close
1.

図書

図書
Kevin J. Keen
出版情報: Boca Raton : CRC Press, Taylor & Francis Group, c2018  xx, 590 p. ; 24 cm
シリーズ名: Texts in statistical science
2.

図書

図書
W. John Braun and Duncan J. Murdoch
出版情報: New York : Cambridge University Press, 2016  xiv, 215 p. ; 25 cm
3.

図書

図書
Paul Murrell
出版情報: Boca Raton : CRC Press, c2019  xvii, 423 p. ; 24 cm
シリーズ名: The R series
A Chapman & Hall book
目次情報: 続きを見る
Preface
An Introduction to R Graphics / 1:
R graphics examples / 1.1:
Standard plots / 1.1.1:
Trellis plots / 1.1.2:
The grammar of graphics / 1.1.3:
Specialized plots / 1.1.4:
General graphical scenes / 1.1.5:
The organization of R graphics / 1.2:
Base graphics versus grid graphics / 1.2.1:
Base Graphics / I:
Simple Usage of Base Graphics / 2:
The base graphics model / 2.1:
The plot() function / 2.2:
Plots of a single variable / 2.3:
Plots of two variables / 2.4:
Plots of many variables / 2.5:
Arguments to graphics functions / 2.6:
Standard arguments to graphics functions / 2.6.1:
Customizing Base Graphics / 2.7:
The base graphics model in more detail / 3.1:
Plotting regions / 3.1.1:
The base graphics state / 3.1.2:
Controlling the appearance of plots / 3.2:
Colors / 3.2.1:
Lines / 3.2.2:
Text / 3.2.3:
Data symbols / 3.2.4:
Axes / 3.2.5:
Clipping / 3.2.6:
Moving to a new plot / 3.2.8:
Arranging multiple plots / 3.3:
Using the base graphics state / 3.3.1:
Layouts / 3.3.2:
The split-screen approach / 3.3.3:
Annotating plots / 3.4:
Annotating the plot region / 3.4.1:
Annotating the margins / 3.4.2:
Legends / 3.4.3:
Coordinate systems / 3.4.4:
Special cases / 3.4.6:
Creating new plots / 3.5:
A simple plot from scratch / 3.5.1:
A more complex plot from scratch / 3.5.2:
Writing base graphics functions / 3.5.3:
Interactive graphics / 3.6:
Grid Graphics / II:
Trellis Graphics: The lattice Package / 4:
The lattice graphics model / 4.1:
Why another graphics system? / 4.1.1:
Lattice plot types / 4.2:
The formula argument and multipanel conditioning / 4.3:
The group argument and legends / 4.4:
The layout argument and arranging plots / 4.5:
The scales argument and labeling axes / 4.6:
The panel argument and annotating plots / 4.7:
Adding output to a lattice plot / 4.7.1:
Par. settings and graphical parameters / 4.8:
The Grammar of Graphics: The ggplot2 Package / 5:
Quick plots / 5.1:
The ggplot2 graphics model / 5.2:
Data / 5.2.1:
Geoms and aesthetics / 5.4:
Scales / 5.5:
Statistical transformations / 5.6:
The group aesthetic / 5.7:
Position adjustments / 5.8:
Coordinate transformations / 5.9:
Facets / 5.10:
Themes / 5.11:
Annotating / 5.12:
Extending ggplot2 / 5.13:
The grid Graphics Model / 6:
A brief overview of grid graphics / 6.1:
A simple example / 6.1.1:
Graphical primitives / 6.2:
Graphical utilities / 6.2.1:
Standard arguments / 6.2.2:
Conversion functions / 6.2.3:
Complex units / 6.3.2:
Controlling the appearance of output / 6.4:
Specifying graphical parameter settings / 6.4.1:
Vectorized graphical parameter settings / 6.4.2:
Viewports / 6.5:
Pushing, popping, and navigating between viewports / 6.5.1:
Clipping to viewports / 6.5.2:
Viewport lists, stacks, and trees / 6.5.3:
Viewports as arguments to graphical primitives / 6.5.4:
Graphical parameter settings in viewports / 6.5.5:
Missing values and non-finite values / 6.5.6:
Customizing lattice plots / 6.7:
Adding grid output to lattice output / 6.8.1:
Adding lattice output to grid output / 6.8.2:
Customizing ggplot2 output / 6.9:
Adding grid output to ggplot2 output / 6.9.1:
Adding ggplot2 output to grid output / 6.9.2:
The grid Graphics Object Model / 7:
Working with graphical output / 7.1:
Listing graphical objects / 7.2:
Selecting graphical objects / 7.3:
Grab lists, trees, and paths / 7.4:
Graphical parameter settings in gTrees / 7.4.1:
Searching for grobs / 7.5:
Editing graphical context / 7.6:
Forcing graphical objects / 7.7:
Working with graphical objects off-screen / 7.8:
Reordering graphical objects / 7.9:
Capturing output / 7.10:
Querying grobs / 7.11:
Calculating the sizes of grobs / 7.11.1:
Calculating the positions of grobs / 7.11.2:
Placing and packing grobs in frames / 7.12:
Placing and packing off-screen / 7.12.1:
Display lists / 7.13:
Working with lattice grobs / 7.14:
Working with ggplot2 grobs / 7.15:
Developing New Graphical Functions and Objects / 8:
An example / 8.1:
Graphical functions / 8.2:
Modularity / 8.2.1:
Embeddable output / 8.2.2:
Editable output / 8.2.3:
Annotatable output / 8.2.4:
Graphical objects / 8.3:
Defining a static grob / 8.3.1:
Editable grobs / 8.3.2:
Defining a static grob with drawing context / 8.3.3:
Defining a dynamic grob / 8.3.4:
Forcing grobs / 8.3.5:
Reverting grobs / 8.3.6:
Defining a dynamic grob with drawing context / 8.3.7:
Querying graphical objects / 8.3.8:
Summary of graphical object methods / 8.3.9:
Calculations during drawing / 8.3.10:
Avoiding argument explosion / 8.3.11:
Mixing graphical functions and graphical objects / 8.4:
Debugging grid / 8.5:
The Graphics Engine / III:
Graphics Formats / 9:
Graphics devices / 9.1:
Graphical output formats / 9.2:
Vector formats / 9.2.1:
Raster formats / 9.2.2:
R Studio / 9.2.3:
Including R graphics in other documents / 9.3:
Latex / 9.3.1:
"Productivity" software / 9.3.2:
Web pages / 9.3.3:
Device-specific features / 9.4:
Multiple pages of output / 9.5:
Extension packages / 9.6:
Graphical Parameters / 10:
Semitransparent colors / 10.1:
Converting colors / 10.1.2:
Color sets / 10.1.3:
Device dependency of color specifications / 10.1.4:
Line styles / 10.2:
Line widths / 10.2.1:
Line types / 10.2.2:
Line ends and joins / 10.2.3:
Fonts / 10.3:
Font family / 10.4.1:
Font face / 10.4.2:
Multi-line text / 10.4.3:
Locales / 10.4.4:
Escape sequences / 10.4.5:
Anti-aliasing / 10.4.6:
Mathematical formulae / 10.5:
Integrating Graphics Systems / IV:
Importing Graphics / 11:
The Moon and the tides / 11.1:
Importing raster graphics / 11.2:
Importing vector graphics / 11.3:
The grImport package / 11.3.1:
The grImport2 package / 11.3.2:
Combining Graphics Systems / 12:
The gridBase package / 12.1:
Annotating base graphics using grid / 12.1.1:
Base graphics in grid viewports / 12.1.2:
Problems and limitations of gridBase / 12.1.3:
The gridGraphics package / 12.2:
Editing base graphics using grid / 12.2.1:
Problems and limitations of gridGraphics / 12.2.2:
Advanced Graphics / 13:
Exporting SVG / 13.1:
SVG advanced features / 13.2:
Gradient fills / 13.2.1:
Pattern fills / 13.2.2:
Filters / 13.2.3:
Clipping paths / 13.2.4:
Masks / 13.2.5:
SVG drawing context / 13.3:
SVG definitions / 13.4:
Drawing off screen / 13.5:
SVG fonts / 13.6:
Exporting base graphics / 13.7:
Exporting to other formats / 13.8:
Exporting imported images / 13.9:
Bibliography
Index
Preface
An Introduction to R Graphics / 1:
R graphics examples / 1.1:
4.

図書

図書
Hadley Wickham
出版情報: Boca Raton : CRC Press, c2019  xv, 587 p. ; 24 cm
シリーズ名: The R series
A Chapman & Hall book
目次情報: 続きを見る
Preface
Introduction / 1:
Why R? / 1.1:
Who should read this book / 1.2:
What you will get out of this book / 1.3:
What you will not learn / 1.4:
Meta-techniques / 1.5:
Recommended reading / 1.6:
Getting help / 1.7:
Acknowledgments / 1.8:
Conventions / 1.9:
Colophon / 1.10:
Foundations / I:
Names and values / 2:
Binding basics / 2.1:
Copy-on-modify / 2.3:
Object size / 2.4:
Modify-in-place / 2.5:
Unbinding and the garbage collector / 2.6:
Quiz answers / 2.7:
Vectors / 3:
Atomic vectors / 3.1:
Attributes / 3.3:
S3 atomic vectors / 3.4:
Lists / 3.5:
Data frames and tibbles / 3.6:
Null / 3.7:
Subsetting / 3.8:
Selecting multiple elements / 4.1:
Selecting a single element / 4.3:
Subsetting and assignment / 4.4:
Applications / 4.5:
Control flow / 4.6:
Choices / 5.1:
Loops / 5.3:
Functions / 5.4:
Function fundamentals / 6.1:
Function composition / 6.3:
Lexical scoping / 6.4:
Lazy evaluation / 6.5:
… (dot-dot-dot) / 6.6:
Exiting a function / 6.7:
Function forms / 6.8:
Environments / 6.9:
Environment basics / 7.1:
Recursing over environments / 7.3:
Special environments / 7.4:
Call stacks / 7.5:
As data structures / 7.6:
Conditions / 7.7:
Signalling conditions / 8.1:
Ignoring conditions / 8.3:
Handling conditions / 8.4:
Custom conditions / 8.5:
Functional programming / 8.6:
Functional / 9:
My first functional: map() / 9.1:
Purrr style / 9.3:
Map variants / 9.4:
Reduce family / 9.5:
Predicate functionals / 9.6:
Base functionals / 9.7:
Function factories / 10:
Factory fundamentals / 10.1:
Graphical factories / 10.3:
Statistical factories / 10.4:
Function factories + functionals / 10.5:
Function operators / 11:
Existing function operators / 11.1:
Case study: Creating your own function operators / 11.3:
Object-oriented programming / III:
Base types / 12:
Base versus OO objects / 12.1:
S3 / 12.3:
Basics / 13.1:
Classes / 13.3:
Generics and methods / 13.4:
Object styles / 13.5:
Inheritance / 13.6:
Dispatch details / 13.7:
R6 / 14:
Classes and methods / 14.1:
Controlling access / 14.3:
Reference semantics / 14.4:
Why R6? / 14.5:
S4 / 15:
Method dispatch / 15.1:
S4 and S3 / 15.6:
Trade-offs / 16:
S4 versus S3 / 16.1:
R6 versus S3 / 16.3:
Metaprogramming / IV:
Bis picture / 17:
Code is data / 17.1:
Code is a tree / 17.3:
Code can generate code / 17.4:
Evaluation runs code / 17.5:
Customising evaluation with functions / 17.6:
Customising evaluation with data / 17.7:
Quosures / 17.8:
Expressions / 18:
Abstract syntax trees / 18.1:
Parsing and grammar / 18.3:
Walking AST with recursive functions / 18.5:
Specialised data structures / 18.6:
Quasiquotation / 19:
Motivation / 19.1:
Quoting / 19.3:
Unquoting / 19.4:
Non-quoting / 19.5:
Case studies / 19.6:
History / 19.8:
Evaluation / 20:
Evaluation basics / 20.1:
Data masks / 20.3:
Using tidy evaluation / 20.5:
Base evaluation / 20.6:
Translating R code / 21:
HTML / 21.1:
LaTeX / 21.3:
Techniques / V:
Debugging / 22:
Overall approach / 22.1:
Locating errors / 22.3:
Interactive debugger / 22.4:
Non-interactive debugging / 22.5:
Non-error failures / 22.6:
Measuring performance / 23:
Profiling / 23.1:
Microbenchmarking / 23.3:
Improving performance / 24:
Code organisation / 24.1:
Checking for existing solutions / 24.3:
Doing as little as possible / 24.4:
Vectorise / 24.5:
Avoiding copies / 24.6:
Case study: t-test / 24.7:
Other techniques / 24.8:
Rewriting R code in C++ / 25:
Getting started with C++ / 25.1:
Other classes / 25.3:
Missing values / 25.4:
Standard Template Library / 25.5:
Using Repp in a package / 25.6:
Learning more / 25.8:
Bibliography / 25.9:
Index
NULL
Subletting
Function factories + functional
Big picture
Preface
Introduction / 1:
Why R? / 1.1:
5.

図書

図書
W. Holmes Finch, Jocelyn E. Bolin and Ken Kelley
出版情報: Boca Raton : CRC Press, c2019  ix, 242 p. ; 24 cm
シリーズ名: Statistics in the social and behavioral sciences series
6.

図書

図書
John Maindonald and John Braun
出版情報: Cambridge, UK : Cambridge University Press, 2003  xxiii, 362 p., [4] p. of plates ; 26 cm
シリーズ名: Cambridge series on statistical and probabilistic mathematics
目次情報: 続きを見る
Preface
A Chapter by Chapter Summary
A Brief Introduction to R / 1:
A Short R Session / 1.1:
R must be installed! / 1.1.1:
Using the console (or command line) window / 1.1.2:
Reading data from a file / 1.1.3:
Entry of data at the command line / 1.1.4:
Online help / 1.1.5:
Quitting R / 1.1.6:
The Uses of R / 1.2:
The R Language / 1.3:
R objects / 1.3.1:
Retaining objects between sessions / 1.3.2:
Vectors in R / 1.4:
Concatenation--joining vector objects / 1.4.1:
Subsets of vectors / 1.4.2:
Patterned data / 1.4.3:
Missing values / 1.4.4:
Factors / 1.4.5:
Data Frames / 1.5:
Variable names / 1.5.1:
Applying a function to the columns of a data frame / 1.5.2:
Data frames and matrices / 1.5.3:
Identification of rows that include missing values / 1.5.4:
R Packages / 1.6:
Data sets that accompany R packages / 1.6.1:
Looping / 1.7:
R Graphics / 1.8:
The function plot () and allied functions / 1.8.1:
Identification and location on the figure region / 1.8.2:
Plotting mathematical symbols / 1.8.3:
Row by column layouts of plots / 1.8.4:
Graphs--additional notes / 1.8.5:
Additional Points on the Use of R in This Book / 1.9:
Further Reading / 1.10:
Exercises / 1.11:
Styles of Data Analysis / 2:
Revealing Views of the Data / 2.1:
Views of a single sample / 2.1.1:
Patterns in grouped data / 2.1.2:
Patterns in bivariate data--the scatterplot / 2.1.3:
Multiple variables and times / 2.1.4:
Lattice (trellis style) graphics / 2.1.5:
What to look for in plots / 2.1.6:
Data Summary / 2.2:
Mean and median / 2.2.1:
Standard deviation and inter-quartile range / 2.2.2:
Correlation / 2.2.3:
Statistical Analysis Strategies / 2.3:
Helpful and unhelpful questions / 2.3.1:
Planning the formal analysis / 2.3.2:
Changes to the intended plan of analysis / 2.3.3:
Recap / 2.4:
Statistical Models / 2.5:
Regularities / 3.1:
Mathematical models / 3.1.1:
Models that include a random component / 3.1.2:
Smooth and rough / 3.1.3:
The construction and use of models / 3.1.4:
Model formulae / 3.1.5:
Distributions: Models for the Random Component / 3.2:
Discrete distributions / 3.2.1:
Continuous distributions / 3.2.2:
The Uses of Random Numbers / 3.3:
Simulation / 3.3.1:
Sampling from populations / 3.3.2:
Model Assumptions / 3.4:
Random sampling assumptions--independence / 3.4.1:
Checks for normality / 3.4.2:
Checking other model assumptions / 3.4.3:
Are non-parametric methods the answer? / 3.4.4:
Why models matter--adding across contingency tables / 3.4.5:
An Introduction to Formal Inference / 3.5:
Standard Errors / 4.1:
Population parameters and sample statistics / 4.1.1:
Assessing accuracy--the standard error / 4.1.2:
Standard errors for differences of means / 4.1.3:
The standard error of the median / 4.1.4:
Resampling to estimate standard errors: bootstrapping / 4.1.5:
Calculations Involving Standard Errors: the t-Distribution / 4.2:
Confidence Intervals and Hypothesis Tests / 4.3:
One- and two-sample intervals and tests for means / 4.3.1:
Confidence intervals and tests for proportions / 4.3.2:
Confidence intervals for the correlation / 4.3.3:
Contingency Tables / 4.4:
Rare and endangered plant species / 4.4.1:
Additional notes / 4.4.2:
One-Way Unstructured Comparisons / 4.5:
Displaying means for the one-way layout / 4.5.1:
Multiple comparisons / 4.5.2:
Data with a two-way structure / 4.5.3:
Presentation issues / 4.5.4:
Response Curves / 4.6:
Data with a Nested Variation Structure / 4.7:
Degrees of freedom considerations / 4.7.1:
General multi-way analysis of variance designs / 4.7.2:
Resampling Methods for Tests and Confidence Intervals / 4.8:
The one-sample permutation test / 4.8.1:
The two-sample permutation test / 4.8.2:
Bootstrap estimates of confidence intervals / 4.8.3:
Further Comments on Formal Inference / 4.9:
Confidence intervals versus hypothesis tests / 4.9.1:
If there is strong prior information, use it! / 4.9.2:
Regression with a Single Predictor / 4.10:
Fitting a Line to Data / 5.1:
Lawn roller example / 5.1.1:
Calculating fitted values and residuals / 5.1.2:
Residual plots / 5.1.3:
The analysis of variance table / 5.1.4:
Outliers, Influence and Robust Regression / 5.2:
Standard Errors and Confidence Intervals / 5.3:
Confidence intervals and tests for the slope / 5.3.1:
SEs and confidence intervals for predicted values / 5.3.2:
Implications for design / 5.3.3:
Regression versus Qualitative ANOVA Comparisons / 5.4:
Assessing Predictive Accuracy / 5.5:
Training/test sets, and cross-validation / 5.5.1:
Cross-validation--an example / 5.5.2:
Bootstrapping / 5.5.3:
A Note on Power Transformations / 5.6:
Size and Shape Data / 5.7:
Allometric growth / 5.7.1:
There are two regression lines! / 5.7.2:
The Model Matrix in Regression / 5.8:
Methodological References / 5.9:
Multiple Linear Regression / 5.11:
Basic Ideas: Book Weight and Brain Weight Examples / 6.1:
Omission of the intercept term / 6.1.1:
Diagnostic plots / 6.1.2:
Further investigation of influential points / 6.1.3:
Example: brain weight / 6.1.4:
Multiple Regression Assumptions and Diagnostics / 6.2:
Influential outliers and Cook's distance / 6.2.1:
Component plus residual plots / 6.2.2:
Further types of diagnostic plot / 6.2.3:
Robust and resistant methods / 6.2.4:
A Strategy for Fitting Multiple Regression Models / 6.3:
Preliminaries / 6.3.1:
Model fitting / 6.3.2:
An example--the Scottish hill race data / 6.3.3:
Measures for the Comparison of Regression Models / 6.4:
R[superscript 2] and adjusted R[superscript 2] / 6.4.1:
AIC and related statistics / 6.4.2:
How accurately does the equation predict? / 6.4.3:
An external assessment of predictive accuracy / 6.4.4:
Interpreting Regression Coefficients--the Labor Training Data / 6.5:
Problems with Many Explanatory Variables / 6.6:
Variable selection issues / 6.6.1:
Principal components summaries / 6.6.2:
Multicollinearity / 6.7:
A contrived example / 6.7.1:
The variance inflation factor (VIF) / 6.7.2:
Remedying multicollinearity / 6.7.3:
Multiple Regression Models--Additional Points / 6.8:
Confusion between explanatory and dependent variables / 6.8.1:
Missing explanatory variables / 6.8.2:
The use of transformations / 6.8.3:
Non-linear methods--an alternative to transformation? / 6.8.4:
Exploiting the Linear Model Framework / 6.9:
Levels of a Factor--Using Indicator Variables / 7.1:
Example--sugar weight / 7.1.1:
Different choices for the model matrix when there are factors / 7.1.2:
Polynomial Regression / 7.2:
Issues in the choice of model / 7.2.1:
Fitting Multiple Lines / 7.3:
Methods for Passing Smooth Curves through Data / 7.4:
Scatterplot smoothing--regression splines / 7.4.1:
Other smoothing methods / 7.4.2:
Generalized additive models / 7.4.3:
Smoothing Terms in Multiple Linear Models / 7.5:
Logistic Regression and Other Generalized Linear Models / 7.6:
Generalized Linear Models / 8.1:
Transformation of the expected value on the left / 8.1.1:
Noise terms need not be normal / 8.1.2:
Log odds in contingency tables / 8.1.3:
Logistic regression with a continuous explanatory variable / 8.1.4:
Logistic Multiple Regression / 8.2:
A plot of contributions of explanatory variables / 8.2.1:
Cross-validation estimates of predictive accuracy / 8.2.2:
Logistic Models for Categorical Data--an Example / 8.3:
Poisson and Quasi-Poisson Regression / 8.4:
Data on aberrant crypt foci / 8.4.1:
Moth habitat example / 8.4.2:
Residuals, and estimating the dispersion / 8.4.3:
Ordinal Regression Models / 8.5:
Exploratory analysis / 8.5.1:
Proportional odds logistic regression / 8.5.2:
Other Related Models / 8.6:
Loglinear models / 8.6.1:
Survival analysis / 8.6.2:
Transformations for Count Data / 8.7:
Multi-level Models, Time Series and Repeated Measures / 8.8:
Introduction / 9.1:
Example--Survey Data, with Clustering / 9.2:
Alternative models / 9.2.1:
Instructive, though faulty, analyses / 9.2.2:
Predictive accuracy / 9.2.3:
A Multi-level Experimental Design / 9.3:
The ANOVA table / 9.3.1:
Expected values of mean squares / 9.3.2:
The sums of squares breakdown / 9.3.3:
The variance components / 9.3.4:
The mixed model analysis / 9.3.5:
Different sources of variance--complication or focus of interest? / 9.3.6:
Within and between Subject Effects--an Example / 9.4:
Time Series--Some Basic Ideas / 9.5:
Preliminary graphical explorations / 9.5.1:
The autocorrelation function / 9.5.2:
Autoregressive (AR) models / 9.5.3:
Autoregressive moving average (ARMA) models--theory / 9.5.4:
Regression Modeling with Moving Average Errors--an Example / 9.6:
Repeated Measures in Time--Notes on the Methodology / 9.7:
The theory of repeated measures modeling / 9.7.1:
Correlation structure / 9.7.2:
Different approaches to repeated measures analysis / 9.7.3:
Further Notes on Multi-level Modeling / 9.8:
An historical perspective on multi-level models / 9.8.1:
Meta-analysis / 9.8.2:
Tree-based Classification and Regression / 9.9:
The Uses of Tree-based Methods / 10.1:
Problems for which tree-based regression may be used / 10.1.1:
Tree-based regression versus parametric approaches / 10.1.2:
Summary of pluses and minuses / 10.1.3:
Detecting Email Spam--an Example / 10.2:
Choosing the number of splits / 10.2.1:
Terminology and Methodology / 10.3:
Choosing the split--regression trees / 10.3.1:
Within and between sums of squares / 10.3.2:
Choosing the split--classification trees / 10.3.3:
The mechanics of tree-based regression--a trivial example / 10.3.4:
Assessments of Predictive Accuracy / 10.4:
Cross-validation / 10.4.1:
The training/test set methodology / 10.4.2:
Predicting the future / 10.4.3:
A Strategy for Choosing the Optimal Tree / 10.5:
Cost-complexity pruning / 10.5.1:
Prediction error versus tree size / 10.5.2:
Detecting Email Spam--the Optimal Tree / 10.6:
The one-standard-deviation rule / 10.6.1:
Interpretation and Presentation of the rpart Output / 10.7:
Data for female heart attack patients / 10.7.1:
Printed Information on Each Split / 10.7.2:
Additional Notes / 10.8:
Multivariate Data Exploration and Discrimination / 10.9:
Multivariate Exploratory Data Analysis / 11.1:
Scatterplot matrices / 11.1.1:
Principal components analysis / 11.1.2:
Discriminant Analysis / 11.2:
Example--plant architecture / 11.2.1:
Classical Fisherian discriminant analysis / 11.2.2:
Logistic discriminant analysis / 11.2.3:
An example with more than two groups / 11.2.4:
Principal Component Scores in Regression / 11.3:
Propensity Scores in Regression Comparisons--Labor Training Data / 11.4:
The R System--Additional Topics / 11.5:
Graphs in R / 12.1:
Functions--Some Further Details / 12.2:
Common useful functions / 12.2.1:
User-written R functions / 12.2.2:
Functions for working with dates / 12.2.3:
Data input and output / 12.3:
Input / 12.3.1:
Data output / 12.3.2:
Factors--Additional Comments / 12.4:
Missing Values / 12.5:
Lists and Data Frames / 12.6:
Data frames as lists / 12.6.1:
Reshaping data frames; reshape () / 12.6.2:
Joining data frames and vectors--cbind () / 12.6.3:
Conversion of tables and arrays into data frames / 12.6.4:
Merging data frames--merge () / 12.6.5:
The function sapply () and related functions / 12.6.6:
Splitting vectors and data frames into lists--split () / 12.6.7:
Matrices and Arrays / 12.7:
Outer products / 12.7.1:
Arrays / 12.7.2:
Classes and Methods / 12.8:
Printing and summarizing model objects / 12.8.1:
Extracting information from model objects / 12.8.2:
Data-bases and Environments / 12.9:
Workspace management / 12.9.1:
Function environments, and lazy evaluation / 12.9.2:
Manipulation of Language Constructs / 12.10:
Epilogue--Models / 12.11:
S-PLUS Differences / Appendix:
References
Index of R Symbols and Functions
Index of Terms
Index of Names
Preface
A Chapter by Chapter Summary
A Brief Introduction to R / 1:
7.

図書

図書
Michael J. Crawley
出版情報: Chichester, West Sussex : John Wiley & Sons, 2015  xiii, 339 p. ; 25 cm
8.

図書

図書
Arthur Pewsey, Markus Neuhäuser, Graeme D. Ruxton
出版情報: Oxford : Oxford University Press, 2013  xiv, 183 p. ; 24 cm
9.

図書

図書
Peter Dalgaard
出版情報: New York, NY : Springer, c2002  xv, 267 p. ; 24 cm
シリーズ名: Statistics and computing
目次情報: 続きを見る
Preface
Basics / 1:
First steps / 1.1:
An overgrown calculator / 1.1.1:
Assignments / 1.1.2:
Vectorized arithmetic / 1.1.3:
Standard procedures / 1.1.4:
Graphics / 1.1.5:
R language essentials / 1.2:
Expressions and objects / 1.2.1:
Functions and arguments / 1.2.2:
Vectors / 1.2.3:
Missing values / 1.2.4:
Functions that create vectors / 1.2.5:
Matrices and arrays / 1.2.6:
Factors / 1.2.7:
Lists / 1.2.8:
Data frames / 1.2.9:
Indexing / 1.2.10:
Conditional selection / 1.2.11:
Indexing of data frames / 1.2.12:
subset and transform / 1.2.13:
Grouped data and data frames / 1.2.14:
Sorting / 1.2.15:
Implicit loops / 1.2.16:
The graphics subsystem / 1.3:
Plot layout / 1.3.1:
Building a plot from pieces / 1.3.2:
Using par / 1.3.3:
Combining plots / 1.3.4:
R programming / 1.4:
Flow control / 1.4.1:
Classes and generic functions / 1.4.2:
Session management / 1.5:
The workspace / 1.5.1:
Getting help / 1.5.2:
Packages / 1.5.3:
Built-in data / 1.5.4:
attach and detach / 1.5.5:
Data entry / 1.6:
Reading from a text file / 1.6.1:
The data editor / 1.6.2:
Interfacing to other programs / 1.6.3:
Exercises / 1.7:
Probability and distributions / 2:
Random sampling / 2.1:
Probability calculations and combinatorics / 2.2:
Discrete distributions / 2.3:
Continuous distributions / 2.4:
The built-in distributions in R / 2.5:
Densities / 2.5.1:
Cumulative distribution functions / 2.5.2:
Quantiles / 2.5.3:
Random numbers / 2.5.4:
Descriptive statistics and graphics / 2.6:
Summary statistics for a single group / 3.1:
Graphical display of distributions / 3.2:
Histograms / 3.2.1:
Empirical cumulative distribution / 3.2.2:
Q-Q plots / 3.2.3:
Boxplots / 3.2.4:
Summary statistics by groups / 3.3:
Graphics for grouped data / 3.4:
Parallel boxplots / 3.4.1:
Stripcharts / 3.4.3:
Tables / 3.5:
Generating tables / 3.5.1:
Marginal tables and relative frequency / 3.5.2:
Graphical display of tables / 3.6:
Bar plots / 3.6.1:
Dotcharts / 3.6.2:
Pie charts / 3.6.3:
One- and two-sample tests / 3.7:
One-sample t test / 4.1:
Wilcoxon signed-rank test / 4.2:
Two-sample t test / 4.3:
Comparison of variances / 4.4:
Two-sample Wilcoxon test / 4.5:
The paired t test / 4.6:
The matched-pairs Wilcoxon test / 4.7:
Regression and correlation / 4.8:
Simple linear regression / 5.1:
Residuals and fitted values / 5.2:
Prediction and confidence bands / 5.3:
Correlation / 5.4:
Pearson correlation / 5.4.1:
Spearman's ? / 5.4.2:
Kendall's ? / 5.4.3:
ANOVA and Kruskal-Wallis / 5.5:
One-way analysis of variance / 6.1:
Pairwise comparisons and multiple testing / 6.1.1:
Relaxing the variance assumption / 6.1.2:
Graphical presentation / 6.1.3:
Bartlett's test / 6.1.4:
Kruskal-Wallis test / 6.2:
Two-way analysis of variance / 6.3:
Graphics for repeated measurements / 6.3.1:
The Friedman test / 6.4:
The ANOVA table in regression analysis / 6.5:
Tabular data / 6.6:
Single proportions / 7.1:
Two independent proportions / 7.2:
k proportions, test for trend / 7.3:
r × c tables / 7.4:
Power and the computation of sample size / 7.5:
The principles of power calculations / 8.1:
The power of one-sample and paired t tests / 8.1.1:
Power of two-sample t test / 8.1.2:
Approximate methods / 8.1.3:
Power of comparisons of proportions / 8.1.4:
Two-sample problems / 8.2:
One-sample problems and paired tests / 8.3:
Comparison of proportions / 8.4:
Multiple regression / 8.5:
Plotting multivariate data / 9.1:
Model specification and output / 9.2:
Model search / 9.3:
Linear models / 9.4:
Polynomial regression / 10.1:
Regression through the origin / 10.2:
Design matrices and dummy variables / 10.3:
Linearity over groups / 10.4:
Interactions / 10.5:
Two-way ANOVA with replication / 10.6:
Analysis of covariance / 10.7:
Graphical description / 10.7.1:
Comparison of regression lines / 10.7.2:
Diagnostics / 10.8:
Logistic regression / 10.9:
Generalized linear models / 11.1:
Logistic regression on tabular data / 11.2:
The analysis of deviance table / 11.2.1:
Connection to test for trend / 11.2.2:
Logistic regression using raw data / 11.3:
Prediction / 11.4:
Model checking / 11.5:
Survival analysis / 11.6:
Essential concepts / 12.1:
Survival objects / 12.2:
Kaplan-Meier estimates / 12.3:
The log-rank test / 12.4:
The Cox proportional hazards model / 12.5:
Obtaining and installing R / 12.6:
Data sets in the ISwR package / B:
Compendium / C:
Index
Preface
Basics / 1:
First steps / 1.1:
10.

図書

図書
Michael J. Crawley
出版情報: Chichester, U.K. : John Wiley, c2007  viii, 942 p. ; 25 cm
目次情報: 続きを見る
Preface
Getting Started / 1:
Essentials of the R Language / 2:
Data Input / 3:
Dataframes / 4:
Graphics / 5:
Tables / 6:
Mathematics / 7:
Classical Tests / 8:
Statistical Modelling / 9:
Regression / 10:
Analysis of Variance / 11:
Analysis of Covariance / 12:
Generalized Linear Models / 13:
Count Data / 14:
Count Data in Tables / 15:
Proportion Data / 16:
Binary Response Variables / 17:
Generalized Additive Models / 18:
Mixed-Effects Models / 19:
Non-linear Regression / 20:
Tree Models / 21:
Time Series Analysis / 22:
Multivariate Statistics / 23:
Spatial Statistics / 24:
Survival Analysis / 25:
Simulation Models / 26:
Changing the look of graphics / 27:
References and Further Reading
Index
Preface
Getting Started / 1:
Essentials of the R Language / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼