close
1.

図書

東工大
目次DB

図書
東工大
目次DB
武者利光編 ; 井上昌次郎 [ほか] 共著
出版情報: 東京 : 森北出版, 1991.9-  冊 ; 19cm
所蔵情報: loading…
目次情報: 続きを見る
Vol.3
1 非平衡系のゆらぎ(北原和夫) 1
   1.1 はじめに 2
   1.2 線形減衰の仮説 4
   1.3 平衡系のゆらぎ 9
   1.4 非平衡系のゆらぎ 12
   1.5 プラズマ発展系 18
   1.6 おわりに 20
   Q and A 22
2 脳細胞活動のゆらぎと意識の制御(山本光璋) 27
   2.1 はじめに 28
   2.2 ネコの脳の"意識"状態の調べ方 29
   2.3 ニューロン活動 36
   2.4 ニューラル・ネットワークによるシミュレーション 50
   2.5 覚醒時のニューロン活動から見た調節系の機能 52
   2.6 レム睡眠の機能 56
   2.7 おわりに 58
   Q and A 58
3 神経パルス伝搬とゆらぎの制御(小杉幸夫) 61
   3.1 はじめに 62
   3.2 役に立つゆらぎ 62
   3.3 ゆらぎの発生と制御 67
   3.4 密度変調とバーガーズ方程式 71
   3.5 神経線維のフィルタ動作 80
   3.6 イカを追って 86
   3.7 おわりに 91
4 1/fゆらぎと音楽のかかわり(後藤慶一) 93
   (1/fゆらぎの音楽制作に関する報告)
   4.1 はじめに……武者先生との出会いについて 94
   4.2 電子楽器 コンピュータの普及とゆらぎの関係 97
   4.3 最初はゆらいでいた電子楽器 99
   4.4 ゆらがないデジタル楽器が主流へ 105
   4.5 電子楽器におけるゆらぎの再評価 110
   4.6 1/fゆらぎによる音楽制作に至る実験のプロセス 113
   4.7 コンピュータで作曲した1/fゆらぎのメロディによる音楽制作 117
   4.8 心拍データによって時間をコントロールする 120
   4.9 α波音楽1/fのゆらぎの音楽と称する商品のあまりに不透明な部分 125
   4.10 おわりに 128
   Q and A 128
5 音楽は聴手をどこまでだませるか(諫早俊夫) 131
   5.1 はじめに 132
   5.2 コンピュータで作成した譜面 132
   5.3 らしさを奏でる手法 138
   5.4 おわりに 147
6 1/fゆらぎ研究の楽しみ(武者利光) 149
   6.1 はじめに 151
   6.2 4種類のノイズ 152
   6.3 物理学の盲点にチャレンジ 154
   6.4 1/fゆらぎの国際会議を開催する 160
   6.5 1/fゆらぎ研究の楽しみ 163
   6.6 退官にあたって 199
Vol.3
1 非平衡系のゆらぎ(北原和夫) 1
   1.1 はじめに 2
2.

図書

東工大
目次DB

図書
東工大
目次DB
Motoichi Ohtsu and Hirokazu Hori
出版情報: New York : Kluwer Academic/Plenum Pub., c1999  xii, 386 p. ; 24 cm
シリーズ名: Lasers, photonics, and electro-optics
所蔵情報: loading…
目次情報: 続きを見る
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
   1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM) 4
   1.2.1. From Interference-to Interaction-Type Optical Microscopy 4
   1.2.2. Development of Near-Field Optical Microscopy and Related Techniques 6
   1.3. General Features of Optical Near-Field Problems 10
   1.3.1. Optical Processes and the Scale of Interest 10
   1.3.2. Effective Fields and Interacting Subsystems 12
   1.3.3. Electromagnetic Interaction in a Dielectric System 15
   1.3.4. Optical Near-Field Measurements 20
   1.4. Theoretical Treatment of Optical Near-Field Problems 25
   1.4.1. Near-Field Optics and Inhomogeneous Waves 25
   1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems 28
   1.4.3. Explicit Treatment of Field-Matter Interaction 32
   1.5. Remarks on Near-Field Optics and Outline of This Book 33
   1.5.1. Near-Field Optics and Related Problems 33
   1.5.2. Outline of This Book 34
   1.6. References 35
Chapter 2. Principles of Near-Field Optical Microscopy
   2.1. An Example of Near-Field Optical Microscopy 43
   2.2. Construction of the NOM System 45
   2.2.1. Building Blocks of the NOM System 45
   2.2.2. Environmental Conditions 47
   2.2.3. Functions of the Building Blocks 48
   2.3. Theoretical Description of Near-Field Optical Microscopy 50
   2.3.1. Basic Character of the NOM Process 50
   2.3.3. Demonstration of Localization in the Near-Field Interaction 53
   2.3.4. Representation of the Spatial Localization of an Electromagnetic Event 55
   2.3.5. Model Description of a Local Electromagnetic Interaction 55
   2.4. Near-Field Problems and the Tunneling Process 56
   2.4.1. Bardeen's Description of Tunneling Current in STM 57
   2.4.2. Comparison of the Theoretical Aspects of NOM and STM 58
   2.5. References 61
Chapter 3. Instrumentation
   3.1. Basic Systems of a Near-Field Optical Microscope 63
   3.1.1. Modes of Operation 66
   3.1.2. Position Control of the Probe 69
   3.1.3. Mechanical Components 74
   3.1.4. Noise Sources Internal to the NOM 75
   3.1.5. Operation under Special Circumstances 78
   3.2. Light Sources 82
   3.2.1. Basic Properties of Lasers 82
   3.2.2. Characteristics of CW Lasers 84
   3.2.3. Additional Noise Properties of CW Lasers 88
   3.2.4. Short-Pulse Generation 94
   3.2.5. Nonlinear Optical Wavelength Conversion 97
   3.3. Light Detection and Signal Amplification 98
   3.3.1. Detector 98
   3.3.2. Signal Detection and Amplification 103
   3.4. References 111
Chapter 4. Fabrication of Probes
   4.1. Sharpening of Fibers by Chemical Etching 113
   4.1.1. A Basic Sharpened Fiber 114
   4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding 118
   4.1.3. A Pencil-Shaped Fiber 119
   4.1.4. A Flattened-Top Fiber 122
   4.1.5. A Double-Tapered Fiber 127
   4.2. Metal Coating and Fabrication of a Protruded Probe 130
   4.2.1. Removal of Metallic Film by Selective Resin Coating 132
   4.2.2. Removal of Metallic Film by Nanometric Photolithography 135
   4.3. Other Noverl Probes 139
   4.3.1. Functional Probes 139
   4.3.2. Optically Trapped Probes 141
   4.4. References 141
Chapter 5. Imaging Experiments
   5.1. Basic Features of the Localized Evanescent Field 143
   5.1.1. Size-Dependent Decay Length of the Field Intensity 143
   5.1.2. Manifestation of the Short-Range Electromagnetic Interaction 146
   5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface 149
   5.2. Imaging Biological Samples 152
   5.2.1. Imaging by the C-Mode 152
   5.2.2. Imaging by the I-Mode 161
   5.3. Spatial Power Spectral Analysis of the NOM Image 170
   5.4. References 177
Chapter 6. Diagnostics and Spectroscopy of Photonic Devices and Materials
   6.1. Diagnosing a Dielectric Optical Waveguide 179
   6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide 184
   6.2.1. Photoluminescence and Electroluminescence Spectroscopy 185
   6.2.2. Photocurrent Measurement by Multiwavelength NOM 191
   6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot 196
   6.4. Imaging of Other Materials 201
   6.4.1. Fluorescence Detection from Dye Molecules 201
   6.4.2. Spectroscopy of Solid-State Materials 205
   6.5. References 207
Chapter 7. Fabrication and Manipulation
   7.1. Fabrication of Photonic Devices 209
   7.1.1. Development of a High-Efficiency Probe 212
   7.1.2. Development of a Highly Sensitive Storage Medium 212
   7.1.3. Fast Scanning of the Probe 213
   7.2. Manipulating Atoms 213
   7.2.1. Zero-Dimensional Manipulation 214
   7.2.2. One-Dimensional Manipulation 216
   7.3. References 231
Chapter 8. Optical Near-Field Theory
   8.1. Introduction 235
   8.2. Electromagnetic Theory as the Basis of Treating Near-Field Problems 237
   8.2.1. Microscopic Electromagnetic Interaction and Averaged Field 237
   8.2.2. Optical Response of Macroscopic Matter 241
   8.2.3. Optical Response of Small Objects and the Idea of System Susceptibility 244
   8.2.4. Electromagnetic Boundary Value Problem 245
   8.3. Optical Near-Field Theory as an Electromagnetic Scattering Problem 255
   8.3.1. Self-Consistent Approach for Multiple Scattering Problems 255
   8.3.2. Scattering Theory in the Near-Field Regime Based on Polarization Potential and Magnetic Current 260
   8.4. Diffraction Theory in Near-Field Optics 275
   8.4.1. Diffraction of Light from Subwavelength Aperture 275
   8.4.2. Kirchhoff's Diffraction Integral and Far-Field Theory 276
   8.4.3. Small-Aperture Diffraction and Equivalent Problem 277
   8.4.4. Magnetic Current Distribution and Self-Consistency 278
   8.4.5. Leviatan's "Exact" Solutions for the Aperture Problem 280
   8.5. Institutive Model of Optical Near-Field Processes 281
   8.5.1. Short-Range Quasistatic Nature of Optical Near-Field Processes 281
   8.5.2. Intuitive Model Based on Yukawa-Type Screened Potential 282
   8.5.3. Application of Virtual Photon Model for Diffraction from a Small Aperture 285
   8.5.4. Virtual Photon Model of NOM 288
   8.5.5. Meaning of the Screened Potential Model and Physical Meaning of the Virtual Photon 292
   8.6. References 297
Chapter 9. Theoretical Description of Near-Field Optical Microscope
   9.1. Electromagnetic Processes Involved in the Near-Field Optical Microscope 300
   9.2. Representation of the Electromagnetic Field and the Interaction Propagator 302
   9.2.1. Spherical Representation of Scalar Waves 302
   9.2.2. Vector Nature of the Electromagnetic Field 307
   9.3. States of Vector Fields and Their Representations 316
   9.3.1. State of Vector Plane Waves 316
   9.3.2. State of Vector Spherical Waves 318
   9.3.3. State of Vector Cylindrical Waves 319
   9.3.4. Spatial Fourier Representation of Electromagnetic Fields 319
   9.3.5. Multipole Expansion of Vector Plane Waves 321
   9.4. Angular Spectrum Representation of Electromagnetic Interactions 324
   9.4.1. Angular Spectrum Representation of Scattering Problems 325
   9.4.2. Meaning of the Angular Spectrum Representation 327
   9.4.3. Angular Spectrum Representation of Scalar Multipole Field and Propagator 329
   9.4.4. Angular Spectrum Representation of Vector Multipole Field and Propagator 332
   9.4.5. Angular Spectrum Representation of Cylindrical Field and Propagator 340
   9.4.6. Transformation between Spherical and Cylindrical Representations 341
   9.4.7. Summary: Representations of the Electromagnetic Fields Transformations between Mode Functions 343
   9.5. Near-Field Interaction of Dielectric Spheres Near a Planar Dielectric Surface 347
   9.5.1. Sample-Probe Interaction at a Dielectric Surface 348
   9.5.2. Mode Description of Evanescent Waves of Fresnel 351
   9.5.3. Multipolar Representation of Evanescent Modes 352
   9.5.4. Near-Field Interaction of Dielectric Spheres at a Planar Dielectric Surface 359
   9.6. References 379
Index 381
Chapter 1. Introduction
   1.1. Near-Field Optics and Photonics 1
   1.1.1. Optical Processes and Electromagnetic Interactions 1
3.

図書

東工大
目次DB

図書
東工大
目次DB
M. Ohtsu, ed
出版情報: Tokyo ; New York : Springer-Verlag, 1998  xiv, 302 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Contents
List of Contributors
1. Introduction 1
   1.1 Near-Field Optics and Related Technologies 1
   1.2 History of Near-Field Optics and Related Technologies 2
   1.3 Basic Features of an Optical Near Field 3
   1.3.1 Optically “Near” System 3
   1.3.2 Effective Field and Evanescent Field 5
   1.3.3 Near-Field Detection of Effective Fields 6
   1.3.4 Role of a Probe Tip 8
   1.4 Building Blocks of Near-Field Optical Systems 9
   1.5 Comments on the Theory of Near-Field Optics 11
   1.6 Composition of This Book 13
   References 13
2. Principles of the Probe 15
   2.1 Basic Probe 15
   2.1.1 Optical Fiber Probe for the Near-Field Optical Microscope 15
   2.1.2 Principle of the Imaging Mechanism: Dipole-Dipole Interaction 16
   2.1.3 Resolution 17
   2.1.4 Contrast 19
   2.1.5 Sensitivity 24
   2.2 Functional Probe: New Contrast Mechanisms 25
   2.2.1 Signal Conversion by Functional Probes 25
   2.2.2 Absorption and Emission: Radiative and Nonradiative Energy Transfer 26
   2.2.3 Resonance, Nonlinearity, and Other Mechanisms 27
   References 29
3. Probe Fabrication 31
   3.1 Introduction 31
   3.2 Selective Etching of a Silica Fiber Composed of a Core and Cladding 34
   3.2.1 Geometrical Model of Selective Etching 34
   3.2.2 Pure Silica Fiber with a Fluorine Doped Cladding 35
   3.2.3 GeO2 Doped Fiber 36
   3.2.4 Tapered Fibers for Optical Transmission Systems 37
   3.3 Selective Etching of a Dispersion Compensating Fiber 38
   3.3.1 Shoulder-Shaped Probe 38
   3.3.1.1 Shoulder-Shaped Probe with a Controlled Cladding Diameter 38
   3.3.1.2 Shoulder-Shaped Probe with a Nanometric Flattened Apex 40
   3.3.1.3 Double-Tapered Probe 42
   3.3.2 Pencil-Shaped Probe 45
   3.3.2.1 Pencil-Shaped Probe with an Ultra-Small Cone Angle 45
   3.3.2.2 Pencil-Shaped Probe with a Nanometric Apex Diameter 47
   3.4 Protrusion-Type Probe 51
   3.4.1 Selective Resin Coating Method 52
   3.4.2 Chemical Polishing Method 54
   3.5 Hybrid Selective Etching of a Double-Cladding Fiber 56
   3.5.1 Triple-Tapered Probe 56
   3.5.2 Geometrical Model of Selective Etching of a Double-Cladding Fiber 57
   3.5.3 Application-Oriented Probes: Pencil-Shaped Probe and Triple-Tapered Probe 59
   3.6 Probe for Ultraviolet NOM Applications 62
   3.6.1 UV Single-Tapered Probe 62
   3.6.2 UV Triple-Tapered Probe 65
   3.6.2.1 Advanced Method Based on Hybrid Selective Etching of a Double Core Fiber 65
   3.6.2.2 Geometrical Model 67
   References 68
4. High-Throughput Probes 71
   4.1 Introduction 71
   4.2 Excitation of the HE-Plasmon Mode 73
   4.2.1 Mode Analysis 73
   4.2.2 Edged Probes for Exciting the HE-Plasmon Mode 74
   4.3 Multiple-Tapered Probes 77
   4.3.1 Double-Tapered Probe 77
   4.3.2 Triple-Tapered Probe 82
   References 87
5. Functional Probes 89
   5.1 Introduction 89
   5.2 Methods of Fixation 90
   5.3 Selecting a Functional Material 92
   5.4 Probe Characteristics and Applications 93
   5.4.1 Dye-Fixed Probes 93
   5.4.2 Chemical Sensing Probes 94
   5.5 Future Directions 98
   References 99
6. Instrumentation of Near-Field Optical Microscopy 101
   6.1 Operation Modes of NOM 101
   6.1.1 c-Mode NOM 102
   6.1.2 i-Mode NOM 104
   6.1.3 Comparative Features of Modes of NOM 105
   6.2 Scanning Control Modes 107
   6.2.1 Constant-height Mode 107
   6.2.2 Constant-Distance Mode 108
   6.2.2.1 Shear-force Feed Back 108
   6.2.2.2 Optical Near-Field Intensity Feedback 111
   References 114
7. Basic Features of Optical Near-Field and Imaging 117
   7.1 Resolution Characteristics 117
   7.1.1 Longitudinal Resolution 117
   7.1.2 Lateral Resolution 120
   7.2 Factors Influencing Resolution 123
   7.2.1 Influence of Probe Parameters 124
   7.2.2 Dependence on Sample-Probe Separation 124
   7.3 Polarization Dependence 125
   7.3.1 Influence of Polarization on the Images of an Ultrasmooth Sapphire Surface 126
   7.3.2 Influence of Polarization on the Images of LiNbO3 Nanocrystals 130
   References 130
8. Imaging Biological Specimens 133
   8.1 Introduction 133
   8.2 Observation of Flagellar Filaments by c-Mode NOM 133
   8.2.1 Imaging in Air 134
   8.2.2 Imaging in Water 136
   8.3 Observation of Subcellular Structures of Neurons by i-Mode NOM 136
   8.3.1 Imaging in Air Under Shear-Force Feedback 137
   8.3.1.1 Imaging of Neurons Without Dye Labeling 138
   8.3.1.2 Imaging of Neurons Labeled with Toluidine Blue 139
   8.3.2 Imaging in Water Under Optical Near-Field Intensity Feedback 140
   8.3.2.1 Imaging in Air 140
   8.3.2.2 Imaging in PBS 142
   8.4 Imaging of Microtubules by c-Mode NOM 144
   8.5 Imaging of Fluorescent-Labeled Biospecimens 145
   8.6 Imaging DNA Molecules by Optical Near-Field Intensity Feedback 148
   References 151
9. Diagnosing Semiconductor Nano-Materials and Devices 153
   9.1 Fundamental Aspects of Near-Field Study of Semiconductors 153
   9.1.1 Near-Field Spectroscopy of Semiconductors 153
   9.1.2 Optical Near Field Generated by a Small Aperture and Its Interaction with Semiconductors 154
   9.1.3 Operation in Illumination-Collection Hybrid Mode 156
   9.2 Multidiagnostics of Lateral p-n Junctions 158
   9.2.1 Sample and Experimental Set-up 158
   9.2.2 Spatially Resolved Photoluminescence Spectroscopy 159
   9.2.3 Two-Dimensional Mapping of Photoluminescence Intensity 163
   9.2.4 Collection-Mode Imaging of Electroluminescence 163
   9.2.5 Multiwavelength Photocurrent Spectroscopy 164
   9.3 Low-Temperature Single Quantum Dot Spectroscopy 169
   9.3.1 Near-Field single quantum dot spectroscopy 169
   9.3.2 Low-Temperature NOM 170
   9.3.3 Sample and Experimental Set-up 171
   9.3.4 Fundamental Performance of the System 172
   9.3.5 Physical Insight of Single Quantum Dot Photoluminescence 174
   9.3.6 Observation of Other Types of Quantum Dots 176
   9.4 Ultraviolet Spectroscopy of Polysilane Molecules 178
   9.4.1 Polysilanes 178
   9.4.2 Near-Field Ultraviolet Spectroscopy 180
   9.4.3 Imaging and Spectroscopy of Polysilane Aggregates 181
   9.5 Raman Spectroscopy of Semiconductors 183
   9.5.1 Near-Field Raman Spectroscopy 183
   9.5.2 Raman Imaging and Spectroscopy of Polydiacetylene and Si 184
   9.6 Diagnostics of A1 Stripes in an Integrated Circuit 186
   9.6.1 Principle of Detection 186
   9.6.2 Heating with a Metallized Probe 187
   9.6.3 Heating by an Apertured Probe 188
   References 189
10. Toward Nano-Photonic Devices 193
   10.1 Introduction 193
   10.2 Use of Surface Plasmons 193
   10.2.1 Principles of Surface Plasmons 193
   10.2.2 Observation of Surface Plasmons 195
   10.2.3 Toward Two-Dimensional Devices 197
   10.2.4 Toward Three-Dimensional Devices 200
   10.2.5 A Protruded Metallized Probe with an Aperture 204
   10.3 Application to High-Density Optical Memory 207
   10.3.1 Problems to Be Solved 207
   10.3.2 Approaches to Solving the Problems 208
   10.3.2.1 Structure of the Read-Out Head 208
   10.3.2.2 Storage Probe Array 210
   10.3.2.3 Track-less Read-out 210
   10.3.3 Fabrication of a Two-Dimensional Planar Probe Array 212
   References 214
11. Near-Field Optical Atom Manipulation: Toward Atom Photonics 217
   11.1 Introduction 217
   11.1.1 Control of Gaseous Atoms: From Far Field to Near Field 217
   11.1.2 Dipole Force 219
   11.1.3 Atomic Quantum Sheets: Atom Reflection Using a Planar Optical Near Field 220
   11.1.4 Atomic Quantum Wires: Atom Guidance Using a Cylindrical Optical Near Field 221
   11.1.5 Atomic Quantum Dots: Atom Manipulation Using a Localized Optical Near Field 222
   11.2 Cylindrical Optical Near Field for Atomic Quantum Wires 224
   11.2.1 Exact Light-Field Modes in Hollow Optical Fibers 224
   11.2.2 Approximate Light-Field Modes in Hollow Optical Fibers 227
   11.2.3 Field Intensity of the LP Modes 229
   11.3 Atomic Quantum Wires 230
   11.3.1 Near-Field Optical Potential 230
   11.3.2 Laser Spectroscopy of Guided Atoms with Two-Step Photoionization 231
   11.3.3 Observation of Cavity QED Effects in a Dielectric Cylinder 235
   11.3.4 Atomic Quantum Wires with a Light Coupled Sideways 239
   11.4 Optically Controlled Atomic Deposition 240
   11.4.1 Spatial Distribution of Guided Atoms 241
   11.4.2 Precise Control of Deposition Rate 243
   11.4.3 In-line Spatial Isotope Separation 244
   11.5 Near-Field Optical Atomic Funnels 246
   11.5.1 Atomic Funnel with Atomic Quantum Sheet 247
   11.5.2 Sisyphus Cooling Induced by Optical Near Field 248
   11.5.3 Monte Carlo Simulations 251
   11.6 Atomic Quantum Dots 254
   11.6.1 Phenomenological Approach to the Interaction Between Atoms and the Localized Optical Near Field 254
   11.6.2 Atom Deflection 256
   11.6.3 Atom Trap with a Sharpened Optical Fiber 258
   11.6.4 Three-Dimensional Atom Trap 259
   11.7 Future Outlook 261
   References 263
12. Related Theories 267
   12.1 Comparison of Theoretical Approaches 267
   12.2 Semi-microscopic and Microscopic Approaches 270
   12.2.1 Basic Equations 270
   12.2.2 Example of an Evanescent Field 272
   12.2.3 Direct and Indirect Field Propagators 273
   12.2.4 Electric Susceptibility of Matter 275
   12.3 Numerical Examples 277
   12.3.1 Weak vs. Strong Coupling 277
   12.3.2 Near-Field- and Far-Field-Propagating Signals 280
   12.3.3 Scanning Methods 282
   12.3.4 Possibility of Spin-Polarization Detection 284
   12.4 Effective Field and Massive Virtual Photon Model 288
   12.5 Future Direction 290
   References 290
Index 295
Preface
Contents
List of Contributors
4.

図書

図書
edited by Motoichi Ohtsu
出版情報: New York : Wiley, c1996  xiii, 240 p. ; 25 cm
シリーズ名: Wiley series in microwave and optical engineering / Kai Chang, editor
所蔵情報: loading…
目次情報: 続きを見る
Near-Infrared Molecular Spectroscopy and Possible Frequency References for Frequency Control of Semiconductor Lasers / H. Sasada
High-Accuracy Spectroscopy with Semiconductor Lasers: Application to Laser Frequency Stabilization / L. Hollberg, et al.
Optical Frequency Comb Generators and Their Applications / M. Kourogi
Absolute Measurement of Optical Frequencies / H. Telle
Requirements and Practical Possibilities for Frequency Standards for the Optical Fiber Communication Bands / D. Knight
Present and Future Perspectives of Communication Technology Using Coherent Lightwaves / K. Nosu
Index
Near-Infrared Molecular Spectroscopy and Possible Frequency References for Frequency Control of Semiconductor Lasers / H. Sasada
High-Accuracy Spectroscopy with Semiconductor Lasers: Application to Laser Frequency Stabilization / L. Hollberg, et al.
Optical Frequency Comb Generators and Their Applications / M. Kourogi
5.

図書

図書
Motoichi Ohtsu
出版情報: Boston : Artech House, c1992  xi, 340 p. ; 24 cm
シリーズ名: The Artech House optoelectronics library
所蔵情報: loading…
目次情報: 続きを見る
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
Five Requirements to Be Met / 1.2:
Structure and Oscillation Mechanisms / Chapter 2:
Coherence of Light / 2.1:
Device Structures / 2.2:
Formulation of Laser Oscillation / 2.3:
Noise Characteristics / 2.4:
Intensity Noise / 2.4.1:
Frequency Noise / 2.4.2:
Coherence Deterioration Induced in Semiconductor Lasers by Specific Noise / 2.5:
Oscillation Instabilities Induced by Reflected Lightwaves / 2.5.1:
Mode-Hopping and Mode-Partition Noise / 2.5.2:
Optical Frequency Discriminators, Detections, and Modulations / Chapter 3:
Optical Frequency Demodulators / 3.1:
Noise Sources in the FM Noise Detection System / 3.2:
Modulation Characteristics of a Semiconductor Laser / 3.3:
FM Noise Reduction and Improvement of Frequency Accuracy / Chapter 4:
Center Frequency Stabilization of the Field Spectrum / 4.1:
Improvements in the Accuracy and Reproducibility of the Stabilized Laser Frequency / 4.2:
Wideband FM Noise Reduction / 4.3:
Negative Electrical Feedback / 4.3.1:
Injection Locking and Optical Feedback / 4.3.2:
Optical Phase Locking and Frequency Sweep / Chapter 5:
Optical Phase- and Frequency-Locked Loops / 5.1:
Heterodyne Optical Phase-Locked Loop / 5.1.1:
Homodyne Optical Phase-Locked Loop / 5.1.2:
Other Promising Techniques / 5.1.3:
Stable, Accurate, and Wideband Optical Frequency Sweep / 5.2:
Fine Frequency Sweep / 5.2.1:
Wideband Coarse Frequency Sweep / 5.2.2:
Applications of Highly Coherent Semiconductor Lasers / Chapter 6:
Optical Communication Systems / 6.1:
Optical Measurements / 6.2:
Passive Ring Resonator-Type Fiber Gyroscope / 6.2.1:
Velocity and Displacement Measurements / 6.2.2:
Photon Scanning Tunneling Microscope / 6.3:
Analytical Spectroscopy / 6.4:
Laser Radar (Lidar) / 6.4.1:
Isotope Separation and Analysis of Radicals / 6.4.2:
Optical Pumping of Atomic Clocks / 6.5:
Cesium Atomic Clock at 9.2 GHz / 6.5.1:
Rubidium Atomic Clock at 6.8 GHz / 6.5.2:
Quantum Optics and Basic Physics / 6.6:
High-Resolution Spectroscopy of Atoms and Molecules / 6.6.1:
Test of Basic Principles of Physics / 6.6.2:
Manipulations of Atoms and Ions / 6.6.3:
Cavity Quantum Electrodynamics (Cavity QED) / 6.6.4:
Toward the Future / Chapter 7:
Improvement in Device Structure / 7.1:
Advanced Longitudinal-Mode Controlled Lasers / 7.1.1:
Narrow-Linewidth Lasers / 7.1.2:
Wideband Frequency Sweep / 7.1.3:
Realization of Novel Lasing Wavelengths / 7.1.4:
High-Power Laser Devices / 7.1.5:
Reduction of Chirping / 7.1.6:
Expansion of the Lasing Frequency Range / 7.2:
Short-Wavelength Lasers / 7.2.1:
Stable, Wideband Optical Sweep Generators / 7.2.2:
Ultrafast Detection of Lightwaves, Waveform Conversion, and Optical-Frequency Counting Systems / 7.3:
Generation and Application of Nonclassical Photons / 7.4:
Photon Antibunching and the Properties of the Squeezed State of Light / 7.4.1:
Quantum Nondemolition Measurements / 7.4.2:
Control and Manipulation of Atoms and Photons / 7.5:
High-Power Lasers and Optical Energy Storage / 7.6:
Conclusion / Chapter 8:
Quantization of the Light Field / Appendix I:
Definitions of the Measures for Evaluating the FM Noise Magnitude / Appendix II:
Methods for Measuring FM Noise and the Allan Variance Real-Time Processing System / Appendix III:
Rate Equation and Relaxation Oscillation / Appendix IV:
Theoretical Analyses of Optical Phase-Locked Loops / Appendix V:
Index
Preface
Introduction / Chapter 1:
Requirements of Highly Coherent Semiconductor Lasers / 1.1:
6.

図書

図書
Motoichi Ohtsu
出版情報: Tokyo : KTK Scientific , Dordrecht ; Boston : Kluwer Academic, c1992  viii, 233 p. ; 24 cm
シリーズ名: Advances in optoelectronics
所蔵情報: loading…
7.

図書

図書
大津元一著
出版情報: 東京 : 朝倉書店, 2013.3  vi, 305p, 図版 [4] p ; 21cm
所蔵情報: loading…
目次情報: 続きを見る
1 : ドレスト光子とは何か
2 : ドレスト光子の描像
3 : ドレスト光子によるエネルギー移動と緩和
4 : ドレスト光子とフォノンとの結合
5 : ドレスト光子によるデバイス
6 : ドレスト光子による加工
7 : ドレスト光子によるエネルギー変換
8 : ドレスト光子の空間的広がりと数理科学的取り扱い
9 : まとめと展望
1 : ドレスト光子とは何か
2 : ドレスト光子の描像
3 : ドレスト光子によるエネルギー移動と緩和
概要: ナノ物質表面には物質と独立な光子ではなく、電子・正孔のエネルギーの衣をまとった仮想光子が発生する。これがドレスト光子(dressed photon)である。ドレスト光子という準粒子の概念は従来の光学、材料工学の枠組みには収まらず、光科学、場 の量子論、凝縮系物理学の概念を組み合わせる必要がある。いわば「光・物質融合工学」である。本書はその原理と、近年急速に進展する応用例を紹介する。 続きを見る
8.

図書

東工大
目次DB

図書
東工大
目次DB
Motoichi Ohtsu (eds.)
出版情報: Berlin : Springer, c2003  xiv, 161 p. ; 24 cm
シリーズ名: Springer series in optical sciences ; v. 86 . Progress in nano-electro-optics ; 1
Physics and astronomy online library
所蔵情報: loading…
目次情報: 続きを見る
High-Throughput Probes for Near-Field Optics and Their Applications T. Yatsui and M. Ohtsu 1
   1 High-Throughput Probes 1
   1.1 Mode Analysis in a Metallized Tapered Probe 1
   1.2 Light Propagation in a Tapered Probe with Ideal Metal Cladding 4
   1.3 Measurement of the Spatial Distribution of Optical Near-Field Intensity in the Tapered Probe 6
   1.4 Further Increase in Throughput 10
   2 Application to High-Density and High-Speed Optical Memory 19
   2.1 Using an Apertured Fiber Probe 19
   2.2 High-Density and High-Speed Recording Using a Pyramidal Silicon Probe on a Contact Slider 20
   3 Outlook 27
   References 27
Modulation of an Electron Beam in Optical Near-Fields J. Bae, R. Ishikawa, and K. Mizuno 29
   1 Introduction 29
   2 Review of Experiments 30
   2.1 Smith-Purcell Effect 30
   2.2 Schwarz-Hora Effect 31
   3 Basic Principle 32
   4 Microgap Interaction Circuits 35
   4.1 Circuit Configuration 35
   4.2 Transition Rates of Electrons 36
   5 Theoretical Analyses of a Microslit 40
   5.1 Near-Field Distributions 40
   5.2 Wave Number Spectrum 43
   5.3 Numerical Simulations 44
   6 Experiment 47
   6.1 Experimental Setup 48
   6.2 Electron Energy Spectrum 48
   6.3 Modulation with Laser Field 51
   6.4 Wave Number Spectrum 52
   7 Multiple-Gap Circuit 53
   7.1 Inverse Smith-Purcell Effect 53
   7.2 Experimental Setup 55
   7.3 Phase Matching Condition 55
   7.4 Field Distributions 56
   8 Microslit for Visible Light 57
   9 Conclusion 59
   References 59
Fluorescence Spectroscopy with Surface Plasmon Excitation T. Neumann, M. Kreiter, and W. Knoll 61
   1 Introduction 61
   2 Theoretical Considerations 61
   2.1 Surface Plasmons at the Interface Between a (Noble) Metal and a Dielectric Medium 61
   2.2 Optical Excitation of Surface Plasmons 64
   2.3 Surface Plasmons for the Characterization of Thin Layers 67
   2.4 Electromagnetic Field Distribution near the Interface 68
   2.5 Fluorescent Chromophores near Metal Surfaces 70
   3 Experimental 72
   4 Results and Discussion 74
   4.1 Experimental Verification of Surface Field Enhancement 74
   4.2 Frontside Versus Backside Emission 76
   5 Conclusions 80
   References 81
Optical Characterization of In(Ga)As/GaAs Self-assembled Quantum Dots Using Near-Field Spectroscopy Y. Toda and Y. Arakawa 83
   1 Introduction 83
   2 Relaxation Mechanism 84
   3 Optical Properties of Self-assembled Quantum Dots: Far-Field Analysis 86
   3.1 Photoluminescence Spectroscopy 86
   3.2 Magneto-Optical Spectroscopy 87
   3.3 Photoluminescence Excitation Spectrosopy 89
   3.4 Raman Spectroscopy 90
   4 Near-Field Optical Spectroscopy 92
   4.1 Ground-State Emission 94
   4.2 Interaction with Phonons 101
   4.3 Carrier Relaxation 106
   4.4 Dephasing of Excited Carrier 107
   4.5 Spin Relaxation 111
   5 Conclusion 115
   References 115
Quantum Theoretical Approach to Optical Near-Fields and Some Related Applications K. Kobayashi, S. Sangu, and M. Ohtsu 119
   1 Introduction 119
   1.1 Basic Idea and Massive Virtual Photon Model 120
   2 Projection Operator Method 121
   2.1 Definition of the Projection Operator 122
   2.2 Properties of the Projection Operator 122
   3 Effective Operator and Effective Interaction 123
   3.1 Equation for the Operator J and Its Approximate Solution 125
   3.2 Effective Interaction Operator in an Approximation 126
   4 Electromagnetic Interaction with Matter: Minimal-Coupling and Multipole Hamiltonians 127
   4.1 Minimal-Coupling Hamiltonian 127
   4.2 Multipole Hamiltonian 129
   5 Elementary Excitation Modes and Electronic Polarization 133
   5.1 Polaritons and Electronic Polarization 134
   6 Optical Near-Field Interaction: Yukawa Potential 137
   6.1 Relevant Microscopic Subsystem and Irrelevant Macroscopic Subsystem 137
   6.2 P Space and Q Space 138
   6.3 Effective Interaction in the Nanometric Subsystem 138
   6.4 Effective Mass Approximation of Exciton Polaritons and Yukawa Potential 141
   7 Applications 143
   7.1 Single Atom Manipulation 143
   7.2 Fundamental Properties of Optical Near-Field Microscopy 148
   8 Outlook 154
   References 155
Index 159
High-Throughput Probes for Near-Field Optics and Their Applications T. Yatsui and M. Ohtsu 1
   1 High-Throughput Probes 1
   1.1 Mode Analysis in a Metallized Tapered Probe 1
9.

図書

東工大
目次DB

図書
東工大
目次DB
edited by Motoichi Ohtsu
出版情報: Tokyo : KTK Scientific , Dordrecht ; Boston : Kluwer Academic, c2001  xii, 334 p. ; 24 cm
シリーズ名: Advances in optoelectronics
所蔵情報: loading…
目次情報: 続きを見る
Preface
List of Authors
Chapter 1 ELECTRONIC AND ELECTROMAGNETIC PROPERTIES IN NANOMETER SCALES 1
   1.1 Introduction 1
   1.2 Basic Features of Electronic and Optoelectronic Systems 3
   1.3 Mesoscopic Electromagnetic Processes and Coupled-Mode Descriptions 12
   1.4 Quantum Measurements and Interpretations 18
   1.5 Measurements and Diagnosis at a Nanometer Scale 24
   1.6 Electromagnetic Signal Transport as Circuit Design at a Nanometer Scales 30
   1.7 Electrical Signals in Coherent/Incoherent Electronic Devices 34
   1.8 Near-Field Optical Microscopes and the Micro-Macro Connection 40
   1.9 Electron Interaction with Electromagnetic Fields in Nanometer Scale 46
   References 52
Chapter 2 ELECTRON TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS 57
   2.1 Introduction 57
   2.2 Quantum Dot Atoms 59
   2.3 Effects of a Magnetic Field 64
   2.4 Manipulation of the Lateral Potential Geometry of a Vertical Dot 69
   2.5 Quantum Dot Molecules 74
   2.6 Double Dot Molecules-Planar Configuration 79
   2.7 Summary 91
   References 92
Chapter 3 ELECTRON ENERGY MODULATION WITH OPTICAL EVANESCENT WAVES 95
   3.1 Introduction 95
   3.2 Quantum Modulation of Electrons 96
   3.3 Micro-Gap Interaction Circuits 97
   3.4 Metal Film Gap and Dielectric Film Circuits 99
   3.5 Metal Micro-Slit 103
   3.6 Preliminary Experiment 110
   3.7 Fabrication of the Micro-Slit 119
   3.8 Summary 120
   References 121
Chapter 4 INTERACTIONS OF ELECTRONS AND ELECTROMAGNETIC FIELDS IN A SINGLE MOLECULE 123
   4.1 Single Electron Tunneling and Photon-Assisted Tunneling 123
   4.2 STM-Induced Photon Emission from Single Molecules on Cu(100) 132
   References 144
Chapter 5 THEORY OF ELECTRONIC AND ATOMIC PROCESSES IN SCANNING PROBE MICROSCOPY 147
   5.1 Introduction 147
   5.2 Tunneling Current in STM 149
   5.3 The STM Images of Si(111) √3×√3-Ag and -Sb Surfaces 151
   5.4 The Effect of a Microscopic Structure at the Tip 154
   5.5 STM Images of Oxygen Chemisorbed Si(001) Surfaces 156
   5.6 Formation of Atomic Point Contact and Electron Transmission through Atom Bridges 158
   5.7 Quantum Transport through Atom Bridges 160
   5.8 Frictional-Force Microscopy 164
   5.9 Tapping-Mode Atomic Force Microscopy 168
   5.10 Theory of Noncontact-Mode Atomic-Force Microscopy 172
   5.11 Summary 177
   References 178
Chapter 6 TUNNELING-ELECTRON LUMINESCENCE MICROSCOPY FOR MULTIFUNCTIONAL AND REAL-SPACE CHARACTERIZATION OF SEMICONDUCTOR NANOSTRUCTURES 181
   6.1 Introduction 181
   6.2 Limitations of Conventional Luminescence Microscopy 182
   6.3 Tunneling Electron Luminescence (TL) Microscopy 184
   6.4 TL Microscopy Using Tip Collection 186
   6.5 Application: Characterization of Semiconductor Nanostructures 193
   6.6 Conclusions 198
   References 199
   Chapter 7 NEAR-FIELD OPTICAL SPECTROSCOPY OF SINGLE QUANTUM DOTS 201
   7.1 Introduction 201
   7.2 Fabrication of Near-Field Fiber Probe 204
   7.3 Fundamental Performance of Near-Field Fiber Probe 205
   7.4 Low-Temperature PL Spectroscopy of Single QDs 207
   7.5 Room-Temperature PL Spectroscopy of Single QDs 210
   7.6 Time-Resolved PL Spectroscopy of Single QDs 211
   7.7 Modulated Absorption Spectroscopy of Single QDs 214
   7.8 Summary 216
   References 217
Chapter 8 CHEMICAL VAPOR DEPOSITION OF NANOMETRIC MATERIALS BY OPTICAL NEAR-FIELDS: TOWARD NANO-PHOTONIC INTEGRATION 219
   8.1 Introduction 219
   8.2 Principles 220
   8.3 Depositing Zinc 221
   8.4 Depositing Zinc Oxide 226
   8.5 Toward Nano-Photonic Integration 230
   8.6 Summary 232
   References 233
Chapter 9 NONCONTACT ATOMIC FORCE MICROSCOPY 235
   9.1 Introduction-Historical Background 235
   9.2 Guidelines for Spatial Resolution 236
   9.3 Problems in AFM Measurement under the Contact mode 241
   9.4 Noncontact Atomic Force Microscopy (Experimental Method) 242
   9.5 Experimental Results on Compound Semiconductors 245
   9.6 Experimental Results on Si Semiconductors 252
   9.7 Noncontact AFM Imaging on an Ag(111) Surface 264
   9.8 Simultaneous Imaging of Topography and Electrostatic Force on n+-GaAs(110) 267
   9.9 Summary 274
   References 275
Chapter 10 CORRELATION BETWEEN INTERFACE STATES AND STRUCTURES DEDUCED FROM ATOMIC-SCALE SURFACE ROUGHNESS IN ULTRATHIN SiO2/Si SYSTEM 277
   10.1 Introduction 277
   10.2 Experimental Details 277
   10.3 SiO2/Si Interface Structures 278
   10.4 Oxidation-induced Atomic-scale Surface Roughness 285
   10.5 Interface Electronic States and Their Correlation with Interface Structures 290
   10.6 Valence Band Discontinuities at and near the SiO2/Si Interface 291
   10.7 Summary 295
   References 296
Chapter 11 CHARACTERIZATION OF MOLECULAR FILMS BY A SCANNING PROBE MICROSCOPE 299
   11.1 Local Area Visualization of Organic Ultra-Thin Films by the Scanning Probe Microscope 299
   11.2 Application to Anchoring Phase Studies 305
   11.3 Local Area Characterization of Organic Ultra-Thin Films by a Scanning Probe Microscope 312
   11.4 Application to Molecular Devices 320
   References 326
Index 329
Preface
List of Authors
Chapter 1 ELECTRONIC AND ELECTROMAGNETIC PROPERTIES IN NANOMETER SCALES 1
10.

図書

東工大
目次DB

図書
東工大
目次DB
editors Xing Zhu, Motoichi Ohtsu
出版情報: Singapore : World Scientific, c2000  xv, 273 p. ; 23 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Overview M. Ohtsu 1
Near field optics seen as an antenna problem D. W. Pohl 9
Near field optics solved by modified self-consistent method Zhiyuan Li, Benyuan Gu and Guozhen Yang 22
Near-field scanning optical microscopy of electromagnetic field structures S.T. Huntington, A. Horsfall, S.K. Rhodes, J.N. Walford, A. Barty, K.A. Nugent, A. Roberts and R.E. Scholten 43
Near field vibration spectroscopy to observe molecular images Satoshi Kawata 58
DNA single molecule imaging and fluorescence detection using SNO/AM Jia Wang, Hiroshi Muramatsu and Noritaka Yamamoto 61
Characterization of intercalating state of YOYO-1 in λDNA using SNOM/AFM H. Muramatsu, K. Homma, N. Yamamoto, Jia Wang, K. Sakata-Sogawa and N. Shimamoto 67
Submicrometer-sized optical fiber biosensors for the detection of d-biotin Hua Lu, Yujie Zhao, Jianmin Ma and Zuhong Lu 73
A measurement of LSF of PSTM imaging with the image of step spread Shifa Wu, Guoshu Jian, Shi Pan and Yuguang Wang 79
Effective probe-sample interaction: toward atom deflection and manipulation K. Kobayashi, S. Sangu、 H. Ito and M. Ohtsu 82
Tethered hybrid AFM-NSOM scanning probe microscopy for photonic applications R.S. Taylor 89
Similarity in images between illumination and collection mode SNOM observation of a polystyrene particle layer T. Fujimura, T. Itoh, A. Imada, R. Shimada, T. Koda, S. Takabayashi, H. Miyazaki and K. Ohtaka 94
Numerical simulation of fiber probe patterns of SNOM using FDTD method Kai Liu, Ming Bai, X.L. Ding and Hai Ming 100
Computer simulation for 2D-NSOM using metal-coated fiber-probe Masahiro Tanaka and Kazuo Tanaka 106
The study of light-scattering and dynamic progresses in solution using near-field optical microscope Tianhao Zhang, Caifan Yan, Guangyin Zhang, Zengfa Li, Xue Wu and Wenhua Liu 112
Analysis of trapping force and torque for fiber-optical trap Ming Bai, Kai Liu, Y.H. Lu and Hai Ming 117
Numerical simulation of two beam illumination in photon scanning tunneling microscope Xiaoqiu Wang, Guoshu Jian, Wei Liu, Shi Pan and Shifa Wu 123
Visualized simulation of 2D-photon scanning tunneling microscope Takahiro Yoshida, Kazuo Tanaka and Masahiro Tanaka 129
Analysis of piezoelectric quartz fork glued with optical fiber probe in near field Tianhao Zhang, Xue Wu, Guangyin Zhang, Zengfa Li, Caifan Yan and Wenhua Liu 135
Near-field raman spectroscopy of CVD-Diamond films Hong Yan, Jingjing Wang, Fan Zhang, Yufeng Zhang, Yujun Deng, Zongju Xia, Qiaojun Gao and Yinghua Zou 140
Near-field two wavelength pump-probe spectroscopy of CdSe nanocluster films Yujun Deng, Hong Yan, Wei Qian, Zongju Xia and Yinghua Zou 145
A SNOM working at LN temperature Xing Zhu, Teng Fei, Yan Yin, Shifa Xu, Hetian Zhou and Zizhao Gan 150
Design and applications of a multi-mode scanning near-field optical microscope Xiumei Liu, Jia Wang and Dacheng Li 158
Subwavelength light localization in nanostructures surfaces V. Coello, S. Wang, J. Siqueiros and S.I Bozhevolnyi 164
Near-field polarization state transmited through different surface structures S. Wang, V. Coello, J.M. Siqueiros, S. Zavala, E.R. Mendez and G. Bao 173
Comparison of focussed ion-beam hole drilling and slicing for NSOM aperture formation R.S. Taylor, J. Li and M. Phaneuf 181
Fabrication of scanning near field optical microscope fiber probe Jialin Sun, Qin Li, Ziyang Wang, Yan Zhang, Guyin Rao, Jihua Guo and Jun Zhao 188
SNOM investigation of a high density optical disc after recording Qiying Chen, Takashi Nakano, Junji Tominaga, Liqiu Men, Toshio Fukaya and Nobufumi Atoda 193
Super-resolution near-field optical data storage using oxygen doped GeSbTe thin films L. Men, J. Tominaga, Q. Chen, H. Fuji, T. Nakano and N. Atoda 199
The gallery modes in two-dimensionally ordered dielectric spheres excited by evanescent fields M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka and K. Takeda 205
Near-field coupling of microsphere resonators to a plane dielectric substrate Hirosi Ishikawa, Hiroharu Tamaru and Kenjiro Miyano 211
Simulation of 3D near-field optics by volume integral equation Kazuo Tanaka, Mengyun Yan and Masahiro Tanaka 216
Analysis on intensity distribution in a high-throughput probe of scanning near-field optical microscope Q. Zhou, H. Dai, X. Zhu, H.T. Zhou and C.Q. Wang 222
Near-field scanning optical microscopy of electromigration in YBCO Suzanne Huerth, Michael Taylor, Michael Paesler and Hans Hallen 228
Direct near-field optical measurements of the super-resolution near-field optical structure Dinping Tsai, Chiwen Yang, Weichih Lin, Fuhan Ho, Hungji Huang, Mingyish Chen, Tzufeng Tseng, Chiuhsiang Lee and Chweijing Yeh 234
Light-scattering-mode super-resolution near-field structure (super-RENS) for super-density data storage J. Tominaga, H. Fuji, T. Nakano, L. Men and N. Atoda 240
Anodic oxidization and optical observation of metal thin film using scanning near-field optical microscope T. Onuki, Y. Watanabe, T. Tokizaki and T. Tani 246
Nanospectroscopy of surface enhanced Raman scattering of organic molecules by using a metallized cantilever Yasushi Inouye, Norihiko Hayazawa, Zouheir Sekkat and Satoshi Kawata 251
Near-field photoluminescence spectroscopy for semiconductor characterization Y. Narita and T. Ikeda 257
Optical microdisks emission patterns with different geometrical shape observed by near-field optical microscopy Xing Zhu, Yumin Shen, Yu Zhang, Shifa Xu, Lun Dai, Yunqing Chen, Wei Fang, Dajun Wang, Yongchun Xin, Guozhong Wang, Bei Zhang, Hetian Zhou, Guoyi Zhang and Zizhao Gan 263
Index 272
Preface
Overview M. Ohtsu 1
Near field optics seen as an antenna problem D. W. Pohl 9
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼