close
1.

図書

図書
Dae Mann Kim
出版情報: Weinheim : Wiley-VCH, c2010  xv, 447 p. ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Brief Review of Classical Theories
Harmonic Oscillator
Boltzmann Transport Equation
Maxwell's Equations
Milestone Discoveries and Old Quantum Theory
Blackbody Radiation and Quantum of Energy
Specific Heat of Solids
Photoelectric Effects
Compton Scattering
Duality of Matter
Bohr?s H-Atom Theory
Schrodinger Equation and Operator Algebra
Schrodinger Equation
Momentum Eigenfunction and Fourier Series
Hermitian Operator and Bra Ket Notations
Orthgonality and Completeness of Eigenfunctions
Basic Postulates of Quantum Mechanics
Commutation Relations
Conjugate Variables and Uncertainty Relation
Operator Equation of Motion and Ehrenfest Theorem
Particle in Potential Well
Infinite Square Well Potential
Particle in 3-D Box
Density of States: 1-D, 2-D and 3-D
Particle in Quantum Well
Particle in Delta Function Potential Well
Quantum Well and Wire
Scattering of a Particle at 1-D Potentials
Scattering at Step Potential
Scattering at Quantum Well
Tunneling and Its Applications
Tunneling across Square Potential Barrier
Fowler-Nordheim and Direct Tunneling
Resonant Tunneling
The Applications of Tunneling
Periodic Potentials and Energy Bands
1-D Crystal and Kronig-Penny Model
E-k Dispersion and Energy Bands
Energy Bands and Resonant Tunneling
The Harmonic Oscillator
Energy Eigenequation
The Properties of Energy Eigenfunction
The Operator Treatment
The Angular Momentum
Angualr Momentum Operators
Eigenfunctions and Spherical Harmonics
The Hydrogen Atom: The Schrodinger Treatment
Two-Body Central Force Problem
The Hydrogen Atom
The Atomic Orbital
Virial Theorm and Doppler Shift
System of Identical Particles and Many-Electron Atoms
Two Electron System
Two Spin 1/2 System
The Helium Atom
The Periodic Table and the Structure of Atoms
Molecules and Chemical Bonds
The Ionized Hydrogen Molecule
The Hydrogen Molecule
Ionic Bond and Van der Waals Attraction
The Perturbation Theory
Time Independent Perturbation in Non-Degenerate Systems
Time Dependent Perturbation Theory
Atom - Field Interaction
Field Quantization
Atom -
Field Interaction
Driven, Damped Two Level Atom
Interaction Between Em Waves and Optical Media
Attenuation and Dispersion of Waves
Density Matrix and Ensemble Averaging
Laser Devices
Quantum Statistics
General Background and Three Kinds of Particles
Statistics for Distinguishable particles
Statistics for Fermions and Fermi Distribution Function
Statistics for Boson and Bose Einstein Distribution
Semiconductor Statistics
Carrier Densities in Intrinsic Semiconductors
Carrier Densities in Extrinsic Semiconductors
Fermi Level in Extrinsic Semiconductors
Charge Transport in Semiconductors
Drift and Diffusion Currents
Transport Coefficients
Equilibrium and Non-Equilibrium
Recombination and Generation Currents
P-N Junction Diode
The Junction Interface in Equilibrium
The Junction Interface Under Bias
The Diode I-V
Applications of P-N Junction Diodes
The Bipolar Junction Transistor: Device Physics and Technology
Bipolar Junction Transistor: Overview
The Physics of Transistor Action
Ebers Moll Equations
Base Transit Time and Charge Control Model
Metal Oxide Silicon Field Effect Transistors (Mosfet) I: Overview of Device Behavior and Applications
MOSFET: Overview
Charge Control and Metal-Oxide-Silicon System
NMOS I-V
Applications of MOSFET
Metal Oxide Silicon Field Effect Transistors (Mosfet) Ii: Device Scaling and Schottky Contact
Device Scaling: Physical issues and Limitations
Metal - Semiconductor Contacts
The I-V Behavior in Metal - Semiconductor Contacts
Brief Review of Classical Theories
Harmonic Oscillator
Boltzmann Transport Equation
2.

図書

図書
A.K. Chandra, A. Das, B.K. Chakrabarti (eds.)
出版情報: Berlin : Springer, c2010  xi, 307 p. ; 24 cm
シリーズ名: Lecture notes in physics ; 802
所蔵情報: loading…
3.

図書

図書
Richard P. Feynman, Albert R. Hibbs ; emended by Daniel F. Styer
出版情報: Mineola, N.Y. : Dover Publications, 2010  xii, 371 p. ; 24 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface
Preface to Emended Edition
The Fundamental Concepts of Quantum Mechanics / Chapter 1:
Probability in quantum mechanics / 1-1:
The uncertainty principle / 1-2:
Interfering alternatives / 1-3:
Summary of probability concepts / 1-4:
Some remaining thoughts / 1-5:
The purpose of this book / 1-6:
The Quantum-mechanical Law of Motion / Chapter 2:
The classical action / 2-1:
The quantum-mechanical amplitude / 2-2:
The classical limit / 2-3:
The sum over paths / 2-4:
Events occurring in succession / 2-5:
Some remarks / 2-6:
Developing the Concepts with Special Examples / Chapter 3:
The free particle / 3-1:
Diffraction through a slit / 3-2:
Results for a sharp-edged slit / 3-3:
The wave function / 3-4:
Gaussian integrals / 3-5:
Motion in a potential field / 3-6:
Systems with many variables / 3-7:
Separable systems / 3-8:
The path integral as a functional / 3-9:
Interaction of a particle and a harmonic oscillator / 3-10:
Evaluation of path integrals by Fourier series / 3-11:
The Schrödinger Description of Quantum Mechanics / Chapter 4:
The Schrödinger equation / 4-1:
The time-independent hamiltonian / 4-2:
Normalizing the free-particle wave functions / 4-3:
Measurements and Operators / Chapter 5:
The momentum representation / 5-1:
Measurement of quantum-mechanical variables / 5-2:
Operators / 5-3:
The Perturbation Method in Quantum Mechanics / Chapter 6:
The perturbation expansion / 6-1:
An integral equation for KV / 6-2:
An expansion for the wave function / 6-3:
The scattering of an electron by an atom / 6-4:
Time-dependent perturbations and transition amplitudes / 6-5:
Transition Elements / Chapter 7:
Definition of the transition element / 7-1:
Functional derivatives / 7-2:
Transition elements of some special functionals / 7-3:
General results for quadratic actions / 7-4:
Transition elements and the operator notation / 7-5:
The perturbation series for a vector potential / 7-6:
The hamiltonian / 7-7:
Harmonic Oscillators / Chapter 8:
The simple harmonic oscillator / 8-1:
The polyatomic molecule / 8-2:
Normal coordinates / 8-3:
The one-dimensional crystal / 8-4:
The approximation of continuity / 8-5:
Quantum mechanics of a line of atoms / 8-6:
The three-dimensional crystal / 8-7:
Quantum field theory / 8-8:
The forced harmonic oscillator / 8-9:
Quantum Electrodynamics / Chapter 9:
Classical electrodynamics / 9-1:
The quantum mechanics of the rediation field / 9-2:
The ground state / 9-3:
Interaction of field and matter / 9-4:
A single electron in a radiative field / 9-5:
The Lamb shift / 9-6:
The emission of light / 9-7:
Summary / 9-8:
Statistical Mechanics / Chapter 10:
The partition function / 10-1:
The path integral evaluation / 10-2:
Quantum-mechanical effects / 10-3:
Systems of several variables / 10-4:
Remarks on methods of derivation / 10-5:
The Variational Method / Chapter 11:
A minimum principle / 11-1:
An application of the variational method / 11-2:
The standard variational principle / 11-3:
Slow electrons in a polar crystal / 11-4:
Other Problems in Probability / Chapter 12:
Random pulses / 12-1:
Characteristic functions / 12-2:
Noise / 12-3:
Gaussian noise / 12-4:
Noise spectrum / 12-5:
Brownian motion / 12-6:
Quantum mechanics / 12-7:
Influence functionals / 12-8:
Influence functional from a harmonic oscillator / 12-9:
Conclusions / 12-10:
Appendix: Some Useful Definite Integrals
Appendix: Notes
Index
Preface
Preface to Emended Edition
The Fundamental Concepts of Quantum Mechanics / Chapter 1:
4.

図書

東工大
目次DB

図書
東工大
目次DB
Takaaki Tsurumi ... [et al.]
出版情報: Boca Raton [Fla.] : CRC Press, c2010  xii, 267 p., [8] p. of plates ; 25 cm
所蔵情報: loading…
目次情報: 続きを見る
Preface vii
Acknowledgments ix
Authors xi
Chapter 1 Fundamentals of quantum mechanics and band structure 1
   1.1 Fundamentals of quantum mechanics 1
    1.1.1 Probability amplitude and interference effects 1
    1.1.2 Uncertainty principle 5
    1.1.3 Wave functions 7
    1.1.4 Operators 8
    1.1.5 Eigenvalue and expected value 10
    1.1.6 Expansion theorem 10
    1.1.7 Schroedinger equation 11
    1.1.8 Principle of superposition 13
    1.1.9 Examples of solutions of the Schroedinger equation 14
     1.1.9.1 Electron in a one-dimensional (1D) box 14
     1.1.9.2 Harmonic oscillator 15
     1.1.9.3 Hydrogen atom 16
    1.1.10 Matrix mechanics and bra-ket (Dirac) notation 18
    1.1.11 Comparison of the Heisenberg and Schroedinger approaches to quantum mechanics 20
    1.1.12 Perturbation theory 22
   1.2 Electronic band structure of solids 27
    1.2.1 Free electron Fermi gas 27
    1.2.2 Nearly free electron model (DOS) 31
    1.2.3 Bloch function 33
    1.2.4 Kroenig-Penny model 33
    1.2.5 Tight binding model 35
    1.2.6 Phase velocity, group velocity, and effective mass 37
    1.2.7 Reciprocal lattice and the Brillouin zone 40
    1.2.8 Energy band structure of silicon (Si) 44
    1.2.9 Tight binding approximation for calculating the band structure of graphene 45
    1.2.10 Electron correlation 51
     1.2.10.1 Hartree-Fock approximation 51
     1.2.10.2 Density functional method 54
   1.3 Material properties with respect to characteristic size in nanostructures 56
   Problems 60
   References 60
Chapter 2 Electronic states and electrical properties of nanoscale materials 63
   2.1 Outline 63
   2.2 Low dimensionality and energy spectrum 64
    2.2.1 Space for electrons in materials 64
    2.2.2 Electron DOS of 3D materials with macroscopic dimensions 65
    2.2.3 Electron DOS in 2D materials (nanosheets) 67
    2.2.4 Electron DOS in lD materials (nanowires) 72
    2.2.5 Quantized conductance in 1D nanowire systems 74
    2.2.6 Electron DOS in 0D materials (nanodots) 77
   2.3 Quantization 79
    2.3.1 2D square wells 80
    2.3.2 2D cylindrical wells 83
    2.3.3 Shape effect on the quantized states 85
    2.3.4 Finite potential wells 87
    2.3.5 Band dispersion effect 93
   2.4 Edge (surface)-localized states 96
   2.5 Charging effect 100
   2.6 Tunneling phenomena 103
   2.7 Limiting factors for size effects 111
    2.7.1 Thermal fluctuation 111
    2.7.2 Lifetime broadening effect 113
   2.8 Electronically induced stable nanostructures 115
    2.8.1 Magic numbers in clusters 116
    2.8.2 Electronic growth 119
   Problems 122
   References 123
Chapter 3 Optical properties and interactions of nanoscale materials 125
   3.1 Size-dependent optical properties: Absorption and emission 125
    3.1.1 Basic quantum mechanics of linear optical transitions 126
    3.1.2 General concept of excitons 133
    3.1.3 Wannier excitons 135
    3.1.4 Size effects in high-dielectric-constant materials 136
    3.1.5 Size effects in π-conjugated systems 140
    3.1.6 Strongly interacting π-conjugated systems: A molecular dimer 144
    3.1.7 Molecular Frenkel exciton 149
    3.1.8 Size effects in molecular excitons: Coherence length and cooperative phenomena 153
    3.1.9 Effects of finite number of optical electrons 157
   3.2 Size-dependent optical properties: Absorption and scattering 158
    3.2.1 Basic theory of light scattering 160
    3.2.2 Size-dependent scattering from dielectric spheres: Mie solutions 164
    3.2.3 Optical properties of metal nanoparticles: Plasmonics 169
    3.2.4 Local field enhancement and surface-enhanced Raman scattering 176
   3.3 Size-dependent electromagnetic interactions: Particle-particle 179
    3.3.1 Radiative energy transfer 179
    3.3.2 Foerster resonant energy transfer (FRET) 180
    3.3.3 Electron-exchange (Dexter) energy transfer 187
    3.3.4 Photo-induced electron transfer 190
   3.4 Size-dependent interactions: Particle-light interactions in finite geometries 191
    3.4.1 Optical interactions in microcavities 191
    3.4.2 Effects of dielectric interfaces 198
   Problems 201
   References 204
Chapter 4 Magnetic and magnetotransport properties of nanoscale materials 207
   4.1 Fundamentals of magnetism 207
    4.1.1 Magnetic ions and magnetic ordering 207
    4.1.2 Exchange interaction 208
    4.1.3 Mean field theory of ferromagnetism 211
   4.2 Size and surface effects in 3D confined systems 213
    4.2.1 Quantization of electronic structures and the Kubo effect 214
    4.2.2 Surface magnetism of transition noble metals 220
   4.3 Ferromagnetic domain-wall-related phenomena 229
    4.3.1 Macroscopic quantum tunneling in magnetic nanostructures 229
    4.3.2 Electron scattering at domain walls: Quantum coherence 233
    4.3.3 Spin current and spin transfer torque-current-induced domain wall motion 235
   4.4 Spin transport in magnetic nanostructures: Magnetic interface effect 240
    4.4.1 GMR and TMR effect: Spin-dependent scattering in multilayers and tunneling junctions 240
    4.4.2 Spin accumulation and current-perpendicular-to-plane (CPP) GMR: Spin diffusion length 245
    4.4.3 Spin Hall effect: Side jump and skew scattering due to spin-orbit coupling 249
   Problems 253
   References 253
Index 257
Preface vii
Acknowledgments ix
Authors xi
5.

図書

図書
Yoav Peleg ... [et al.]
出版情報: New York : McGraw-Hill, c2010  361 p. ; 28 cm
シリーズ名: Schaum's outline series
所蔵情報: loading…
目次情報: 続きを見る
Introduction
Mathematical Background
Schrodinger Equation and Applications
Foundations of Quantum Mechanics
Harmonic Oscillator
Angular Momentum
Spin
Hydrogen-Like Atoms
Particle Motion in an Electromagnetic Field
Solution Methods in Quantum Mechanics
Solutions Methods in Quantum Mechanics / Part A:
Numerical Methods in Quantum Mechanics / Part B:
Identical Particles
Addition of Angular Momenta
Scattering Theory
Semiclassical Treatment of Radiation
Introduction
Mathematical Background
Schrodinger Equation and Applications
6.

図書

図書
John B. Parkinson, Damian J.J. Farnell
出版情報: Berlin : Springer, c2010  xi, 154 p. ; 24 cm
シリーズ名: Lecture notes in physics ; 816
所蔵情報: loading…
目次情報: 続きを見る
Introduction / 1:
References
Spin Models / 2:
Spin Angular Momentum / 2.1:
Coupled Spins / 2.2:
Two Interacting Spin-1/2's / 2.3:
Commutators and Quantum Numbers / 2.4:
Physical Picture / 2.5:
Infinite Arrays of Spins / 2.6:
1D Heisenberg Chain with S = 1/2 and Nearest-Neighbour Interaction / 2.7:
Quantum Treatment of the Spin-1/2 Chain / 3:
General Remarks / 3.1:
Aligned State / 3.2:
Single Deviation States / 3.3:
Two Deviation States / 3.4:
Form of the States / 3.4.1:
Three Deviation States / 3.5:
States with an Arbitrary Number of Deviations / 3.5.1:
Reference
The Antiferromagnetic Ground State / 4:
The Fundamental Integral Equation / 4.1:
Solution of the Fundamental Integral Equation / 4.2:
The Ground State Energy / 4.3:
Antiferromagnetic Spin Waves / 5:
The Basic Formalism / 5.1:
Magnetic Field Behaviour / 5.2:
The XY Model / 6:
Change from Spin Operators to Fermion Operators / 6.1:
Fourier Transform / 6.3:
Quasiparticle Operators / 6.4:
Quasiparticle Energies / 6.5:
Ground State Energy of the XY-Model / 6.6:
Spin-Wave Theory / 7:
Ferromagnetic Spin-Wave Theory / 7.1:
Antiferromagnetic Spin-Wave Theory / 7.3:
Numerical Finite-Size Calculations / 8:
A Simple Example / 8.1:
Results in 1D / 8.3:
Results in 2D / 8.4:
Other Approximate Methods / 9:
Variational Method / 9.1:
Variational Monte Carlo Method / 9.3:
The Green Function Monte Carlo Method / 9.4:
Pertubation Theory / 9.5:
The Coupled Cluster Method / 10:
The CCM Formalism / 10.1:
The XXZ-Model / 10.3:
The LSUB2 Approximation for the Spin-Half, Square-Lattice XXZ-Model for the z-Aligned Model State / 10.3.1:
The SUB2 Approximation for the Spin-Half, Square-Lattice XXZ-Model of the z-Aligned Model State / 10.3.2:
High-Order CCM Calculations Using a Computational Approach / 10.3.3:
Excitation Spectrum of the Spin-Half Square-Lattice XXZ-Model for the z-Aligned Model State / 10.3.4:
The Lattice Magnetisation / 10.4:
Quantum Magnetism / 11:
One-Dimensional Models / 11.1:
The s = 1 Heisenberg Model on the Linear Chain / 11.2.1:
The s = 1 Heisenberg-Biquadratic Model on the Linear Chain / 11.2.3:
The s = 1/2 Heisenberg Model for Archimedean Lattices / 11.3:
Spin Plateaux / 11.4:
The Shastry-Sutherland Antiferromagnet / 11.5:
Conclusions / 11.7:
Index
Introduction / 1:
References
Spin Models / 2:
文献の複写および貸借の依頼を行う
 文献複写・貸借依頼