close
1.

図書

東工大
目次DB

図書
東工大
目次DB
相澤益男 [ほか] 著
出版情報: 東京 : 講談社, 1995.3  ix, 191p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
まえがき iii
1.生体高分子の構造 1
   1.1 生体を構成する高分子 1
   1.2 タンパク質 1
   1.2.1 アミノ酸の構造と側鎖の性質 2
   1.2.2 タンパク質の一次構造 4
   1.2.3 タンパク質の二次構造 9
   1.2.4 タンパク質の三次構造 15
   1.3 核酸 22
   1.3.1 核酸の化学構造 23
   1.3.2 核酸の立体構造 26
   1.4 多糖類 28
   1.4.1 単糖類 29
   1.4.2 多糖類 31
2.生体高分子の分子量 33
   2.1 化学構造からの分子量の計算 34
   2.2 質量分析(マススペクトル)による分子量の決定 35
   2.3 ゲル濾過 37
   2.4 その他の古典的方法 39
   2.4.1 浸透圧 39
   2.4.2 粘度 39
   2.4.3 沈降 40
   2.4.4 光散乱 42
3.生体高分子の電気化学的性質 45
   3.1 酸化還元 45
   3.1.1 酸化還元電位 45
   3.1.2 呼吸鎖および光合成の電子伝達系 47
   3.1.3 酵素および補酵素の電気化学反応 49
   3.2 酸塩基平衡 51
   3.2.1 酸解離定数 51
   3.2.2 アミノ酸の酸解離 52
   3.2.3 タンパク質の荷電 54
   3.2.4 緩衝液 55
   3.3 電気泳動 57
   3.3.1 電気泳動の種類 57
   3.3.2 電気泳動法の原理 59
   3.3.3 ディスク電気泳動 60
   3.3.4 等電点電気泳動法 60
   3.3.5 等速電気泳動法 60
4.生体高分子の分光学的性質 62
   4.1 分子分光学序論 62
   4.1.1 光子と波動 62
   4.1.2 分子の電子状態 65
   4.2 電子スペクトル 67
   4.2.1 光と分子の相互作用 67
   4.2.2 遷移双極子モーメント 68
   4.2.3 ランベルト-ベール(Lambert-Beer)の法則 71
   4.2.4 吸収スペクトルの形 72
   4.2.5 電子スピン 74
   4.2.6 円偏光二色性 75
   4.2.7 励起子キラリティ則 77
   4.3 蛍光スペクトル 79
   4.3.1 励起状態の性質と蛍光,りん光スペクトル 79
   4.3.2 蛍光減衰曲線 81
   4.3.3 蛍光量子収率 82
   4.4 励起状態の相互作用 83
   4.4.1 励起状態の分子間相互作用 83
   4.4.2 励起エネルギー移動 85
   4.4.3 光異性化反応 87
   4.4.4 光誘起電子移動 88
   4.5 赤外分光法 93
   4.5.1 赤外吸収の選択則 93
   4.5.2 分子の固有振動数 95
   4.5.3 吸収強度 96
   4.5.4 赤外吸収スペクトル 97
   4.5.5 赤外吸収とラマン散乱 98
   4.6 核磁気共鳴スペクトル 99
   4.6.1 プロトン核スピンと常磁性共鳴スペクトル測定の原理 99
   4.6.2 化学シフトとスピン-スピン結合 102
   4.6.3 2次元NMRスペクトル 106
5.機能性タンパク質 107
   5.1 生体分子の熱力学的性質 107
   5.1.1 熱力学第一法則 107
   5.1.2 熱力学第二法則とエントロピー 109
   5.1.3 自由エネルギーと化学平衡 110
   5.2 生体エネルギー 111
   5.2.1 解糖と発酵 112
   5.2.2 クエン酸回路 115
   5.2.3 電子伝達系 116
   5.2.4 光合成 116
   5.2.5 明反応と暗反応 117
   5.3 タンパク質の機能 118
   5.3.1 酵素 120
   5.3.2 酵素および輸送タンパク質に含まれる金属の役割 126
   5.4 酵素反応とその機構 136
   5.4.1 酵素反応速度論 136
   5.4.2 阻害機構 140
   5.4.3 高速反応測定法 144
6.生体分子系の分子間相互作用 153
   6.1 分子間相互作用力 153
   6.1.1 静電相互作用 153
   6.1.2 水素結合 154
   6.1.3 分散力 154
   6.1.4 電荷移動相互作用 155
   6.1.5 疎水結合 155
   6.2 脂質分子の会合 155
   6.2.1 脂質 水系の構造 155
   6.2.2 ミセル 157
   6.2.3 リポソーム 158
   6.2.4 ラングミュア ブロジェット(LB)膜 159
   6.3 超分子の化学へ 161
   6.3.1 ホスト ゲストの分子会合 161
   6.3.2 クラウンエーテル類 161
   6.3.3 シクロデキストリン 163
   6.4 酵素および抗体の分子認識 164
   6.4.1 酵素の分子認識 164
   6.4.2 抗体の分子認識 166
7.生体界面の性質 168
   7.1 生体膜透過 168
   7.1.1 膜構造 168
   7.1.2 膜輸送 169
   7.2 膜電位 172
   7.2.1 界面電位と拡散電位 172
   7.2.2 神経細胞の興奮 173
   7.3 生体膜の流動性 175
   7.3.1 脂質の流動性 175
   7.3.2 生体膜のタンパク質の拡散 177
   7.4 細胞 178
   7.4.1 細胞の荷電 178
   7.4.2 細胞融合 180
付表1 基本物理定数 183
付表2 エネルギー単位換算表 183
付表3 標準生成エンタルピーおよび標準生成自由エネルギー 183
索引 189
まえがき iii
1.生体高分子の構造 1
   1.1 生体を構成する高分子 1
2.

図書

東工大
目次DB

図書
東工大
目次DB
朝倉則行, 蒲池利章, 大倉一郎著
出版情報: 京都 : 化学同人, 2008.7  ix, 188p ; 26cm
所蔵情報: loading…
目次情報: 続きを見る
第Ⅰ部 タンパク質の分離精製
第1章 タンパク質の物理化学的性質 2
   1.1 タンパク質の分離精製と物理化学的性質 2
   1.2 タンパク質とアミノ酸 3
   1.3 どのような性質を利用して分離精製するか 7
   1.3.1 タンパク質の大きさ 7
   1.3.2 タンパク質の表面電荷 8
   1.3.3 タンパク質の機能 9
第2章 タンパク質の性質に基づく分離精製法
   2.1 はじめに 11
   2.2 細胞または細菌の破砕と粗精製-超音波による破砕- 12
   2.3 クロマトグラフィーの利用-まずはゲルについて- 14
   2.4 分子の大きさによる分離 15
   2.4.1 ゲルろ過クロマトグラフィー 15
   2.4.2 限外ろ過法 17
   2.5 表面電荷による分離 18
   2.5.1 イオン交換クロマトグラフィー 18
   2.5.2 疎水性クロマトグラフィーと逆相クロマトグラフィー 21
   2.5 タンパク質の機能による分離精製 23
   2.6.1 アフィニティークロマトグラフィー 23
   2.5.2 金属キレートクロマトグラフイー 24
第3章 タンパク質の分離精製の実際-ヒドロゲナーゼとシトクロムCを例に- 26
   3.1 はじめに 26
   3.2 菌体破砕と超遠心分離 27
   3.3 ヒドロゲナーゼの分離精製 28
   3.3.1 可溶化 28
   3.3.2 クロマトグラフィーを用いた分離精製 28
   3.4 シトクロムCの精製 31
第Ⅱ部 タンパク質の同定法 34
第4章 タンパク質溶液の定量法 39
   4.1 タンパク質の同定とは 34
   4.2 紫外線吸収法による検出 35
   4.3 呈色反応を利用したタンパク質溶液の濃度決定法 36
第5章 タンパク質の機能による同定法 39
   5.1 はじめに 39
   5.2 酵素反応の利用 39
   5.3 分光学的特徴 40
   5.4 抗原抗体反応を利用したタンパク質の同定 43
第6章 タンパク質溶液の純度-電気泳動法による純度確認- 44
   6.1 はじめに 44
   6.2 SDS-PAGE 45
   6.3 Native PAGE 47
   6.4 等電点電気泳動法 47
第7章 タンパク質の分子量 49
   7.1 はじめに 49
   7.2 絶対分子量の決定法 50
   7.2.1 アミノ酸配列の決定 50
   7.2.2 塩基配列の決定 51
   7.2.3 質量分析伝 51
   7.3 分子量の推定法 53
   7.3.1 ゲルろ過法 53
   7.3.2 SDS-PAGE 54
   7.4 平均分子量の決定法 55
   7.4.1 数平均分子量の決定法 55
   7.4.2 重量平均分子量の決定法 57
   7.4.3 そのほかの方伝 62
第8章 タンパク質の構造解析 63
   8.1 はじめに 63
   8.2 X線結晶構造解析 63
   8.3 NMRによる構造解析 64
   8.4 構造解析で忘れてはいけないこと 65
第Ⅲ部 機能性タンパク質
第9章 酵素 68
   9.1 機能性タンパク質と酵素 68
   9.2 酵素反応はなぜ速いか
   9.2.1 活性化エネルギー 70
   9.2.2 分子内反応 71
   9.2.3 協同作用 72
   9.3 酵素反応速度論 73
   9.4 酵素阻害 76
   9.4.1 非可逆的阻害 76
   9.4.2 可逆的阻害 76
第10章 金属タンパク質 80
   10.1 錯体化学の基礎 80
   10.1.1 錯体の構造の多様性 80
   10.1.2 HSAB則 81
   10.1.3 典型元素の電子配置 82
   10.1.4 遷移金属元素の電子配置 86
   10.1.5 結晶場理論 87
   10.1.6 分光化学系列 89
   10.1.7 高スピン状態と低スピン状態 89
   10.2 金属酵素と補酵素 90
   10.2.1 金属タンパク質 92
   10.2.2 電子伝達タンパク質 95
   10.2.3 酸化還元電位の調節 101
第11章 金属タンパク質の分光学 104
   11.1 はじめに 104
   11.2 紫外-可視吸収スペクトル 105
   11.2.1 d-d遷移による吸収 106
   11.2.2 電荷移動による吸収 106
   11.2.3 配位子の特性吸収による吸収 107
   11.3 赤外吸収およひRamanスペクトル 107
   11.3.1 タンパク質の赤外吸収スペクトル 108
   11.3.2 Ramanスペクトル 108
   11.4 電子常磁性共鳴スペクトル 110
   11.4.1 EPRて観測できる物質とできない物質 110
   11.4.2 EPRの原理 111
   11.4.3 EPRスペクトルの測定例 113
第Ⅳ部 生態エネルギー論
第12章 生体エネルギーの基礎 116
   12.1 はじめに 116
   12.2 生体エネルキーの基本-糖と酸素との燃料電池- 116
   12.2.1 解糖系とクエン酸回路によるNADH生産 118
   12.2.2 NADHとFADH 120
   12.2.3 電子伝達系と電子移動反応 125
   12.2.4 電子伝達にかかわる酸化還元タンパク質の補欠分子族 126
第13章 酸化還元タンパク質の電子移動 131
   13.1 はじめに 131
   13.2 電子移動反応の基本 132
   13.2.1 電子移動の時間スケールと外界のエネルギー変化 132
   13.2.2 原子核のポテンシャルと電子雲との関係 134
   13.2.3 反応速度論と熱力学 136
   13.2.4 電子移動反応の活性化エネルギー 138
   13.2.5 活性化エネルギーと電子移動反応速度 141
   13.2.6 分子間電子移動およひ分子内電子移動の律速段階 145
   13.3 タンパク質の分子内電子移動 145
   13.3.1 プロトン共役電子移動 148
   13.3.2 酸化還元電位と構造変化 150
   13.3.3 一方向への分子内電子移動-電子移動ゲート- 152
   13.4 タンパク質の分子間電子移動 155
   13.4.1 溶液中の2分子間電子移動反応とタンパク質の2分子間電子移動反応との相違 155
   13.4.2 タンパク質の酸化還元と分子間相互作用の共役 157
   13.4.3 酸化還元タンパク質の電子の貯蔵 158
第14章 光合成 161
   14.1 はじめに 161
   14.2 明反応と暗反応 161
   14.3 明反応と光励起電子移動 163
   14.3.1 光と電子のエネルギー交換 165
   14.3.2 PSⅡでの光励起電子移動と水の酸化反応 171
   14.3.3 シトクロムbf複合体による電子伝達とATPの生産 173
   14.3.4 PSIでの光励起電子移動とNADPの還元 174
   14.3.5 光捕集における光励起エネルキー移動反応 175
   14.4 暗反応 178
   14.5 光化学反応過程の速度論 178
   14.5.1 光励起一重項の反応速度解析 180
   14.5.2 光励起三重項の反応速度解析 182
   14.6 生体エネルキー生産のまとめ 186
索引 187
第Ⅰ部 タンパク質の分離精製
第1章 タンパク質の物理化学的性質 2
   1.1 タンパク質の分離精製と物理化学的性質 2
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼