close
1.

図書

図書
edited by Stanley M. Roberts, John Whittall
出版情報: Chichester : J. Wiley & Sons, c2007  xxii, 312 p. ; 24 cm
シリーズ名: Catalysts for fine chemical synthesis ; v. 5
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface to Volume 5
Abbreviations
Industrial Catalysts for Regio- or Stereo-Selective Oxidations and Reductions A Review of Key Technologies and Targets / John Whittall1:
Introduction / 1.1:
Reduction of Carbon-Carbon Double Bonds / 1.2:
Privileged structures: [alpha]-amino acids and itaconic acids / 1.2.1:
[beta]-Amino acids / 1.2.2:
[alpha]-Alkyl substituted acids / 1.2.3:
[alpha]-Alkoxy substituted acids / 1.2.4:
Unsaturated nitriles / 1.2.5:
Alkenes and allyl alcohols / 1.2.6:
[alpha],[beta]-Unsaturated aldehyde reduction / 1.2.7:
Ketone and Imine Reduction / 1.3:
Catalytic hydrogenation of ketones and imines / 1.3.1:
Asymmetric transfer hydrogenation (ATH) catalysts / 1.3.2:
Modified borane reagents / 1.3.3:
Biocatalysts (alcohol dehydrogenases and ketoreductases) / 1.3.4:
Oxidation / 1.4:
Sharpless chiral epoxidation of allyl alcohols / 1.4.1:
Dioxirane catalyzed epoxidation / 1.4.2:
Amines and iminium salts / 1.4.3:
Phase transfer catalysts / 1.4.4:
The Julia-Colonna method (polyleucine oxidation) / 1.4.5:
Organocatalytic [alpha]-hydroxylation of ketones / 1.4.6:
Baeyer-Villiger oxidation / 1.4.7:
Chiral sulfoxides / 1.4.8:
References
Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids / 2:
(S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl as a ligand for rhodium-catalyzed asymmetric hydrogenation / Ildiko Gergely ; Csaba Hegedus ; Jozsef Bakos2.1:
Synthesis of (S)-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-Octahydro-1,1[prime]-bi-2-naphthol / 2.1.1:
Synthesis of (S)-2,2[prime]-Bis{[di(4-methoxyphenyl)phosphinyl]oxy}-5,5[prime],6,6[prime],7,7[prime],8,8[prime]-octahydro-1,1[prime]-binaphthyl / 2.1.2:
Asymmetric hydrogenation of Dimethyl itaconate / 2.1.3:
Conclusion
Synthesis and application of phosphinite oxazoline iridium complexes for the asymmetric hydrogenation of alkenes / Frederik Menges ; Andreas Pfaltz2.2:
Synthesis of (4S,5S)-2-(5-Methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-propan-2-ol / 2.2.1:
Synthesis of (4S,5S)-O-[1-Benzyl-1-(5-methyl-2-phenyl-4,5-dihydro-oxazol-4-yl)-2-phenyl-ethyl]-diphenylphosphinite / 2.2.2:
Synthesis of (4S,5S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{2-(2-phenyl-5-methyl-4,5-dihydro-oxazol-4-yl)-1,3-diphenyl-2-diphenylphosphinite-propane}iridium(I)]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate / 2.2.3:
Asymmetric hydrogenation of trans-[alpha]-Methylstilbene / 2.2.4:
Synthesis and application of heterocyclic phosphine oxazoline (HetPHOX) iridium complexes for the asymmetric hydrogenation of alkenes / Pier Giorgio Cozzi2.3:
Synthesis of (4S)-tert-Butyl-2-(thiophene-2-yl)-4,5-dihydrooxazole / 2.3.1:
Synthesis of (4S)-tert-Butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole / 2.3.2:
Synthesis of (4S)-[([eta superscript 4]-1,5-Cyclooctadiene)-{4-tert-butyl-2-(3-diphenylphosphino-thiophene-2-yl)-4,5-dihydrooxazole}iridium(I)]-tetrakis [3,5-bis(trifluoromethyl)phenyl]borate / 2.3.3:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos] as a ligand for rhodium-catalyzed asymmetric hydrogenation of [alpha]-dehydroamino acids / Jing Wu ; Albert S.C. Chan2.3.4:
Synthesis of 3-Bromo-2,6-dimethoxypyridine / 2.4.1:
Synthesis of Bis(3,5-dimethylphenyl)phosphine chloride / 2.4.2:
Synthesis of 3-Bromo-2,6-dimethoxy-4-di(3,5-dimethylphenyl)phosphinopyridine / 2.4.3:
2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphinoyl]-3,3[prime]-bipyridine / 2.4.4:
Optical resolution of ([plus or minus])-6 with (-) or (+)-2,3-0,0[prime]-Dibenzoyltartaric acid monohydrate [(R)-6 or (S)-6)] / 2.4.6:
(R)-2,2[prime],6,6[prime]-Tetramethoxy-bis[di(3,5-dimethylphenyl)phosphino]-3,3[prime]-bipyridine [(R)-Xyl-P-Phos, (R)-1] / 2.4.7:
Preparation of the stock solution of [Rh(R-Xyl-P-Phos)(COD)]BF[subscript 4] / 2.4.8:
A typical procedure for the asymmetric hydrogenation of methyl (Z)-2-Acetamidocinnamate / 2.4.9:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoXP) as a ligand for rhodium-catalyzed asymmetric hydrogenation of prochiral amino acid and amine derivatives / Tsuneo Imamoto ; Aya Koide2.5:
Synthesis of (R)-tert-Butyl(hydroxymethyl)methylphosphine-borane / 2.5.1:
Synthesis of (R)-Benzoyloxy(tert-butyl)methylphosphine-borane / 2.5.2:
Synthesis of (S)-tert-Butylmethylphosphine-borane / 2.5.3:
(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (QuinoxP) / 2.5.4:
Asymmetric hydrogenation of Methyl (E)-3-acetylamino-2-butenoate catalyzed by Rh(I)-(R,R)-2,3-Bis(tert-butylmethylphosphino)quinoxaline / 2.5.5:
Rhodium-catalyzed asymmetric hydrogenation of indoles / Ryoichi Kuwano ; Masaya Sawamura2.6:
Synthesis of (R)-2-[(S)-1-(Dimethylamino)ethyl]-1-iodoferrocene / 2.6.1:
Synthesis of (R)-2-[(S)-1-(Diphenylphosphinyl)ethyl]-1-iodoferrocene / 2.6.2:
Synthesis of (R,R)-2,2[prime]-Bis[(S)-1-(diphenylphosphinyl)ethyl]-1,1[Prime]-biferrocene / 2.6.3:
Synthesis of (R,R)-2,2[Prime]-Bis[(S)-1-(diphenylphosphino)ethyl]-1,1[Prime]-biferrocene [abbreviated to (S,S)-(R,R)-PhTRAP] / 2.6.4:
Catalytic asymmetric hydrogenation of N-Acetyl-2-butylindole / 2.6.5:
Catalytic asymmetric hydrogenation of 3-Methyl-N-(p-toluenesulfonyl)indole / 2.6.6:
Asymmetric Reduction of Ketones / 3:
(R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane as a versatile ligand for enantioselective hydrogenations / Natalia Dubrovina ; Armin Borner3.1:
Synthesis of (S,S)-1,3-Diphenylpropane-1,3-diol / 3.1.1:
Synthesis of (S,S)-Methanesulfonyloxy-1,3-diphenylpropane-1,3-diol / 3.1.2:
Synthesis of (R,R)-Bis(diphenylphosphino)-1,3-diphenylpropane / 3.1.3:
Synthesis of both enantiomers of 1-Phenylethanol by reduction of acetophenone with Geotrichum candidum IFO 5767 / Kaoru Nakamura ; Mikio Fujii ; Yoshiteru Ida3.2:
Cultivation of G. candidum IFO 5767 / 3.2.1:
Synthesis of (S)-1-Phenylethanol / 3.2.2:
Synthesis of (R)-1-Phenylethanol / 3.2.3:
Titanocene-catalyzed reduction of ketones in the presence of water. A convenient procedure for the synthesis of alcohols via free-radical chemistry / Antonio Rosales ; Juan M. Cuerva ; J. Enrique Oltra3.3:
Titanocene-catalyzed reduction of Acetophenone in the presence of water / 3.3.1:
Titanocene-catalyzed synthesis of Methyl 4-deuterio-4-phenyl-4-hydroxybutanoate / 3.3.2:
Xyl-tetraPHEMP: a highly efficient biaryl ligand in the [diphosphine RuCl[subscript 2] diamine]-catalyzed hydrogenation of simple aromatic ketones / Paul H. Moran ; Julian P. Henschke ; Antonio Zanotti-Gerosa ; Ian C. Lennon3.4:
Synthesis of Tri(3,5-dimethylphenyl)phosphine oxide / 3.4.1:
Synthesis of Bis(3,5-dimethylphenyl)-(2-iodo-3,5-dimethylphenyl)phosphine oxide / 3.4.2:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphinoyl]-biphenyl / 3.4.3:
Synthesis of rac-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (rac)-Xyl-tetraPHEMP] / 3.4.4:
Synthesis of [(R)-N,N-Dimethyl(1-methyl)benzylaminato-C[superscript 2],N]-{rac-4,4[prime],6,6[prime]-tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl}-palladium(II) tetrafluoroborate and separation of the diastereomers / 3.4.5:
Synthesis of (S)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl: [abbreviated to (S)-Xyl-tetraPHEMP) and (R)-4,4[prime],6,6[prime]-Tetramethyl-2,2[prime]-bis[bis(3,5-dimethylphenyl)phosphino]-biphenyl [abbreviated to (R)-Xyl-tetraPHEMP] / 3.4.6:
Synthesis of [(R)-Xyl-tetraPHEMP RuCl[subscript 2] (R,R)-DPEN] and [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] / 3.4.7:
Reduction of Acetophenone using [(S)-Xyl-tetraPHEMP RuCl[subscript 2] (S,S)-DPEN] as a precatalyst / 3.4.8:
N-Arenesulfonyl- and N-Alkylsulfamoyl-1,2-diphenylethylenediamine ligands for ruthenium-catalyzed asymmetric transfer hydrogenation of activated ketones / Michel (Massoud S.) Stephan ; Barbara Mohar3.5:
Synthesis of N-Arenesulfonyl-1,2-diphenylethylenediamines / 3.5.1:
Preparation of Ru(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes / 3.5.2:
Asymmetric transfer hydrogenation of Ethyl benzoylacetate / 3.5.3:
The synthesis and application of BrXuPHOS: a novel monodentate phosphorus ligand for the asymmetric hydrogenation of ketones / Martin Wills ; Yingjian Xu ; Garden Docherty ; Gary Woodward3.6:
Synthesis of (S)-BrXuPHOS / 3.6.1:
Synthesis of (S,S,SS)-BrXuPHOS-Ru-DPEN / 3.6.2:
General procedure of asymmetric hydrogenation of acetophenone / 3.6.3:
Acknowledgement
In Situ formation of ligand and catalyst: application in ruthenium-catalyzed enantioselective reduction of ketones / Jenny Wettergren ; Hans Adolfsson3.7:
Synthesis of (S)-3-Fluoro-1-phenylethanol / 3.7.1:
Synphos and Difluorphos as ligands for ruthenium-catalyzed hydrogenation of alkenes and ketones / Severine Jeulin ; Virginie Ratovelomanana-Vidal ; Jean-Pierre Genet3.8:
Synthesis of [RuCl((S)-SYNPHOS)(p-cymene)]Cl / 3.8.1:
Synthesis of [RuCl((S)-DIFLUORPHOS)(p-cymene)]Cl / 3.8.2:
Synthesis of [RuI((S)-DIFLUORPHOS)(p-cymene)]I / 3.8.3:
Synthesis of [NH[subscript 2]R[subscript 2]] [(RuCl(PP))[subscript 2]([Mu]-Cl)[subscript 3]] PP = SYNPHOS or DIFLUORPHOS and R = Me or Et / 3.8.4:
Synthesis of [NH[subscript 2]Me[subscript 2]][RuCl-(S)-DIFLUORPHOS][subscript 2][[Mu]-Cl][subscript 3] / 3.8.5:
Synthesis of in situ generated [RuBr[subscript 2]((S)-SYNPHOS)] and [RuBr[subscript 2]((S)-DIFLUORPHOS)] / 3.8.6:
An arene ruthenium complex with polymerizable side chains for the synthesis of immobilized catalysts / Estelle Burri ; Silke B. Wendicke ; Kay Severin3.9:
Synthesis of 2-Methyl-cyclohexa-2,5-dienecarboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester / 3.9.1:
Synthesis of [[eta superscript 6]-(2-Methyl-benzoic acid 2-(2-methyl-acryloyloxy)-ethyl ester)RuCl[subscript 2]][subscript 2] / 3.9.2:
Selective reduction of carbonyl group in [beta], [gamma]-unsaturated [alpha]-alpha-ketoesters by transfer hydrogenation with Ru-(p-cymene) (TsDPEN) / Minjie Guo ; Dao Li ; Yanhui Sun ; Zhaoguo Zhang3.10:
Synthesis of Di-[Mu]-chloro-bis[chloro([eta superscript 6]-1-isopropyl-4-methyl-benzene)ruthenium(II) / 3.10.1:
Synthesis of ([plus or minus])-Monotosylate-1,2-diphenyl-1,2-ethylenediamine / 3.10.2:
Synthesis of Ru complex Ru(p-cymene)(TsDPEN) / 3.10.3:
Ru-TsDPEN catalyzed transfer hydrogenation reaction of [beta],[gamma]-unsaturated-[alpha]-ketoesters / 3.10.4:
Preparation of polymer-supported Ru-TsDPEN catalysts and their use for the enantioselective synthesis of (S)-fluoxetine / Liting Chai ; Yangzhou Li ; Quanrui Wang3.11:
Synthesis of the supported ligand 9 / 3.11.1:
Synthesis of ligand 17 / 3.11.2:
General procedure for asymmetric transfer hydrogenation / 3.11.3:
Preparation of (S)-Fluoxetine hydrochloride / 3.11.4:
Polymer-supported chiral sulfonamide-catalyzed reduction of [beta]-keto nitriles: a practical synthesis of (R)-Fluoxetine / Guang-yin Wang ; Gang Zhao3.12:
Synthesis of (R)-3-Amino-1-phenyl-propan-1-ol / 3.12.1:
Synthesis of (R)-ethyl 3-hydroxy-3-phenylpropylcarbamate / 3.12.2:
Synthesis of (R)-3-(Methylamino)-1-phenylpropan-1-ol / 3.12.3:
Synthesis of (R)-Fluoxetine / 3.12.4:
Imine Reduction and Reductive Amination / 4:
Metal-free reduction of imines: enantioselective Bronsted acid-catalyzed transfer hydrogenation using chiral BINOL-phosphates as catalysts / Magnus Rueping ; Erli Sugiono ; Cengiz Azap ; Thomas Theissmann4.1:
Synthesis of (R)-2,2[prime]-Bis-methoxymethoxy-[1,1[prime]] binaphthalene (MOM-BINOL) / 4.1.1:
Synthesis of (R)-3,3[prime]-Diiodo-2,2[prime]-bis(methoxymethoxy)-1,1[prime]-binaphthalene / 4.1.2:
Synthesis of 3,3[prime]-Bis-(3,5[prime]-bis-trifluoromethyl-phenyl)-2,2[prime]-bismethoxymethoxy [1,1[prime]-binaphthalene] / 4.1.3:
Synthesis of (R)-3,3[prime]-[3,5-Bis(trifluoromethyl)phenyl]-1,1[prime]-binaphthylphosphate / 4.1.4:
General procedure for the transfer hydrogenation of ketimines / 4.1.5:
Synthesis of [1-(2,4-Dimethyl-phenyl)-ethyl]-(4-methoxy-phenyl)-amine / 4.1.6:
Metal-free Bronsted acid-catalyzed transfer hydrogenation: enantioselective synthesis of tetrahydroquinolines / Andrey P. Antonchick4.2:
General procedure for the transfer hydrogenation of quinolines / 4.2.1:
Synthesis of 7-Chloro-4-phenyl-1,2,3,4-tetrahydroquinoline / 4.2.2:
Synthesis of (S)-2-Phenyl-1,2,3,4-tetrahydroquinoline / 4.2.3:
Synthesis of (R)-2-(2-(Benzo[1,3]dioxol-5-yl)ethyl)-1,2.3,4-tetrahydro-quinoline / 4.2.4:
A highly stereoselective synthesis of 3[alpha]-Amino-23,24-bisnor-5[alpha]-cholane via reductive amination / Sharaf Nawaz Khan ; Nam Ju Cho ; Hong-Seok Kim4.3:
Synthesis of Tris[(2-ethylhexanoyl)oxy]borohydride / 4.3.1:
Synthesis of 3[alpha]-Acetamino-23,24-bisnor-5[alpha]-cholane / 4.3.2:
Synthesis of 3[alpha]-N-1-[N(3-[4-Aminobutyl])-1,3-diaminopropane]-23,24-bisnor-5[alpha]-cholane / 4.3.3:
Acknowledgements
Oxidation of Primary and Secondary Alcohols / 5:
Copper(Il) catalyzed oxidation of primary alcohols to aldehydes with atmospheric oxygen / Suribabu Jammi ; Tharmalingan Punniyamurthy5.1:
Synthesis of copper(II) complex 1 / 5.1.1:
Typical procedure for the oxidation of primary alcohols to aldehydes / 5.1.2:
Solvent-free dehydrogenation of secondary alcohols in the absence of hydrogen abstractors using Robinson's catalyst / G.B.W.L Ligthart ; R.H. Meijer ; J. v. Buijtenen ; J. Meuldijk ; J.A.J.M. Vekemans ; L.A. Hulshof5.2:
Dehydrogenation of 2-Octanol using Ru(OCOCF[subscript 3])[subscript 2](CO)(PPh[subscript 3])[subscript 2] as a catalyst / 5.2.1:
2-Iodoxybenzoic acid (IBX)/n-Bu[subscript 4]NBr/CH[subscript 2]Cl[subscript 2]-H[subscript 2]O: a mild system for the selective oxidation of secondary alcohols / Krisada Kittigowittana ; Manat Pohmakotr ; Vichai Reutrakul ; Chutima Kuhakarn5.3:
Synthesis of 1-Hydroxy-5-decanone / 5.3.1:
Hydroxylation, Epoxidation and Related Reactions / 6:
Proline-catalyzed [alpha]-aminoxylation of aldehydes and ketones / Yujiro Hayashi ; Mitsuru Shoji6.1:
Synthesis of (R)-2-Anilinoxypropanol / 6.1.1:
Synthesis of (R)-7-Anilinoxy-1,4-dioxaspiro[4.5]decan-8-one / 6.1.2:
Ru/Silia Cat TEMPO-mediated oxidation of alkenes to [alpha]-hydroxyacids / Rosaria Ciriminna ; Mario Pagliaro6.2:
Synthesis of Silia Cat TEMPO / 6.2.1:
Synthesis of 2-(4-Chlorophenyl)-1,2-propanediol / 6.2.2:
Synthesis of 2-(4-Chlorophenyl)-1,2-hydroxypropanoic acid / 6.2.3:
Catalytic enantioselective epoxidation of trans-disubstituted and trisubstituted alkenes with arabinose-derived ulose / Tony K. M. Shing ; Gulice Y.C. Leung ; To Luk6.3:
Synthesis of 2[prime],3[prime]-Diisobutyl acetal / 6.3.1:
Synthesis of ulose / 6.3.2:
Asymmetric epoxidation of trans-[alpha]-Methylstilbene using ulose as catalyst at 0 [degree]C / 6.3.3:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(2-Alkenyl)phenols. highly regio- and diastereoselective oxidative cyclisation to 2,3-Dihydrobenzofuranols and 3-Chromanols / Alessandra Lattanzi ; Arrigo Scettri6.4:
VO(acac)[subscript 2]/TBHP catalyzed epoxidation of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.1:
VO(acac)[subscript 2]/TBHP/TFA catalyzed oxidative cyclization of 2-(3,7-Dimethyl-octa-2,6-dienyl)-phenol / 6.4.2:
An Oxalolidinone ketone catalyst for the asymmetric epoxidation of cis-olefins / David Goeddel ; Yian Shi6.5:
Amadori rearrangement to give 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.1:
Acetal protection of 1-Dibenzylamino-1-deoxy-D-fructose / 6.5.2:
Hydrogenation of the Dibenzylamine / 6.5.3:
Phosgene cyclization of aminoalcohol / 6.5.4:
Alcohol oxidation / 6.5.5:
Synthesis of ketone 2 / 6.5.6:
Asymmetric epoxidation of cis-[beta]-Methylstyrene / 6.5.7:
[alpha]-Fluorotropinone immobilised on silica: a new stereoselective heterogeneous catalyst for epoxidation of alkenes with oxone / Giovanni Sartori ; Alan Armstrong ; Raimondo Maggi ; Alessandro Mazzacani ; Raffaella Sartorio ; France Bigi ; Belen Dominguez-Fernandez6.6:
Synthesis of silica KG-60-supported enantiomerically enriched [alpha]-Fluorotropinone / 6.6.1:
Synthesis of enantiomerically enriched epoxides / 6.6.2:
Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions / Kazushige Hori ; Keita Tani ; Yasuo Tohda6.7:
Synthesis of precursor of the azacrown ether / 6.7.1:
Synthesis of the azacrown ether / 6.7.2:
Synthesis of the azacrown ether-type quaternary ammonium salt / 6.7.3:
Asymmetric epoxidation of (E)-Chalcone catalyzed by the azacrown ether-type quaternary ammonium salt as chiral PTC / 6.7.4:
Enantioselective epoxidation of olefins using phase transfer conditions and a chiral [azepinium][TRISPHAT] salt as catalyst / Jerome Vachon ; Celine Perollier ; Alexandre Martinez ; Jerome Lacour6.8:
Enantioselective epoxidation of 1-Phenyl-3,4-dihydronaphthalene / 6.8.1:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters promoted by a Yttrium-biphenyldiol complex / Masakatsu Shibasaki ; Hiroyuki Kakei ; Shigeki Matsunaga6.9:
Synthesis of (aS,R)-6,6[prime]-[(Propylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.1:
Synthesis of (aS,R)-2,2-[Oxybis(ethylene)dioxy]-6,6[prime]-[(propylene)dioxy]biphenyl / 6.9.2:
Synthesis of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.3:
Enantiomeric enrichment of (S)-6,6[prime]-[Oxybis(ethylene)dioxy]biphenyl-2,2[prime]-diol / 6.9.4:
Catalytic asymmetric epoxidation of [alpha],[beta]-unsaturated esters / 6.9.5:
Catalytic enantioselective epoxidation of [alpha],[beta]-enones with a binol-zinc-complex / Ana Minatti ; Karl Heinz Dotz6.10:
Synthesis of (E)-(2S,3R)-Phenyl-(3-phenyloxiran-2-yl)methanone / 6.10.1:
Asymmetric epoxidation of Phenyl-2-(3[prime]-pyridylvinyl)sulfone using polyleucine hydrogen peroxide gel / Mike R. Pitts6.11:
Preparation of polyleucine-hydrogen peroxide gel / 6.11.1:
Synthesis of Phenyl-2-(3[prime]-pyridylvinyl) sulfone (2) / 6.11.2:
Oxidation of Ketones to Lactones or Enones / 7:
Synthesis of 2-(Phosphinophenyl)pyrindine ligand and its application to palladium-catalyzed asymmetric Baeyer-Villiger oxidation of prochiral cyclobutanones / Katsuji Ito ; Tsutomu Katsuki7.1:
Synthesis of (7R)-2-(2-Hydroxyphenyl)-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.1:
2-[2-(Diphenylphosphinoyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.2:
2-[2-(Diphenylphosphanyl)phenyl]-7-isopropyl-6,7-dihydro-5H-1-pyrindine / 7.1.3:
Asymmetric Baeyer-Villiger oxidation of 3-Phenylcyclobutanone / 7.1.4:
(D)-Codeinone from (D)-Dihydrocodeinone via the use of modified o-iodoxybenzoic acid (IBX). A convenient oxidation of ketones to enones / Paul Mather7.2:
Synthesis of IBX / 7.2.1:
Synthesis of codeinone / 7.2.2:
Oxidative C-C Coupling / 8:
Enantioselective oxidative coupling of 2-Naphthols catalyzed by a novel chiral vanadium complex / Nan-Sheng Xie ; Quan-Zhong Liu ; Zhi-Bin Luo ; Liu-Zhu Gong ; Ai-Qiao Mi ; Yao-Zhong Jiang8.1:
Synthesis of 3,3-Diformyl-2,2[prime]-biphenol / 8.1.1:
Synthesis of chiral vanadium complexes / 8.1.2:
Catalytic oxidative coupling of 7-Alkoxy-1-naphthols by chiral vanadium complexes / 8.1.3:
Reference
Catalytic oxidative cross-coupling reaction of 2-Naphthol derivatives / Shigeki Habaue ; Tomohisa Temma8.2:
Synthesis of Methyl 2,2[prime]-dihydroxy-1,1[prime]-binaphthalene-3-carboxylate / 8.2.1:
Oxidative coupling of benzenes with [alpha],[beta]-unsaturated aldehydes by Pd(OAc)[subscript 2]/ HPMoV/ O[subscript 2] system / Tomoyuki Yamada ; Satoshi Sakaguchi ; Yasutaka Ishii8.3:
Synthesis of Cinnamaldehyde / 8.3.1:
Oxidation of Sulfides and Sulfoxides / 9:
The first example of direct oxidation of sulfides to sulfones by an osmate-molecular oxygen system / Boyapati M. Choudary ; Chinta Reddy ; V. Reddy ; Billakanti V. Prakash ; Mannepalli L. Kantam ; B. Sreedhar9.1:
Synthesis of osmate exchanged Mg-Al layered double hydroxides (LDH-OsO[subscript 4]) / 9.1.1:
Synthesis of Methyl phenyl sulfone or Methylsulfonylbenzene / 9.1.2:
Selective oxidation of sulfides to sulfoxides and sulfones using hydrogen peroxide in the presence of zirconium tetrachloride / Kiumar Bahrami9.2:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfoxide using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.1:
Oxidation of Benzyl 4-bromobenzyl sulfide to Benzyl 4-bromobenzyl sulfone using H[subscript 2]O[subscript 2] in the presence of zirconium tetrachloride / 9.2.2:
WO[subscript 3]-30 % H[subscript 2]O[subscript 2]-cinchona alkaloids: a new heterogeneous catalytic system for asymmetric oxidation and kinetic resolution of racemic sulfoxides / Vinay V. Thakur ; A. Sudalai9.3:
Synthesis of (R)-2-[[[3-Methyl-4-(2,2,2-trifluoroethoxy)-2-pyridyl]methyl]sulfinyl]-1H-benzimadazole {(R)-(+)-Lansoprazole} / 9.3.1:
Synthesis of (R)-(+)-Phenyl benzyl sulfoxide / 9.3.2:
Benzyl-4,6-O-isopropylidene-[alpha]-(D)-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]amino] as a ligand for vanadium-catalyzed asymmetric oxidation of sulfides / Raffaella Del Litto ; Guiseppina Roviello ; Francesco Ruffo9.4:
Synthesis of Benzyl-4,6-O-isopropylidene-[alpha]-D-glucopyranoside, 2-deoxy-2-[[(2-hydroxy-3,5-di-tert-butylphenyl)methylene]imine] / 9.4.1:
Oxidation of Thioanisole / 9.4.2:
Asymmetric sulfoxidation of aryl methyl sulfides with hydrogen peroxide in water / Alessando Scarso ; Giorgio Strukul9.5:
Synthesis of complex (R)-BINAP)PtCl[subscript 2] / 9.5.1:
Synthesis of complex [((R)-BINAP)Pt((OH)][subscript 2](BF[subscript 4])[subscript 2] / 9.5.2:
Stereoselective catalytic oxidation of aryl methyl sulfides / 9.5.3:
Index
Series Preface
Preface to Volume 5
Abbreviations
2.

図書

図書
edited by Susannah L. Scott, Cathleen M. Crudden and Christopher W. Jones
出版情報: New York : Kluwer Academic, c2003  xvi, 334 p. ; 26 cm
シリーズ名: Nanostructure science and technology / series editor, David J. Lockwood
所蔵情報: loading…
目次情報: 続きを見る
Multifunctional Active Sites on Silica Surfaces by Grafting of Metal Complexes / Susannah L. Scott ; Eric W. Deguns1.:
Nanostructured Rare Earth Catalysts via Advanced Surface Grafting / Reiner Anwander2.:
Silsesquioxanes: Advanced Model Supports in Developing Silica-Immobilized Polymerization Catalysts / Robbert Duchateau3.:
Theoretical Models of Active Sites: General Considerations and Application to the Study of Phillips-Type Cr/Silica Catalysts for Ethylene Polymerization / Knut J. Borve ; Oystein Espelid4.:
Late Transition Metal Complexes Immobilized on Structured Surfaces as Catalysts for Hydrogenation and Oxidation Reactions / Cathleen M. Crudden ; Daryl P. Allen ; Irina Motorina ; Meredith Fairgrieve5.:
Design of Chiral Hybrid Organic-Inorganic Mesoporous Materials for Enantioselective Epoxidation and Alkylation Catalysts / Daniel Brunel ; Monique Lasperas6.:
Chiral Nanostructures at Metal Surfaces: A New Viewpoint on Enantioselective Catalysis / R. Raval7.:
On the Structure of Cobalt-Substituted Aluminophosphate Catalysts and Their Catalytic Performance / Gopinathan Sankar ; Robert Raja8.:
Catalytic Activity of Pt and Tungstophosphoric Acid Supported on MCM-41 for the Reduction of NO / A. Jentys ; H. Vinek9.:
Polymerization with Mesoporous Silicates / Keisuke Tajima ; Takuzo Aida10.:
Designing Porous Solids over Multiple Pore Size Regimes / Andreas Stein ; Rick C. Schroden11.:
Strategies for the Control of Porosity around Organic Active Sites in Inorganic Matrices / Christopher W. Jones12.:
Strategies for the Design and Synthesis of Hybrid Multifunctional Nanoporous Materials / Jun Liu ; Yongsoon Shin ; Li-Qiong Wang ; Gregory J. Exarhos ; Jeong Ho Chang ; Glen E. Fryxell ; Zimin Nie ; Thomas S. Zemanian ; William D. Samuels13.:
Quantitative Relations between Liquid Phase Adsorption and Catalysis / Dirk E. De Vos ; Gino V. Baron ; Frederik van Laar ; Pierre A. Jacobs14.:
Index
Multifunctional Active Sites on Silica Surfaces by Grafting of Metal Complexes / Susannah L. Scott ; Eric W. Deguns1.:
Nanostructured Rare Earth Catalysts via Advanced Surface Grafting / Reiner Anwander2.:
Silsesquioxanes: Advanced Model Supports in Developing Silica-Immobilized Polymerization Catalysts / Robbert Duchateau3.:
3.

図書

図書
edited by Krijn P. de Jong
出版情報: Weinheim : Wiley-VCH, c2009  xx, 401 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Basic Principles And Tools
General Aspects
Ion Adsorption Interfacial
Chemistry Sol-gel
Chemistry Impregnation and Drying Deposition Precipitation
Co-precipitation Clusters and Immobilization
Catalyst Shaping Microspectroscopy
High Throughput Experimentation
Case Studies
Zeolites Ordered Mesoporous
Materials
Hydrotreating
Catalysts
Hydro-isomerisation
Catalysts Methanol
Catalysts Steam Methane
Reforming Catalysts
Noble Metal Catalysts
Gold Catalysts
Basic Principles And Tools
General Aspects
Ion Adsorption Interfacial
4.

図書

図書
Tatsuhiro Okada, Masao Kaneko, editors
出版情報: Berlin : Springer, c2009  xxiv, 431 p. ; 25 cm
シリーズ名: Springer series in materials science ; v. 111
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
List of Abbreviations
Historical Overview and Fundamental Aspects of Molecular Catalysts for Energy Conversion / T. Okada ; T. Abe ; M. Kaneko1:
Introduction: Why Molecular Catalysts? A New Era of Biomimetic Approach Toward Efficient Energy Conversion Systems / 1.1:
Molecular Catalysts for Fuel Cell Reactions / 1.2:
Oxygen Reduction Catalysts / 1.2.1:
Fuel Oxidation Catalysts / 1.2.2:
Molecular Catalysts for Artificial Photosynthetic Reaction / 1.3:
Water Oxidation Catalyst / 1.3.1:
Reduction Catalyst / 1.3.2:
Photodevices for Photoinduced Chemical Reaction in the Water Phase / 1.3.3:
Summary / 1.4:
References
Charge Transport in Molecular Catalysis in a Heterogeneous Phase / 2:
Introduction / 2.1:
Charge Transport (CT) by Molecules in a Heterogeneous Phase / 2.2:
General Overview / 2.2.1:
Mechanism of Charge Transport / 2.2.2:
Charge Transfer by Molecules Under Photoexcited State in a Heterogeneous Phase / 2.3:
Overview / 2.3.1:
Mechanism of Charge Transfer at Photoexcited State in a Heterogeneous Phase / 2.3.2:
Charge Transfer and Electrochemical Reactions in Metal Complexes / 2.4:
Charge Transfer in Metal Complexes / 2.4.1:
Charge Transfer at Electrode Surfaces / 2.4.2:
Oxygen Reduction Reaction at Metal Macrocycles / 2.4.3:
Proton Transport in Polymer Electrolytes / 2.5:
Proton Transfer Reactions / 2.5.1:
Electrochemical Methods for Catalyst Evaluation in Fuel Cells and Solar Cells / 2.5.2:
Electrochemical Measuring System for Catalyst Research in Fuel Cells / 3.1:
Reference Electrode / 3.2.1:
Rotating Ring-Disk Electrode / 3.2.2:
Gas Electrodes of Half-Cell Configuration / 3.2.3:
Fuel Cell Test Station / 3.2.4:
Electrochemical Methods for Electrocatalysts / 3.2.5:
Electrochemical Measuring System for Heterogeneous Charge Transport and Solar Cells / 3.3:
Testing Method of Charge Transport in Heterogeneous Systems / 3.3.1:
Evaluation of Charge Transport by Redox Molecules Incorporated in a Heterogeneous Phase / 3.3.2:
AC Impedance Spectroscopy to Evaluate Charge Transport, Conductivity, Double-Layer Capacitance, and Electrode Reaction / 3.3.3:
I-V Characteristics of Solar Cells / 3.3.4:
Impedance Spectroscopy to Evaluate Multistep Charge Transport of a Dye-Sensitized Solar Cell / 3.3.5:
Molecular Catalysts for Fuel Cell Anodes / 3.4:
Concept of Composite Electrocatalysts in Fuel Cells / 4.1:
Methanol Oxidation Reaction / 4.3:
Mechanism of Methanol Oxidation Reaction / 4.3.1:
New Electrocatalysts for Methanol Oxidation Reaction / 4.3.2:
Structure of Composite Catalysts / 4.3.3:
Formic Acid Oxidation Reaction / 4.4:
Mechanism of Formic Acid Oxidation / 4.4.1:
Formic Acid Oxidation on Composite Catalysts / 4.4.2:
CO-Tolerant Electrocatalysts for Hydrogen Oxidation Reaction / 4.5:
Electrochemical and Fuel Cell Testing / 4.5.1:
Durability Testing / 4.5.2:
Structural Characterization / 4.5.3:
Macrocycles for Fuel Cell Cathodes / K. Oyaizu ; H. Murata ; M. Yuasa4.6:
Molecular Design of Macrocycles for Fuel Cell Cathodes / 5.1:
Diporphyrin Cobalt Complexes and Related Catalysts / 5.3:
Diporphyrin Cobalt Complexes / 5.3.1:
Polypyrrole Cobalt Complexes / 5.3.2:
Cobalt Thienylporphyrins / 5.3.3:
Porphyrin Assemblies Based on Intermolecular Interaction / 5.4:
Multinuclear Complexes as Electron Reservoirs / 5.5:
Platinum-Free Catalysts for Fuel Cell Cathode / N. Koshino ; H. Higashimura5.6:
Drawbacks of Using Pt as Catalysts in PEFC / 6.1:
Mechanistic Aspects of Oxygen Reduction by Cathode Catalyst / 6.3:
Metal Particles / 6.4:
Metal Oxides, Carbides, Nitrides, and Chalcogenides / 6.4.2:
Carbon Materials / 6.4.3:
Metal Complex-Based Catalysts / 6.4.4:
Catalysts Designed from Dinuclear Metal Complexes / 6.4.5:
Novel Support Materials for Fuel Cell Catalysts / J. Nakamura6.5:
Performance of Electrocatalysts Using Carbon Nanotubes / 7.1:
<$>H_2 -O_2<$> Fuel Cell / 7.2.1:
DMFC / 7.2.2:
Why Is Carbon Nanotube So Effective as Support Material? / 7.3:
Molecular Catalysts for Electrochemical Solar Cells and Artificial Photosynthesis / 8:
Overview on Principles of Molecule-Based Solar Cells / 8.1:
Photon Absorption / 8.2.1:
Suppression of Charge Recombination to Achieve Effective Charge Separation / 8.2.2:
Diffusion of Separated Charges / 8.2.3:
Electrode Reaction / 8.2.4:
Dye-Sensitized Solar Cell (DSSC) / 8.3:
Artificial Photosynthesis / 8.4:
Dark Catalysis for Artificial Photosynthesis / 8.5:
Dark Catalysis for Water Oxidation / 8.5.1:
Dark Catalysis for Proton Reduction / 8.5.2:
Conclusion and Future Scopes / 8.6:
Molecular Design of Sensitizers for Dye-Sensitized Solar Cells / K. Hara9:
Metal-Complex Sensitizers / 9.1:
Molecular Structures of Ru-Complex Sensitizers / 9.2.1:
Electron-Transfer Processes / 9.2.2:
Performance of DSSCs Based on Ru Complexes / 9.2.3:
Other Metal-Complex Sensitizers for DSSCs / 9.2.4:
Porphyrins and Phthalocyanines / 9.3:
Organic Dyes / 9.4:
Molecular Structures of Organic-Dye Sensitizers for DSSCs / 9.4.1:
Performance of DSSCs Based on Organic Dyes / 9.4.2:
Electron Transfer from Organic Dyes to TiO2 / 9.4.3:
Electron Diffusion Length / 9.4.4:
Stability / 9.5:
Photochemical and Thermal Stability of Sensitizers / 9.5.1:
Long-Term Stability of Solar-Cell Performance / 9.5.2:
Summary and Perspectives / 9.6:
Fabrication of Charge Carrier Paths for High Efficiency Cells / T. Kogo ; Y. Ogomi ; S. Hayase10:
Fabrication of Electron-Paths / 10.1:
Suppression of Black-Dye Aggregation in a Pressurized CO2 Atmosphere / 10.3:
Two-Layer TiO2 Structure for Efficient Light Harvesting / 10.4:
TCO-Less All-Metal Electrode-Type DSC / 10.5:
Ion-Path in Quasi-Solid Medium / 10.6:
Environmental Cleaning by Molecular Photocatalysts / D. Wöhrle ; K. Nagai ; O. Suvorova ; R. Gerdes10.7:
Oxidative Methods for the Photodegradation of Pollutants in Wastewater / 11.1:
Comparison of Different Methods of UV Processes for Water Cleaning / 11.2.1:
Photodegradation of Pollutants with Oxygen in the Visible Region of Light / 11.2.2:
Visible Light Decomposition of Ammonia to Nitrogen with Ru(bpy)32+ as Sensitizer / 11.3:
Nitrogen Pollutants and Their Photodecomposition / 11.3.1:
Photochemical Electron Relay with Ammonia / 11.3.2:
Photochemical Decomposition of Ammonia to Dinitrogen by a Photosensitized Electron Relay / 11.3.3:
Visible Light Responsive Organic Semiconductors as Photocatalysts / 11.4:
Photoelectrochemical Character of Organic Semiconductors in Water Phase / 11.4.1:
Photoelectrochemical Oxidations by Irradiation with Visible Light / 11.4.2:
Photochemical Decomposition of Amines Using Visible Light and Organic Semiconductors / 11.4.3:
Optical Oxygen Sensor / N. Asakura ; I. Okura12:
Theoretical Aspect of Optical Oxygen Sensor of Porphyrins / 12.1:
Advantage of Optical Oxygen Sensing / 12.2.1:
Principle of Optical Oxygen Sensor / 12.2.2:
Brief History of Optical Oxygen Sensors / 12.2.3:
Optical Oxygen Sensor by Phosphorescence Intensity / 12.3:
Phosphorescent Compounds / 12.3.1:
Immobilization of Phosphorescent Molecules for Optical Oxygen Sensor and Measurement System / 12.3.2:
Optical Oxygen Sensor with Platinum Octaethylporphyrin Polystyrene Film (PtOEP-PS Film) / 12.3.3:
Optical Oxygen Sensor with PtOEP and Supports / 12.3.4:
Application of Optical Oxygen Sensor for Air Pressure Measurements / 12.3.5:
Optical Oxygen Sensor by Phosphorescence Lifetime Measurements / 12.4:
Advantages of Phosphorescence Lifetime Measurement / 12.4.1:
Phosphorescence Lifetime Measurement / 12.4.2:
Distribution of Oxygen Concentration Inside Single Living Cell by Phosphorescence Lifetime Measurement / 12.4.3:
Optical Oxygen Sensor T-T Absorption / 12.5:
Advantage of Optical Oxygen Sensor Based on T-T Absorption / 12.5.1:
Optical Oxygen Sensor Based on the Photoexcited Triplet Lifetime Measurement / 12.5.2:
Optical Oxygen Sensor Based on Stationary T-T Absorption (Stationary Quenching) / 12.5.3:
Adsorption and Electrode Processes / H. Shiroishi12.6:
Adsorption Isotherms and Kinetics / 13.1:
Langmuir Isotherms / 13.2.1:
Freundlich Isotherm / 13.2.2:
Temkin Isotherm / 13.2.3:
Application for Selective Reaction on Metal Surface by Adsorbate / 13.2.4:
Slab Optical Waveguide Spectroscopy / 13.3:
Principle / 13.3.1:
Application of Slab Optical Waveguide Spectroscopy / 13.3.2:
Methods of Digital Simulation for Electrochemical Measurements / 13.4:
Formulation of Electrochemical System / 13.4.1:
Finite Differential Methods / 13.4.2:
Digital Simulation for Polymer-Coated Electrodes / 13.5:
Hydrostatic Condition / 13.5.1:
Hydrodynamic Condition / 13.5.2:
Classical Monte Carlo Simulation for Charge Propagation in Redox Polymer / 13.6:
Visualization of Charge Propagation / 13.6.1:
Determination of a Charge Hopping Distance / 13.6.2:
Spectroscopic Studies of Molecular Processeson Electrocatalysts / A. Kuzume ; M. Ito14:
The Preparation and Spectroscopic Characterization of Fuel Cell Catalysts / 14.1:
Catalyst Preparation by Electroless Plating and Direct Hydrogen Reduction Methods: Practical Application for High Performance PEFC / 14.2.1:
In Situ IRAS Studies of Methanol Oxidation on Fuel Cell Catalysts / 14.2.2:
Spectroscopic Studies of Methanol Oxidation on Pt Surfaces / 14.3:
Electrooxidation of Methanol on Pt(111) in Acid Solutions: Effects of Electrolyte Anions during Electrocatalytic Reactions / 14.3.1:
Methanol Oxidation Mechanisms on Pt(111) Surfaces / 14.3.2:
Conclusions / 14.4:
Strategies for Structural and Energy Calculation of Molecular Catalysts / S. Tsuzuki ; M. Saito15:
Computational Methods / 15.1:
Basis Set and Electron Correlation Effects on Geometry and Conformational Energy / 15.3:
Intermolecular Forces / 15.4:
Basis and Electron Correlation Effects on Intermolecular Interactions / 15.5:
Calculations of Transition Metal Complexes / 15.6:
Examples of the Ab Initio Calculation for Molecular Catalysts / 15.7:
Future Technologies on Molecular Catalysts / 15.8:
Road Map for Clean Energy Society / 16.1:
Hydrogen Production / 16.3:
Natural Gas / 16.3.1:
Renewable Energy Source / 16.3.2:
Biomass / 16.3.3:
Hydrogen Utilization / 16.4:
Hydrogen Storage / 16.4.1:
Energy Conversion / 16.4.2:
Biomimetic Approach and Role of Molecular Catalysts for Energy-Efficient Utilization / 16.5:
Index / 16.6:
Preface
List of Contributors
List of Abbreviations
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼