close
1.

図書

図書
Hossein Agheli
出版情報: Saarbrücken : VDM Verlag Dr. Müller, c2008  79 p. ; 23 cm
所蔵情報: loading…
2.

図書

東工大
目次DB

図書
東工大
目次DB
宍戸昌彦, 大槻高史共著
出版情報: 東京 : 裳華房, 2008.2  xii, 190p ; 21cm
シリーズ名: 化学の指針シリーズ / 編集委員会 [編]
所蔵情報: loading…
目次情報: 続きを見る
1. アミノ酸から蛋白質,遺伝子から蛋白質-生体の物質変換と情報変換を学ぶ-
   1.1 DNAの構造と性質 1
   1.2 DNAの複製 5
   1.3 転写と翻訳 6
   1.4 RNAの生合成 7
   1.4.1 転写の開始・終結と転写単位 10
   1.4.2 転写制御 10
   1.4.3 転写後のプロセシング 12
   1.4.4 生体外転写反応の利用 13
   1.5 蛋白質の生合成 14
   1.5.1 蛋白質生合成装置(リボソーム) 20
   1.5.2 tRNAを中心に見た翻訳 22
   1.5.3 翻訳後のプロセシング 31
   1.5.4 蛋白質生合成系の利用 32
   演習問題 36
2. 分子生物学で用いる基本技術-分子生物学の技法を使いこなす-
   2.1 遺伝子の操作 38
   2.1.1 大腸菌での蛋白質合成のためのプラスミド作製 38
   2.1.2 プラスミドへのDNAの導入(DNAの切断および連結) 40
   2.1.3 PCR法によるDNAの増幅と点変異の導入 43
   2.1.4 DNA化学合成法 46
   2.1.5 DNAのゲル電気泳動 47
   2.1.6 大腸菌の形質転換と大腸菌からのプラスミド単離 48
   2.1.7 DNA配列の確認 50
   2.2 蛋白質に関する操作 51
   2.2.1 大腸菌での蛋白質合成 51
   2.2.2 Hisタグをもつ蛋白質の精製 52
   2.2.3 SDSポリアクリルアミドゲル電気泳動による蛋白質の分離と確認 54
   2.2.4 抗体を用いた蛋白質の検出 55
   2.3 培養細胞に関する操作 58
   2.3.1 細胞の入手と取り扱い 58
   2.3.2 生細胞数の測定 60
   2.3.3 DNAやRNAの細胞内導入 61
   2.3.4 細胞内での蛋白質の挙動の観察 64
   演習問題 66
3. 細胞内で機能する人工分子-生き物の中で化学を使いこなす-
   3.1 人工生体分子の分類 67
   3.1.1 構造面からの分類 68
   3.1.2 機能面からの分類 69
   3.2 バイオ誤認識分子 71
   3.2.1 生理活性分子アナログの例 : ペプチドアナログ 71
   3.2.2 DNAポリメラーゼやRNAポリメラーゼによって誤認識されるヌクレオチドアナログ 73
   3.2.3 核酸アナログ 76
   3.2.4 核酸サロゲート(ペプチド核酸) 78
   3.2.5 人工機能をもつ核酸サロゲート 82
   3.2.6 核酸塩基をもたない核酸サロゲート 85
   3.2.7 DNA結合低分子 86
   3.3 蛋白質生合成系に組み込まれるアミノ酸アナログ 88
   3.4 バイオ直交分子 91
   3.4.1 バイオ直交反応 91
   3.4.2 生体由来のバイオ直交相互作用 94
   3.5 バイオ直交機能分子としての抗体 96
   3.5.1 ペプチド特異的モノクローナル抗体 96
   3.5.2 触媒抗体 97
   3.5.3 人工機能分子に対する抗体 99
   演習問題 104
4. 人工生体分子から機能生命体へ-合成生命体にアプローチする-
   4.1 アミノ酸の拡張に要求されるバイオ直交条件 105
   4.2 バイオ直交tRNAの探索 107
   4.3 バイオ直交ARSの探索 109
   4.3.1 tRNAの試験管中でのアミノアシル化 109
   4.3.2 天然のtRNA-ARS対の改変 110
   4.3.3 有機化学的なtRNA特異的アミノアシル化 113
   4.4 コドン-アンチコドン対の拡張 114
   4.5 生体外蛋白質生合成系を用いた非天然変異蛋白質の作製 116
   演習問題 120
5. 遺伝子発現の制御 -生物機能を操る-
   5.1 遺伝子発現の制御 121
   5.2 細胞内遺伝子発現の人工的な抑制 123
   5.2.1 アンチセンスとアンチジーン 123
   5.2.2 リボザイム 126
   5.2.3 RNA干渉(RNAi) 128
   5.3 遺伝子破壊 131
   演習問題 133
6. 進化分子工学-未知の生物機能を創る-
   6.1 進化分子工学的手法の概要 134
   6.2 変異遺伝子ライブラリーの作製 135
   6.3 RNAの進化分子工学 138
   6.4 アプタマー 140
   6.5 クローニングと解析 141
   6.6 蛋白質の進化分子工学 142
   演習問題 145
7. 人工生体分子の医療応用-化学を診断や治療につなげる-
   7.1 細胞特異的結合分子や分子標的薬の開発指針 146
   7.2 細胞膜に存在する標的分子の同定-細胞表面の構造と細胞を特徴づける分子- 151
   7.3 標的分子に特異的に結合するプローブの探索 152
   7.3.1 One-Bead One-Compound法 153
   7.3.2 ICタグ法 155
   7.3.3 位置スキャンライブラリー 156
   7.3.4 細胞プローブを用いずにがん細胞特異的な薬剤送達を行う方法 158
   7.4 細胞プローブや分子プローブの蛍光標識と標的細胞や標的分子の蛍光検出-分子イメージング- 159
   7.4.1 細胞プローブや分子プローブの蛍光標識 159
   7.4.2 共焦点レーザー走査蛍光顕微鏡 160
   7.4.3 近赤外蛍光標識剤を用いた生体イメージング 161
   7.4.4 蛍光法以外の生体イメージング 162
   7.5 抗体を用いた分子標的薬 164
   7.6 現在使用されている抗がん剤 165
   7.7 細胞への薬剤導入 166
   7.7.1 種々の細胞膜透過機構 167
   7.8 細胞中の特定の分子に作用する分子標的薬剤 175
   7.8.1 現在実用化されている分子標的薬 175
   7.8.2 理想的な薬剤を目指して 177
   演習問題 180
   参考文献 181
   演習問題解答 182
   索引 187
Column
   淡色効果 4
   DNAの重合と合成高分子の作製との違い 6
   転写反応を引き起こす酵素 9
   多糖類,糖脂質,糖蛋白質 36
   蛍光性蛋白質 65
   ペプチド固相合成 100
   DNA固相合成 103
   光学活性非天然アミノ酸の合成法 119
   DNAマイクロアレイ 178
   プロテオーム解析 179
1. アミノ酸から蛋白質,遺伝子から蛋白質-生体の物質変換と情報変換を学ぶ-
   1.1 DNAの構造と性質 1
   1.2 DNAの複製 5
3.

図書

図書
D.Voet, J.G.Voet, C.W.Pratt著 ; 田宮信雄 [ほか] 訳
出版情報: 東京 : 東京化学同人, 2000.3  xiii, 679p ; 28cm
所蔵情報: loading…
4.

図書

図書
香川靖雄編 ; 太田敏子 [ほか] 著
出版情報: 東京 : 東京化学同人, 2000.2  xi, 356p ; 27cm
所蔵情報: loading…
5.

図書

図書
Dawn B.Marks [著] ; 伊藤誠二 [ほか] 共訳
出版情報: 東京 : 丸善, 2000.3  iv, 288p ; 26cm
所蔵情報: loading…
6.

図書

図書
大久保岩男, 賀佐伸省編
出版情報: 東京 : 南江堂, 2000.1  x, 204p ; 26cm
所蔵情報: loading…
7.

図書

図書
Matthews, Freedland, Miesfeld著 ; 大森彬 [ほか] 訳
出版情報: 東京 : 東京化学同人, 2000.6  xvi, 414p ; 26cm
所蔵情報: loading…
8.

図書

図書
小城勝相著
出版情報: 東京 : 講談社, 2002.1  215, viip ; 18cm
シリーズ名: ブルーバックス ; B-1357
所蔵情報: loading…
9.

図書

図書
Brian R. Eggins
出版情報: Chichester, West Sussex : Wiley, c2002  xxi, 273 p. ; 23 cm
シリーズ名: Analytical Techniques in the Sciences(AnTS)
所蔵情報: loading…
目次情報: 続きを見る
Series Preface
Preface
Acronyms, Abbreviations and Symbols
About the Author
Introduction / 1:
Introduction to Sensors / 1.1:
What are Sensors? / 1.1.1:
The Nose as a Sensor / 1.1.2:
Sensors and Biosensors--Definitions / 1.2:
Aspects of Sensors / 1.3:
Recognition Elements / 1.3.1:
Transducers--the Detector Device / 1.3.2:
Methods of Immobilization / 1.3.3:
Performance Factors / 1.3.4:
Areas of Application / 1.3.5:
Transduction Elements / 2:
Electrochemical Transducers--Introduction / 2.1:
Potentiometry and Ion-Selective Electrodes: The Nernst Equation / 2.2:
Cells and Electrodes / 2.2.1:
Reference Electrodes / 2.2.2:
Quantitative Relationships: The Nernst Equation / 2.2.3:
Practical Aspects of Ion-Selective Electrodes / 2.2.4:
Measurement and Calibration / 2.2.5:
Voltammetry and Amperometry / 2.3:
Linear-Sweep Voltammetry / 2.3.1:
Cyclic Voltammetry / 2.3.2:
Chronoamperometry / 2.3.3:
Amperometry / 2.3.4:
Kinetic and Catalytic Effects / 2.3.5:
Conductivity / 2.4:
Field-Effect Transistors / 2.5:
Semiconductors--Introduction / 2.5.1:
Semiconductor--Solution Contact / 2.5.2:
Field-Effect Transistor / 2.5.3:
Modified Electrodes, Thin-Film Electrodes and Screen-Printed Electrodes / 2.6:
Thick-Film--Screen-Printed Electrodes / 2.6.1:
Microelectrodes / 2.6.2:
Thin-Film Electrodes / 2.6.3:
Photometric Sensors / 2.7:
Optical Techniques / 2.7.1:
Ultraviolet and Visible Absorption Spectroscopy / 2.7.3:
Fluorescence Spectroscopy / 2.7.4:
Luminescence / 2.7.5:
Optical Transducers / 2.7.6:
Device Construction / 2.7.7:
Solid-Phase Absorption Label Sensors / 2.7.8:
Applications / 2.7.9:
Further Reading
Sensing Elements / 3:
Ionic Recognition / 3.1:
Ion-Selective Electrodes--Introduction / 3.2.1:
Interferences / 3.2.2:
Conducting Devices / 3.2.3:
Modified Electrodes and Screen-Printed Electrodes / 3.2.4:
Molecular Recognition--Chemical Recognition Agents / 3.3:
Thermodynamic--Complex Formation / 3.3.1:
Kinetic--Catalytic Effects: Kinetic Selectivity / 3.3.2:
Molecular Size / 3.3.3:
Molecular Recognition--Spectroscopic Recognition / 3.4:
Infrared Spectroscopy--Molecular / 3.4.1:
Ultraviolet Spectroscopy--Less Selective / 3.4.3:
Nuclear Magnetic Resonance Spectroscopy--Needs Interpretation / 3.4.4:
Mass Spectrometry / 3.4.5:
Molecular Recognition--Biological Recognition Agents / 3.5:
Enzymes / 3.5.1:
Tissue Materials / 3.5.3:
Micro-Organisms / 3.5.4:
Mitochondria / 3.5.5:
Antibodies / 3.5.6:
Nucleic Acids / 3.5.7:
Receptors / 3.5.8:
Immobilization of Biological Components / 3.6:
Adsorption / 3.6.1:
Microencapsulation / 3.6.3:
Entrapment / 3.6.4:
Cross-Linking / 3.6.5:
Covalent Bonding / 3.6.6:
Selectivity / 4:
Ion-Selective Electrodes / 4.2.1:
Others / 4.2.2:
Sensitivity / 4.3:
Range, Linear Range and Detection Limits / 4.3.1:
Time Factors / 4.4:
Response Times / 4.4.1:
Recovery Times / 4.4.2:
Lifetimes / 4.4.3:
Precision, Accuracy and Repeatability / 4.5:
Different Biomaterials / 4.6:
Different Transducers / 4.7:
Urea Biosensors / 4.7.1:
Amino Acid Biosensors / 4.7.2:
Glucose Biosensors / 4.7.3:
Uric Acid / 4.7.4:
Some Factors Affecting the Performance of Sensors / 4.8:
Amount of Enzyme / 4.8.1:
Immobilization Method / 4.8.2:
pH of Buffer / 4.8.3:
Electrochemical Sensors and Biosensors / 5:
Potentiometric Sensors--Ion-Selective Electrodes / 5.1:
Concentrations and Activities / 5.1.1:
Calibration Graphs / 5.1.2:
Examples of Ion-Selective Electrodes / 5.1.3:
Gas Sensors--Gas-Sensing Electrodes / 5.1.4:
Potentiometric Biosensors / 5.2:
pH-Linked / 5.2.1:
Ammonia-Linked / 5.2.2:
Carbon Dioxide-Linked / 5.2.3:
Iodine-Selective / 5.2.4:
Silver Sulfide-Linked / 5.2.5:
Amperometric Sensors / 5.3:
Direct Electrolytic Methods / 5.3.1:
The Three Generations of Biosensors / 5.3.2:
First Generation--The Oxygen Electrode / 5.3.3:
Second Generation--Mediators / 5.3.4:
Third Generation--Directly Coupled Enzyme Electrodes / 5.3.5:
NADH/NAD[superscript +] / 5.3.6:
Examples of Amperometric Biosensors / 5.3.7:
Amperometric Gas Sensors / 5.3.8:
Conductometric Sensors and Biosensors / 5.4:
Chemiresistors / 5.4.1:
Biosensors Based on Chemiresistors / 5.4.2:
Semiconducting Oxide Sensors / 5.4.3:
Applications of Field-Effect Transistor Sensors / 5.5:
Chemically Sensitive Field-Effect Transistors (CHEMFETs) / 5.5.1:
Ion-Selective Field-Effect Transistors (ISFETs) / 5.5.2:
FET-Based Biosensors (ENFETs) / 5.5.3:
Photometric Applications / 6:
Techniques for Optical Sensors / 6.1:
Modes of Operation of Waveguides in Sensors / 6.1.1:
Immobilized Reagents / 6.1.2:
Visible Absorption Spectroscopy / 6.2:
Measurement of pH / 6.2.1:
Measurement of Carbon Dioxide / 6.2.2:
Measurement of Ammonia / 6.2.3:
Examples That Have Been Used in Biosensors / 6.2.4:
Fluorescent Reagents / 6.3:
Fluorescent Reagents for pH Measurements / 6.3.1:
Halides / 6.3.2:
Sodium / 6.3.3:
Potassium / 6.3.4:
Gas Sensors / 6.3.5:
Indirect Methods Using Competitive Binding / 6.4:
Reflectance Methods--Internal Reflectance Spectroscopy / 6.5:
Evanescent Waves / 6.5.1:
Reflectance Methods / 6.5.2:
Attenuated Total Reflectance / 6.5.3:
Total Internal Reflection Fluorescence / 6.5.4:
Surface Plasmon Resonance / 6.5.5:
Light Scattering Techniques / 6.6:
Types of Light Scattering / 6.6.1:
Quasi-Elastic Light Scattering Spectroscopy / 6.6.2:
Photon Correlation Spectroscopy / 6.6.3:
Laser Doppler Velocimetry / 6.6.4:
Mass-Sensitive and Thermal Sensors / 7:
The Piezo-Electric Effect / 7.1:
Principles / 7.1.1:
Gas Sensor Applications / 7.1.2:
Biosensor Applications / 7.1.3:
The Quartz Crystal Microbalance / 7.1.4:
Surface Acoustic Waves / 7.2:
Plate Wave Mode / 7.2.1:
Evanescent Wave Mode / 7.2.2:
Lamb Mode / 7.2.3:
Thickness Shear Mode / 7.2.4:
Thermal Sensors / 7.3:
Thermistors / 7.3.1:
Catalytic Gas Sensors / 7.3.2:
Thermal Conductivity Devices / 7.3.3:
Specific Applications / 8:
Determination of Glucose in Blood--Amperometric Biosensor / 8.1:
Survey of Biosensor Methods for the Determination of Glucose / 8.1.1:
Aim / 8.1.2:
Determination of Nanogram Levels of Copper(I) in Water Using Anodic Stripping Voltammetry, Employing an Electrode Modified with a Complexing Agent / 8.2:
Background to Stripping Voltammetry--Anodic and Cathodic / 8.2.1:
Determination of Several Ions Simultaneously--'The Laboratory on a Chip' / 8.2.2:
Sensor Arrays and 'Smart' Sensors / 8.3.1:
Background to Ion-Selective Field-Effect Transistors / 8.3.3:
Determination of Attomole Levels of a Trinitrotoluene--Antibody Complex with a Luminescent Transducer / 8.3.4:
Background to Immuno--Luminescent Assays / 8.4.1:
Determination of Flavanols in Beers / 8.4.2:
Background / 8.5.1:
Responses to Self-Assessment Questions / 8.5.2:
Bibliography
Glossary of Terms
SI Units and Physical Constants
Periodic Table
Index
Series Preface
Preface
Acronyms, Abbreviations and Symbols
10.

図書

図書
edited by Astrid Sigel and Helmut Sigel
出版情報: New York : Marcel Dekker, c2002  lix, 810 p. ; 24 cm
シリーズ名: Metal ions in biological systems / edited by Helmut Sigel ; v. 39
所蔵情報: loading…
目次情報: 続きを見る
Preface to the Series
Preface to Volume 39
In Memoriam of Professor Robert C. Bray
Contributors
Contents of Previous Volumes
Handbook on Toxicity of Inorganic Compounds
Handbook on Metals in Clinical and Analytical Chemistry
Handbook on Metalloproteins
The Biogeochemistry of Molybdenum and Tungsten / Edward I. StiefelChapter 1:
Introduction / 1.:
Molybdenum and Tungsten in the Environment / 2.:
The Nitrogen Cycle / 3.:
Sulfur Metabolism and the Sulfur Cycle / 4.:
Carbon Metabolism / 5.:
Arsenic, Selenium, and Chlorine Metabolism / 6.:
Conclusion / 7.:
Acknowledgment
Abbreviations
References
Transport, Homeostasis, Regulation, and Binding of Molybdate and Tungstate to Proteins / Richard N. Pau ; David M. LawsonChapter 2:
Competition with Iron(III)
Transport Systems
Cytoplasmic Molybdate-Binding Proteins
Conclusions
Acknowledgments
Abbreviations and Definitions
Molybdenum Nitrogenases: A Crystallographic and Mechanistic View / Barry E. SmithChapter 3:
The Nitrogenases
The Molybdenum-Iron Protein
The Iron Protein
Mechanistic Studies
The Nitrogenase Complex
The Active Site
Chemical Dinitrogen Fixation by Molybdenum and Tungsten Complexes: Insights From Coordination Chemistry / Masanobu Hidai ; Yasushi Mizobe8.:
Preparation and Structures of Dinitrogen Complexes
Reactions of Coordinated Dinitrogen
Biosynthesis of the Nitrogenase Iron-Molybdenum-Cofactor From Azotobacter Vinelandii / Jeverson Frazzon ; Dennis R. DeanChapter 5:
Biochemical Genetic Analysis of FeMo Cofactor Biosynthesis
A General Model for FeMo Cofactor Biosynthesis
Mobilization of Iron and Sulfur
NifB Cofactor
The NifEN Complex
Homocitrate Formation and Molybdenum Insertion
Role of Intermediate Carriers in FeMo Cofactor Biosynthesis
Role of the Iron Protein in Cofactor Assembly / 9.:
Summary and Future Prospects / 10.:
Molybdenum Enzymes Containing the Pyranopterin Cofactor: an Overview / Russ HilleChapter 6:
Classification of the Mononuclear Molybdenum Enzymes
Consideration of Selected Enzymes Not Covered in Other Chapters
Mechanistic Considerations
Concluding Remarks
The Molybdenum and Tungsten Cofactors: A Crystallographic View / Holger Dobbek ; Robert HuberChapter 7:
Structure of the Mo/W Cofactor
Moco-Containing Enzyme Families
Limitations of a Crystallographic Model
Models for the Pyranopterin-Containing Molybdenum and Tungsten Cofactors / Berthold Fischer ; Sharon J. Nieter BurgmayerChapter 8:
Early Models
Model Complexes of 1,2-Ene-Dithiolates
Metal Complexes of Pterins
Models with All Three Redox Sites
Biosynthesis and Molecular Biology of the Molybdenum Cofactor (Moco) / Ralf R. Mendel ; Gunter SchwarzChapter 9:
Genetics of the Molybdenum Cofactor
Biosynthesis of the Molybdenum Cofactor
Regulation of Molybdenum Cofactor Synthesis
Molybdenum in Nitrate Reductase and Nitrite Oxidoreductase / Peter M. H. Kroneck ; Dietmar J. AbtChapter 10:
Bacterial Respiratory Chains, Metalloenzymes, and Bioenergetics
Nitrate Reductase
Nitrite Oxidoreductase
Environmental Aspects and Biosensors
The Molybdenum-Containing Hydroxylases of Nicotinate, Isonicotinate, and Nicotine / Jan R. Andreesen ; Susanne FetznerChapter 11:
Hydroxylations of Nicotinate and Derivatives
Catabolism of Isonicotinate and Derivatives
Nicotine Catabolism: Enzymes and Genes Involved in Aerobic Transformations
Biotechnological Potentials and Medical Implications
The Molybdenum-Containing Xanthine Oxidoreductases and Picolinate Dehydrogenases / Emil F. Pai ; Takeshi NishinoChapter 12:
Xanthine Dehydrogenase/Xanthine Oxidase
Picolinate Dehydrogenase
Enzymes of the Xanthine Oxidase Family: the Role of Molybdenum / David J. LoweChapter 13:
The Reactions Catalyzed
Spectroscopic Investigations
Kinetic Studies
Theoretical Calculations
Discussion
The Molybdenum-Containing Hydroxylases of Quinoline, Isoquinoline, and Quinaldine / Reinhard Kappl ; Jurgen HuttermannChapter 14:
Biochemical and Genetic Characterization
Structural Features of Related Enzymes
EPR and ENDOR Characterization of Redox Centers
Molybdenum Enzymes in Reactions Involving Aldehydes and Acids / Maria Joao Romao ; Carlos A. Cunha ; Carlos D. Brondino ; Jose J. G. MouraChapter 15:
Enzymes of the Xanthine Oxidase Family
Enzymes of the Aldehyde Oxidoreductase Family
Molybdenum and Tungsten Enzymes in C1 Metabolism / Julia A. Vorholt ; Rudolf K. ThauerChapter 16:
Formate Dehydrogenase
Formylmethanofuran Dehydrogenase
Carbon Monoxide Dehydrogenase
Formaldehyde Dehydrogenases
Molybdenum Enzymes and Sulfur Metabolism / John H. Enemark ; Michele Mader CosperChapter 17:
Sulfite Oxidase
Dimethyl Sulfoxide Reductase
Biotin Sulfoxide Reductase
Polysulfide Reductase
Comparison of Selenium-Containing Molybdoenzymes / Vadim N. GladyshevChapter 18:
Overview of Selenium-Containing Molybdoenzymes
Incorporation of Selenium into Molybdoenzymes
Selenium Versus Sulfur in Catalysis
Evolution of Selenocysteine-Containing Molybdoenzymes
Tungsten-Dependent Aldehyde Oxidoreductase: A New Family of Enzymes Containing the Pterin Cofactor / Roopali Roy ; Michael W. W. AdamsChapter 19:
Classification of Tungstoenzymes
Aldehyde Ferredoxin Oxidoreductase
Carboxylic Acid Reductase and Aldehyde Dehydrogenase
Formaldehyde Ferredoxin Oxidoreductase
Glyceraldehyde-3-Phosphate Ferredoxin Oxidoreductase
Hypothetical Tungstoenzymes--WOR4 and WOR5
Tungsten Versus Molybdenum in the AOR Family
Tungsten-Substituted Molybdenum Enzymes / C. David Garner ; Lisa J. StewartChapter 20:
Molybdenum and Tungsten Chemistry: Similarities and Differences
Molybdenum and Tungsten Geochemistry and Link to Bioavailability
Early Attempts to Substitute Tungsten for Molybdenum
Molybdenum-Substituted Tungsten Acetylene Hydratase
Molybdenum Metabolism and Requirements in Humans / Judith R. TurnlundChapter 21:
Essentiality of Molybdenum in Humans
Dietary Intake and Bioavailability of Molybdenum
Molybdenum Deficiency and Toxicity
Stable Isotope Studies of Molybdenum Metabolism
Metabolism and Toxicity of Tungsten in Humans and Animals / Florence Lagarde ; Maurice LeroyChapter 22:
Metabolism of Tungsten
Toxicity of Tungsten
Subject Index
Preface to the Series
Preface to Volume 39
In Memoriam of Professor Robert C. Bray
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼