close
1.

電子ブック

EB
Adrian Tanasa
出版情報: [Oxford] : Oxford University Press, [20--]  1 online resource
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Graphs, ribbon graphs, and polynomials / 2:
Graph theory: The Tutte polynomial / 2.1:
Ribbon graphs; the Bollobás-Riordan polynomial / 2.2:
Selected further reading / 2.3:
Quantum field theory (QFT)-built-in combinatorics / 3:
Definition of the scalar ¿4 model / 3.1:
Perturbative expansion-Feynman graphs and their combinatorial weights / 3.2:
Fourier transform-the momentum space / 3.3:
Parametric representation of Feynman integrands / 3.4:
The propagator and the heat kernel / 3.5:
A glimpse of perturbative renormalization / 3.6:
The power counting theorem / 3.6.1:
Locality / 3.6.2:
Multi-scale analysis / 3.6.3:
The subtraction operator for a general Feynman graph / 3.6.4:
Dimensional renormalization / 3.6.5:
Dyson-Schwinger equation / 3.7:
Combinatorial (or 0-dimensional) QFT and the intermediate field method / 3.8:
Combinatorial (or 0-dimensionai) QFT / 3.8.1:
The intermediate field method / 3.8.2:
Tree weights and renormalization in QFT / 3.9:
Preliminary results / 4.1:
Partition tree weights / 4.2:
Combinatorial QFT and the Jacobian Conjecture / 4.3:
The Jacobian Conjecture as combinatorial QFT model (the Abdesselam-Rivasseau model) / 5.1:
The intermediate field method for the Abdesselam-Rivasseau model / 5.2:
Fermionic QFT, Grassmann calculus, and combinatorics / 5.3:
Grassmann algebras and Grassmann calculus / 6.1:
The Grassmann algebra / 6.1.1:
Grassmann calculus; Pfaffians as Grassmann integrals / 6.1.2:
On Grassmann Gaussian measures / 6.2:
Lingström-Gessel-Viennot (LGV) formula for graphs with cycles / 6.3:
Stembridge's formulas for graphs with cycles / 6.4:
A generalization / 6.5:
Tutte polynomial and the parametric representation in QFT / 6.6:
Analytic combinatorics and QFT / 6.7:
The Mellin transform technique / 7.1:
The saddle point method / 7.2:
Algebraic combinatorics and QFT / 7.3:
Algebraic reminder; Combinatorial Hopf Algebras (CHAs) / 8.1:
The Connes-Kreimer Hopf algebra of Feynman graphs / 8.2:
The B+ operator, Hochschild cohomology of the Connes-Kreimer algebra / 8.3:
Multi-scale renormaiizarion, CHA description / 8.4:
QFT on the non-commutative Moyal space and combinatorics / 8.5:
Mathematical setting: Renormalizability / 9.1:
The Mehler kernel and the Grosse-Wulkenhaar model / 9.2:
Parametric representation of Grosse-Wulkenhaar-like models / 9.3:
The Mellin transform and the Grosse-Wulkenhaar model / 9.4:
Dimensional renormalization for the Grosse-Wulkenhaar model / 9.5:
A heat kernel-based renormalizable model / 9.6:
Parametric representation and the Bollobás-Riordan polynomial / 9.7:
Parametric representation / 9.7.1:
Relation between the multi-variate Bollobás-Riordan and the polynomials of the parametric representation / 9.7.2:
Combinatorial Connes-Kreimer Hopf algebra and its Hochschild cohomology / 9.8:
Combinatorial Connes-Kreimer Hopf algebra / 9.8.1:
Hochschild cohomology and the combinatorial DSE / 9.8.2:
Quantum gravity, group field theory (GFT), and combinatorics / 9.9:
Quantum gravity / 10.1:
Main candidates for a theory of quantum gravity: The holographic principle / 10.2:
GFT models: the Boulatov and the colourable models / 10.3:
The multi-orientable GFT model / 10.4:
Tadpoles and generalized tadpoles / 10.4.1:
Tadfaces / 10.4.2:
Saddle point method for GFT Feynman integrals / 10.5:
Algebraic combinatorics and tensorial GFT / 10.6:
The Ben Geloun-Rivasseau (BGR) model / 10.6.1:
Cones-Kreimer Hopf algebraic description of the combinatorics of the renormalizability of the BGR model / 10.6.2:
Hochschild cohomology and the combinatorial DSE for tensorial GFT / 10.6.3:
From random matrices to random tensors / 10.7:
The large N limit / 11.1:
The double-scaling limit / 11.2:
From matrices to tensors / 11.3:
Tensor graph polynomials-a generalization of the Bollobás-Riordan polynomial / 11.4:
Random tensor models-the U(N)D-invariant model / 11.5:
Definition of the model and its DSE / 12.1:
U(N)D-invariant bubble interactions / 12.1.1:
Bubble observables / 12.1.2:
The DSE for the model / 12.1.3:
Navigating the following sections of the chapter / 12.1.4:
The DSE beyond the large N limit / 12.2:
The LO / 12.2.1:
Moments and Cumulants / 12.2.2:
Gaussian and non-Gaussian contributions / 12.2.3:
The DSE at NLO / 12.2.4:
The order 1/ND in the quartic model / 12.2.5:
Double-scaling limit in the DSE / 12.3:
From the quartic model to a generic model / 12.3.2:
Random tensor models-the multi-orientable (MO) model / 12.4:
Definition of the model / 13.1:
The 1/N expansion and the large N limit / 13.2:
Feynman amplitudes; the 1/N expansion / 13.2.1:
The large N limit-the LO (melonic graphs) / 13.2.2:
The large TV limit-the NLO / 13.2.3:
Leading and NLO series / 13.2.4:
Combinatorial analysis of the general term of the large N expansion / 13.3:
Dipoles, chains, schemes, and all that / 13.3.1:
Generating functions, asymptotic enumeration, and dominant schemes / 13.3.2:
The two-point function / 13.4:
The four-point function / 13.4.2:
The 2r-point function / 13.4.3:
Random tensor models-the O(N)3-invariant model / 13.5:
General model and large N expansion / 14.1:
Quartic model, large N expansion / 14.2:
Large N expansion: LO / 14.2.1:
NLO / 14.2.2:
General quartic model: Critical behaviour / 14.3:
Explicit counting of melonic graphs / 14.3.1:
Diagrammatic equations, LO and NLO / 14.3.2:
Singularity analysis / 14.3.3:
Critical exponents / 14.3.4:
The Sachdev-Ye-Kitaev (SYK) holographic model / 14.4:
Definition of the SYK model: Its Feynman graphs / 15.1:
Diagrammatic proof of the large N melonic dominance / 15.2:
The coloured SYK model / 15.3:
Definition of the model, real, and complex versions / 15.3.1:
Diagrammatics of the real and complex model / 15.3.2:
More on the coloured SYK Feynman graphs / 15.3.3:
Non-Gaussian disorder average in the complex model / 15.3.4:
SYK-like tensor models / 15.4:
The Gurau-Witten model and its diagrammatics / 16.1:
Two-point functions: LO, NLO, and so on / 16.1.1:
Four-point function: LO, NLO, and so on / 16.1.2:
The O(N)3-invariant SYK-Uke tensor model / 16.2:
The MO SYK-like tensor model / 16.3:
Relating MO graphs to O(N)3-invariant graphs / 16.4:
Diagrammatic techniques for O(N)3-invariant graphs / 16.5:
Two-edge-cuts / 16.5.1:
Dipole removals / 16.5.2:
Dipole insertions / 16.5.3:
Chains of dipoles / 16.5.4:
Face length / 16.5.5:
The strategy / 16.5.6:
Degree 1 graphs of the O(N)3-invariant SYK-like tensor model / 16.6:
2PI, dipole-free graph of degree one / 16.6.1:
The graphs of degree 1 / 16.6.2:
Degree 3/2 graphs of the O(N)3-invariant SYK-like tensor model / 16.7:
Examples of tree weights / A:
Symmetric weights-complete partition / A.1:
One singleton partition-rooted graph / A.2:
Two singleton partition-multi-rooted graph / A.3:
Renormalization of the Grosse-Wulkenhaar model, one-loop examples / B:
The B+ operator in Moyal QFT, two-loop examples / C:
One-loop analysis / C.1:
Two-loop analysis / C.2:
Explicit examples of GFT tensor Feynman integral computations / D:
A non-colourable, MO tensor graph integral / D.1:
A colourable, multi-orientable tensor graph integral / D.2:
A non-colourable, non-multi-orientable tensor graph integral / D.3:
Coherent states of SU(2) / E:
Proof of the double-scaling limit of the U(N)D-invariant tensor model / F:
Proof of Theorem 15.3.2 / G:
Bijection with constellations / G.1:
Bijection in the bipartite case / G.1.1:
The non-bipartite case / G.1.2:
Enumeration of coloured graphs of fixed order / G.2:
Exact enumeration / G.2.1:
The connectivity condition and SYK graphs / G.2.2:
Preliminary conditions / G.3.1:
The case q > 3 / G.3.2:
The case q = 3 / G.3.3:
Proof of Theorem 16.1.1 / G.3.4:
Summary of results on the diagrammatics of the coloured SYK model and of the Gurau-Witten model / I:
Bibliography
Index
Introduction / 1:
Graphs, ribbon graphs, and polynomials / 2:
Graph theory: The Tutte polynomial / 2.1:
2.

電子ブック

EB
Jochen Rau
出版情報: [Oxford] : Oxford University Press, [20--]  1 online resource
所蔵情報: loading…
3.

電子ブック

EB
Thierry Giamarchi
出版情報: Oxford : Clarendon, 2004  1 online resource (xvi, 424 p.)
シリーズ名: The international series of monographs on physics ; 121
所蔵情報: loading…
4.

電子ブック

EB
R.E. Peierls
出版情報: Oxford : Clarendon, 1955  1 online resource (viii, 229 p.).
シリーズ名: Oxford classic texts in the physical sciences
所蔵情報: loading…
目次情報: 続きを見る
Crystal lattices, general theory / 1:
Crystal lattices, applications / 2:
Interaction of light with non-conducting crystals / 3:
Electrons in a perfect lattice / 4:
Cohesive forces in metals / 5:
Transport phenomena / 6:
Magnetic properties of metals / 7:
Ferromagnetism / 8:
Interaction of light with electrons in solids / 9:
Semi-conductors and luminescence / 10:
Superconductivity / 11:
Bibliography
References
List of symbols
Index
Crystal lattices, general theory / 1:
Crystal lattices, applications / 2:
Interaction of light with non-conducting crystals / 3:
5.

電子ブック

EB
A.M. Zagoskin
出版情報: Cambridge Core  1 online resource (xii, 332 p.)
所蔵情報: loading…
目次情報: 続きを見る
Quantum mechanics for quantum engineers / 1:
Superconducting quantum circuits / 2:
Quantum devices based on two-dimensional electron gas / 3:
Superconducting multiqubit devices / 4:
Noise and decoherence / 5:
Applications and speculations / 6:
Appendix
Index
Preface
Basic notions of quantum mechanics / 1.1:
Density matrix formalism / 1.2:
Evolution of density matrix in open systems / 1.3:
Quantum dynamics of a two-level system / 1.4:
Slow evolution of a quantum system / 1.5:
Josephson effect / 2.1:
Quantum effects in Josephson junctions. Phase and flux qubits / 2.2:
Circuit analysis for quantum coherent structures. More flux qubits / 2.3:
Charge qubits / 2.4:
Quantum inductance and quantum capacitance / 2.5:
Superconductivity effects in normal conductors / 2.6:
Quantum transport in two dimensions / 3.1:
2DEG quantum dots / 3.2:
Loops, interferometers and hybrid structures / 3.3:
Physical implementations of qubit coupling / 4.1:
Quantum optics: a crash course / 4.2:
Circuit quantum electrodynamics / 4.3:
Phase space formalism of quantum optics / 4.4:
Quantum noise / 5.1:
Noise sources in solid-state systems / 5.2:
Decoherence suppression / 5.3:
Measurements and decoherence / 5.5:
Quantum metamaterials / 6.1:
Quantum slide rules / 6.2:
Quantum engines, fridges and demons / 6.3:
Appendix: Quantum gates
References
Quantum mechanics for quantum engineers / 1:
Superconducting quantum circuits / 2:
Quantum devices based on two-dimensional electron gas / 3:
6.

電子ブック

EB
Claudio Chamon, Mark O. Goerbig, Roderich Moessner, and Leticia F. Cugliandolo
出版情報:   1 online resource
所蔵情報: loading…
7.

電子ブック

EB
John Polkinghorne
出版情報: Oxford : Oxford University Press, 2002  1 online resource (113 p.)
シリーズ名: Very short introductions ;
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of illustrations
Classical cracks / 1:
The light dawns / 2:
Darkening perplexities / 3:
Further developments / 4:
Togetherness / 5:
Lessons and meanings / 6:
Further reading
Glossary
Mathematical appendix
Index
Preface
List of illustrations
Classical cracks / 1:
8.

電子ブック

EB
edited by Chérif F. Matta and Russell J. Boyd
出版情報: Weinheim : [Chichester] : Wiley-VCH ; [John Wiley [distributor], 〓2007  1 online resource (xxxviii, 527 pages)
所蔵情報: loading…
目次情報: 続きを見る
Foreword
Preface
List of Abbreviations
Appearing in this Volume
List of Contributors
An Introduction to the Quantum Theory of Atoms in Molecules / ChA?rif F. Matta ; Russell J. Boyd1:
Introduction / 1.1:
The Topology of the Electron Density / 1.2:
The Topology of the Electron Density Dictates the Form of Atoms in Molecules / 1.3:
The Bond and Virial Paths, and the Molecular and Virial Graphs / 1.4:
The Atomic Partitioning of Molecular Properties / 1.5:
The Nodal Surface in the Laplacian as the Reactive Surface of a Molecule / 1.6:
Bond Properties / 1.7:
Atomic Properties / 1.8:
"Practical" Uses and Utility of QTAIM Bond and Atomic Properties / 1.9:
Steps of a Typical QTAIM Calculation / 1.10:
References
Advances in Theory / Part 1:
The Lagrangian Approach to Chemistry / Richard F. W. Bader2:
The Lagrangian Approach / 2.1:
The Action Principle in Quantum Mechanics / 2.3:
From Schr??dinger to Schwinger / 2.4:
Molecular Structure and Structural Stability / 2.5:
Reections and the Future / 2.6:
Atomic Response Properties / Todd A. Keith3:
Apparent Origin-dependence of Some Atomic Response Properties / 3.1:
Bond Contributions to "Null" Molecular Properties / 3.3:
Bond Contributions to Atomic Charges in Neutral Molecules / 3.4:
Atomic Contributions to Electric Dipole Moments of Neutral Molecules / 3.5:
Atomic Contributions to Electric Polarizabilities / 3.6:
Atomic Contributions to Vibrational Infrared Absorption Intensities / 3.7:
Atomic Nuclear Virial Energies / 3.8:
Atomic Contributions to Induced Electronic Magnetic Dipole Moments / 3.9:
Atomic Contributions to Magnetizabilities of Closed-Shell Molecules / 3.10:
QTAIM Analysis of Raman Scattering Intensities: Insights into the Relationship Between Molecular Structure and Electronic Charge Flow / Kathleen M. Gough ; Richard Dawes ; Jason R. Dwyer ; Tammy L. Welshman4:
Background to the Problem / 4.1:
Methodology / 4.3:
Speci.c Examples of the Use of AIM2000 Software to Analyze Raman Intensities / 4.4:
Patterns in I? That Are Discovered Through QTAIM / 4.5:
Patterns in qa/qr CH That Apply Across Di.erent Structures, Conformations, Molecular Types: What is Transferable? / 4.6:
What Can We Deduce From Simple Inspection of delta;alpha;/delta;r CH and delta;alpha;/delta;r CC From Gaussian? / 4.7:
Conclusion / 4.8:
Topological Atom-Atom Partitioning of Molecular Exchange Energy and its Multipolar Convergence / Michel Rafat ; Paul L. A. Popelier5:
Theoretical Background / 5.1:
Details of Calculations / 5.3:
Results and Discussion / 5.4:
The ELF Topological Analysis Contribution to Conceptual Chemistry and Phenomenological Models / Bernard Silvi ; Ronald J. Gillespie5.5:
Why ELF and What is ELF? / 6.1:
Concepts from the ELF Topology / 6.3:
VSEPR Electron Domains and the Volume of E / 6.4:
Foreword
Preface
List of Abbreviations
9.

電子ブック

EB
Heinz-Peter Breuer, Francesco Petruccione
出版情報: Oxford : Clarendon, 2007  1 online resource (xxi, 613 p.)
所蔵情報: loading…
目次情報: 続きを見る
Probability in Classical and Quantum Physics / I:
Classical probability theory and stochastic processes / 1:
The probability space / 1.1:
The [sigma]-algebra of events / 1.1.1:
Probability measures and Kolmogorov axioms / 1.1.2:
Conditional probabilities and independence / 1.1.3:
Random variables / 1.2:
Definition of random variables / 1.2.1:
Transformation of random variables / 1.2.2:
Expectation values and characteristic function / 1.2.3:
Stochastic processes / 1.3:
Formal definition of a stochastic process / 1.3.1:
The hierarchy of joint probability distributions / 1.3.2:
Markov processes / 1.4:
The Chapman-Kolmogorov equation / 1.4.1:
Differential Chapman-Kolmogorov equation / 1.4.2:
Deterministic processes and Liouville equation / 1.4.3:
Jump processes and the master equation / 1.4.4:
Diffusion processes and Fokker-Planck equation / 1.4.5:
Piecewise deterministic processes / 1.5:
The Liouville master equation / 1.5.1:
Waiting time distribution and sample paths / 1.5.2:
Path integral representation of PDPs / 1.5.3:
Stochastic calculus for PDPs / 1.5.4:
Levy processes / 1.6:
Translation invariant processes / 1.6.1:
The Levy-Khintchine formula / 1.6.2:
Stable Levy processes / 1.6.3:
References
Quantum probability / 2:
The statistical interpretation of quantum mechanics / 2.1:
Self-adjoint operators and the spectral theorem / 2.1.1:
Observables and random variables / 2.1.2:
Pure states and statistical mixtures / 2.1.3:
Joint probabilities in quantum mechanics / 2.1.4:
Composite quantum systems / 2.2:
Tensor product / 2.2.1:
Schmidt decomposition and entanglement / 2.2.2:
Quantum entropies / 2.3:
Von Neumann entropy / 2.3.1:
Relative entropy / 2.3.2:
Linear entropy / 2.3.3:
The theory of quantum measurement / 2.4:
Ideal quantum measurements / 2.4.1:
Operations and effects / 2.4.2:
Representation theorem for quantum operations / 2.4.3:
Quantum measurement and entropy / 2.4.4:
Approximate measurements / 2.4.5:
Indirect quantum measurements / 2.4.6:
Quantum non-demolition measurements / 2.4.7:
Density Matrix Theory / II:
Quantum master equations / 3:
Closed and open quantum systems / 3.1:
The Liouville-von Neumann equation / 3.1.1:
Heisenberg and interaction picture / 3.1.2:
Dynamics of open systems / 3.1.3:
Quantum Markov processes / 3.2:
Quantum dynamical semigroups / 3.2.1:
The Markovian quantum master equation / 3.2.2:
The adjoint quantum master equation / 3.2.3:
Multi-time correlation functions / 3.2.4:
Irreversibility and entropy production / 3.2.5:
Microscopic derivations / 3.3:
Weak-coupling limit / 3.3.1:
Relaxation to equilibrium / 3.3.2:
Singular-coupling limit / 3.3.3:
Low-density limit / 3.3.4:
The quantum optical master equation / 3.4:
Matter in quantized radiation fields / 3.4.1:
Decay of a two-level system / 3.4.2:
Decay into a squeezed field vacuum / 3.4.3:
More general reservoirs / 3.4.4:
Resonance fluorescence / 3.4.5:
The damped harmonic oscillator / 3.4.6:
Non-selective, continuous measurements / 3.5:
The quantum Zeno effect / 3.5.1:
Density matrix equation / 3.5.2:
Quantum Brownian motion / 3.6:
The Caldeira-Leggett model / 3.6.1:
High-temperature master equation / 3.6.2:
The exact Heisenberg equations of motion / 3.6.3:
The influence functional / 3.6.4:
Non-linear quantum master equations / 3.7:
Quantum Boltzmann equation / 3.7.1:
Mean field master equations / 3.7.2:
Mean field laser equations / 3.7.3:
Non-linear Schrodinger equation / 3.7.4:
Super-radiance / 3.7.5:
Decoherence / 4:
The decoherence function / 4.1:
An exactly solvable model / 4.2:
Time evolution of the total system / 4.2.1:
Decay of coherences and the decoherence factor / 4.2.2:
Coherent subspaces and system-size dependence / 4.2.3:
Markovian mechanisms of decoherence / 4.3:
The decoherence rate / 4.3.1:
Internal degrees of freedom / 4.3.2:
Scattering of particles / 4.3.4:
Vacuum decoherence / 4.4:
Thermal noise / 4.4.2:
Electromagnetic field states / 4.5:
Atoms interacting with a cavity field mode / 4.5.1:
Schrodinger cat states / 4.5.2:
Caldeira-Leggett model / 4.6:
General decoherence formula / 4.6.1:
Ohmic environments / 4.6.2:
Decoherence and quantum measurement / 4.7:
Dynamical selection of a pointer basis / 4.7.1:
Dynamical model for a quantum measurement / 4.7.2:
Stochastic Processes in Hilbert Space / III:
Probability distributions on Hilbert space / 5:
The state vector as a random variable in Hilbert space / 5.1:
A new type of quantum mechanical ensemble / 5.1.1:
Stern-Gerlach experiment / 5.1.2:
Probability density functionals on Hilbert space / 5.2:
Probability measures on Hilbert space / 5.2.1:
Distributions on projective Hilbert space / 5.2.2:
Expectation values / 5.2.3:
Ensembles of mixtures / 5.3:
Probability density functionals on state space / 5.3.1:
Description of selective quantum measurements / 5.3.2:
Stochastic dynamics in Hilbert space / 6:
Dynamical semigroups and PDPs in Hilbert space / 6.1:
Reduced system dynamics as a PDP / 6.1.1:
The Hilbert space path integral / 6.1.2:
Diffusion approximation / 6.1.3:
Stochastic representation of continuous measurements / 6.1.4:
Stochastic time evolution of [epsilon subscript P]-ensembles / 6.2.1:
Short-time behaviour of the propagator / 6.2.2:
Direct photodetection / 6.3:
Derivation of the PDP / 6.3.1:
Path integral solution / 6.3.2:
Homodyne photodetection / 6.4:
Derivation of the PDP for homodyne detection / 6.4.1:
Stochastic Schrodinger equation / 6.4.2:
Heterodyne photodetection / 6.5:
Stochastic collapse models / 6.5.1:
Stochastic density matrix equations / 6.6:
Photodetection on a field mode / 6.7:
The photocounting formula / 6.7.1:
QND measurement of a field mode / 6.7.2:
The stochastic simulation method / 7:
Numerical simulation algorithms for PDPs / 7.1:
Estimation of expectation values / 7.1.1:
Generation of realizations of the process / 7.1.2:
Determination of the waiting time / 7.1.3:
Selection of the jumps / 7.1.4:
Algorithms for stochastic Schrodinger equations / 7.2:
General remarks on convergence / 7.2.1:
The Euler scheme / 7.2.2:
The Heun scheme / 7.2.3:
The fourth-order Runge-Kutta scheme / 7.2.4:
A second-order weak scheme / 7.2.5:
Examples / 7.3:
The driven two-level system / 7.3.1:
A case study on numerical performance / 7.4:
Numerical efficiency and scaling laws / 7.4.1:
The damped driven Morse oscillator / 7.4.2:
Applications to quantum optical systems / 8:
Continuous measurements in QED / 8.1:
Constructing the microscopic Hamiltonian / 8.1.1:
Determination of the QED operation / 8.1.2:
Stochastic dynamics of multipole radiation / 8.1.3:
Representation of incomplete measurements / 8.1.4:
Dark state resonances / 8.2:
Waiting time distribution and trapping state / 8.2.1:
Measurement schemes and stochastic evolution / 8.2.2:
Laser cooling and Levy processes / 8.3:
Dynamics of the atomic wave function / 8.3.1:
Coherent population trapping / 8.3.2:
Waiting times and momentum distributions / 8.3.3:
Strong field interaction and the Floquet picture / 8.4:
Floquet theory / 8.4.1:
Stochastic dynamics in the Floquet picture / 8.4.2:
Spectral detection and the dressed atom / 8.4.3:
Non-Markovian Quantum Processes / IV:
Projection operator techniques / 9:
The Nakajima-Zwanzig projection operator technique / 9.1:
Projection operators / 9.1.1:
The Nakajima-Zwanzig equation / 9.1.2:
The time-convolutionless projection operator method / 9.2:
The time-local master equation / 9.2.1:
Perturbation expansion of the TCL generator / 9.2.2:
The cumulant expansion / 9.2.3:
Perturbation expansion of the inhomogeneity / 9.2.4:
Error analysis / 9.2.5:
Stochastic unravelling in the doubled Hilbert space / 9.3:
Non-Markovian dynamics in physical systems / 10:
Spontaneous decay of a two-level system / 10.1:
Exact master equation and TCL generator / 10.1.1:
Jaynes-Cummings model on resonance / 10.1.2:
Jaynes-Cummings model with detuning / 10.1.3:
Spontaneous decay into a photonic band gap / 10.1.4:
The model and frequency renormalization / 10.2:
Factorizing initial conditions / 10.2.2:
The stationary state / 10.2.3:
Non-factorizing initial conditions / 10.2.4:
Disregarding the inhomogeneity / 10.2.5:
The spin-boson system / 10.3:
Microscopic model / 10.3.1:
Relaxation of an initially factorizing state / 10.3.2:
Equilibrium correlation functions / 10.3.3:
Transition from coherent to incoherent motion / 10.3.4:
Relativistic Quantum Processes / V:
Measurements in relativistic quantum mechanics / 11:
The Schwinger-Tomonaga equation / 11.1:
States as functionals of spacelike hypersurfaces / 11.1.1:
Foliations of space-time / 11.1.2:
The measurement of local observables / 11.2:
The operation for a local measurement / 11.2.1:
Relativistic state reduction / 11.2.2:
Multivalued space-time amplitudes / 11.2.3:
The consistent hierarchy of joint probabilities / 11.2.4:
EPR correlations / 11.2.5:
Continuous measurements / 11.2.6:
Non-local measurements and causality / 11.3:
Entangled quantum probes / 11.3.1:
Non-local measurement by EPR probes / 11.3.2:
Quantum state verification / 11.3.3:
Non-local operations and the causality principle / 11.3.4:
Restrictions on the measurability of operators / 11.3.5:
QND verification of non-local states / 11.3.6:
Preparation of non-local states / 11.3.7:
Exchange measurements / 11.3.8:
Quantum teleportation / 11.4:
Coherent transfer of quantum states / 11.4.1:
Teleportation and Bell-state measurement / 11.4.2:
Experimental realization / 11.4.3:
Open quantum electrodynamics / 12:
Density matrix theory for QED / 12.1:
Field equations and correlation functions / 12.1.1:
The reduced density matrix / 12.1.2:
The influence functional of QED / 12.2:
Elimination of the radiation degrees of freedom / 12.2.1:
Vacuum-to-vacuum amplitude / 12.2.2:
Second-order equation of motion / 12.2.3:
Decoherence by emission of bremsstrahlung / 12.3:
Introducing the decoherence functional / 12.3.1:
Physical interpretation / 12.3.2:
Evaluation of the decoherence functional / 12.3.3:
Path integral approach / 12.3.4:
Decoherence of many-particle states / 12.4:
Index
Probability in Classical and Quantum Physics / I:
Classical probability theory and stochastic processes / 1:
The probability space / 1.1:
10.

電子ブック

EB
Daniel I. Khomskii
出版情報:   1 online resource (xiv, 301 p.)
所蔵情報: loading…
目次情報: 続きを見る
Some basic notions of the classical and quantum statistical physics / 1:
General theory of phase transitions / 2:
Bose- and Fermi-statistics / 3:
Phonons in crystals / 4:
General Bose-systems: Bose-condensation / 5:
Magnetism / 6:
Electrons in metals / 7:
Interacting electrons: Green functions and Feynman diagrams (methods of the field theory in many-particle physics) / 8:
Electrons with Coulomb interaction / 9:
Fermi-liquid theory and its possible generalizations / 10:
Instabilities and phase transitions in electronic systems / 11:
Strongly correlated electrons / 12:
Magnetic impurities in metals, Kondo effect, heavy fermions and mixed valence / 13:
References
Index
Some basic notions of the classical and quantum statistical physics / 1:
General theory of phase transitions / 2:
Bose- and Fermi-statistics / 3:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼