close
1.

図書

図書
Joachim Kock, Israel Vainsencher
出版情報: Boston : Birkhäuser, c2007  xii, 159 p. ; 25 cm
シリーズ名: Progress in mathematics ; v. 249
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction
Prologue: Warming up with Cross Ratios, and the Definition of Moduli Space / 0:
Cross ratios / 0.1:
Definition of moduli space / 0.2:
Stable n-pointed Curves / 1:
n-pointed smooth rational curves / 1.1:
Stable n-pointed rational curves / 1.2:
Stabilization, forgetting marks, contraction / 1.3:
Sketch of the construction of [Characters not reproducible subscript 0,n] / 1.4:
The boundary / 1.5:
Generalizations and references / 1.6:
Stable Maps / 2:
Maps P[superscript 1 Characters not reproducible] P[superscript r] / 2.1:
1-parameter families / 2.2:
Kontsevich stable maps / 2.3:
Idea of the construction of [Characters not reproducible subscript 0,n] (P[superscript r], d) / 2.4:
Evaluation maps / 2.5:
Forgetful maps / 2.6:
Easy properties and examples / 2.7:
Complete conics / 2.9:
Enumerative Geometry via Stable Maps / 2.10:
Classical enumerative geometry / 3.1:
Counting conics and rational cubics via stable maps / 3.2:
Kontsevich's formula / 3.3:
Transversality and enumerative significance / 3.4:
Stable maps versus rational curves / 3.5:
Gromov-Witten Invariants / 3.6:
Definition and enumerative interpretation / 4.1:
Properties of Gromov-Witten invariants / 4.2:
Recursion / 4.3:
The reconstruction theorem / 4.4:
Quantum Cohomology / 4.5:
Quick primer on generating functions / 5.1:
The Gromov-Witten potential and the quantum product / 5.2:
Associativity / 5.3:
Kontsevich's formula via quantum cohomology / 5.4:
Bibliography / 5.5:
Index
Preface
Introduction
Prologue: Warming up with Cross Ratios, and the Definition of Moduli Space / 0:
2.

図書

図書
by Michael B. Mensky
出版情報: Dordrecht ; Boston : Kluwer Academic, c2000  xvi, 226 p. ; 25 cm
シリーズ名: Fundamental theories of physics ; v. 110
所蔵情報: loading…
3.

図書

図書
translated and edited by Hinne Hettema
出版情報: Singapore ; London : World Scientific, c2000  xxxix, 478 p. ; 26 cm
シリーズ名: World scientific series in 20th century chemistry ; v. 8
所蔵情報: loading…
4.

図書

図書
edited by John Ellis and Daniele Amati
出版情報: New York : Cambridge University Press, 2000  xiv, 202 p. ; 26 cm
所蔵情報: loading…
5.

図書

図書
K.T. Hecht
出版情報: New York : Springer, c2000  xix, 760 p. ; 25 cm
シリーズ名: Graduate texts in contemporary physics
所蔵情報: loading…
6.

図書

図書
Moray B. King
出版情報: Kempton, Ill. : Adventures Unlimited Press, c2002  iii, 173 p. ; 22 cm
所蔵情報: loading…
7.

図書

図書
Shahn Majid
出版情報: Cambridge ; New York : Cambridge University Press, 2002  x, 169 p. ; 23 cm
シリーズ名: London Mathematical Society lecture note series ; 292
所蔵情報: loading…
8.

図書

図書
Stephen Gasiorowicz
出版情報: Hoboken, N.J. : Wiley, c2003  xvi, 336 p. ; 26 cm
所蔵情報: loading…
目次情報: 続きを見る
Wave Particle Duality, Probability, and the Schrödinger Equation
Eigenvalues, Eigenfunctions, and the Expansion Postulate
One-Dimensional Potentials
The General Structure of Wave Mechanics
Operator Methods in Quantum Mechanics
Angular Momentum
The Schrödinger Equation in Three Dimensions and the Hydrogen Atom
Matrix Representation of Operators
Spin
Time-Independent Perturbation Theory
The Real Hydrogen Atom
Many Particle Systems
About Atoms and Molecules
Time-Dependent Perturbation Theory
The Interaction of Charged Particles with the Electromagnetic Field
Radioactive Decays
Selected Topics on Radiation
Collision Theory
Entanglement and Its Implications
Physical Constants
References
The Emergence of Quantum Physics
Wave Particle Duality, Probability, and the Schrödinger Equation
The Schrödinger Equation in Three Dimensions and the Hydrogen Atom
Radiative Decays
Index
Wave Particle Duality, Probability, and the Schrödinger Equation
Eigenvalues, Eigenfunctions, and the Expansion Postulate
One-Dimensional Potentials
9.

図書

図書
A. Bohm ... [et al.]
出版情報: Berlin ; Tokyo : Springer, c2003  xv, 439 p. ; 25 cm
シリーズ名: Texts and monographs in physics
Physics and astronomy online library
所蔵情報: loading…
10.

図書

図書
Mohsen Razavy
出版情報: Singapore : World Scientific, c2003  xxi, 549 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
A Brief History of Quantum Tunneling / 1:
Some Basic Questions Concerning Quantum Tunneling / 2:
Tunneling and the Uncertainty Principle / 2.1:
Decay of a Quasistationary State / 2.2:
Semi-Classical Approximations / 3:
The WKB Approximation / 3.1:
Method of Miller and Good / 3.2:
Calculation of the Splitting of Levels in a Symmetric Double-Well Potential Using WKB Approximation / 3.3:
Generalization of the Bohr-Sommerfeld Quantization Rule and its Application to Quantum Tunneling / 4:
The Bohr-Sommerfeld Method for Tunneling in Symmetric and Asymmetric Wells / 4.1:
Numerical Examples / 4.2:
Gamow's Theory, Complex Eigenvalues, and the Wave Function of a Decaying State / 5:
Solution of the Schrodinger Equation with Radiating Boundary Condition / 5.1:
The Time Development of a Wave PacketTrapped Behind a Barrier / 5.2:
A More Accurate Determination of the Wave Function of a Decaying State / 5.3:
Some Instances Where WKB Approximation and the Gamow Formula Do Not Work / 5.4:
Simple Solvable Problems / 6:
Confining Double-Well Potentials / 6.1:
Time-dependent Tunneling for a [delta]-Function Barrier / 6.2:
Tunneling Through Barriers of Finite Extent / 6.3:
Tunneling Through a Series of Identical Rectangular Barriers / 6.4:
Eckart's Potential / 6.5:
Double-Well Morse Potential / 6.6:
Tunneling in Confining Symmetric and Asymmetric Double-Wells / 7:
Tunneling When the Barrier is Nonlocal / 7.1:
Tunneling in Separable Potentials / 7.2:
A Solvable Asymmetric Double-Well Potential / 7.3:
Quasi-Solvable Examples of Symmetric and Asymmetric Double-Wells / 7.4:
Gel'fand-Levitan Method / 7.5:
Darboux's Method / 7.6:
Optical Potential Barrier Separating Two Symmetric or Asymmetric Wells / 7.7:
A Classical Description of Tunneling / 8:
Tunneling in Time-Dependent Barriers / 9:
Multi-Channel Schrodinger Equation for Periodic Potentials / 9.1:
Tunneling Through an Oscillating Potential Barrier / 9.2:
Separable Tunneling Problems with Time-Dependent Barriers / 9.3:
Penetration of a Particle Inside a Time-Dependent Potential Barrier / 9.4:
Decay Width and the Scattering Theory / 10:
Scattering Theory and the Time-Dependent Schrodinger Equation / 10.1:
An Approximate Method of Calculating the Decay Widths / 10.2:
Time-Dependent Perturbation Theory Applied to the Calculation of Decay Widths of Unstable States / 10.3:
Early Stages of Decay via Tunneling / 10.4:
An Alternative Way of Calculating the Decay Width Using the Second Order Perturbation Theory / 10.5:
Tunneling Through Two Barriers / 10.6:
Escape from a Potential Well by Tunneling Through both Sides / 10.7:
Decay of the Initial State and the Jost Function / 10.8:
The Method of Variable Reflection Amplitude Applied to Solve Multichannel Tunneling Problems / 11:
Mathematical Formulation / 11.1:
Matrix Equations and Semi-classical Approximation for Many-Channel Problems / 11.2:
Path Integral and Its Semi-Classical Approximation in Quantum Tunneling / 12:
Application to the S-Wave Tunneling of a Particle Through a Central Barrier / 12.1:
Method of Euclidean Path Integral / 12.2:
An Example of Application of the Path Integral Method in Tunneling / 12.3:
Complex Time, Path Integrals and Quantum Tunneling / 12.4:
Path Integral and the Hamilton-Jacobi Coordinates / 12.5:
Remarks About the Semi-Classical Propagator and Tunneling Problem / 12.6:
Heisenberg's Equations of Motion for Tunneling / 13:
The Heisenberg Equations of Motion for Tunneling in Symmetric and Asymmetric Double-Wells / 13.1:
Tunneling in a Symmetric Double-Well / 13.2:
Tunneling in an Asymmetric Double-Well / 13.3:
Tunneling in a Potential Which Is the Sum of Inverse Powers of the Radial Distance / 13.4:
Klein's Method for the Calculation of the Eigenvalues of a Confining Double-Well Potential / 13.5:
Wigner Distribution Function in Quantum Tunneling / 14:
Wigner Distribution Function and Quantum Tunneling / 14.1:
Wigner Trajectory for Tunneling in Phase Space / 14.2:
Wigner Distribution Function for an Asymmetric Double-Well / 14.3:
Wigner Trajectory for an Oscillating Wave Packet / 14.4:
Margenau-Hill Distribution Function for a Double-Well Potential / 14.5:
Complex Scaling and Dilatation Transformation Applied to the Calculation of the Decay Width / 15:
Multidimensional Quantum Tunneling / 16:
The Semi-classical Approach of Kapur and Peierls / 16.1:
Wave Function for the Lowest Energy State / 16.2:
Calculation of the Low-Lying Wave Functions by Quadrature / 16.3:
Method of Quasilinearization Applied to the Problem of Multidimensional Tunneling / 16.4:
Solution of the General Two-Dimensional Problems / 16.5:
The Most Probable Escape Path / 16.6:
Group and Signal Velocities / 17:
Time-Delay, Reflection Time Operator and Minimum Tunneling Time / 18:
Time-Delay in Tunneling / 18.1:
Time-Delay for Tunneling of a Wave Packet / 18.2:
Landauer and Martin Criticism of the Definition of the Time-Delay in Quantum Tunneling / 18.3:
Time-Delay in Multi-Channel Tunneling / 18.4:
Reflection Time in Quantum Tunneling / 18.5:
Minimum Tunneling Time / 18.6:
More about Tunneling Time / 19:
Dwell and Phase Tunneling Times / 19.1:
Buttiker and Landauer Time / 19.2:
Larmor Precession / 19.3:
Tunneling Time and its Determination Using the Internal Energy of a Simple Molecule / 19.4:
Intrinsic Time / 19.5:
A Critical Study of the Tunneling Time Determination by a Quantum Clock / 19.6:
Tunneling Time According to Low and Mende / 19.7:
Tunneling of a System with Internal Degrees of Freedom / 20:
Lifetime of Coupled-Channel Resonances / 20.1:
Two-Coupled Channel Problem with Spherically Symmetric Barriers / 20.2:
A Numerical Example / 20.3:
Tunneling of a Simple Molecule / 20.4:
Tunneling of a Molecule in Asymmetric Double-Wells / 20.5:
Tunneling of a Molecule Through a Potential Barrier / 20.6:
Antibound State of a Molecule / 20.7:
Motion of a Particle in a Space Bounded by a Surface of Revolution / 21:
Testing the Accuracy of the Present Method / 21.1:
Calculation of the Eigenvalues / 21.2:
Relativistic Formulation of Quantum Tunneling / 22:
One-Dimensional Tunneling of the Electrons / 22.1:
Tunneling of Spinless Particles in One Dimension / 22.2:
Tunneling Time in Special Relativity / 22.3:
The Inverse Problem of Quantum Tunneling / 23:
A Method for Finding the Potential from the Reflection Amplitude / 23.1:
Determination of the Shape of the Potential Barrier in One-Dimensional Tunneling / 23.2:
Prony's Method of Determination of Complex Energy Eigenvalues / 23.3:
The Inverse Problem of Tunneling for Gamow States / 23.4:
Some Examples of Quantum Tunneling in Atomic and Molecular Physics / 24:
Torsional Vibration of a Molecule / 24.1:
Electron Emission from the Surface of Cold Metals / 24.2:
Ionization of Atoms in Very Strong Electric Field / 24.3:
A Time-Dependent Formulation of Ionization in an Electric Field / 24.4:
Ammonia Maser / 24.5:
Optical Isomers / 24.6:
Three-Dimensional Tunneling in the Presence of a Constant Field of Force / 24.7:
Examples from Condensed Matter Physics / 25:
The Band Theory of Solids and the Kronig-Penney Model / 25.1:
Tunneling in Metal-Insulator-Metal Structures / 25.2:
Many Electron Formulation of the Current / 25.3:
Electron Tunneling Through Hetero-structures / 25.4:
Alpha Decay / 26:
Index
Preface
A Brief History of Quantum Tunneling / 1:
Some Basic Questions Concerning Quantum Tunneling / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼