close
1.

図書

図書
渡部睦夫著
出版情報: 東京 : 培風館, 2002.5  vi, 269p ; 21cm
所蔵情報: loading…
2.

図書

図書
沢田賢, 渡邊展也, 安原晃著
出版情報: 東京 : 朝倉書店, 2002.4  v, 141p ; 21cm
シリーズ名: シリーズ数学の世界 ; 3
所蔵情報: loading…
3.

図書

図書
倉田吉喜著
出版情報: 東京 : サイエンスハウス, 2001.4  vi, 171p ; 21cm
所蔵情報: loading…
4.

図書

図書
細川尋史著
出版情報: 東京 : 牧野書店 , 東京 : 星雲社 (発売), 2002.1  iv, 184p ; 21cm
シリーズ名: 理工系数学の基礎・基本 ; 5
所蔵情報: loading…
5.

図書

図書
川原雄作 [ほか] 著
出版情報: 東京 : 共立出版, 2001.5  v, 229p ; 22cm
所蔵情報: loading…
6.

図書

東工大
目次DB

図書
東工大
目次DB
岩永恭雄著
出版情報: 東京 : 日本評論社, 2005.7  x, 251p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
   はじめに i
第1章 ベクトルの集まりと線型演算 1
   1.1 幾何的ベクトルから代数的ベクトルへ 2
   1.2 ベクトル空間の登場 8
   1.2.1 ベクトル空間の公理(ペアノ、1888) 8
   1.2.2 公理から導かれる線型演算の基本的性質 10
   1.2.3 ベクトル空間の例 13
   1.3 ベクトル空間の大きさを決定する数値 18
   1.3.1 ベクトルから部分空間を作る 19
   1.3.2 線型結合における表現の一意性 22
   1.3.3 次元の導入 27
   1.3.4 座標の導入 31
   第1章の問題 34
第2章 ベクトル空間の間の写像と表現 36
   2.1 線型演算を保存する写像 36
   2.1.1 線型写像の例 37
   2.1.2 線型写像を定義する方法 40
   2.1.3. 線型写像の基本的性質 41
   2.1.4 線型写像と関連して現れる部分空間 43
   2.1.5 線型写像が次元に与える影響 45
   2.1.6 部分空間・核空間・解空間は同値な概念 47
   2.1.7 有限次元ベクトル空間は数ベクトル空間と同じ 49
   2.2 線型写像をわかりやすくする 50
   2.2.1 線型写像の表現 50
   2.2.2 表現行列の例 52
   2.2.3 表現行列から行列へ 56
   2.2.4 行列は線型写像を与える 58
   2.3 行列には線型演算と積が定義される 59
   2.3.1 線型写像の線型演算 60
   2.3.2 行列の線型演算 60
   2.3.3 行列には積も定義される 63
   2.4 基底を変えると表現行列は変わる 68
   2.4.1 2組の基底の間の関係 68
   2.4.2 基底および座標の変換 69
   2.4.3 同型を与える線型変換の表現行列 71
   2.4.4 基底変換による表現行列の変化 72
   第2章の問題 75
第3章 行列の性質を決定する指標 77
   3.1 行列式を定義するために 78
   3.1.1 置換の便利な表記 78
   3.1.2 置換のタイプと置換の分解 79
   3.2 行列式の導入 86
   3.2.1 行列式の基本的性質 89
   3.3 行列式の計算方法と逆行列の求め方 94
   3.3.1 逆行列の求め方 98
   3.3.2 正則行列の判定法 100
   3.4 行列式の計算方法と逆行列の求め方 106
   3.4.1 連立1次方程式の解法 106
   3.4.2 幾何への応用 112
   3.4.3 解折への応用 117
   第3章の問題 121
第4章 線型写像を見やすくする方法 123
   4.1 線型写像を分類する 123
   4.1.1 連立1次方程式の解(再考) 126
   4.2 対角行列を表現行列にもつ線型変換 128
   4.2.1 表現行列が対角行列になるとき 129
   4.2.2 固有値と固有ベクトルの求め方 131
   4.2.3 対角行列を表現行列にもつ線型変換 136
   4.3 表現行列はどこまで簡単になるか 141
   4.3.1 行列の3角化 142
   4.3.2 3角化の応用 145
   4.4 対角化の応用 154
   4.4.1 数列の漸化式と一般項 154
   4.4.2 線型微分方程式 156
   第4章の問題 158
第5章 幾何的性質をもったベクトル空間 160
   5.1 ベクトルに長さを定義する 160
   5.1.1 計量空間における基底 165
   5.2 直交する部分空間 170
   5.2.1 極小化問題 174
   5.3 計量空間の線型変換とその表現行列 178
   5.3.1 ユニタリー変換の表現行列 180
   5.3.2 幾何的な線型変換 183
   5.4 正規直交基底に関する表現行列 185
   5.4.1 正規変換の表現行列 188
   5.4.2 有限次元複素計量空間の正規変換 190
   5.5 有限次元実計量空間の正規変換 191
   5.5.1 直交変換の表現行列を単純化する 195
   第5章の問題 200
付録 A 線型代数から抽象代数への一歩 203
   A.1 基底の概念を拡張する 203
   A.1.1 部分空間の和 203
   A.1.2 ベクトル空間の直和分解 205
   A.1.3 直和分解を導く線型変換 211
   A.1.4 巾等行列は対角化可能 212
   A.1.5 計量空間の巾等変換 214
   A.2 転置行列が与える線型写像 215
   A.2.1 双対空間の間の線型写像 217
   A.2.2 双対写像の表現行列 220
   A.2.3 図式(A.3)を完成する 221
付録 B 予備知識:集合と写像 227
   B.1 集合に関する基礎知識 227
   B.1.1 数の集合 227
   B.1.2 集合の表記方法 227
   B.2 写像 230
   B.2.1 単射、全射そして全単射 231
   B.2.2 合成写像と逆写像 234
   B.2.3 置換 234
   ギリシャ文字 236
   章末問題の解答 237
   参考文献 246
   話題1 量子力学における物理量 67
   話題2 無理数と複素数を行列で表す 73
   話題3 置換で遊びを解明する 84
   話題4 ヴァンデルモンドの行列式 103
   話題5 行列と行列式の起源 109
   話題6 行列式の幾何的な意味 116
   話題7 線型代数を微分方程式の解法に用いる 119
   話題8 関数を多項式で近似する 176
   話題9 双対性という言葉 222
   はじめに i
第1章 ベクトルの集まりと線型演算 1
   1.1 幾何的ベクトルから代数的ベクトルへ 2
7.

図書

図書
渡辺豊著
出版情報: 東京 : 共立出版, 2006.3  v, 230p ; 21cm
シリーズ名: 教育系学生のための数学シリーズ
所蔵情報: loading…
8.

図書

図書
田中茂著
出版情報: 東京 : 実教出版, 2003.4  v, 200p ; 21cm
所蔵情報: loading…
9.

図書

東工大
目次DB

図書
東工大
目次DB
木村宣昭著
出版情報: 東京 : 培風館, 2005.11  vi, 183p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
   目次
1 複素数 1
   1.1 複素数 1
   演習問題1.1 6
2 空間のベクトル 7
   2.1 ベクトルと演算 7
   演習問題2.1 12
   2.2 ベクトルの内積 13
   演習問題2.2 16
   2.3 ベクトルの外積 16
   演習問題2.3 20
   2.4 直線と平面の方程式 20
   演習問題2.4 23
3 行列 24
   3.1 行列の定義 24
   演習問題3.1 28
   3.2 行列の演算 28
   演習問題3.2 30
   3.3 演算の法則 30
   演習問題3.3 32
   3.4 正方行列 33
   演習問題3.4 35
   3.5 正則行列 35
   演習問題3.5 36
   3.6 行列のブロック分割 37
   演習問題3.6 40
4 行列式 42
   4.1 行列式の定義 42
   演習問題4.1 48
   4.2 行列式の性質 48
   演習問題4.2 50
   4.3 行列式と成分 51
   演習問題4.3 54
   4.4 余因数展開 55
   演習問題4.4 59
   4.5 行列式の計算 59
   演習問題4.5 61
   4.6 行列の積の行列式と逆行列 62
   演習問題4.6 65
   4.7 連立1次方程式への応用 66
   演習問題4.7 69
   4.8 空間ベクトルへの応用 69
   演習問題4.8 71
5 連立1次方程式 72
   5.1 消去法 72
   演習問題 5.1 74
   5.2 行基本操作と階段行列 75
   演習問題5.2 77
   5.3 連立1次方程式の解法 77
   演習問題5.3 77
   5.4 連立1次方程式の解 81
   演習問題5.4 85
   5.5 逆行列への応用 85
   演習問題5.5 87
   5.6 階数の一意性と標準形 88
   演習問題5.6 92
6 数ベクトル空間 93
   6.1 π次(元)数ベクトル空間 93
   演習問題6.1 96
   6.2 1次独立 96
   演習問題6.2 99
   6.3 基底・次元 99
   演習問題6.3 103
   6.4 階数 103
   演習問題6.4 107
   6.5 成分・基底の変換 107
   演習問題6.5 111
   6.6 計量ベクトル空間 111
   演習問題6.6 115
   6.7 正規直交基底 115
   演習問題6.7 119
7線形写像
   7.1 線形写像 120
   演習問題7.1 122
   7.2 次元定理 123
   演習問題7.2 127
   7.3 表現行列 127
   演習問題7.3 133
   7.4 線形変換 134
   演習問題7.4 137
8 固有値,固有ベクトル 138
   8.1 固有値,固有ベクトル 138
   演習問題8.1 141
   8.2 対角化 141
   演習問題8.2 146
   8.3 三角化 146
   演習問題8.3 150
   8.4 エルミート行列の対角化 150
   演習問題8.4 153
9 2次曲線・2次曲面 154
   9.1 2次曲線 154
   演習問題9.1 160
   9.2 2次曲面 161
   演習問題9.2 165
   演習問題解答 166
   索引 181
   目次
1 複素数 1
   1.1 複素数 1
10.

図書

図書
吉村善一著
出版情報: 東京 : 数理工学社 , 東京 : サイエンス社 (発売), 2005.7  ix, 243p ; 22cm
シリーズ名: 工科のための数理 ; MKM-2
所蔵情報: loading…
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼