close
1.

図書

図書
Klaus Weissermel, Hans-Jürgen Arpe
出版情報: Weinheim : Wiley-VCH, 2003  xix, 491 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Various Aspects of Energy and Raw Material Supply / 1:
Basic Products of Industrial Syntheses / 2:
Olefins / 3:
Acetylene / 4:
1,3-Diolefins / 5:
Syntheses Involving Carbon Monoxide / 6:
Oxidation Products of Ethylene / 7:
Alcohols / 8:
Vinyl-Halogen and Vinyl-Oxygen Compounds / 9:
Components for Polyamides / 10:
Propene Conversion Products / 11:
Aromatics - Production and Conversion / 12:
Benzene Derivatives / 13:
Oxidation Products of Xylene and Naphthalene / 14:
Appendix / 15:
Index
Various Aspects of Energy and Raw Material Supply / 1:
Basic Products of Industrial Syntheses / 2:
Olefins / 3:
2.

図書

図書
Bernard Miller
出版情報: Upper Saddle River, N.J. : Prentice Hall, 2004  xvi, 411 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
Mechanisms of Reactions. Electron Delocalization and Resonance
Electrocyclic Reactions / 2:
Conrotatory and Disrotatory Processes
Explanations for the Woodward-Hoffman Rules
Electrocyclic Reactions with Odd Numbers of Atoms
Photochemical Cyclizations
Cycloaddiction and Cycloreversion Reactions / 3:
Suprafacial and Antarafacial Addition
Selection Rules for Cycloaddition and Cycloreversion Reactions
Examples of Thermal Cycloaddition Reactions
Photochemical Cycloadditions
Sigmatropic Reactions / 4:
Theory of Sigmatropic Shifts
Experimental Observations
Sigmatropic Rearrangements of Charged Systems
Linear Free-Energy Relationships / 5:
The Hammett Equation
Separation of Polar, Resonance, and Steric Effects
Migrations to Electron-Deficient Centers / 6:
Migrations to Electron-Deficient Carbons
The Nature of the Migrating Groups
Rearrangements of Carbocations. Long-Distance Migrations
Migrations to Nitrogen and Oxygen
Neighboring-Group Effects and Nonclassical Cations / 7:
Substitution with Retention of Configuration
Cyclic Halonium Ions
Sulfur and Nitrogen Mustards
Trans/Cis Rate Ratios. Neighboring Acetoxy Groups
Cyclic Phenonium Ions. Double Bonds as Neighboring Groups
Cyclopropane Rings as Neighboring Groups
Neighboring Alkyl Groups: 2-Norbornyl Cations
Rearrangements of Carbanions and Free Radicals / 8:
Carbanion Rearrangements
Rearrangements of Free Radicals
Carbenes, Carbenoids, and Nitrenes / 9:
Formation of Carbenes and Nitrenes
Singlet and Triplet Carbenes. Additions to Double Bonds
Insertion Reactions. Rearrangements
Six-Membered Heterocyclic Rings / 10:
Aromatic Heterocyclic Molecules
Reactions of Pyridine and Its Analogs
Synthesis of Six-Membered Heterocyclic Rings
Five-Membered Heterocyclic Rings / 11:
Electron Delocalization and Aromaticity
Reactions of Five-Membered Heterocyclic Rings
Synthesis of Five-Membered Heteroaromatic Rings
Index
Introduction / 1:
Mechanisms of Reactions. Electron Delocalization and Resonance
Electrocyclic Reactions / 2:
3.

図書

図書
Gokel, George W., 1946- ; Dean, John Aurie, 1921-
出版情報: New York : McGraw-Hill Education , London : McGraw-Hill[m], 2003  800 p ; 23cm
所蔵情報: loading…
4.

図書

図書
Francis A. Carey and Richard J. Sundberg
出版情報: New York : Kluwer Academic/Plenum Publishers, c2000  xii, 823 p. ; 26 cm
シリーズ名: Advanced organic chemistry / Francis A. Carey and Richard J. Sundberg ; pt. A
所蔵情報: loading…
目次情報: 続きを見る
Chemical Bonding and Structure / Chapter 1.:
Valence Bond Description of Chemical Bonding / 1.1.:
Orbital Hybridization / 1.1.1.:
Resonance / 1.1.2.:
Bond Energy, Polarity, and Polarizability / 1.2.:
Bond Energies / 1.2.1.:
Electronegativity and Polarity / 1.2.2.:
Polarizability--Hardness and Softness / 1.2.3.:
Molecular Orbital Theory and Methods / 1.3.:
Huckel Molecular Orbital Theory / 1.4.:
Qualitative Application of Molecular Orbital Theory / 1.5.:
Application of Molecular Orbital Theory to Reactivity / 1.6.:
Interactions between [sigma] and [pi] Systems--Hyperconjugation / 1.7.:
Other Quantitative Descriptions of Molecular Structure / 1.8.:
Atoms in Molecules / 1.8.1.:
Electron Density Functionals / 1.8.2.:
Modern Valence Bond Approaches / 1.8.3.:
General References
Problems
Principles of Stereochemistry / Chapter 2.:
Enantiomeric Relationships / 2.1.:
Diastereomeric Relationships / 2.2.:
Stereochemistry of Reactions / 2.3.:
Prochiral Relationships / 2.4.:
Conformational, Steric, and Stereoelectronic Effects / Chapter 3.:
Strain and Molecular Mechanics / 3.1.:
Conformations of Acyclic Molecules / 3.2.:
Conformations of Cyclohexane Derivatives / 3.3.:
Carbocyclic Rings Other Than Six-Membered / 3.4.:
The Effect of Heteroatoms on Conformational Equilibria / 3.5.:
The Anomeric Effect / 3.6.:
Conformational Effects on Reactivity / 3.7.:
Angle Strain and Its Effect on Reactivity / 3.8.:
Relationships between Ring Size and Rate of Cyclization / 3.9.:
Torsional and Stereoelectronic Effects on Reactivity / 3.10.:
Study and Description of Organic Reaction Mechanismns / Chapter 4.:
Thermodynamic Data / 4.1.:
Kinetic Data / 4.2.:
Substituent Effects and Linear Free-Energy Relationships / 4.3.:
Basic Mechanistic Concepts: Kinetic versus Thermodynamic Control, Hammond's Postulate, the Curtin-Hammett Principle / 4.4.:
Kinetic versus Thermodynamic Control / 4.4.1.:
Hammond's Postulate / 4.4.2.:
The Curtin-Hammett Principle / 4.4.3.:
Isotope Effects / 4.5.:
Isotopes in Labeling Experiments / 4.6.:
Characterization of Reaction Intermediates / 4.7.:
Catalysis by Bronsted Acids and Bases / 4.8.:
Lewis Acid Catalysis / 4.9.:
Solvent Effects / 4.10.:
Substituent Effects in the Gas Phase / 4.11.:
Stereochemistry / 4.12.:
Conclusion / 4.13.:
Nucleophilic Substitution / Chapter 5.:
The Limiting Cases--Substitution by the Ionization (S[subscript N]1) Mechanism / 5.1.:
The Limiting Cases--Substitution by the Direct Displacement (S[subscript N]2) Mechanism / 5.2.:
Detailed Mechanistic Description and Borderline Mechanisms / 5.3.:
Carbocations / 5.4.:
Nucleophilicity and Solvent Effects / 5.5.:
Leaving-Group Effects / 5.6.:
Steric and Strain Effects on Substitution and Ionization Rates / 5.7.:
Effects of Conjugation on Reactivity / 5.8.:
Stereochemistry of Nucleophilic Substitution / 5.9.:
Neighboring-Group Participation / 5.10.:
Mechanism of Rearrangements of Carbocations / 5.11.:
The Norbornyl Cation and Other Nonclassical Carbocations / 5.12.:
Polar Addition and Elimination Reactions / Chapter 6.:
Addition of Hydrogen Halides to Alkenes / 6.1.:
Acid-Catalyzed Hydration and Related Addition Reactions / 6.2.:
Addition of Halogens / 6.3.:
Electrophilic Additions Involving Metal Ions / 6.4.:
Additions to Alkynes and Allenes / 6.5.:
The E2, E1, and E1cb Mechanisms / 6.6.:
Regiochemistry of Elimination Reactions / 6.7.:
Stereochemistry of E2 Elimination Reactions / 6.8.:
Dehydration of Alcohols / 6.9.:
Eliminations Not Involving C--H Bonds / 6.10.:
Carbanions and Other Nucleophilic Carbon Species / Chapter 7.:
Acidity of Hydrocarbons / 7.1.:
Carbanions Stabilized by Functional Groups / 7.2.:
Enols and Enamines / 7.3.:
Carbanions as Nucleophiles in S[subscript N]2 Reactions / 7.4.:
Reactions of Carbonyl Compounds / Chapter 8.:
Hydration and Addition of Alcohols to Aldehydes and Ketones / 8.1.:
Addition-Elimination Reactions of Ketones and Aldehydes / 8.2.:
Addition of Carbon Nucleophiles to Carbonyl Groups / 8.3.:
Reactivity of Carbonyl Compounds toward Addition / 8.4.:
Ester Hydrolysis / 8.5.:
Aminolysis of Esters / 8.6.:
Amide Hydrolysis / 8.7.:
Acylation of Nucleophilic Oxygen and nitrogen Groups / 8.8.:
Intramolecular Catalysis / 8.9.:
Aromaticity / Chapter 9.:
The Concept of Aromaticity / 9.1.:
The Annulenes / 9.2.:
Aromaticity in Charged Rings / 9.3.:
Homoaromaticity / 9.4.:
Fused-Ring Systems / 9.5.:
Heterocyclic Rings / 9.6.:
Aromatic Substitution / Chapter 10.:
Electrophilic Aromatic Substitution Reactions / 10.1.:
Structure-Reactivity Relationships / 10.2.:
Reactivity of Polycyclic and Heteroaromatic Compounds / 10.3.:
Specific Substitution Mechanisms / 10.4.:
Nitration / 10.4.1.:
Halogenation / 10.4.2.:
Protonation and Hydrogen Exchange / 10.4.3.:
Friedel-Crafts Alkylation and Related Reactions / 10.4.4.:
Friedel-Crafts Acylation and Related Reactions / 10.4.5.:
Coupling with Diazonium Compounds / 10.4.6.:
Substitution of Groups Other Than Hydrogen / 10.4.7.:
Nucleophilic Aromatic Substitution by the Addition-Elimination Mechanism / 10.5.:
Nucleophilic Aromatic Substitution by the Elimination-Addition Mechanism / 10.6.:
Concerted Pericyclic Reactions / Chapter 11.:
Electrocyclic Reactions / 11.1.:
Sigmatropic Rearrangements / 11.2.:
Cycloaddition Reactions / 11.3.:
Free-Radical Reactions / Chapter 12.:
Generation and Characterization of Free Radicals / 12.1.:
Background / 12.1.1.:
Stable and Persistent Free Radicals / 12.1.2.:
Direct Detection of Radical Intermediates / 12.1.3.:
Sources of Free Radicals / 12.1.4.:
Structural and Stereochemical Properties of Radical Intermediates / 12.1.5.:
Charged Radical Species / 12.1.6.:
Characteristics of Reaction Mechanisms Involving Radical Intermediates / 12.2.:
Kinetic Characteristics of Chain Reactions / 12.2.1.:
Free-Radical Substitution Reactions / 12.2.2.:
Oxidation / 12.3.1.:
Free-Radical Addition Reactions / 12.4.:
Addition of Hydrogen Halides / 12.4.1.:
Addition of Halomethanes / 12.4.2.:
Addition of Other Carbon Radicals / 12.4.3.:
Addition of Thiols and Thiocarboxylic Acids / 12.4.4.:
Halogen, Sulfur, and Selenium Group Transfer Reactions / 12.5.:
Intramolecular Free-Radical Reactions / 12.6.:
Rearrangement and Fragmentation Reactions of Free Radicals / 12.7.:
Rearrangement Reactions / 12.7.1.:
Fragmentation / 12.7.2.:
Electron-Transfer Reactions Involving Transition-Metal Ions / 12.8.:
S[subscript RN]1 Substitution Processes / 12.9.:
Photochemistry / Chapter 13.:
General Principles / 13.1.:
Orbital Symmetry Considerations Related to Photochemical Reactions / 13.2.:
Photochemistry of Carbonyl Compounds / 13.3.:
Photochemistry of Alkenes and Dienes / 13.4.:
Photochemistry of Aromatic Compounds / 13.5.:
References to Problems
Index
Chemical Bonding and Structure / Chapter 1.:
Valence Bond Description of Chemical Bonding / 1.1.:
Orbital Hybridization / 1.1.1.:
5.

図書

図書
Maitland Jones, Jr
出版情報: New York : W.W. Norton, c2005  xxxvi, 1323, 62 p. ; 27 cm.
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Atoms and Molecules; Orbitals and Bonding / Chapter 1.:
Atoms and Atomic Orbitals / 1.1:
Covalent Bonds and Lewis Structures / 1.2:
Introduction to Resonance Forms / 1.3:
More on Atomic Orbitals / 1.4:
The Covalent Bond: Hydrogen (H[subscript 2]) / 1.5:
Bond Strength / 1.6:
An Introduction to Reactivity: Acids and Bases / 1.7:
Quantum Mechanics and Babies / 1.8:
Summary / 1.9:
Additional Problems / 1.10:
Alkanes / Chapter 2.:
The Structure of Methane (CH[subscript 4]) / 2.1:
Hybrid Orbitals: Making a Better Model for Methane / 2.2:
Derivatives of Methane: Methyl (CH[subscript 3]) and Methyl Compounds (CH[subscript 3]X) / 2.3:
The Methyl Cation ([superscript +]CH[subscript 3]), Anion ([superscript -]:CH[subscript 3]), and Radical (.CH[subscript 3]) / 2.4:
Ethane (C[subscript 2]H[subscript 6]), Ethyl Compounds (C[subscript 2]H[subscript 5]X), and Newman Projections / 2.5:
Structure Drawings / 2.6:
Propane (C[subscript 3]H[subscript 8]) and Propyl Compounds (C[subscript 3]H[subscript 7]X) / 2.7:
Butanes (C[subscript 4]H[subscript 10]), Butyl Compounds (C[subscript 4]H[subscript 9]X), and Conformational Analysis / 2.8:
Pentanes (C[subscript 5]H[subscript 12]) and Pentyl Compounds (C[subscript 5]H[subscript 11]X) / 2.9:
The Naming Conventions for Alkanes / 2.10:
Writing Isomers / 2.11:
Rings / 2.12:
Physical Properties of Alkanes and Cycloalkanes / 2.13:
[superscript 13]C Nuclear Magnetic Resonance Spectroscopy / 2.14:
Alkanes as Biomolecules / 2.15:
Alkenes and Alkynes / 2.16:
Alkenes: Structure and Bonding / 3.1:
Derivatives, Isomers, and Names of Alkenes / 3.2:
Nomenclature / 3.3:
The Cahn-Ingold-Prelog Priority System / 3.4:
Relative Stability of Alkenes: Heats of Formation / 3.5:
Double Bonds in Rings / 3.6:
Physical Properties of Alkenes / 3.7:
Alkynes: Structure and Bonding / 3.8:
Relative Stability of Alkynes: Heats of Formation / 3.9:
Derivatives and Isomers of Alkynes / 3.10:
Triple Bonds in Rings / 3.11:
Physical Properties of Alkynes / 3.12:
Acidity of Alkynes / 3.13:
Molecular Formulas and Degrees of Unsaturation / 3.14:
Alkenes and Biology / 3.15:
Stereochemistry / 3.16:
Chirality / 4.1:
Properties of Enantiomers: Physical Differences / 4.2:
The (R/S) Convention / 4.3:
The Physical Basis of Optical Activity / 4.4:
Properties of Enantiomers: Chemical Differences / 4.5:
Interconversion of Enantiomers by Mobile Equilibria: Gauche Butane / 4.6:
Diastereomers: Molecules Containing More Than One Stereogenic Atom / 4.7:
Physical Properties of Diastereomers: Optical Resolution / 4.8:
Determination of Absolute Configuration (R or S) / 4.9:
Stereochemical Analysis of Ring Compounds (a Beginning) / 4.10:
Review of Isomerism / 4.11:
Chirality without "Four Different Groups Attached to One Carbon" / 4.12:
Stereochemistry in the Real World: Thalidomide; The Consequences of Being Wrong-Handed / 4.13:
Rings and Strain / 4.14:
Quantitative Evaluation of Strain Energy / 5.2:
Stereochemistry of Cyclohexane: Conformational Analysis / 5.3:
Monosubstituted Cyclohexanes / 5.4:
Disubstituted Ring Compounds / 5.5:
Bicyclic Compounds / 5.6:
Polycyclic Systems / 5.7:
Adamantanes in Materials and Biology / 5.8:
Substitution and Elimination Reactions: The S[subscript N]2, S[subscript N]1, E2, and E1 Reactions / 5.9:
Alkyl Halides: Nomenclature and Structure / 6.1:
Reaction Mechanism: Br[o slash]nsted Acids and Bases / 6.2:
The Arrow Formalism / 6.3:
Lewis Acids and Bases / 6.4:
HOMO-LUMO Interactions / 6.5:
Reactions of Alkyl Halides: The Substitution Reaction / 6.6:
Substitution, Nucleophilic, Bimolecular: The S[subscript N]2 Reaction / 6.7:
The S[subscript N]2 Reaction in Biochemistry / 6.8:
Substitution, Nucleophilic, Unimolecular: The S[subscript N]1 Reaction / 6.9:
Overview of the S[subscript N]2 and S[subscript N]1 Reactions / 6.10:
The Unimolecular Elimination Reaction: E1 / 6.11:
The Bimolecular Elimination Reaction: E2 / 6.12:
What Can We Do with These Reactions? Synthetic Utility / 6.13:
Equilibria / 6.14:
Equilibrium / 7.1:
Gibbs Standard Free Energy Change / 7.2:
Rates of Chemical Reactions / 7.3:
Rate Constant / 7.4:
Energy Barriers in Chemical Reactions: The Transition State and Activation Energy / 7.5:
Reaction Mechanism / 7.6:
The Hammond Postulate: Thermodynamics versus Kinetics / 7.7:
Enzymes and Reaction Rates / 7.8:
Additions to Alkenes 1 / 7.9:
Electronegativity / 8.1:
Mechanism of the Addition of Hydrogen Halides to Alkenes / 8.2:
Regiochemistry / 8.3:
Resonance Effects / 8.4:
Review of Resonance: How to Write Resonance Forms / 8.5:
Resonance and the Stability of Carbocations / 8.6:
Inductive Effects on Addition Reactions / 8.7:
H--X Addition Reactions: Hydration / 8.8:
Dimerization and Polymerization of Alkenes / 8.9:
Hydroboration / 8.10:
Utility of Hydroboration: Alcohol Formation / 8.11:
Rearrangements During H--X Addition to Alkenes / 8.12:
Rearrangements in Biological Processes / 8.13:
Additions to Alkenes 2; Additions to Alkynes / 8.14:
Addition of X[subscript 2] Reagents / 9.1:
Hydration Through Mercury Compounds: Oxymercuration / 9.2:
Other Addition Reactions Involving Three-Membered Rings: Oxiranes and Cyclopropanes / 9.3:
Dipolar Addition Reactions / 9.4:
Addition Reactions of Alkynes: H--X Addition / 9.5:
Addition of X[subscript 2] Reagents to Alkynes / 9.6:
Hydration of Alkynes / 9.7:
Hydroboration of Alkynes / 9.8:
Hydrogenation of Alkynes: Syn Hydrogenation / 9.9:
Reduction by Sodium in Ammonia: Anti Hydrogenation / 9.10:
Three-membered Rings in Biochemistry / 9.11:
Radical Reactions / 9.12:
Formation and Simple Reactions of Radicals / 10.1:
Structure of Radicals / 10.2:
Stability of Radicals / 10.3:
Radical Addition to Alkenes / 10.4:
Other Radical Addition Reactions / 10.5:
Radical-Initiated Addition of HBr to Alkynes / 10.6:
Photohalogenation / 10.7:
Allylic Halogenation / 10.8:
Rearrangements (and Nonrearrangements) of Radicals / 10.9:
Radicals in Your Body: Do Free Radicals Age Us? / 10.10:
Dienes and the Allyl System; 2p Orbitals in Conjugation / 10.11:
Allenes: 1,2-Dienes / 11.1:
Related Systems: Ketenes and Cumulenes / 11.2:
Allenes as Intermediates in the Isomerization of Acetylenes / 11.3:
1,3-Dienes / 11.4:
The Physical Consequences of Conjugation / 11.5:
Molecular Orbitals and Ultraviolet Spectroscopy / 11.6:
Polyenes and Vision / 11.7:
The Chemical Consequences of Conjugation: Addition Reactions of Dienes / 11.8:
Thermodynamic and Kinetic Control of Addition Reactions / 11.9:
The Allyl System: Three Overlapping 2p Orbitals / 11.10:
The Allyl Cation: S[subscript N]1 Solvolysis of Allylic Halides / 11.11:
S[subscript N]2 Reactions of Allylic Halides / 11.12:
The Allyl Radical / 11.13:
The Allyl Anion / 11.14:
The Diels-Alder Reaction of Dienes / 11.15:
Biosynthesis of Terpenes / 11.16:
Steroid Biosynthesis / 11.17:
Conjugation and Aromaticity / 11.18:
The Structure of Benzene / 12.1:
A Resonance Picture of Benzene / 12.2:
The Molecular Orbital Picture of Benzene / 12.3:
Quantitative Evaluations of Resonance Stabilization (Delocalization Energy) in Benzene / 12.4:
A Generalization of Aromaticity: Huckel's 4n + 2 Rule / 12.5:
Annulenes / 12.6:
Substituted Benzenes / 12.7:
Physical Properties of Substituted Benzenes / 12.8:
Heterobenzenes and other Heterocyclic Aromatic Compounds / 12.9:
Polynuclear Aromatic Compounds / 12.10:
Introduction to the Chemistry of Benzene / 12.11:
The Benzyl Group and Its Reactivity: Activation of the Adjacent (Benzyl) Position by Benzene Rings / 12.12:
The Bio-downside: The Mechanism of Carcinogenesis by Polycyclic Aromatic Compounds / 12.13:
Substitution Reactions of Aromatic Compounds / 12.14:
Addition Reactions of Benzenes to Give Nonaromatic Compounds: Hydrogenation / 13.1:
Diels-Alder Reactions / 13.2:
Other Addition Reactions / 13.3:
Substitution Reactions of Benzene / 13.4:
Electrophilic Aromatic Substitution / 13.5:
The Friedel-Crafts Alkylation Reaction / 13.6:
Friedel-Crafts Acylation / 13.7:
Stable Carbocations in "Superacid" / 13.8:
Summary of Simple Aromatic Substitution: What We Can Do So Far / 13.9:
Disubstituted Benzenes: Ortho, Meta, and Para Substitution / 13.10:
Inductive Effects in Aromatic Substitution / 13.11:
Polysubstitution of Aromatic Compounds and Synthesis of Multiply Substituted Benzenes / 13.12:
Nucleophilic Aromatic Substitution / 13.13:
Benzyne / 13.14:
Biological Synthesis of Aromatic Rings: Phenylalanine / 13.15:
Analytical Chemistry / 13.16:
Chromatography / 14.1:
Mass Spectrometry / 14.2:
Infrared Spectroscopy / 14.3:
Nuclear Magnetic Resonance Spectroscopy / 14.4:
Survey of NMR Spectra of Organic Molecules / 14.5:
Spin-Spin Coupling: The Coupling Constant, J / 14.6:
More Complicated Spectra / 14.7:
Decoupled Spectra / 14.8:
Nuclear Magnetic Resonance Spectra of Other Nuclei / 14.9:
Determination of the Structure of a Complex Biomolecule: Maitotoxin / 14.10:
Dynamic NMR / 14.11:
Carbonyl Chemistry 1: Addition Reactions / 14.12:
Structure of the Carbon-Oxygen Double Bond / 15.1:
Nomenclature of Carbonyl Compounds / 15.2:
Physical Properties of Carbonyl Compounds / 15.3:
Spectroscopy of Carbonyl Compounds / 15.4:
Reactions of Carbonyl Compounds: Simple Reversible Additions / 15.5:
Equilibrium in Addition Reactions / 15.6:
Other Addition Reactions: Additions of Cyanide and Bisulfite / 15.7:
Addition Reactions Followed by Water Loss: Acetal and Ketal Formation / 15.8:
Addition Reactions of Nitrogen Bases: Imine and Enamine Formation / 15.9:
Organometallic Reagents / 15.10:
Irreversible Addition Reactions / 15.11:
Oxidation of Alcohols to Carbonyl Compounds / 15.12:
The Wittig Reaction / 15.13:
Biological Oxidation / 15.14:
The Chemistry of Alcohols Summarized and Extended: Glycols, Ethers, and Related Sulfur Compounds / 15.15:
Structure of Alcohols / 16.1:
Physical Properties of Alcohols / 16.3:
Spectroscopic Properties of Alcohols / 16.4:
Acid and Base Properties of Alcohols / 16.5:
Reactions of Alcohols / 16.6:
Syntheses of Alcohols / 16.7:
Dialcohols: Diols or Glycols / 16.8:
Ethers / 16.9:
Syntheses of Ethers / 16.10:
Reactions of Ethers / 16.11:
Thiols (Mercaptans) and Thioethers (Sulfides) / 16.12:
Reactions and Syntheses of Thiols and Sulfides / 16.13:
Crown Ethers / 16.14:
Carbonyl Chemistry 2: Reactions at the [alpha]-Position / 16.15:
Aldehydes and Ketones Are Weak Bronsted Acids / 17.1:
Reactions of Enols and Enolates / 17.2:
Condensation Reactions of Carbonyl Compounds: The Aldol Condensation / 17.3:
Reactions Related to the Aldol Condensation / 17.4:
Problem Solving / 17.5:
Carbonyl Compounds without [alpha]-Hydrogens: Magid's Third Rule / 17.6:
The Aldol Condensation in the Real World: Introduction to Modern Synthesis / 17.7:
Carboxylic Acids / 17.8:
Nomenclature and Properties of Carboxylic Acids / 18.1:
Structure of Carboxylic Acids / 18.2:
Infrared and Nuclear Magnetic Resonance Spectra of Carboxylic Acids / 18.3:
Acidity and Basicity of Carboxylic Acids / 18.4:
Reactions of Carboxylic Acids / 18.5:
Reactivity of Carboxylic Acids at the [alpha]-Position / 18.6:
Syntheses of Carboxylic Acids / 18.7:
Fatty Acids / 18.8:
Derivatives of Carboxylic Acids: Acyl Compounds / 18.9:
Physical Properties and Structures of Acyl Compounds / 19.1:
Spectral Characteristics / 19.3:
Reactions of Acid Chlorides / 19.4:
Reactions of Anhydrides / 19.5:
Addition-Elimination Reactions of Esters / 19.6:
Reactions of Amides / 19.7:
Reactions of Nitriles / 19.8:
Reactions of Ketenes / 19.9:
Enolate Chemistry of Esters: The Claisen and Related Condensation Reactions / 19.10:
Variations on the Claisen Condensation / 19.11:
Forward and Reverse Claisen Condensations in Biology / 19.12:
Reactions of [beta]-Keto Esters / 19.13:
Complicated "Fun in Base" Problems / 19.14:
New Synthetic Routes to Acyl Compounds / 19.15:
Thermal Elimination Reactions of Esters / 19.16:
Introduction to the Chemistry of Nitrogen-Containing Compounds: Amines / 19.17:
Structure and Physical Properties of Amines / 20.1:
Spectroscopic Properties of Amines / 20.3:
Acid and Base Properties of Amines / 20.4:
Reactions of Amines / 20.5:
Syntheses of Amines / 20.6:
Alkaloids / 20.7:
Synthesis of Quinine / 20.8:
Phase-Transfer Catalysis: Ammonium Ions in Synthesis / 20.9:
Aromatic Transition States: Orbital Symmetry / 20.10:
Concerted Reactions / 21.1:
Electrocyclic Reactions / 21.2:
Cycloaddition Reactions / 21.3:
Sigmatropic Shift Reactions / 21.4:
Sigmatropic Shifts of Carbon / 21.5:
Other Sigmatropic Shifts / 21.6:
A Biological Cope Rearrangement / 21.7:
A Molecule with a Fluxional Structure / 21.8:
Introduction to Polyfunctional Compounds: Intramolecular Reactions and Neighboring Group Participation / 21.9:
Heteroatoms as Neighboring Groups / 22.1:
Neighboring [pi] Systems / 22.2:
Single Bonds as Neighboring Groups / 22.3:
Coates' Cation / 22.4:
A Family of Concerted Rearrangements of Acyl Compounds / 22.5:
Polyfunctional Natural Products: Carbohydrates / 22.6:
Nomenclature and Structure / 23.1:
Reactions of Sugars / 23.2:
The Ring Size in Glucose / 23.3:
The Fischer Determination of the Structure of D-Glucose (and the 15 Other Aldohexoses) / 23.4:
An Introduction to Di- and Polysaccharides / 23.5:
Introduction to the Chemistry of Heterocyclic Molecules / 23.6:
Three-Membered Heterocycles: Oxiranes (Epoxides), Thiiranes (Episulfides), and Aziridines / 24.1:
Four-Membered Heterocycles: Oxetanes, Thietanes, and Azetidines / 24.2:
Five- and Six-Membered Heterocycles / 24.3:
Nonaromatic Heterocycles Containing More Than One Heteroatom / 24.4:
Nitrogen-Containing Aromatic Heterocyclic Compounds / 24.5:
Other Aromatic Heterocycles: Furan and Thiophene / 24.6:
Aromatic Heterocycles Containing More Than One Heteroatom / 24.7:
Two-Ring Heterocycles / 24.8:
Bioactive Heterocycles: Penicillin and Related Antibiotics / 24.9:
Introduction to Amino Acids and Polyamino Acids (Peptides and Proteins) / 24.10:
Amino Acids / 25.1:
Reactions of Amino Acids / 25.2:
Peptide Chemistry / 25.3:
Nucleosides, Nucleotides, and Nucleic Acids / 25.4:
Key Terms / 25.5:
Some Commonly Used Abbreviations
Index
Preface
Introduction
Atoms and Molecules; Orbitals and Bonding / Chapter 1.:
6.

図書

図書
Neil E. Schore
出版情報: New York : W.H. Freeman, c2007  x, 485 p. ; 28 cm
所蔵情報: loading…
7.

図書

図書
Paula Yurkanis Bruice
出版情報: Upper Saddle River : Pearson Prentice Hall, c2007  xxxviii, 1319, 35, 14, 1, 27 p., plates. [3] p. ; 27 cm
所蔵情報: loading…
目次情報: 続きを見る
An Introduction to the Study of Organic Chemistry / Part I:
Electronic Structure and Bonding middot; Acids and Bases / Chapter 1:
The Structure of an Atom / 1.1:
How the Electrons in an Atom are Distributed / 1.2:
Ionic and Covalent Bonds / 1.3:
Ionic Bonds are Formed by the Transfer of Electrons
Covalent Bonds are Formed by Sharing Electrons
Polar Covalent Bonds
How the Structure of a Compound is Represented / 1.4:
Lewis Structures
Kekule Structures
Condensed Structures
Atomic Orbitals / 1.5:
An Introduction to Molecular Orbital Theory / 1.6:
How Single Bonds are Formed in Organic Compounds / 1.7:
The Bonds in Methane
An Introduction to the Study of Organic Chemistry / Part I:
Electronic Structure and Bonding middot; Acids and Bases / Chapter 1:
The Structure of an Atom / 1.1:
8.

図書

図書
Michael B. Smith, Jerry March
出版情報: Hoboken, N.J. : John Wiley & Sons, c2007  xx, 2357 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Biographical Note
Abbreviations
Localized Chemical Bonding / Part 1:
Delocalized Chemical Bonding / Chapter 2:
Bonding Weaker than Covalent / Chapter 3:
Stereochemistry / Chapter 4:
Carbocations, Carbanions, Free Radicals, Carbenes, and Nitrenes / Chapter 5:
Mechanisms and Methods of Determining Them / Chapter 6:
Irradiation Processes in Organic Chemistry / Chapter 7:
Acids and Bases / Chapter 8:
Effects of Structure on Reactivity / Chapter 9:
Aliphatic Substitution: Nucleophilic and Organometallic / Part 2:
Aromatic Substituion, Electrophilic / Chapter 11:
Aliphatic, Alkenyl, and Alkynyl Substitution, Electrophilic and Organometallic / Chapter 12:
Aromatic Substitution, Nucleophilic and Organometallic / Chapter 13:
Substitution Reactions: Free Radicals / Chapter 14:
Addition to Carbon-Carbon Multiple Bonds / Chapter 15:
Addition to Carbon-Hetero Multiple Bonds / Chapter 16:
Eliminations / Chapter 17:
Rearrangements / Chapter 18:
Oxidations and Reductions / Chapter 19:
The Literature of Organic Chemistry / Appendix A:
Classification of Reactions by Type of Compound Synthesized / Appendix B:
Indexes
Author Index
Subject Index
Preface
Biographical Note
Abbreviations
9.

図書

図書
edited by Bernd Plietker
出版情報: Weinheim : Wiley-VCH, c2008  xv, 279 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
Introduction / 1.1:
General Aspects of Iron Complex Chemistry / 1.2:
Electronic Configuration, Oxidation States, Structures / 1.2.1:
Fundamental Reactions / 1.2.2:
Organoiron Complexes and Their Applications / 1.3:
Binary Carbonyl-Iron Complexes / 1.3.1:
Alkene-Iron Complexes / 1.3.2:
Allyl- and Trimethylenemethane-Iron Complexes / 1.3.3:
Acyl- and Carbene-Iron Complexes / 1.3.4:
Diene-Iron Complexes / 1.3.5:
Ferrocenes / 1.3.6:
Arene-Iron Complexes / 1.3.7:
Catalysis Using Iron Complexes / 1.4:
Iron Complexes as Substrates and/or Products in Catalytic Reactions / 1.4.1:
Iron Complexes as Ligands for Other Transition Metal Catalysts / 1.4.2:
Iron Complexes as Catalytically Active Species / 1.4.3:
References
Iron Catalysis in Biological and Biomimetic Reactions / 2:
Non-heme Iron Catalysts in Biological and Biomimetic Transformations / Jens Muller2.1:
Introduction: Iron in Biological Processes / 2.1.1:
Non-heme Iron Proteins / 2.1.2:
Mononuclear Iron Sites / 2.1.2.1:
Dinuclear Iron Sites / 2.1.2.2:
Summary / 2.1.3:
Organic Reactions Catalyzed by Heme Proteins / Martin Broring2.2:
Classification and General Reactivity Schemes of Heme Proteins Used in Organic Synthesis / 2.2.1:
Organic Reactions Catalyzed by Cytochromes P450 / 2.2.2:
Organic Reactions Catalyzed by Heme Peroxidases / 2.2.3:
Dehydrogenations ("Peroxidase Reactivity") / 2.2.3.1:
Sulfoxidations ("Peroxygenase Reactivity") / 2.2.3.2:
Peroxide Disproportionation ("Catalase Reactivity") / 2.2.3.3:
Halogenation ("Haloperoxidase Reactivity") / 2.2.3.4:
Epoxidations ("Monoxygenase Activity") / 2.2.3.5:
Iron-catalyzed Oxidation Reactions / 3:
Oxidations of C-H and C=C Bonds / Agathe Christine Mayer ; Carsten Bolm3.1:
Gif Chemistry / 3.1.1:
Alkene Epoxidation / 3.1.2:
Alkene Dihydroxylation / 3.1.3:
The Kharasch Reaction and Related Reactions / 3.1.4:
Aziridination and Diamination / 3.1.5:
Oxidative Allylic Oxygenation and Amination / Sabine Laschat ; Volker Rabe ; Angelika Baro3.2:
Iron-catalyzed Allylic Oxidations / 3.2.1:
Simple Iron Salts / 3.2.2.1:
Fe(III) Complexes with Bidentate Ligands / 3.2.2.2:
Fe[superscript 3+]/Fe[superscript 2+] Porphyrin and Phthalocyanine Complexes / 3.2.2.3:
Iron(III) Salen Complexes / 3.2.2.4:
Non-heme Iron Complexes with Tetra- and Pentadentate Ligands / 3.2.2.5:
Oxidative Allylic Aminations / 3.2.3:
Conclusion / 3.2.4:
Oxidation of Heteroatoms (N and S) / Olga Garcia Mancheno3.3:
Oxidation of Nitrogen Compounds / 3.3.1:
Oxidation of Hydroxylamines to Nitroso Compounds / 3.3.1.1:
Oxidation of Arylamines / 3.3.1.2:
Other N-Oxidations / 3.3.1.3:
Oxidation of Sulfur Compounds / 3.3.2:
Oxidation of Thiols to Disulfides / 3.3.2.1:
Oxidation of Sulfides / 3.3.2.2:
Oxidative Imination of Sulfur Compounds / 3.3.2.3:
Reduction of Unsaturated Compounds with Homogeneous Iron Catalysts / Stephan Enthaler ; Kathrin Junge ; Matthias Beller4:
Hydrogenation of Carbonyl Compounds / 4.1:
Hydrogenation of Carbon-Carbon Double Bonds / 4.3:
Hydrogenation of Imines and Similar Compounds / 4.4:
Catalytic Hydrosilylations / 4.5:
Iron-catalyzed Cross-coupling Reactions / Andreas Leitner4.6:
Cross-coupling Reactions of Alkenyl Electrophiles / 5.1:
Cross-coupling Reactions of Aryl Electrophiles / 5.3:
Cross-coupling Reactions of Alkyl Electrophiles / 5.4:
Cross-coupling Reactions of Acyl Electrophiles / 5.5:
Iron-catalyzed Carbometallation Reactions / 5.6:
Iron-catalyzed Aromatic Substitutions / Jette Kischel ; Kristin Mertins ; Irina Jovel ; Alexander Zapf5.7:
General Aspects / 6.1:
Electrophilic Aromatic Substitutions / 6.2:
Halogenation Reactions / 6.2.1:
Nitration Reactions / 6.2.2:
Sulfonylation Reactions / 6.2.3:
Friedel-Crafts Acylations / 6.2.4:
Friedel-Crafts Alkylations / 6.2.5:
Alkylation with Alcohols, Ethers and Esters / 6.2.5.1:
Alkylation with Alkenes / 6.2.5.2:
Nucleophilic Aromatic Substitutions / 6.3:
Iron-catalyzed Substitution Reactions / Bernd Plietker7:
Iron-catalyzed Nucleophilic Substitutions / 7.1:
Nucleophilic Substitutions of Non-activated C-X Bonds / 7.2.1:
Nucleophilic Substitutions Using Lewis Acidic Fe Catalysts / 7.2.1.1:
Substitutions Catalyzed by Ferrate Complexes / 7.2.1.3:
Nucleophilic Substitution of Allylic and Propargylic C-X Bonds / 7.2.2:
Reactions Catalyzed by Lewis Acidic Fe Salts / 7.2.2.1:
Nucleophilic Substitutions Involving Ferrates / 7.2.2.2:
Addition and Conjugate Addition Reactions to Carbonyl Compounds / Jens Christoffers ; Herbert Frey ; Anna Rosiak7.3:
Additions to Aldehydes and Ketones / 8.1:
Oxygen Nucleophiles / 8.2.1:
Carbon Nucleophiles / 8.2.2:
Additions to Imines and Iminium Ions / 8.3:
Additions to Carboxylic Acids and Their Derivatives / 8.4:
Conjugate Addition to [alpha],[beta]-Unsaturated Carbonyl Compounds / 8.4.1:
Michael Reactions / 8.5.1:
Vinylogous Michael Reactions / 8.5.1.2:
Asymmetric Michael Reactions / 8.5.1.3:
Michael Reactions in Ionic Liquids and Heterogeneous Catalysis / 8.5.1.4:
Nitrogen Nucleophiles / 8.5.2:
Synthesis of Heterocycles / 8.6:
Pyridine and Quinoline Derivatives / 8.6.1:
Pyrimidine and Pyrazine Derivatives / 8.6.2:
Benzo- and Dibenzopyrans / 8.6.3:
Iron-catalyzed Cycloadditions and Ring Expansion Reactions / Gerhard Hilt ; Judith Janikowski9:
Cycloisomerization and Alder-Ene Reaction / 9.1:
[2+1]-Cycloadditions / 9.3:
Iron-catalyzed Aziridine Formation / 9.3.1:
Iron-catalyzed Epoxide Formation / 9.3.2:
Iron-catalyzed Cyclopropane Formation / 9.3.3:
[2+2]-Cycloaddition / 9.4:
[4+1]-Cycloadditions / 9.5:
[4+2]-Cycloadditions / 9.6:
Diels-Alder Reactions with Normal Electron Demand / 9.6.1:
Diels-Alder Reactions with Neutral Electron Demand / 9.6.2:
Diels-Alder Reactions with Inverse Electron Demand / 9.6.3:
Cyclotrimerization / 9.7:
[3+2]-Cycloadditions / 9.8:
[3+3]-Cycloadditions / 9.9:
Ring Expansion Reactions / 9.10:
Index / 9.11:
Preface
List of Contributors
Iron Complexes in Organic Chemistry / Ingmar Bauer ; Hans-Joachim Knolker1:
10.

図書

図書
Zerong Wang
出版情報: Hoboken, N.J. : John Wiley & Sons, c2009  3 v. (xlix, 3661 p.) ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Acknowledgments
Autobiography
Chemical Abbreviations
Abnormal Claisen Rearrangement / Part 1:
Acetoacetic Ester Condensation / 2:
Acetoacetic Ester Synthesis / 3:
Acyloin Condensation / 4:
Acyloin Rearrangement / 5:
Adkins Catalyst / 6:
Ainley and King Synthesis / 7:
Akabori Amino Acid Reaction / 8:
Albright-Goldman Oxidation / 9:
Alder Ene Reaction / 10:
Alder-Rickert Reaction / 11:
Aldol Reaction and Aldol Condensation / 12:
Algar-Flynn-Oyamada (AFO) Reaction / 13:
Alkene Metathesis / 14:
Allan-Robinson Condensation / 15:
Allylic Rearrangement / 16:
Amadori Rearrangement / 17:
Andrussow Process / 18:
Angeli-Remini Reaction / 19:
ANRORC Rearrangement / 20:
Anschutz Anthracene Synthesis / 21:
Appel Reaction / 22:
Arens-Van Dorp Reaction / 23:
Arndt-Eistert Synthesis / 24:
Asinger Reaction / 25:
Aston-Greenburg Rearrangement / 26:
Atherton-Todd Reaction / 27:
Auwers-Skita Rule / 28:
Aza-Claisen Rearrangement / 29:
Baddeley Isomerization / 30:
Baeyer Diarylmethane Synthesis / 31:
Baeyer-Drewson Reaction / 32:
Baeyer Indole Synthesis / 33:
Baeyer Oxindole Synthesis / 34:
Baeyer Pyridine Synthesis / 35:
Baeyer-Villiger Oxidation / 36:
Bailey Peptide Synthesis / 37:
Bakelite Process / 38:
Baker-Ollis Sydnones Synthesis / 39:
Baker-Venkataraman Rearrangement / 40:
Ball-Goodwin-Morton Oxidation / 41:
Bally-Scholl Reaction / 42:
Balsohn Alkylation / 43:
Balz-Schiemann Reaction / 44:
Bamberger Rearrangement / 45:
Bamford-Stevens Reaction / 46:
Barbier Reaction / 47:
Barbier-Wieland Degradation / 48:
Bardhan Sengupta Synthesis / 49:
Bargellini Condensation / 50:
Bart Reaction / 51:
Bartoli Indole Synthesis / 52:
Barton Decarboxylation / 53:
Barton Deoxygenation / 54:
Barton Reaction / 55:
Barton-Kellogg Olefination / 56:
Barton-Zard Pyrrole Synthesis / 57:
Batcho-Leimgruber Indole Synthesis / 58:
Baudisch Reaction / 59:
Baumann-Fromm Thiophene Synthesis / 60:
Baumgarten ?-Amino Ketone Synthesis / 61:
Baylis-Hillman Reaction / 62:
B´echamp Reduction / 63:
Beckmann Rearrangement and Beckmann Fragmentation / 64:
Bedoukian Halogenation / 65:
B´ehal-Sommelet Rearrangement / 66:
Beirut Reaction / 67:
Bellus-Claisen Rearrangement / 68:
B´enary Reaction / 69:
Benkeser Reduction / 70:
Benzidine Rearrangement / 71:
Benzilic Acid Rearrangement / 72:
Benzoin Condensation / 73:
Bergius Process / 74:
Bergman Cyclization / 75:
Bergmann Degradation / 76:
Bergmann-Stern Azlactone Synthesis / 77:
Bergmann-Zervas Peptide Synthesis / 78:
Bernthsen Reaction / 79:
Berti Olefination / 80:
Bertram-Walbaum Reaction / 81:
Betti Reaction / 82:
Biginelli Reaction / 83:
Birch Reduction / 84:
Birckenbach-Goubeau Halogenation / 85:
Birnbaum-Simonini Reaction / 86:
Bischler Reaction / 87:
Bischler-Napieralski Isoquinoline Synthesis / 88:
Black Rearrangement / 89:
Blaise Ketone Synthesis / 90:
Blaise Reaction / 91:
Blanc Chloromethylation / 92:
Blanc Rule / 93:
Blomquist Cyclic Ketone Synthesis / 94:
Bobbitt Reaction / 95:
Bodroux Amide Synthesis / 96:
Bodroux-Chichibabin Reaction / 97:
B¿oeseken Oxidation / 98:
Bogert-Cook Synthesis / 99:
Bohn-Schmidt Reaction / 100:
Boord Olefin Synthesis / 101:
Borsche-Berkhout Reaction / 102:
Borsche-Drechsel Reaction / 103:
Borsche-Koelsch Cinnoline Synthesis / 104:
Bougault Reaction / 105:
Boulton-Katritzky Rearrangement / 106:
Bourgel Alkyne Synthesis / 107:
Bouveault Aldehyde Synthesis / 108:
Bouveault-Blanc Reduction / 109:
Boyland-Sims Oxidation / 110:
Bradsher Cyclization / 111:
Bradsher Cycloaddition / 112:
Bradsher Pyridinium Salt Synthesis / 113:
Brandi-Guarna Reaction / 114:
Breckpot ?-Lactam Synthesis / 115:
Bredt's Rule / 116:
Brook Rearrangement / 117:
Brown Hydroboration / 118:
Bruckner Isoquinoline Synthesis / 119:
Bucherer Carbazole Synthesis / 120:
Bucherer Reaction / 121:
Bucherer-Bergs Hydantoin Synthesis / 122:
B¿uchner Ring Expansion / 123:
B¿uchner-Curtius-Schlotterbeck Reaction / 124:
Buchwald Indoline Synthesis / 125:
Buchwald-Hartwig Amination / 126:
Burton Trifluoromethylation / 127:
Cadogan-Sundberg Indole Synthesis / 128:
Caglioti Reaction / 129:
Cahours-Hofmann Reaction / 130:
Camps Reaction / 131:
Cannizzaro Reaction / 132:
Carboni-Lindsey Reaction / 133:
Carroll Rearrangement / 134:
Castro Indole Synthesis / 135:
Castro-Stephens Coupling / 136:
Chan Rearrangement / 137:
Chapman Rearrangement / 138:
Chichibabin Amination / 139:
Chichibabin Pyridine Synthesis / 140:
Chretien-Longi Reaction / 141:
Chugaev Reaction / 142:
Ciamician-Dennstedt Reaction / 143:
Claisen Rearrangement / 144:
Claisen-Schmidt Condensation / 145:
Clauson-Kaas Reaction / 146:
Clay-Kinnear-Perren Condensation / 147:
Clayton-Jensen Chlorophosphonation / 148:
Clemmensen Reduction / 149:
Cohen Reductive Lithiation / 150:
Combes Quinoline Synthesis / 151:
Conrad-Limpach Quinoline Synthesis / 152:
Cope Elimination / 153:
Cope Rearrangement / 154:
Corey-Bakshi-Shibata Reduction / 155:
Corey-Chaykovsky Epoxidation / 156:
Corey-Fuchs Reaction / 157:
Corey-Gilman-Ganem Oxidation / 158:
Corey-Kim Oxidation / 159:
Corey-Kwiatkowski Reaction / 160:
Corey-Link Reaction / 161:
Corey-Schmidt Oxidation / 162:
Corey-Suggs Oxidation / 163:
Corey-Winter Olefination / 164:
Cornforth Rearrangement / 165:
Craig 2-Bromo-Pyridine Synthesis / 166:
Cram's Rule / 167:
Criegee Glycol Oxidation / 168:
Criegee Ozonolysis / 169:
Criegee Rearrangement / 170:
Crum-Brown-Gibson Substitution Rule / 171:
Curtius Rearrangement / 172:
[m+n(+. . . )] Cycloaddition / 173:
[2+2] Cycloaddition / 174:
Dakin Reaction / 175:
Dakin-West Reaction / 176:
Danheiser Annulation / 177:
Darzens Condensation / 178:
Darzens Halogenation / 179:
Darzens Olefin Acylation / 180:
Darzens-Nenitzescu Reaction / 181:
Davidson Oxazole Cyclization / 182:
de Mayo Reaction / 183:
Decker-Becker Secondary Amine Synthesis / 184:
Del´epine Reaction / 185:
Demjanov Rearrangement / 186:
Dess-Martin Periodinane Oxidation / 187:
D-Homo Rearrangement / 188:
Dieckmann Condensation / 189:
Diels-Alder Reaction / 190:
Diels-Reese Reaction / 191:
Dienol-Benzene Rearrangement / 192:
Dienone-Phenol Rearrangement / 193:
Dimroth Rearrangement / 194:
Di-Π-Methane Rearrangement / 195:
1,3-Dipolar Cycloaddition / 196:
Doebner Reaction / 197:
Doebner-Miller Reaction / 198:
Doering-Moore-Skattebøl Reaction / 199:
Dotz Benzannulation / 200:
Dowd-Beckwith Ring Expansion / 201:
Duff Reaction / 202:
Dutt-Wormall Reaction / 203:
Eastwood Olefination / 204:
Eder Reaction / 205:
Edman Degradation / 206:
Eglinton Coupling / 207:
Ehrlich-Sachs Reaction / 208:
Einhorn Acylation / 209:
Einhorn-Brunner Reaction / 210:
Eisleb Alkylation / 211:
Elbs Persulfate Oxidation / 212:
Elbs Reaction / 213:
Eltekoff Hydrolysis / 214:
Emde Degradation / 215:
Emmert Reaction / 216:
Erlenmeyer-plochl Azlactone Synthesis / 217:
Eschenmoser Coupling / 218:
Eschenmoser Fragmentation / 219:
Eschweiler-Clarke Methylation / 220:
Ester Pyrolysis / 221:
E´ tard Reaction / 222:
Evans Aldol Reaction / 223:
Favorskii Rearrangement / 224:
Favorskii-Babayan Reaction / 225:
Feist-Benary Reaction / 226:
Fenton Reaction / 227:
Ferrier Reaction / 228:
Ferrier-II Rearrangement / 229:
F´etizon Oxidation / 230:
Finkelstein Reaction / 231:
Fischer Carbene Complexes / 232:
Fischer Indole Synthesis / 233:
Fischer Oxazole Synthesis / 234:
Fischer Phenylhydrazine Synthesis / 235:
Fischer Phenylhydrazone and Osazone Synthesis / 236:
Fischer-Helferich Glycosylation / 237:
Fischer-Hepp Rearrangement / 238:
Fischer-Speier Esterification / 239:
Fischer-Tropsch Synthesis / 240:
Fleming-Tamao Oxidation / 241:
Flood Reaction / 242:
Forster Reaction / 243:
Franchimont Condensation / 244:
Frankland Reaction / 245:
Fr´ater-Seebach Alkylation / 246:
Freund Reaction / 247:
Friedel-Crafts Acylation / 248:
Friedel-Crafts Alkylation / 249:
Friedl¿ander Condensation / 250:
Fries Rearrangement / 251:
Fritsch-Buttenberg-Wiechell Rearrangement / 252:
Fujimoto-Belleau Reaction / 253:
Fukuyama Amine Synthesis / 254:
Fukuyama Indole Synthesis / 255:
F¿urstner Indole Synthesis / 256:
Gabriel Primary Amine Synthesis / 257:
Gabriel Reaction / 258:
Gabriel-Colman Rearrangement / 259:
Garner Aldehyde / 260:
Gassman Indole Synthesis / 261:
Gassman Oxindole Synthesis / 262:
Gassman Reaction / 263:
Gattermann Aldehyde Synthesis / 264:
Gattermann Reaction / 265:
Gattermann-Koch Formylation / 266:
Gewald Reaction / 267:
Ghosez Cyclization / 268:
Ghosez Keteniminium-Olefin Cyclization / 269:
Gibbs-Wohl Naphthalene Oxidation / 270:
Gilman-Cason Ketone Synthesis / 271:
Gilman-Speeter Reaction / 272:
Gomberg Free Radical Reaction / 273:
Gomberg-Bachmann Pinacol Synthesis / 274:
Gomberg-Bachmann Reaction / 275:
Gould-Jacobs Reaction / 276:
Graebe-Ullmann Synthesis / 277:
Gr¿anacher Synthesis / 278:
Gribble Reductive Amination / 279:
Griess Diazotization / 280:
Grignard Degradation / 281:
Grignard Reaction / 282:
Grob Fragmentation / 283:
Grosheintz-Fischer-Reissert Aldehyde Synthesis / 284:
Grundmann Aldehyde Synthesis / 285:
Gryszkiewicz-Trochimowski and Mccombie Fluorination / 286:
Guareschi Reaction / 287:
Guerbet Condensation / 288:
Gutknecht Condensation / 289:
Hajos-Parrish-Eder-Sauer-Wiechert Reaction / Part 2:
Haller-Bauer Cleavage / 291:
Hammick Reaction / 292:
Hansley-Prelog Acyloin Condensation / 293:
Hantzsch Dihydropyridine Synthesis / 294:
Hantzsch Pyrrole Synthesis / 295:
Hantzsch Thiazole Synthesis / 296:
Hass-Bender Oxidation / 297:
Haworth Methylation / 298:
Haworth Synthesis / 299:
Hayashi Rearrangement / 300:
Heck Reaction / 301:
Hegedus Indole Synthesis / 302:
Helferich Condensation / 303:
Helferich Glycosylation / 304:
Hell-Volhard-Zelinsky Reaction / 305:
Hemetsberger Indole Synthesis / 306:
Henkel Reaction / 307:
Henry Reaction / 308:
Herbst-Engel Transamination / 309:
Heron Rearrangement / 310:
Herz Reaction / 311:
Heumann Indigo Process / 312:
Heyns Rearrangement / 313:
Hilbert-Johnson Reaction / 314:
Hinsberg Oxindole Synthesis / 315:
Hinsberg Reaction / 316:
Hinsberg Sulfone Synthesis / 317:
Hinsberg Thiophene Synthesis / 318:
Hiyama Coupling / 319:
Hoch-Campbell Reaction / 320:
Hock Rearrangement / 321:
Hofer-Moest Reaction / 322:
Hofmann Degradation / 323:
Hofmann Elimination / 324:
Hofmann Isonitrile Synthesis / 325:
Hofmann Rule / 326:
Hofmann-Loffler-Freytag Reaction / 327:
Hofmann-Martius Rearrangement / 328:
Hofmann-Sand Reaction / 329:
Hooker Oxidation / 330:
Horenstein-P¿ahlicke Reaction / 331:
Horner-Wadsworth-Emmons Olefination / 332:
Hosomi-Sakurai Allylation / 333:
Houben-Hoesch Reaction / 334:
Houdry Cracking Process / 335:
Huisgen Pyrrole Synthesis / 336:
Hunsdiecker Condensation / 337:
Hunsdiecker Reaction / 338:
Hydroformylation / 339:
Iodolactonization / 340:
Irvine-Purdie Methylation / 341:
Jacobsen Rearrangement / 342:
Jacobsen-Katsuki Epoxidation / 343:
Janovsky Reaction / 344:
Japp-Klingemann Fischer Indole Synthesis / 345:
Japp-Klingemann Reaction / 346:
Japp-Maitland Condensation / 347:
Johnson Orthoester Claisen Rearrangement / 348:
Jones Oxidation / 349:
Jourdan-Ullmann Reaction / 350:
Julia Olefination / 351:
Juli´a-Colonna Asymmetric Epoxidation / 352:
Kabachnik-Fields Reaction / 353:
Kahne Glycosylation / 354:
Keck Allylation / 355:
Keck Macrolactonization / 356:
Kemp Elimination / 357:
Kennedy Oxidative Cyclization / 358:
Kiliani-Fischer Cyanohydrin Synthesis / 359:
Kishner Decomposition / 360:
Knoevenagel Condensation / 361:
Knoevenagel Diazotization Method / 362:
Knorr Pyrazole Synthesis / 363:
Knorr Pyrrole Synthesis / 364:
Knorr Quinoline Synthesis / 365:
Koch-Haaf Carboxylation / 366:
Kochi Reaction / 367:
Koenigs-Knorr Reaction / 368:
Kolbe Electrolysis / 369:
Kolbe Nitrile Synthesis / 370:
Kolbe-Schmidt Reaction / 371:
Kondrat'eva Pyridine Synthesis / 372:
Kornblum Oxidation / 373:
Kornblum-Delamare Rearrangement / 374:
Kostanecki-Robinson Reaction / 375:
Kowalski Ester Homologation / 376:
Krapcho Decarboxylation / 377:
Kriewitz Condensation / 378:
Kr¿ohnke Pyridine Synthesis / 379:
Kuhn-Roth Oxidation / 380:
Kuhn-Winterstein Reduction / 381:
Kulinkovich Cyclopropanation / 382:
Kutscheroff Acetylene Hydration / 383:
Lander Rearrangement / 384:
Larock Indole Synthesis / 385:
Lawesson's Reagent / 386:
Lebedev Process / 387:
Lehmstedt-Tanasescu Reaction / 388:
Lemieux-Johnson Oxidation / 389:
Leuckart Reaction / 390:
Leuckart Thiophenol Synthesis / 391:
Levinstein Process / 392:
Lieben Iodoform Reaction / 393:
Liebeskind-Srogl Cross-Coupling / 394:
Lindlar Hydrogenation / 395:
Lobry de Bruyn-Alberda van Ekenstein Transformation / 396:
Lombardo Methylenation / 397:
Lossen Rearrangement / 398:
Luche Reaction / 399:
Luche Reduction / 400:
MacDonald-Fischer Degradation / 401:
Madelung Indole Synthesis / 402:
Maillard Reaction / 403:
Maitland-Japp Reaction / 404:
Majetich Annulation / 405:
Malaprade Reaction / 406:
Malonic Ester Synthesis / 407:
Mandelic Acid Synthesis / 408:
Mannich Reaction / 409:
Marckwald Asymmetric Synthesis / 410:
Markownikoff Rule and Anti-Markownikoff Rule / 411:
Martinet Reaction / 412:
Martin's Sulfurane / 413:
Mattox-Kendall Reaction / 414:
McCormack Cycloaddition / 415:
McFadyen-Stevens Reaction / 416:
McLafferty Rearrangement / 417:
McMurry Coupling / 418:
Meerwein Arylation / 419:
Meerwein-Ponndorf-Verley Reduction / 420:
Meerwein's Salt / 421:
Meinwald Rearrangement / 422:
Meisenheimer Complexes / 423:
Meisenheimer Rearrangement / 424:
Menke Nitration / 425:
Menschutkin Reaction / 426:
Mentzer Pyrone Synthesis / 427:
Merrifield Solid-Phase Peptide Synthesis / 428:
Meyer-Hartmann Reaction / 429:
Meyers Aldehyde Synthesis / 430:
Meyer-Schuster Rearrangement / 431:
Michael Addition / 432:
Michaelis-Arbuzov Rearrangement / 433:
Michael-Stetter Reaction / 434:
Miescher Degradation / 435:
Mignonac Reaction / 436:
Milas Hydroxylation / 437:
Mislow-Evans Rearrangement / 438:
Mitsunobu Reaction / 439:
Moffatt-Swern Oxidation / 440:
Moore Cyclization / 441:
Morgan-Walls Cyclization / 442:
Mori-Ban Indole Synthesis / 443:
Morin Rearrangement / 444:
Mosher's Acid / 445:
Moureau-Mignonac Ketimine Synthesis / 446:
Mukaiyama Aldol Reaction / 447:
Mukaiyama-Michael Reaction / 448:
M¿ uller-Cunradi-Pieroh Process / 449:
Myers-Saito Cyclization / 450:
Nagata Reaction / 451:
Nazarov Cyclization / 452:
Neber Rearrangement / 453:
Neber-Bossel Synthesis / 454:
Nef Reaction / 455:
Negishi Cross-Coupling / 456:
Nencki Reaction / 457:
Nenitzescu Synthesis / 458:
Nenitzescu Indole Synthesis / 459:
Newman-Kwart Rearrangement / 460:
Nicholas Reaction / 461:
Niementowski Reaction / 462:
Nierenstein Reaction / 463:
Norrish Type I Reaction / 464:
Norrish Type II Reaction / 465:
Noyori Hydrogenation / 466:
Nozaki-Hiyama-Kishi Reaction / 467:
Nysted Reagent / 468:
Ohle Quinoxaline Synthesis / 469:
Oppenauer Oxidation / 470:
Orton Rearrangement / 471:
Ostromislensky Process / 472:
Overman Rearrangement / 473:
Paal-Knorr Furan Synthesis / 474:
Paal-Knorr Pyrrole Synthesis / 475:
Paneth Technique / 476:
Parham Cyclization / 477:
Parikh-Doering Oxidation / 478:
Passerini Reaction / 479:
Paterno-Buchi Reaction / 480:
Pauson-Khand Reaction / 481:
Payne Rearrangement / 482:
Pearlman's Catalyst / 483:
Pechmann Pyrazole Synthesis / 484:
Pechmann Reaction / 485:
Pellizzari Reaction / 486:
Perkin Reaction / 487:
Perkin Synthesis / 488:
Perkow Reaction / 489:
Petasis-Ferrier Rearrangement / 490:
Peterson Olefination / 491:
Petrenko-Kritschenko Piperidone Synthesis / 492:
Pfau-Plattner Azulene Synthesis / 493:
Pfitzinger Reaction / 494:
Pfitzner-Moffatt Oxidation / 495:
Phillips-Ladenburg Benzimidazole Synthesis / 496:
Photo-Fries Rearrangement / 497:
Pictet-Gams Synthesis / 498:
Pictet-Spengler Reaction / 499:
Piloty-Robinson Pyrrole Synthesis / 500:
Pinacol Coupling Reaction / 501:
Pinacol Rearrangement / 502:
Pinner Condensation / 503:
Pinner Reaction / 504:
Pinner S-Triazine Synthesis / 505:
Piria Reaction / 506:
Plancher Rearrangement / 507:
Polonovski Reaction / 508:
Pomeranz-Fritsch Reaction / 509:
Ponzio Reaction / 510:
Pr´evost Reaction / 511:
Prey Ether Cleavage / 512:
Prilezhaev Reaction / 513:
Prins Reaction / 514:
Pudovik Reaction / 515:
Pummerer Rearrangement / 516:
Quelet Reaction / 517:
Radziszewski Reaction / Part THREE.:
Ramberg-B¿acklund Reaction / 519:
Raney Nickel / 520:
Rauhut-Currier Reaction / 521:
Reed Reaction / 522:
Reformatsky Reaction / 523:
Regitz Diazo Transfer / 524:
Reilly-Rickinbottom Rearrangement / 525:
Reimer-Tiemann Reaction / 526:
Reissert Compound / 527:
Reissert Indole Synthesis / 528:
Reppe Alkyne Cyclotrimerization / 529:
Reppe Carbonylation / 530:
Reppe Cyclization / 531:
Reppe Vinylation / 532:
Retro-Diels-Alder Reaction / 533:
Retro-Ene Reaction / 534:
Retropinacol Rearrangement / 535:
Reverdin Rearrangement / 536:
Riehm Quinoline Synthesis / 537:
Rieke Metal / 538:
Riemenschneider Reaction / 539:
Riley Oxidation / 540:
Ritter Reaction / 541:
Robinson Annulation / 542:
Robinson-Gabriel Oxazole Synthesis / 543:
Robinson-Schopf Condensation / 544:
Rosenmund Reaction / 545:
Rosenmund Reduction / 546:
Rosenmund-von Braun Reaction / 547:
Rothemund Reaction / 548:
Roush Crotylboration / 549:
Rowe Rearrangement / 550:
Rubottom Oxidation / 551:
Ruff Degradation / 552:
Rupe Rearrangement / 553:
Sabatier-Senderens Reduction / 554:
Saegusa Cyclization / 555:
Saegusa Oxidation / 556:
Sandmeyer Isatin Synthesis / 557:
Sandmeyer Reaction / 558:
Sarett Oxidation / 559:
Saytzeff Rule / 560:
Schiff Base / 561:
Schlack-Kumpf Reaction / 562:
Schlotterbeck Reaction / 563:
Schmidlin Ketene Synthesis / 564:
Schmidt Glycosylation / 565:
Schmidt Reaction / 566:
Schmidt-Rutz Reaction / 567:
Schmittel Cyclization / 568:
Scholl Reaction / 569:
Sch¿ollkopf Bis-Lactim Ether Method / 570:
Sch¿ollkopf Oxazole Synthesis / 571:
Sch¿onberg Rearrangement / 572:
Schotten-Baumann Reaction / 573:
Schwartz Reagent / 574:
Screttas Lithiation / 575:
Selenoxide Elimination / 576:
Semmler-Wolff Aromatization / 577:
Serini Reaction / 578:
Seyferth-Gilbert Homologation / 579:
Shapiro Reaction / 580:
Sharpless Aminohydroxylation / 581:
Sharpless Dihydroxylation / 582:
Sharpless Epoxidation / 583:
Shechter-Kaplan Oxidative Nitration / 584:
Shi Epoxidation / 585:
Simmons-Smith Reaction / 586:
Simonini Reaction / 587:
Skraup Reaction / 588:
Smiles Rearrangement / 589:
Sommelet Reaction / 590:
Sommelet-Hauser Rearrangement / 591:
Sonn-Muller Reaction / 592:
Sonogashira Coupling / 593:
Staudinger [2+2] Cycloaddition / 594:
Staudinger Reaction / 595:
Stec Reaction / 596:
Steglich Catalyst / 597:
Steglich Rearrangement / 598:
Stephen Reaction / 599:
Stetter Reaction / 600:
Stevens Rearrangement / 601:
Stieglitz Rearrangement / 602:
Stille Coupling / 603:
Stobbe Condensation / 604:
Stolle-Becker Synthesis / 605:
Stork Reaction / 606:
Strecker Degradation / 607:
Strecker Reaction / 608:
Strecker Synthesis / 609:
Su´arez Cleavage / 610:
Sugasawa Indole Synthesis / 611:
Sugasawa Reaction / 612:
Sundberg Indole Synthesis / 613:
Suzuki Coupling / 614:
Swarts Reaction / 615:
Takai Olefination / 616:
Tebbe Olefination / 617:
ter Meer Reaction / 618:
Thiele-Winter Acetoxylation / 619:
Thorpe-Ziegler Cyclization / 620:
Tiemann Cyanohydrin Amination / 621:
Tiemann Rearrangement / 622:
Tiffeneau-Demjanov Ring Expansion / 623:
Tishchenko Reaction / 624:
Traube Purine Synthesis / 625:
Trofimov Reaction / 626:
Trost Desymmetrization / 627:
Truce-Smiles Rearrangement / 628:
Tscherniac-Einhorn Reaction / 629:
Tsuji-Trost Reaction / 630:
Twitchell Process / 631:
Tyrer Process / 632:
Ueno-Stork Cyclization / 633:
Ugi Reaction / 634:
Ullmann Acridine Synthesis / 635:
Ullmann Coupling / 636:
Ullmann Diaryl Ether Synthesis / 637:
Urech Cyanohydrin Method.Synthesis / 638:
van Slyke Method / 640:
Varrentrapp Reaction / 641:
Victor Meyer Reaction / 642:
Vilsmeier Formylation / 643:
Vinylcyclopropane Rearrangement / 644:
Voigt Reaction / 645:
von Auwers Rearrangement / 646:
von Braun Cyanogen Bromide Reaction / 647:
von Braun Degradation / 648:
von Braun-Rudolf Synthesis / 649:
von Richter Cinnoline Synthesis / 650:
von Richter Reaction / 651:
Vorbr¿uggen Glycosylation / 652:
Wacker Oxidation / 653:
Wagner-Jauregg Reaction / 654:
Wagner-Meerwein Rearrangement / 655:
Walden Inversion / 656:
Wallach Rearrangement / 657:
Weerman Reaction / 658:
Weidenhagen Synthesis / 659:
Weinreb Amide Formation / 660:
Weinreb Ketone Synthesis / 661:
Weiss-Cook Condensation / 662:
Weitz-Scheffer Epoxidation / 663:
Wender Indole Synthesis / 664:
Wessely-Moser Rearrangement / 665:
Westphalen Rearrangement / 666:
Wharton Rearrangement / 667:
Wibaut-Arens Alkylation / 668:
Wichterle Reaction / 669:
Widman-Stoermer Synthesis / 670:
Wilkinson's Catalyst / 671:
Willgerodt-Kindler Reaction / 672:
Williamson Ether Synthesis / 673:
Wittig Reaction / 674:
[1,2]-Wittig Rearrangement / 675:
[2,3]-Wittig Rearrangement / 676:
Wohl Degradation / 677:
Wohl-Aue Reaction / 678:
W¿ohler Synthesis / 679:
Wohl-Ziegler Bromination / 680:
Wolff Rearrangement / 681:
Wolffenstein-B¿oters Reaction / 682:
Wolff-Kishner Reduction / 683:
Woodward Cis-Hydroxylation / 684:
Wurtz Synthesis / 685:
Wurtz-Fittig Reaction / 686:
Yamada Coupling / 687:
Yamaguchi Esterification / 688:
Zeisel Determination / 689:
Zelinsky-Stadnikoff Reaction / 690:
Zempl´en Deacetylation / 691:
Zerewitinoff Determination / 692:
Ziegler Alcohol Synthesis / 693:
Ziegler-Hafner Azulene Synthesis / 694:
Ziegler-Natta Polymerization / 695:
Zimmermann Reaction / 696:
Zincke Disulfide Cleavage / 697:
Zincke Nitration / 698:
Zincke Reaction / 699:
Zincke-Suhl Reaction / 700:
Zinke Synthesis / 701:
Appendixes
Schematic Reaction Index
Reaction Type Summary
Summary of Initial Publications on Named Reactions
Journal Abbreviation
The Statistics of Reaction Published Years
Subject Index
Preface
Acknowledgments
Autobiography
11.

図書

図書
by László Kürti and Barbara Czakó ; [foreword by E.J. Corey] ; [introduction by K.C. Nicolaou]
出版情報: Amsterdam ; Tokyo : Elsevier, c2005  lii, 758 p. ; 28 cm
所蔵情報: loading…
目次情報: 続きを見る
Foreword / E.J. CoreyI:
Introduction / K.C. NicolaouII:
Preface / III:
Explanation of the Use of Colors in the Schemes and Text / IV:
List of Abbreviations / V:
List of Named Organic Reactions / VI:
Named Organic Reactions in Alphabetical Order / VII:
Appendix: Listing of the Named Reactions by Synthetic Type and by their Utility / VIII:
Brief explanation of the organization of this section / 8.1:
List of named reactions in chronological order of their discovery / 8.2:
Reaction categories - Categorization of named reactions in tabular format / 8.3:
Affected functional groups - Listing of transformations in tabular format / 8.4:
Preparation of functional groups - Listing of transformations in tabular format / 8.5:
References / IX:
Index / X:
Foreword / E.J. CoreyI:
Introduction / K.C. NicolaouII:
Preface / III:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼