close
1.

図書

図書
Aldo Andreotti
出版情報: Pisa : Scucla Normale Superiore, 1999  633 p. ; 24 cm
シリーズ名: Pubblicazioni della Classe di scienze / Scuola Normale Superiore ; . Selecta : di opere di Aldo Andreotti
所蔵情報: loading…
2.

図書

図書
Sukumar Das Adhikari
出版情報: New Delhi : Narosa, c1999  xiii, 153 p. ; 24 cm
所蔵情報: loading…
3.

図書

図書
A. Ehrenfeucht, T. Harju, G. Rozenberg
出版情報: Singapore : World Scientific, c1999  xvi, 290 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Preliminaries / Chapter 1:
Notations / 1.1:
Sets and functions / 1.1.1:
Closure operators / 1.1.2:
Relations / 1.1.3:
Equivalence relations / 1.1.4:
Partial orders / 1.2:
Downsets / 1.2.1:
Order embeddings / 1.2.2:
Linear orders / 1.2.3:
Semigroups and groups / 1.3:
Notations for semigroups and monoids / 1.3.1:
Free monoids (with involution) / 1.3.2:
Preliminaries on groups / 1.3.3:
Group actions / 1.3.4:
Free groups, commutators and verbal identities / 1.3.5:
Graph Theoretical Preliminaries / Chapter 2:
Directed and Undirected Graphs / 2.1:
Basic notions / 2.1.1:
Connectivity of graphs / 2.1.2:
Some special graphs / 2.1.3:
Comparability graphs / 2.2:
Transitively oriented graphs / 2.2.1:
Permutation graphs and cographs / 2.2.2:
Construction trees of cographs / 2.2.3:
2-Structures and Their Clans / Chapter 3:
Introduction and representations / 3.1:
Definition of a 2-structure / 3.1.1:
Isomorphic 2-structures / 3.1.2:
Reversibility / 3.1.3:
Substructures and clans / 3.2:
Substructures, clans and factors / 3.2.1:
Refinements and similarity / 3.2.2:
Reversible version / 3.2.3:
Graphs and packed components / 3.2.4:
Some special 2-structures / 3.2.5:
Closure properties of clans / 3.3:
Basic closures / 3.3.1:
Sibas: set theoretic closure properties / 3.3.2:
Clans of factors / 3.3.3:
Prime clans / 3.4:
Prime members in sibas / 3.4.1:
Minimal overlapping clans / 3.4.2:
Quotients and Homomorphisms / Chapter 4:
Quotients / 4.1:
Factorizations and quotients / 4.1.1:
Homomorphisms / 4.1.2:
Natural epimorphisms and decompositions / 4.1.3:
Clans and epimorphisms / 4.2:
Homomorphism theorem / 4.2.1:
Prime clans in quotients / 4.2.2:
Primitive quotients / 4.2.3:
Other operations / 4.3:
Premorphisms / 4.3.1:
Extensions / 4.3.2:
Clan Decomposition / Chapter 5:
The clan decomposition theorem / 5.1:
Maximal prime clans / 5.1.1:
Special sibas and 2-structures / 5.1.2:
The relationship of sibas to 2-structures / 5.1.3:
The shape of a 2-structure / 5.2:
The shape and its representation as a tree / 5.2.1:
Same shapes / 5.2.2:
A construction of prime clans / 5.3:
A construction of clans / 5.3.1:
Primitive 2-Structures / 5.3.2:
Small primitive substructures / 6.1:
Uniformly imprimitive 2-structures / 6.1.1:
Primitive substructures of 3 or 4 nodes / 6.1.2:
Hereditary properties / 6.2:
Local and global nodes / 6.2.1:
Critically primitive 2-structures / 6.2.2:
The parity theorem / 6.3.1:
The list of critically primitive 2-structures / 6.3.2:
Angular 2-Structures / Chapter 7:
Angularity / 7.1:
All-connectivity / 7.1.1:
All-connected skew angular 2-structures / 7.1.2:
T-structures / 7.2:
T-structures and partial orders / 7.2.1:
T[subscript 2]-structures / 7.2.2:
Linear orders and Schroder numbers / 7.3:
Bi-orders and linear orders / 7.3.1:
Uniformly imprimitive linear orders / 7.3.2:
Parenthesis words and Schroder numbers / 7.3.3:
Labelled 2-Structures / Chapter 8:
Introduction to l2-structures / 8.1:
Definitions / 8.1.1:
Substructures, clans and quotients / 8.1.2:
Clan decomposition of l2-structures / 8.2:
Uniqueness of decompositions / 8.2.1:
The shape of an l2-structure / 8.2.2:
Graphs and their representations / 8.2.3:
Graphs as l2-structures / 8.3.1:
On comparability graphs / 8.3.2:
Unstable Labelled 2-Structures / Chapter 9:
Triangle free and unstable l2-structures / 9.1:
Removable edges / 9.1.1:
Internal and external nodes / 9.1.2:
Triangle-free l2-structures / 9.1.3:
Heredity in unstable l2-structures / 9.2:
The partition of nodes / 9.2.1:
Alternating structures / 9.2.2:
Degrees of nodes / 9.2.3:
A composition of unstable l2-structures / 9.3:
A constructive reduction of primitive l2-structures / 9.3.1:
Pendant components / 9.3.2:
Automorphisms of Labelled 2-Structures / Chapter 10:
Label preserving automorphisms / 10.1:
The l-automorphism groups / 10.1.1:
Transitivity / 10.1.2:
Automorphic actions on factors / 10.1.3:
Universality of l-automorphism groups / 10.1.4:
Nonpreserving automorphisms / 10.2:
Connections to l-automorphisms / 10.2.1:
Transitivity and associated permutations / 10.2.2:
Representing labels by automorphisms / 10.2.3:
Switching of Graphs / Chapter 11:
Introduction to switching / 11.1:
The group of graphs / 11.1.1:
Switching classes / 11.1.3:
Structural properties of switching classes / 11.2:
A local characterization / 11.2.1:
Automorphisms / 11.2.2:
Special problems on undirected graphs / 11.3:
Two-graphs / 11.3.1:
Eulerian graphs / 11.3.2:
Pancyclic graphs / 11.3.3:
Trees / 11.3.4:
Labelled Structures over Groups / Chapter 12:
Introduction / 12.1:
Groups and involutions / 12.1.1:
Selectors and switching classes / 12.1.2:
An interpretation in networks / 12.2:
Concurrent behaviour in networks / 12.2.1:
Reducing the actions to groups / 12.2.2:
Introducing reversibility / 12.2.3:
Examples for some special groups / 12.3:
The cyclic groups Z[subscript 3] and Z[subscript 4] / 12.3.1:
The symmetric group S[subscript 3] / 12.3.2:
Clans of Switching Classes / Chapter 13:
Associated groups / 13.1:
The group of selectors / 13.1.1:
The group of abelian switching classes / 13.1.2:
Clans and horizons / 13.2:
Spanning trees / 13.2.1:
Horizons and constant selectors / 13.2.2:
Clans / 13.2.3:
Cardinalities of switching classes / 13.3:
Some special cases / 13.3.1:
Centralizers / 13.3.2:
Some improvements / 13.3.3:
Quotients and Plane Trees / Chapter 14:
Quotients of switching classes / 14.1:
Planes and plane trees / 14.1.1:
Planes / 14.2.1:
Plane trees / 14.2.2:
Bijective correspondence of plane trees / 14.2.3:
Forms / 14.2.4:
Invariants / Chapter 15:
Free invariants / 15.1:
General invariants / 15.1.1:
Edge monoids / 15.1.2:
Variable functions and free invariants / 15.1.3:
Group properties of free invariants / 15.2:
Abelian property / 15.2.1:
Graphs of words / 15.2.2:
Verbal identities / 15.2.3:
Invariants on abelian groups / 15.3:
Independency of free invariants / 15.3.1:
Complete sets of invariants / 15.3.2:
Invariants on nonabelian groups / 15.4:
General observations / 15.4.1:
Central characters / 15.4.2:
A characterization theorem / 15.4.3:
Bibliography
Index
Preface
Preliminaries / Chapter 1:
Notations / 1.1:
4.

図書

図書
G. Haller
出版情報: New York ; Tokyo : Springer, c1999  xvi, 427 p. ; 25 cm
シリーズ名: Applied mathematical sciences ; 138
所蔵情報: loading…
5.

図書

図書
H. Flenner, L. O'Carroll, W. Vogel
出版情報: New York : Springer, c1999  vi, 307 p. ; 25 cm
シリーズ名: Springer monographs in mathematics
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Notations
The Classical Bezout Theorem / 1:
Degrees of Projective Schemes / 1.1:
Multiplicities of Local Rings / 1.2:
Joins / 1.3:
Generic Bertini Theorems / 1.4:
The Intersection Algorithm and Applications / 2:
The Intersection Algorithm / 2.1:
Application I: The Refined Bezout Theorem / 2.2:
Segre Classes, v-Cycles and Positivity / 2.3:
Segre Classes: The General Case / 2.4:
Limits of Joins and Intersections / 2.5:
Connectedness and Bertini Theorems / 3:
Connectedness Theorems / 3.1:
Applications to Intersections and Singularities of Mappings / 3.2:
Open Loci Results and the Generic Principle / 3.3:
Bertini Theorems / 3.4:
Grothendieck's Finiteness Theorem and Applications / 3.5:
A Relative Version of Krull's Principal Ideal Theorem / 3.6:
Joins and Intersections / 4:
Linear Projections / 4.1:
Tangencies of Algebraic Varieties / 4.2:
Embedded Tangent Spaces and Tangent Cones / 4.3:
Dual Varieties and the Gauss Map / 4.4:
Superadditivity of Join Defects / 4.5:
Joins, Vertices and Higher Join Varieties / 4.6:
Higher Secant Varieties of Rational Normal Scrolls / 4.7:
Converse to Bezout's Theorem / 5:
Joins of Minimal Dimension / 5.1:
A Numerical Criterion for Proper Intersection / 5.2:
The Arithmetically Cohen-Macaulay Case / 5.3:
A Local Version of Bezout's Theorem / 5.4:
Intersection Numbers and their Properties / 6:
A General Version of the j-Multiplicity / 6.1:
Intersection Numbers / 6.2:
Criteria for Bounded Multiplicity / 6.3:
Examples and Problems / 6.4:
Linkage, Koszul Cohomology and Intersections / 7:
Linkage / 7.1:
Strongly Cohen-Macaulay Subschemes / 7.2:
Linkage and the Strong Cohen-Macaulay Property / 7.3:
Applications to Cones, Joins and Secant Varieties / 7.4:
Secant Varieties for Two Dimensional Singularities / 7.5:
Limits of Joins for Small Deviation / 7.6:
Further Applications / 8:
Generic Residual Intersections / 8.1:
Generic Projections and Double Point Cycles / 8.2:
Generic Projections and the Ramification Cycle / 8.3:
Trisecant Varieties and Inner Projections / 8.4:
Appendix / A:
Some Standard Results from Commutative Algebra / A.1:
Gorenstein Rings / A.2:
Historical Remarks / A.3:
Bibliography
Index of Notations
Index
Introduction
Notations
The Classical Bezout Theorem / 1:
6.

図書

図書
edited by Andrea Cantini, Ettore Casari, Pierluigi Minari
出版情報: Dordrecht : Kluwer Academic, c1999  viii, 282 p.
シリーズ名: Synthese library ; v. 280
所蔵情報: loading…
7.

図書

図書
P.K. Suetin ; translated from the Russian by E.V. Pankratiev
出版情報: Australia ; Amsterdam : Gordon & Breach, c1999  xx, 348 p. ; 26 cm
シリーズ名: Analytical methods and special functions ; v. 3
An international series of monographs in mathematics
所蔵情報: loading…
8.

図書

図書
András Hajnal, Peter Hamburger ; translated by Attila Máté
出版情報: Cambridge : Cambridge University Press, 1999  viii, 316 p. ; 23 cm
シリーズ名: London Mathematical Society student texts ; 48
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction to set theory / Part I.:
Introduction
Notation, conventions / 1.:
Definition of equivalence. The concept of cardinality. The Axiom of Choice / 2.:
Countable cardinal, continuum cardinal / 3.:
Comparison of cardinals / 4.:
Operations with sets and cardinals / 5.:
Examples / 6.:
Ordered sets. Order types. Ordinals / 7.:
Properties of wellordered sets. Good sets. The ordinal operation / 8.:
Transfinite induction and recursion. Some consequences of the Axiom of Choice, the Wellordering Theorem / 9.:
Definition of the cardinality operation. Properties of cardinalities. The cofinality operation / 10.:
Properties of the power operation / 11.:
Hints for solving problems marked with * in Part I
An axiomatic development of set theory / Appendix:
The Zermelo-Fraenkel axiom system of set theory / A1.:
Definition of concepts; extension of the language / A2.:
A sketch of the development. Metatheorems / A3.:
A sketch of the development. Definitions of simple operations and properties (continued) / A4.:
A sketch of the development. Basic theorems, the introduction of [omega] and R (continued) / A5.:
The ZFC axiom system. A weakening of the Axiom of Choice. Remarks on the theorems of Sections 2-7 / A6.:
The role of the Axiom of Regularity / A7.:
Proofs of relative consistency. The method of interpretation / A8.:
Proofs of relative consistency. The method of models / A9.:
Topics in combinatorial set theory / Part II.:
Stationary sets / 12.:
[Delta]-systems / 13.:
Ramsey's Theorem and its generalizations. Partition calculus / 14.:
Inaccessible cardinals. Mahlo cardinals / 15.:
Measurable cardinals / 16.:
Real-valued measurable cardinals, saturated ideals / 17.:
Weakly compact and Ramsey cardinals / 18.:
Set mappings / 19.:
The square-bracket symbol. Strengthenings of the Ramsey counterexamples / 20.:
Properties of the power operation. Results on the singular cardinal problem / 21.:
Powers of singular cardinals. Shelah's Theorem / 22.:
Hints for solving problems of Part II
Bibliography
List of symbols
Name index
Subject index
Preface
Introduction to set theory / Part I.:
Introduction
9.

図書

図書
Norman Macrae
出版情報: [Providence, R.I.] : American Mathematical Society, 1999, c1992  x, 405 p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
The cheapest way to make the world richer
A silver spoon in Budapest, 1903-14
At the Lutheran Gymnasium, 1914-21
An undergraduate with lion's claws, 1921-26
Rigor becomes more relaxed, 500 B. C.-A. D. 1931
The quantum leap, 1926-32
Sturm und Drang, marriage, emigration, 1927-31
Depression at Princeton, 1931-37
The calculating exploder, 1937-43
Los Alamos to Trinity, 1943-45
In the domain of economics
The computers at Philadelphia, 1944-46
The computers from Princeton, 1946-52
And then the H-bomb With astonishing influence, 1950-56
Acknowledgments
Permissions acknowledgments
Notes
Bibliography
Index Macrae on Macrae
The cheapest way to make the world richer
A silver spoon in Budapest, 1903-14
At the Lutheran Gymnasium, 1914-21
10.

図書

図書
Thomas Beth, Dieter Jungnickel, Hanfried Lenz
出版情報: Cambridge : Cambridge University Press, 1999  2 v. (xix, 1100 p.) ; 24 cm
シリーズ名: Encyclopedia of mathematics and its applications / edited by G.-C. Rota ; v. 69, 78
所蔵情報: loading…
目次情報: 続きを見る
Examples and basic definitions / 1:
Combinatorial analysis of designs / 2:
Groups and designs / 3:
Witt designs and Mathieu groups / 4:
Highly transitive groups / 5:
Difference sets and regular symmetric designs / 6:
Difference families / 7:
Further direct constructions / 8:
Examples and basic definitions / 1:
Combinatorial analysis of designs / 2:
Groups and designs / 3:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼