close
1.

図書

図書
symposium editors: S. Slomkowski, S. Pielka
出版情報: Weinheim, Germany : WILEY-VCH, c2007  x, 190 p. ; 24cm
シリーズ名: Macromolecular symposia ; 253
所蔵情報: loading…
2.

図書

図書
edited by C.S.S.R. Kumar, J. Hormes, C. Leuschner
出版情報: Weinheim : Wiley-VCH, 2005  xxii, 420 p ; 25 cm
所蔵情報: loading…
3.

図書

図書
edited by Challa S. S. R. Kumar
出版情報: Weinheim : Wiley-VCH, c2006  xix, 408 p. ; 25 cm
シリーズ名: Nanotechnologies for the life sciences ; v. 2
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
DNA-based Nanomaterials / I:
Self-assembled DNA Nanotubes / Thom LaBean ; Sung Ha Park1:
Introduction / 1.1:
DNA Nanotubes Self-assembled from DX Tiles / 1.2:
3DAE-E DX Tile Nanotubes / 1.3:
DAE-O DX Tile Nanotubes / 1.4:
TX Tile Nanotubes / 1.5:
4 x 4 Tile Nanotubes / 1.6:
6HB Tile Nanotubes / 1.7:
Applications / 1.8:
Summary and Perspectives / 1.9:
References
Nucleic Acid Nanoparticles / Guy Zuber ; Benedicte Pons ; Andrew W. Fraley2:
The Chemical and Physical Properties of Therapeutic DNA / 2.1:
Preparation of Nucleic Acid Nanoparticles: Synthesis and Characterization / 2.3:
Rationale / 2.3.1:
Synthesis, Characterization and Optimization of Surfactants / 2.3.2:
Organization of the Surfactant-DNA Complexes / 2.3.3:
Quantification of the Stability of Surfactant-DNA Complexes / 2.3.4:
DNA Functionalization for Cell Recognition and Internalization / 2.4:
Strategies for Functionalization / 2.4.1:
Intercalation / 2.4.2:
Triple Helix Formation with Oligodeoxyribonucleotides / 2.4.3:
Peptide Nucleic Acids (PNAs) / 2.4.4:
Interactions of DNA with Fusion Proteins / 2.4.5:
Agents that Bind to the Minor Groove / 2.4.6:
DNA Nanoparticles: Sophistication for Cell Recognition and Internalization / 2.5:
Preparation of DNA Nanoparticles Enveloped with a Protective Coat and Cell Internalization Elements / 2.5.1:
Biomedical Application: Cell Targeting and Internalization Properties of Folate-PEG-coated Nanoparticles / 2.5.2:
Concluding Remarks / 2.6:
Lipoplexes / Sarah Weisman3:
DNA Lipoplexes / 3.1:
Composition / 3.2.1:
Nanostructure and Microstructure / 3.2.2:
Equilibrium Morphology / 3.2.2.1:
Nonequilibrium Morphology / 3.2.2.2:
Lipoplex Size / 3.2.2.3:
Lipofection Efficiency / 3.2.3:
In Vitro / 3.2.3.1:
In Vivo / 3.2.3.2:
ODN Lipoplexes / 3.3:
siRNA Lipoplexes / 3.4:
Acknowledgments
DNA-Chitosan Nanoparticles for Gene Therapy: Current Knowledge and Future Trends / Julio C. Fernandes ; Marcio Jose Tiera ; Francoise M. Winnik4:
Chitosan as a Carrier for Gene Therapy / 4.1:
Chitosan Chemistry / 4.2.1:
General Strategies for Chitosan Modification / 4.2.2:
Chitosan-DNA interactions: Transfection Efficacy of Unmodified Chitosan / 4.2.3:
Modified Chitosans: Strategies to Improve the Transfection Efficacy / 4.3:
The Effects of Charge Density/Solubility and Degree of Acetylation / 4.3.1:
Improving the Physicochemical Characteristics of the Nanoparticulate Systems: Solubility, Aggregation and RES Uptake / 4.3.2:
Targeting Mediated by Cell Surface Receptors / 4.3.3:
Hydrophobic Modification: Protecting the DNA and Improving the Internalization Process / 4.3.4:
Methods of Preparation of Chitosan Nanoparticles / 4.4:
Complex Coacervation / 4.4.1:
Crosslinking Methods / 4.4.2:
Chemical Crosslinking / 4.4.2.1:
Ionic Crosslinking or Ionic Gelation / 4.4.2.2:
Emulsion Crosslinking / 4.4.2.3:
Spray Drying / 4.4.2.4:
Other Methods / 4.4.2.5:
DNA Loading into Nano- and Microparticles of Chitosan / 4.5:
DNA Release and Release Kinetics / 4.6:
Preclinical Evidence of Chitosan-DNA Complex Efficacy / 4.7:
Potential Clinical Applications of Chitosan-DNA in Gene Therapy / 4.8:
Conclusion / 4.9:
Protein & Peptide-based Nanomaterials / II:
Plant Protein-based Nanoparticles / Anne-Marie Orecchioni ; Cecile Duclairoir ; Juan Manuel Irache ; Evelyne Nakache5:
Description of Plant Proteins / 5.1:
Pea Seed Proteins / 5.2.1:
Wheat Proteins / 5.2.2:
Preparation of Protein Nanoparticles / 5.3:
Preparation of Legumin and Vicilin Nanoparticles / 5.3.1:
Preparation of Gliadin Nanoparticles / 5.3.2:
Drug Encapsulation in Plant Protein Nanoparticles / 5.4:
RA Encapsulation in Gliadin Nanoparticles / 5.4.1:
VE Encapsulation in Gliadin Nanoparticles / 5.4.2:
Lipophilic, Hydrophilic or Amphiphilic Drug Encapsulation / 5.4.3:
Preparation of Ligand-Gliadin Nanoparticle Conjugates / 5.5:
Bioadhesive Properties of Gliadin Nanoparticles / 5.6:
Ex Vivo Studies with Gastrointestinal Mucosal Segments / 5.6.1:
In Vivo Studies with Laboratory Animals / 5.6.2:
Future Perspectives / 5.7:
Size Optimization / 5.7.1:
Immunization in Animals / 5.7.2:
Peptide Nanoparticles / Klaus Langer5.8:
Starting Materials for the Preparation of Nanoparticles / 6.1:
Preparation Methods / 6.3:
Nanoparticle Preparation by Emulsion Techniques / 6.3.1:
Emulsion Technique for the Preparation of Albumin-based Microspheres and Nanoparticles / 6.3.1.1:
Emulsion Technique for the Preparation of Gelatin-based Microspheres and Nanoparticles / 6.3.1.2:
Emulsion Technique for the Preparation of Casein-based Microspheres and Nanoparticles / 6.3.1.3:
Nanoparticle Preparation by Coacervation / 6.3.2:
Complex Coacervation Techniques for the Preparation of Nanoparticles / 6.3.2.1:
Simple Coacervation (Desolvation) Techniques for the Preparation of Nanoparticles / 6.3.2.2:
Basic Characterization Techniques for Peptide Nanoparticles / 6.4:
Drug Targeting with Nanoparticles / 6.5:
Passive Drug Targeting with Particle Systems / 6.5.1:
Active Drug Targeting with Particle Systems / 6.5.2:
Surface Modifications of Protein-based Nanoparticles / 6.5.3:
Surface Modification by Different Hydrophilic Compounds / 6.5.4:
Surface Modification by Polyethylene Glycol (PEG) Derivatives / 6.5.5:
Surface Modification by Drug-targeting Ligands / 6.5.6:
Different Surface Modification Strategies / 6.5.7:
Applications as Drug Carriers and for Diagnostic Purposes / 6.6:
Protein-based Nanoparticles in Gene Therapy / 6.6.1:
Parenteral Application Route / 6.6.2:
Preclinical Studies with Protein-based Particles / 6.6.2.1:
Clinical Studies with Protein-based Particles / 6.6.2.2:
Topical Application of Protein-based Particles / 6.6.3:
Peroral Application of Protein-based Particles / 6.6.4:
Immunological Reactions with Protein-based Microspheres / 6.7:
Albumin Nanoparticles / Socorro Espuelas6.8:
Serum Albumin / 7.1:
Preparation of Albumin Nanoparticles / 7.3:
"Conventional" Albumin Nanoparticles / 7.3.1:
Preparation of Albumin Nanoparticles by Desolvation or Coacervation / 7.3.1.1:
Preparation of Albumin Nanoparticles by Emulsification / 7.3.1.2:
Other Techniques to Prepare Albumin Nanoparticles / 7.3.1.3:
Surface-modified Albumin Nanoparticles / 7.3.2:
Drug Encapsulation in Albumin Nanoparticles / 7.3.3:
Biodistribution of Albumin Nanoparticles / 7.4:
Pharmaceutical Applications / 7.5:
Albumin Nanoparticles for Diagnostic Purposes / 7.5.1:
Radiopharmaceuticals / 7.5.1.1:
Echo-contrast Agents / 7.5.1.2:
Albumin Nanoparticles as Carriers for Oligonucleotides and DNA / 7.5.2:
Albumin Nanoparticles in the Treatment of Cancer / 7.5.3:
Fluorouracil and Methotrexate Delivery / 7.5.3.1:
Paclitaxel Delivery / 7.5.3.2:
Albumin Nanoparticles in Suicide Gene Therapy / 7.5.3.3:
Magnetic Albumin Nanoparticles / 7.5.4:
Albumin Nanoparticles for Ocular Drug Delivery / 7.5.5:
Topical Drug Delivery / 7.5.5.1:
Intravitreal Drug Delivery / 7.5.5.2:
Nanoscale Patterning of S-Layer Proteins as a Natural Self-assembly System / Margit Sara ; D. Pum ; C. Huber ; N. Ilk ; M. Pleschberger ; U. B. Sleytr7.6:
General Properties of S-Layers / 8.1:
Structure, Isolation, Self-Assembly and Recrystallization / 8.2.1:
Chemistry and Molecular Biology / 8.2.2:
S-Layers as Carbohydrate-binding Proteins / 8.2.3:
Nanoscale Patterning of S-Layer Proteins / 8.3:
Properties of S-Layer Proteins Relevant for Nanoscale Patterning / 8.3.1:
Immobilization of Functionalities by Chemical Methods / 8.3.2:
Patterning by Genetic Approaches / 8.3.3:
The S-Layer Proteins SbsA, SbsB and SbsC / 8.3.3.1:
S-Layer Fusion Proteins / 8.3.3.2:
Spatial Control over S-Layer Reassembly / 8.4:
S-Layers as Templates for the Formation of Regularly Arranged Nanoparticles / 8.5:
Binding of Molecules and Nanoparticles to Functional Domains / 8.5.1:
In Situ Synthesis of Nanoparticles on S-Layers / 8.5.2:
Conclusions and Outlook / 8.6:
Pharmaceutically Important Nanomaterials / III:
Methods of Preparation of Drug Nanoparticles / Jonghwi Lee ; Gio-Bin Lim ; Hesson Chung9:
Structures of Drug Nanoparticles / 9.1:
Thermodynamic Approaches / 9.3:
Lipid-based Pharmaceutical Nanoparticles / 9.3.1:
What is a Lipid? / 9.3.2:
Liquid Crystalline Phases of Hydrated Lipids with Planar and Curved Interfaces / 9.3.3:
Oil-in-water-type Lipid Emulsion / 9.3.4:
Liposomes / 9.3.5:
Cubosomes and Hexosomes / 9.3.6:
Other Lipid-based Pharmaceutical Nanoparticles / 9.3.7:
Mechanical Approaches / 9.4:
Types of Processing / 9.4.1:
Characteristics of Wet Comminution / 9.4.2:
Drying of Liquid Nanodispersions / 9.4.3:
SCF Approaches / 9.5:
SCF Characteristics / 9.5.1:
Classification of SCF Particle Formation Processes / 9.5.2:
RESS / 9.5.3:
SAS / 9.5.4:
SEDS / 9.5.5:
Electrostatic Approaches / 9.6:
Electrical Potential and Interfaces / 9.6.1:
Electrospraying / 9.6.2:
Production of Biofunctionalized Solid Lipid Nanoparticles for Site-specific Drug Delivery / Rainer H. Muller ; Eliana B. Souto ; Torsten Goppert ; Sven Gohla10:
Concept of Differential Adsorption / 10.1:
Production of SLN / 10.3:
Functionalization by Surface Modification / 10.4:
Conclusions / 10.5:
Biocompatible Nanoparticulate Systems for Tumor Diagnosis and Therapy / Mostafa Sadoqi ; Sunil Kumar ; Cesar Lau-Cam ; Vishal Saxena11:
Nanoscale Particulate Systems and their Building Blocks/Components / 11.1:
Dendrimers / 11.2.1:
Buckyballs and Buckytubes / 11.2.2:
Quantum Dots / 11.2.3:
Polymeric Micelles / 11.2.4:
Biodegradable Nanoparticles / 11.2.5:
Preparation of Nanoparticles / 11.3.1:
Biodegradable Optical Nanoparticles / 11.4:
Optical Nanoparticles as a Potential Technology for Tumor Diagnosis / 11.4.1:
Optical Nanoparticles as a Potential Technology for Tumor Treatment / 11.4.2:
Optical Imaging and PDT / 11.5:
Optical Imaging / 11.5.1:
Fluorescence-based Optical Imaging / 11.5.1.1:
NIR Fluorescence Imaging / 11.5.1.2:
NIR Dyes for Fluorescence Imaging / 11.5.1.3:
PDT / 11.5.2:
Basis of PDT / 11.5.2.1:
Photosensitizers for PDT / 11.5.2.2:
ICG: An Ideal Photoactive Agent for Tumor Diagnosis and Treatment / 11.5.3:
Clinical Uses of ICG / 11.5.3.1:
Structure and Physicochemical Properties of ICG / 11.5.3.2:
Binding Properties of ICG / 11.5.3.3:
Metabolism, Excretion and Pharmacokinetics of ICG / 11.5.3.4:
Toxicity of ICG / 11.5.3.5:
Tumor Imaging with ICG / 11.5.3.6:
PDT with ICG / 11.5.3.7:
Limitations of ICG for Tumor Diagnosis and Treatment / 11.5.3.8:
Recent Approaches for Improving the Blood Circulation Time and Uptake of ICG by Tumors / 11.5.3.9:
Recent Approaches for ICG Stabilization In Vitro / 11.5.3.10:
PLGA-based Nanoparticulate Delivery System for ICG / 11.6:
Rationale of Using a PLGA-based Nanoparticulate Delivery System for ICG / 11.6.1:
In Vivo Pharmacokinetics of ICG Solutions and Nanoparticles / 11.6.2:
Conclusions and Future Work / 11.7:
Nanoparticles for Crossing Biological Membranes / R. Pawar ; A. Avramoff ; A. J. Domb12:
Cell Membranes / 12.1:
Functions of Biological Membranes / 12.2.1:
Kinetic and Thermodynamic Aspects of Biological Membranes / 12.2.2:
Problems of Drugs Crossing through Biological Membranes / 12.3:
Through the Skin / 12.3.1:
Mechanical Irritation of Skin / 12.3.1.1:
Low-voltage Electroporation of the Skin / 12.3.1.2:
Through the BBB / 12.3.2:
Small Drugs / 12.3.2.1:
Limitations of Small Drugs / 12.3.2.1.1:
Peptide Drug Delivery via SynB Vectors / 12.3.2.2:
GI Barrier / 12.3.3:
Intestinal Translocation and Disease / 12.3.3.1:
Nanoparticulate Drug Delivery / 12.4:
Skin
Skin as Semipermeable Nanoporous Barrier / 12.4.1.1:
Hydrophilic Pathway through the Skin Barrier / 12.4.1.2:
Solid-Lipid Nanoparticles (SLN) Skin Delivery / 12.4.2:
Chemical Stability of SLN / 12.4.2.1:
In Vitro Occlusion of SLN / 12.4.2.2:
In Vivo SLN: Occlusion, Elasticity and Wrinkles / 12.4.2.3:
Active Compound Penetration into the Skin / 12.4.2.4:
Controlled Release of Cosmetic Compounds / 12.4.2.5:
Novel UV Sunscreen System Using SLN / 12.4.2.6:
Polymer-based Nanoparticulate Delivery to the Skin / 12.4.3:
Subcutaneous Nanoparticulate Antiepileptic Drug Delivery / 12.4.4:
Nanoparticulate Anticancer Drug Delivery / 12.4.5:
Paclitaxel / 12.4.5.1:
Doxorubicin / 12.4.5.2:
5-Fluorouracil (5-FU) / 12.4.5.3:
Antineoplastic Agents / 12.4.5.4:
Gene Delivery / 12.4.5.5:
Breast Cancer / 12.4.5.6:
Nanofibers Composed of Nonbiodegradable Polymer / 12.4.6:
Electrostatic Spinning / 12.4.6.1:
Scanning Electron Microscopy / 12.4.6.2:
Differential Scanning Calorimetry (DSC) / 12.4.6.3:
Nanoparticulate Delivery to the BBB / 12.5:
Peptide Delivery to the BBB / 12.5.1:
Peptide Conjugation through a Disulfide Bond / 12.5.1.1:
Biodegradable Polymer Based Nanoparticulate Delivery to BBB / 12.5.2:
Nanoparticulate Gene Delivery to the BBB / 12.5.3:
Mechanism of Nanoparticulate Drug Delivery to the BBB / 12.5.4:
Nanoparticulate Thiamine-coated Delivery to the BBB / 12.5.5:
Nanoparticle Optics and Living Cell Imaging / 12.5.6:
Oral Nanoparticulate Delivery / 12.6:
Lectin-conjugated Nanoparticulate Oral Delivery / 12.6.1:
Oral Peptide Nanoparticulate-based Delivery / 12.6.2:
Polymer-Based Oral Peptide Nanoparticulate Delivery / 12.6.3:
Polyacrylamide Nanospheres / 12.6.3.1:
Poly(alkyl cyanoacrylate) PACA Nanocapsules / 12.6.3.2:
Derivatized Amino Acid Microspheres / 12.6.3.3:
Lymphatic Oral Nanoparticulate Delivery / 12.6.4:
Oral Nanosuspension Delivery / 12.6.5:
Mucoadhesion of Nanoparticles after Oral Administration / 12.6.6:
Protein Nanoparticulate Oral Delivery / 12.6.7:
Index
Preface
List of Contributors
DNA-based Nanomaterials / I:
4.

図書

図書
edited by Challa S.S.R. Kumar
出版情報: Weinheim : Wiley-VCH, c2009  xxi, 507 p. ; 25 cm
シリーズ名: Nanomaterials for the life sciences / edited by Challa S.S.R. Kumar ; v. 3
所蔵情報: loading…
目次情報: 続きを見る
Gold Nanoshells in Biomedical Applications
Anisotropic Bimetallic/Oxide Nanomaterials for Life Sciences
Au-Pt Nanomaterials and Enzymatic Catalysts for Biofuel Cells Application
Spherical & Anisotropic Metallic Nanomaterials-based NSET Biosensors
Mixed Metal Oxide Nanomaterials for Environmental Remediation
Building Nonmagnetic Metal@Oxide and Bimetallic Nanostructures-Potential applications in Life Sciences
Biofunctionalization of Spherical and Anisotropic Bimetallic Nanomaterials
Multielemental Nanorods(nanowires): Synthesis, Characterization and Analytical Applications
Spherical and Anisotropic Non-Magnetic Core-Shell Nanomaterials: Synthesis and Characterization
Spherical and Anisotropic Silica Shell Nanomaterials
Spherical and Anisotropic Core-shell and Alloy Nanomaterials-Characterization using X-ray Absorption spectroscopy
Anisotropic Hexagonal Boron Nitride Nanomaterials: Synthesis and Applications
Spherical and Anisotropic Boron Nitride Nanomaterials-Synthesis and Characterization
Gold Nanoshells in Biomedical Applications
Anisotropic Bimetallic/Oxide Nanomaterials for Life Sciences
Au-Pt Nanomaterials and Enzymatic Catalysts for Biofuel Cells Application
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼