close
1.

図書

図書
edited by Y. Suematsu and A. R. Adams
出版情報: Tokyo : Ohmsha , London : Chapman & Hall, 1994  viii, 546 p. ; 26 cm
所蔵情報: loading…
2.

図書

東工大
目次DB

図書
東工大
目次DB
Kenichi Iga ; technical editor, Richard B. Miles
出版情報: New York : Plenum Press, c1994  xv, 285 p. ; 24 cm
シリーズ名: Lasers, photonics, and electro-optics
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1. The Basic Concept of Lasers
   1.1. What Is a Laser? 1
   1.2. History of Lasers 4
   1.2.1. Development of Masers 4
   1.2.2. Development of Lasers 5
   1.3. Characteristics of Laser Beams 6
   1.4. Field of Optoelectronics 9
   Problems 10
   References 11
Chapter 2. Laser Applications
   2.1. Laser Characteristics and Application Areas 13
   2.2. Optical Communications 16
   2.2.1. Optical Communication Systems 16
   2.2.2. Semiconductor Lasers for Optical Fiber Communication 18
   2.2.3. Lasers as Light Sources in Communication Measurement 19
   2.2.4. Optical Amplifiers 20
   2.3. Laser Disks 21
   2.4. Lightwave Sensing 23
   2.4.1. Light Output 23
   2.4.2. Radiation Angle of Light Beam 24
   2.4.3. Instability of Laser Operation Caused by Optical Feedback 25
   2.4.4. Increase of Intensity Noise Caused by Mode Hopping 25
   2.4.5. Variation of Power Related to Temperature Change 26
   2.4.6. Variation of Wavelength Related to Temperature Change 26
   2.4.7. Reproducibility of Wavelenght 27
   2.4.8. Linewidth 27
   2.4.9. Resistivity against Electrical Surge and Lifetime 28
   2.5. Electro-Optic Equipment 28
   2.6. Medical Applications 29
   2.7. Energy Development 29
   2.8. Laser Display 30
   Problems 30
   References 31
Chapter 3. Gas and Liquid Lasers
   3.1. Gas Lasers 33
   3.1.1. Helium-Neon Laser 33
   3.1.2. CO2 Laser 35
   3.1.3. Ion Lasers 36
   3.1.4. Helium-Cadmium Laser 37
   3.1.5. Nitrogen Laser 37
   3.2. Excimer Lasers 38
   3.3. Liquid Lasers 39
   3.4. Other Lasers 40
   Problems 40
   References 41
Chapter 4. Solid-State Lasers
   4.1. Ruby Lasers 43
   4.2. YAG Lasers 44
   4.3. Glass Lasers 46
   4.4. Optical Fiber Laser Amplifiers 46
   4.5. Other Solid-State Lasers 47
   Problems 48
   References 48
Chapter 5. Semiconductor Lasers-Materials and Devices
   5.1. Outline of Semiconductor Lasers 49
   5.1.1. Development of Semiconductor Lasers 49
   5.1.2. Fundamentals of Semiconductor Lasers 51
   5.2. Materials for Semiconductor Lasers 52
   5.2.1. Crystals for 1-μm-Band Semiconductor Lasers 52
   5.2.2. Crystals for Visible to Near-Infrared Semiconductor Lasers 56
   5.3. Basic Concept of Semiconductor Lasers 58
   5.3.1. Oscillation Conditions 58
   5.3.2. Gain Width and Oscillation Spectra 60
   5.3.3. Transverse Mode Characteristics 62
   5.3.4. Threshold and Efficiency 64
   5.3.5. Near-and Far-Field Patterns 65
   5.3.6. Temperature Characteristics 65
   Problems 66
   References 67
Chapter 6. Light Beams
   6.1. Equations Expressing an Electromagnetic Field of Light 71
   6.1.1. Passive Case 73
   6.1.2. Active Case 74
   6.2. Normal Modes 75
   6.3. Normal Modes in Distributed Index (DI) Waveguides 77
   6.4. Expansion Methods for Normal Modes 82
   6.5. Gaussin Beams in Free Space 86
   6.6. Transformation Matrix of Waveform and Ray Transfer Matrix 89
   6.6.1. Transformation Matrix of Waveforms 89
   6.6.2. Ray Transfer Matrix 93
   6.7. Representation of Waveform Coefficient Transformation by the Smith Chart 95
   6.8. Appendix 1: Matrix of a DI Waveguide 96
   6.9. Appendix 2: Transfer Matrices in Free Space 100
   Problems 101
   References 101
Chapter 7. Optical Waveguides for Laser Technology
   7.1. Normal Modes in a Planar Dielectric Waveguide 103
   7.2. Modes of a Three-Dimensional Waveguide 113
   7.3. Confinement Factor 114
   7.4. Radiation from the Edge of a Waveguide 115
   Problems 117
   References 118
Chapter 8. Laser Resonators and Resonant Modes
   8.1. Introduction 119
   8.2. Fabry-Perot Waveguide-Type Resonators 121
   8.3. Open Fabry-Perot Resonators with Concave Mirrors 125
   8.3.1. Spotsize 125
   8.3.2. Stability of Resonators 126
   8.3.3. Mode and Diffraction Loss in Fabry-Perot Resonators 129
   8.3.4. Resonance Frequency 137
   8.4. Distributed Feedback/Reflector Resonators 139
   8.4.1. Resonance Frequencies 139
   8.4.2. Diffracted Waves 140
   8.4.3. Stop Bands 142
   8.4.4. Distributed Bragg Reflector-Type Resonators 146
   8.4.5. λB/4 Phase Shift 147
   8.5. Resonator Loss and Resonance Characteristics 148
   8.5.1. Decay Time and Q-Value 148
   8.5.2. Resonance Characteristics and Transfer Function 149
   8.6. Summary 150
   Problems 150
   References 151
Chapter 9. Laser Equations
   9.1. Density Matrix and Equations of Motions 153
   9.1.1. Density Matrix 153
   9.1.2. Density Operator and Density Matrix in the Pure State 155
   9.1.3. Density Operator in a Continuous Eigenstate 156
   9.2. Dipole Transition 158
   9.2.1. Diagonal Elements of the Density Matrix 158
   9.2.2. Nondiagonal Elements of the Density Matrix 160
   Problems 163
   References 163
Chapter 10. Rate Equations
   10.1. Homogeneous Gain 165
   10.2. Rate Equations 167
   10.3. Laser Gain 170
   10.3.1. Laser Gain 171
   10.3.2. Gain of Semiconductor Lasers 172
   10.3.3. Quantum Well Lasers 174
   10.4. Oscillation Conditions 177
   Problems 180
   References 181
Chapter 11. Laser Gain and Saturation
   11.1. Inhomogeneous Broadening 183
   11.2. Hole Burning 184
   11.3. Saturation of Light Output 189
   11.4. Gain and Saturation in Semiconductor Lasers 194
   Problems 204
   References 205
Chapter 12. Modulation and Light Pulse Generation
   12.1. Delay in Laser Oscillation 207
   12.2. Relaxation Oscillation 208
   12.3. Q-Switching 210
   12.4. Mode Locking 212
   12.5. Direct Modulation 214
   Problems 216
   References 217
Chapter 13. Laser Noise
   13.1. Intensity Noise 219
   13.1.1. Measure of Intensity Noise 219
   13.1.2. Quantum Noise 220
   13.1.3. Enhancement of Intensity Noise by Various Factors 223
   13.1.4. Stabilization of Laser Output 224
   13.2. Frequency Noise 224
   13.2.1. Expression for Frequency Noise 224
   13.2.2. Quantum Noise 224
   13.2.3. Enhancement of Frequency Noise by Various Factors 227
   13.2.4. Measuring Linewidth 227
   13.3. Control of Linewidth 228
   13.3.1. Optical Methods 228
   13.3.2. An Electric Method 229
   13.4. Laser Frequency Stabilization 229
   13.4.1. Allan Variance 229
   13.4.2. Stabilization at the Center of Laser Gain 230
   13.4.3. Stabilization with an External Frequency Standard 230
   Problems 231
   References 231
Chapter 14. Advanced Technology for Semiconductor Laser Fabrication and Integration
   14.1. Methods of Semiconductor Crystal Growth 233
   14.1.1. Outline of Crystal Growth Method 233
   14.1.2. Liquid-Phase Epitaxy 234
   14.1.3. Vapor-Phase Epitaxy 238
   14.1.4. Metal-Organic Chemical Vapor Deposition 239
   14.1.5. Molecular Beam Epitaxy 240
   14.1.6. Chemical Beam Epitaxy 241
   14.2. Laser Devices and Fabrication Processes 241
   14.2.1. Energy Band Structures in Heterojunction Devices 241
   14.2.2. Doping 244
   14.2.3. Fabrication Methods of Wafers for Lasers 245
   14.3. Evaluation of Wafers 247
   14.3.1. Observation of Surface Morphology 248
   14.3.2. Observation of Cross Sections 248
   14.3.3. Determining Composition 248
   14.3.4. Determining the Band Gap, Eg 248
   14.3.5. Measuring Lattice Matching 249
   14.3.6. Photoluminescence 249
   14.3.7. Measurement of Refractive Index 250
   14.3.8. Misfit Density 251
   14.4. Fabrication of Fundamental Laser Devices and Characterization Methods 251
   14.4.1. Fabrication Method of Fundamental Laser Devices 251
   14.4.2. Stripe-Geometry Lasers 253
   14.5. Longitudinal Mode Control 254
   14.6. Modulation and Noise 257
   14.6.1. Modulation and Bandwidth of a Semiconductor Laser 257
   14.6.2. Noise 258
   14.6.3. Frequency Stability 259
   14.7. Prospects of Semiconductor Lasers 260
   14.7.1. Laser Arrays 260
   14.7.2. Integration 261
   14.7.3. Prospects of Optical Subsystems 263
   Problems 264
   References 264
Chapter 15. Surface-Emitting Lasers
   15.1. Advantages of Surface-Emitting Lasers 267
   15.2. History of Vertical Cavity Surface-Emitting Lasers 270
   15.3. Vertical Cavity Surface-Emitting Lasers (VCSEL) 271
   15.3.1. GaInAsP/InP Surface-Emitting Lasers 271
   15.3.2. GaA1As/GaAs Surface-Emitting Lasers 273
   15.3.3. GaInAs/GaAs Surface-Emitting Lasers 275
   15.4. Ultimate Threshold and Spontaneous Emission Control 275
   15.4.1. Ultimate Threshold 275
   15.4.2. Spontaneous Emission Control 275
   15.4.3. Photon Recycling 276
   15.5. Two Dimensional Arrays of Surface-Emitting Lasers 277
   15.6. Applied Subsystems 278
   15.7. Prospects 280
   References 280
Index 283
Chapter 1. The Basic Concept of Lasers
   1.1. What Is a Laser? 1
   1.2. History of Lasers 4
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼