close
1.

図書

図書
William Graham Hoover原著 ; 志田晃一郎訳
出版情報: 東京 : 森北出版, 2002.5  xii, 223p ; 22cm
所蔵情報: loading…
2.

図書

図書
edited by Guanrong Chen, Tetsushi Ueta
出版情報: New Jersey ; London ; Singapore ; Hongkong : World Scientific, c2002  xiii, 641 p. ; 24 cm
シリーズ名: World Scientific series on nonlinear science / editor, Leon O. Chua ; Series B . Special theme issues and proceeding ; vol. 11
所蔵情報: loading…
3.

図書

図書
吉岡大二郎著
出版情報: 東京 : 岩波書店, 2002.1  x, 78p ; 20cm
シリーズ名: 岩波講座物理の世界 / 佐藤文隆 [ほか] 編 ; . 統計力学||トウケイ リキガク ; 2
所蔵情報: loading…
4.

図書

図書
上田和夫著
出版情報: 東京 : 共立出版, 2001.5  vi, 125p ; 21cm
所蔵情報: loading…
5.

図書

図書
edited by S. Boccaletti ... [et al.]
出版情報: Singapore : World Scientific, c2001  xv, 305 p. ; 23 cm
所蔵情報: loading…
6.

図書

図書
高塚和夫著
出版情報: 東京 : 講談社, 2001.6  viii, 182p ; 21cm
シリーズ名: 非平衡系の科学 ; 4
所蔵情報: loading…
7.

図書

東工大
目次DB

図書
東工大
目次DB
早川尚男著
出版情報: 東京 : 岩波書店, 2003.3  x, 109p ; 20cm
シリーズ名: 岩波講座物理の世界 / 佐藤文隆 [ほか] 編 ; . 物理と数理||ブツリ ト スウリ ; 4
所蔵情報: loading…
目次情報: 続きを見る
まえがき
1 粉体とは何だろうか 1
   1.1 歴史的回顧 3
   1.2 粉体の特徴と本書の構成 6
2 非弾性衝突 12
   2.1 何が問題か 13
   2.2 非弾性衝突のメカニズム 14
   2.3 弾性論 16
   2.4 準静的な理論 20
   2.5 塑性変形 23
   2.6 斜め衝突 25
3 気体論的アプローチ 32
   3.1 なぜ統計力学か 32
   3.2 気体論の概略 33
   3.3 粉体ガスとは何か 38
   3.4 粉体ガスにおけるチャッブマン‐エンスコッグ法 42
   3.5 多体相関 46
   3.6 粉体ガス研究の可能性 50
4 遅い流れ 57
   4.1 バグノルドのスケーリング 57
   4.2 安息角 62
5 静力学 67
   5.1 静力学の概観 67
   5.2 応力鎖のモデル解析 70
6 散逸粒子系の物理の私的展望 81
A 伝統的な粉体静力学の基礎-付録 85
   A.1 概要 85
   A.2 最大主応力と最小主応力 88
   A.3 崩壊面と主応力の関係 89
B 弾性力学の基礎と5章で必要な計算の詳細-付録 92
   B.1 弾性体力学の基礎 92
   B.2 2次元歪みと応答関数(5.3)式 93
   B.3 応力鎖の統計理論の議論で現われる計算の詳細 96
参考文献 103
索引 107
まえがき
1 粉体とは何だろうか 1
   1.1 歴史的回顧 3
8.

図書

図書
砂田利一著
出版情報: 東京 : 岩波書店, 2004.9  x, 110p ; 20cm
シリーズ名: 岩波講座物理の世界 / 佐藤文隆 [ほか] 編 ; . 物の理 数の理||モノ ノ コトワリ カズ ノ コトワリ ; 4
所蔵情報: loading…
9.

図書

図書
桜井邦朋著
出版情報: 東京 : 朝倉書店, 2000.2  vi, 190p ; 21cm
所蔵情報: loading…
10.

図書

図書
W.T. Coffey, Yu.P. Kalmykov, J.T. Waldron
出版情報: Singapore ; New Jersey : World Scientific, 2004  xxiv, 678 p. ; 24 cm
シリーズ名: World Scientific series in contemporary chemical physics ; v. 14
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Second Edition
Preface to the First Edition
Contents
Historical Background and Introductory Concepts / Chapter 1:
Brownian Motion / 1.1:
Einstein's Explanation of the Brownian Movement / 1.2:
The Langevin Equation / 1.3:
Calculation of Avogadro's number / 1.3.1:
Einstein's Method / 1.4:
Necessary Concepts of Statistical Mechanics / 1.5:
Ensemble of systems / 1.5.1:
Phase space / 1.5.2:
Representative point / 1.5.3:
Ergodic hypothesis / 1.5.4:
Calculation of averages / 1.5.5:
Liouville equation / 1.5.6:
Reduction of the Liouville equation / 1.5.7:
Langevin equation for a system with one degree of freedom / 1.5.8:
Effect of a heat bath. Intuitive derivation of the Klein-Kramers equation / 1.5.9:
Conditions under which a Maxwellian distribution in the velocities may be deemed to be attained / 1.5.10:
Very high damping regime / 1.5.11:
Low damping regime / 1.5.12:
Probability Theory / 1.6:
Random variables and probability distributions / 1.6.1:
Properties of the Gaussian distribution / 1.6.2:
Moment generating functions / 1.6.3:
Central Limit Theorem / 1.6.4:
Random processes / 1.6.5:
Wiener-Khinchine theorem / 1.6.6:
Application to the Langevin Equation / 1.7:
Wiener Process / 1.8:
Variance of the Wiener process / 1.8.1:
Wiener integrals / 1.8.2:
The Fokker-Planck Equation / 1.9:
Drift and Diffusion Coefficients / 1.10:
Solution of the One-Dimensional Fokker-Planck Equation / 1.11:
The Smoluchowski Equation / 1.12:
Escape of Particles over Potential Barriers - Kramers' Escape Rate Theory / 1.13:
Escape rate in the IHD limit / 1.13.1:
Kramers' original calculation of the escape rate for very low damping / 1.13.2:
Range of validity of the IHD and VLD formulae / 1.13.3:
Extension of Kramers' theory to many dimensions in the intermediate-to-high damping limit / 1.13.4:
Langer's treatment of the IHD limit / 1.13.5:
Kramers' formula as a special case of Langer's formula / 1.13.6:
Applications of the Theory of Brownian Movement in a Potential / 1.14:
Rotational Brownian Motion - Application to Dielectric Relaxation / 1.15:
Breakdown of the Debye theory at high frequencies / 1.15.1:
Superparamagnetism - Magnetic After-Effect / 1.16:
Brown's Treatment of Neel Relaxation / 1.17:
Asymptotic Expressions for the Neel Relaxation Time / 1.18:
Application of Kramers' method to axially sym-metric potentials of the magneto-crystalline anisotropy / 1.18.1:
IHD formula for magnetic spins / 1.18.2:
Ferrofluids / 1.19:
Depletion Effect in a Biased Bistable Potential / 1.20:
Stochastic Resonance / 1.21:
Anomalous Diffusion / 1.22:
Empirical formulae for [varepsilon]([omega]) / 1.22.1:
Theoretical justification for anomalous relaxation behaviour / 1.22.2:
Anomalous dielectric relaxation of an assembly of fixed axis rotators / 1.22.3:
References
Langevin Equations and Methods of Solution / Chapter 2:
Criticisms of the Langevin Equation / 2.1:
Doob's Interpretation of the Langevin Equation / 2.2:
Nonlinear Langevin Equation with a Multiplicative Noise Term: Ito and Stratonovich Rules / 2.3:
Derivation of Differential-Recurrence Relations from the One-Dimensional Langevin Equation / 2.4:
Nonlinear Langevin Equations in Several Dimensions / 2.5:
Average of the Multiplicative Noise Term in the Langevin Equation for a Rotator / 2.6:
Multiplicative noise term for a three-dimensional rotator / 2.6.1:
Multiplicative noise terms with I taken as zero prior to averaging / 2.6.2:
Explicit average of the noise induced terms for a planar rotator / 2.6.3:
Methods of Solution of Differential-Recurrence Relations Arising from the Nonlinear Langevin Equation / 2.7:
Matrix diagonalisation method / 2.7.1:
Initial conditions / 2.7.2:
Matrix continued fraction solution of recurrence equations / 2.7.3:
Linear Response Theory / 2.8:
Correlation Time / 2.9:
Linear Response Theory Results for Systems with Dynamics Governed by One-Dimensional Fokker-Planck equations / 2.10:
Smallest Nonvanishing Eigenvalue: The Continued Fraction Approach / 2.11:
Evaluation of [lambda subscript 1] from a scalar three-term recurrence relation / 2.11.1:
Evaluation of [lambda subscript 1] from a matrix three-term recurrence relation / 2.11.2:
Effective Eigenvalue / 2.12:
Evaluation of the Dynamic Susceptibility Using [tau], [tau subscript ef], and [lambda subscript 1] / 2.13:
Nonlinear Response of a Brownian Particle Subjected to a Strong External Field / 2.14:
Analytical solutions for the relaxation time of one-dimensional systems / 2.14.1:
Nonlinear transient response in the rotational Brownian motion / 2.14.2:
Brownian Motion of a Free Particle and a Harmonic Oscillator / Chapter 3:
Ornstein-Uhlenbeck Theory of the Brownian Motion / 3.1:
Stationary Solution of the Langevin Equation - The Wiener-Khinchine Theorem / 3.2:
Brownian Motion of a Harmonic Oscillator / 3.3:
Application to Dielectric Relaxation / 3.4:
Theorem about Gaussian random variables / 3.4.1:
Torsional Oscillator Model: Example of the Use of the Wiener Integral / 3.5:
Two-Dimensional Rotational Brownian Motion in N-Fold Cosine Potentials / Chapter 4:
Introduction / 4.1:
Langevin Equation for Rotation in Two Dimensions / 4.2:
Longitudinal and Transverse Effective Relaxation Times in the Noninertial Limit / 4.3:
Polarisabilities and Dielectric Relaxation Times of a Fixed Axis Rotator with Two Equivalent Sites / 4.4:
Matrix solution / 4.4.1:
Longitudinal polarisability and relaxation times / 4.4.3:
Transverse polarisability and relaxation times / 4.4.4:
Comparison of the Longitudinal Relaxation Time with the Results of the Kramers Theory / 4.5:
Brownian Motion in a Tilted Cosine Potential: Application to the Josephson Tunnelling Junction / Chapter 5:
Josephson Junction: Dynamic Model / 5.1:
Reduction of the Averaged Langevin Equation for the Junction to a Set of Differential-Recurrence Relations / 5.3:
DC Current-Voltage Characteristics / 5.4:
Linear Response to an Applied Alternating Current / 5.5:
Effective Eigenvalues for the Josephson Junction / 5.6:
Linear Response Using the Effective Eigenvalues / 5.7:
Spectrum of the Josephson Radiation / 5.8:
Translational Brownian Motion in a Double-Well Potential / Chapter 6:
Relaxation Time of the Position Correlation Function / 6.1:
Comparison of Characteristic Times and Evaluation of the Position Correlation Function / 6.3:
Three-Dimentional Rotational Brownian Motion in an External Potential: Application to the Theory of Dielectric and Magnetic Relaxation / Chapter 7:
Rotational Diffusion in an External Potential: The Langevin Equation Approach / 7.1:
Gilbert's Equation Augmented by a Random Field Term / 7.3:
Langevin equation approach / 7.3.1:
Fokker-Planck equation approach / 7.3.2:
Brownian Rotation in the Uniaxial Potential / 7.4:
Longitudinal relaxation / 7.4.1:
Susceptibility and relaxation times / 7.4.2:
Integral form and asymptotic expansions / 7.4.3:
Transverse response / 7.4.4:
Complex susceptibilities / 7.4.5:
Brownian Rotation in a Uniform DC External Field / 7.5:
Longitudinal response / 7.5.1:
Comparison with experimental data / 7.5.3:
Anisotropic Noninertial Rotational Diffusion of an Asymmetric Top in an External Potential / 7.6:
Solution of the Euler-Langevin equation for an asymmetric top in the noninertial limit / 7.6.1:
Linear response of an assembly of asymmetric tops / 7.6.2:
Response in superimposed ac and strong dc bias fields: perturbation solution / 7.6.3:
Rotational Brownian Motion in Axially Symmetric Potentials: Matrix Continued Fraction Solutions / Chapter 8:
Application to the Single Axis Rotator / 8.1:
Relaxation times / 8.2.1:
Rotation in Three Dimensions: Longitudinal Response / 8.3:
Uniaxial particle in an external field / 8.3.1:
Characteristic times and magnetic susceptibility / 8.3.2:
Magnetic stochastic resonance / 8.3.3:
Transverse Response of Uniaxial Particles / 8.4:
Matrix continued fraction solution / 8.4.1:
Transverse complex magnetic susceptibility / 8.4.2:
Nonlinear Transient Responses in Dielectric and Kerr Effect Relaxation / 8.5:
Nonlinear Dielectric Relaxation of Polar Molecules in a Strong AC Electric Field: Steady State Response / 8.6:
Dielectric Relaxation and Rotational Brownian Motion in Nematic Liquid Crystals / 8.7:
Rotational Brownian Motion in Non-Axially Symmetric Potentials / Chapter 9:
Uniaxial Superparamagnetic Particles in an Oblique Field / 9.1:
Recurrence equations / 9.2.1:
Smallest nonvanishing eigenvalue, the relaxation time, and the complex susceptibility / 9.2.2:
Cubic Anisotropy / 9.3:
Complex susceptibility and relaxation times / 9.3.1:
Inertial Langevin Equations: Application to Orientational Relaxation in Liquids / Chapter 10:
Step-On Solution for Noninertial Rotation about a Fixed Axis / 10.1:
Inertial Rotation about a Fixed Axis / 10.3:
Inertial effects and nonlinear response / 10.3.1:
Inertial Rotational Brownian Motion of a Thin Rod in Space / 10.3.2:
Derivation of recurrence equations / 10.4.1:
Evaluation of C[subscript 1] / 10.4.2:
Evaluation of C[subscript 2] / 10.4.3:
Evaluation of C[subscript l] for an arbitrary l / 10.4.4:
Rotational Brownian Motion of a Symmetrical Top / 10.5:
Evaluation of C[subscript 1] and C[subscript 2] / 10.5.1:
Itinerant Oscillator Model of Rotational Motion in Liquids / 10.6:
Generalisation of the Onsager model - Relation to the cage model / 10.6.1:
Dipole correlation function / 10.6.3:
Exact solution for the complex susceptibility using matrix continued fractions / 10.6.4:
Results and comparison with experimental data / 10.6.5:
Application of the Cage to Ferrofluids / 10.7:
Statistical Averages of the Hermite Polynomials of the Angular Velocity Components for Linear Molecules / Appendix A:
Averages of the Angular Velocities Components / Appendix B:
Evaluation of cos[theta]([varepsilon]) in the Low Damping Limit / Appendix C:
Sack's Continued Fraction Solution for the Sphere / Appendix D:
Discrete and Continuous Time Random Walks / Chapter 11:
A Fractional Diffusion Equation for the Continuous Time Random Walk Model / 11.2:
Solution of fractional diffusion equations in configuration space / 11.2.1:
Anomalous diffusion of a planar rotator in a mean field potential / 11.2.2:
Divergence of Global Characteristic Times in Anomalous Diffusion / 11.3:
First passage time for normal diffusion / 11.3.1:
First passage time distribution for anomalous diffusion / 11.3.2:
Inertial Effects in Anomalous Relaxation / 11.4:
Slow transport process governed by trapping / 11.4.1:
Calculation of the complex susceptibility / 11.4.2:
Comment on the use of the telegraph equation as an approximate description of the configuration space distribution function including inertial effects / 11.4.3:
Barkai and Silbey's Form of the Fractional Klein-Kramers Equation / 11.5:
Complex susceptibility / 11.5.1:
Fractional kinetic equation for the needle model / 11.5.2:
Anomalous Diffusion in a Periodic Potential / 11.6:
Calculation of the spectra / 11.6.1:
Fractional Langevin Equation / 11.7:
Fractal Dimension, Anomalous Exponents and Random Walks / Appendix:
Index
Preface to the Second Edition
Preface to the First Edition
Contents
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼