Co-Expressed Genes / 9.2.2: |
Semi-Supervised Clustering / 9.3: |
General Semi-Supervised Clustering Algorithms / 9.3.1: |
A Seed-Generation Approach / 9.3.2: |
Seed-generation methods / 9.3.2.1: |
Pattern-selection rules / 9.3.2.2: |
The framework for the seed-generation approach / 9.3.2.3: |
Integration of Gene Expression Data with Other Data / 9.4: |
A Probabilistic Model for Joint Mining / 9.4.1: |
A Graph-Based Model for Joint Mining / 9.4.2: |
Conclusion / 9.5: |
Bibliography |
Index |