close
1.

電子ブック

EB
edited by Mark Crocker, Eduardo Santillan-Jimenez
出版情報:   1 online resource
所蔵情報: loading…
目次情報: 続きを見る
Preface
Upgrading of Biomass via Catalytic Fast Pyrolysis (CFP) / Charles A. Mullen1:
Introduction / 1.1:
Catalytic Pyrolysis Over Zeolites / 1.1.1:
Catalytic Pyrolysis Over HZSM-5 / 1.1.1.1:
Deactivation of HZSM-5 During CFP / 1.1.1.2:
Modification of ZSM-5 with Metals / 1.1.1.3:
Modifications of ZSM-5 Pore Structure / 1.1.1.4:
CFP with Metal Oxide Catalysts / 1.1.2:
CFP to Produce Fine Chemicals / 1.1.3:
Outlook and Conclusions / 1.1.4:
References
The Upgrading of Bio-Oil via Hydrodeoxygenation / Adetoyese O. Oyedun and Madhumita Patel and Mayank Kumar and Amit Kumar2:
Hydrodeoxygenation (HDO) / 2.1:
Hydrodeoxygenation of Phenol as a Model Compound / 2.2.1:
HDO of Phenolic (Guaiacol) Model Compounds / 2.2.1.1:
HDO of Phenolic (Anisole) Model Compounds / 2.2.1.2:
HDO of Phenolic (Cresol) Model Compounds / 2.2.1.3:
Hydrodeoxygenation of Aldehyde Model Compounds / 2.2.2:
Hydrodeoxygenation of Carboxylic Acid Model Compounds / 2.2.3:
Hydrodeoxygenation of Alcohol Model Compounds / 2.2.4:
Hydrodeoxygenation of Carbohydrate Model Compounds / 2.2.5:
Chemical Catalysts for the HDO Reaction / 2.3:
Catalyst Promoters for HDO / 2.3.1:
Catalyst Supports for HDO / 2.3.2:
Catalyst Selectivity for HDO / 2.3.3:
Catalyst Deactivation During HDO / 2.3.4:
Research Gaps / 2.4:
Conclusions / 2.5:
Acknowledgments
Upgrading of Bio-oil via Fluid Catalytic Cracking / Idoia Hita and Jose Maria Arandes and Javier Bilbao3:
Bio-oil / 3.1:
Bio-oil Production via Fast Pyrolysis / 3.2.1:
General Characteristics, Composition, and Stabilization of Bio-oil / 3.2.2:
Adjustment of Bio-oil Composition Through Pyrolytic Strategies / 3.2.2.1:
Bio-oil Stabilization / 3.2.2.2:
Valorization Routes for Bio-oil / 3.2.3:
Hydroprocessing / 3.2.3.1:
Steam Reforming / 3.2.3.2:
Extraction of Valuable Components from Bio-oil / 3.2.3.3:
Catalytic Cracking of Bio-oil: Fundamental Aspects / 3.3:
The FCC Unit / 3.3.1:
Cracking Reactions and Mechanisms / 3.3.2:
Cracking of Oxygenated Compounds / 3.3.3:
Cracking of Bio-oil / 3.3.4:
Bio-oil Cracking in the FCC Unit / 3.4:
Cracking of Model Oxygenates / 3.4.1:
Coprocessing of Oxygenates and Their Mixtures with Vacuum Gas Oil (VGO) / 3.4.2:
Cracking of Bio-oil and Its Mixtures with VGO / 3.4.3:
Conclusions and Critical Discussion / 3.5:
Stabilization of Bio-oil via Esterification / Xun Hu4:
Reactions of the Main Components of Bio-Oil Under Esterification Conditions / 4.1:
Sugars / 4.2.1:
Carboxylic Acids / 4.2.2:
Furans / 4.2.3:
Aldehydes and Ketones / 4.2.4:
Phenolics / 4.2.5:
Other Components / 4.2.6:
Processes for Esterification of Bio-oil / 4.3:
Esterification of Bio-oil Under Subcritical or Supercritical Conditions / 4.3.1:
Removal of the Water in Bio-oil to Enhance Conversion of Carboxylic Acids / 4.3.2:
In-line Esterification of Bio-oil / 4.3.3:
Esterification Coupled with Oxidation / 4.3.4:
Esterification Coupled with Hydrogenation / 4.3.5:
Steric Hindrance in Bio-oil Esterification / 4.3.6:
Coking in Esterification of Bio-oil / 4.3.7:
Effects of Bio-oil Esterification on the Subsequent Hydrotreatment / 4.3.8:
Catalysts / 4.4:
Summary and Outlook / 4.5:
Catalytic Upgrading of Holocellulose-Derived C5 and C6 Sugars / Xingguang Zhang and Zhijun Tai and Amin Osatiashtiani and Lee Durndell and Adam F. Lee and Karen Wilson5:
Catalytic Transformation of C5-C6 Sugars / 5.1:
Isomerization Catalysts / 5.2.1:
Zeolites / 5.2.1.1:
Hydrotalcites / 5.2.1.2:
Other Solid Catalysts / 5.2.1.3:
Dehydration Catalysts / 5.2.2:
Zeolitic and Mesoporous Brønsted Solid Acids / 5.2.2.1:
Sulfonic Acid Functionalized Hybrid Organic-Inorganic Silicas / 5.2.2.2:
Metal-Organic Frameworks / 5.2.2.3:
Supported Ionic Liquids / 5.2.2.4:
Catalysts for Tandem Isomerization and Dehydration of C5-C6 Sugars / 5.2.3:
Bifunctional Zeolites and Mesoporous Solid Acids / 5.2.3.1:
Metal Oxides, Sulfates, and Phosphates / 5.2.3.2:
Catalysts for the Hydrogenation of C5-C6 Sugars / 5.2.3.3:
Ni Catalysts / 5.2.4.1:
Ru Catalysts / 5.2.4.2:
Pt Catalysts / 5.2.4.3:
Other Hydrogenation Catalysts / 5.2.4.4:
Hydrogenolysis Catalysts / 5.2.5:
Other Reactions / 5.2.6:
Conclusions and Future Perspectives / 5.3:
Chemistry of C-C Bond Formation Reactions Used in Biomass Upgrading: Reaction Mechanisms, Site Requirements, and Catalytic Materials / Tuong V. Bui and Nhung Duong and Felipe Anaya and Duong Ngo and Gap Warakunwit and Daniel E. Resasco6:
Mechanisms and Site Requirements of C-C Coupling Reactions / 6.1:
Aldol Condensation: Mechanism and Site Requirement / 6.2.1:
Base-Catalyzed Aldol Condensation / 6.2.1.1:
Acid-Catalyzed Aldol Condensation: Mechanism and Site Requirement / 6.2.1.2:
Alkylation: Mechanism and Site Requirement / 6.2.2:
Lewis Acid-Catalyzed Alkylation Mechanism / 6.2.2.1:
Brønsted Acid-Catalyzed Alkylation Mechanism / 6.2.2.2:
Base-Catalyzed Alkylation: Mechanism and Site Requirement / 6.2.2.3:
Hydroxyalkylation: Mechanism and Site Requirement / 6.2.3:
Brønsted Acid-Catalyzed Mechanism / 6.2.3.1:
Site Requirement / 6.2.3.2:
Acylation: Mechanism and Site Requirement / 6.2.4:
Mechanistic Aspects of Acylation Reactions / 6.2.4.1:
Role of Brønsted vs. Lewis Acid in Acylation Over Zeolites / 6.2.4.2:
Ketonization: Mechanism and Site Requirement / 6.2.5:
Mechanism of Surface Ketonization / 6.2.5.1:
Optimization and Design of Catalytic Materials for C-C Bond Forming Reactions / 6.2.5.2:
Oxides / 6.3.1:
Magnesia (MgO) / 6.3.1.1:
Zirconia (ZrO2) / 6.3.1.2:
ZSM-5 / 6.3.2:
HY / 6.3.2.2:
HBEA / 6.3.2.3:
Downstream Conversion of Biomass-Derived Oxygenates to Fine Chemicals / Michèle Besson and Stéphane Loridant and Noémie Perret and Catherine Pinel7:
Selective Catalytic Oxidation / 7.1:
Catalytic Oxidation of Glycerol / 7.2.1:
Glycerol to Glyceric Acid (GLYAC) / 7.2.2.1:
Glycerol to Tartronic Acid (TARAC) / 7.2.2.2:
Glycerol to Dihydroxyacetone (DHA) / 7.2.2.3:
Glycerol to Mesoxalic Acid (MESAC) / 7.2.2.4:
Glycerol to Glycolic Acid (GLYCAC) / 7.2.2.5:
Glycerol to Lactic Acid (LAC) / 7.2.2.6:
Oxidation of 5-HydroxymethylfurfuraI (HMF) / 7.2.3:
HMF to 2,5-Furandicarboxylic Acid (FDCA) / 7.2.3.1:
HMF to 2,5-Diformylfuran (DFF) / 7.2.3.2:
HMF to 5-Hydroxymethyl-2-furancarboxylic Acid (HMFCA) or 5-Formyl-2-furancarboxylic Acid (FFCA) / 7.2.3.3:
Hydrogenation/Hydrogenolysis / 7.3:
Hydrogenolysis of Polyols / 7.3.1:
Hydrodeoxygenation of Polyols / 7.3.2.1:
C-C Hydrogenolysis of Polyols / 7.3.2.2:
Hydrogenation of Carboxylic Acids / 7.3.3:
Levulinic Acid / 7.3.3.1:
Succinic Acid / 7.3.3.2:
Selective Hydrogenation of Furanic Compounds / 7.3.4:
Reductive Amination of Acids and Furans / 7.3.5:
Catalyst Design for the Dehydration of Biosourced Molecules / 7.4:
Glycerol to Acrolein / 7.4.1:
Lactic Acid to Acrylic Acid / 7.4.3:
Sorbitol to Isosorbide / 7.4.4:
Conclusions and Outlook / 7.5:
Conversion of Lignin to Value-added Chemicals via Oxidative Depolymerization / Justin K. Mobley8:
Cautionary Statements / 8.1:
Catalytic Systems for the Oxidative Depolymerization of Lignin / 8.2:
Enzymes and Bio-mimetic Catalysts / 8.2.1:
Cobalt Schiff Base Catalysts / 8.2.2:
Vanadium Catalysts / 8.2.3:
Methyltrioxorhenium (MTO) Catalysts / 8.2.4:
Commercial Products from Lignin / 8.3:
Stepwise Depolymerization of ß-O-4 Linkages / 8.4:
Benzylic Oxidation / 8.4.1:
Secondary Depolymerization / 8.4.2:
Heterogeneous Catalysts for Lignin Depolymerization / 8.5:
Outlook / 8.6:
Lignin Valorization via Reductive Depolymerization / Yang (Vanessa) Song9:
Late-stage Reductive Lignin Depolymerization / 9.1:
Mild Hydroprocessing / 9.2.1:
Harsh Hydroprocessing / 9.2.2:
Bifunctional Hydroprocessing / 9.2.3:
Liquid Phase Reforming / 9.2.4:
Reductive Lignin Depolymerization Using Hydrosilanes, Zinc, and Sodium / 9.2.5:
Reductive Catalytic Fractionation (RCF) / 9.3:
Reaction Conditions / 9.3.1:
Lignocellulose Source / 9.3.2:
Applied Catalyst / 9.3.3:
Acknowledgment / 9.4:
Conversion of Lipids to Biodiesel via Esterification and Transesterification / Amin Talebian-Kiakalaieh and Amin Nor Aishah Saidina10:
Different Feedstocks tor Biodiesel Production / 10.1:
Biodiesel Production / 10.3:
Algal Bio diesel Production / 10.3.1:
Nutrients for Microalgae Growth / 10.3.1.1:
Microalgae Cultivation System / 10.3.1.2:
Harvesting / 10.3.1.3:
Drying / 10.3.1.4:
Lipid Extraction / 10.3.1.5:
Catalytic Transesterification / 10.4:
Homogeneous Catalysts / 10.4.1:
Alkali Catalysts / 10.4.1.1:
Acid Catalysts / 10.4.1.2:
Two-step Esterification-Transesterification Reactions / 10.4.1.3:
Heterogeneous Catalysts / 10.4.2:
Solid Acid Catalysts / 10.4.2.1:
Solid Base Catalysts / 10.4.2.2:
Enzyme-Catalyzed Transesterification Reactions / 10.4.3:
Supercritical Transesterification Processes / 10.5:
Alternative Processes for Biodiesel Production / 10.6:
Ultrasonic Processes / 10.6.1:
Microwave-Assisted Processes / 10.6.2:
Summary / 10.7:
Upgrading of Lipids to Hydrocarbon Fuels via (Hydro)deoxygenation / David Kubicka11:
Feedstocks / 11.1:
Chemistry / 11.3:
Technologies / 11.4:
Sulfided Catalysts / 11.5:
Metallic Catalysts / 11.5.2:
Metal Carbide, Nitride, and Phosphide Catalysts / 11.5.3:
Upgrading of Lipids to Fuel-like Hydrocarbons and Terminal Olefins via Decarbonylation/Decarboxylation / Ryan Loe and Eduardo Santillan-Jimenez and Mark Crocker11.6:
Lipid Feeds / 12.1:
deCOx Catalysts: Active Phases / 12.3:
deCOx Catalysts: Support Materials / 12.4:
Reaction Mechanism / 12.5:
Catalyst Deactivation / 12.7:
Conversion of Terpenes to Chemicals and Related Products / Anne E. Harman-Ware12.8:
Terpene Biosynthesis and Structure / 13.1:
Sources of Terpenes / 13.3:
Conifers and Other Trees / 13.3.1:
Essential Oils and Other Extracts / 13.3.2:
Isolation of Terpenes / 13.4:
Tapping and Extraction / 13.4.1:
Terpenes as a By-product of Pulping Processes / 13.4.2:
Historical Uses of Raw Terpenes / 13.5:
Adhesives and Turpentine / 13.5.1:
Flavors, Fragrances, Therapeutics, and Pharmaceutical Applications / 13.5.2:
Catalytic Methods for Conversion of Terpenes to Fine Chemicals and Materials / 13.6:
Homogeneous Processes / 13.6.1:
Hydration and Oxidation Reactions / 13.6.1.1:
Homogeneous Catalysis for the Epoxidation of Monoterpenes / 13.6.1.2:
Isomerizations / 13.6.1.3:
Production of Terpene Carbonates from CO2 and Epoxides / 13.6.1.4:
Polymers and Other Materials from Terpenes / 13.6.1.5:
"Click Chemistry" Routes for the Production of Materials and Medicinal Compounds from Terpenes / 13.6.1.6:
Heterogeneous Processes / 13.6.2:
Isomerization and Hydration of ¿-Pinene / 13.6.2.1:
Heterogeneous Catalysts for the Epoxidation of Monoterpenes / 13.6.2.2:
Isomerization of ¿-Pinene Oxide / 13.6.2.3:
Vitamins from Terpenes / 13.6.2.4:
Dehydrogenation and Hydrogenation Reactions of Terpenes / 13.6.2.5:
Conversion of Terpenes to Fuels / 13.6.2.6:
Conversion of Chitin to Nitrogen-containing Chemicals / Xi Chen and Ning Yan14:
Waste Shell Biorefinery / 14.1:
Production of Amines and Amides from Chitin Biomass / 14.2:
Sugar Amines/Amides / 14.2.1:
Furanic Amines/Amides / 14.2.2:
Polyol Amines/Amides / 14.2.3:
Production of N-heterocyclic Compounds from Chitin Biomass / 14.3:
Production of Carbohydrates and Acetic Acid from Chitin Biomass / 14.4:
Production of Advanced Products from Chitin Biomass / 14.5:
Conclusion / 14.6:
Index / Eduardo Santillan-Jimenez and Mark Crocker15:
Preface
Upgrading of Biomass via Catalytic Fast Pyrolysis (CFP) / Charles A. Mullen1:
Introduction / 1.1:
2.

電子ブック

EB
Donald L. Klass
出版情報: ScienceDirect, 1998  1 online resource (xv, 651p.)
所蔵情報: loading…
目次情報: 続きを見る
Preface
Energy Consumption, Reserves, Depletion, Environmental Issues
Biomass as an Energy Resource: Concept and Markets
Photosynthesis of Biomass and Its Conversion-Related Properties
Virgin Biomass Production
Waste Biomass Abundance, Energy Potential, and Availability
Physical Conversion Processes
Thermal Coversion: Combustion
Thermal Conversion: Pyrolysis and Liquefaction
Thermal Converstion: Gasification
Natural Biochemical Liquefaction
Synthetic Oxygenated Liquid Fuels
Microbial Conversion: Gasification
Organic Commodity Chemicals from Biomass
Integrated Biomass Production-Conversion Systems and Net Energy Production
Epilogue
Appendices
Subject Index
Preface
Energy Consumption, Reserves, Depletion, Environmental Issues
Biomass as an Energy Resource: Concept and Markets
3.

電子ブック

EB
edited by Gabriele Centi, Rutger A. van Santen
出版情報: [S.l.] : Wiley Online Library, [20--]  1 online resource (xxiii, 423 p.)
所蔵情報: loading…
4.

電子ブック

EB
edited by Birgit Kamm, Patrick R. Gruber, and Michael Kamm
出版情報: [S.l.] : Wiley Online Library  1 online resource (xxxvi, 497 p.)
所蔵情報: loading…
目次情報: 続きを見る
Editors's
Preface.
Foreword / Henning Hopf
List of Contributors. / Paul T. Anastas
Background and Outline - Principles and Fundamentals. / Volume 1.:
Biorefinery Systems - An Overview / Birgit Kamm ; Michael Kamm ; Patrick R. Gruber ; Stefan Kromus1:
Introduction. / 1.1:
Historical Outline / 1.2:
Situation. / 1.3:
Principles of Biorefineries. / 1.4:
Biorefinery Systems and Design. / 1.5:
Outlook and Perspectives. / 1.6:
References.
Biomass Refining Global Impact - The Biobased Economy of the 21st Century / Bruce E. Dale ; Seungdo Kim2:
Historical Outline. / 2.1:
Supplying the Biorefinery. / 2.3:
How Will Biorefineries Develop Technologically? / 2.4:
Sustainability of Integrated Biorefining Systems. / 2.5:
Conclusions.Acknowledgements. / 2.6:
Development of Biorefineries - Technical and Economic Considerations / Bill Dean ; Tim Dodge ; Fernando Valle ; Gopal Chotani3:
Overview: The Biorefinery Model. / 3.1:
Feedstock and Conversion to Fermentable Sugar. / 3.3:
Technical Challenges. / 3.4:
Conclusions. / 3.5:
Acknowledgments.
Biorefineries for the Chemical Industry - A Dutch Point of View / Ed de Jong ; René van Ree Rea ; Robert van Tuil ; Wolter Elbersen4:
Historical Outline - The Chemical Industry: Current Situation and Perspectives. / 4.1:
Biomass: Technology and Sustainability. / 4.3:
The Chemical Industry: Biomass Opportunities - Biorefineries. / 4.4:
Conclusions, Outlook, and Perspectives.References. / 4.5:
Biorefinery Systems.Lignocellulose Feedstock Biorefinery. / Part II:
The Lignocellulosic Biorefinery - A Strategy for Returning to a Sustainable Source of Fuels and Industrial Organic Chemicals / L. Davis Clements ; Donald L. Van Dyne5:
The Situation. / 5.1:
The Strategy. / 5.2:
Comparison of Petroleum and Biomass Chemistry. / 5.3:
The Chemistry of the Lignocellulosic Biorefinery. / 5.4:
Examples of Integrated Biorefinery Applications. / 5.5:
Summary.References. / 5.6:
Lignocellulosic Feedstock Biorefinery: History and Plant Development for Biomass Hydrolysis / Raphael Katzen ; Daniel J. Schell6:
Hydrolysis of Biomass Materials. / 6.1:
Acid Hydrolysis Processes. / 6.3:
Enzymatic Hydrolysis Process. / 6.4:
Conclusion.References. / 6.5:
The Biofine Process - Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks / Daniel J. Hayes ; Steve Fitzpatrick ; Michael H.B. Hayes ; Julian R.H. Ross7:
Lignocellulosic Fractionation. / 7.1:
The Biofine Process. / 7.3:
Conclusion. / 7.4:
Whole Crop Biorefinery.
A Whole Crop Biorefinery System: A Closed System for the Manufacture of Non-food Products from Cereals / Apostolis A. Koutinas ; Rouhang Wang ; Grant M. Campbell ; Colin Webb8:
Intro. / 8.1:
Biorefineries Based on Wheat. / 8.2:
A Biorefinery Based on Oats. / 8.3:
Summary. / 8.4:
Fuel-oriented Biorefineries.
Iogen's Demonstration Process for Producing Ethano / 9:
Editors's
Preface.
Foreword / Henning Hopf
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼