close
1.

図書

図書
edited by Andrzej Wieckowski
出版情報: New York : Marcel Dekker, c1999  xviii, 966 p. ; 29 cm
所蔵情報: loading…
2.

図書

図書
Arthur W. Adamson and Alice P. Gast
出版情報: New York : Wiley, c1997  xxi, 784 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Capillarity
The Nature and Thermodynamics of Liquid Interfaces
Surface Films on Liquid Substrates
Electrical Aspects of Surface Chemistry
Long-Range Forces
Surfaces of Solids
Surfaces of Solids: Microscopy and Spectroscopy
The Formation of a New Phase-Nucleation and Crystal Growth
The Solid-Liquid Interface_Contact Angle
The Solid-Liquid Interface_Adsorption from Solution
Frication, Lubrication, and Adhesion
Wetting, Flotation, and Detergency
Emulsions, Foams, and Aerosols
Macromolecular Surface Films, Charged Films, and Langmuir-Blodgett Layers
The Solid-Gas Interface_General Considerations
Adsorption of Gases and Vapors on Solids
Chemisorption and Catalysis
Index
Capillarity
The Nature and Thermodynamics of Liquid Interfaces
Surface Films on Liquid Substrates
3.

図書

図書
edited by Nobuhiko Yui, Minoru Terano
出版情報: Tokyo : Kodansha Scientific Ltd., 1996  xi, 208 p. ; 25 cm
所蔵情報: loading…
4.

図書

図書
edited by Héctor D. Abruña
出版情報: New York ; Cambridge : VCH Publishers , Weinheim : VCH Verlagsgesellschaft, c1991  xviii, 589 p. ; 24 cm
所蔵情報: loading…
5.

図書

図書
editors, Jacek Lipkowski and Philip N. Ross
出版情報: New York, N.Y. : VCH Publishers, c1993  x, 406 p. ; 25 cm
シリーズ名: Frontiers of electrochemistry
所蔵情報: loading…
6.

図書

東工大
目次DB

図書
東工大
目次DB
Y. Horie and A.B. Sawaoka
出版情報: Tokyo : KTK Scientific, c1993  x, 364 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
   1.2 Compaction of Powders and Shock Activation, 6
   1.3 First-Order Phase Transitions and Chemical Reactions, 10
   1.4 Time Scales and Interactions of Basic Mechanisms, 12
   1.4.1 Shock propagation in a particle assemblage, 12
   1.4.2 Energy localization, 12
   1.4.3 Thermal relaxation of hot spots, 14
   1.4.4 Mass diffusion in solids, 14
   1.4.5 Kinetic constants, 14
   1.5 Some Roles of Shock Compression Techniques in Material Sciences Study, 16
   1.5.1 Shock Compression Techniques as a tool of high pressure production, 16
   1.5.2 Appearance of diamond anvil-type high-pressure apparatus, 16
   1.5.3 New roles of Shock Compression Technology as a unique method of very high temperature production, 18
   1.5.4 Development of conventional hypervelocity impact techniques for precise measurement of materials under shock compression, 19
Chapter 2 FUNDAMENTALS OF SHOCK WAVE PROPAGATION
   2.1 Hydrodynamic Jump Conditions and the Hugoniot Curve, 23
   2.2 Shock Transition in Hydrodynamic Solids, 32
   2.3 Non-Hydrostatic Deformation of Solids, 42
   2.3.1 Elastic-ideally-plastic solids, 42
   2.3.2 Experimental observations of elastic-plastic behavior, 53
   2.4 Wave-body interactions, 56
   2.4.1 Preliminaries, 57
   2.4.2 Planar impact of similar and dissimilar bodies, 60
   2.4.3 Shock wave interaction with material boundaries, 61
   2.4.4 Wave-wave interactions, 65
   2.4.5 Detonation wave and interaction with a solid surface 66
Chapter 3 SHOCK COMPRESSION TECHNOLOGY
   3.1 Gun Techniques, 80
   3.1.1 Single stage gun, 80
   3.1.2 Conventional two stage light gas gun, 80
   3.1.3 Velocity measurement of projectile, 83
   3.1.4 Magnetoflyer method, 83
   3.1.5 CW x-ray velocity meter, 84
   3.1.6 Measurement of interior projectile motion, 86
   3.1.7 Recovery experiments, 87
   3.2 Explosive Techniques, 89
   3.2.1 Plane shock wave generation and recovery fixture、 89
   3.2.2 Numerical simulaation of shock compression in the recovery capsule, 91
   3.2.3 Cylindrical recovery fixture, 94
   3.3 In-situ Measurements, 95
   3.3.1 Manganin pressure gauge, 95
   3.3.2 Particle velocity gauge, 99
   3.3.3 Observations of multiple shock reverberations by using a manganin pressure gauge and particle velocity gauge, 100
   3.3.4 Shock temperature measurement, 106
   3.3.5 Copper-Constantan thermocouple as a temperature and pressure gauge, 111
Chapter 4 THERMOMECHANICS OF POWDER COMPACTION AND MASS MIXING
   4.1 A One Dimensional Particulate Model, 117
   4.2 Continuum Models, 123
   4.2.1 Hydrodynamic models, 124
   4.2.2 Continuum plasticity theory, 141
   4.2.3 Application, 148
   4.3 Particle Bonding and Heterogeneous Processes, 154
   4.4 Mass Mixing, 160
Chapter 5 THERMOCHEMISTRY OF HETEROGENEOUS MIXTURES
   5.1 Thermodynamic Functions of Heterogeneous Mixtures, 172
   5.2 Analytical Equations of State, 187
   5.3 Hugoniots of Inert Mixtures, 191
   5.3.1 Thermodynamically equilibrium models, 191
   5.3.2 Mechanical models, 197
   5.4 First-Order Phase Transitions, 199
   5.5 Chemical Equilibria, 206
   5.6 Reaction Kinetics, 212
   5.6.1 Rate equations, 212
   5.6.2 Nucleation, 214
   5.6.3 Growth, 216
   5.6.4 Pressure effects, 217
   5.7 Shock-Induced Reactions in Powder Mixtures, 218
Chapter 6 HYDRODYNAMICAL CALCULATIONS
   6.1 Conservation Equations of Continuum Flow, 227
   6.1.1 Mass conservation, 228
   6.1.2 Conservation of linear momentum, 230
   6.1.3 Enegy conservation, 231
   6.2 Constitutive Modeling of Inorganic Shock Chemistry, 234
   6.2.1 VIR model, 235
   6.2.2 Pore collapse, 239
   6.2.3 Chemical kinetics, 239
   6.2.4 Computational constitutive reactions, 240
   6.3 Applications of the VIR Model, 245
   6.3.1 Shock wave profiles in Ni/Al powder mixtures, 245
   6.3.2 Compaction of diamond with Si and graphite, 250
   6.4 Continuum Mixture Theory and the VIR Model, 257
   6.4.1 Continuum mixture theory, 257
   6.4.2 Derivation of the VIR model using the CMT, 263
   6.4.3 A model of heterogeneous flow, 269
Chapter 7 SHOCK CONDITIONING AND PROCESSING OF CERAMICS
   7.1 Shock Conditioning of Powder of Inorganic Materials, 277
   7.1.1 Brief review of shock conditioning studies, 277
   7.1.2 Aluminum oxide powder, 277
   7.2 Shock Synthesis of Inorganic Materials, 281
   7.2.1 Shock synthesis studies, 281
   7.2.2 High dense forms of carbon, 281
   7.2.3 High dense forms of boron nitride, 285
   7.2.4 Shock treatment of boron nitride powders, 287
   7.3 Shock Consolidation of Ceramic Powders, 301
   7.3.1 Why non-oxide ceramics?, 301
   7.3.2 Dynamic consolidation of SiC powders, 302
   7.3.3 Approach to the fabrication of crack free compacts, 304
   7.3.4 Shock consolidation of SiC powder utilizing post shock heating by exothermic reaction, 305
   7.4 Dynamic Compaction of Zinc Blende Type Boron Nitride and Diamond Powders, 310
   7.4.1 Back ground, 310
   7.4.2 Cubic boron nitride, 311
   7.4.3 Diamond, 318
   7.4.4 Diamond composites obtained by utilizzing exothermic chemical reaction, 326
   7.5 Very High Pressure Sintering of Shock Treated Powders, 332
   7.5.1 Silicon nitride, 334
   7.5.2 w-BN, 336
   7.6 Rapid Condensation of High Temperature Ultrasupersaturated Gas, 347
   7.6.1 Silicon nitride, 347
   7.6.2 Carbon, 352
Index, 361
Preface
Chapter 1 INTRODUCTION
   1.1 The Nature of Shock Waves, 3
7.

図書

図書
Henry Wise, Jacques Oudar
出版情報: San Diego ; Tokyo : Academic Press, c1990  ix, 260 p. ; 24 cm
所蔵情報: loading…
8.

図書

図書
John O'M. Bockris and Shahed U.M. Khan
出版情報: New York : Plenum, c1993  xxxii, 1014 p. ; 26 cm
所蔵情報: loading…
9.

図書

図書
R. Wiesendanger, H.-J. Güntherodt (eds.) ; with contributions by W. Baumeister ... [et al.]
出版情報: Berlin ; New York : Springer-Verlag, c1992  xiv, 308 p. ; ill. : 24 cm
シリーズ名: Springer series in surface sciences ; 28 . Scanning tunneling microscopy ; 2
所蔵情報: loading…
10.

図書

図書
edited by Hiroyuki Ohshima, Kunio Furusawa
出版情報: New York : M. Dekker, c1998  xiii, 628 p. ; 26 cm
シリーズ名: Surfactant science series ; v. 76
所蔵情報: loading…
目次情報: 続きを見る
Fundamentals: electrical double layer
Electrokinetics
Interaction of electrical double layers
Electrocapillarity and double layer structure
DLVO theory of colloid stability
Concentrated dispersion
Nonaqueous systems
Measurements: Electrophoresis
Electroosmosis and streaming potential
Sedimentation potential and flotation potential
Surface potential measurements of monolayer
Capillary electrophoresis - revisit to capillary
Dynamic electrophoresis
Surface conductivity of
Fundamentals: electrical double layer
Electrokinetics
Interaction of electrical double layers
11.

図書

図書
R.A. Street
出版情報: Cambridge ; New York : Cambridge University Press, 1991  xiv, 417 p. ; 22 cm
シリーズ名: Cambridge solid state science series
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Growth and structure of amorphous silicon / 2:
The electronic density of states / 3:
Defects and their electronic states / 4:
Substitutional doping / 5:
Defect reactions, thermal equilibrium and metastability / 6:
Electronic transport / 7:
Recombination of excess carriers / 8:
Contacts, interfaces and multilayers / 9:
Amorphous silicon device technology / 10:
Introduction / 1:
Growth and structure of amorphous silicon / 2:
The electronic density of states / 3:
12.

図書

図書
J.C. Rivière
出版情報: Oxford [England] : Clarendon Press , New York : Oxford University Press, 1990  xiii, 702 p. ; 25 cm
シリーズ名: Monographs on the physics and chemistry of materials
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Resume of Physical Principles / 2:
Instrumentation / 3:
Electron Excitation: AES and SAM / 4:
Electron Excitation: ELS, CEELS, and HREELS / 5:
Electron Excitation: SXAPS, AEAPS, and DAPS / 6:
Electron Excitation: IPES / 7:
Electron Excitation: CLS and EIL / 8:
Electron Excitation: ESD and ESDIAD / 9:
Photon Excitation: XPS and XAES / 10:
Photon Excitation: UPS and SRPS / 11:
Photon Excitation RAIRS and SRPS / 12:
Ion Excitation: AES and PAES / 13:
Ion Excitation: INS and MQS / 14:
Ion Excitation: IBSCA and GDOS / 15:
Ion Excitation: ISS / 16:
Ion Excitation: SSIMS / 17:
Ion Excitation: SNMS and GDMS / 18:
Neutral Excitation: FABMS / 19:
High Field Excitation: IETS / 20:
High Field Excitation: APFIM / 21:
High Field Excitation: STM and STS / 22:
Thermal Excitation: TDS / 23:
Introduction / 1:
Resume of Physical Principles / 2:
Instrumentation / 3:
13.

図書

図書
A.P. Sutton and R.W. Balluffi
出版情報: Oxford : Clarendon Press , New York : Oxford University, 1995  xxxii, 819 p. ; 25 cm
シリーズ名: Monographs on the physics and chemistry of materials ; 51
所蔵情報: loading…
目次情報: 続きを見る
List of symbols
Glossary
Interfacial Structure / Part I:
The geometry of interfaces / 1:
Introduction / 1.1:
All the group theory we need / 1.2:
The relationship between two crystals / 1.3:
Crystals and lattices / 1.3.1:
Vector and coordinate transformations / 1.3.2:
Descriptions of lattice rotations / 1.3.3:
Vector and matrix representations / 1.3.3.1:
The Frank-Rodrigues map / 1.3.3.2:
Fundamental zones / 1.3.3.3:
Quaternions / 1.3.3.4:
Geometrical specification of an interface / 1.4:
Macroscopic and microscopic geometrical degrees of freedom / 1.4.1:
Macroscopic geometrical degrees of freedom of an arbitrary interface / 1.4.2:
Grain boundaries in cubic materials / 1.4.3:
The median lattice and the mean boundary plane / 1.4.3.1:
Tilt and twist components / 1.4.3.2:
Symmetric and asymmetric tilt boundaries / 1.4.3.3:
Bicrystallography / 1.5:
Outline of crystallographic methodology / 1.5.1:
Introduction to Seitz symbols / 1.5.3:
Symmetry of dichromatic patterns / 1.5.4:
Symmetry of dichromatic complexes / 1.5.5:
Symmetry of ideal bicrystals / 1.5.6:
Symmetry of real bicrystals / 1.5.7:
Two examples / 1.6:
Lattice matched polar-non-polar epitaxial interfaces / 1.6.1:
Lattice matched metal-silicide silicon interfaces / 1.6.2:
Classification of isolated interfacial line defects / 1.7:
General formulation / 1.7.1:
Interfacial dislocations / 1.7.2:
DSC dislocations / 1.7.2.1:
Supplementary displacement dislocations / 1.7.2.2:
Relaxation displacement dislocations / 1.7.2.3:
Non-holosymmetric crystals and interfacial defects / 1.7.2.4:
Interfacial disclinations and dispirations / 1.7.2.5:
The morphologies of embedded crystals / 1.8:
Quasiperiodicity and incommensurate interfaces / 1.9:
References
Dislocation models for interfaces / 2:
Classification of interfacial dislocations / 2.1:
The Frank-Bilby equation / 2.3:
Comments on the Frank-Bilby equation and the dislocation content of an interface / 2.4:
Frank's formula / 2.5:
The O-lattice / 2.6:
The geometry of discrete dislocation arrays in interfaces / 2.7:
The general interface / 2.7.1:
Application to a grain boundary with arbitrary geometrical parameters / 2.7.2:
Grain boundaries containing one and two sets of dislocations / 2.7.3:
Epitaxial interfaces / 2.7.4:
Local dislocation interactions / 2.8:
Pt-NiO interfaces / 2.9:
A1-A1[subscript 3] Ni eutectic interfaces / 2.9.2:
Elastic fields of interfaces / 2.10:
Stress and distortion fields of grain boundaries in isotropic elasticity / 2.10.1:
Grain boundary energies / 2.10.3:
Stress fields of heterophase interfaces in isotropic elasticity / 2.10.4:
Dislocation arrays at interfaces in anisotropic elasticity / 2.10.5:
Isotropic elastic analysis of epitaxial interfaces / 2.10.6:
Stress fields of precipitates and non-planar interfaces / 2.10.7:
Degree of localization of the cores of interfacial dislocations / 2.11:
Lattice theories of dislocation arrays / 2.11.1:
Peierls-Nabarro model for an isolated edge dislocation / 2.11.2.1:
Peierls-Nabarro model for a symmetrical tilt boundary / 2.11.2.3:
The van der Merwe model for a symmetrical tilt boundary / 2.11.2.4:
Atomistic models using computer simulation and interatomic forces / 2.11.3:
Experimental observations of arrays of interfacial dislocations / 2.12:
Mainly room-temperature observations / 2.12.1:
High-temperature observations / 2.12.2:
Models of interatomic forces at interfaces / 3:
Density functional theory / 3.1:
The variational principle and the Kohn-Sham equations / 3.2.1:
The Harris-Foulkes energy functional / 3.2.2:
Valence and core electrons: pseudopotentials / 3.3:
The force theorem and Hellmann-Feynman forces / 3.4:
Cohesion and pair potentials in sp-bonded metals / 3.5:
Effective medium theory / 3.6:
The embedded atom method / 3.7:
Tight binding models / 3.8:
The diatomic molecule / 3.8.1:
Bands, bonds, and Green functions / 3.8.3:
Moments of the spectral density matrix / 3.8.4:
The tight binding bond (TBB) model / 3.8.5:
The second moment approximation / 3.8.6:
Beyond the second moment approximation / 3.8.7:
Temperature dependence of atomic interactions / 3.9:
Ionic bonding / 3.10:
Interatomic forces at heterophase interfaces / 3.11:
Models and experimental observations of atomic structure / 4:
Introduction: classification of interfaces / 4.1:
Diffuse interfaces / 4.2:
Heterophase interfaces in systems with a miscibility gap / 4.2.1:
Antiphase domain boundaries in systems with long-range order / 4.2.2:
Displacive transformation interfaces in systems near a mechanical instability / 4.2.3:
Sharp homophase interfaces: large-angle grain boundaries / 4.3:
Large-angle grain boundaries in metals / 4.3.1:
The significance of the rigid body displacement parallel to the boundary plane / 4.3.1.1:
The significance of the expansion normal to the boundary plane / 4.3.1.2:
Testing the analytic model / 4.3.1.3:
The significance of individual atomic relaxation / 4.3.1.4:
Discussion: singular, vicinal, and general interfaces / 4.3.1.5:
Methods of computer simulation / 4.3.1.6:
The polyhedral unit model / 4.3.1.7:
The structural unit model / 4.3.1.8:
Three-dimensional grain boundary structures / 4.3.1.9:
The influence of temperature / 4.3.1.10:
Grain boundaries in ionic crystals / 4.3.2:
Grain boundaries in covalent crystals / 4.3.3:
Sharp heterophase interfaces / 4.4:
Metal-metal interfaces / 4.4.1:
Metal-insulator interfaces / 4.4.3:
Metal-semiconductor interfaces / 4.4.4:
Interfacial Thermodynamics / Part II:
Thermodynamics of interfaces / 5:
The interface free energy / 5.1:
Additional interface thermodynamic quantities and relationships between them / 5.3:
Introduction of the interface stress and strain variables / 5.4:
Introduction of the geometric thermodynamic variables / 5.5:
Dependence of [sigma] on the interface inclination / 5.6:
The Wulff plot / 5.6.1:
Equilibrium shape (Wulff form) of embedded second-phase particle / 5.6.2:
Faceting of initially flat interface / 5.6.3:
The capillarity vector, [xi] / 5.6.4:
Capillary pressure associated with smoothly curved interface / 5.6.5:
Equilibrium lattice solubility at a smoothly curved heterophase interface / 5.6.6:
Equilibrium solubility at embedded second-phase particle / 5.6.7:
Equilibrium interface configurations at interface junction lines / 5.6.8:
Further thermodynamic relationships involving changes in interface inclination / 5.6.9:
Dependence of [sigma] on the crystal misorientation / 5.7:
Dependence of [sigma] on simultaneous variations of the interface inclination and crystal misorientation / 5.8:
Chemical potentials and diffusion potentials, M[subscript i], in non-uniform systems containing interfaces / 5.9:
Analysis of system at equilibrium; introduction of the diffusion potential, M[subscript i] / 5.9.1:
Incoherent interface / 5.9.2.1:
Coherent interface / 5.9.2.2:
Summary / 5.9.2.3:
Diffusional transport in non-equilibrium systems / 5.9.3:
Interface phases and phase transitions / 6:
Interface phase equilibria / 6.1:
Interface phase transitions / 6.3:
Non-congruent phase transitions / 6.3.1:
Faceting of initially flat interfaces / 6.3.1.1:
Faceting of embedded particle interfaces / 6.3.1.2:
Interface dissociation / 6.3.1.3:
Congruent phase transitions / 6.3.2:
Various transitions induced by changes in temperature, composition, or crystal misorientation / 6.3.2.1:
Interface wetting by a solid phase / 6.3.2.2:
Interface wetting by a liquid phase in alloy systems / 6.3.2.3:
Grain boundary melting in a one-component system / 6.3.2.4:
Segregation of solute atoms to interfaces / 7:
Overview of some of the main features of interface segregation in metals / 7.1:
Physical models for the interaction between solute atoms and interfaces / 7.3:
Elastic interaction models / 7.3.1:
Size accommodation model / 7.3.2.1:
Hydrostatic pressure (P[Delta]V) and elastic inhomogeneity models / 7.3.2.2:
Further elastic models / 7.3.2.3:
Atomistic models at 0 K / 7.3.3:
Electronic interaction models / 7.3.4:
Statistical mechanical models of segregation / 7.4:
Regular solution model / 7.4.1:
Mean field models / 7.4.3:
McLean isotherm / 7.4.3.1:
Fowler-Guggenheim isotherm / 7.4.3.2:
Multiple segregation site models / 7.4.3.3:
Beyond mean field models / 7.4.4:
Some additional models / 7.4.5:
Atomistic models at a finite temperature / 7.5:
Interface segregation in ionic solids / 7.6:
Interfacial Kinetics / Part III:
Diffusion at interfaces / 8:
Fast diffusion along interfaces of species which are substitutional in the crystal lattice / 8.1:
Slab model and regimes of diffusion behaviour / 8.2.1:
Mathematical analysis of the diffusant distribution in the type A, B, and C regimes / 8.2.2:
Experimental observations / 8.2.3:
Some major results for diffusion along interfaces / 8.2.3.1:
Effects of interface structure / 8.2.3.2:
Mechanisms for fast grain boundary diffusion / 8.2.4:
Equilibrium point defects in the grain boundary core / 8.2.4.1:
'Ring', vacancy, interstitialcy, and interstitial mechanisms / 8.2.4.2:
Models for grain boundary self-diffusivities via the different mechanisms / 8.2.5:
Vacancy mechanism / 8.2.5.1:
Interstitialcy mechanism / 8.2.5.2:
Interstitial mechanism / 8.2.5.3:
General characteristics of the models for boundary self-diffusion / 8.2.6:
On the question of the mechanism (or mechanisms) of fast grain boundary diffusion / 8.2.7:
Metals / 8.2.7.1:
Ionic materials / 8.2.7.2:
Covalent materials / 8.2.7.3:
Diffusion along interfaces of solute species which are interstitial in the crystal lattice / 8.3:
Slow diffusion across interfaces in fast ion conductors / 8.4:
Diffusion-induced grain boundary motion (DIGM) / 8.5:
Conservative motion of interfaces / 9:
'Conservative' versus 'non-conservative' motion of interfaces / 9.1:
Driving pressures for conservative motion / 9.1.2:
Basic mechanisms: correlated versus uncorrelated processes / 9.1.3:
Impediments to interface motion / 9.1.4:
Mechanisms and models for sharp interfaces / 9.2:
Glissile motion of interfacial dislocations / 9.2.1:
Small-angle grain boundaries / 9.2.1.1:
Large-angle grain boundaries / 9.2.1.2:
Heterophase interfaces / 9.2.1.3:
Glide and climb of interfacial dislocations / 9.2.2:
Shuffling motion of pure steps / 9.2.2.1:
Uncorrelated atom shuffling and/or diffusional transport / 9.2.4:
Uncorrelated atom shuffling / 9.2.4.1:
Uncorrelated diffusional transport / 9.2.4.2:
Solute atom drag / 9.2.5:
Experimental observations of non-glissile (thermally activated) grain boundary motion in metals / 9.2.6:
General large-angle grain boundaries / 9.2.6.1:
Singular (or vicinal) large-angle grain boundaries / 9.2.6.2:
Solute atom drag effects / 9.2.6.3:
Mechanisms and models for diffuse interfaces / 9.2.6.4:
Propagation of non-linear elastic wave (or, alternatively, coherency dislocations) / 9.3.1:
Self-diffusion / 9.3.2:
Equations of interface motion / 9.4:
Motion when v = v(n) / 9.4.1:
Motion of curved interfaces under capillary pressure / 9.4.2:
More general conservative motion / 9.4.3:
Impediments to interface motion due to pinning / 9.5:
Pinning effects due to embedded particles / 9.5.1:
Pinning at stationary particles at low temperatures / 9.5.1.1:
Thermally activated unpinning / 9.5.1.2:
Diffusive motion of pinned particles along with the interface / 9.5.1.3:
Pinning at free surface grooves / 9.5.2:
Non-conservative motion of interfaces: interfaces as sources/sinks for diffusional fluxes of atoms / 10:
General aspects of interfaces as sources/sinks / 10.1:
'Diffusion-controlled', 'interface-controlled', and 'mixed' kinetics / 10.2.1:
Dissipation of energy during source/sink action / 10.2.2:
The maximum energy available to drive the source/sink action / 10.2.3:
Grain boundaries as sources/sinks for fluxes of atoms / 10.3:
Models / 10.3.1:
Models for singular or vicinal grain boundaries / 10.3.2.2:
Models for general grain boundaries / 10.3.3.2:
Sharp heterophase interfaces as sources/sinks for fluxes of atoms / 10.3.3.3:
Singular or vicinal heterophase interfaces / 10.4.1:
General heterophase interfaces / 10.4.1.2:
Growth, coarsening, shape-equilibration, and shrinkage of small precipitate particles / 10.4.2:
Growth of phases in the form of flat parallel layers / 10.4.2.2:
Annealing of supersaturated vacancies / 10.4.2.3:
Diffusional accommodation of boundary sliding at second phase particles / 10.4.2.4:
Diffuse heterophase interfaces as sources/sinks for solute atoms / 10.5:
On the question of interface stability during source/sink action / 10.6:
Interfacial Properties / Part IV:
Electronic properties of interfaces / 11:
The Schottky model / 11.1:
The Bardeen model / 11.2.3:
Metal-induced gap states (MIGS) / 11.2.4:
The defect model / 11.2.5:
The development of the Schottky barrier as a function of metal coverage / 11.2.6:
Schottky barriers on Si / 11.2.7:
Discussion of models for Schottky barriers / 11.2.8:
Inhomogeneous Schottky barriers / 11.2.9:
Semiconductor heterojunctions / 11.3:
The band offsets / 11.3.1:
Grain boundaries in metals / 11.4:
Grain boundaries in semiconductors / 11.5:
Grain boundaries in high temperature superconductors / 11.6:
Mechanical properties of interfaces / 12:
Compatibility stresses in bicrystals and polycrystals / 12.1:
Compatibility stresses caused by applied elastic stress / 12.2.1:
Compatibility stresses caused by plastic straining / 12.2.2:
Compatibility stresses caused by heating/cooling / 12.2.3:
Elastic interactions between dislocations and interfaces / 12.3:
Interfaces as sinks, or traps, for lattice dislocations / 12.4:
Large-angle grain boundaries and heterophase boundaries / 12.4.1:
Singular boundaries / 12.4.3.1:
General boundaries / 12.4.3.2:
On the global equilibration of impinged lattice dislocations / 12.4.4:
Interfaces as sources of both interfacial and lattice dislocations / 12.5:
Interfaces as sources of interfacial dislocations / 12.5.1:
Interfaces as sources of lattice dislocations / 12.5.2:
Singular interfaces / 12.5.2.1:
General interfaces / 12.5.2.2:
Interfaces as barriers to the glide of lattice dislocations (slip) / 12.6:
Grain boundaries / 12.6.1:
Effects of interfaces on the plastic deformation of bicrystals and polycrystals at low temperatures / 12.6.2:
Homophase bicrystals and polycrystals / 12.7.1:
Heterophase bicrystals and polycrystals / 12.7.2:
Role of interfaces in the plastic deformation of bicrystals and polycrystals at high temperatures / 12.8:
Interface sliding / 12.8.1:
Sliding at an ideally planar grain boundary / 12.8.1.1:
Sliding at a non-planar grain boundary by means of elastic accommodation / 12.8.1.2:
Sliding at a non-planar grain boundary by means of diffusional accommodation / 12.8.1.3:
Sliding at a non-planar grain boundary by means of plastic flow accommodation in the lattice / 12.8.1.4:
Experimental observations of sliding at interfaces / 12.8.1.5:
Creep of polycrystals / 12.8.2:
Creep of homophase polycrystals controlled by diffusional transport / 12.8.2.1:
Creep of homophase polycrystals controlled by boundary sliding / 12.8.2.2:
Creep of homophase polycrystals controlled by movement of lattice dislocations / 12.8.2.3:
Further aspects of the creep of polycrystals / 12.8.2.4:
Fracture at homophase interfaces / 12.9:
Overview of the different types of fracture observed experimentally in homophase polycrystals / 12.9.1:
Propagation of cleavage cracks / 12.9.2:
Crack propagation in a single crystal / 12.9.2.1:
Crack propagation along a grain boundary / 12.9.2.2:
Crack propagation in homophase polycrystals / 12.9.2.3:
Growth and coalescence of cavities at grain boundaries at low temperatures by plastic flow due to dislocation glide / 12.9.3:
Growth and coalescence of cavities at grain boundaries at high temperatures by diffusion, power-law creep, and boundary sliding / 12.9.4:
Initiation of cavities / 12.9.4.1:
Growth of cavities / 12.9.4.2:
Coalescence of cavities and complete intergranular fracture / 12.9.4.3:
Fracture at heterophase interfaces / 12.10:
Index
List of symbols
Glossary
Interfacial Structure / Part I:
14.

図書

図書
Joachim Stöhr
出版情報: Berlin ; Tokyo : Springer-Verlag, c1992  xv, 403 p. ; 24 cm
シリーズ名: Springer series in surface sciences ; 25
所蔵情報: loading…
15.

図書

図書
Arthur W. Adamson
出版情報: New York : Wiley, c1990  xxi, 777 p. ; 25 cm
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼